Outlier Based Fraud Detection System

Prerana M More, Mrudul K Rushipathak, Shweta G Bairagi, Trupti S Nalnikar Department of Computer Engineering

KKWIEER, Nashik

Email id: prerana.more2012@gmail.com, mrudul40@gmail.com , shwetabairagi12@gmail.com, trupti.nalnikar@gmail.com

Abstract

Data mining has the vital task of Outlier detection which aims to detect an outlier from given datasets. The analysis or detection of outlier data is referred to as Outlier Mining. In Data mining, outlier detection is the identification of unusual or distant data records that might be require further investigation or analysis. This paper provides the data driven methods for various fraud detection systems based on literature review, fraudulent activities or cases and comparative research. Outlier detection is the technique which discovers such type of data from the given data set. Several techniques of outlier detection have been introduced which requires input parameter from the user. The goal of this proposed work is to partition the input data set into the number of clusters using K-NN algorithm. Then the clusters are given as an input to the outlier detection methods namely cluster based outlier algorithm and Local Outlier Factor Algorithm. The Performance evaluation of this algorithm confirms that our approach of finding local outliers can be practically implemented.

Keywords: Data Clustering, K-NN, Outlier Detection, ODA, LOF

INTRODUCTION

A number of surveys, review articles and books cover outlier detection techniques in the field of data mining. In this paper we make an attempt to bring together many different outlier detection techniques in a structured and generic description.

Outlier detection has been used for long time to find and remove identical observations from data. Outliers are generated due to system faults, errors in data entry, fraudulent behaviour, data scaled inappropriately or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially identical consequences. It can identify errors and remove their significant effect on the data set and as such to purify the data for processing. The earlier outlier detection methods were complexed but now, different techniques are used, related to Statistics. In this paper, we introduce different algorithms for outlier detection. We identify the motivations of it and differentiate among their advantages and disadvantages in a comparative review.

The LOF algorithm is an outlier detection method which is unsupervised method and it calculates the density deviation of a given data point with respect to its neighbors in the database. It notes the data as outlier samples that have a relatively lower density than their neighbors in the database.

In this paper basic methodologies currently used for solving this problem are considered, and their advantages and disadvantages are discussed. It is based on methods of fuzzy set theory and the use of kernel functions and possesses a number of advantages compared to the existing methods. The performance of the algorithm used is studied by the example of outlier detection arising in credit card

systems, the so-called fraud detection systems.

Literature Survey

- a. Kadam, Pund and Aggarwal went through various approaches to detect outliers including the cluster-based approach.
- b. Aparna and Nair proposed the CHB-K-Means algorithm by using a weighted attribute matrix to detect outliers.
- c. Jiang et al. introduced a two-phase clustering algorithm for outlier detection. In the first phase, the kmeans algorithm is changed to partition the data in such a way that a data point is assigned to be a new cluster center only if the data point is far away from all clusters. In the second phase, a minimum spanning tree is constructed based on the cluster centers obtained from the first phase.
- d. Zhang et al. (2009) proposed a measure called Local Distance-based Outlier Factor (LDOF) to measurethe outliers present in scattered data.
- e. He et al. declared the concept of cluster based local outlier and also designed a measure called clusterbased local outlier factor (CBLOF).

Proposed Methodology

The proposed system works in three phase's viz. preprocessing, clustering and outlier detection. Before performing clustering input dataset is preprocessed and then the clustering is performed using k-nn algorithm. After clustering, each cluster out of k clusters is given as an input to the outlier detection methods. There are different methods that are used for detecting an outlier. Output provided is set of outliers from input dataset. System architectural diagram is explained below.

Step 1 :Pre-processing

Input : Open the file or URL to be processed.

Dataset consists of numeric data from various sources. Dataset should be in xml or csv format. The data can be generated by different transactions, inventory management systems and DBMS.

User need to mention attributed which are unwanted or don't play any role in outlier detection as well as mark class attribute from imported file.

Save the file to proceed further.

Processing : System will now remove undesirable attributes and prepare the file for further processing.

Step 2 : Outlier Detection Algorithm

Input : User has to click on Start Algorithm

Processing : Data Records which may contain outliers are detected and differentiated from remaining records

Step 3 : LOF Algorithm

Input : Records which may contain outliers are considered for execution of Local Outlier Factor algorithm.

