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Abstract 

 

American chestnut soil carbon and nitrogen dynamics:  

Implications for ecosystem response following restoration 

 

 

 

Geoffrey W. Schwaner 

 

 

 

 

 

The once dominant American chestnut tree (Castenea dentata) was essentially extirpated 

from the US eastern deciduous forest as a result of the infestation by the chestnut blight-

fungus (Cryphonectria parasitica) in the early 1900’s, in what is considered the largest 

disturbance event since glaciation. However, back-cross breeding and transgenic 

approaches have resulted in the production of blight resistant trees, and the reintroduction 

of the American chestnut is considered imminent. In the event of a successful 

reintroduction, significant ecosystem changes in carbon (C) and nitrogen (N) cycling are 

expected but have yet to be understood or quantified.  This thesis consists of two studies: 

(1) Measuring select ecosystem pools of C and N of chestnut and two commonly co-

occurring species; (2) A laboratory-based soil incubation to evaluate select ecosystem 

fluxes of C and N, such as litter decomposition and C and N mineralization, of chestnut and 

two commonly co-occurring species.  The results of this study indicate chestnut 

accumulates biomass at a greater rate than Northern red oak (Quercus rubra) or black 

cherry (Prunus serotine), and soils from beneath chestnut retain more mineral nitrogen and 

contained more DOC in leachate in a soil and leaf litter incubation study.  
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Chapter 1: 

General Introduction 
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American chestnut (Castanea dentata) was once a dominant tree species across much of the 

Appalachian Mountain region, with a historical range stretching from Alabama to Maine (Figure 

1.1), and covering over 800,000 km2 (Braun 1950).  The tree was highly valued for its wood, 

which is light, strong, rot-resistant, high in tannin content, straight-grained and easy to work 

with, and was used for construction, fence posts, poles, trim, furniture, firewood and in the 

leather tanning industry (Wang et al. 2013).  At its peak use in the early 1900’s, over 600 million 

board feet of chestnut timber was harvested, and comprised up to a quarter of hardwood lumber 

produced in New England, and 15-18 % of the hardwood production in Appalachia (Youngs 

2000).  In addition, the mast crop of chestnuts was a reliable annual source of income for local 

economies, with prices as high as $5 per bushel (Zon 1904).  Chestnut was also an important 

food and habitat source for terrestrial wildlife, such as black bear, white-tailed deer and turkey, 

and aquatic leaf processing macroinvertebrates such as caddisfly larvae (Diamond et al. 2000; 

Smock and McGregor 1988; Carpenter et al. 1992).   

 

American chestnut historically occupied well-drained, sandy, back-slope sites that today are 

dominated by the oak-hickory forest type (Wang et al. 2013).  However, they are able to 

successfully grow in a variety of climates and site conditions, and are moderately drought 

tolerant (Abrams et al. 1990).  Chestnut is at least intermediately shade-tolerant (Pinchot et al. 

2017), and though seeds are prone to predation and insect damage, they are produced at a prolific 

rate (Wang et al. 2013).  In addition, on good quality sites, chestnut is able to overtop and 

outcompete other hardwoods, such as oaks (Jacobs & Severeid 2004) following disturbance.  

These characteristics allowed chestnut to propagate in great numbers throughout their range, 

with the canopy being up to 50 % chestnut for forest stands within the Appalachian Mountains 
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(Braun 1950).  This high abundance, combined with chestnut’s importance for wildlife, caused it 

to be labeled a “foundation species”, influencing community structure and ecosystem processes 

wherever the species occurred (Youngs 2000; Ellison et al. 2005). 

 

At the turn of the 20th century, the parasitic fungus Cryphonectria parasitica, colloquially known 

as chestnut blight, caused the functional extinction of the American chestnut throughout the 

entire historic range.  The blight originated from Asia, where it infected the Chinese chestnut 

(Castanea mollissima), a close relative of the American chestnut.  Chinese chestnut has some 

natural resistance to this blight, but American chestnut does not, and the American trees quickly 

succumb to girdling due to cankers formed by the fungus. In addition to the chestnut blight, 

chestnuts are very susceptible to Phytophthera cinnamoni, or root rot, in moist or riparian soils 

(Russel 1987).   

 

The first recorded instance of the chestnut blight in North America occurred in 1904 at the Bronx 

Zoological Park, located in New York City (Merkel 1905), and quickly spread throughout the 

chestnut’s native range.  The damage caused by the fungus was exacerbated by extensive salvage 

harvests initiated after early quarantine measures failed, further speeding chestnut’s demise 

(Hepting 1974; Anagnostakis 1987).   By 1960, an estimated 4 billion trees were killed due to the 

fungus and salvage harvests (Wang et al. 2013).  While mature trees are now extremely rare, the 

species does still commonly exist as an understory component throughout its historical range, 

due to sprouts forming from chestnut’s resilient root system (Russel 1987).  However, due to the 

blight’s continued existence, these sprouts are typically girdled and killed before reaching seed 

producing age, and represent much less total biomass than pre-blight populations (Paillet 1984).   
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The loss of such an important species not only had economic and habitat impacts, but also likely 

altered ecosystem biogeochemical cycling.  It is known that tree species differentially influence 

soil decomposition and mineralization rates through the chemical composition of leaf litter, root 

litter, and exudates, and are therefore capable of controlling forest nutrient cycling rates 

(Peterjohn et al. 1999; Phillips et al. 2013, Yin et al. 2014).  As co-occurring species such as oak 

(Quercus spp.), hickory (Carya spp.)  and sugar maple (Acer saccharum) became more 

prominent, processes such as decomposition, carbon (C) and nitrogen (N) cycling, and forest 

productivity, which were once strongly influenced by chestnut, were likely altered on a large 

scale throughout Appalachia (Ellison et al. 2005).  

 

Due to the economic and habitat value of chestnut, there is great public support for attempting to 

bring the species back as a canopy tree.  There are currently several approaches to instilling 

blight resistance in American chestnut, including backcross breeding with Chinese trees (Jacobs 

2007, Hebard 2006), the introduction of hypovirulent blight strains (MacDonald & Fulbright, 

1991), and genetic engineering techniques to introduce genes providing resistance (Barakat et al. 

2009).  Due to the success of these programs, the reintroduction of the American chestnut has 

been considered imminent (Jacobs 2007).  More recently, three stands of the latest generation of 

back-cross bred chestnut seedlings planted in 2009 in Virginia, Tennessee, and North Carolina 

are currently being evaluated on growth, blight resistance and 4-year survival compared to pure 

American and Chinese trees (Clark et al. 2015).  These sites are similar to proposed sites for a 

USDA Forest Service chestnut introduction effort to plant chestnut stands within national forests 

planned for when the blight resistance of the back-cross trees is confirmed and the seedlings are 
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readily available (Clark et al. 2014).  Due to chestnut’s ability to exist on a wide range of site 

conditions and high competitiveness during stand regeneration (McEwan et al. 2006), it is 

forecast that it will readily spread and once again become a dominant species in the Appalachian 

hardwood forests over the course of the next century. 

 

Given the functional loss of chestnut throughout its native range, relatively little is known about 

its ecological characteristics and influence on biogeochemical cycling.  It is known that chestnut 

trees are associated with ectomycorrhizal (ECM) fungi (Jacobs et al. 2013), which generally 

have poorer quality litter when compared to trees with arbuscular mycorrhizal (AM) 

associations.  There are competing models of how AM vs ECM associations affect C storage 

below ground.  One predicts that ECM trees generally result in greater below-ground C storage 

when compared to AM species due to poorer quality litter reducing available N for microbial 

uptake which in turn reduces demand for C (Averill et al. 2014; Taylor et al. 2016; Vesterdal et 

al. 2013).  The competing model predicts that AM litter, with greater N concentrations will be 

more rapidly processed by microbes, leaving highly processed and stable C compounds (Craig et 

al. 2018). For this study, it was hypothesized that the species at the Martell site would follow the 

Taylor et al. framework of ECM species having greater C storage belowground compared to the 

AM species. 

 

However, previous studies have shown chestnut litter may have lower C:N ratios than other 

ECM species, such as the oaks and hickories that have replaced them (Ellison et al. 2005, Smock 

and McGregor, 1988), and may also contain greater concentrations of other nutrients, such as 

phosphorus and calcium compared to mixed hardwood litter (Rhodes, 2006).   Conversely, other 
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studies have reported no differences in C:N ratio between chestnut and other ECM litter, and 

show that chestnut litter may also contain high concentrations of tannins, lignin, and other 

recalcitrant compounds, which may act to slow decomposition and nitrogen mineralization 

(Rosenberg 2010).  This lack of consensus on decomposition and mineralization rates means 

potential ecosystem changes in the event of successful reintroduction of chestnut to its native 

range are poorly understood.    

 

Conceptually, C and N exist within a forested ecosystem as living biomass, leaf litter, decayed 

forest floor matter, and soil organic matter (SOM).  To understand potential changes to eastern 

hardwood forests in the event of a successful chestnut reintroduction, I determined the size of 

select pools of C and N currently present in 10-year-old plantation stands of American chestnut 

and two commonly co-occurring tree species (Chapter 2 of this thesis). In this study, I collected 

soil, leaf litter, and forest floor material from plots of the three species present at a study site 

located within Purdue University’s Martell Research Forest, West Lafayette, Indiana, USA 

(Figure 1.2).  At this site, plots of pure, non-hybrid American chestnut, two other commonly co-

occurring species, northern red oak (Quercus rubra) and black cherry (Prunus serotina), and 3-

way mixes of each species, were planted in 2007 to study chestnut growth (Gauthier et al, 2013) 

(Figure 1.3, Figure 1.4).  Prior to plantation conversion, the site was under cultivation for corn. 

Above-ground biomass (AGB) for each species was also estimated and converted into C and N 

pools using allometric equations.  I hypothesized that chestnut (ECM) would have: 

1. Greater pools of AGB compared to oak (ECM) and cherry (AM).  due to more rapid 

growth.  
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2. Greater pools of leaf litter and forest floor C compared to both oak and cherry due to 

chestnut litter containing higher C:N ratios and high tannin content (Figure 1.5). 

One of the major reasons for studying nutrient cycling changes is to understand the potential 

impacts on soil C sequestration.  Globally, more C is stored within soil than in biomass and the 

atmosphere combined (Davidson & Janssens 2006), and is an important part of global climate 

models.  For the final component of my thesis, I investigated differences in carbon sequestration 

pathways (retention vs. accumulation) between chestnut, oak, and cherry (Chapter 2 of this 

thesis) using the natural 13C isotopic signature created by corn that had previously been grown at 

the study site.  Corn, as a C4 photosynthetic plant, typically has a more enriched δ13C signature in 

SOM derived from it when compared to C3 plants, such as the trees in this study.  Soil cores 

were collected from each study plot, and from outside the plots in the managed field where they 

were planted, and analyzed for δ13C, along with foliage and leaf litter from each species.  

Utilizing a simple 2-point mixing equation and comparing the inputs to the δ13C value of soil 

outside the plots, the relative proportion of C within the SOM pool from corn and each tree 

species could be determined (Resh et al. 2002).  Using stable 13C isotope techniques, I tracked 

the loss of the old soil organic C from the previous C4 land use and the gain of new soil 

organic C from the C3 trees to better understand accumulation of new C relative to 

decomposition of older C. A lower δ13C value within the soil below one tree species compared 

to another would indicate that it has accumulated more C below-ground from tree biomass 

inputs.  I hypothesized that chestnut would have a lower δ13C value, and therefore greater below-

ground C storage due to its lower quality litter and high tannin concentrations limiting N 

availability and slowing decomposition.   
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A second important aspect of quantifying changes in nutrient cycling are the fluxes of C and N 

between pools (Chapter 3 of this thesis).  To examine select ecosystem fluxes, I utilized a 

laboratory soil incubation experiment to determine fluxes of soil respiration (CO2), N 

mineralization, and litter decomposition mass loss (k) rates. For the study, soil was collected 

from each plot of chestnut, oak, and cherry from the Martell Forest and placed within a PVC 

pipe core.  A known mass of leaf litter from each corresponding plot was placed atop the soil.  

