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ABSTRACT 

 

Production History Matching and Forecasting of Shale Assets  

Using Pattern Recognition 

 

Soodabeh Esmaili 

 

Generating long-term development plans and reservoir management of shale assets has continued apace. 
In this study, a novel method that integrates traditional reservoir engineering with pattern recognition 
capabilities of artificial intelligence and data mining is applied in order to accurately and efficiently 
model fluid flow in shale reservoirs. The methodology is efficient due to its relatively short development 
time and is accurate as a result of high quality history matches it achieves for individual wells in a multi-
well asset. 

The technique that is named Artificial Intelligence (AI) Based Reservoir Modeling is a formalized and 
comprehensive, full-field empirical reservoir model. It integrates all aspects of shale reservoir 
development from well location and configuration to reservoir characteristics and to completion and 
hydraulic fracturing. This approach not only has a much faster turnaround time compared to the numerical 
simulation techniques, but also models the production from the field with good accuracy, incorporating all 
the available data.  This integrated framework enables reservoir engineers to compare and contrast 
multiple scenarios and propose field development strategies. 

AI-based Modeling is applied to a Marcellus Shale asset that includes 135 horizontal wells from 43 pads 
with different landing targets. The full field AI-based Shale model is used for predicting the future 
well/reservoir performance, forecasting the behavior of new wells/pads and to assist in planning field 
development strategies. Furthermore, this study takes advantage of applying advanced pattern recognition 
tools in order to investigate the impact of design and native parameters on gas production as well as 
optimizing the completion and stimulation parameters for newly planned wells. 
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NOMENCLATURE 

 Production Decline Rate (1/time) =ܦ

 Production Rate (MCF/time) =ݍ

 - ஽௅= Dimensionless Rateݍ
ଵ
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௞೑ඥ஺೎ೢሾ௠ሺ௣೔ሻି௠൫௣ೢ೑൯ሿ

ଵସଶଶ௤೒்
 

஽஺௖ݐ -஽஺௖= Dimensionless timeݐ ൌ
଴.଴଴଺ଷଷ௞೑௧

ሺ∅ఓ௖೟ሻ೑శ೘஺೎ೢ
 

݇௙= Bulk fracture permeability of dual porosity models, md 

  ௖௪= Well-face cross sectional area to flow, ft2ܣ

ܶ= Temperature, °F 

ܾ= Hyperbolic Constant (Dimensionless) 

 Time=ݐ

߱= Dimensionless Storativity ratio 

 Dimensionless interporosity parameter =ߣ

 ஶ=Decline Constant at infinite time (1/time)ܦ

݊=Time exponent 

߬= Chacteristics Number of Periods (Dimensionless) 

௣ܲ௪௙=Pseudo flowing bottomhole pressure (Psi) 

௣ܲ௜= Pseudo reservoir pressure (Psi) 

 ௔= Pseudo timeݐ

 ௖௔=Material balance timeݐ

 ௚= Gas Viscosity (cp)ߤ

ܿ௧=Total Compressibility (1/Psi) 

ܼ=Gas deviation factor (Dimensionless) 

௚ܵ=Gas Saturation (Dimensionless) 

݄=Thickness (ft.) 
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1. CHAPTER I 

INTRODUCTION 

1.1 Overview of Unconventional Resources  

Unconventional development of energy resource plays, including coal beds, tight sands and shales has 

been a growing source of natural gas development in the United States. Since 1998 unconventional 

natural gas production has increased nearly 65%. This growth has resulted in unconventional production 

becoming an increasingly larger portion of total natural gas production in the United States, increasing 

from 23% in 2010 to 49% of total dry gas production in 2035 (Figure 1.1) [U.S. EIA, 2012]. 

The term “Unconventional Reservoirs” addresses those types of reservoirs that cannot be produced at 

economic flow rates or that do not produce economic volumes of oil and gas without assistance from 

massive stimulation treatments or special recovery processes and technologies [Naik, 2005]. Shale gas is 

one out of several types of unconventional gas resources. Tight gas and coalbed methane are two other 

sources of developed unconventional gas resources, both with the property of the gas being stored in tight 

formations. However, shale is far tighter and less permeable than these two categories of unconventional 

gas resources [Knudsen, 2010].  

Shale is one the most common sedimentary rocks in the world and is primarily composed of clay and 

fragments of other minerals such as quartz and calcite. Shale can be the source, reservoir and the seal for 

natural gas. Shale formations normally have low permeability (limited ability for gas or fluids to flow 

easily through the shale formation) and normally require stimulation techniques such as fracturing to 

economically produce shale gas. Shale gas is natural gas that is attached to, or adsorbed onto, organic 

matter or it is contained in thin, porous silt or sand beds interbedded in the shale [Alberta Energy, 2009]. 

Besides the natural complexities of shale formations and existing difficulties in extracting gas, shale is 

going to be one of the key sources in meeting U.S. energy demands. United States has a wide distribution 

of highly organic shales containing vast resources of natural gas (Figure 1.2). Already, the fledgling 

Barnett Shale play in Texas produces 6% of all natural gas produced in United States. Several factors 

such as advanced horizontal drilling and hydraulic fracturing have come together in recent years to make 

shale gas production economically viable. Analysts have estimated that by 2011 most new reserves 

growth (50% to 60% or approximately 3 BCF/day) will come from unconventional shale gas reservoirs. 
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Figure 1.1: United States Natural Gas Production from Different Sources, 1990‐2035‐[U.S. EIA, 2012] 

The total recoverable gas resources in four new shale plays (the Haynesville, Fayetteville, Marcellus and 

Woodford) may be over 550 TCF. Total annual production volumes of 3 to 4 TCF may be sustainable for 

decades. This potential for production in the known onshore shale basins, coupled with other 

unconventional gas plays, is predicted to contribute significantly to the U.S’s domestic energy outlook 

[U.S. DOE, 2009]. 

The variety of rock types observed in organic-rich shale implies the presence of a range of different types 

of “Shale Gas” reservoirs. Each reservoir may have distinct geochemical and geological characteristics 

that may require equally unique methods of drilling, completion, production and resource and reserve 

evaluation [Cramer, 2008].  

However, in all cases a thorough understanding of the fundamental geochemical and geological attributes 

of shale is essential for resource assessment, development and environmental stewardship. Four properties 

are important characteristics in each shale play : 1)maturity of the organic matter, 2)type of gas generated 

and stored in the reservoir, 3) TOC content of the strata; and 4) permeability of the reservoir.  Shales can 

be classified based on maturity as thermogenic and biogenic. Thermogenic gas is generated from cracking 
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of organic matter or the secondary cracking of oil and biogenic gas (such as in the Antrim shale gas field), 

which is generated from microbes in area of fresh water recharge. Thermogenic gas is associated with 

mature organic matter that has been subjected to the relatively high temperature and pressure in order to 

generate hydrocarbons, while biogenic gas can be associated with either mature or immature organic 

matter [Rokosh et al., 2008]. 

Organic maturity is often expressed in terms of vitrinite reflectance (%ܴ଴) and the value above 1% ܴ଴ 

indicates the organic matter is sufficiently mature to generate gas and could be an effective source rock. 

 

Figure 1.2: Shale Gas Plays Distribution in United States‐EIA, 2010 

Total organic carbon (TOC) is a fundamental attribute of gas shale and is a measure of present-day 

organic richness. The TOC content, together with the thickness of organic shale and organic maturity, is a 

key attribute that aids in determining the economic viability of a shale play [Rokosh et al., 2008]. A TOC 

of 1.0wt.% is widely regarded as the minimum value for defining a potential source rock [Peters et al., 

1993]. 
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Shale in particular exhibits permeability lower than Coal Bed Methane (CBM) and tight gas and, because 

of this, forms the source and seal for many conventional oil and gas pool. Permeability of the shale matrix 

is the most important parameter influencing sustainable shale gas production. To sustain yearly 

production, gas must diffuse from the low-permeability matrix to induced or natural fractures. Generally, 

higher matrix permeability results in a higher rate of diffusion to fractures and a higher rate of flow to the 

wellbore and consequently greater recovery of hydrocarbons and larger drainage area. Additionally, 

microfractures within shale matrix may be important for economic production; however these 

microfractures are not easily determined in situ in a reservoir [Rokosh et al., 2008].  

Shale gas reservoirs generally recover less gas (from <5% to 20%) relative to conventional gas reservoirs, 

although the naturally well-fractured Antrim Shale may have a recovery factor as high as 50%-60% 

[Speight, 2013]. To increase the recovery factor, innovation in drilling and completion technology is 

paramount in low-permeability shale reservoirs. In recent years, improvements in the use of horizontal 

drilling combined with multi-stage fracturing have resulted in some shale gas formations becoming some 

of the most attractive natural gas resources in United States.  

1.1.1 Marcellus Shale Play 

The Marcellus is the most expansive shale play in the U.S. extending on a northeast-southwest trend from 

west central New York into Pennsylvania, Maryland, Ohio, Virginia and West Virginia, and covering an 

area of 95,000 square miles (Figure 1.3) [U.S. DOE, 2010]. The Marcellus Shale with an average 

thickness in the range of 50 to 100 ft., thins to the north, the west, and the south, and pinches out in 

eastern Ohio, western West Virginia, and southwestern Virginia. The Marcellus reaches subsurface depth 

over 9,000 ft. along the preserved basin axis; it outcrops to the east and north and subcrops to the west 

and south. The estimated production depth between 4,000 to 8,500 feet, together with an average gas 

content of 60 scf/ton, result in a gas-in-place estimate up to 1,500 tcf [USGC, 1993; USDOE, 2009].  

A renewed interest in the Marcellus Shale was initiated in 2003 when Range Resources-Appalachia, LLC 

drilled the first “new” Marcellus well in recent years and began experimenting with techniques used in the 

Barnett [Arthur et al., 2008]. Since 2005 Marcellus Shale development has increased in Pennsylvania and 

the Appalachian Basin.  

Current development practices in the Marcellus Shale involve the drilling of both horizontal and vertical 

wells. Regardless of the preferred well orientation, Marcellus Shale well completions require formation 

stimulation, typically in the form of hydraulic fracturing to produce economic volumes of natural gas. 
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Further, based on development in other gas shales, it is likely that horizontal well drilling will become the 

preferred method of drilling for gas development from the Marcellus Shale [Arthur et al., 2008].  

1.2 Problem Description 

Understanding reservoir properties like lithology, porosity, organic carbon, water saturation and 

mechanical properties of the rock, which include stresses, beforehand and planning completions based on 

that knowledge is the key to production optimization. Therefore, the final objective is to increase our 

ability to integrate proprietary laboratory and petrophysical measurements with geochemical, geological,  

 

Figure 1.3: Distribution of the Marcellus Shale Formation‐ [Source: Taylorgeoservices‐Marcellus Shale Services] 
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petrologic, and geomechanical knowledge, to develop a more solid understanding of shale plays and to 

provide better assessments, predictions, and models. There are still many problems to be solved and many 

challenges to overcome. These challenges make unconventional gas an exciting technical area. 

Simulation and rate-transient analysis better represent the actual physics involved in reservoir dynamics, 

but early applications face steep problems. In the case of rate-transient analysis, formulations were not 

initially available to handle the physical geometry of the completions. Simulation is more flexible, but 

there is significant uncertainty as to the nature of the resulting completion, production mechanisms and 

how to model these [Strickland et al., 2011]. Studies have shown that Darcy flow and instantaneous 

capillary equilibrium applied in simulators for conventional reservoirs are inadequate for reliable 

simulation of shale gas reservoirs [Andrade et al., 2010]. With the complex nature of shale gas reservoirs, 

many capabilities necessary to accurately simulate these reservoirs are lacking which allows us to 

question how representative are these simulation models [Arogundae et al., 2012]. 

Civan et al. (2011) [Civan et al., 2011] presented some conditions of the design parameters that should be 

considered to build a proper shale gas simulator. They emphasized non-instantaneous dynamic 

distribution of fluids and transport of fluids in interconnected nano-pores as two defining features that 

make modeling of these reservoirs different from the conventional systems. They proposed a quad-

porosity approach accounting for a complicated reservoir pore structure that includes pores in the organic 

matter, inorganic matter; natural and hydraulic fractures with heterogeneous wettability, and different 

relative permeability and capillary pressure functions.  

More importantly though, there are several shortcomings in these detailed approaches. Firstly, detailed 

grid-based numerical techniques usually are resource intensive and time consuming. Furthermore, the 

best-of-practice approach can very well be an optimal collection of algorithms available for conventional 

reservoirs [Biswas, 2011]. 

Many difficulties on shale gas modeling caused engineers to rely heavily on the simplest, most accessible 

tool: such as using a reduced physics models [Wilson et al., 2012] or using the simplest production data 

analysis approach (e.g Decline Curve analysis) by knowing the fact that tools of traditional production 

data analysis have not been sufficient to identify the flow behavior in the shale system. 

Numerical models capable of modeling the most important features of tight gas and gas shales are 

undergoing further development to include better representations of the basic physics controlling gas flow 

as the industry learns more [Lee et al., 2010]. The basic principles of physics and thermodynamics 
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controlling fluid flow in porous media are the basis in today’s commercial models, but still there are many 

questions that need to be answered in order to make sure that we have a full understanding of the physics 

controlling fluid flow in shale media. 

From what it has been discussed above, an effective and robust technology is needed to overcome these 

difficulties and give us a tool to perform full-field modeling and history matching of a shale formation.  

1.3 Objectives 

The objectives of this research are: 

 To develop a realistic and versatile shale gas pattern recognition based reservoir simulation 

model by integrating and incorporating all hard data (field measurements) 

 To investigate the short-term and long-term  impact of parameters on production from shale 

 To analyze the well behavior to offer the findings as lesson learned workflow 

1.4 Organization of This Dissertation 

The study is divided into seven chapters. The outline and organization of this dissertation are as follows: 

Chapter I present an overview of shale gas reservoirs. The research problem and the dissertation 

objectives are discussed. 

Chapter II presents an inclusive literature review. The existing approaches on shale gas assessments are 

reviewed.    

Chapter III presents an overview of Artificial Intelligence and Neural Network. The architecture and 

algorithm used in this dissertation will be shown.  

Chapter IV describes the methodology and workflow that is used in this study. 

Chapter V describes the development of Spatio-temporal database and the taken steps in preparation of 

the data for modeling.  

Chapter VI discusses the history matching workflow and the results. In this chapter the results of the 

wells with poor history match will be discussed.  

Chapter VII presents the steps in validating the AI-based shale model. In this chapter, the forecasting and 

prediction capability of the model will be showed.  

Chapter VIII presents the comprehensive sensitivity analysis results, optimization study and generated 

type curves.  

Chapter IX offers conclusionary remarks and recommendations for future work.    
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2. CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction  

Production from shale assets has become one of the most significant sources of US domestic energy 

today. Consequently, research related to unconventional reservoirs has increased significantly in order to 

better understand the inherent complexities of their behavior. Analytical, numerical and statistical 

analyses have been applied to large multi-variable data set from shale assets with different degrees of 

success. A vibrant and fast-growing literature exists related to various aspects of gas shale, including 

operational (e.g., drilling, completion, and production) and technological challenges. The latter mainly 

involves difficulties in formation evaluation/characterization, in modeling macro- and micro-scales of gas 

flow and transport, and in developing reliable reservoir simulators. 

In this chapter, a review of literature will be conducted in four sections. The first section discusses the 

analytical methods of shale gas assessment with focus on Decline Curve and Rate Transient Analysis. In 

the second section, the numerical analysis methods of shale gas will be reviewed. The third section 

discusses the data-driven or statistical analysis approaches. In the fourth section of this chapter, the works 

related to sensitivity analysis in shale will be reviewed.  

2.2 Analytical Approaches to Shale Assessments 

For almost every oil and gas producer well, there has always been some sort of analysis done on the 

production data. The origin of all these analyses is the diffusivity equation which is a combination of 

continuity equation, flux equation (Darcy’s Law) and an equation of state. Production analyses for shales 

have been developed over the last 50 years based on models for the production of gas from coal beds and 

applied initially to low pressure fractured reservoirs [Walton, 2012]. With rapid demand for production 

from shale the need for development of a reliable, fast and cost efficient model is proceeding apace. 