User has to mention Number of Parameters for KNN algorithm

Processing: KNN algorithm will be run followed by LOF to detect outliers

Detected outliers will be displayed followed by time in ms

Results

RUTLIER DETECTION FRAN	rework				- 0
Open File Open	URL Save	Class Name : cna	me	Missing ::	0%
Data Type :: NIL ile Size :: NIL	Number of Instance :: 00 Number of Attribute:: 00	No No	Label	Count	NIL
Atribute Selection		ר			
No	Name				
		Status			
Mark as Clas	s Remove Attribute				

After selecting a file Remove unwanted attributes &mark some attributes as class and save the file

eprocessing Oulier Detectio	Local outier Detection				
Open File Open URL	Save		Class Name : Cla Distinct : 2	55	Missing : 0 Type : Neumeni
ata Type :: CSV	Number of Instance : 33	2	in the second se	Let a	
16.6122012E MD	Number of Attributer 21		NO	Label	Count
10.01320123 RD	Humber of Autoble, 3		1	0	27
			2	1	3
Ambute Selection					
No	Name				
15	V15	4			
16	V16	n .			
17	V17				
18	V18				
19	V19				
20	V20				
21	V21				
22	V22				
23	V23				
24	V24		CStatue		
25	V25		Juna		
26	V26				
27	V27		2018/03/20 1	4:38:17 : Open Fi	le
28	V28		2018/03/20 1	4:38:44 :[0]	
29	Amount		2018/02/20 1	4:28:40 [0 20]	
30	Class		2018/03/201	4.38.49 [0, 29]	Class Button
			2010/03/201	4.30.31 . Ividi k d3	Class Bullon

In order to preprocess dataset we have to select & import file through Open file or Open URL

After clicking on Outlier detection tab/button ODA algorithm will run and entire dataset will be checked and suspicious records will be extracted for further processing

Current Data Attribute		Radius Details		
Agorithm :: Outler Detection Algorithm	Start Algorithm	Sr No	Cluster No	Radius
		1	1	5.294265729068312
Distance Details				
distance(row = 12 ,centroid) ==> 4.6878	66055752408 < 5.2 *			
distance(row = 13 ,centroid) ==> 3.6808	42414207902 < 5.2			
distance(row = 14 ,centroid) ==> 5.1532	16267374292 < 5.2	C Algorithm Details		
distance(row = 15 ,centroid) ==> 4.4847	10293836601 < 5.2	Nogowithin Decans		
distance(row = 16, centroid) ==> 3.2245	8853110224 < 5.29			
distance(row = 17 ,centroid) ==> 3.3847	910893742004 < 5.	ODA OUTPU	т	
distance(row = 18 ,centroid) ==> 9.4039	1895585941 > 5.29			
distance(row = 19, centroid) ==> 4.7403	35883781904 < 5.2	File :: C:\Use	rs/dell pc/workspace/O	utlierDetection KKWLo
distance(row = 20, centroid) ==> 4.3569	567777021 < 5.294			
distance(row = 21 ,centroid) ==> 5.0938	39708990621 < 5.2	-1.35835406	1598231.340163074	73609.1.7732093426311
distance(row = 22 ,centroid) ==> 4.2692	49402168524 < 5.2	-0.64426944	2348146.1.417963545	47385.1.0743803763556
distance(row = 23 ,centroid) ==> 5.2225	49450737767 < 5.2	-5.40125766	315825 -5.450147834	20644 1 1863046314365
distance(row = 24 ,centroid) ==> 5.3759	25759181955 > 5.2	-1.94652513	121534 -0.044900505	44181940.40557006837
distance(row = 25 ,centroid) ==> 3.2888	189957459835 < 5.	-2.31222654	23263.1.95199201064	158-1.60985073229769
distance(row = 26, centroid) => 3.3923	405480878266 < 5.	-3.04354062	39976-3.1573071209	0228.1.08846277997285
distance(row = 27 ,centroid) ==> 3.7182459366686986 < 5. distance(row = 28 ,centroid) ==> 9.007023133486332 > 5.2		-2.30334956758553,1.759247460267,-0.359744743330052, -4.39797444171999,1.35836702839758,-2.5928442182573,		
distance(row = 30 ,centroid) => 9.1709	98771503296 > 5.2			
E	172121210022222 - 2			

Set parameters i.e. Nearest neighbor for outlier detection algorithm and click on start algorithm