The cores were kept at room temperature for one year, and were watered to field capacity once 

per week.  Every two weeks, soil respiration was measured in lab using a Li-Cor 8100A field 

respiration chamber to estimate C loss through CO2 production.  Once per month, 75 mL of 

Hoagland rainwater nutrient solution, modified to remove any form of N, were added to the 

cores after watering to field capacity, and leachate was collected and subsequently analyzed for 

potential loss of C and N through dissolved organic carbon (DOC) and mineral N.  Upon 

completion of the incubation, the leaf litter was removed and weighed to determine 

decomposition rate, and the soil was analyzed for enzyme activity, bulk C and N, and oxidizable 

C available for uptake.  I hypothesized that chestnut (relative to oak and cherry) would have:  

1) Slower litter decomposition rates,  

2) Lower N mineralization, and 

3) Lower enzyme activity when compared to oak and cherry due to high concentrations 

of tannins in the leaf litter, which may bind proteins and enzymes.   

I further hypothesized that the lower litter decomposition and N mineralization rates would 

reduce the amount of available N to microbes in soil, causing N limitation, limiting microbial 

energy and reducing C uptake and respiration rates, and thus increase the amount of DOC 

available in leachate and C in soil (Figure 1.5). 
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The results of these studies within this thesis may have important implications for how forest 

biogeochemical cycling may be altered after a successful reintroduction of American chestnut.  

For example, if chestnut does reduce decomposition and N mineralization rates, it could reduce 

the amount of available N for tree uptake, which could have implications for forest productivity 

(Magil et al. 2000) and N export to streams draining forested watersheds (Peterjohn et al. 2015).  

In addition, changes in SOM accumulation and AGB could have implications for the total 

amount of C stored within the Appalachian region.  Previous studies have documented up to an 

80 metric ton ha-1 difference in total C in soil and biomass between hardwood species (Jandl et 

al. 2007).  If even a much more modest difference of 5 metric ton ha-1 exists between chestnut 

and the species that have replaced it, this would still represent millions of tons of C in the event 

of successful reintroduction.  Because there is strong public support for this species 

reintroduction, and scientific support suggesting that reintroduction of this foundation species is 

possible, it is critical to understand how ecosystem processes may be altered. 
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Figure 1.1: The historical range of Castanea dentata within the eastern United States. 
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Figure 1.2: The location of the Martell Research Forest, West Lafayette, Indiana. 
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Figure 1.3: Aerial view of the study site in West Lafayette, IN. Block 1 is to the top left, Block 4 

to the top right, Block 3 to the bottom right. 
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Figure 1.4: Site map of the Martell forest study site.  Plots are distinguished by species 

combination and spacing distance between trees.  Small boxes indicate 1x1 m spacing, medium 

are 2x2 m plots and large are 3x3 m.  3x3 m plots, and 2 species mixes are excluded from study.  

Plots that have high mortality are shaded in. 
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Figure 1.5: Conceptual model of C cycling of cherry (AM), chestnut (ECM) and oak (ECM).  

Chestnut is predicted to have greater SOM storage than oak due to higher litter C:N ratio, and 

much greater storage than cherry due to litter C:N ratio and mycorrhizal association.  
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Chapter 2:  

Comparing ecosystem pools and fluxes of carbon and nitrogen of American chestnut and 

co-occurring species 

 

Abstract: In forested ecosystems, pool size of carbon (C) and nitrogen (N) within soil and 

biomass, as well as biogeochemical fluxes of C and N, can vary greatly between species as a 

function of plant inputs to the soil.  At the turn of the 20th century, American chestnut (Castenea 

dentata), a previously dominant and widespread canopy species in the eastern deciduous forest, 

was extirpated from its native range by chestnut blight fungus, an introduced species from Asia.  

Through development of blight-resistant trees, the reintroduction of American chestnut to its 

native range is considered imminent.  However, relatively little is known about the 

biogeochemistry of forests influenced by chestnut.  In this study, ecosystem pools of C and N in 

organic and mineral soils and above-ground biomass, along with fluxes of leaf litter are 

measured in plots of American chestnut and two historically commonly co-occurring species, 

northern red oak (Quercus rubra) and black cherry (Prunus serotina) in a plantation in Martell 

Research Forest, West Lafayette, Indiana, USA.  An isotopic analysis of 13C was also performed 

to assess soil C accumulation as influenced by the three tree species.  Key findings from this 

study indicate chestnut has greater above-ground biomass and biomass C (86,695 kg ha-1; 40,349 

kg C ha-1) compared to cherry (33,921 kg ha-1; 16,801 kg C ha-1), and a trend in greater biomass 

and biomass C compared to oak (58,346 kg ha-1; 27,141 kg C ha-1) in these 10 year-old planted 

stands.  In addition, the organic soil N pools in chestnut plots were smaller than oak (chestnut 

organic soil = 72.84 kg N ha-1; oak organic soil = 123.3 kg N ha-1).  These results indicate 

chestnut may reduce forest N pools upon reintroduction, and may be of use for forest managers 

for C sequestration in biomass. 
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Introduction: 

The two largest pools of terrestrial carbon are soil organic matter (SOM) and above-ground 

biomass (AGB).  It is understood that SOM is controlled not only by soil type and climate, but 

also by the functional group and species of plants interacting with the soil (Van Cleve & Powers 

1995; Finzi et al. 1998; Jobbágy & Jackson 2000).  Forested ecosystems sequester greater 

amounts of atmospheric carbon dioxide (CO2) into stable SOM and AGB than other ecosystem 

types, such as grasslands, storing up to two thirds of terrestrial C (Brown et al. 1993), though 

particular tree species promote C storage to differing extents.  This sink of C is believed to offset 

up to ~ 3.1 Pg of the of ~ 9.3 Pg of C added to the atmosphere per year due to fossil fuel 

emissions (Bellassen & Luyssaert, 2014; Quéré et al. 2016; Budget, 2016).  This knowledge has 

led to a greater awareness of how land-use change, forest management practices, or shifts in 

dominant tree species can mitigate or exacerbate rising atmospheric CO2 concentrations 

(Canadell & Raupach, 2008).   

 

Tree species can often differentially influence belowground nutrient cycling.  Belowground 

nutrient cycling can be inflenced by differences in chemical composition of leaf litter, root litter 

and exudates, and mycorrhizal association (Yin et al. 2014; Lin et al. 2017.  These characteristics 

influence the amount of stable soil C, N availability, and microbial community and activity, 

which in turn affects forest productivity (Peterjohn et al. 1999; Magill et al. 2000; Phillips et al. 

2013).  These controls of nutrient cycling, specifically N, are thought to play a large role in the C 

budget of an ecosystem (Resh et al. 2002; Phillips et al. 2013).   Because of this, different tree 
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species can be associated with divergent rates of ecosystem N cycling and loss (Lovett et al. 

2002; Lin et al. 2017) and storage of C, both above- and below-ground (Finzi et al. 1998; Schulp 

et al. 2008).  The differences in C stocks can range from minimal to up to an 80 ton ha-1 

difference in total C in soil and biomass between hardwood species (Jandl et al. 2007).  In a 

study at the Canaan Mountain Plateau in Connecticut, US, red oak stands were reported to 

contain 9.4 kg C m-2 within the surface 15 cm of mineral soil, signifying a 16% greater C storage 

compared to sugar maple (Acer saccharum) stands (Finzi et al. 1998). 

 

Previous research has hypothesized that important forest biogeochemical shifts likely occurred 

throughout the historic range of chestnut following its decline due to chestnut blight 

(Cryphonectria parasitica) at the turn of the 20th century (Ellison et al. 2005).  This may have 

influenced standing pools of C and N within both soil and standing biomass, although the 

magnitude and direction of changes are unknown.  However, it is known that American chestnut 

trees are associated with ectomycorrhizal (ECM) fungi (Jacobs et al. 2013), and trees with ECM 

associations generally have poorer quality litter (e.g. high C:N, high lignin:N) and slower below-

ground nutrient cycling when compared to trees with arbuscular mycorrhizal (AM) associations 

and ECM associations generally result in greater below-ground C storage when compared to AM 

species (Averill et al. 2014; Vesterdal et al. 2013).  Despite this, very little is known regarding 

the influence that American chestnut has on ecosystem C and N cycling relative to commonly 

co-occurring tree species or species that chestnut may replace, especially in below-ground pools.   
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Historical data and more recent silvicultural studies of newly-bred blight resistant Chinese-

American chestnut hybrids, have indicated that chestnut displays rapid growth at young ages, 

and can outcompete and overtop other historically co-occurring species (Jacobs & Severeid 

2004), and retain higher total biomass as they age (Jacobs et al. 2009).  In addition, historical and 

modern data on chestnut silvics indicate it is a generalist species, able to grow on a variety of 

sites, is a prolific seed producer, and is thought that it will rapidly propagate throughout its 

former historical range upon successful reintroduction (Abrams et al. 1990; Wang et al. 2013; 

Pinchot et al. 2017).  Because of this, chestnut may be a suitable species to be used by forest 

managers to promote greater C sequestration into both SOM and biomass in the future (Jacobs et 

al. 2009).  

 

One method of approximating the amount of SOM inputs to the soil from different species is to 

utilize the difference in δ13C due to land use change from C4 photosynthetic agriculture to C3 

forest plantations (Resh et al. 2002).  Fractionation of 12C versus 13C isotopes occurs during 

photosynthesis due to plants preferentially using lighter 12C when available (O’Leary 1988).  In 

C3 photosynthesis, fractionation occurs as CO2 diffuses into stomates, dissolves into cell 

cytoplasm and diffuses into chloroplasts, and during carboxylation by ribulose. Carboxylation is 

typically the rate limiting step in the process, and 12C will subsequently be able to diffuse back 

out of the chloroplasts at a greater rate than the heavier 13C. In addition, carboxylation is 

irreversible, and highly discriminatory in favor of 12C (Bender 1971).  However, plants utilizing 

the C4 method of photosynthesis, such as corn, do not have the same carboxylation step during 

the photosynthetic process.  Instead, CO2 is catalyzed by phosphoenolpyruvate carboxylase, 

which is less discriminatory.  The resulting C acids are transported to bundle sheath cells, and 
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converted back into CO2 in the presence of ribulose where it cannot diffuse out, and as a result 

have a more enriched δ13C signature compared to C3 plants (Bender 1971, Marshal et al. 2007). 

It is therefore possible to estimate the relative amount of new, C3 tree-derived SOC sequestered 

into soil that was formerly dominated by C4 photosynthesis by utilizing a simple two-point 

mixing model, and measuring the δ13C values of the new C3 inputs and the old C4 derived SOM 

(Resh et al. 2002).  A tree species that affects greater SOM storage would result in a more 

depleted δ13C signature, as more of the total SOM would be C3-derived. In particular, this 

technique may be useful for determining the potential change in C storage below ground in the 

future, as the plantation was only 10 years old at the time of analysis, while meaningful changes 

in total soil C may take decades to develop.  

 

In this study, I determined the size of select pools and fluxes of C and N currently present in 10-

year-old plantation stands of American chestnut and two commonly co-occurring tree species 

and utilized isotopic analyses to determine the change in below-ground total C since conversion. 

