Solenoid Operated Gear Shifting Mechanism for Two Wheeler

Amol Shitole, Pavan Kotari, Poonam Magdum,Omkar Sutar, Swapnil Toraskar, Prajakta R. Patil

Department of Mechanical Engineering Sou. Sushila Danchand Ghodawat Charitable Trust's Sanjay Ghodawat Group of Institutions, Atigre, Maharashtra, India *Corresponding author (e-mail:- patil.pr@sginstitute.in)

Abstract

Solenoid operated gear shifting mechanism is mainly designed for the handicapped persons who unable to shift the gears by their foot. The technique used in this gear shifting mechanism consists of solenoid. Solenoid completes one up and down motion called as one stroke. This stroke time depend on supplied voltage and current. According to stroke length and voltage calculation, solenoids are mounted on both sides of gear shifting pedal at ends. By pressing that switch, person easily shifts the gear with the help of foot which is most efficient to handicapped persons.

Keywords: solenoid, gear shifting, permanent magnet

INTRODUCTION

Manual gear shifting or manual transmissions come in two basic types: simple un xsynchronized systems, where gears are spinning freely. Whereas the other one is the synchronized systems, in which all gears are always in mesh but only one of these meshed pairs of gears is locked to the shaft on which it is mounted at any one time, the others being allowed to rotate freely; thus greatly reducing the skill required to shift gears.

Literature Review

For easy gear shifting mechanism many researchers did theory and experiments. Muntaser Momani, Mohammed Abuzalata, Igried Al-Khawaldeh and Hisham Al-Mujafet had designed gear variable mechanism and apply to make the shifting process faster and less destructible for the driver. They used many devices like pneumatic double acting cylinder; four pneumatic two positions five ways DCV, Programmable logical controller (PLC) were used [1].

Resercher beitao guo, hongyi liu, zhong lou used Fuzzy logic and control which was applied in hydraulic pressure control of solenoid valve seal performance test. Hence the problem of supplying constant pressure requested by the test can be resolved [2].

SOLENOID SELECTION

Actuators are defined as energy converter which converts one form of energy (electrical) into mechanical energy in a controlled form. Electromagnetic actuator which converts electrical to magnetic field is called "Solenoid" [3].

This system consists of an electromagnetic system which will work on the principle of British scientist William-Sturgeon of electromagnet. То concentrate the magnetic field of a wire, in an electromagnet the wire is wound into a coil, with many turns of wire lying side by side. The magnetic field of all the turns of wire passes through the centre of the coil, creating a strong magnetic field. Some simple mechanism is arranged with the electromagnet and will help us to change the gear as per the desired speed.

The proposed solenoid consists of a coil and a movable plunger as shown in fig.2.1.The electromagnetically inductive coil is wound around the plunger [4]. We used a permanent magnet (PM) as a plunger, rather than generally used metal rods, to generate a higher actuation force. Therefore, two kinds of forces are exerted in the solenoid. One is the electromagnetic force induced by the magnetic field inside the solenoid when a current flows into wound coils. The other is the magnetic force caused by a permanent magnet.

This sort of solenoid is generally referred to as a Linear Solenoid, due to the linear directional motion and action of the plunger. Linear solenoids are available in two primary configurations known as a "Pull-kind" and "Push-kind". Linear solenoids are beneficial in lots of packages that require an open or closed (in or out) type motion such as electronically activated door locks, pneumatic or hydraulic manage valves, robotics, car engine management, irrigation valves to water the lawn or even the "Ding-Dong" door bell has one. It may be available as open body, closed frame or sealed tubular kinds [5].

Design & Calculations

Calculation of pull torque required for solenoid as follows;

2.1.1.Force developed by electromagnet

$$=\frac{B^2A}{2}$$

F max 2μ Where,

B=magnetic field in terlor A=area of pole in meter $\mu_{\text{=permeability of space}=4}\pi * 10^{-7}$ Magnetic field $= \frac{\mu NI}{\mu}$ L R Where. N = No. of turns = 4000 turnsI= current supplied in amp =5 amp L=length of electromagnet in meter = L=60mm $L = 60 * 10^{-3}$ 2.1.2 Calculation required of electromagnetic force for Passion Pro and spender plus Required data :-N= No. of turns for coil = 4000 turns I= current supplied in amp =5 amp L=length of electromagnet in meter = $60 \text{mm} = 60 * 10^{-3} \text{m}$ μNI

F max= force in Newton

MAT JOURNALS

 $=\frac{1.256*10^{-6}*4000*5}{60*10^{-3}}$ B

 m^2 B = 0.4186 Wb/ = $\frac{\pi}{4}(Do^2 - Di^2)$

> Area = 7.85^* = $\frac{B^2 A}{2\mu}$

F max 2μ

 $F \max = 54.75 N$

2.1.3 Power required for operating solenoids

Required voltage = 12 vRequired ampere = 5 ampPower required for one solenoid = V*I = 12 * 5= 60 watt Total power required = 2 * 60 = 120 watts

ASSEMBLY OF ACTUATORS ON BIKE

Solenoid completed one up and down motion called as one stroke. This stroke time depend on supplied voltage and current. According to stroke length and voltage calculation, mount solenoids on both sides of gear shifting pedal at ends. By providing appropriate voltage it pulls the plunger downward and by cutting off supply it retracts plunger upward.

