

Journal of Signal Processing Volume 4 Issue 1

Demonstration of Artificial Neural Network

Patil Monika Mansing

Department of Electronics and Tele-Communication Engineering Rajarambapu Institute of Technology, Islampur Monikapatil993@gmail.com

Dr J. S. Awati

Department of Electronics and Tele-Communication Engineering Rajarambapu Institute of Technology, Islampur jayashree.samai@ritindia.edu

Abstract

Artificial neural networks (ANN) is referred as the neural networks are the signal processing and in information model which is based on the biological neuron. An artificial neural network (ANN) consists of a bundle of simple processing units which communicate by sending signals to each other over a large number of weighted connections. A set of processing unit is called as neuron. A neural network is made up of an interconnection of nonlinear neuron. The purpose of this work is to examine Neural Networks (NN) and their emerging applications in the field of engineering. The paper presented the basic study of the artificial neural network and its characteristics and its applications.

Keywords: Artificial Neural Network, Pattern recognition

INTRODUCTION

There are two types of neural network such as artificial neural network and biological neural network .Artificial neural network is inspired by biological nervous system like brain and process information. The element of this sample is the novel structure of the information processing system. It is tranquil of a larger number of highly interconnected processing elements working in unison to solve problems.An Artificial Neural Network is configured for a specific application, such as pattern recognition or data classification, through a learning process. Learning in biological systems involves adjustments to that exist between connections the neurons.

ANN usually involves a big number of processors operating in parallel and arranged in tiers. The first tier receives the crude input information eternal to optic nerves in human visual processing. Each successive tier receives the output from the

tier preceding it, rather than from the raw input in the same way neurons further from the optic nerve receive signals from those closer to it. The last tier produces the output of the system.

Artificial neural network achieves large connection units that are interconnected in some pattern to aloe communication between the units. These units, also referred as neurons, are simple processors which operate in parallel. The most basic learning model is centered on weighting the input stream, which is how each node weights the importance of input from each of its predecessors. Inputs that contribute to getting right answers are weighted higher.

Neural Networks are sometimes described in terms of their depth, including how many layers they have between input and output, or the models so called hidden layers. They can also be described by the number of hidden nodes. In the neural network there are two types of propagation

such as forward and backward propagation. An MLP with single hidden layer can be represented graphically as follows:

Input layer Hidden Layer Output Layer

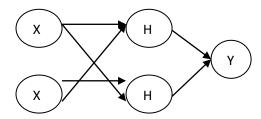
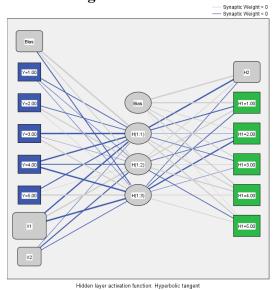


Fig1: Multilayer Artificial Neural Network

RESULTS

Multilayer Perceptron:

Multilayer Perceptron is feed forward neural network with one or more layers between input and output layer. Feed forward means that data flows in one direction from input to output layer (forward). This type of network is trained with the back propagation learning algorithm. MLPs are widely used for pattern classification, recognition, prediction, and approximation.


Table 1: Case Processing Summary

		N	Percent
Sample	Training	22	73.3%
	Testing	8	26.7%
Valid		30	100.0%
Excluded		0	
Total		30	

Table 2-Network Information

	Netv	work Information		
Input Layer	Factors	1	Υ	
	Covariates	1	X1	
		2	X2	
	Number of Units ^a			7
	Rescaling Method for	Covariates	Standardized	
Hidden Layer(s)	Number of Hidden La	iyers		1
	Number of Units in H	idden Layer 1ª		3
	Activation Function		Hyperbolic tange	ent
Output Layer	Dependent Variables	1	H2	
		2	H1	
	Number of Units			6
	Rescaling Method for	Scale Dependents	Standardized	
	Activation Function		Identity	
	Error Function		Sum of Squares	

Network Diagram

Output layer activation function: Identity

Fig 2: Network Diagram

Table 2 shows network information for input, hidden and output layer.

This network diagram shows the hidden layer activation function is hyperbolic tangent and output layer activation function is identity. For hyperbolic tangent function produces output in between [-1,+1]. This above network diagram shows two input layer s, two hidden layers and one output layer. Multilayer perceptron is feed forward artificial neural network.

Table 3: Model Summary

Model Summary

Training	Sum of Squares Error		24.689
	Average Overall Relative Er	ror	1.312
	Percent Incorrect Predictions for Categorical Dependents	H1	72.7%
	Relative Error for Scale Dependents	H2	1.172
	Stopping Rule Used		1 consecutive step (s) with no decrease in error
	Training Time		00:00:00.010
Testing	Sum of Squares Error		9.273
	Average Overall Relative Er	ror	.955
	Percent Incorrect Predictions for Categorical Dependents	H1	75.0%
	Relative Error for Scale Dependents	H2	.827

a. Error computations are based on the testing sample

Table 4: Classification
Classification

		Predicted						
Sample	Observed	1	2	3	4	5	Percent Correct	
Training	1	3	0	0	3	0	50.0%	
	2	0	1	0	2	0	33.3%	
	3	2	1	0	3	0	.0%	
	4	3	1	0	2	0	33.3%	
	5	0	0	0	1	0	.0%	
	Overall Percent	36.4%	13.6%	.0%	50.0%	.0%	27.3%	
Testing	1	1	1	0	0	0	50.0%	
	2	0	0	0	1	1	.0%	
	3	0	0	0	1	0	.0%	
	4	1	0	0	1	0	50.0%	
	5	0	0	0	1	0	.0%	
	Overall Percent	25.0%	12.5%	.0%	50.0%	12.5%	25.0%	

Dependent Variable: H1

This classification table shows that the classification of predicted values. The overall percent for training is 27.3% and the overall percentage for testing is 25%.