At this site, plots of pure, non-hybrid American chestnut and two other commonly co-occurring 

species, northern red oak (Quercus rubra) and black cherry (Prunus serotina) were planted in 

2007 to study chestnut growth (Gauthier et al. 2013) (Figure 1.3, Figure 1.4).  I hypothesized that 

chestnut would have larger pools of mineral soil and forest floor C due to slow decomposition 

rates resulting from relatively poor quality, high C:N litter compared to oak, and because of 

chestnut’s ECM association compared to the AM association of cherry (hypothesis 1).  In 

addition, I hypothesized that chestnut would have smaller fluxes of N entering forest floor and 

mineral soil pools from leaf litter inputs, resulting in less N within the mineral soil and forest 
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floor of chestnut plots compared to oak and cherry plots due to low concentrations of N within 

chestnut litter (hypothesis 2).  I also hypothesized that chestnut would have larger AGB C pools 

than oak or cherry due to relatively faster growth rates.  Lastly, I hypothesized that chestnut 

would have a more depleted soil δ13C value than cherry or oak, due to chestnut litter material 

containing less N and greater concentrations of recalcitrant compounds, causing an accumulation 

of C3-derived SOM (hypothesis 3). 

 

Methods 

Study site: 

The soil, litter, forest floor samples, and biomass measurements were collected at Purdue 

University’s Martell Research Forest in West Lafayette, Indiana, USA (400 26’ 42”N, 

870 01’ 47” W).  A 2.4 ha plantation of pure, non-hybrid American chestnut, along with two 

other commonly co-occurring species (Northern red oak, Quercus rubra, and Black cherry, 

Prunus serotina) were planted in 2007 to study chestnut growth (Gauthier et al, 2013).  Prior to 

tree planting in 2007, the field was cultivated with corn.  The plantation consists of seven 

mixtures of species, randomized within three tree spacing regimes.  Each plot contains 25 trees 

in a 5 x 5 tree square. Plots selected to be included in this study were monocultures of one of 

three different species:   

1) Black cherry, 

2) American chestnut, 

3) Northern red oak 
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In addition to the plots included in this study, there are other plots containing species mixtures 

containing 50 % of 2 species, and a three-way mix of each species, but were excluded. 

The tree spacing regimes included in this study consisted of the 1 x 1 m (10,000 stems ha-1, 5 x 5 

m plot size) and 2 x 2 m (2,500 stems ha-1, 10x10 m plot size) spacing.  This is replicated 3 on 

site (3 species monocultures, 2 densities, 3 replicates; n = 6; N = 18).  In addition to the two stem 

densities included in the study, there is also an additional 3x3 meter stem density for each 

species combination, but was excluded due to high tree mortality rates within this spacing 

regime. The field around the plots is mowed, but the understory within the plots is unmanaged, 

allowing for deposition and accumulation of litter material to the forest floor. 

 

Soils at the site are of the Rockfield series, which are mildly acidic to almost neutral and consist 

mainly of silt loams with a clay content of approximately 20-32% (NRCS, accessed 2018).  They 

are typically moderately productive, deep, and formed from silty outwash and loamy till.  Soil 

profiles were characterized at all three blocks and did not vary significantly, showing a 2-5 cm 

agriculturally disturbed Ap-horizon, and limited Bt-horizon development.  There is no Oa 

horizon of highly decomposed organic matter, but lightly decomposed litter forming an Oi 

horizon and moderately decomposed organic matter in an Oe horizon are present.  From 1981-

2010, mean annual temperature was 10.40 C, and mean annual precipitation was 970 mm at the 

plantation location (National Climatic Data Center, 2018). 

 

Litter and forest floor sampling: 

To collect leaf litter, 38.1 x 53.34 cm (0.203 m2) plastic litter traps were randomly placed and 

anchored at ground level within each plot.  Litter was collected in the late fall of 2016, and again 
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in early spring of 2017 to capture all potential leaf litter that fell throughout the winter of 2016-

2017.  Forest floor samples were collected by randomly placing a 31.75 x 22.86 cm (0.073 m2) 

template upon the ground, and collecting the material within the template, replicated 3 times. 

Several plots were excluded from the forest floor analysis due to high tree mortality.  Because 

these plots lacked a canopy, herbaceous species from the surrounding field encroached into the 

study area, and did not allow the development of a forest floor layer. 

 

Sub-samples of both litter and forest floor material were oven dried at 650 C for 96 hours and 

weighed to determine gravimetric moisture content.  A second set of sub-samples were then 

ground in a Wiley-Mill grinder.  Bulk C and N of each sample were measured from 5-10 mg of 

air dried, ground litter or forest floor material in 12 mm tin capsules, and combusted within a NA 

1500 Series 2 CNS element analyzer (Carlo Erba Instruments).  Bulk C and N were then 

corrected for moisture and bulk density, and used to calculate C:N ratios and scaled into standing 

pools of kg C or N ha-1.   

 

Biomass and C content estimation 

Biomass for each plot was estimated by measuring the diameter at breast height (DBH) of each 

stem within a square subplot centered around a randomly selected tree.  Subplot size was 

dependent upon tree density treatment.  1 x 1 m spacing plots had a subplot size of 1.5 x 1.5 m, 

while the 2 x 2 m spacing treatment had subplots of 2.5 x 2.5 m.  For individual trees that split 

into two stems below breast height, each stem was measured separately to more accurately 

account for biomass production.  
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Individual stem biomass was calculated in the spring of 2017 using DBH measures and applying 

a species-specific allometric equation for similarly aged stands of oak, a family-specific equation 

for black cherry, and a general hardwood allometric equation for chestnut (Chojnakcy et al. 

2013; Jenkins et al. 2003; Elliot et al. 2003) (Table 2.2).  The mass of each tree within a plot was 

then summed, divided by the area of the subplot and converted into terms of Mg ha-1.  A 

previous study at this site had biomass estimations as well, but only had data for the first 4 years 

of growth (Gauthier et al. 2013). Carbon pools within AGB were then calculated using mean C 

concentration by weight for each species measured in previous studies (Lamlom & Savidge 

2003; Jacobs et al. 2009) (Table 2.2). 

 

Soil sampling: 

To examine the effect of tree species on mineral soil C and N, soils were collected from each of 

the eight study plots for each block.  Several plots at the study site had some tree mortality, but 

plots were included if enough trees were alive to allow soil samples to be collected from closed-

canopy areas that would be influenced by litter and roots.  Soil cores of the top 5 cm of the Ap 

horizon were collected from 3 random points within each plot, stored within plastic bags and 

transported back to the laboratory for further processing during the summer of 2016.  Samples 

from 5-15 and 15-25 cm depth were collected as well, but not analyzed due to time constraints, 

and due to the young age of the stand, it was hypothesized that litter inputs to the top of the soil 

would have a larger impact than root inputs.  A second set of cores were also collected within 

sleeves of a known volume for bulk density measurements.   
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Bulk density sample cores were oven dried for 96 hours at 1050 C and weighed to determine 

density.  Soil samples were air-dried and sieved through a 2-mm sieve.  Gravimetric moisture 

content was determined by oven drying ~10 g sub samples at 1050 C for 72 h.  Bulk C and N of 

each sample were measured by as CNS element analyzer as described above. Bulk C and N were 

then corrected for moisture and bulk density, and scaled into pools of kg C or N ha-1. 

 

Isotopic sampling and analyses: 

For the main isotopic study, soil was collected from the top three mineral horizons of each of the 

18 study plots.  Samples were composited from three cores collected from random points in each 

plot.  Foliar samples were collected using a pole saw from three randomly selected trees per plot.  

Three leaves were collected from each tree, and were taken from the canopy exposed to full or 

partial sunlight.  In addition, samples from each horizon and crop residues were collected from 

outside the study area from an adjacent field maintained in corn, to be used as the second input 

with the collected foliage.  The collection of and analysis of roots was outside the scope of this 

study.  As no C3 photosynthesis was present at this exterior site, it could be used to approximate 

the δ13C of corn inputs to the study area prior to the planting of the plantation. 

 

The soil samples were sieved through a 2-mm sieve to remove coarse fragments and large pieces 

of organic matter.  Approximately 150 mg of sieved soil from each sample were weighed out 

into 2mL centrifuge tubes.  Each sample was then treated with 1 M HCl to remove any 

carbonates present due to liming, as carbonate typically has a distinct δ13C signature that would 

bias the sample.  Samples were vortexed for two minutes, and then allowed to sit overnight to 

allow any carbonate to react out with the HCl.  The HCl was decanted from the centrifuge tubes, 
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and deionized (DI) water was added.  Samples were spun in a centrifuge for 3 minutes at 3000 

rpm, and allowed to settle before decanting the DI water.  This process was repeated until the pH 

of the DI water after centrifuging was the same as the pH of DI water before being added to the 

soil.  Foliage and corn residue samples were processed through a Wiley-Mill grinder as 

described above.  The treated soil and ground litter were weighed into sample tins, and analyzed 

for the ratio of 12C and 13C using a Thermo Finnigan Delta gas isotope ratio mass spectrometer 

connected to a High-Temperature Conversion Element Analyzer and GC IsoLink (Thermo 

Fisher Scientific).  For each species, the litter and corn residue δ13C were used along with soil 

δ13C to evaluate the proportion of C3- and C4-derived C within the soil.  A sub-sample of the 

foliage was used to measure bulk C, N, and C:N ratio as described above. 

 

A preliminary analysis was done in the summer of 2017 as a proof of concept to investigate if an 

isotopic approach would be a viable method of evaluating C inputs to the soil derived from each 

species.  A single 5 cm soil core was taken from each 2 m spacing plot for all three blocks, along 

with a core from outside of each block in the herbaceous field, to test if the field retained δ13C 

similar to what would be expected from a corn field.  Soil samples were decarbonated and 

prepared for analysis as described above. 

 

Data Analysis:  

For each pool and flux of C and N (AGB C, soil C and N, leaf litter and forest floor C and N, 

δ13C), the data were compiled and statistically analyzed using version 13.0 of SAS-JMP 

software.  Model effects for the statistical analysis were spacing and species composition in a 



30 
 

two-way ANOVA. Residuals were first checked for normality using the Shapiro-Wilke test.  If 

the data for a pool deviated from normality, a transformation was applied to confirm to the 

assumptions required for ANOVA tests.  For bulk C and N data in soils, 3 laboratory replicate 

cores were collected per plot, and the mean of the three values were analyzed using the two-way 

ANOVA model. C pools in AGB, litter, forest floor and soil were analyzed separately, and then 

combined and analyzed as total C stored in each plot. Tukey-Kramer HSD tests were performed 

post-hoc for comparisons between species if species was found to differentially effect the mean 

of a target pool or flux. 

 

The δ13C input values for the litter and soil from each plot were used in a simple 2-point mixing 

equation to calculate the relative abundance of C3 and C4 derived SOM in each sample.  Percent 

of total SOM derived from C4 was calculated first: 

% C4 = [(δ13Csample δ13C3)/ δ
13C4 - δ

13C3)] * 100 (Cerri et al. 1985) 

% C3 = 100 - % C4 

The values of % C3-derived SOM where then used in the statistical model with spacing and 

species as effects.  

 

Results 

Foliage, Litter and Forest floor C and N: 

Foliage % C, % N and C:N ratio did not show any significant differences among Species or the 

Spacing treatment (Table 2.1).  Leaf litter C concentration and C:N ratio did not have any 

significant differences between species or the Spacing treatment as well.  However, litter N 

concentration data required the removal of an outlier to conform to assumption of normality 
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required to use ANOVA and was dependent upon species (p = 0.0032), with chestnut and oak 

litter N concentration significantly higher than cherry (Table 2.1).  Forest floor C concentration 

did not vary by species or spacing treatment.  However, forest floor N concentration was 

dependent upon species (p = 0.0178), with chestnut material (0.98 % N) significantly lower than 

oak (1.38 % N), with cherry material (1.19 % N) not significantly different from either (Table 

2.1).  There was also a difference in forest floor C:N ratio among species (p = 0.0022), with 

chestnut material significantly higher (C:N = 43.59) than oak material (C:N = 32.29), but not 

cherry (C:N = 37.77) (Table 2.1).  