Photograph no. 1 mounting top view

Photograph no. 2 mounting side view

Analysis

a) Material properties of the component are as follows;

Model Reference	Properties		Components	
	Name:	Beryllium Copper, UNS C17000	SolidBody 1(Boss- Extrude7)(coil-1)	
	Model type:	Linear Elastic Isotropic		
	Default failure	Max von <u>Mises</u> Stress		
	criterion:	440 W/// I/)		
	Inermal conductivity:	118 W/(m.K)		
	Mass density:	8260 kg/m^3		
Curve <u>Data:N</u> /A				
	Name:	Ductile Iron	SolidBody	
	Model type:	Linear Elastic Isotropic	1(Revolve1)(solenoidactuato	
	Default failure	Max von <u>Mises</u> Stress	-1)	
	criterion:	75 W//m V)		
	conductivity:	75 W/(m.K)		
-	Specific heat:	450 J/(kg.K)		
	Mass density:	7100 kg/m^3		
Curve Data:N/A				
	Name:	PVC Rigid	SolidBody 1(Boss-	
	Model type:	Linear Elastic Isotropic	Extrude2)(upperplate-1)	
t	Default failure	Unknown		
	criterion:	0.147.W//m K)		
	conductivity:	0.147 107 (00.00)		
	Specific heat:	1355 J/(kg.K)		
	Mass density:	1300 kg/m^3		

Fig. 2 Volumetric properties

b) The thermal analysis of the model is done.

Fig. 3 Thermal analysis of model

Name	Туре	Min	Max
Thermal1	Temperature	5.68434e-014Kelvin	5.68434e014Kelvin
		Node: 1	Node: 1

Table. 1 Thermal Result

DISCUSSION

The trial was taken on 3 types of bikes namely Hero Passion Pro model-2012, Hero Splendor Plus model-2011, Bajaj boxer model-1999. After completing test we conclude that solenoid force required for new models bike is lower than force required for old model bikes. Also this

force is affected by the type of gear box used. This mechanism is most suitable for asynchronies gear boxes. The total cost of equipment is Rs.10, 740/- The test result is as follows. The comparative discussion chart is given below;

Sr. No	Parameters	Passion Pro	Splendor plus	Boxer
1.	Position of solenoid	It's complicated to	It's difficult to	It's easy to fix
	assembly	fix the assembly	fix the assembly	the assembly
2.	Gear shifting motion	Smooth	Jerky	Smooth
3.	Solenoid force	6 kg	6 kg	3 kg
4.	Power required	120 watt	120 watt	72 watt
5.	No. of turn required	4000 turns	4000 turns	1000 turns
	for solenoid			
6.	Costing of solenoid	9000 /-	9000 /-	7000 /-
7.	Thermal stability	Less	Less	More
8.	Actuation time	1.40 sec	1.50 sec	0 sec

 Table. 2 Test Results

RESULT

Power required for solenoid gear shifting mechanism is 72 watts in Boxer bike which is 48% less, as compared to passion pro and splendor plus and gives more thermal stability due to less current and voltage required for boxer. Solenoid force required in Boxer bike is half of the passion pro and spender plus due to low current and voltage requirement. Also gives smooth Gear shifting motion.

CONCLUSION

This project is most useful for handicap persons those who cannot drive the two wheelers because due to gear shifting problem. Hence the gear shifting mechanism is developed and modified according to their requirement. The application of this gear shifting mechanism leads to make the driving process for driver easier, reduces the risk of destabilizing, the chance of miss shifting. Due to this mechanism driver can concentrate on road rather giving concentration of gear shifting and easily drive in traffic areas.

REFERENCES

1. MuntaserMomani,MohammedAbuzala ta, Igried Al-Khawaldeh and Hisham Al-Mujafet, "Pneumatic, PLC Controlled, Automotive Gear Shifting Mechanism", Research Journal of Applied Sciences, Engineering and Technology 2(3): 245-251, 2010 ISSN: 2040-7467, May 10, 2010.

- BeBeitaoGuo, Hongyi Liu, Zhong Lou, Yang Jiang, Fei Wang, "The test of solenoid valve seal performance based on fuzzy control", Pacific Asia workshop on Computational Intelligence and industrial application, IEEE 2008,pp 355-359,doi : 10.11.09/PACIIA.2008.
- 3. Praveen Kumar B, M. Sampath Kumar, M. Srihari, K. Dayakar, "design of magnetic actuator", International Journal of Research in Engineering and Technology, ISSN: 2319-1163, Volume: 04 Issue: 10 | Oct -2015.
- 4. Chang-Woo Song and Seung-Yop Lee,"Design of a Solenoid Actuator with a Magnetic Plunger for Miniaturized Segment Robots", Department of Mechanical Engineering, Sogang University Korea, ISSN 2076-3417, 18 September 2015.
- D.Mangeelal, P.Ravikanth Raju, K. Nagendra Kumar, P. Amani, "button operated electro-magnetic gear shifting system", International Journal of Computer Science information and Engg. Technologies, ISSN 2277-4408, ISSUE4-VOLUME2-SERIES2, 01/06/2014