Accordingly, decline curve and rate transient analysis has attracted much attention.  

2.2.1 Decline Curve Analysis 

The “Arps” decline curve relations is one of the primary and most widely used tools to estimate the oil 

and gas reserves. These analyses are based on empirical equations related to production rate with time and 

is derived by the definition of the “loss ratio” and “derivative of the loss ratio” as follows: 
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Depending on the decline rate parameter, Arps differentiated decline into three different types as 

Exponential Decline (b=0), Hyperbolic Decline (0<b<1) and Harmonic Decline (b=1) [Arps, 1944]. The 

Arps decline rate equations are based on observations of the conventional reservoirs and are only 

applicable for the boundary dominated flow, but the work done by Fetkovich (1980) provided some more 

theoretical bases to the Arps decline equations by developing type curves for early transient flow. 

However, they did not discuss the possibility of the value of the b-parameter for greater than one.  

For unconventional reservoir, the common practice is to use hyperbolic rate decline relation and it has 

been shown that the value of b-parameter could exceed one. Many attempts have been made in order to 

apply the decline curve equations in shale reservoir properly. In 2008 Ilk et al. introduced the “power-law 

loss ratio” rate decline model to estimate gas reserves in tight gas reservoirs. Their model is based on 

different functional form for the D-parameter as Equation 3 which shows the loss ratio can be 

approximated by a decaying power law function with a constant behavior at large times (i.e. the ܦஶ -

constant). 

ܦ ൌ ஶܦ ൅ ሺଵି௡ሻିݐଵܦ ……………………………………………………………… .…… .………………ሺ3ሻ 

The model has been applied on different synthetic and actual cases and it showed much more flexibility to 

match transient, transition and boundary dominated flow. The work by Valko (2009) presented another 

new decline curve model called the “Stretched Exponential Decline Model (SEPD)”. In this new model, a 

new set of parameters; ݊ (is the exponent and it is equal to b-parameter in Arps relations), ߬ (is the 

characteristic number of periods) and ݍ௜ (is the initial production rate) were defined and can be used in 

order to estimate the rate in each time step as equation 4: 

ݍ ൌ ௜ݍ exp ൤െሺ
ݐ
߬
ሻ௡൨……………………………………………………………………………………… . ሺ4ሻ 

In the Arps formulation, by increasing values of b-parameter, the rate of depletion becomes slower and 

very large EUR will result. In contrast, the SEPD model has a bounded nature, i.e. as depletion gets 

slower, ݊ assumes smaller values. Similar to work done by Valko, Boulis et al. (2009) proposed several 
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functional forms for the b-parameter in order to evaluate the b-parameter as a monotonically decreasing 

function of time. Based on their study, b-parameter can be characterized as the following models: 

 ܾሺݐሻ ൌ ݁ݐܽݎ	݈ܿ݅݋ܾݎ݁݌ݕ݄	ݏ݌ݎܣሺ	ݐ݊ܽݐݏ݊݋ܿ																																																			ܾ െ  ሻ݊݋݅ݐ݈ܽ݁ݎ	݈݁݊݅ܿ݁݀

 ܾሺݐሻ ൌ ܾ଴ expሾെܾଵݐሿ																													݈݁ܽ݅ݐ݊݁݊݋݌ݔ	݊݋݅ݐܿ݊ݑ݂ 

 ܾሺݐሻ ൌ ܾ଴ିݐ௕భ																																										ݎ݁ݓ݋݌ െ  ݊݋݅ݐܿ݊ݑ݂	ݓ݈ܽ

 ܾሺݐሻ ൌ 1 ሺܾ଴ ൅ ܾଵݐሻ																														݈ܽ݊݋݅ݐܽݎ	݊݋݅ݐܿ݊ݑ݂⁄  

They also derived the corresponding rate-decline relation for each b-parameter model and solved the 

differential equation related with each b-parameter model. The models were applied to different 

numerical and actual cases and they investigated that the performance of the models can vary under 

different conditions. As conclusion of their work, using the constant b-parameter for the data that do not 

exhibit boundary-dominated flow significantly over-estimates the reserve. The reserve estimated by using 

the exponential function is conservative because this model cannot represent the transient flow regime. 

They have also observed that the computed b-parameter trend exhibits a power-law behavior in some 

cases and for those cases, the matches are outstanding and the reserves are reliable. Moreover, the rational 

function for the b-parameter is the most flexible model that can properly represent early time as well as 

middle and late time behavior of production data. Under these observations, they suggested the use of all 

the b-parameter models in conjunction to yield better resolution and to decrease the uncertainty in 

reserves estimates.  

Despite improvements in applying Decline Curve Analysis (DCA) in shale, prediction of future decline 

by using deterministic DCA is far from actual future production trend and thus the single deterministic 

value of reserves is not close to the true reserves [Cheng et al., 2010]. Unlike these deterministic 

estimates, probabilistic approaches provide a range of estimates for reserve and thus attempt to bracket 

the true value. The work done by Cheng et al. (2010) offered a modified bootstrap algorithm employed to 

preserve data structure. In this method, each pair of rate-time is matched by using conventional decline 

curve and residuals from the fitted model and observed data is constructed. Then different bootstrap 

realizations will be generated by incorporating the random samples from residuals into fitted model.  

They also were able to improve the coverage rate of confidence level and to estimate more accurate 

reserves. They applied their method to 100 oil and gas wells and showed that by using this probabilistic 

approach, much wider confidence level and more reliable p-50 values can be obtained.   
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On the other hand, instead of generating synthetic data sets, Can et al. (2012) used large data sets 

comprising many wells to obtain parameter distributions from well groups exhibiting similar decline 

behavior. 

 In this study, the existing wells were grouped based on their productivity index in order to obtain 

common stretched exponential decline model (SPED) parameters for similar wells. They used a group’s 

common ݊ and ߬ parameters to generate the model response for an individual well, and the well’s specific 

production parameter ݍ଴ and they came up with the probabilistic criteria of P index (P10-P50-P90) for 

each individual group. The capability of the model for production forecasting was validated by three 

actual unconventional field data sets (both oil and gas) and also simulation cases.  

2.2.2 Rate Transient Analysis 

The other analytical methods for shale gas reservoir that have proved practical, reliable and inexpensive, 

is rate transient analysis which is being used to evaluate the shale gas production in order to extract 

hydraulic fracture and reservoir properties. The analysis usually includes flow regime determination and 

solving the diffusivity equations for different type of flow behavior. It has been observed that most the 

shale wells behavior is controlled by transient linear flow (transient matrix drainage into fractures) and it 

is the only flow regime in these wells that could last for years. Therefore most of the literature is devoted 

to solving equations for transient linear flow however, there are some papers that have concentrated on 

the existence of other flow regimes.  

In the work done by Bello (2008 & 2009), all possible flow regimes in shale gas have been introduced 

although he developed the equations for transient flow regimes. Based on his definition, five flow regimes 

can be identified (Figure 2.1). Region 1 is due to transient flow only in the fractures. Region 2 is bilinear 

flow and occurs when matrix drainage begins simultaneously with the transient flow in fractures. Region 

3 is the response for homogenous reservoir. Region 4 is dominated by transient matrix drainage and is the 

flow regime that lasts several years. Region 5 is the boundary dominated transient response.   

Using the massive multi-stage hydraulic fracture treatment in order to create or enhance complex 

networks of fractures connected to the well is a common practice in shale wells. As a result, production 

analysis of these types of wells in terms of estimating the fracture properties, extension of stimulated 

reservoir volume (SRV), and the amount of gas became very important.  

Anderson et al. (2010) proposed an analysis method and model that accounts for multiple transverse 

fractures in a horizontal well. The presented methodology is basically using three particular plots (as 



 

following

estimates 

 

 

 

Anderson

for flow 

material b

reservoir 

productio

g) to provide t

of bulk reserv

Figure 2.1: Il

Log-Log Pl

versus mate

Square-Roo

Flowing Ma

n et al. (2010)

regime ident

balance plot 

width, appa

n forecasting

the reliable id

voir propertie

llustration of the

lot:
௤

௉೛೔ି௉೛ೢ೑
 a

erial balance t

ot Time Plot: 

aterial Balanc

) took advanta

tification. By

can be used

rent skin an

g based on t

dentification o

es, apparent s

e five flow regio

and ቂ
ௗ

ௗ௟௡௧ೌ
ቀ
௉೛

time 

௉೛೔ି௉೛ೢ೑
௤

 vers

ce Plot: 
௤

௉೛೔ି௉

age of using d

y knowing th

d to estimate

nd hydrocarbo

the depletion

12 

of dominant f

kin and hydro

ons. ࣅ,࣓ are int

೛೔ି௉೛ೢ೑
௤

ቁቃ
ିଵ

 v

sus √ݐ 

೛ೢ೑
 versus 

൫ఓ೒

derivative rate

he flow regim

e the matrix 

on pore volu

n of SRV an

flow regimes 

ocarbon pore 

terporosity and 

versus Pseudo

ଶ௤௧೎ೌ௉೔

೒௖೟௓൯೔ሺ௉೛೔ି௉೛ೢ

e function tha

me, either sq

permeability

ume. The pr

nd contributio

exhibited in 

volume: 

storativity respe

o time OR ቂ
ௗ௟

ೢ೑ሻ
 

at is not affec

quare-root tim

y, fracture sp

rocedure is a

on of flow f

the data as w

ectively 

ௗ

௟௡௧೎ೌ
ቀ
௉೛೔ି௉೛ೢ

௤

cted by skin im

me and/or flo

pacing, stimu

also includin

from unstimu

well as 

 

ೢ೑ቁቃ
ିଵ

 

mpact 

owing 

ulated 

ng the 

ulated 



13 
 

surrounding matrix. The proposed methodology was applied on different case studies and the above-

mentioned properties were estimated. However, in some cases the calculated values are far from the 

reality which might be because of assumptions made in developing the models such as having bi-wing 

fractures in each stage. On the other hand, as mentioned earlier, the transient linear flow (Region 4 in 

Figure 2.1, half-slope line in log-log plot) is the dominant flow regime in shale gas well and in some 

cases, it might be the only observed flow behavior. Therefore, estimating some of the essential parameters 

such as stimulated reservoir volume, hydrocarbon pore volume and consequently production forecasting 

would be impossible due to lack of boundary dominated flow regime exhibited in data.  

In order to overcome this problem, Nobakht et al. (2010) proposed a simplified forecasting method which 

is only based on the transient linear flow. The method is simple as it relies on a plot of inverse rate versus 

square root time. It is rigorous in that it is based on the theory of linear flow and combines the transient 

linear flow period with hyperbolic decline during the boundary dominated flow. The workflow includes 

the estimation for the end of linear flow by using the slope of the straight line in root-time square plot 

under the assumption of constant flowing pressure which is a representative of transient linear flow. The 

transient linear flow is directly followed by boundary-dominated flow which can be represented by 

traditional hyperbolic decline. By applying the hyperbolic decline curve on time periods after end of 

transient linear flow, the rate can be forecasted. The method was validated by comparing its results 

against numerically simulated results and it was found that for all practical purpose reliable forecast can 

be obtained from this method however, it needs to be modified in different aspects.  

The equations used in work done by Nobakht et al. (2010) are based on liquid flow theory. To account for 

gas flow, pressure should be replaced by pseudo-pressure and time should be substituted by pseudo-time 

or material balance time to account for the change of gas properties. Using the pressure and time by itself 

will cause an overestimation in fracture half-length and matrix permeability and should be corrected 

before using in a reservoir model in forecasting. Nobakht et al. (2012) analytically derived a correction 

factor for the slope of the square root of time plot for constant flowing pressure case. In their analytical 

model, every required gas property was calculated using average pressure in the region of influence. The 

average pressure in the region of influence depends on initial pressure, flowing pressure and gas 

properties as following: 

തܲത
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In order to simplify the problem, the authors made some assumption such as having ideal gas and 

constant gas viscosity and they came up with a correction factor which is a function of average pressure 

and initial pressure (Equation 6): 

஼݂௉ ൌ ඨ
തܲ

௜ܲ
…………………………………………………………………………………………… . . … ሺ6ሻ 

The fracture half-length calculated from the slope of square-root time plot can be multiplied by given 

correction factor to improve the linear flow analysis. The method was applied to a different simulation 

and an actual multi-fractured horizontal well in different shale plays. It showed that by using the 

correction factor, a good agreement between the simulation result and this analytical approach can be 

achieved.  

In practice, tight gas and shale gas wells are produced under high drawdown to maximize production. 

Therefore the assumption of having constant flowing pressure is not far from the reality. However, 

production under constant rate is very common too. Nobakht et al. (2012) also developed an analytical 

model for analyzing transient linear flow data for a constant-gas rate production constraint. In contrast 

with the case of production under constant flowing pressure, the pseudo-time does not have a linear 

relationship with time and it should be taken into account in fracture half-length calculation based on 

square-root time plot. Meanwhile, the square-root time plot in this case should be based on the (
௉೛೔ି௉೛ೢ೑

௤
) 

in order to account for gas. The pseudo-time as it has shown in equation 7, is a function of gas properties 

in average pressure in the region of influence.  

௔ݐ ൌ ሺߤ௚ܿ௧ሻ௜ න
ݐ݀
௚ܿ௧̅ߤ̅

…………………………………………………………………………… .…… . ሺ7ሻ
௧

଴
 

Similar to the boundary condition of constant flowing pressure, the authors simplified the problem for 

calculating the average pressure, although the process is still iterative and it involves finding the average 

pressure, pseudo time and fracture half-length. The developed analytical model was validated using a 

number of numerically simulated cases with high accuracy.  

As explained earlier, the presence of skin changes the shape of data points when plotted on log-log scales 

and this can have a huge effect on the interpretation particularly in flow regime determination [Nobakht et 

al., 2012]. For example a well with purely transient linear flow and with skin in a reservoir, which is 

infinite acting, may appear alike and be interpreted as finite acting reservoir simply because of the skin 
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effect. Nobakht et al. (2012) presented an easy method to analyze the production data from shale gas well 

with significant skin, which is based on square-root time plot. They introduced the new terms of modified 

normalized pressure and normalized rate as follows: 

௣ܲ௠ ൌ ௣ܲ௜ െ ௣ܲ௪௙

ݍ
െ ܾᇱ ……………………………………………………………………………… . . ሺ8ሻ 

௠ݍ ൌ
1

௣ܲ௠
……………………………………………………………………………………………… . . ሺ9ሻ 

In which ܾᇱ is the intercept of normalized pressure plot versus square-root of time. After calculating the 

modified normalized pressure and rate, these data will be used for the purpose of diagnosing flow 

regimes. 

A fundamental problem with the application for conventional rate transient analysis to ultra-low 

permeability reservoirs is that current methods were derived with assumption for viscous laminar flow 

(i.e., flow that can be described with Darcy’s law). Shale reservoirs have recently been observed to 

contain a wide distribution of pore sizes, including nanopores associated with organic matter [Clarkson et 

al., 2012]. Clarkson et al. (2012) developed a simple approach to model transport at various scales for 

shale gas reservoir by using the dynamic slippage concept and accordingly they modified the rate 

transient analysis techniques. The model incorporates the dynamic gas-slippage factor into transport 

equation and solves it numerically. The result of this new model was checked by the result of a model (the 

fracture porosity was set equal to the estimated meso-macroporosity of the shale and dynamic-slippage 

effects were accounted for by use of a table of transmissibility multipliers as a function of pressure) 

comes from commercial simulator and it showed an acceptable consistency.  

Moreover, in this work they modified the definition of pseudo-pressure and pseudo-time to account for 

apparent gas-permeability change caused by slippage effects and desorption compressibility as equations 

10 and 11 show: 
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Several high permeability and low permeability simulation runs were defined and the effect of slippage 

and desorption were investigated. The analysis showed that the effect of non-Darcy flow becomes more 

significant as the permeability (effective pore size) decreases because of the effects of slippage and 

diffusion, although the correction for desorption may still be in significant error if flowing pressure is 

below Langmuir pressure. The new model was also applied on an actual multi-fractured horizontal well 

and the authors concluded that there are more potentially important factors rather than multi-mechanism 

flow that may cause the variation of apparent gas-permeability with pressure during shale gas production. 