 

Total forest floor mass was dependent upon species (p < 0.05), with oak forest floor mass (9262 

kg ha-1) significantly greater than cherry (3536 kg ha-1), while chestnut (7679 kg ha-1) was not 

significantly different from either (Figure 2.1).  Mean forest floor C content was dependent upon 

species (p = 0.0421), with mean oak C (4024 kg C ha-1) significantly greater than cherry (1574 

kg C ha-1), and chestnut forest floor C (3195 kg C ha-1) not significantly separated from either 

(Figure 2.1).  For the parameters of total forest floor mass and forest floor C and N pools, no 

significant interaction effects (spacing * species) were noted. Forest floor N content was also 

dependent upon species (p = 0.0023), with oak forest floor N pools (123.3 kg N ha-1) 

significantly greater than chestnut (72.84 kg N ha-1) and cherry (42.02 kg N ha-1) pools (Figure 

2.1).  Total leaf litter mass and litter C and N fluxes were all dependent upon species (p = 

0.0017, p = 0.0014, p = 0.0027, respectively), and did not have any model interactions between 

species and spacing.   For litter mass, C, and N, each pool exhibited the same pattern, with oak 

and chestnut pools significantly larger than cherry pools (Figure 2.2).   
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AGB and C in Biomass: 

Mean AGB was dependent upon spacing treatment (p = 0.0024) and species (p = 0.0068).  

Overall, chestnut plots had the greatest mean biomass (86,695 kg ha-1), significantly greater than 

cherry biomass (33,921 kg ha-1), but not statistically significantly greater than oak biomass 

(58,346 kg ha-1) (Figure 2.3).  This pattern was also documented for mean biomass C, which was 

dependent upon both spacing (p = 0.0024) and species (p = 0.0090), with chestnut plots (40,349 

kg C ha-1) containing significantly greater amounts of C in biomass than cherry plots (16,801 kg 

C ha-1), though oak (27,141 kg C ha-1) was not significantly separate from either (Figure 2.4).   

 

Bulk Soil C and Isotopic Analysis: 

Soil C content was not differentially affected by species or spacing treatment, and did not have 

any significant model interactions (Figure 2.4). Total soil N content also was not differentially 

affected by species, but was dependent upon spacing (p = 0.0169), with mean soil N in 2 m 

spacing treatments (707.76 kg N ha-1) greater than that of the 1 m treatment (614.65 kg N ha-1) 

(Figure 2.4).  

 

The preliminary C isotope data did not have any statistical differences in mean δ13C between 

species or the herbaceous field outside the study site (p = 0.1635) (Figure 2.6).  Final results of 

the full isotope analysis are forthcoming. 

 

Total ecosystem C measured within each plot was dependent upon both spacing (p = 0.0156) and 

species (p = 0.0390). Total ecosystem C within chestnut plots (55,261 kg C ha-1) was 93% 
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greater and significantly greater than total C within cherry plots (28,526 kg C ha-1), and 40% 

greater, but not significantly different, than oak plots (39,488 kg C ha-1) (Figure 2.5).   

 

 

 

Discussion: 

There did appear to be a species-driven trend in total pools of ecosystem C, indicating that 

chestnut plots contained 93% more C than cherry plots, and 40% more than oak plots (Figure 

2.5).  However, while total C in chestnut plots was significantly greater than cherry plots, mean 

total C present in chestnut plots was not statistically separate from oak plots, and therefore only 

partially supports hypothesis 1 that chestnut would result in greater ecosystem C storage than oak 

or cherry.  The lack of statistically significant differences between chestnut and oak ecosystem 

C, despite chestnut having 40% greater C than oak may be due to limitations of the statistical 

design of the field site, which has limited replication, or could be attributed to the young age of 

the stand.  In addition, there is a trend in chestnut having greater C storage in biomass relative to 

oak or cherry, which comprised 73 % of total C in chestnut plots, 59 % of total C in cherry plots 

and 69 % of total C in oak plots.   

 

The data from this study indicate that mean forest floor C beneath chestnut was not significantly 

different from mean forest floor C of oak or cherry.  In addition, while mean C in chestnut litter 

was significantly higher than cherry litter, it was not different from oak, and appears to be driven 

by total amount of litter mass, as there were no differences in litter  C concentration between 

species.  This does not support the hypothesis that chestnut would have greater C in fluxes of leaf 
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litter and pools of forest floor material compared to oak and cherry.  While not statistically 

significant, mean chestnut forest floor C was 107% greater than forest floor C in cherry plots, but 

again appears to be driven by total forest floor mass.  As the stand ages, the difference in forest 

floor C between species may become more apparent.   

 

Pool size of N in chestnut forest floor material was significantly smaller than that of oak, but not 

different from cherry, while the flux of N in chestnut litter were significantly greater than cherry, 

but not oak.  These results partially support the hypothesis that pools and fluxes of N would be 

smaller in chestnut litter and forest floor material than in oak and cherry.  While the pattern in 

total N in leaf litter appears to be mostly total mass driven, the N concentration of leaf litter and 

forest floor material indicates that cherry has lower % N in leaf litter than oak or chestnut. This 

indicates that if the total mass of cherry leaf litter were similar to chestnut or oak, it would still 

contain less N.  However, cherry litter has a much larger variation of N concentration values 

among samples, and has fewer replicates than oak or chestnut due to mortality in cherry plots, 

and required the removal of an outlier to achieve normality of residuals. These factors may help 

explain why total N pool size in cherry was lower than oak or chestnut plots.   

 

Chestnut forest floor N concentration was significantly lower than oak, and lower, though not 

significantly different than cherry, indicating that chestnut forest floor material of the same mass 

of oak or cherry contains less total N.  This can be seen in Figure 2.1, where there is no 

significant difference in mass between oak and chestnut forest floor material, but chestnut 

material contains significantly less total N.  This is fitting with the proposed differences in 

strategies of litter chemistry and N cycling and acquisition between ECM and AM fungi and 
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hosts plants, where ECM fungi can more readily access organic forms of N and requires less 

excess N mineralization than AM fungi (Phillips et al. 2013; Lin et al. 2017). This aligns with the 

study by Finzi et al. 1998 at Canaan Plateau in Connecticut, who found the C:N ratio and N in 

the forest floor of  were greater beneath the AM species sugar maple than the ECM species red 

oak.  Although red oak in this study does not follow this trend, the C and N data from cherry and 

chestnut plots fits within this framework. 

 

Mean AGB and C in biomass were significantly greater for chestnut than in cherry, and greater, 

though not significantly so, than oak.  This partially supports the hypothesis that chestnut would 

grow faster and contain more C in biomass than the other species present at the site, but does not 

align with previous studies that have found chestnut to specifically outcompete oak (Jacobs & 

Severeid 2004; Jacobs et al. 2009).  However, the mean total AGB for chestnut plots was 49% 

larger than oak plots, while a previous study, also at the Martell Forest site from 2007-2011, 

reported that chestnut had the poorest early growth performance and shortest mean height of the 

three species present (Gauthier et al. 2013).  This may suggest that the chestnut at this site are 

beginning to grow at a faster rate relative to oak, and in the future, the trend in greater chestnut 

biomass may become significant over time.  As reported in Jacobs et al. 2009, chestnut and oak 

have similar C content in woody biomass (Table 2.1), and so differences in AGB C are 

determined by the amount of biomass of each species.  Previous studies have shown that cherry 

has a higher C content in woody biomass than chestnut or oak, but had much less biomass at the 

study site, and C in biomass was still significantly lower than in chestnut.  
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Species did not differentially affect total pools of C or N in the top 5 cm of mineral soil, contrary 

to the hypothesis that soils beneath chestnut would have greater C accumulation than oak due to 

poorer-quality litter, and greater C accumulation compared to cherry due to the differential AM-

ECM fungal influences on C and N dynamics (Finzi et al. 1998; Philips et al 2013; Taylor et al. 

2016).  Unlike the above-ground C pools that exhibited up to 93% difference in pool size among 

species, though statistically non-significant, the difference in total soil C and N among species 

was minimal.  Possible explanations of this could be that these species do not have differential 

rates of C storage below-ground, or that because the plantation was only 9 years old at the time 

of soil sampling during the summer of 2016 and there was not sufficient time for the trees to alter 

the very large pool of total soil C in a meaningful way from its history as a monoculture field 

(Lal 2005).   

 

The preliminary isotopic analysis did not show statistically significant differences between 

species, and the herbaceous field core values were similar to the tree species. While δ13C values 

of a typical corn field can vary from -16 ‰ to -24 ‰, past studies directly comparing δ13C values 

of forest and corn field SOM differed by up to 5 ‰ in upper soil horizons (Gregorich et al. 1995; 

Wilts et al. 2004). This did not support the hypothesis that SOM in chestnut plots would be 

isotopically more depleted than the other species due to recalcitrant litter material causing an 

accumulation of C3 derived SOM.  However, as the field itself was not separate from the plots, 

this could be due to the herbaceous field possibly having a significant C3 photosynthesis 

component, or that there has not been sufficient time for C3-derived SOM to change the δ13C 

values of the soil inside the plantation.  The main isotopic study, which is still in the process of 
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being analyzed, included more replication, soils down to 30 cm, and soil and crop residue from 

an adjacent corn field can perhaps explain this.  

 

Conclusions 

In conclusion, this study has found several differences in C and N dynamics between chestnut 

and the other species present at the study site.  Chestnut had significantly greater above-ground 

biomass and C in biomass than cherry, and a non-significant trend in greater biomass and 

biomass C than oak.  Lastly, while there was no difference in bulk C or N in soil, there were 

differences in the preliminary C isotope analysis, indicating a potential differential rate of C 

inputs below ground among species, which could be detected by the full repetition analysis still 

in progress.  Overall, these results indicate that chestnut could be a useful species upon its 

reintroduction for increasing C sequestration in Appalachian hardwood forests as indicated by 

the greater total ecosystem C present in the chestnut plots relative to either cherry or oak.   
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Table 2.1: % C, % N and C:N ratio of chestnut, cherry and oak foliage, leaf litter, and forest 

floor material.  Values in parentheses are +/-1 SE of the mean. Values within a category that 

have different letters in parenthesis are significantly separate from one another by Tukey’s HSD 

test.  

 

  Species % C % N C:N 

Foliage 

Chestnut 44.9 (0.16) 1.78 (0.09) 25.41 (0.85) 

Cherry 45.32 (0.67) 1.94 (0.11) 23.54 (1.24) 

Oak 45.67 (0.35) 1.97 (0.41) 23.62 (1.41) 

        

Leaf 

Litter 

Chestnut 41.26 (1.88) 1.87 (0.05) (A) 22.09 (0.93) 

Cherry 45.75 (1.27) 1.38 (0.02) (B) 29.33 (4.77) 

Oak 43.84 (1.67) 1.81 (0.08) (A) 24.64 (1.86) 

        

Forest 

Floor 

Chestnut 41.05 (1.93) 0.94 (0.04) (A) 43.59 (1.05) (A) 

Cherry 44.05 (2.01) 1.17 (0.04) (AB) 37.77 (1.24) (AB) 

Oak 43.5 (1.75) 1.38 (0.11) (B) 32.29 (2.17) (B) 
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Table 2.2: Allometric equations for calculating biomass from DBH, R2 of allometric equations, 

and % C of bole for American chestnut, black cherry and northern red oak.  