Current Data Attribute			Radius Details				
Algorithm :: Local Outlier Factor Number of Nearest Neighbour :: 3		Point LRD		Cluster File Name			
		0 0.11818079228188716		0.txt			
Start Algorithm	- HIC	Cat Dave a store	1	0.11670338991944373	0.54		
	🔬 Specify a fi			× 991944372	0.84		
Distance Details				136589885	0.84		
Diet(71) = 22 808580	Lookjn:	Documents					
Dist(7,2) = 23.577951	(m	-		(P anni			
Dist(7.3) = 22.963563	AIP Notes Corel					1	
Dist(7,4) = 16.105301	Pinal Project			ComPlant			
Dist(7.5) = 23.129186	Bluetooth Eddar			702839	158, -2.592844	21825	
Nint/7 6) - 12 087004	in ooc			T46026	7, -0.35974474	33300	
$J_{150}(7,0) = 13.987004$	Dist(7.7) = 9999999 0			101064158, -1.609850732297			
Dist(7,7) = 99999999.0	Cua			0106415	58, -1.6098507	32297	
Dist(7,7) = 99999999.0				* 4783420	644, 1.186304	32297 63143	
Dist(7,7) = 99999999.0 k-Nearest Neighbour A	- Cod	n.		* 4783420 7120902	58, -1.6098507 644, 1.186304 28, 1.0884627	32297 63143 79972	
Dist(7,7) = 13.987004 Dist(7,7) = 99999999.0 k-Nearest Neighbour A	File Name	[* 4783420 7120902 0050544	58, -1.6098507 644, 1.186304 28, 1.0884627 18194, -0.405	32297 63143 79972 57006	
Dist(7,0) = 13.987004 Dist(7,7) = 99999999.0 Nearest Neighbour A	File Name.	All Files		**************************************	58, -1.6098507 644, 1.186304 28, 1.0884627 18194, -0.405 7385, 1.074380	32297 63143 79972 57006 03763:	
Dist(7,8) = 13.987004 Dist(7,7) = 99999999.0 k-Nearest Neighbour A Point = 0 Neighbour= [Point = 1 Neighbour= [File tiame: Files of Type:	All Files		0106411 4783420 7120902 0050544 635454 6307473	58, -1.6098507 644, 1.186304 28, 1.0884627 18194, -0.405 7385, 1.074380 609, 1.773209	32297 63143 79972 57006 03763: 034263	
Dist(7,7) = 99999999.0 Nearest Neighbour A Point = 0 Neighbour= [Point = 1 Neighbour= [Point = 2 Neighbour= [File tiame: Files of type:	All Files		010641 ** 4783420 0050544 * 635454 6307473	58, -1.6098507 644, 1.186304 28, 1.0884627 18194, -0.405 7385, 1.074380 609, 1.773209	32297 63143 79972 57006 03763 934263	
Dist(7,7) = 13.987004 Dist(7,7) = 9999999.0 Nearest Neighbour A Point = 0 Neighbour= [Point = 1 Neighbour= [Point = 3 Neighbour= [File Hame: Files of Type:	All Files		1010641 14783420 7120902 0050544 635454 6307473 Bave Cancel	88, -1.6098507 6644, 1.186304 (28, 1.0884627 (18194, -0.405 7385, 1.07438(609, 1.773209	32297 63143 79972 57006 03763: 034263	
Ana(7,7) = 13.98 004 Dist(7,7) = 9999999.0 Nearest Neighbour A Point = 0 Neighbour [Point = 1 Neighbour [Point = 2 Neighbour [Point = 4 Neighbour [File tiame: Files of Type: 3, 5, 6]	[All Files	Aigorithm n	0106411 7 • 4783420 7120902 0050544 635454 6307473 Save Cancel in time :: 495 Ms	88, -1.6098507 644, 1.186304 28, 1.0884627 18194, -0.405 7385, 1.07438 609, 1.773209	32297 63143 79972 57006 03763: 934263	
Dist(7,7) = 9999999.0 Dist(7,7) = 9999999.0 k-Nearest Neighbour= [Point = 0 Neighbour= [Point = 1 Neighbour= [Point = 3 Neighbour= [Point = 4 Neighbour= [Point = 5 Neighbour= [File tiame. Files of Jupe. 3, 5, 6] 0, 2, 3]	All Files	Algorithm n	010641 183420 120902 0050544 6307473 Dave Cancel In time :: 495 Ms	88, -1.6098507 1644, 1.186304 128, 1.0884627 18194, -0.405 7385, 1.07438 609, 1.773209	32297 63143 79972 57006 03763: 034263	

Set parameters i.e. Nearest neighbor for outlier detection algorithm and click on start algorithm