As instance the stress-dependent porosity and permeability may cause a considerable change in fracture 

conductivity and should be incorporated into transport equations. The authors incorporated the nonstatic 

porosity and permeability changes into the definition of pseudo-time and pseudo-pressure. This clearly 

showed that failure to account for these variables, non-Darcy flow and desorption effects during rate 

transient analysis can lead to significant errors in derived hydraulic fracture and reservoir properties.  

2.3 Numerical Approaches to Shale Assessments 

Numerical modeling of shale gas reservoir carries a very specific problem due to its distinct properties 

such as multiple gas-storage mechanisms, complex interaction between natural fractures and induced 

(hydraulic) fractures, and inherent heterogeneity associated with rock properties. Since most of the shale 

gas reservoirs are naturally fractured, the dual porosity models fit the best for modeling of fluid flow in 

this type of reservoir. Dual porosity approaches were introduced as dual porosity models in early 1960s 

by Warren and Root (1963).  

In dual porosity modeling, fractures are idealized as parallel fluid conductive conduits separating sugar 

cube matrix blocks. Fluids cannot move between the matrix blocks without first entering the fractures. 

Fluids can only move in the fractures and matrix blocks act as source terms feeding the fractures [Ghods, 

2012]. Figure 2.2 shows the idealization of fractured rock into dual porosity system.  

The application of dual porosity models for shale gas was introduced by Carlson and Mercer (1991). They 

coupled Fick’s laws for diffusion within the matrix and desorption in their transient radial reservoir model 

for shale gas. Modifications included the use of the pressure-squared forms valid for gas at low pressures 

to linearize the diffusivity equation. They provided a Laplace space equation for the gas cumulative 

production from their model and used it to history match a sample well.  
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Figure 2.2: Realistic versus Conceptual Model for Dual Porosity Systems 

Eventually, dual porosity methods have been widely accepted and became the industry standard for 

modeling shale gas. Because of the significant contribution of hydraulic fractures and also their 

interaction with natural fractures in shale gas well performance, it is very important to properly model the 

hydraulic fractures. Modeling the hydraulic fractures by using commercial reservoir simulators is usually 

done by generating the local grid refinement and inclusion of high conductivity to those fine grids to 

represent the hydraulic fractures. Several authors have used this technique (Kalantari et al. (2010), Li et 

al. (2011), Osholake et al. (2011)) to numerically model a shale reservoir. The work done by Chaudhri 

(2012) is one of the most recent studies in this regard. In this work, he used a set of logarithmically 

spaced Local Grid Refinements (LGRs) to model fractures and surrounding propped rocks. The smallest 

gird size is 1 inch to model induced fractures and the largest gird size is 150 ft. to model the matrix 

blocks. Three permeability values representative the matrix permeability, stimulated rock volume 

permeability and fracture permeability were used. The values of this permeability are used as uncertainty 

variables during production history matching and forecasting. Although explicitly modeling the hydraulic 

fractures by utilizing logarithmic local grid refinements is widely used in simulation of hydraulic 

fractures, it makes simulations painfully slow. Consequently most of the works which have used this 

method for the history matching and forecasting purpose, are only limited to a single well or a single pad 

because of the large number of grid blocks in the model and the complexity of the flow behavior.   

Alternatively, the widespread application of microseismic mapping in defining the extension of 

Stimulated Reservoir Volume (SRV) has improved the simulation techniques of shale gas in terms of time 

and complexities. Based on the definition given by Mayerhofer et al. (2008) microseismic events are 

mainly created as a result of shear slippages around the hydraulic fractures. The mechanisms include 
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shear slippages induced by altered stresses near the tip of fractures as well as shear slippages related to 

leakoff- induced pore pressure changes. In shale reservoirs diffusivity related pore pressure changes 

cannot move very far from the actual fracture planes unless natural fractures in alternate directions are 

open and hydraulically enhanced as a network structure thus serving as a conduit for fluid movement. 

This means that a large event cloud structure must be approximately equivalent to the actual fracture 

network size. Thus the microseismic even cloud structure observed by microseismic fracture mapping 

provides a means to estimate the SRV in very tight reservoirs and become a key part in shale gas 

modeling workflows and case studies such as the one presented by Du et al. (2009).  

Du et al. (2009) presented an integration workflow that incorporates all essential information in shale gas 

such as seismic attributes, logs, core analysis, hydraulic fracturing data, microseismic maps, etc. Here in 

this workflow, a microseismic event envelope is not only used to estimate 3D enhanced stimulated 

volume, but is also applied to modify and recalculate the natural fracture geometries and attributes. It 

means that after generating the discrete fracture network (DFN) based on FMI interpreted fracture data, 

the microseismic event will be displayed over the DFN network in order to capture the best alignment 

between natural fractures and hydraulic fractures and thus, the DFN properties can be modified. This 

approach is proved to be very effective in achieving good results for matching production histories 

however; it is quite labor-intensive particularly in the case of a huge number of wells. 

Conversely, the Volumetric Fracture Modeling Approach (VFMA) is very suitable for multi-well or full-

field simulation where other fracture modeling may not work [Harikesavanallur et al., 2010]. In VFMA, 

the stimulated volume is modeled using different zones of influence around each stage of the frac job. 

Each zone is created by digitizing over the event locations and selecting the horizontal and vertical extent. 

This methodology provides flexibility in capturing any irregular 3D shape of fracture with microseismic 

even pattern.  In this approach, Harikesavanallur et al. (2010) defined three distinct zones as propped frac, 

crushed zone and unstimulated zone to match the production of water flowback.  The simulation run 

commenced with the propped frac and crushed zone being initially filled with water and then several 

realizations with varying proportions of propped frac and crushed zone were created to determine the 

optimum reservoir properties and extent of each zone that provides an acceptable match to the water flow 

back.  The simulation result by using VFMA was compared to having the planar fractures with constant 

width and variable half-length (used as matching parameter with the other reservoir properties). The 

comparison of pressure distribution in the reservoir shows that although both approaches provided a 

match to the historical production data, only the VFMA matches the evidence from microseismic 

regarding the extent of the induced fracture network and pressure drop. Moreover, the small cells 
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representing the fractures in planar approach force short time steps due to the throughput constraints 

resulting in longer simulation run times.  

Conventional hydraulic fracture models, developed to simulate bi-wing planar fractures, are adequate for 

non-fractured formations or where high stress anisotropy favors planar fracture propagation. However, 

these planar models are inadequate for simulating complex fracture geometry in shale gas. With the recent 

introduction of complex fracture propagation models, the ability to model hydraulic fracture growth in 

complex geologic environments typical of many unconventional reservoirs is now possible [Cipolla et al., 

2011]. A newly developed algorithm for automated gridding of complex hydraulic fractures in numerical 

reservoir simulation models was presented by Cipola et al. (2011) that allow the efficient application of 

the “complex hydraulic fracture modeling to reservoir simulation” and includes the integration of seismic 

and geological data with complex hydraulic fracture models, microseismic measurements and reservoir 

simulation. In this workflow, well-scale measurements such as logs, core and drill cuttings is used in 

order to characterize rock mechanical properties, stress variations, and distribution and orientation of 

natural fractures (building the DFN). The addition of microseismic monitoring provides a key 

measurement to contain the DFN and geomechanical model, while also providing information that can be 

used to correlate hydraulic fracture growth with larger scale seismic characterization.   

In the workflow presented by Cipola et al. (2011), the hydraulic fractures are not modeled by simply 

defining bi-wing planar instead they used two different approaches to model the complex fracture 

network; Wiremesh simply approximates the complex fracture network using an orthogonal set of 

fractures and Unconventional Fracture Model (UFM) which honors the natural fracture characteristics 

(i.e. DFN and mechanical properties). Two automated gridding algorithms have been developed for 

orthogonal hydraulic fractures that can be used in conjunction with classical reservoir simulation software 

and for un-structured complex fractures.  These automated gridding algorithms were used to generate a 

reservoir simulation grid. This workflow was successfully tested on a horizontal well in Barnett Shale and 

it has gone through the history matching process by using both complex hydraulic fracture models. By 

introducing the new fracture modeling and automated reservoir simulation grid generation and 

accommodating all the technical components (seismic, geology, geomechanics, microseismic…) in a 

common software platform, it is now possible to efficiently apply the seismic to simulation workflow for 

unconventional reservoirs in well-scale. 

Recent researches reveal that matrix blocks in dual porosity systems can be treated as a dual porosity 

media which are composed of sub-matrices with nano-Darcy permeability (organic and non-organic 

materials) and micro-fractures with milli- to micro-Darcy permeability (Figure 2.3). By using this 
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hypothesis, Dehghanpour et al. (2011) developed a triple porosity model for the inner shale reservoir. 

They assumed that viscous Darcy flow is dominant in macro- and micro-fracture networks and diffusion 

and desorption mechanisms occur in sub-matrices and extended the existing transient and pseudo steady 

state dual porosity formulations to account for the third medium. The governing equation is gas continuity 

under the assumption that global flow toward the wellbore is only through the large fractures and those 

micro and macro fractures are acting as a source. The equations (pressure functions) were solved by using 

Laplace transformation for both transient and pseudo-steady-state conditions. The study also includes the 

sensitivity analysis of the effect of porosity and permeability of each continuum on pressure transient 

behavior of a shale reservoir which showed that the existence of micro fractures in the shale formations 

can significantly delay the wellbore pressure drop. In other words, the micro fractures feed the macro 

fracture network and support the pressure medium.  

 

Figure 2.3: Schematic illustration of Triple Porosity Model‐SPE 149501 

Furthermore, coupling the triple porosity model with linear flow in hydraulic fractures creates the quad-

porosity model which was presented by Hudson et al. (2012).  In this definition, at a micro-scale system, 

shales are characterized by four micro systems: gas-bearing organic pores, water-wet inorganic pores, 

healed natural fractures and induced fractures from stimulation operations. Two models were considered 

in this study: a lumped-parameter based approach utilizing exponential functions as the transfer functions 

and a differential model derived from the conservation equation. The lumped-parameter approach is also 

considered as a “tank” approach by which various regions or systems of certain characteristics interact 

with each other by exchange of mass (based on material balance). The visualization of each lumped 

system as a tank draining into other tank systems and including internal mechanisms is given in Figure 

2.4. The solid tanks represent the four different porosity systems. The dashed tanks represent internal 
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physical phenomena that may occur within each respective system. The valves represent the connectivity 

between each system. The differential model was derived in mathematical form of a continuum treatment 

of the various characteristic systems interacting with each other. A commercial simulator was used to 

solve the resulting differential equations of the model. The comparison of these two models showed that a 

four porosity system in series (gas flows through the organic porosity, inorganic porosity, natural 

fractures, and hydraulic fracture in that order) can be represented adequately as a dual-porosity case, thus 

suggesting that quad-porosity systems can be modeled as dual-porosity systems to achieve nearly 

identical results. This may also be due to the fractures not containing any gas initially. 

 

Figure 2.4: Tank representation of the quad‐porosity reservoir model‐SPE 153535 

In the realm of numerical approaches to shale gas modeling, several attempts have been made in order to 

optimize the computational time by simplifying the problems. One approach is making the proxy models, 

which represent the physics associated with full-order simulation models, more computationally efficient. 

These proxy models are usually used for optimization purposes since they avoid hundreds of flow 

simulation realizations.  Wilson et al. (2012) presented a general workflow for applying optimization to 

the development of shale gas reservoirs. The workflow is started with a detailed full-physics simulation 

model, which includes highly-resolved fracture networks, dual-porosity, dual permeability regions, and 

gas desorption and then a much simpler and faster reduced physics surrogate model is developed. The 

reduced physic model with single porosity system, without desorption or grid refinement but with tuned 

values for permeability and porosity in the stimulated zone could provide results in close agreement with 
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full-physics model. In this model, instead of explicitly modeling fractures, each fracture is represented 

through an additional perforation along the wellbore in the stimulated zone. The reduced physics model 

was then tuned by using the gas production of the full-physics model and used for field development 

optimization. The generalized pattern search algorithm (GPS) was applied in the optimization process to 

determine the optimal locations, lengths, and number of fracture stages for a prescribed number of 

horizontal wells.  

2.4 Data-Driven Approaches to Shale Assessment 

A counterpart of numerical and analytical models is the data-driven approach that seeks causes reflected 

in the data. Data-driven modeling is based on the analysis of all the data characterizing the system under 

study. A model can then be defined on the basis of connections between the system state variables (input, 

internal and output variables) with no or only a limited number of assumptions about the “physical” 

behavior of the system. Data-driven modeling has been developed with contributions from artificial 

intelligence, data mining, machine learning, and pattern recognition. These models can complement or 

replace the “knowledge-driven” models describing behavior of physical systems [Solomatine et al., 

2008].  

Data-driven modeling has broad applicability to the real world; in fact they have already been 

successfully applied in many industries such as medicine, marketing, risk management, sales forecasting, 

etc. Using this approach for shale gas assessment is not an exception specifically when analytical and 

numerical modeling of “full-field” shale assets is either impractical or leaves much to be desired 

[Mohaghegh 2013]. Data-driven models have been applied in shale reservoir assessment for different 

purposes; such as history matching and forecasting, building the proxy models, sensitivity analysis, 

estimating the hydraulic fractures properties. 

In 2009, Mohaghegh introduced a new reservoir modeling technique known as Top-Down Intelligent 

Reservoir Modeling (TDIRM) as an alternative or a complement to traditional reservoir simulation and 

modeling which is based on the integration of classic reservoir engineering with artificial intelligence and 

data mining techniques. Top-Down full field subsurface modeling approaches the reservoir simulation 

and modeling from the opposite angle by attempting to build a realization of the reservoir starting with 

well production behavior (history). The production history is augmented by core, log, well test and 

seismic data in order to increase the accuracy and fine tune the Top-Down model. The model is then 

calibrated (history matched) using the most recent wells as blind dataset. This technique was applied on 

different conventional oil and gas reservoirs with a different production history and a degree of 
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complexities to predict the production performance of the field/wells, best infill location, remaining 

reserve estimation, etc.[Khazeni (2010), Mohaghegh (2009), Mohaghegh (2010), Kalalntari-dahaghi 

(2010)].  

Upon achievement of good results in conventional reservoirs, the TDIRM was applied on several shale 

reservoirs. Kalantari et al. (2009) used this technique to reassess the potential of New Albany Shale. This 

study has been done on 55 vertical wells with limited production history(6-9 years out of the 20 years 

production history was available to the author) and well logs. By using the NFFLOW/FracGen and 

defining several set of natural fractures, the authors performed history matching to generate a complete 

production profile for each well. This generated synthetic production profile was then used to perform 

decline curve and type curve analysis which is a part of TDIRM workflow. Upon completion of these 

steps, the discrete, intelligent, and predictive models were developed for reservoir (production) attributes 

such as the first 3, 6, 9 month and 1, 3, 5, 10 years of cumulative production, decline curve information 

,௜ܦ) ܳ௜, ܾሻ , EUR, Fracture Half-length, matrix and total porosity and permeability, initial gas in place and 

well recovery factor. These sets of discrete models were then integrated using fuzzy pattern recognition in 

order to achieve a cohesive model of the reservoir as a whole. The model was used as a guideline to 

estimate the remaining reserve in the field and to propose the best spots for infill drilling (6 wells) which 

can be profitable (economic analysis showed that the NPV for 5 years of these wells is positive). In this 

work, the TDIRM was also validated by removing 10% of the wells and the 1-year cumulative production 

of these wells was successfully predicted.  