Species 

Biomass allometric 

equation R2 % C Source 

American 

chestnut 

ln(biomass) = -2.0127 + 

2.4342 * ln(DBH) 0.988 46.37 

Jenkins et al. 2003 (Biomass) 

Jacobs et al. 2009 (% C) 

Black cherry 

ln(biomass) = 22.9255 + 

2.4109 * ln(DBH) 0.89 49.53 

Chojnakcy et al. 2013 (Biomass) 

Lamlon & Savage 2003 (% C)  

Northern red oak 

Log10(biomass) = 2.007 + 

2.3505 * log10(DBH) 0.94 46.52 

Elliot et al. 2002 (Biomass)  

Jacobs et al. 2009 (% C) 
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Figure 2.1: Mean forest floor total mass (top left), C (top right) and N (bottom left) pools (kg ha-

1) of chestnut, cherry and red oak plots.  Bars with different letters are significantly different by 

Tukey’s HSD test.  Error bars represent +/- 1 SE from the mean. 
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Figure 2.2: Mean total litter mass, (top left) C (top right) and N (bottom left) pools (kg/ha) of 

chestnut, cherry and red oak collected from 8/2016 – 6/2017.  Bars with different letters are 

significantly different by Tukey’s HSD test.  Error bars represent +/- 1 SE from the mean. 
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Figure 2.3: Mean above-ground biomass (top), and biomass C (bottom) of chestnut, cherry and 

red oak plots.  Bars with different letters are significantly different by Tukey’s HSD test.  Error 

bars represent +/- 1 SE from the mean. 
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Figure 2.4: Mean back-transformed mineral soil C (top), and mean mineral soil N (bottom) of 

chestnut, cherry and red oak plots.  Error bars represent +/- 1 SE from the mean.   
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Figure 2.5: Mean total C present in plots of chestnut, cherry and oak, comprised of biomass, 

litter, forest floor and the top 5 cm of mineral soil.  Bars with different letters are significantly 

different by Tukey’s HSD test.  Error bars represent +/- 1 SE from the mean. 
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Figure 2.6: Mean δ13C values of soil cores from 2m chestnut, cherry and oak plots, along with 

cores collected from outside each plot in the field. Error bars represent +/- 1 SE from the mean. 
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Chapter 3:  

American chestnut reduces nitrogen mineralization in soil despite increased litter 

decomposition rates relative to black cherry and red oak in soil incubation experiment 

 

Abstract: Trees are capable of influencing soil C and N cycling through the chemical 

composition of their leaf and root litter, and mycorrhizal associations.   At the turn of the 20th 

century, American chestnut (Castenea dentata), a previously dominant and widespread canopy 

species throughout the eastern deciduous forest, was extirpated from its native range by chestnut 

blight fungus, an introduced species from Asia.  Through development of blight-resistant trees, 

the reintroduction of American chestnut to its native range is considered imminent.  However, 

relatively little is known about the biogeochemistry of forests influenced by chestnut, and how 

chestnut litter chemistry and fungal associations may have influenced below-ground dynamics of 

C and N.  In this study, a one-year laboratory incubation of soil and litter collected beneath 10 

year-old stands of American chestnut and two historically commonly co-occurring species, 

northern red oak (Quercus rubra) and black cherry (Prunus serotina) was conducted to measure 

important ecosystem fluxes and transformations of C and N. Parameters included litter 

decomposition, C respiration, N mineralization, as well as explanatory variables of extracellular 

enzyme activity related to nutrient acquisition, litter chemistry (lignin and tannin content), and 

oxidizable C.  Key findings from this study indicate that chestnut litter decayed more rapidly 

than that of oak or cherry (18.97 % mass lost in chestnut litter, 10.83% mass loss in oak litter, 

14.13% mass lost in cherry litter), and soil influenced by chestnut had lower N mineralization 

rates than soils influenced by oak or cherry (7.84 mg N kg-1 in chestnut soils, 11.51 mg N/ kg-1 in 

cherry soils, 12.00 mg N kg-1 in oak soils) and greater dissolved organic C (DOC) in leachate 

than soils influenced by oak (31.38 mg DOC kg-1 in chestnut soil, 26.39 mg DOC kg-1 in oak 

soil), but no difference in C loss through soil respiration.  Soil influenced by chestnut also had 

greater oxidizable C, indicating a larger microbial biomass and pool size of processed C, 

important for soil C storage.  These results indicate that soils influenced by chestnut will have 

more rapid inputs of C and N through litter decomposition, will have lower inorganic N 

availability, and due to relatively low C respiration rates and high oxidizable C, likely will result 

in an accumulation of soil C. 
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Introduction 

Important forest biogeochemical shifts have likely occurred throughout the historic range of 

American chestnut (Castenea dentata) following its decline in the early 1900’s (Ellison et al. 

2005). As chestnut trees were lost from the forest canopy, co-occurring species such as oaks 

(Quercus spp.) and hickories (Carya spp.)  replaced them (Vandermast et al. 2002; Ellison et al. 

2005).  However, chestnut was lost from Appalachian hardwood forests before the advent of 

modern ecology, and it is therefore unknown what ecosystem and biogeochemical changes 

resulted from the loss of this keystone species, and how these forested ecosystems may again 

change as chestnut is reintroduced.   

 

Soil nutrient storage and cycling are influenced by numerous factors, such as soil texture, and 

vegetation type (Kogel-Knabner et al. 2008; Phillips et al. 2013; Cotrufo 2013).  Tree species 

influence below-ground biogeochemical dynamics, such as decomposition and mineralization 

rates, through differences in allocation of C and N belowground, chemical composition of leaf 

and root litter, and associated microbial communities (Phillips et al. 2013).  Importantly, the type 

of mycorrhizal fungi associated with tree species plays a role in C and N dynamics, although 

there are competing hypothesis as to how different types of mycorrhizae influence these 

dynamics.  One model hypothesizes that relatively rapid decomposition of litter from arbuscular 

mycorrhizal (AM)-associated trees (e.g., cherry, maple, poplar) leads to greater inorganic 

nutrient availability microbial biomass and extracellular enzyme activity, and therefore greater C 

demand compared to ectomycorrhizal (ECM) associated tree species (e.g. chestnut, oak, hickory) 

(Averill et al. 2014; Taylor et al. 2016; Knelman et al. 2017). For example, Finzi et al. (1998) 
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showed that N mineralization rates in soil beneath the AM-associated species red maple (Acer 

rubrum) were more than double that of soils beneath American beech (Fagus grandifolia), an 

ECM-associated species.  The competing hypothesis is that the rapid decomposition and 

microbial processing of N-rich AM litter results in highly processed and stable C compounds, 

resulting in greater long-term C storage belowground (Craig et al. 2018).  

 

Because chestnut is associated with ECM fungi, it is thought that chestnut has relatively poor 

quality litter, with higher C:N ratios and recalcitrant compound content, and slower below-

ground nutrient cycling when compared to trees with AM associations. This may have resulted in 

greater below ground C storage when compared to AM-associated species (Finzi et al. 1998; 

Schulp et al. 2008; Yin et al. 2014).  However, previous studies have shown mixed evidence of 

chestnut litter quality; some studies have shown chestnut litter may have lower C:N ratios than 

other ECM species, such as the oaks and hickories that have replaced them (Ellison et al. 2005). 

In addition, it has been shown that chestnut litter also contains greater concentrations of other 

nutrients, such as phosphorus and calcium compared to mixed hardwood litter (Rhodes, 2006).  

Conversely, other studies have reported no differences in C:N ratio between chestnut and other 

ECM tree litter (Rosenberg 2010).  Given that wood produced by chestnut is also relatively high 

in tannin content, backed by the historical use of chestnut wood in the leather tanning industry 

(Wang et al. 2013), it is possible that chestnut leaf litter may contain high concentrations of 

tannins as well.  Higher concentrations of tannins from leaf litter may impact soil nutrient 

cycling, as tannins are known to inhibit digestive enzymes and precipitate proteins, which may 

slow N mineralization (Hagerman & Butler, 1981; Lovett et al. 2004) and influence soil C 

dynamics. It is therefore important to more accurately understand the quality of chestnut litter 
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relative to contemporary dominant tree species.  In addition, previous studies have not combined 

chestnut litter quality analysis with a direct investigation of how the litter mediates soil nutrient 

cycling and C dynamics. 

 

Soil represents the largest stable terrestrial C pool (Batjes 2014); however, soil C storage is 

susceptible to vegetative changes. To create stable soil C, inputs from tree litter, root turnover, 

and microbial biomass undergo extensive processing by soil microbes to be sequestered as soil 

organic matter (SOM).  Key fractions of total soil C useful for determining potential C storage 

belowground from various land cover types include particulate organic C (POC) and microbial 

biomass (MBC) (Wardle, 1992; Six et al., 1998; Wander, 2004).  While direct measurements of 

POC and MBC are time-consuming and expensive, it is possible to approximate these soil C 

fractions through measures of the oxidizable C fraction (Culman et al. 2012).  A greater soil 

microbial biomass is related to greater SOM long-term stabilization, through physical protection 

of microbial byproducts onto soil minerals (Cotrufo et al. 2013). In a larger context, it is unclear 

how shifts in dominant tree species may impact long-term SOM storage.  Explicit values for 

decomposition rates of litter material from chestnut, relative to co-occurring tree species, have 

not yet been quantified, and the role of the tree-mediated soil microbial activity in this process is 

poorly understood. Here, we investigate how chestnut, with its incongruent properties of litter 

quality and ECM-associations, may influence fluxes of soil C and N.  

 

The purpose of this study was to examine the extent to which American chestnut differs from 

other co-occurring hardwood species in below-ground nutrient cycling processes, such as N 
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mineralization, litter chemistry and decomposition, soil respiration, active C pools, and 

extracellular enzyme activity.  I hypothesized that N mineralization would be lower in soil 

influenced by chestnut compared to oak or cherry, and that there would be increased C in soil as 

SOM, and lower rates of C loss through soil respiration, fitting within the ECM-AM framework 

of nutrient cycling.  In addition, I hypothesized that chestnut litter would decompose more 

slowly and have higher tannin and recalcitrant compound content than oak or cherry litter.  

Lastly, I hypothesized that there would be lower extracellular enzyme activity in soils influenced 

by chestnuts than oak or cherry, due to the higher concentrations of tannins in chestnut litter 

inhibiting microbial activity and enzyme activity.  I tested these hypotheses using a one-year 

laboratory soil incubation experiment with soil and litter collected from a plantation of American 

chestnut, black cherry and northern red oak plantation located within Purdue University’s 

Martell Research Forest, West Lafayette, Indiana.   

Methods: 

Study Site: 

The soil and litter samples for this study were collected at Purdue University’s Martell Research 

Forest in West Lafayette, Indiana, USA (400 26’ 42” N,870 01’ 47” W).  This 2.4 ha plantation of 

pure, non-hybrid American chestnut, along with two other commonly co-occurring species 

(Northern red oak, Quercus rubra, and Black cherry, Prunus serotina) were planted in 2007 to 

study chestnut growth (Gauthier et al, 2013).  The plantation is comprised of seven species 

compositions; pure stands of each species, two-way mixes of each species, and a three-way mix 

of each species.  This study utilized soil and litter collected from plots of the following species 

compositions: 
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1) 100% black cherry, 

2) 100% American chestnut, 

3) 100% northern red oak, 

 

The tree spacing regimes included in this study consisted of the 1x1 m (10,000 stems ha-1, 5x5 m 

plot size) and 2x2 m (2,500 stems ha-1, 10x10 m plot size) spacing, resulting in eight plots 

comprising an experimental block.  This is replicated three times at the site (3 species mixes, 2 

densities, 3 replications; n = 6; N = 18).  An additional 3x3 meter stem density for each species 

combination existed as well, but was excluded due to high tree mortality.  

