

University at Albany, State University of New York **Scholars Archive**

Geology Theses and Dissertations

Atmospheric and Environmental Sciences

1977

Geology of the northern Lewis Hills, western Newfoundland

Jeffrey Alan Karson University at Albany, State University of New York

Follow this and additional works at: http://scholarsarchive.library.albany.edu/ cas_daes_geology_etd

Part of the Geology Commons, and the Tectonics and Structure Commons

Recommended Citation

Karson, Jeffrey Alan, "Geology of the northern Lewis Hills, western Newfoundland" (1977). Geology Theses and Dissertations. 105. http://scholarsarchive.library.albany.edu/cas_daes_geology_etd/105

This Dissertation is brought to you for free and open access by the Atmospheric and Environmental Sciences at Scholars Archive. It has been accepted for inclusion in Geology Theses and Dissertations by an authorized administrator of Scholars Archive. For more information, please contact scholarsarchive@albany.edu.

GEOLOGY OF THE NORTHERN LEWIS HILLS, WESTERN NEWFOUNDLAND

by

Jeffrey Alan Karson

A Dissertation

Submitted to the State University of New York at Albany
in Partial Fulfillment of
the Requirements for the Degree of
Doctor of Philosophy

College of Arts and Sciences

Department of Geological Sciences

1977

GEOLOGY OF THE NORTHERN LEWIS HILLS, WESTERN NEWFOUNDLAND

by

Jeffrey Alan Karson

Abstract of a Dissertation

Submitted to the State University of New York at Albany
in Partial Fulfillment of
the Requirements for the Degree of
Doctor of Philosophy

College of Arts and Sciences

Department of Geological Sciences

1977

ABSTRACT

The Lewis Hills is the southernmost of the four Bay of Islands Ophiolite Complex massifs. These massifs are considered to be the dissected remnants of a once nearly continuous thrust slice of oceanic crust and upper mantle of Early Ordovician age. The Lewis Hills Massif may be divided into three north-south trending zones. The eastern zone (Bay of Islands Complex) is composed of variably deformed and recrystallized gabbro, troctolite, wehrlite and dunite cumulates and harzburgite tectonites. The western zone (Little Port Assemblage) consists of greenschist facies metagabbros, diabase dikes and minor quartz-diorite bodies. The central zone (Mount Barren Assemblage) is a 3 kilometer wide zone of highly deformed metagabbros and amphibolites cut by syn- and post- kinematic mafic and ultramafic intrusive bodies. The central zone grades into the western zone but has a sharp igneous contact against the eastern zone. It is proposed that the central zone rocks represent the deep crustal levels of an oceanic fracture zone preserved between two less deformed assemblages of oceanic crust and upper mantle. Along strike to the northeast, rocks similar to those of the eastern and western zones of the Lewis Hills are exposed in the Bay of Islands Ophiolite Complex and the Coastal Complex respectively. The Mount Barren Assemblage has not been previously described as part of the Coastal Complex and provides an important link between the Bay of Islands and Coastal Complexes. Detailed studies in the Lewis Hills permit fairly well constrained models to be constructed for

the kinematics and timing of processes during the evolution of oceanic fracture zones and the obduction of the Bay of Islands Complex.

"Transformed individuals make a transformed world"
-Celestial Seasonings Red Zinger Tea tag line-

Frontispiece: Ultramafic rocks (gold) of the northern Lewis Hills are thrust over Humber Arm Supergroup sediments (vegetated lowlands in foreground). Lewis Hill Peak (2673', highest point on the Island of Newfoundland) is on the skyline at the extreme left.