Another example of the TDIRM is the study that was done by Grujic et al. (2010) who applied the 

technique on Lower Huron shale in Eastern Kentucky. He followed the same workflow as Kalantari by 

starting with the history matching of 77 vertical wells by using NFFLOW/FracGen to acquire natural 

fracture network properties, fracture permeability and fracture aperture. This information along with 

extracted properties from Decline curve and Type curve analysis was incorporated into the Spatio-

temporal database which includes the log properties and completion data (total mass of injected proppant, 

propped intervals and amount of injected fluid). As a final step of TDIRM’s workflow, the history 

matching of monthly gas rate by using this database was then performed and was used for forecasting 

purposes. The high applicability of this approach to shale gas was demonstrated in these two studies 

where the developed TDIRM was able to successfully identify the most prolific zones for future 

development, estimating the remaining reserves, and also performance of existing and newly drilled 

wells.  
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In the context of data-driven modeling of shale, Shelley et al. (2010) has also applied the approach to 

evaluate the production potential of hydraulically fractured horizontal completions by better 

understanding the complex interaction between non-homogenous formations and hydraulically fracture 

horizontal completion. The key steps in this study are data quantification and integration, data 

visualization and QC, Artificial Neural Network (ANN) modeling, engineering validation and finally 

opportunity identification and quantification. The workflow was followed for a database including the 

production of 28 horizontal hydraulically fractured wells in Bakken, and some other information such as 

mud log (due to lack of reservoir properties, the mud log was used as an indicator of permeability), 

completion types, frac type, fluid and proppant volume, etc. The ANN model developed from this 

database was feed-forward type and it predicted the best-month oil cumulative production for the wells. 

The sensitivity analysis performed on this model determined the significance of a single parameter or 

combinations of parameter on a desired outcome such as number of completions, total treatment volume 

and conductive proppant.  

Confidence in decision making by using the data-driven model is obtained when information derived 

from these models is supported with information derived from discrete modeling (reservoir simulation). 

Therefore, the data-driven model for Bakken shale was validated by comparing it against the reservoir 

simulation results. The ANN was then used for several horizontal wells in Bakken shale to provide the 

guidance on how to complete/frac those wells. In all cases, the predicted production by ANN was in a 

good consistency with actual production, meaning the proposed completion and fracturing methods 

indicated by ANN was correctly estimated. 

Furthermore, the ANN model was used to improve hydraulic fracture understanding and facilitate 

decision making pertaining to the completion and stimulation of horizontal Bakken wells in Traux and 

Wildrose [Shelley et al., 2011]. These wells have been completed and fractured by different methods and 

in different treatment stages. The ANN model estimated a best calendar month of cumulative oil 

production for each well and it showed that all of the Traux wells evaluated are producing in a manner 

consistent with the data-driven model however; this is not the case in the Wildrose area. A 3-D frac 

simulator was used to evaluate the hydraulic fracture geometry created for these wells and it has been 

proved that the frac development is happening out of zone because of scarcity of effective barrier in this 

area on top of pay zones. In addition, the analysis indicated that frac staging methodology along with the 

number of frac treatments can significantly affect in-zone frac length. Based on this observation, creating 

two fractures per plug & perf frac stage versus one fracture for a ball drop frac sleeves stage may increase 

the production by 80%. 
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Recently, Shelley et al. (2012) developed a data-driven model for 55 horizontal wells in Eagle Ford 

(completed in oil and gas window) in order to derive the best practices for the completion of hydraulically 

fractured horizontal wells. In this study, the workflow presented by the same author (2010) was followed 

and ANN model was trained and validated in order to predict the first 30 days of equivalent oil, oil and 

gas. The data indicates that gas production is strongly influenced by depth, while oil production is related 

to higher molecular weight gas observed during lateral drilling. Performed sensitivity analysis on data-

driven model also showed that the stimulation method for those wells in gas window should be different 

from those in oil window. While the number of fracture treatment and proppant conductivity would be 

effective to increase oil, the gas wells in the gas window respond to large stimulation volume. 

As mentioned earlier, the data-driven models can also be used as a complement to traditional reservoir 

simulation, where the simulation results are used to train the ANN. In these cases, where performing 

traditional modeling is cost and time prohibitive, the ANN can be used as a “proxy”. Several studies have 

been done for various types of proxy model, the scope of which lie beyond the bounds of this dissertation. 

As an example, however, a recent work done by Siripatrachai et al. (2012) will be presented here. In this 

work, two ANNs are developed. The first one called “Gas Production Prediction ANN” can instantly 

predict the production profile of a hydraulically fractured horizontal well completed in shale gas 

reservoir. The second ANN called “Equivalency ANN” is developed to establish equivalent hydraulic 

fracture representations between transverse hydraulic fracture and crushed zone representations. A feed 

forward Backpropagation neural network was used for both models with different hidden layers and 

neurons in each layer. A numerical reservoir simulator was used to generate a production profile from 

reservoir properties and design characteristics for the first network and establish equivalency for the 

second network.  The output of the first neural network is the gas rate at different time intervals while the 

output for the second ANN is the specific characteristics of crushed zone (major axis length, minor axis 

length, permeability and fracture spacing for crushed zone). Both models were validated by several blind 

datasets and it showed that the generated networks can predict gas rates within ±10% and ±15% 

respectively.  

2.5 Sensitivity Analysis in Shale Reservoirs 

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system 

(numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs [Wikipedia]. 

The sensitivity analysis in shale is usually preformed to evaluate the influence of input parameters on 

productivity of wells/fields and it can be done based on numerical simulation models or data-driven 
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models (statistical analysis). A vibrant and fast-growing literature exists related to sensitivity analysis in 

shale based on mentioned methods and in this section some of those methods will be addressed.  

As discussed earlier, reservoir simulation is the preferred method to predict and evaluate well 

performance in shale reservoir. However, in many of presented models, some important features of shale 

reservoirs have largely been neglected. Cipolla et al. (2009) has performed a series of reservoir 

simulations using reservoir properties typical for Barnett shale to evaluate the likely impact of gas 

desorption and stress dependent fracture permeability. The reservoir has been modeled by using the dual 

permeability method to represent all network fractures in both un-stimulated volumes and also by locally 

refining the grid in the stimulated volumes using a logarithmically spaced grid design. 

This study showed that the desorbed gas contribution is relatively small within the first 5 years of 

production and thus not likely to materially impact production economics. Moreover, the impact of 

desorption increases when the network fracture spacing is smaller, with most of the additional gas 

produced later in the well life. On the other hand, the study reveals that stress dependent fracture 

conductivity reduces ultimate gas production as drawdown in the fracture network continues to increase 

throughout the well life and network fractures “close”. Nevertheless because of the relatively high 

Young’s modulus of the Barnett shale, the impact of stress-dependent network-fracture conductivity does 

not appear to be significant, mostly affecting the mid to late life production behavior and could reduce gas 

recovery. 

The impacts of gas desorption and stress-dependent fracture conductivity were also evaluated by the same 

author (Cipola et al., 2010) for typical Marcellus Shale reservoir properties. The impact of desorbed gas 

production in Marcellus was similar to that of the Barnett and is probably a minor component in the 

economic development of the Marcellus. In contrast to the Barnett, the lower Young’s modulus of the 

Marcellus could mean that stress dependent network-fracture conductivity will play a significant role in 

the well performance and could substantially reduce initial production rates and ultimate gas recovery. 

 In other work done by Kalantari et al. (2009) sensitivity analysis has been performed by using 

NFFlow/FracGen in order to history match several vertical wells (without hydraulic fractures) in New 

Albany Shale. In this study, sensitivity analysis was done with the purpose of scrutinizing the influence of 

initial reservoir pressure, matrix porosity, matrix permeability, net pay thickness, natural fracture length, 

fracture density and aperture reduction factor on flow behavior. This study showed that the key 

parameters on production behavior are initial reservoir pressure, aperture reduction factor, fracture length 

and density.  
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On the other hand, some sensitivity analyses have been conducted to show the importance of hydraulic 

fracture design in shale. One sensitivity analysis worth noting, Cheng (2012), investigates the impacts of 

the number of perforation clusters and cluster spacing. From a reservoir engineering standpoint, it is 

desirable to create more fractures with shorter spacing, but in this study, Cheng showed that the number 

of clusters does not necessarily improve well production performance. By using the numerical dual 

porosity model, she has defined different cases for different number of fractures and cluster spacing for a 

horizontal well (same lateral length in all cases) to investigate the impacts of these two parameters on 

production performance of the well. Based on her findings, decreasing the cluster spacing so as to 

increase the total number of fractures may significantly reduce gas production when the cluster spacing is 

reduced to an inadequately small size where the width of fractures is strongly inhibited because of the 

mechanical interaction. 

As shown by Cheng (2012), increasing the number of clusters does not necessarily improve well 

production performance and a very particular attention needs to be paid to the effectiveness of hydraulic 

fracturing treatments. In the study presented by Osholake et al. (2011) the impact of some other factors 

such as multi-phase flow, proppant crushing, proppant digenesis, capillary pressure and reservoir 

permeability on ultimate gas recovery was investigated. By using a numerical reservoir simulation model, 

the impact of each post hydraulic fracture parameter when it is modeled individually and when the 

combination of several parameters are modeled was studied. Based on this study, using the expensive 

proppant or bigger proppant does not necessary imply a significant increase in the ultimate gas recovery. 

By incorporating each individual parameter into a simulation model it has been found that proppant 

digenesis effect when compared to other effects has the most significant impact on production regardless 

of the conductivity of the hydraulic fracture created. On the other hand, when all the post hydraulic 

fracture effects were simulated, the drop in production by adding proppant crushing to the multiphase 

flow and single phase effect is more significant than any other introduction of a post hydraulic fracture 

effect.  

As mentioned earlier, the sensitivity analysis can be done by using statistical methods which are basically 

data oriented analysis. The impact of individual variables on the production outcome is often difficult to 

interpret with any degree of confidence when traditional linear regression methods are used, because of 

the impacts of missing data, erroneous data, non-linear data, and subtle interrelationships among 

variables. Lafollette et al. (2012) have done a comprehensive study on more than 15,000 producing 

Barnett wells by using the booted tree models, which have the capability of overcoming the difficulties 

inherent in more traditional methods. The study used this technique plus Geographical Information 

System pattern recognition to aid in interpretation of production result trends and to demonstrate the 
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effect of completion and hydraulic fractures.  The relative importance of true vertical depth, Y path, total 

fracturing fluid volume, injection rate, perforation length and 20/40 mesh proppant on maximum gas rate 

was studied and it showed that total fracturing fluid volume is the most important predictor of maximum 

gas rate. The larger jobs are statistically shown to yield better gas rate. Besides, the higher injection rate 

and higher quantities of 20/40 mesh sand showed improved productivity but with less degree of influence. 

The discussed workflow was also applied on more than 3500 wells in Bakken Light Tight Oil play by the 

same author [LaFollette et al., 2013]. In this study, LaFollette et al. investigated the impacts of well 

location, well architecture (azimuth, well dip angle and completed lateral length), completion and 

stimulation on production results by using multivariate statistical modeling in conjunction with 

geographic information systems pattern recognition. Three different production proxies such as first 12 

month of oil production, barrels oil per completed length of lateral and barrels oil per lbm proppant were 

used as indicators of well productivity, efficiency of completed well length and efficiency of fracturing 

proppant use respectively. Similar to the previous study, the multiple regression analysis was used to 

identify the significant target variables and then boosted tree models were applied on each of three target 

production proxies to rank the relative importance of key variables as well as their interactions. Well 

location, a proxy for reservoir quality in unconventional reservoirs, is one of the most important variables 

for prediction of all well production and efficiency metrics modeled in the study. On the other hand, 

completed lateral length presented challenges as the longer laterals are less efficient in terms of barrels of 

oil per completed laterals. Furthermore, proppant concentration, coarse mesh proppant use and treatment 

size are significant in enough of the individual models to indicate that proppant conductivity should not 

be ignored in these reservoirs.  

In recent work done by Bartuska et al. (2012), the information of five wells in Marcellus was used to 

evaluate the effect of different completion parameters (such as different landing target, different 

trajectories, different stages and cluster spacing) on the first 30 days of initial production. The completion 

diagnostics such as proppant and fluid tracers was integrated with production, stimulation and geologic 

data to provide useful information as to the effectiveness of the completion design. In this study, different 

chemical tracer was pumped in each stage in order to give an estimation of the fracture network’s ability 

to deliver frac fluid to the wellbore as well as investigating any effects wellbore trajectory might have on 

fluid loading recovery. The chemical tracer returns showed that load fluid recovery per stage varies by 

location in the target zone. The highest recoveries of load fluid were from the heel stages while more fluid 

recoveries from toe stages have been observed in those wells with toe-down trajectory. Moreover, spectral 

gamma ray logs were used to optimize near-wellbore proppant placement and to identify unstimulated 
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sections of lateral. The longer wellbore and more clusters per stage are allowed for more uniform near-

wellbore proppant coverage and significant improvements in production.  

2.6 Summary 

In this chapter the most recent available approaches to shale reservoir assessments was presented. As 

discussed, the analytical solutions are very well-known and popular due to their simplicity and ease of 

use. Despite the development of interesting achievements in Decline Curve Analysis (DCA) in shale, the 

lack of sensitivity to major physical phenomena associated with shale makes the use of DCA impractical. 

Rate transient analysis, on the other hand, represents the actual physics involved in shale but they 

typically cannot capture the very long transient behavior in matrix blocks exhibited by shale reservoirs 

particularly in early stages of well/reservoir life.  In comparison, numerical reservoir simulators are good 

tools for in-depth numerical analysis that cannot be handled satisfactorily with analytical tools. Although 

the numerical methods are more rigorous and robust in capturing the physical properties of shale, the 

computational demand of such method is much necessary. Using grid refinements and/or unconventional 

fracture networks for representing the hydraulic fractures and complex fracture networks is not only time 

consuming for simulation (even impractical once the modeling goes beyond a single pad), but also 

unsuitable for history matching purposes.  

When compared to other techniques, data-driven modeling may provide an alternative solution when 

analytical and numerical modeling of full-field shale reservoirs is impractical. This study proposes a 

novel method that integrates traditional reservoir engineering with pattern recognition capabilities of 

artificial intelligence and data mining in order to accurately and efficiently model fluid flow in shale 

reservoirs in full-field scale. This approach not only has a much faster turnaround time compared to the 

numerical simulation techniques, but also models the production from the entire asset (and not just a 

single well, like most numerical simulation studies) with good accuracy, incorporating all the available 

data. This integrated framework enables reservoir engineers to compare and contrast multiple scenarios 

and propose field development strategies.  
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3. CHAPTER III 

BACKGROUND 

The scope of this chapter is to provide a brief introduction to the Artificial Neural Network and Pattern 

Recognition sections and to present the architecture of used neural networks in this dissertation. 

3.1 Artificial Neural Network Overview 

An Artificial Neural Network (ANN) is a mathematical model inspired by biological neural networks. 

Neural Networks are designed to process information in a similar, but simplified, manner as the human 

brain. Resemblances to the human brain include [Popa, 2004]: 

• Knowledge acquired through a learning process 

• Local processing in artificial neurons (known as nodes or processing elements) 

• Storage of experimental knowledge available for future use in interneuron connections (synaptic 

weights) 

• Massive parallel processing implemented by profuse connection pattern. 

Neural networks present some additional fundamental features providing them with the capability of 

solving a variety of complex scientific and engineering problems. These features include adaptability, 

massive parallelism, high connectivity and ability to perform pattern recognition (pattern recognition is 

the study of how machine can observe the environment, learn to distinguish patterns of interest from their 

background and make sound and reasonable decisions about categories of the patterns [Basu et al., 

2010]), detect trends, and solve highly non-linear problems through deriving meaning from complicated 

or imprecise data. 

A neural network consists of an interconnected group of artificial neurons and it processes information 

using the connectionist approach to computation [Wikipedia]. The main characteristics of ANN are that 

they have the ability to learn complex nonlinear input-output relationships, use sequential procedure and 

adapt themselves to the data. Being essentially non-linear regression models, the ANN perform an input-

output mapping using a set of interconnected simple processing nodes or neurons. Each neuron takes in 

inputs either externally or from other neurons and passes it through an activation or transfer functions 

such as a logistic or sigmoid curve. Data enter the network through the input units arranged in what is 

called an input layer (Figure 3.1). These data are then fed forward through successive layers including the 
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hidden layer in the middle to emerge from the output layer on the right. The inputs can be any 

combination of variables that are thought to be important for predicting the output [Solomatine et al., 

2008]. 