 

Soils at the site are of the Rockfield type, which are mildly acidic to nearly neutral and consist 

mainly of silt loams with a clay content of approximately 20-32% (“Rockfield Series” 2007).  

They are typically moderately productive, deep and formed from silty outwash and loamy till.  

Soil profiles were characterized at all three blocks and did not vary significantly, showing a 2-5 

cm agriculturally disturbed Ap horizon, and weak Bt-horizon development.  There are signs of 

an O-horizon beginning to develop, but at present there is no significant organic soil horizon.  

From 1981-2010, mean annual temperature was 10.40 C, and mean annual precipitation was 970 

mm (National Climatic Data Center, 2018). 

 

Incubation core construction and sampling: 
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The cores used for the incubations in this study were constructed from PVC (dimensions 20 cm 

tall X 9.28 cm diameter).  Caps were fitted at the bottom, with a port opening so that leachate 

could drain through the soil medium for collection.  Poly-fil material (approx. 2.5 cm) was 

placed at the bottom of the core to prevent soil from clogging the fitting or exiting the core.  To 

collect soils from the field plots, approximately 1 kg of soil was collected from the surface 5 cm 

from 10 randomized locations within one plot and composited. Soils were stored at 40 C for 2 

months prior to analysis.  Soil samples were then air-dried and sieved through a 2-mm mesh 

sieve to remove large pieces of organic matter and coarse fragments. A subsample from each plot 

was used to determine soil moisture by weighing before and after oven drying at 1050 C.  The 

soil from each of the 18 study plots was then separated into 3 laboratory replicates to the 

equivalent of 200 g dry weight of soil (N = 54 incubation units).  The soil of each replicate was 

mixed with 160 g acid-washed paver’s sand to promote greater hydraulic conductivity for 

leachate sampling and placed in the core.  This design is based on previous incubation 

experiments to allow leachate to be sampled without disturbing the soil (Giardinia et al. 2001).   

3.5 g dry-weight litter material from each plot (collected from plastic litter traps in October 2016 

and composited) was added on top of the soil/sand mixture.  Litter material was separated from 

the soil using 0.3 mm fiberglass screen to allow litter contact with the soil, but not mix with the 

soil, to allow for easier collection at the conclusion of the incubation.  The soil-sand mixture and 

leaf litter were incubated for 1 year. 

 

Repeated sample collection and measurements: 
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Once per week, soils inside the cores were watered to field capacity with deionized (DI) water.  

Field capacity was calculated by adding water to the soil until it was seen flowing out of the 

fitting at the bottom of the core.  The cores were then weighed, and field capacity was 

maintained by adding water to desired core weight in subsequent weeks of the experiment.  

 

The incubation began December 2016.  Every other week, the incubation cores were measured 

for soil respiration using a LI-COR 8100 IRGA chamber (LI-COR Biosiences, Lincoln, NE).  

The cores were watered to field capacity the day before measurements to ensure consistent soil 

moisture conditions for each measurement.  The CO2 flux reported by the Li-COR was converted 

into total C respired per unit area.   

 

Once per month, 75 ml of Hoagland’s rainwater nutrient solution, modified to remove N, was 

added to the cores after watering to field capacity with DI water, with the exception of T = 0, 

where DI water was used in place of Hoagland’s.  By removing N from the rainwater solution, 

inorganic N within leachate could be used to accurately approximate N mineralization rates 

within the soil due to microbial activity.  The cores were allowed to drain by gravity overnight.  

Typically, 75-80% of the original volume of solution was recovered.  The leachate samples were 

split into two 20 ml subsamples, one set analyzed for DOC, and the second for NO3 and NH4 to 

measure N mineralization rates over time.  These samples were stored frozen until analyzed.   
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Dissolved organic C (DOC) samples were analyzed using a Shimadzu TOC analyzer (Shimadzu 

Scientific Instruments, Kyoto, Japan), and were run as composite samples of two time points to 

allow for adequate volume available for analysis. NO3 and NH4 were analyzed colorimetrically 

on a Synergy HTX plate reader (Biotek, Winooski, VT).  NO3 samples were oxidized using 

vanadium chloride solutions and read at 549 nm, while NH4 used sodium salicylate and bleach, 

and read at 650 nm (DeForest 2013).  Samples were assayed with four replicates per sample in 

clear Corning (Corning, NY) 96-well plates.  Concentrations were determined using dilution 

calibration curves of known lab NH4 and NO3 standards. DOC and N concentrations were 

converted into units of mass per kg of soil using volume of leachate collected and the mass of 

soil within the cores.   

T = 1 year measurements: 

Upon completion of the incubation, leaf litter was dried at 650 C for 96 hours and reweighed to 

measure mass loss and decomposition rates. The soils were removed and stored at 4o C until 

ready for further analysis.  First, a subsample of the soils was measured for enzyme activity 

using the colorimetric and fluorometric method adapted from Sinsabaugh et al. 2008.  Enzymes 

measured in this analysis included acid phosphatase (AP), involved in breaking down phosphate 

esters, -N-acetylglucosaminidase (NAG), which breaks down organic N compounds, -

glucosidase (BG), which convert cellulose into simple sugars, and phenol oxidase (PPO) and 

peroxidase (PER), which are involved in the decomposition of polyphenolics like lignin and 

tannins (Rosenberg 2010; Sinsabaugh et al. 2002).  AP, NAG and BG activity was determined 

through fluorescence, while PPO and PER were determined colorimetrically.  Soil was mixed in 

a slurry with sodium acetate buffer solution at a pH of 5.0, and pipetted into opaque Corning 

(Corning, NY) 96-well plate for fluorometric enzymes, and clear 96-well plates for PPO and 
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PER, which are colorimetrically determined.  Plates were arrayed with standards and controls.  

AP, NAG and BG used 100 µM 4-methylumbelliferone (MUB) as a standard, and 4-

methylumbelliferyl phosphate, 4-methylumbelliferyl N-acetyl--D- glucosaminide and 4-

methylumbelliferyl -glucopyranoside as substrates, respectively.  Activity was determined 

through measuring fluorescence at 265 nm excitation and 460 nm emission on a Synergy HTX 

plate reader (Biotek, Winooski, VT).  PPO and PER used 25 mM 3,4-L- dihydroxyphenylalanine 

(L-DOPA) mixed with 50 mM ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) 

as a substrate.  Activity was determined by reading absorbance at 460 nm on the Synergy HTX 

plate reader.  The ratio of BG (C activity) to NAG (N activity) was calculated for each core and 

used to determine the relative proportion of resource allocation to acquiring C and N for each 

species (Knelman et al. 2017). 

 

A second subsample from each core was used to determine total oxidizable C using the 

permanganate method (Culman et al. 2012).  Permanganate oxidizable C (POXC) is typically 

used as proxy for total biologically active C, including particulate organic C, microbial biomass 

C, and SOC, and is a useful way to determine differences in C sequestration among different 

soils or treatments (Culman et al. 2012).  Subsamples were air-dried, and added to a solution 

with 0.2 M KMnO4 (permanganate).  The soil-permanganate solutions were shaken for 2 minutes 

at 120 rpm and allowed to settle for 10 minutes.  The supernatant was pipetted onto a clear 

Corning (Corning, NY) 96-well plate, along with permanganate standards and DI blanks, and 

absorbance was read at 550 nm to determine proportion of C oxidized by the permanganate. 
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The leaf litter removed from the cores was ground in a Wiley-mill grinder and used to determine 

acid insoluble compounds and polyphenolic tannin content.  Acid insoluble and recalcitrant 

compound content of the leaf litter was determined using a slightly modified version of the 

Klasson acid digestion method adapted for use with leaf litter (Ibáñez & Bauer 2014).  Two 

replicates per sample of 300 mg of ground, oven-dried litter was digested in 8 ml of cold (12 – 

15 °C) 72% H2SO4 for two hours at room temperature, diluted to 3% using 22 ml of DI water 

and autoclaved at 121o C for one hour.  Samples were cooled at 4o C overnight and filtered 

through a ceramic crucible of known mass to separate soluble lignin and insoluble compound 

fractions.  A 10-ml aliquot of the filtrate was saved to measure the soluble lignin fraction.  The 

crucibles were washed free of acid; oven-dried for 16 hours at 105º C, and allowed to cool in a 

desiccator.  The soluble fraction was measured at 280 and 215 nm with a Synergy HTX plate 

reader (Biotek, Winooski, VT), and was calculated by the following formula: S = ((4.53 * A215) – 

A280))/300, where S is the concentration of soluble lignin, A215 is the absorbance at 215 nm, and 

A280 is the absorbance at 280 nm (Moreira-Vilar et al. 2014).  Total recalcitrant compounds were 

measured as the sum of insoluble material that could not pass through the crucible and soluble 

lignin in the supernatant.  Proportion of soluble lignin and insoluble compounds lost during the 

incubation period was calculated by subtracting concentration of each sample from the mean 

value of composited non-decayed litter by spacing and species treatment.   

 

The tannin content of the litter was determined using the proanthocyanidin (PA) methanol-acid 

assay (Preston et al. 1997, Preston 1999), slightly modified for use with ground litter (Lorenz et 

al. 2000). 5% volumetric concentrated HCl in n-butanol, with a total water content of 5% v/v and 

200 mg/l of FeSO4*7H2O was prepared fresh each day during the analysis. A proanthocyanidin 
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standard solution was prepared using pycnogenol derived from pine bark (Chen & Sang 2014) 

diluted with methanol.  25 mg of ground litter were weighed into 50 ml centrifuge tubes.  After 

adding 20 ml of acetone (70% by volume) the tubes were shaken for 1.5 h, and centrifuged at 

7000 rpm for 20 min.  The supernatant was then poured into 50 ml volumetric flasks.  This 

process was repeated, and the supernatants combined and brought up to 50 ml total volume per 

sample using the acetone solution.  Next, 2 ml of the supernatant were transferred into test tubes, 

and air-dried inside a fume hood, along with the pellets of remaining insoluble residue within the 

centrifuge tubes.  Upon drying, 5 ml of the FeSO4 solution was added to all samples, vortexed, 

and left in a 95º C hot water bath for 1.5 hours, and allowed to cool.  300 µl of solution for each 

sample was transferred to Corning (Corning, NY) 96-well, clear plates along with methanol 

blanks, and tannin standards.  Absorbance was recorded at 550 nm on the plate reader. Total 

tannin content of the litter was the sum of residual tannins from the residue samples and the 

extractable tannins from the supernatant samples. Tannin degradation during the 

incubation period was calculated by subtracting tannin content of each sample from the mean 

value of composited non-decayed litter by Spacing and Species treatment. 

Data analysis:  

For each variable measured (Nmin, DOC, soil respiration, POXC, enzyme activity, bulk C and 

N, litter decomposition, litter acid insoluble compounds and litter, and tannin), data were 

compiled and statistically analyzed using version 13.0 of JMP software.  Model effects for the 

statistical analysis were spacing and species composition, with the two-way interaction term 

serving as the experimental unit.  Three laboratory replicates were used to estimate means for 

each experimental unit.  Residuals were first checked for normality using the Shapiro-Wilke test.  

If the data for a measurement deviated from normality, a transformation was applied to conform 
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to the assumption of normality required for ANOVA tests.   Multiple ANOVAs were used to test 

for significant differences in mean values of each data set between block, spacing, horizon and 

species, along with full factorial interactions.  Tukey-Kramer HSD tests were used as a post-hoc 

analysis for comparisons between significant model effects.  