TABLE OF CONTENTS

																						Page
ABSTRACT		• •	•	• •	•.	•	•	•	•.	•.	•	•	•	•	•	•	•	•	÷	•	•	1
LIST OF	FIGURE	ES	•	•	÷	•	•	•,		•	•	•	•	•	•	•	•.	•	•	•	•	ix
LIST OF	PLATES	· .	•		•	•	•	•	•	•	•	•	•	٠	•	•.	•.	•	•	•	•	xiv
LIST OF	TABLES	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xv
ACKNOWLE	DGMENI	'S	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	. 3	kvii
CHAPTER	I																					
INT	RODUCI	rion	ſ	•	•	•	•	•	•	•	•	•.	•.	•	•	•	•	•	•	•.	•	1
	Α.	Pur				:	•	•	• .	•	•	•	•	•	•		•		•	•	•	1
	В. С.	Org																			٠	7 8
	D.	Fie																				13
	Ε.	Exp													•						•	15
CHAPTER	II																					
REG	IONAL	GEC)I.C)GY	•								•			•					•	17
	Α.	His																	•			17
	В.	Aut		ht fo			us	5 F	२००	ks	3 (f	th	ıe	We	est	eı	n			_	27
	c.	All					· ous	5 F	• 100	ks	: i	n	th	ie	Ba	· iy	of	Ē	٠	•	•	
		Is	:la			Ar			•	•	-		-	,0	•	•	•	•	•	•	•	30
															•							30 33
															np]				•		•	35
															it€							36
				Ag	je	of	= 1	:he	e F	Зау	7 (ř	Ιs	ila	and	ls	OF	ph:	io.	Lii		
															Ω		•	•	•	•	٠	40
	D. E.	Nec															•	•	•	•	•	42 42
	F.				-										•		-				•	44
				_									•									
CHAPTER	III																					
THT	LEWIS	з на	LI	រន	CO	OME	PAI	REI) [го	m	ΙE	O	H	ER	E	XP(วรา	UR!	ES		
	THE B																				•	47
CHAPTER	IV																					
PET	'ROGRA	PHY	•		•	•	,	•	•	•	•	٠		•	•	•	٠	•	•	•	•	52
	A.																				•	52
•	В.	Roc	cks												ex e			•	•	•	•	54 54

		Page
C. D.	1. Hornblende-gabbros and Meta- gabbros	56 59 63 64 65 66 68 70 71 72 74 77 79 82 84 87 91 93 97
	Fine-grained Amphibolites	98 100
CHAPTER V		
THE COAS	TAL COMPLEX IN THE NORTHERN LEWIS HILLS	101
A. B.	Introduction. Little Port Assemblage in the Northern Lewis Hills. Gabbro and Metagabbro Intrusive Rocks 1. Diabase Dikes. 2. Sheeted Diabase Dikes. 3. Quartz-diorite 4. Coarse-grained Gabbro and Pegmatite. 5. Peridotite Intrusions. 6. Porphyritic Diabase. 7. Hornblende-microgabbro Dikes.	106 106 107 112 112 114 116

		Page.
C.	1. Metagabbros	. 123 . 123 . 125 . 125 . 126 . 127 . 128 . 131 . 139 . 140 . 146 . 148 . 148 . 148 . 151 . 151 . 151 . 153 a- . 157
CHAPTER VI		
DEFORMAT	ION HISTORY OF THE COASTAL COMPLEX	. 166
A. B. C. D. E. F. G.	Lineations and Fold Axes	. 166 . 168 . 176 . 178 . 179 . 180
CHAPTER VII		
	SLANDS COMPLEX IN THE NORTHERN LEWIS	. 188
HILLS		. 188
A. B.		

		Page
	Lithologies	192
	Foliations	195
	Tectonic Significance	196
	Proliths	197
C.	Basal Ultramafic Rocks	198
	Basal Contact	198
	Ultramafic Mylonites	198
	Gabbroic Rocks	199
D.	Harzburgite Tectonites	203
	Lithologies and Structures	203
	Origin of Layering	205
	Harzburgite to Dunite Transition	207
Ε.	Layered Tectonite Megalenses	209
	Introduction	209
	Lithologies	209
	Layering	212
	Gabbroic Sills	218
	Layering at Cloud Mountain	219
F.	Homogeneous Dunite Tectonites	222
* *	Dunite	222
	Chromite Layering	222
	Dikes, Sills and Veins	223
G.	Central Layered Megalenses	226
.	Lithologies and Layering	226
	Plagioclase Grain Shapes	227
	Gabbroic Sills and Veins	228
н.		228
п.		229
		230
ı.	Layering	230
1.	Cumulate Layered Megalenses	230
	Lithologies	
	Layering	231
	Discordant Features	234
7	Layered Troctolite	234
J.	Western Contact	235
	Fragmental Cumulates	235
77	Wall Zone	238
К.	High Strain Zones	239
	High Strain Zones in Dunite and	239
	Layered Rocks	
	Amphibolitic High Strain Zones	
	Gabbros Along High Strain Zones	246
CHAPTER VIII		
יייע אמט∧דידת מאמ\סדידת	ION HISTORY OF THE BAY OF ISLANDS COM-	
	THE NORTHERN LEWIS HILLS	248
Α.	Deformation in the Layered Sequence.	248
В.	_	256
c.		258
•		-55