Current Data Attribute	C Radius Details			
gorithm :: Local Outler Factor Number of Nearest Neighbour :: 3 Start Algorithm Set Parameters Instance Details	Point 0 1 2 3 4	LRD 0.11818079228188716 0.11670338991944373 0.10443917241302209 0.11670338991944372 0.08843150136589885	Cluster File Name	
bit(1, 2) = 22.805589768651092 i bit(1, 2) = 23.875911305623848 bit(2) = 23.875911305623848 bit(1, 2) = 23.87591130502376 bit(2) = 23.87591123 bit(1, 2) = 23.8759104375006276 bit(1, 2) = 13.9759123 bit(1, 2) = 3.975904375006276 bit(2) = 13.95904375006276 bit(1, 2) = 13.9759143 bit(2) = 13.95 bit(1, 2) = 13.97504578006276 bit(1, 2) = 13.95 bit(1, 2) = 13.9759143 bit(2) = 13.95 bit(2) = 13.97591439143 bit(2) = 13.95 bit(2) = 13.97591439143 bit(2) = 13.95 bit(3) = 13.97591439143 bit(3) = 13.95 bit(3) = 13.975914391439143 bit(3) = 13.95 bit(3) = 13.9759143914391439143914391439143914391439143	Agorithm Detai For Cluster (4.3979744 (-2.3033496 (-3.0135406 (-1.9465251) (-0.6442694 (-1.3583540 Algorithm re	D.txt H171999, 1.358367028397; C158553, 1.759247460267; H23263, 1.9519920106415; S.4501785420, 631582, 5.45041785420; S12134, 0.0441780505441 H2348146, 1.4179635457; G159823, -1.34016307473; m time :: 495 Ms	58, -2.59284421825 -0.3597447433300 8, -1.609850732297 44, 1.18630463143 18194, -0.40557006 385, 1.0743803763 509, 1.77320934263	
venue - venillanear fei et et	Save Without Outlier			

It displays outliers. We can now save file without outliers

This system recognizes the outliers from given dataset successfully. In order to produce precise and accurate details it first pre-processes the data and then perform Outlier Detection Algorithm i.e. ODA and then it displays outliers and processing time in mini seconds.

CONCLUSION

MAT

JOURNALS

Outlier detection is a significant problem. It has direct applications in a wide variety of domains. A salient observation with outlier detection is that it was not a precisely formulated problem. Several approaches have been proposed by many researchers to target a particular application domain. To detect cluster based outliers first input data set is clustered into number of clusters using Knn algorithm and then outlier is detected from each cluster by applying a cluster based outlier detection algorithm and the

Outlier Detection Algorithm. The ODA algorithm gives better accuracy as compared to cluster based outlier detection algorithm for same set of datasets.

We introduce the notion of the local outlier factor LOF, which captures exactly this relative degree of isolation. We show that our definition of LOF enjoys many desirable properties. There are two directions for ongoing work. First is how to describe or explain why the identified local outliers are exceptional. This is specifically meant for high-dimensional data or datasets, as a local outliers may be outlying only on some, but not on all dimensions. The second one is to further improve the performance of LOF computation. On the one hand, such an algorithm may provide more detailed information about the local outliers, e.g., by analyzing the clusters relative to which they are outlying. Also, computation may be shared between LOF processing and clustering. The shared computations may contain k-nn queries and reachability distances.

Acknowledgement

We are grateful to our guide Prof. N M Shahane for his valuable guidance for this research work. We would also like to show gratitude towards our K K Wagh Institute of Engineering Education and Research, Nashik and Head of Computer Engineering Department Dr. S S Sane for providing us the platform required for the work . We would also like to thank our colleagues for their useful insights towards his work.

REFERENCES

- Aggarwal, C.C., 2015. Data Mining: The Textbook. Springer, New York, NY.Aggarwal, C.C., Reddy, C.K. (Eds.), 2013. Data Clustering: Algorithms andApplications. CRC Press, Boca Raton, FL, USA.
- Ahmed, M., Naser, A., 2013. A novel approach for outlier detection and clusteringimprovement, in: Proceedings of the 8th IEEE Conference on IndustrialElectronics and Applications (ICIEA), pp. 577– 582.
- Aparna, K., Nair, M.K., 2016. Computational Intelligence in Data Mining.Springer. volume 2. chapter Effect of Outlier Detection on Clustering Accuracyand Computation Time of CHB K-Means Algorithm. pp. 25–35.
- 4. Chawla, S., Gionis, A., 2013. *k*-means: A unified approach to clustering and outlier detection. SIAM. chapter 20. pp. 189–197. Dave, R., Krishnapuram, R., 1997. Robust clustering methods: a unified view.IEEE Transactions on Fuzzy
- Systems 5, 270–293.
 Duan, L., Xu, L., Liu, Y., Lee, J., 2009. Cluster-based outlier detection. Annalsof Operations Research 168, 151–168.
- Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Y.Zomaya, A., Khalil, I., Foufou,S., Bouras, A., 2014. A survey of clustering algorithms for big data: Taxonomyamp; empirical analysis. IEEE Transactions on Emerging Topics inComputing PP, 1–1