In a typical neural network data processing procedure, the data is divided into three separate sets: 

• Training- set of examples used for learning to fit parameters (weights) of the classifier. 

• Testing (or Calibration) - set of examples used to tune the parameters of a classifier, such as 

choosing the number of hidden layers using in a neural network. 

• Production (Or Verification) - set of examples (not previously seen by the neural network to 

ensure its integrity and robustness) used only to assess the performance or generalization of a 

fully specified classifier.  

The hidden layer is the essential component that allows the neural network to learn the relationships in the 

data. Training an ANN is the process of determining the optimal weights for the problem of interest. Once 

the network is trained, the connecting weights between neurons are established and it is said the network 

has “learned”.  

 

Figure 3.1: Schematic of Simple Neural Network (Source: Bernacki et al.) 

Activation or transfer functions are the most important part of an ANN which transforms input signals to 

output signals. There are too many transfer functions available for different systems but the most common 
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are the logistic sigmoid, the hyperbolic tangent, the Gaussian and the linear transfer function. In general, 

linear neurons require very small learning rates in order to train properly. Gaussian transfer functions are 

employed in radial basis function networks often used to perform function approximation [Priddy et al., 

2005]. For petroleum engineering problem it has been observed that the hyperbolic tangent and logistic 

sigmoid transfer functions work best, and since in this study these functions are being utilized the training 

process of ANNs, these two functions will be explained in more detail. 

3.1.1 Sigmoid Transfer Function 

The non-linear curved S-shape function, called the sigmoid function is the most common type of transfer 

function used to construct the neural networks. It is mathematically well behaved, differentiable and 

strictly increasing function [Chakraborty, 2010].  A sigmoidal transfer function can be written in the form 

of: 

݂ሺݕሻ ൌ
1
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The sigmoid function is achieved using exponential equation and it gives the scaled outputs in the range 

between 0 and 1. By varying shape parameter, α, different shapes of the function can be obtained which 

adjust the abruptness of the function. The sigmoid function has another useful characteristic;  its 

derivative is easily expressed in terms of its output as follows; 
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3.1.2 Hyperbolic Tangent Transfer Function 

Similar to sigmoid function, hyperbolic tangent function is a nonlinear transfer function frequently used 

in the training of ANNs. The difference between hyperbolic tangent and sigmoid function is that the 

output from hyperbolic tangent function is in the ranges of -1 and 1 and it is also differentiable anywhere. 

Because of this greater numeric range the hyperbolic tangent function is often used in place of the 

sigmoid function [Siripatracai, 2011]. Hyperbolic tangent function is expressed in the form of: 

݂ሺݕሻ ൌ
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3.2 Training the Neural Network 

As mentioned earlier, training a neural network is the process of feeding it, teaching patterns and letting it 

changes its weights according to some learning rules. The objective of training an ANN is to determine 

the optimal weights of connections between neurons that yield satisfactory network performance i.e. low 

error. The learning process of an ANN can be categorized into three different types [Neuro AI Webpage]: 

• Supervised Learning-or associate learning in which the network is trained by providing it with 

input and matching output patterns. These input-output pairs can be provided by an external 

teacher or by the system which contains the neural network (self-supervised). 

• Unsupervised Learning- or self-organization in which an output unit is trained to respond to 

clusters of patterns within the input. In this paradigm the system is supposed to discover 

statistically salient features of the input population. Unlike the supervised learning paradigm, 

there is no priori set of categories into which the patterns are to be classified; rather the system 

must develop its own representation of the input stimuli. 

• Reinforcement Learning- this type of learning may be considered as an intermediate form of the 

above two types of learning. Here the learning machine does some action on the environment and 

gets a feedback response from that environment. The learning system grades its action good 

(rewarding) or bad (punishable) based on the environmental response and accordingly adjusts its 

parameters. Generally, parameter adjustment is continued until an equilibrium state occurs, 

following which there will be no more changes in its parameters. The self-organizing neural 

learning may be categorized under this type of learning. 

Apart from the learning process, having proper network architecture is an important factor in building an 

ANN. Different factors such as number of hidden layers, number of neurons in each layer, connection 

between layers (fully or partially connected) affect the network architecture and can be changed by the 

designer. In addition, the number of training sets and functional links are influential to the training and 

performance of the network. Since training an ANN is an experiential process, a good starting point for 

training a network is proposed by Neuroshell (1998) as following: 

ݏ݊݋ݎݑ݁ܰ	݊݁݀݀݅ܪ	݂݋	ݎܾ݁݉ݑܰ ൌ ௜ܰ௡௣௨௧ ൅ ௢ܰ௨௧௣௨௧

2
൅ ඥ ௦ܰ௘௧ 

Where ௜ܰ௡௣௨௧ is the number of inputs, ௢ܰ௨௧௣௨௧ is the number of outputs, and ௦ܰ௘௧ is the number of 

training sets. Using this formula as starting point for the training of the network, network architecture is 



34 
 

adjusted accordingly as training continues. Increasing number of hidden layers as well as number of 

neurons increases the complexity of the network. This allows the network to handle more complicated 

problems [Siripatrachai, 2011].  To successfully train the network, functional links are frequently added 

to input and/or output layers. Functional inputs and outputs are added to the network to provide additional 

relationships between original inputs and outputs. Functional links can be product, quotient, and 

eigenvalue of parameters where eigenvalue is an alternative way to represent parameters in matrix form 

with a single number. As an important remark, adding functional links created from outputs in the input 

layer is strictly prohibited. The mentioned training process is a general guideline and depending on the 

complexity of the problem, more neurons, hidden layers, and functional links may be required.  

As the training of the network continues, one may encounter overlearning which is one of the most 

common problems in training of ANN. Overlearning or memorization, occurs when the network starts to 

memorize the given data set instead of generalizing. The result from memorized network initially appears 

to be in good agreement with the actual outputs. However, when the network is tested with the new data 

sets, the network does not produce the proper results for new data sets. Having a complex network and 

longer training for a simple problem may result in the network’s overlearning. On the other hand, 

underlearning may occur from a lack of training due to too short of a training period or the architecture of 

the network is not sophisticated enough to handle the complexity of the problem. An underlearned 

network usually results in a poor performance. To obtain a generalized network, the data sets are 

randomly divided into 3 parts: 1) Training sets, 2) Validation sets, and 3) Testing sets. Both validation 

sets and testing sets are excluded from training. During training, error in validation sets is monitored. As 

the training continues, validation and training error should decrease. At some point, the validation error 

typically begins to increase. This is an indication that the network has started to memorize the 

relationships between inputs and outputs of the training sets. As stated earlier, a memorized network 

could lead to a false impression or misleading that the network is properly trained. When overlearning 

occurs, the training must be stopped. 

Another challenge in training the artificial neural network is finding the global optimal solution. As the 

training continues, network errors decrease and approaches global optimal solution. It is important to 

avoid the local minima which are not the solution to the problem, and make ensure that the network’s 

global optimal solution is reached [Siripatrachai, 2011]. 
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3.3 Feed Forward Backpropagation Network 

The number of types of ANNs and their uses is very high. Since the first neural model by McCulloch and 

Pits (1943), hundreds of different models considered as ANNs have been developed. The differences 

between them might be the functions, the accepted values, the topology, or the learning algorithms, for 

example. 

For the purpose of this study, only an ANN using the Backpropagation algorithm for learning the 

appropriate weights will be presented since it is one of the most common models used in ANNs and many 

others are based on this model.  

The Feed Forward Backpropagation network is a network in which the artificial neurons are organized in 

layers, send their signals “forward”, and then the errors are propagated backwards. The network receives 

inputs by neurons in the input layer, and the output of the network is given by the neurons on an output 

layer. There may be one or more intermediate hidden layer. The Backpropagation algorithm uses 

supervised learning, which means that the inputs and outputs is provided into the network and then the 

error which is the difference between actual and expected results, is calculated. The idea of the 

Backpropagation algorithm is to reduce the error, until the ANN learns the training data. The training 

usually begins with random weights, and the goal is to adjust them so that error will be minimal 

[Gershenson].  

The weights associated with each interneuron connection affect the information so that the network can 

control the flow of information. The processing units in the hidden and output layers are characterized by 

the following activation function which is a sigmoid function [Hykin, 1994]: 

݂ሺݕሻ ൌ
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The graphical representation of this function can be seen in Figure 3.2.  

To illustrate this process, the three layer neural network with two inputs and one output, shown in Figure 

3.1, is used [Bernacki et al.].  Each neuron is composed of two units. The first unit adds products of 

weights coefficients and input signals. The second unit realizes a nonlinear function, called neuron 

activation function. Signal “e” is adder output signal, and y ൌ fሺeሻ is the output signal of nonlinear 

element. Signal y is also the output signal of neuron (Figure 3.3).  
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In this particular case, the training data set consists of input signals (ݔଵ and  ݔଶ ) assigned with the 

corresponding target (desired output) z. The network training is an iterative process in which, weight 

coefficients of nodes in each iteration, are modified using new data from training data set. Each teaching 

step starts with forcing both signals from the training set. After this stage, the output signals values for 

each neuron in each network layer can be determined.  

Figure 3.4, illustrates how the signal is propagating through the network. Symbol 	ݓሺ௫௠ሻ௡ represents 

weights of connections between network input ݔ௠ and neuron n in input layer. Symbols ݕ௡ represents 

output signal of neuron n. 

 

Figure 3.4: Propagation of signals through the input layer [Bernacki et al.] 

In next step, the signal will be propagated through the hidden layer and output layer. Symbol 

 represents weights of connections between outputs of neuron m and input of neuron n in the next	௠௡ݓ

layer. (Figure 3.5and Figure 3.6) 

 

Figure 3.5: Propagation of signals through the hidden layer [Bernacki et al.]  
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In the next algorithm step, the output signal of network y is compared with the desired output value (the 

target), which is found in training data set. The difference is called error signal ߜ of output layer neuron. 

It is impossible to compute error signal for internal neurons directly. In Backpropagation method, the 

error signal ߜ (computed in single teaching step) is propagated back to all neurons, which output signals 

were input for discussed neuron. 

 

Figure 3.6: Propagation of signals through the output layer [Bernacki et al.] 

The weights’ coefficients 	ݓ௠௡ used to propagate errors backward, are equal to those weights’ 

coefficients used during computing output value. Only the direction of data flow is changed (signals are 

propagated from output to inputs one after the other). This technique is used for all network layers. If 

propagated errors came from few neurons, they are added (Figure 3.7). 

 

Figure 3.7: Error Back Propagation from Hidden Layer to Input Layer [Bernacki et al.] 
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successfully represent a specific pattern. The parameters associated with the learning algorithm of 

Backpropagation are learning rate, momentum parameter and weights decay. The learning rate is the most 

important parameter. It scales the magnitude of weights adjustments and, thus, can dramatically affect the 

rate of learning. Momentum can improve performance by adding inertia to the trajectory of the weights 

during learning. This has an averaging and smoothing effect. Finally, weight decay has the effect of 

controlling the growth of weights and results in the learning rule preferring smaller weights. The default 

values of these parameters in IDEATM are used for all developed neural network models since they are 

based on many years of experience in working with different neural network models (Figure 3.10). 

As shown in Figure 3.10, the “Vanilla” and “Enhance” type of Backpropagation methods are used in this 

dissertation. The “Vanilla” network only uses the “Learning Rate” which is an indication of how fast you 

want the network to learn the information presented. This is usually a moderate to low number (between 0 

and 1). 

  
Figure 3.10: Architecture of Neural Network –Backpropagation Design Parameters 

A large learning rate may cause the network to miss global minimum in the search space and could cause 

problem convergence during training. A small learning rate value may prolong the learning process and 

slow it down to a crawl. “Vanilla” networks do not need any other parameters to be assigned other than 
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learning rate. The “Enhance” networks need the learning rate as well as Momentum. Momentum is an 

extra push to the learning process that serves two purposes. First, it may accelerate the learning process, 

and second, it has the potential to kick the solution out of the local minima, that usually exists in the 

search space and causes the solutions to converge pre-maturely. 

IDEATM provides different activation functions such as Logistic (Sigmoid), Gaussian and tangent 

Hyperbolic and Gaussian Complement but for the purpose of this dissertation the activation or transfer 

function of Sigmoid or Logistic is used.   
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The first and most important step in development of the AI-based reservoir model is preparing a 

representative Spatio-temporal database. The extent at which this Spatio-temporal database actually 

represents the fluid flow behavior of the reservoir that is being modeled, determines the potential degree 

of success in developing a successful model. This database is an integration of static information such as 

reservoir characteristics, geomechanical properties, completion and stimulation data and also dynamic 

information such as rich gas production, wellhead pressure and water production.  

The developed Spatio-temporal database in the previous step is the main source of information for 

building and history matching the AI-based reservoir model. History matching process in this study has 

gone through a process of inclusion and exclusion of certain parameters based on their impact on model 

behavior. As it has shown in Figure 4.2, during the history matching process, the impact of adding offset 

wells, different flow regimes, distances between the laterals and different well types were studied. 

Besides, a propriety algorithm (dubbed Fuzzy Pattern Recognition (Bezdek et al. 1992)) was also used to 

identify the influence of each individual parameter as well as the impact of their combination (Key 

Performance Indicator) 

 

Figure 4.2: Detailed Workflow in Development of AI‐based Shale Reservoir Model 
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Upon achieving the best history matched model, three scenarios were defined in order to validate the 

capability of model for forecasting the future reservoir performance as well as the prediction of new 

wells/pads behavior.  

Similar to any other reservoir simulation model, the trained, history matched and validated AI-based shale 

reservoir model is deployed in predictive mode to be used for performing sensitivity analysis and decision 

making purposes.  

The sensitivity analysis was performed in two steps. The first step is evaluating the impact of different 

parameters by using the best validated history matched model. In this scenario, those parameters that were 

involved in the best history matched model were increased by 30 percent and the impact of this increase 

on production behavior of different well types was studied.  

In the second scenario of sensitivity analysis, more parameters were selected (mostly those that did not 

show the clear behavior in the first scenario and those that were not included in best history matched 

model). Additionally, two data-driven models were developed to represent the early time production 

indicator (the best 3 months) and the late time production indicator (the best 24 months). The behaviors of 

these two models as function of different parameters were studied.  

The optimization study also was performed by three different methodologies known as “Well Quality 

Analysis”, “Fuzzy Trend Analysis” and “Key Performance Indicator” in order to examine the optimum 

well location, deviation type, the minimum distance between the laterals, the best practices of completion 

and stimulation.  

4.2 Overview of IMAGINETM Software Package for AI-Based Modeling 

In order to perform the AI-based modeling, the software package of IMAGINETM developed by 

Intelligent Solution Inc. (ISI), was used. The process of development an AI-based model starts with 

importing data including the well-based data and production rate data. The well-based data by itself 

consists of two sets of attributes knows as reservoir attributes such as well coordinates, porosity, 

completion data, stimulation data and well attributes that changes with time such as days of production, 

water production, etc. 

Once all the data is imported, the static modeling can be performed. The first step toward static modeling 

is to define the reservoir boundary and modify the grid sizes. By using the geostatsitcal models (Kriging, 

Invers Distance Weighting, Nearest Point) the reservoir properties can be populated based on the given 
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values at well locations. Reservoir delineation comes after populating grid blocks with geostatistics and 

determines effective drainage area of each well in the unit. The last step in static modeling shows 

volumetric and geostatic results in numeric data tables. In this step the missing data for wells will be filled 

by using the values from geostatistics distribution maps.  