 

 Pairwise correlations were run on litter mass loss and N mineralization and potential explanatory 

variables, such as acid insoluble compounds and tannin concentrations and losses for litter 

decomposition, and BG:NAG activity for N mineralization to examine potential drivers of 

different rates of litter loss and N mineralization between species.  Lastly, a principal component 

analysis (PCA) was performed to further explore which parameters were most influentially 

affecting litter decomposition rates.  Two principal components (PC) were calculated from litter 

quality measurements, soil chemistry measurements and enzyme activity were calculated.  For 

each set of PCAs, eigenvalues of both PC’s were calculated to determine the variance explained 

by the PCA, and plotted against one another to evaluate separation between species. For 

components that had separation between species, the PC with the highest eigenvalue was plotted 

against litter decomposition and fitted with linear regression to test if the components were 

related to litter decomposition. 

 

Results 

Soil Respiration, Nitrogen Mineralization and DOC: 
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Cumulative C loss through respiration during the one-year incubation was not significantly 

different between species (p = 0.4699; Figure 3.1).  However, the spacing treatments did have a 

differential effect on C respired (p = 0.0081), with the cumulative mean C respired for 1m 

spacing (258.87 g C/m2) lower than the 2m treatment (298.42 g C/m2). In addition, the model 

interaction term was significant.  While species was not a significant effect on its own, the effect 

that species had on respiration rates did depend on the spacing of the trees (p = 0.0075), with the 

2m treatment having greater respiration than the 1m treatment in cherry and oak cores, but not in 

chestnut cores.   

 

Cumulative N mineralization rates required a Log transformation to adhere to ANOVA’s 

assumption of normality.  The rate of N mineralization was significantly affected by tree species 

(p = 0.0178). N mineralization from chestnut cores (7.84 mg N kg-1 soil) was significantly lower 

than cores containing cherry litter and soil (11.51 mg N/ kg-1 soil) and oak litter and soil (12.00 

mg N kg-1 soil) (Figure 3.2). Spacing and the interaction of species and spacing were not 

significant.    

 

DOC collected from leachate was significantly different by tree species (p = 0.0137). DOC from 

chestnut cores (31.38 mg DOC kg-1 soil) was significantly greater than DOC from oak cores 

(26.39 mg DOC kg-1 soil), though DOC from cherry cores (29.71 mg DOC kg-1 soil) was not 

significantly different from either (Figure 3.3).  DOC collected in leachate did not vary by 

spacing and did not have any significant model effect interactions. 
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T = 1-year Measurements: 

While not statistically significant (p = 0.1840), mean POXC from chestnut cores (284.50 mg C 

kg-1 soil) was greater than POXC from cherry cores (230.66 mg C kg-1 soil) and oak cores 

(253.53 mg C kg-1 soil). Spacing and the interaction of spacing upon species were not significant 

either (Figure 3.4).  

 

Enzyme activity and significant model effects were different for each enzyme measured (Table 

3.1).  AP activity was dependent upon species (p = 0.0045), with chestnut (4.94 mmol h-1 g-1) 

and oak (5.48 mmol h-1 g-1) coress containing significantly higher AP activity than cherry (3.55 

mmol h-1 g-1) (Figure 3.5).  In addition, the effect of species on mean AP activity varied by 

spacing treatment (p = 0.0169), with the 2m chestnut cores containing greater AP activity than 

1m chestnut cores and both 12 and 2m cherry cores.  Mean PER activity required the removal of 

2 outliers and a Log transformation to conform to normality, and was not dependent upon species 

(p = 0.1523) (Figure 3.5), but was dependent upon spacing (p = 0.0076), with the mean back-

transformed PER activity of the 1m treatment (0.65 mmol h-1 g-1) significantly greater than that 

of the 2m treatment (0.34 mmol h-1 g-1).  Lastly, mean PPO activity required the removal of one 

outlier and a Log transformation as well, was dependent upon spacing (p = 0.0002), but not 

species (p = 0.1778), with the back-transformed mean of the 1m treatment (0.56 mmol h-1 g-1) 

greater than that of the 2m treatment (0.21 mmol h-1 g-1) (Figure 3.5).   

 

BG:NAG ratio, which shows the ratio of investments towards enzymes related to C and N 

acquisition, was significantly affected by tree species (p <0.0001). BG:NAG ratio was calculated 
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using the raw BG and NAG activity data, and required the removal of two outliers and a log 

transformation to conform to the assumption of normality.  The back-transformed mean 

BG:NAG ratio of chestnut (7.87) and oak (10.66) were significantly lower than that of cherry 

(15.70) (Figure 3.6). Spacing differentially affected mean BG:NAG ratio as well (p = 0.0109), 

with the BG:NAG ratio of the 2m treatment (12.55) greater than that of the 1m treatment (10.23).  

 

The decomposition rate of litter was dependent upon species (p <0.0001), with mean chestnut 

litter mass loss (18.97%) significantly greater than both oak litter mass loss (10.83%) and cherry 

litter mass loss (14.18%) (Figure 3.7).  Spacing and the interaction of spacing and species were 

not significant.  Litter C:N ratio after one year of decomposition was dependent upon species as 

well (p <0.0001), with chestnut litter C:N (36.04) significantly greater than oak litter (27.03) and 

cherry litter (28.83). In addition, the effect of species upon litter C:N was dependent upon 

spacing (p = 0.0001), with the C:N ratio of chestnut litter from the 1m spacing treatment greater 

than that of the litter from all other spacing and species combinations, and the 2m chestnut litter 

greater than the 1m oak litter.  

 

The concentration of acid insoluble compounds within leaf litter was also dependent upon 

species (p < 0.0001), with mean acid insoluble compound and soluble lignin concentration of 

chestnut litter (42.97 %) significantly lower than oak litter (46.89 %), and significantly lower 

than cherry concentration (52.86%) (Figure 3.8).  In addition, the effect of species upon acid 

insoluble compound concentration was dependent upon spacing treatment (p = 0.0158).  

Insoluble compound loss by mass over time during the incubation was also dependent upon 
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species (p < 0.0001), with % loss in chestnut litter (13.59 %) and oak litter (10.86 %) 

significantly greater than loss by cherry litter (2.32 %) (Figure 3.8).  The effect of species upon 

insoluble compound and soluble lignin loss was also dependent upon spacing (p = <0.0001).   

 

Tannin concentration of leaf litter after one year was dependent required a Log transformation to 

conform to the assumption of normality, and was dependent upon species (p < 0.0001).  The 

back-transformed mean tannin concentration of chestnut litter (6.70 %) and oak litter (5.67 %) 

significantly lower than cherry tannin concentration (10.78 %) (Figure 3.9).  In addition, % 

tannin loss by mass during the incubation also required a Log transformation, and was dependent 

upon species (p < 0.0001), with % tannin loss of chestnut litter (1.76 %) significantly lower than 

oak litter (10.34 %), and significantly lower than tannin loss by cherry litter (17.86 %) (Figure 

3.9).  Tannin loss was also dependent upon the Spacing treatment (p < 0.0001), as well as the 

two-way interactions of Block and Spacing treatments (p = 0.123), Block and Species treatments 

(p = 0.0244), Spacing and Species treatments (p = 0.0012), and the three-way interaction of 

Block, Spacing and Species (p < 0.0001).   

 

Litter mass loss was negatively correlated with tannin loss in leaf litter during the incubation 

period (r = -0.2824, p = 0.0385), but was not correlated to the concentration of acid insoluble 

compounds and acid soluble lignin (r = -0.1734, p = 0.2189) or tannin (r = 0.0872, p = 0.5306) in 

litter upon completion of the incubation, or insoluble compounds and acid soluble lignin loss 

during the incubation period (r = 0.0379, p = 0.7899) (Figure 3.10).  N mineralization was 

negatively correlated to litter mass loss (r = -0.4014, p = 0.0026) and DOC concentration in 
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leachate (r = -0.3171, p =0.0195), but was not correlated with NAG activity (r = -0.2476, p = 

0.0739), or change in litter tannin concentration (r = 0.1856, p = 0.1790) (Figure 3.11).  

 

Results from the PCA indicate that including all variables measured during the incubation 

(including all soil, litter, and enzyme parameters) explained 52.7% (PC1 = 31.3%; PC2 = 21.4%) 

of the variation in litter decomposition.  In addition, a PCA was also performed on soil enzyme 

activity measurements, litter chemistry measurements and soil chemistry measurements.  The 

enzyme PCA (AP, PER, PPO, BG:NAG) explained 64.3% (PC1 = 39.8%, PC2 = 24.5%).  The 

litter chemistry PCA (Initial & T=1 year tannin concentration; tannin loss; initial & T=1 year 

recalcitrant compound concentration; recalcitrant compound loss; T=1 year C & N content; 

initial and T=1 year C:N) explained 74.3% (PC1 = 47.2%, PC2 = 27.1%) of variation.  Lastly, 

the PCA using soil parameters (N mineralization; DOC; POXC; soil respiration) explained 

65.1% (PC1 = 39.4%, PC2 = 25.7%) of variation (Table 3.2).  In addition, when litter quality 

PC1 is plotted against PC2, a clear separation by species is evident (Figure 3.12).  Linear 

regression of litter quality PC1 and litter decomposition indicates that litter quality PC1was 

significantly related to litter decomposition rates (R2 = 0.1835, p = 0.0015). (Figure 3.12).  PC1 

of soil chemistry parameters and all variables were also significantly related to litter 

decomposition rates by linear regression, but did not exhibit clear separation of tree species when 

PC1 is plotted against PC2 (Table 3.2). 
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Discussion  

Generally, relative to the co-occurring tree species, American chestnut has differentially 

influenced the soil C and N dynamics compared to oak and cherry after less than 10 years of 

growth on this site. From the lab incubation study, chestnut soil and litter produced significantly 

more DOC in leachate than oak soil and litter, and a non-significant trend in greater DOC than 

cherry (Figure 3.3).  Greater DOC in soil typically represents lower microbial C demand to due 

limitation of N, as mineralization of C is dependent upon energy demand (Aber 1992; McDowell 

et al. 1998).  The relative difference in DOC between chestnut and cherry from this study align 

with those of a study in Moore’s Creek, Indiana, USA that found 0.64 mg DOC g-1 in soil 

influenced by ECM trees compared to 0.32 mg DOC g-1 in AM-dominated soil (Phillips et al. 

2013). 

 

In addition, there was also a trend of greater POXC in chestnut cores than oak or cherry cores, 

and while non-significant, chestnut core soils on average contained 23 % more POXC than 

cherry and 12 % higher than oak soils (Figure 3.4), and are similar to differences seen between 

deciduous species in plantations in the Huitong National Research Station of Forest Ecosystem, 

in the Hunan providence of China (Wang et al. 2013).  In past studies, POXC has been found to 

be most strongly related to heavier and smaller POC fractions, indicating it reflects a heavily 

processed, stable pool of C found in SOM, and is therefore a suitable parameter for predicting 

long-term soil C sequestration (Culman et al. 2012).  Therefore, while non-significant, this trend 

of greater POXC in soils influenced by American chestnut may indicate potential for long-term 
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stable C storage in soil.  However, the oak cores do not follow this trend, with no differences in 

POXC in soil or DOC in leachate relative to cherry, despite its ECM association. 

Importantly, there was no significant species effect on C loss from soils through respiration. 

While respiration from chestnut cores was not lower than oak or cherry cores as hypothesized, 

the lack of species effect may indicate that the additional DOC and POXC in chestnut soils was 

not quickly lost and may be available for long-term storage on soil mineral surfaces.  These data 

support the hypothesis that the influence of chestnut would lead to greater SOM accumulation 

than oak or cherry, and aligns with models that predict greater C storage and lesser C turnover 

below ground by ECM-associated trees (Averill et al. 2014; Taylor et al. 2016).  The lack of 

significant difference in respiration is not unusual, as previous studies on C cycling of European 

hardwood species have found oak and sugar maple both had respiration fluxes of 1.69 mol m-2 

s-1, while beech was significantly lower than both at 1.27 mol m-2 s-1 (Vesterdal et al. 2012). 