		Page
CHAPTER IX		
METAMORE	PHIC ROCKS IN THE WESTERN LEWIS HILLS,	267
A. B.	Introduction	267 270
c.	Zone II	274 274 274
	Zone III	275 276 277
D.	Zone VI	278 279 279
Ε.	Plagicclase Composition Variation	281 281 282
	Factors Controlling Recrystallization Pressure and Temperature of Metamorphism Aureole Width	282 284 286
F.	Metamorphic History of the MBA Relation to Ocean Floor Metamorphism	287 288
CHAPTER X		
CHROMITE	CONCENTRATIONS	291
A. B.	Introduction	291
	Northern Lewis Hills	292 293
	Type II	296
	Type III	297 298
CHAPTER XI		
ALLOCHTH	ONOUS ROCKS BENEATH THE LEWIS HILLS KLIPPE	304
A. B. C. D.	Allochthonous Sedimentary Rocks Ophiolite Mélange Hines Pond Metagabbro	304 305 306
	Other Allochthonous Assemblages	309
CHAPTER XII		
SUMMARY	AND INTERPRETATION	312

	Page
CHAPTER XIII	
BAY OF ISLANDS COMPLEX TRANSITION ZONE AND PLATE ACCRETION MODELS	321
A. Bay of Islands Complex Transition Zone and Constraints on its OriginB. Implications for Plate Accretion Models	321 328
CHAPTER XIV	
EVOLUTION OF OCEANIC FRACTURE ZONES	333
A. Introduction	333 336
Adjacent to Fracture Zones	346 347
Transform Complex	347
Transform Complex	349 350
CHAPTER XV	
OBDUCTION HISTORY	354
A. Relative Age of Oceanic Crust Obducted B. Age of Obduction	354 356 357 358 358
CHAPTER XVI	
COMPRESSIONAL WAVE VELOCITY STUDIES OF LEWIS	361
A. Introduction	361
B. Geologic Setting	363 366 367 367
Eastern Zone	367 368 369 369 374 374
Quartz-diorites	375

Pa	ige
H. Cumulate Preferred Orientation and Velocity Anisotropy	375 382 383 387
	397
APPENDIX I THE COASTAL COMPLEX, WESTERN NEWFOUNDLAND: AN EARLY ORDOVICIAN OCEANIC FRACTURE ZONE	418
APPENDIX II MINERAL CHEMISTRY OF SOME LEWIS HILLS ROCKS	468

LIST OF FIGURES

Figure	Nun	nber	Page
	1.	Generalized Tectonic Map of Newfoundland	3
:	2.	Topography of the Lewis Hills Area	12
•	3 🛴	Tectonic Map of Western Newfoundland	20
	4.	Geology of the Bay of Islands Area	23
	5.	Restored Generalized Stratigraphic and Structural Relations	26
,	6.	Nomenclature of Allochthonous Rocks in the Bay of Islands Area	34
	7.	Generalized Columnar Section of the Bay of Islands Complex	38
;	8.	Cross Section of North Arm Mountain	50
:	9.	Rocks of the Little Port Assemblage	58
1	0.	Porphyritic Diabase	62
1	1.	Rocks of the Mount Barren Assemblage	69
1	2.	Photomicrographs of Intrusive Ultramafic Rocks of the Coastal Complex	76
1	3,	Photomicrographs of Bay of Islands Complex Rocks	86
1	4.	Photomicrographs of High Strain Zone Rocks	95
1	5.	Dikes and Foliations in the Coastal Complex	109
1	6.	Lineations in the Coastal Complex	111
1	7.	Pegmatite Vein in Quartz-Diorite/Diabase Contact Zone	113
1	8.	Serpentinite Mélange	121
1	9.	Complex Relations in Metagabbro Screen	130
2	0.	Sheeted Metadiabase Dikes	130
2	1.	Interlayered Quartz-Diorite and Metadiabase	133
2	2.	Mafic Amphibolite Sheet in the MBA	133