The next and final step in IMAGINETM is AI-based modeling which allows the user to do the history 

matching and to create predictive models. By using the “Build and History Match” module, the predictive 

models for time-variant attributes (here is the rich gas production rate) will be created. The inputs and 

outputs of the main well, the offset well status (number of offset well, type of offset well in terms of 

injection or production, the inputs for offset well) and the start and end date for history matching and 

prediction should be specified in this step. Once creating the predictive model, the training of neural 

networks for the model starts which the architecture and algorithm was previously explained.  

“Deploy Time-Based Model” module in the AI-based modeling step allows the user to deploy developed 

time-based models for different operational cases as well as in the presence of new wells. By using the 

cascading process in this step, the model output values in previous time-steps are feed-backed as input for 

current time-steps.  

IMGAINETM also offers the other modules such as well modeling (generating the type curves, decline 

curves,…) and field design (for pattern recognition and detecting the under performer wells) which were 

not used in this study. The detailed capabilities of this software and other packages can be found on ISI’s 

website.    
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5. CHAPTER V 

SPATIO-TEMPORAL DATABASED DEVELOPMENT 

The first and the most important step in the development of an AI-based reservoir model is to prepare a 

representative Spatio-temporal database. The extent at which this spatio-temporal database actually 

represents the fluid flow behavior of the reservoir that is being modeled, determines the potential degree 

of success in developing a successful model. The nature and class of the AI-based shale reservoir model is 

determined by the source of this database. The term spatio-temporal defines the essence of this database 

and is inspired from the physics that controls this phenomenon [Mohaghegh, 2011]. An extensive data 

mining and analysis process should be conducted at this step to fully understand the data that is housed in 

this database. The data compilation, quality control and preprocessing are the most important and time 

consuming steps in developing an AI-based reservoir Model. 

This study focused on part of Marcellus Shale including 135 wells with multiple pads, different landing 

targets, diverse reservoir properties and completely different completion and stimulation information 

(Figure 5.1). In order to create the spatio-temporal database the given information should be processed 

and prepared to be used. This process for each category of given information is described in following 

sections. 

 
Figure 5.1: The Area of Study‐ The map shows the distribution of Bulk Modulus in Lower Marcellus. 
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5.1 Reservoir Characteristics 

Marcellus Shale in the area of Pennsylvania consists of two prolific layers as Upper Marcellus (UM) and 

Lower Marcellus (LM) which are separated by a thin bed limestone layer known as Purcell. Based on the 

well deviation and completion strategy, one or both layers may be exposed to the production. Reservoir 

characteristics of each layer including matrix porosity, matrix permeability, pay thickness, net to gross 

(NTG), initial water saturation and total organic content (TOC) of each well was given by the operator. In 

order to have a consistent value for each of these properties in well locations, it was assumed that the 

properties inherited from the completed zone. For instance, if the well is landed and completed in Upper 

Marcellus, the reservoir properties of this layer should be taken into account. Based on this assumption, 

five different well configurations (Figure 5.2) were defined and the reservoir characteristics were 

estimated. 

 Model 1- these types of wells were landed and completed in Purcell. Because of its low thickness 

and brittleness, the fracture propagation usually occurs to the upper and lower layers, therefore it 

was assumed that both UM and LM are contributing into production. The total thickness of UM 

and LM and the weighted average (Equations 16 and 17) for the rest of the properties were used 

in these wells. 

,∅ሺ	ݕݐݎ݁݌݋ݎܲ	݁݃ܽݎ݁ݒܣ ,ܭ ሻܥܱܶ ൌ
ሺܲݕݐݎ݁݌݋ݎ	݂݋	ܯܷ ∗ ݄௎ெሻ ൅ ሺܲݕݐݎ݁݌݋ݎ	݂݋	ܯܮ ∗ ݄௅ெሻ

ݏݏ݄݁݊݇ܿ݅ܶ	݈ܽݐ݋ܶ
………… . ሺ16ሻ 

݊݋݅ݐܽݎݑݐܽܵ	ݎ݁ݐܹܽ	݂݋	݁݃ܽݎ݁ݒܣ ൌ
ሺܵௐ	݅݊	ܷܯ ∗ ݄௎ெ ∗ ∅௎ெሻ ൅ ሺܵௐ݅݊	ܯܮ ∗ ݄௅ெ ∗ ∅௅ெሻ

ሺ݄௎ெ ∗ ∅௎ெሻ ൅ ሺ݄௅ெ ∗ ∅௅ெሻ
…………… . ሺ17ሻ 

 Model 2- these types of wells were landed and completed in UM, therefore this is the only layer 

contributing into production of these wells and the reservoir characteristics of this layer was 

considered. 

 Model 3- these well types are very similar to model 2 but they have landed and completed in LM, 

so the reservoir characteristics of this layer were only taken into account. 

 Model 4- these wells, as shown in Figure 5.2, have down-dip trajectories and have been 

completed in all three layers although the number of stages completed in each layer is different. 

As a result, the number of stages should be a factor in estimating the average properties. For these 

wells, the average of reservoir characteristics based on Equation 18 and total thickness of UM and 

LM was considered.    
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Figure 5.2: Different Well Configurations in Spatio‐Temporal Database 

ݕݐݎ݁݌݋ݎܲ	݁݃ܽݎܽ݁ݒܣ

ൌ

ሾሺሺܰ݋. ܯܷ	݊݅	݀݁ݐ݈݁݌݉݋ܿ	ݏ݁݃ܽݐݏ	݂݋ ൅
.݋ܰ ݈݈݁ܿݎݑܲ	݊݅	݀݁ݐ݈݁݌݉݋ܿ	ݏ݁݃ܽݐܵ	݂݋

2 ሻ ∗ ܯܷ	݂݋	ݕݐݎ݁݌݋ݎܲ ∗ ݄௎ெሻሻ ൅

ሺሺܰ݋. ܯܮ	݊݅	݀݁ݐ݈݌݉݋ܿ	ݏ݁݃ܽݐݏ	݂݋ ൅
.݋ܰ ݈݈݁ܿݎݑܲ	݊݅	݀݁ݐ݈݁݌݉݋ܿ	ݏ݁݃ܽݐܵ	݂݋

2 ሻ ∗ ܯܮ	݂݋	ݕݐݎ݁݌݋ݎܲ ∗ ݄௅ெሻሻሿ

ሺሺܰ݋. ܯܷ	݊݅	݀݁ݐ݈݁݌݉݋ܿ	ݏ݁݃ܽݐܵ	݂݋ ∗ ݄௎ெሻ ൅ ሺܰ݋. ܯܮ	݊݅	݀݁ݐ݈݁݌݉݋ܥ	ݏ݁݃ܽݐܵ	݂݋ ∗ ݄௅ெሻሻ
… ሺ18ሻ 

 

 Model 5- these wells have an up-dip deviation and have also been completed in all three layers 

therefore the same equation as model 4 was used to estimate the reservoir characteristics.  

5.2 Geomechanical Properties 

The interpreted geomechanical logs including shear modulus, bulk modulus, minimum horizontal stress, 

poisson’s ratio, and young’s modulus information for 30 vertical wells in the area were provided by the 

operator. On the other hand, the conventional logs such as GR, bulk density and sonic for these 30 wells 

and 50 more vertical wells were also available. In order to incorporate the geomechanical properties in 

database, a workflow for generating the synthetic geomechanical logs from conventional logs by using 

the neural network was prepared (Figure 5.3). 
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 As shown in Figure 5.3, the synthetic geomechanical logs were generated for 50 wells by developing 

several data-driven models. The data-driven models were validated using wells with actual 

geomechanical logs that have been removed from the database to serve as blind validation wells. After 

model validation, the geomechanical information of 80 vertical wells was used in order to generate the 

distribution maps for all 135 horizontal wells in the area of study for both Upper Marcellus and Lower 

Marcellus.  

Figure 5.4 shows the distribution of Minimum Horizontal Stress in Lower Marcellus by using the 

information of 30 well and 80 wells. (The details of this workflow can be found in SPE 163690) 

The aforementioned five geomechanical properties for each well in each layer of UM and LM was then 

extracted from distribution maps and the same method as explained in section 5.1 was applied to estimate 

the average properties for each well. 

 

Figure 5.3: Flow Chart for Generating the Synthetic Geomechanical Logs by Using Conventional Logs 
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Figure 5.4: Min Horizontal Stress Distribution in Lower Marcellus 

5.3 Completion and Stimulation Data 

The completion data of the wells include some information regarding the shot density, 

perforated/stimulated lateral length, number of stages and etc. which was imported into the database. The 

stimulation data, on the other hand, was provided in stage base by operator which comprises complete 

information about the amount of injected clean water, rate of injection, injection pressure, amount of 

injected slurry and etc. Since the production is available on a per well basis, the volumes of fluid and 

proppant for multiple hydraulic fracture stages performed on the same well were summed while the rates 

and pressures for these cases were averaged.   

5.4 Production History 

The production history of the wells contains the dry gas rate, condensate rate, water rate, casing pressure 

and tubing pressure in daily format. The maximum and minimum length of production history is about 

five years and one and half years respectively. Because of scattered condensate rates and also low 

condensate to gas ratio (maximum is about 16 STB/MMCF), this data was combined with the dry gas 

(Equation 19) and the rate of rich gas was estimated for the wells.  

஼௢௡ௗܧܩ ൌ 133,800	
௢ߛ
௢ܯ

	
ܨܥܵ
ܤܶܵ

……………………………………… . . …………………………… . . ሺ19ሻ1 

                                                            
1 William D.McCain, Ir (1990), “The Properties of Petroleum Fluids”, Page 195. 
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Where ߛ௢ ൌ
ଵସଵ.ହ

஼௢௡ௗ௘௡௦௔௧௘	஺௉ூାଵଷଵ.ହ
  (known as condensate specific gravity) and ܯ௢ ൌ

ସସ.ସଷ	ఊ೚
ଵ.଴଴଼ିఊ೚

 

(known as condensate molar density). The API degree of condensate was reported by operator as 58.8 at 

reservoir temperature. In order to remove the associated noises with daily production rates, the monthly 

basis of this information was used in database. The corresponding monthly wellhead pressure and water 

rate was also prepared. It has to be noted that, as a common practice in Marcellus, the production is 

happening from casing in the first couple of months of production and then it is switched through tubing 

and in calculating the average wellhead pressure, this was taken into account.  

The initial spatio-temporal database after the aforementioned calculations has six main groups as well 

information, reservoir characteristics, geomechanical properties, completion data, stimulation data and 

production and operational constraints. Table 5-1 shows the list of data that was initially incorporated into 

spatio-temporal database. 
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Table 5‐1: List of Initial Parameters in Spatio‐Temporal database 

Group1- 

Well Information 

Easting 

 
Group 5- 

Stimulation Data 

Avg. Inj. Pressure(psi) 

Northing Avg. ISIP 

MD (ft) 
Avg. Breakdown 

Pressure 

BTU Area* 
Avg. Maximum 

Pressure 

Deviation Type  
(Down-Dip, Straight, Up-

Dip) 

Avg. Injection 
Rate(bbl/min) 

Group 2- 

Reservoir 

Characteristics 

Matrix Porosity Avg. Max Rate 

Matrix Permeability (mD) Avg. Breakdown Rate 

Net Thickness (ft) Fluid Vol.(bbl) 

Water Saturation (%) Slurry Vol.(bbl) 

TOC (%) Clean Water Vol.(bbl) 

Avg. Langmuir Vol. (scf/ton) 
Max Proppant 

Concentration(lb/gal) 

Avg. Langmuir Pressure (psi) Proppant per Stage(lb) 

Group 3-

Geomechanical 

Properties 

Bulk Modulus Total Proppant Inj.(lb) 

Shear Modulus Avg. Fracture Gradient 

Young’s Modulus 

Group 6- 

Production and 

Operational 

Constraints 

Monthly Rich Gas 

(MCF/month) 

Poisson's Ratio 
Average Monthly 

Wellhead Pressure (Psi) 

Min Horizontal Stress 
Monthly Water 

(bbl/Month) 

Group 4- 

Completion Data 

Stimulated Lateral Length(ft) 
No. of Days of 

Production 

Shot Density (shots/ft) No. of Months of 

Production Total Clusters 

Total No of Stages *The area is divided into 4 BTU sections of Dry, 

Low, Medium and Wet based on the condensate 

content of gas. Cluster Spacing 
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6. CHAPTER VI 

HISTORY MATCHING OF AI-BASED SHALE RESERVOIR MODEL 

In conventional numerical reservoir simulation the base geological model will be modified to match 

production history, while AI-based reservoir modeling starts with the static model and tries to honor it 

and leaving it unmodified during the history matching process. Instead, the uncertainties associated with 

this static model is analyzed and quantified at a later stage in the development. 

The model development and history matching in AI-based shale reservoir models are performed 

simultaneously during the training process. The spatio-temporal database developed in the previous step 

is the main source of information for building and history matching the AI-based reservoir model. History 

matching process in this study has gone through a process of inclusion and exclusion of certain 

parameters based on their impact on model behavior. Figure 6.1 shows the evolution process of 

developing the AI-based reservoir model from the base model to the best history matched model (with 

optimum number of inputs). 

 
Figure 6.1: History Matching Workflow 



55 
 

6.1 Base Model 

As shown in Figure 6.1, the base model was built by incorporating all available data which was listed in 

Table 5-1. The production of water and other operational constraints data in one time step behind the 

current time (i.e. at (t-1)) was also imported in the base model. The rich gas production at (t-1) and (t-2) 

was incorporated as inputs of the base model and at the end, the model included 47 parameters. 

As explained before, a feed-forward Backpropagation neural network with 79 neurons in the hidden layer 

was used to develop the base model. In the development process, 80 percent of data was used for neural 

network training and 20 percent for calibration and verification (10 percent each). Figure 6.2 shows the 

cross plot of neural network training, calibration and verification. In this figure the x-axis is the predicted 

monthly gas rate by neural network while the y-axis is the actual gas production rate.  

 

Figure 6.2: Training, Calibration and Verification Cross Plots for Base Model 

After completing the neural network training process, the model has gone through the sequential updating  

in which the model output values in the previous time-step was feed-backed as input for current time-

steps in order to have a continuous gas rate profile. Figure 6.3 and Figure 6.4 show the history matching 

result for two wells (a good sample: left plot; a poor sample: right plot) and the entire field. In these plots, 

the orange dots represent the actual monthly rate while the green solid line shows the AI-based model 

results. Furthermore the orange shadow illustrates the actual cumulative production and the green one 

corresponds to cumulative production output by the AI-based model.  

As shown in Figure 6.4, the AI-based model has underestimated the actual gas rate after 2011(identified 

by a red circle) when more wells come to the production and it may cause a problem in forecasting since 

this part will be fed as start point for the forecasting. Although the history matching result for the entire 

field looks acceptable, the result for each individual well needs to be improved especially over the last 

months of production as illustrated in Figure 6.3 (right graph). 

R‐Square=0.97  R‐Square=0.96 R‐Square=0.96 
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Figure 6.3: The History Matching Results for Two Wells in Base Model‐ Left Plot is the Sample of Good HM and Right Plot is 
the Sample of Poor HM. 

 

Figure 6.4: The History Matching Result for Entire Field‐ Base Model 

6.2 Effect of Offset Wells 

The production history of Marcellus wells in this area shows that interference of the wells located on the 

same pad or nearby pads cannot be ignored. Figure 6.5 shows the production history of two wells that are 

located 1500 ft. away. Well # 10036 came to the production in June 2009 while well #10040 was 
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Figure 6.6: Training, Calibration and Verification Cross Plots for Effect of Offset Well Model 

Figure 6.7 shows the history matching result of Well # 10036 in base case (Left Plot) and when the effect 

of one offset well was added to the model (Right Plot). As shown in this figure, after adding the effect of 

offset well, the AI-based model was able to capture all the fluctuations in this well much better than the 

base model and the history matching result was improved.  

Figure 6.8 represents the history matching result of the entire field in this model. Compared to the base 

model, the effect of the offset well could fix the issue of underestimating over the tail of field production; 

however, adding this effect caused some issues at the beginning of field production (identified by the red 

circle). This might be due to the fact that the effect of the offset well does not show itself at the beginning 

of production when each well is producing from its own drainage area. Moreover, at early time, most of 

the wells are located in a single pad and they have been drilled with longer distance. Figure 6.9 illustrates 

that not only adding the impact of offset well doesn’t improve the result, but also makes the result much 

worse. In order to overcome this problem, a parameter should be defined which identifies the different 

well configuration.   