 

Chestnut cores also lost significantly less mineral N than oak or cherry cores, which supports the 

hypothesis that soils influenced by chestnut would have lower N mineralization rate.  However, 

because tannin concentrations in chestnut leaf litter were not higher than that of the other study 

species, the mechanism driving this is not clear.  This also fits into mycorrhizal-mediated C and 

N cycling model that predict greater soil C and lower N in ECM trees compared to AM Averill et 

al. 2014; Taylor et al. 2016).  Although the lack of difference in N mineralization between oak 

and cherry does not match this proposed model, the difference between chestnut and cherry 

follows a similar pattern to a study in Harvard Forest, MA, USA that found much higher N 

mineralization rates of both bulk and rhizosphere soil influenced by sugar maple (Acer 
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saccharum) than the ECM species American beech (Fagus grandifolia) (Brzostek et al. 2013).  

In the present study, N mineralization rates were also negatively correlated with both litter 

decomposition rates and DOC content (Figure 3.11).  The relationship between DOC and N 

mineralization in soil is well established, and is thought to be due to microbial energy constraints 

(Aber 1992; McDowell et al. 1998).  This indicates that the lack of inorganic N in chestnut-

dominated soils reduces the demand for C uptake by microbes, reducing C mineralization.   

 

Chestnut leaf litter in the cores had greater mass loss over the incubation period and contained 

less lignin an acid insoluble compounds after one year than oak or cherry litter, and contained 

less tannins after one year than cherry litter.  This does not support my hypothesis that chestnut 

litter would be slower to decompose and contain higher concentrations of recalcitrant 

compounds.  This also does not explain why N mineralization was lower in chestnut soil, as 

tannins are capable of binding enzymes and proteins, slowing N mineralization (Hagerman & 

Butler, 1981; Hättenschwiler & Vitousek, 2000).   However, it would explain the higher levels of 

DOC and POXC accumulating in the chestnut cores, as more C would enter the soil as the leaf 

litter decays, and the lack of mineral N would reduce C mineralization.  In addition, the HCl – 

Butanol method, while commonly used for measuring proanthocyanidins or condensed tannins, 

may not be the best measure of tannins that affect microbial decomposition (Lovett et al. 2004).  

Previous studies have reported positive correlations between less-polymerized tannin 

concentrations and microbial activity (Schimel et al. 1998; Fierer et al. 2001).  It is therefore 

possible that while chestnut litter may contain less total PAs than cherry litter, the fraction that 

inhibits microbial activity and N mineralization, likely longer-chain tannins, may be present, but 

cannot be differentiated by the HCl – Butanol method.  
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In previous studies, litter decomposition has been found to be more closely correlated to late-

stage litter quality than initial quality (Giardina et al. 2001).  Therefore, evaluating change in 

lignin and acid insoluble compound and tannin concentrations over time may help explain 

drivers of decomposition more than initial values.  While more acid insoluble compounds and 

lignin was lost by % mass from chestnut litter, concentrations after one year and loss during 

incubation was not correlated to litter decomposition.  However, change in tannin composition of 

litter was negatively correlated to litter decomposition.  As more tannins were lost from the oak 

and cherry litter, it is possible the greater flux of tannins entering the soil inhibited the further 

decomposition of the leaf litter material. This provides a possible explanation of the processes 

leading to the higher decomposition rate of chestnut litter.  The PCA revealed that while both 

soil and litter chemistry variables, along with all variables measured during the incubation 

combined were significantly related to litter decomposition rates by linear regression, only litter 

chemistry showed any separation by species when plotting both principal components.  This 

indicates that the differences in litter chemistry between species was indeed the factor driving 

litter decomposition rates. 

 

Enzyme activity results indicate that chestnut soils have greater AP activity than cherry, and 

significantly lower PER activity than cherry, and non-significantly lower PER than oak and PPO 

than oak and cherry.  This, coupled with chestnut litter not containing greater concentrations of 

tannins compared to oak or cherry, does not completely support the hypothesis that chestnut soils 

would have lower overall enzyme activity than both oak and cherry resulting from increased 
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concentrations of tannins inhibiting enzyme activity.  However, chestnut and oak having greater 

AP activity may be due to ECM fungi having the ability to release AP enzymes, whereas in AM 

species, they are normally released by roots and free-living microbes (Phillips & Fahey 2006). 

There were no roots present in the incubation cores, but free-living microbes may have been 

present, this may explain this result.  Chestnut soil PPO activity was significantly lower than that 

of cherry, and although not significantly separate from oak soil PPO activity, it was 37% lower.   

In addition, although species was not a significant effect on PER activity, chestnut soils (0.354 

mmol h-1 g-1) was 40 % lower than cherry (0.592 mmol h-1 g-1) and 37% lower than oak (0.558 

mmol h-1 g-1) activity.  This may support the possibility that although chestnut litter contained 

lower total proanthocyanidins than oak or cherry litter both initially and after 1 year, more of the 

enzyme-inhibiting fraction may have been present.  Both PPO and PER are involved in the 

degradation of lignin, and although chestnut litter lost more insoluble compounds and lignin by 

percent mass than oak or cherry, expressed enzyme activity related to the decomposition of 

lignin was lower in chestnut soils, possibly indicating that enzyme activity was inhibited through 

sorption onto the complex compounds. 

 

The ratio of BG:NAG activity of chestnut soils was significantly lower than that of both oak and 

cherry soils.  This indicates that the microbial community was more N limited in the chestnut 

soils, and were investing in producing more NAG enzymes to acquire what N they could.  

Typically, under N-limited conditions, the C use efficiency (CUE) of microbial communities will 

decrease, and will respire more C per unit N acquired in an effort to get what little N is available.  

However, an increase in respiration in chestnut soils was not evident relative to oak or cherry 

soils, indicating that the microbial communities associated with chestnut soils have a greater 
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CUE and the extracellular enzymes in chestnut soils break down more N-containing compounds 

(NAG) relative to the production of simple sugars (BG), and is C-efficient in acquiring N (i.e. 

has a high N use efficiency (NUE)).  This aligns well with the relatively low N mineralization, 

high DOC, and moderate respiration from chestnut, as the microbial community associated with 

chestnut are efficient to get enough N while not increasing C loss through respiration, allowing 

for the production of greater DOC leached from chestnut soils (rapid decomposition, low N 

mineralization = high NUE).    

 

Conclusion 

This study indicates that soils influenced by American chestnut had lower N mineralization 

compared to oak and cherry, and resulted in an accumulation of the DOC and oxidizable C pools 

related to microbial biomass and SOM accumulation. This cannot fully be explained by litter 

quality as chestnut litter did not contain significantly greater amounts of recalcitrant and nutrient 

cycling inhibiting compounds as hypothesized, though the PCA analysis indicates clear 

separation of litter quality parameters by species and a significant correlation to litter 

decomposition. In addition, the microbial community within soils influenced by chestnut litter is 

efficient in its use of C to acquire N (high NUE), resulting in no increase of C loss through 

respiration compared to oak or cherry. Overall, the soil ecosystem from chestnut plots has an 

accumulating microbial biomass with high N use efficiency (NUE), reflective of greater SOM 

accumulation potential relative to co-occurring tree species black cherry and red oak. This 

pattern did not vary by spacing treatment, indicating this may be seen in a variety of conditions.  

These results indicate that greater fluxes of inorganic N may have been occurred from forested 
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ecosystems as chestnut declined, and has positive implications for C storage belowground if 

chestnut is successfully reintroduced throughout its native range. 
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Table 3.1: Significance factors of model effects and interactions for enzyme activity and ratios 

from soils collected from plots of chestnut, cherry and red oak and incubated for one year with 

leaf litter of their respective species. 

 

Model Effect AP BG:NAG PER PPO 

Spacing  ns 0.0109 0.0078 0.00002 

Species 0.0045 <0.0001 ns ns 

Spacing x Species 0.0169 ns ns ns 

 
ns = non-significant 
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Table 3.2: Eigenvalues of two principal components (PC) of litter chemistry, soil chemistry, soil 

enzyme activity and all variables calculated using PCA, and significance of linear regression 

between PC’s and litter decomposition rates from the incubation. 

 

Variable Type PC Eigenvalue R2 p-value 

All  1 31.3% 0.3047 <0.0001 

All 2 21.4% 0.0041 ns 

Enzyme 1 39.8% 0.0374 ns 

Enzyme 2 24.5% 0.0028 ns 

Litter chemistry 1 47.2% 0.1835 0.0015 

Litter chemistry 2 27.1% 0.1481 0.0048 

Soil chemistry 1 39.4% 0.2157 0.0004 

Soil chemistry 2 25.7% 0.0316 ns 

 

ns = non-significant 
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Figure 3.1: Mean cumulative C loss through respiration (+/- 1 SE) over T = 10 months of black 

cherry, American chestnut, and northern red oak.   
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Figure 3.2: Mean cumulative N (+/- 1 SE) mineralized over T = 10 months of American 

chestnut, black cherry and northern red oak.  Bars with different letters are significantly different 

by Tukey HSD test. 



82 
 

 

Figure 3.3: Mean cumulative DOC (+/- 1 SE) collected over T = 10 months of American 

chestnut, black cherry and northern red oak.  Bars with different letters are significantly different 

by Tukey HSD test. 
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Figure 3.4: Mean total POXC (+/- 1 SE) by species, spacing and block. Error bars represent +/- 

1 SE from the mean. 
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Figure 3.5: Mean enzyme activity (mmol/h/g) (+/- 1 SE) of AP (top left), PER (top right) and 

PPO (bottom left) for chestnut, black cherry and red oak.  Bars with different letters are 

significantly different by Tukey HSD test. 
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Figure 3.6: Mean (+/- 1 SE) BG:NAG enzyme activity ratio of soils from chestnut, cherry and 

oak incubation cores.  Bars with different letters are significantly different by TukeyHSD test. 
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Figure 3.7: Mean % mass loss at T=1 year of litter taken from chestnut, cherry and oak 

incubation cores.  Bars with different letters are significantly different by TukeyHSD test.  Error 

bars represent +/- 1 SE from the mean. 
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Figure 3.8: Acid insoluble compound and soluble lignin concentration of composited (n=2 per 

species) fresh litter from before incubation, and decayed litter at T = 1 year from chestnut, oak 

and cherry incubation cores.  Bars with different letters are significantly different by Tukey HSD 

test.  Error bars represent +/- 1 SE from the mean. 
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Figure 3.9: Tannin concentration of composited (n=2 per species) fresh litter from before 

incubation, and decayed litter at T = 1 year from chestnut, oak and cherry incubation cores.  Bars 

with different letters are significantly different by Tukey HSD test.  Error bars represent +/- 1 SE 

from the mean. 
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Figure 3.10: Correlations of % litter mass loss and litter % acid insoluble compounds and lignin 

(top left), % tannin (top right), % insoluble compound and lignin loss (bottom left) and % tannin 

loss (bottom right).  Correlation coefficient and p value are reported in the top right of each 

individual graph.  
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Figure 3.11: Correlations of N mineralized during incubation experiment and NAG enzyme 

activity (top left), % litter mass loss (top right), DOC (bottom left) and % tannin loss (bottom 

right).  Correlation coefficient and p value are reported in the top right of each individual graph.  
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Figure 3.12: PCA of leaf litter chemistry variables, including species separation (top) and linear 

regression of litter decomposition against litter chemistry PC 1 (bottom).   
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