Figure Nu	mber	Page
23.	Secondary Metamorphic Layering in the MBA	138
24.	Isoclinal Fold with Attenuated Limbs	138
25	Apparent 'Double-Fold' Structure in the MBA	142
26	Sketch of Pegmatite Patch and Associated Hornblendite	144
27	Hornblendite Veins Cutting Lineation in the MBA	144
28	Gabbroic Gneiss Cut by Large Hornblende Porphyroblast	145
29	Hornblende-Microgabbro Dike Cuts Gneisses	147
30	Sketch of Outcrop Relations in Migmatites	150
31	Feldspathic Lherzolite	156
32	. Surface of Feldspathic Lherzolite	156
33	. Peridotite Intrudes Lineated Gneiss	158
34	. Lherzolite Dike	159
35	. Wall Zone of the Peridotite Pluton	162
36	. Sketch of Outcrop Relations in Peridotite Wall Zone	162
37	. Layering in the Interior of the Peridotite Pluton	164
38	. Models for the Deformation of the Mount Barren Assemblage	170
39	. Fields of Shortening and Elongation of Dikes in a Pure Shear Model	172
40	Fields of Shortening and Elongation of Dikes in a Simple Shear Model	174
41	. Displacement Across the MBA	183
42	. Schematic Block Diagram of the Structure of the Coastal Complex	187
43	. Gabbroic Dikes in Harzburgite Tectonites South of Hines Pond	201

Figure	Numb	per	Page
4	14.	Crosscutting Relations Between Layering and Orthopyroxenite Veins	201
4	15.	Layered Megalens North of Hines Pond	211
4	16,	Folded Anorthosite and Dunite in Megalens Rocks	211
4	17.	Deformed Layered Clinopyroxenite and Dunite	215
4	18.	Streaky Plagioclase-rich Layering	215
4	19.	Deformed Small Scale Layering in Dunite and Clinopyroxenite	217
5	50.	Fabric of Cloud Mountain Olivine Gabbro	221
5	51.	Crosscutting Wehrlite Dikes in Dunite	225
5	52.	Folded Cumulate Layering in a Central Megalens	225
<u> </u>	53.	Layered Olivine Gabbro and Troctolite	233
	54.	Fragmental Cumulates of the Western Contact Area	236
5	55.	Anastamosing Shear Zones in High Strain Zone Rocks	242
Ę	56.	Strong Stretching Lineation in High Strain Zone Rocks	242
Ę	57.	Polish Slab of High Strain Zone Rock	245
į	58.	Preferred Crystallographic Orientation of Minerals in Cumulate Rocks	254
į	59.	Lineations Outside the High Strain Zones	260
(60.	Lineations in Subareas North of Hines Pond	262
(61.	Macroscopic Structures in the Lewis Hills	266
(62.	Metamorphic Zones in the Western Lewis Hills (in pocket)	
(63.	Discontinuous Chromite Layering	294
(64.	Transposed Chromitite and Dunite	300

Figure Nu	mber F	Page
65.	Isoclinally Folded Chrome-rich Gabbro	300
66.	Irregular Masses of Chromitite	302
67.	Pre-Obduction Setting of the Humber Arm and Hare Bay Allochthons	314
68.	Bay of Islands Complex Transition Zone Columnar Sections	325
69.	Plan View of Ridge/Transform Geometry	335
70.	Cross Sections of the TFZ and NTZ Regions of an Oceanic Fracture Zone	338
71.	Correlation Between the Velocity Structure of Oceanic Crust and Upper Mantle and the Structure of Ophiolite Complexes	365
72.	Plot of Compressional Wave Velocity vs. Density	377
73.	Schematic Block Diagram of the NTZ Region of an Oceanic Fracture Zone	391
	Appendix 1	
1.	Model of Geometric and Geologic Evolution of a Ridge/Ridge Transform and its NTZ Continuation	424
2.	Tectonic Setting of the Bay of Islands Op- hiolite Complex and the Coastal Complex of Western Newfoundland	433
3.	Generalized Geology of the Bay of Islands Area	436
4.	Restored Generalized Stratigraphic and Structural Relations of Upper Precambrian to Middle Ordovician Rocks of the Bay of Islands Area	439
5.	Generalized Structural Sections of the Trout River Area and the Lewis Hills Area	443
6.	Possible Present Day Analogs and a Possible Palinspastic Reconstruction of the Bay of Islands Area During Tremodocian Time	459

Figure Nu	mber		F	age
7.	Two-Dimensional Model for the Obduction of the Bay of Islands and Coastal Complexes	462	&	463
	Appendix 2			
1.	CaMg-CaFe-Fe-Mg Plot for Minerals in MBA Metamorphic Rocks and Other Low Pressure Metabasites			471
2.	CaMg-CaFe-Fe-Mg Plot for Minerals in MBA Peridotite and Other Peridotites and Lewi Hills Dunite and Hbl-Microgabbro	s		472

LIST OF PLATES

Plate Number

- I. Lithologic Layering and Minor Intrusive Bodies in the Northern Lewis Hills
- II. Shear Zones in the Northern Lewis Hills
- III. Lineations and Fold Axes in the Northern Lewis Hills
 - IV. Structural Cross Sections of the Northern Lewis Hills
 - V. Compressional Wave Velocities of Mafic and Ultramafic Rocks in the Northern Lewis Hills

All plates are located in the pocket in the back cover of this dissertation.