 Table No 5: Parameter Estimates

rai ainetei Estinates										
						Predicted				
		Н	idden Layer	1	Output Layer					
Predictor		H(1:1)	H(1:2)	H(1:3)	H2	[H1=1.00]	[H1=2.00]	[H1=3.00]	[H1=4.00]	[H1=5.00]
Input Layer	(Bias)	.500	.234	279						
	[Y=1.00]	240	123	084						
	[Y=2.00]	227	.337	.035						
	[Y=3.00]	686	.000	.347						
	[Y=4.00]	482	278	514						
	[Y=5.00]	310	.020	.367						
	Х1	442	.391	577						
	X2	113	340	224						
Hidden Layer 1	(Bias)				.368	.358	.147	.264	.363	.015
	H(1:1)				486	308	020	175	.295	.357
	H(1:2)				.160	.326	223	.135	.350	233
	H(1:3)				176	244	417	046	.164	.163

Predicted By Observed

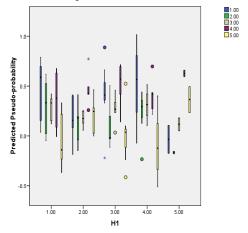


Fig 3: Predicted By Observed

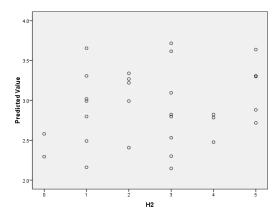


Fig 4: Predicted by observed figure for h2

This diagram for predicted value for hidden layer h2.

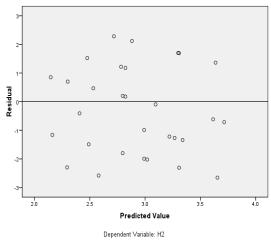


Fig 5: Residual by predicted for dependent variable h2

The above diagram shows residual verses predicted value graph. The line is for separating hyper plane.

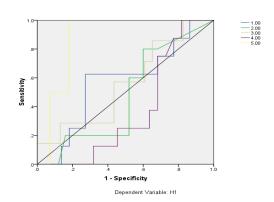


Fig 6: Graph of Sensitivity v/s Specificity

This graph shows linear relationship between sensitivity and specify. The above diagram specifies the graph of sensitivity verses specificity.

Table 6: Area under the Curve

	Area
H1 1	.568
2	.476
3	.559
4	.372
5	.875

The above table shows area under curve for the above figure. The value of area is somewhat similar in manner. The above area under the curve is for hidden layer h1.

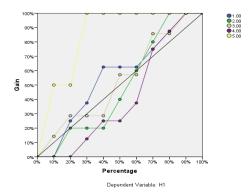


Fig7: Graph of Gain v/s Percentage

This graph is the gain verses percentage. By observing the graph, the gain and percentage are linearly propagated to each other.

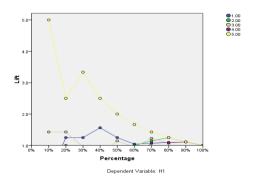


Fig8: Graph of Lift v/s Percentage

For lower percentage, lift is high and for higher percentage, lift is small. The above graph is for lift verses percentage.

Table No 7: Independent Variable Importance

	Importance	Normalized Importance
Y	.155	23.4%
X1	.663	100.0%
X2	.182	27.4%

Normalized Importance

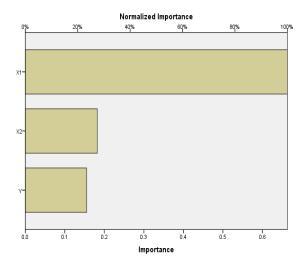


Fig 9: Normalized Importance

The above table 6 and figure 7 shows the normalized importance of output y and inputs x1 and x2. For output y normalized importance is 23.4%, for x1 100% and for x2 27.4%.

CONCLUSION

We discuss about the Artificial Neural Network and the working on Neural Networks in this paper. The conclusion after studying Artificial Neural Network can be given as that as the technology is increasing, the requirement of Artificial intelligence is also increasing due to the parallel processing which is enable to do more than single task at a time. Thus, parallel processing is a must in the current time as it is cost efficient and time efficient for any task related to electronics, computers.

REFERENCES

- 1. NoumanNazir (10 Feb 2015)
 "Introduction to Artificial Neural Networks and Hidden Layer"Universitu of gujrat.
- 2. OludeleAwodele and OlawaleJegede (2009) "Neural Network and Its Application in Engineering" Department of computer science and mathematics, Babcock University, Nigeria.
- 3. Ms. Sonali B. Maind "Research Paper on Basic of Artificial Neural Network"

- Department of Information Technology DattaMeghe Institute of Engineering, Technology and Research, Sawangi, Wardha.
- 4. Saravanan K and S. Sasithra (December 2014) Review Classification Based on Artificial Neural Networks "Assistant Professor /Department of computer engineering, Erode Sengunthar Engineering College, Erode, India.