 

Figure 6.7: History Matching Results for Well # 10036 in Base Model (Left Plot) and Offset Well Model (Right Plot) 

R–Square=0.97  R–Square=0.95  R–Square=0.96 
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Figure 6.8: The History Matching Result for Entire Field‐ Effect of Offset Well Model 

 

Figure 6.9: The History Matching Result of Well # 10020 after adding the Effect of Offset Well‐ The Right Plot Shows that This 
Well is not sharing the drainage area. 

6.3 Effect of Well Types 

Drilling multiple wells from a pad is a common practice in the Marcellus Shale. Usually three main types 

of laterals can be defined (Figure 6.10): 



60 
 

• Type one Lateral: This type of lateral has no neighboring laterals and does not share drainage 

area. It does not experience any “Frac Hits” from wells in the same pad and its reach will be as 

far as its hydraulic fractures. 

• Type two Lateral: The second type of lateral has only one neighboring lateral and therefore it 

shares part of the drainage area and “Frac Hits” are possible from laterals in the same pad. 

• Type three Lateral: The last type is bounded by two neighboring laterals; thus, the drainage area 

will be shared and “Frac Hits” are possible from both sides in the same pad.  

Based on this definition, a new parameter was added to the database as “Type” of the well by assigning a 

value of 1 to 3 in order to incorporate such information.  

 

Figure 6.10: Different Well Types Definition in Dataset 

Similar to the previous models, the feed-forward Backpropagation neural network with 80 neurons in the 

hidden layer was used and the data was randomly partitioned to training (80 percent), calibration, and 

verification (10 percent each). Figure 6.11 shows the cross plots of training, calibration, and verification. 

Figure 6.12 and Figure 6.13 shows the result of two wells and the entire field after adding the well type 

parameter to the model respectively.  

Type 1 

Type 2

Type 3
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Figure 6.11:  Training, Calibration and Verification Cross Plots for Effect of Well Type Model 

 

Figure 6.12: History Matching Results for Well # 10025 (Located on a single pad‐ type 1) and Well # 10031 (Located in a multi‐
well pad‐ type 3) 

As shown in Figure 6.13, the AI-based model cannot capture the actual rich gas at the end of production 

(the same problem as Base Model). It has to be noted that the effect of each parameter is investigated 

individually on the model behavior and the combination of these parameters may have the different 

impact. For example as explained earlier, adding the offset well to the model has a reverse impact on type 

R‐Square=0.96  R‐Square=0.97  R‐Square=0.96 
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1 wells. Having well type in database may solve this issue for these well. The result of a model by using 

all parameters will be discussed later in this chapter.  

 

Figure 6.13: The History Matching Result for Entire Field‐ Effect of Well Types Model 

6.4 Effect of Flow Regimes 

The details of rate transient analysis were discussed in chapter 2 and, as mentioned earlier, one 

application of this approach is flow regime determination. By looking at the gas rate of the wells, two 

distinct behaviors can be observed. The RTA module of Fekete Harmony Software package was used to 

determine the flow regime for each well. The initial information such as PVT properties, well 

configuration, temperature profile, completion strings, production history (gas rate, casing and tubing 

pressure) and etc. was imported to estimate the corresponding bottomhole flowing pressure.  

The deterministic superposition time method of unconventional gas was then used in order to generate the 

square root time plot and essential type curves, which are used for flow regime determination. The square 

root time plot is a plot of normalized pressure (Equation 20) versus linear superposition time (Equation 

21) on a Cartesian graph which is the best representative of variable gas properties as a function of 

pressure.  
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In which ௣ܲ௜ and ௣ܲ௪௙ are pseudo pressure for initial reservoir pressure and flowing bottomhole pressure 

respectively. It should be noted that for unconventional reservoirs, the superposition function should be 

based on	√ݐ, because the flow is predominantly linear. As shown in Figure 6.14 the linear flow regime 

(which is a dominant flow in shale gas wells) results in a straight line in square root time plot. As clearly 

illustrated in this figure, at the beginning of production history of the well, there are points which are 

diverting from straight line and they might represent the bi-linear flow, radial flow in fractures and/or 

initial clean up. Since it is nearly impossible to distinguish between these effects, the behavior was simply 

identified as “skin effect”.   

 
Figure 6.14: Square‐root time plot for Well # 10036 

The presence of skin effect, as explained by Nobakht et al. (2012), changes the shape of Log-Log plots 

(type curves), therefore using the Log-Log plots for flow regime determination can be impractical here 

because the “Skin Effect” is observed in all the wells. On the other hand, the derivative plots are not 

usually affected by the skin and they can be used to check the validity of results from square-root time 

plots. Figure 6.15 shows the normalized gas rate and its derivative versus linear superposition time for the 

Flow Regime 1  Flow Regime 2 
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well # 10036. As shown in this figure, the half slope line (as an indication of transient linear flow regime) 

can obviously be observed. These analyses were performed for all wells. Two flow regimes were 

identified and then used as a dynamic input in database.   

 
Figure 6.15: Normalized Gas Rate and Derivative Plot for Well # 10036 

In addition, as discussed by Cheng (2012), the damages caused by injected water can be different in cases 

of having delay in bringing the well to production at the beginning. This can have an impact on the 

duration of the first flow regime (skin effect) in wells because in this case, the capillary forces suck the 

water into the matrix and water saturation dissipates farther into it during the shut in and it may cause 

more damages. This can be observed as more and longer fluctuations in gas rates when the well comes to 

the production. Moreover, Holditch (1979) has stated that delay caused more damages because injected 

water may reduce the formation permeability in the invaded zone due to clay swelling, scaling and fines 

migration. 

Therefore another parameter as the days between completion and start-up production was also added to 

the database and a model with 50 inputs was created. Similarly, a feed-forward Backpropagation neural 

network with 81 neurons in the hidden layer was trained by using 80 percent of the data, and the rest was 

used as calibration and verification. Figure 6.16 shows the cross plots of training, calibration and 

verification for this model.  
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As expected, introducing a different flow regime helps the AI-based model to capture the transition 

between first and second flow regime (for this well the first 4 month identified as flow regime 1).The 

flow regime identification, however, could not improve the history matching results over the last months 

of production (Figure 6.18). 

6.5 Effect of Distances 

Due to different drilling policies, the distances between the wells and the pads varies along the area of 

study and consequently the interference between wells could be different. In order to consider the impact 

of relative location of the wells, two distances were defined and fed to the neural network for training: 

 Distance between the laterals in the same pad-Inside Distance 

 Distance to the closest lateral of a nearby pad-Outside Distance 

Figure 6.19 shows the inside and outside distance between two laterals and two pads.  

 
Figure 6.19: Inside and Closest Outside Distances 

After estimating the inside and outside distance for each well, a feed-forward Backpropagation neural 

network with 80 neurons in the hidden layer and 49 input parameters was trained. The data was randomly 

partitioned into training (80 percent), calibration (10 percent) and verification (10 percent). Figure 6.20 

shows the cross plot for each of these partitions.  
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Figure 6.21 and Figure 6.22 represent the history matching result for two wells (a good sample: left plot; 

a poor sample- right plot) and the entire field respectively. As shown in figure 6.22, the AI-based model 

was not able to fully capture the gas rate production over the last months of production.  

 

Figure 6.20: Training, Calibration and Verification Cross Plots for Effect of Distances Model 

 

Figure 6.21: The History Matching Results for Two Wells in effect of Distances Model‐ Left Plot is the Sample of Good HM and 
Right Plot is the Sample of Poor HM. 

 

Figure 6.22: The History Matching Result for Entire Field‐ Effect of Distances Model 

R‐Square=0.95  R‐Square=0.95  R‐Square=0.96 
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6.6 History Matching Model with Maximum Number of Inputs 

As mentioned earlier, the individual impact of each introduced parameter may not improve the history 

matching results of the wells and entire field but the combination of these parameters could be helpful to 

achieve good results. Therefore, a history matching model with a maximum possible number of inputs 

was defined which includes 105 parameters. By using the feed-forward Backpropagation neural network 

including 106 neurons in the hidden layer, the data was randomly partitioned into training, calibration and 

verification. The cross plots of each partition has shown in Figure 6.23. 

 

  Figure 6.23: Training, Calibration and Verification Cross Plots for History Matching Model with Maximum Number of Inputs 

The history matching results for each individual well show significant improvement in this model and 

consequently, the history match of the entire field became better (Figure 6.24). 

 

Figure 6.24: The History Matching Result for Entire Field‐ History Matching Model with Maximum Number of Inputs 

R‐Square=0.97  R‐Square=0.92  R‐Square=0.94 
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6.7 Key Performance Indicator (KPI) 

The history matching process, as shown in Figure 6.1, is a process of exclusion and inclusion of different 

parameters as it explained to improve the results of history matching for every single well. In previous 

sections it was tried to improve the results by adding some new features and finally a model with 105 

inputs was achieved. This may not be very practical, however, especially when it is compared to the 

conventional history matching process that usually involves less parameter. Therefore it was tried to 

minimize the number of parameters resulting not only the same result but also better history matching.   

In order to do this during the history matching process, a propriety algorithm is used to identify the 

influence of the combination of parameters. During Fuzzy Pattern Recognition, a curve is generated from 

the existing data. The slope of the curve determines the degree of influence of a parameter on the 

production indicator (the output: the target of the correlation).  Therefore, the parameter with the largest 

slope is identified as the parameter with the highest influence on the output. In order to simplify the 

analysis of the order of influence of parameters, the slopes are normalized, giving the parameter with the 

highest slope a value of 100.  

The KPI is a very useful step in choosing the input parameters for the history matching process since it 

identifies the contribution of parameters to the output of the system.  

Figure 6.25 and Figure 6.26 shows the KPI result for the top 30 parameters in the model with maximum 

number of inputs before and after developing the AI-based model respectively.  In the other words, the 

KPI ranking of parameters after developing the AI-based model represents the influence of each 

parameter during the training- the higher ranking, the higher influence.  

6.8 Best History Matched Model 

Although the history matching results by using the maximum combination of parameters is extremely 

useful, one may reasonably argue that dealing with large number of inputs is not a correct and effective 

way for modeling through neural network training, calibration and verification process.  

Accordingly, the history-matching process was performed with a minimum combination of parameters 

that should be used to achieve an acceptable history match results for individual wells and for the entire 

field (The total number of inputs was decreased from 105 to 36). The following factors were taken into 

account for reducing the number of inputs in order to achieve the best history matching results: 
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Figure 6.25: KPI Results Before AI‐Modeling‐ Based on the history matching model with maximum number of inputs 

 

Figure 6.26: KPI Results After AI‐Modeling‐ Based on the history matching model with maximum number of inputs 
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1- There are some parameters in the database that are dependent on other parameters. For example, 

matrix porosity and permeability are between those parameters that a linear relationship can 

describe their dependency. Injected clean water, injected slurry and injected fluid are other good 

examples which one can be representative of the rest. Therefore, one parameter was kept in the 

database in order to avoid the redundancy. 

2- Some of the wells in the database have some properties which are almost the same for all of those 

wells. For instance, cluster spacing for the 90% of the wells is about 100 ft. As a result, these 

features were removed from the database because they did not provide additional information to 

explain different well’s behavior. 

3- The Key Performance Indicator (KPI) process was performed to rank the most influential input 

parameters. In this process, not only the impact of each parameter, but also the combined 

influence of different inputs on monthly gas production can be identified. A propriety algorithm 

was used to identify the influence of the combination of parameters. The effect of each parameter 

on the system's behavior was amplified or dampened (in a non-linear fashion) by the presence of 

other parameters in the system. Based on the result of KPI, some parameters such as Average 

Injection Pressure, Langmuir Volume, Langmuir Pressure and etc. with less influence on gas 

production, were removed.  

4- Using the dynamic properties (except gas rate) at a time step behind (@ t-1) helps the network to 

predict the behavior of gas production at current time step. Though, if these parameters do not 

represent the behavior properly, they might confuse the network. As a result these parameters 

cause an inverse impact on the results. During the history matching process, in order to achieve 

the best history match result, it was found that using some of the dynamic parameters at (t-1) has 

a negative effect on production; therefore, in the best history matched model, they were not used. 

5- There are still some debates about the existence of initial water saturation in Marcellus Shale. The 

initial or connate water saturations in high quality gas shale such as Marcellus is very low 

because of the excessive drying of shale at high temperatures and pressures during gas generation 

and migration as well as burial history and capillary hysteresis [Wang 2010].  Therefore, the 

initial water saturation was not involved in achieving the best history matched model; 

furthermore, this parameter didn’t show such a high impact in KPI.  

6- The given data for water production of each well shows some abnormality which might be due to 

incorrect reporting or inappropriate measurements. This information was also removed from the 

optimizing the number of parameters.   
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The best history matched model with the optimum number of inputs includes 36 parameters and a feed-

forward Backpropagation neural network with 71 neurons in the hidden layer was used for training, 

calibration and verification. Figure 6.27 shows the cross plots of each partition for the best history 

matched model.  

Figure 6.28 and Figure 6.29 show some examples of excellent and poor history matching results based on 

the best history matched model.  

Figure 6.30 also illustrates the history matching result for the entire field. As illustrated in Figure 6.30, the 

history matching result for the entire field in best history matched model is better than the previous 

models particularly over the last months of production.  

 

Figure 6.27: Training, Calibration and Verification Cross Plots for Best History Matched Model 

 

Figure 6.28: History Matching of Well #10013 and Well#10074‐Excellent Match‐ Best History Matched Model 

R‐Square=0.98  R‐Square=0.97  R‐Square=0.95 
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Figure 6.29: History Matching of Well #10042 and Well#10101‐Poor Match‐ Best History Matched Model 

.  

Figure 6.30: The History Matching Result for Entire Field‐ Best History Matched Model with Optimum Number of Inputs 
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Upon completion of history matching, an appropriate function (Equation 22) was used in order to estimate 

the error associated with each well in the best history matched model.  

ܧܲܣܯ ൌ
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௧ୀଵ

ሺ݅ሻݐܰ
	 ൈ 100………………………………………… . ሺ22ሻ 

Figure 6.31shows the histogram of errors for the best history matched model. As it has shown, more than 

90% of the wells have an error less than 20%. Out of 135 wells, five wells have shown an error above 

20% which were analyzed and discussed in details in next section. The error of history matching for the 

entire field is also around 8.8%. 

 

Figure 6.31: Histogram of Estimated Error for the Wells in Best History Matched Model 

Table 6-1 illustrates the list of 36 parameters that were used in best history matched model. Figure 6.32 

shows the key performance indicator (KPI) result of parameters in best history matched model before and 

after AI-based modeling. 
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Table 6‐1: List of Parameters in Best History Matched Model 
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Figure 6.32: Degree of Influence for parameters (KPI) in Best History Matched Model‐ Before and After modeling 

6.9 Detailed Analysis on Poor History Matching Results in Best History Matched Model 

Out of 135 wells in this study, five wells have shown an error above 20%. A detailed evaluation was 

performed for each of these 5 well in order to diagnose the reasons for non-behaved prediction by the AI-

based model. As the first step, all parameters involved in achieving the best history matched model were 

evaluated for each well and its offset well to see whether all the design and native parameters are within 

the defined uncertainty range for entire field or not.  

In the second step, the production profile of each well and its offset well was studied in order to check the 

existence of any inconsistency in dynamic parameters which might cause the abnormal behavior of the 

AI-based model. The diagnostic results for each well are discussed as following:  

Well # 10042- This well is located on a pad with four more laterals and came to production on April 

2009 (Figure 6.33). All the design (such as completion and hydraulic fracturing data) and native 

parameters (such as reservoir characteristics) of this well are within the ranges of parameters for the entire 

field. Therefore this cannot be the reason for the underestimation of AI-based model.  