LIST OF TABLES

Table	Number	Page
J	I. Abbreviations Used in the Text	53
IJ	I. Mineralogy of Rocks in the LPA	55
III	. Mineralogy of Rocks in the MBA	67
II.	/. Mineralogy of Intrusive Ultramafic Rocks	7 3
7	7. Mineralogy of the Basal Metamorphic Belt Rocks	s 80
VI	I. Mineralogy of the Ultramafic Tectonites and Related Rocks	83
VII	. Mineralogy of Megalens Rocks	89
VIII	. Mineralogy of Hornblende-microgabbro dikes	92
IX	Mineralogy of Rocks of the Structurally Lower Assemblage	99
X	Symbols, Definitions and Relative Chronology of CC Structures	124
XI	Symbols, Definitions and Relative Chronology of BOIC Structures	193
XII	Petrography and Extent of Metamorphic Zones of the CC	272
XIII	Progressive Mineral Changes in the LPA and MBA	280
XIV	Relative Chronology of Geologic Events in the Northern Lewis Hills (in pocket)	
ΧV	Petrography of Compressional Velocity Samples	370
XVI	Compressional Wave Velocities for Mafic and Ultramafic Rocks of the Lewis Hills	378
XVII	Density and Velocity Ranges and Means of Major Rock Groups in the Lewis Hills	381
XVIII	. Maximum and Restored Horizontal Plane Aniso- tropy	384

Table Nu	mber	Page
	APPENDIX 2	
I.	Petrography and Setting of Electron Micro- probe Samples	469
ΤT	Major Element Analysis of Lewis Hill Samples	470

ACKNOWLEDGMENTS

During the period of time that was spent working on this dissertation I have had the help, advice and support of a great number of individuals. To acknowledge all of the friends and colleagues who contributed to this work would require another hundred pages or more. The project would have been impossible without the cooperation of some of these people and I would like to acknowledge them.

Norman Burr, Art Edelstein and Suzanne O'Connell served as my field assistants in the Lewis Hills and deserve special thanks. They helped me faithfully through rain, sleet, snow and fog without complaints. Charles and Robert Lockyer of Corner Brook provided me with all types of supplies. Newfoundland Air Transport delivered supplies, mail, and my camp to the Lewis Hills despite tricky winds that cost them a float plane in 1975 at Hines Pond.

While working at Lamont-Doherty Geological Observatory in February 1977, Dr. Ed Schreiber and Tony Lomando taught me the art of compressional wave velocity measurement. Ed and Charlotte Schreiber's hospitality and encouragement got me through my long days and nights work in the mineral physics lab. Al Hajek helped prepare the rock samples for this work and provided his special talents for keeping all sorts of apparatus in running condition for me at SUNYA.

Dr. S. E. DeLong and Jerry Sullivan prepared samples and performed electron microprobe analysis on a number of my rock samples. The data is located in appendix 2. Dr. DeLong help-

ed me with data reduction and calculator programming for the probe data and compressional velocity data.

I would also like to acknowledge the following individuals for their helpful discussions during my research: Dr. A. R. Berger, Mr. J. Casey., Dr. S. E. DeLong, Dr. J. F. Dewey, Mr. W. J. Gregg, Dr. P. J. Fox, Dr., W. S. F. Kidd, Dr. W. D. Means, Dr. B. W. Nisbet, Ms. S. O'Connell, Dr. G. W. Putman, Dr. E. Schreiber, and Dr. T. Shibata. Drs. Eursnall, DeLong, Dewey, Fox and especially Dr. Kidd read this text critically and made mant suggestions that have improved it greatly.

Dr. J. F. Dewey introduced me to the problem and provided encouragement and stimulating ideas especially through the final stages of the study when he and I coauthored the publication found in appendix 1.

Financial support for this project came from NSF grant number EAR 76-14459.

Ms. Sally Spydell and Ms. Cindy Barcomb typed the bulk of the final text of this dissertation. Ms. Mary Regan typed figure captions and all sorts of odds and ends. Ms. Linda Schroll and Ms. Terri VanDerwerken also helped with the tables and the first draft.

Finally, I would like to thank all those mentioned above, the SUNYA geology graduate students, all my friends and especially Mary Grauerholz for all their companionship and support.