For Well # 10042, at the beginning, the closest offset well was Well #10026 which was on production 

since August 2007 and it was between the first drilled horizontal well in the area. As illustrated in Figure 
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available reservoir characteristics in order to evaluate their impact on performance of the well. Figure 

6.38, shows the different reservoir properties along the horizontal section of Well # 10072 and also the 

placement of clusters. 

 

Figure 6.38: Different Reservoir Characteristics along the horizontal section of Well # 10072‐ In this figure the Matrix 
Porosity, TOC, NTG, Minimum Horizontal Stress Gradient, Young’ Modulus, Poisson Ratio and GR were shown from left to 

the right. 

In this figure, all shown parameters except GR, which was run along the horizontal lateral, were extracted 

from the distribution maps based on the information of vertical wells. Following the proposed algorithm 

by Cipola et al. (2011) for staging in horizontal wells, two different categories for properties; reservoir 

and completion properties; should be evaluated in selecting the perf-cluster placement. Table 6-2 shows 

the reservoir and completion quality criteria in Cipola’s algorithm. 
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Table 6‐2: Reservoir and Completion Quality Criteria‐ Cipola et al .(2011) 

Reservoir Quality Completion Quality 

TOC >= 3% Stress- Low 

GIP > 100 scf/ton Resistivity > 15 Ohm-m 

Kerogen > High Clay < 40% 

Shale Porosity > 4% YM > 2 mm Psi AND PR < 0.2 

Kgas > 100nD Neutron porosity<35% and density Porosity > 8% 

As it has illustrated in Figure 6.38, the matrix porosity is about 14%, the TOC is between 3.5% and 5% 

and the NTG is almost 1 for this lateral, therefore the criteria for reservoir quality in location of all 

clusters is met. The completion properties, the minimum horizontal stress gradient, the young’s modulus 

(YM), the Poisson ratio (PR) and GR were available that were shown as the last four tracks of Figure 

6.38. Based on the given information, this well is located in the area with low stress gradient (around 0.6 

Psi/ft) and the values of Young’s modulus and PR are in the range of given criteria.  

By definition, brittle shales are those with higher YM and lower PR and are more likely to be naturally 

fractured and responding favorably to hydraulic fracturing treatment. Figure 6.39 shows the Brittleness 

Index (BI) histogram of all the wells in the area of study which is defined as following [Waters et al., 

2011]: 

ܫܤ ൌ
൤
100ሺܧ௩ െ ௩ି௠௜௡ሻܧ
ሺܧ௩ି௠௔௫ െ ௩ି௠௜௡ሻܧ

൅
100ሺߤ௩ െ ௩ି௠௔௫ሻߤ
ሺߤ௩ି௠௜௡ െ ௩ି௠௔௫ሻߤ

൨

2
………………………………………………ሺ23ሻ 

Where 

 ௩ି௠௜௡= Minimum vertical Young’s Modulus in interval of interest (psi)ܧ

 ௩ି௠௔௫= Maximum vertical Young’s Modulus in interval of interest (psi)ܧ

  ௩ି௠௜௡= Minimum vertical Poisson’s ratio in interval of interestߤ

  ௩ି௠௔௫= Maximum vertical Poisson’s ratio in interval of interestߤ

As it shown in Figure 6.39 the resulting value of equation 23 is an index scaled from 0 to 100 and usually 

the higher BI can be interpreted as better shale and consequently better performance. As it has shown in 

this figure the brittleness index of entire field has an average of 35 while the brittleness index of Well # 

10072 is around 17 which is relatively low.  
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found that this well was completed with the lowest number of stages in pad (8 stages-8 clusters) while all 

the wells in pad were completed in more clusters (between 12 clusters to 36 clusters). In addition, the 

delay between the completion and production had a negative impact on performance of this well. 

 

Figure 6.41:  The Rich Gas Rate of all wells (Well # 10083 to Well # 10088) in same pad‐ Well # 10085 was identified by green 
curve and it has the lowest gas rate compare to the other wells 

The first closest offset well was Well # 10086 which was producing since December 2008 and as 

illustrated in Figure 6.41, this well has the better performance than well # 10085 and as an offset; it 

caused the overestimated prediction by the AI-based model. At the end of 2010, both wells are producing 

at almost the same rate and the history matching result by AI-based model improved significantly.  

Well # 10101 – This well is located on a two-well pad and immediately after completion (8 clusters) 

came to production on March 2008. As shown in Figure 6.42, the AI-based model is underestimating the 

actual rich gas from this well during the half of well life (from the beginning until September 2009). 

At the beginning, Well # 10026 was the closest offset well and as its production profile was shown in 

Figure 6.34, this well has a very erratic and low rate. Because of the effect of offset wells, the AI-based 

model underestimated the production of Well # 10101 from the beginning until September 2009. At this 

point the closest offset well became Well # 10102 which was in production from August 2009 and it 

happened to have very similar behavior and as result made substantial improvements in history matching 

of Well # 10101.  
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Figure 7.8 represents the scatter plot of training, calibration and verification for this AI-based model. In 

this figure, the green line is actual flow regime duration and the blue line is AI-based model prediction. 

During the neural network training some of the data (wells) were not included and later was used for 

verification purposes. These wells were randomly selected and they covered the range of flow regime 

duration of the entire field. Table 7-2 shows the result of the AI-based model, actual flow regime duration 

and associated error. 

 

Figure 7.8: Scatter Plots for Training, Calibration and Verification for AI‐Based Model of Prediction the Duration of FR 1‐ The 

R‐Squares are 0.96, 0.92 and 0.85 respectively. 

Table 7‐2: The Actual versus AI‐Based Model Prediction for Blind Wells in AI‐Based model of Prediction the Duration of FR 1 

Well Name 
Actual Duration of Flow 

Regime 1 

AI‐Based Prediction for 

Duration of Flow Regime 1 
Error‐ Percent 

10023  22  27  22.7 

10047  134  126  5.6 

10058  89  84  5.9 

After validating this model, it was used to predict the duration of flow regime 1 for the new wells. In 

order to check the validity of model prediction, the rate transient analysis (following the methodology 

explained in chapter 6) was performed in order to determine the flow regime for these new wells. The 

flow regime determined by rate transient analysis for the majority of the wells is within the range of those 

estimated by the AI-based model as shown in Figure 7.9. 

As explained earlier, in order to predict the performance of the new wells/pads, the constant wellhead 

pressure (based on the closest offset wells) was applied to each well. It was assumed that all the wells 

produced for the whole month, although the days of production per first month was included in the AI-

based model. Completion and stimulation data was partially available but it was not included in the AI-
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based model prediction and the model used the required information from geostatsitcal distribution maps 

which were generated for each individual property. 

 

Figure 7.9: The Duration of FR 1 based on RTA and AI‐Based Model for new wells 

The production performance of 29 wells on 6 different pads was predicted by using the AI-based model. 

Figure 7.10 shows the location of new wells/pads in the area of study.  

    

Figure 7.10: Location of New Wells/Pads in area of study‐ 29 new wells on 6 different pads 

Pad 1

Pad 2

Pad 3

Pad 4

Pad 5

Pad 6
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New Pad 1‐ This pad includes 4 horizontal laterals and is located on the western part of the reservoir 

between two existing pads. New wells 1, 2 and 3 came to production on June 2012 while new well#4 

started to produce one month later. Figure 7.11 shows the result of AI-based model prediction versus 

actual rich gas production of two wells (with minimum and maximum error in pad), the entire pad and 

wells configuration.  

In the top plots of this figure, green lines represent the AI-based model prediction for rate, the orange dots 

show the actual rich gas rate, the green shadow represents the predicted rich gas cumulative production by 

AI-based model and the yellow shadow shows the actual cumulative rich gas. For the entire pad plot, the 

blue line shows the AI-based model prediction for rich gas rate, the red dots are representing the actual 

rich gas rate, the blue shadow illustrates the AI-based model prediction for rich gas cumulative 

production, and the red shadow shows the actual cumulative rich gas. 

 

Figure 7.11: The AI‐Based Model Prediction for New Pad 1‐ The well with minimum error (Top‐Left), the well with maximum 

error (Top Right) and the entire pad (Bottom left) 

In this pad the New Well#1 and New Well#4 has shown an error of 11 and 52 % respectively and the 

estimated error for the entire pad is about 13 %.  

The stimulation and completion data shows that all the wells are completed with 13 hydraulic fracture 

stages by using almost the same amount of slurry and proppant while the production performance of New 

Well # 4 is less than the other three wells and because of this, the AI-based model is overestimating the 

production of this well.  
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New Pad 2‐ This pad includes 4 horizontal laterals and is located on the northern part of the reservoir 

where no pads were existed before. All the laterals came to the production by August 2012. Figure 7.12 

shows the result of AI-based model prediction for two wells with minimum and maximum error as well as 

the entire pad result and well configuration. 

 

Figure 7.12: The AI‐Based Model Prediction for New Pad 2‐ The well with minimum error (Top‐Left), the well with maximum 

error (Top Right) and the entire pad (Bottom left) 

As shown in this figure, the difference between the estimated minimum and maximum errors for two 

laterals are not significant (12% versus 16%) which indicates that all the wells in this pad are behaving 

similarly and this behavior was predicted by AI-based model with acceptable accuracy. The estimated 

error for the entire pad is also about 11%. 

New Pad 3‐ Next to the New Pad 2 in northern part of the reservoir, the New Pad 3 with 4 horizontal 

laterals is located and it came to the production a month later than New Pad 2 (on September 2012). 

Figure 7.13 shows the AI-based model prediction for two wells with minimum and maximum errors, the 

entire pad production performance and the wells configuration. As it has shown in this figure, the New 

Well#2 with the estimated error of 5% is the best prediction result and the New Well#4 with the 

maximum error of 13% is the worst prediction result in this pad. In spite of same completion and 

stimulation information for all wells, there is some inconsistency between the predictions of AI-based 

model for different wells which might be due to the fact that the information of different offset well is fed 

to different wells in this pad. The calculated error for the entire pad is also around 10%.  
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Figure 7.13: The AI‐Based Model Prediction for New Pad 3‐ The well with minimum error (Top‐Left), the well with maximum 

error (Top Right) and the entire pad (Bottom left) 

New Pad 4‐ Unlike most new pads in the area of study, this pad is located in the center of the reservoir 

surrounded by too many existing pads. It has 5 horizontal laterals which all were completed with 9 to 11 

hydraulic fracture stages and came to the production at the end of March or the beginning of April 2012. 

Figure 7.14 shows the predicted production performance by AI-based model for two laterals and the 

entire field as well as the well configuration in this pad.  

 

Figure 7.14: The AI‐Based Model Prediction for New Pad 4‐ The well with minimum error (Top‐Left), the well with maximum 

error (Top Right) and the entire pad (Bottom left) 
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The error for New Well#5 and New Well#3 is estimated to be around 9% and 31% respectively which are 

the minimum and maximum calculated errors in this pad. The calculated error for the entire pad is about 

8%. 

New well#3 has the maximum number of hydraulic fracture stages in this pad (11 stages) and it shows the 

better performance compared to the other wells. Therefore, the AI-based model underestimates the actual 

rich gas rate for this specific well.  

New Pad 5‐ This pad includes 9 horizontal laterals and it is located in the south-west part of the 

reservoir. All these horizontal laterals simultaneously started to produce on June 2012. Figure 7.15 shows 

the actual production performance and AI-based model prediction for two wells and the entire field.  

 

Figure 7.15: The AI‐Based Model Prediction for New Pad 5‐ The well with minimum error (Top‐Left), the well with maximum 

error (Top Right) and the entire pad (Bottom left) 

The maximum prediction error for this pad is about 20% (New Well#4) and the minimum estimated error 

for the AI-based model prediction is 10% (New Well#7). The AI-based model predicted the production 

performance of the entire pad by the error of 10%. 

For all of the wells the flow regime has changed from the second month of production and the AI-based 

model cannot capture this transition. Besides, the New Well # 4 has the least number of hydraulic fracture 

stages (8 stages). Because of this, this well’s performance is not as good as the other wells in the pad, and 

the AI-based model overestimates its production.  
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New  Pad  6‐  This pad is close to the new pad 5, located in the south-west part of the reservoir, 

surrounded by two other existing pads and includes 3 horizontal laterals. Figure 7.16 exemplifies the 

prediction of the AI-based model for the performance of two wells and the entire pad as well as the wells 

configuration. 

 

Figure 7.16: The AI‐Based Model Prediction for New Pad 6‐ The well with minimum error (Top‐Left), the well with maximum 

error (Top Right) and the entire pad (Bottom left) 

The maximum and minimum error is estimated around 13% and 18% for New Well # 3 and New Well # 1 

respectively. The estimated error for the entire pad is also around 12%. The wells in this pad were 

completed with a different number of stages, varying from 8 (New Well#1) to 21(New Well#2) and 

because of this, very different behavior is observed from these wells. For instance the monthly production 

of New Well#2 and New Well#3 is within the range of 50,000 MCF/Month while the average monthly 

production of New Well#1 is about 25,000 MCF/Month; this might lead the AI-based model to predict 

the performance of New Well#1 by higher error.  
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8. CHAPTER VIII 

SENSITIVITY ANALYSIS, OPTIMIZATION AND TYPE CURVES 

8.1 Sensitivity Analysis on the Impact of Different Parameters in Production from Shale 

Understanding the performance of such ultra-low permeable media creates new challenges to scientists. 

Investigating the impact of rock properties and evaluating the effect of hydraulic fracturing processes on 

well performance are the primary issues that have been addressed in several studies.  

Given the complex nature of hydraulic-fracture growth, the very low permeability of the matrix rock in 

many shale gas reservoirs, and the predominance of horizontal completions, reservoir simulation is 

commonly the preferred method to predict and evaluate well performance [Cipolla et al., 2010].Our 

limited understanding of the complex phenomena have further resulted in our limited ability to perform 

an accurate modeling of shale formations production which, consequently, has resulted in making 

significant assumptions to make our models work [Mohaghegh, 2013].  

In anticipation of these major improvements in shale reservoir simulation, sensitivity analysis of 

production performance from shale formations based on pattern recognition technologies seems to be one 

of the most reasonable alternatives which are not based on any pre-determined assumptions.  

The sensitivity section of this chapter consists of two main sections. The first section incorporates the 

sensitivity analysis based on the best history matched AI-based model by changing the different 

parameters involved in this model and evaluates the impact of each parameter. The second section 

includes the study of different parameters’ impacts on the best 3 months and 24 months of production for 

all wells. The details of each approach will be explained in following sub-sections:  

8.1.1 Sensitivity Analysis Based on the Best History Matched Model 

In this section, the impact of different parameters is studied based on the best history matched AI-based 

model achieved in previous chapters. In order to perform such analysis, a reference model using the 

average value of involved properties (Table 6-1) in the best history matched AI-based model was 

prepared. The trained neural network was applied to achieve the production profile of each well as a 

reference for sensitivity analysis.  Besides, this dataset, and alternatively the reference model, is a 

representative of the entire asset.  
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The range of parameters during the sensitivity analysis should be within the range of the minimum and 

maximum value of parameters that were used during neural network training in order to be able to do this 

analysis using ANN. In this study, the marginal change is obtained to be 30%; therefore, each parameter 

was increased by 30% to stay within the range of the neural network training boundary.  

For each parameter, a separate dataset was prepared (when it was increased by 30%) and the trained 

neural network in best history matched AI-based model was applied on this while the other parameter in 

the dataset was kept constant as the values used in reference model. Table 8-1 lists the average value of 

each parameter that was used in order to create the reference model. The sensitivity analysis was 

performed based on different well types (Type 1, 2 and 3) and for each type, nine parameters were 

selected and the sensitivity of the trained neural network (best history matched AI-based model) was 

evaluated for the variation of each parameter. 

Table 8‐1: The average values of parameters that were used to build the reference model for sensitivity analysis 

Parameter Average Value Parameter Average Value 

Measured Depth (ft.) 9500 Total Clusters 28 

Inside Distance (ft.) 2110 
Average Injection Rate 

(bbl/min) 
75.4 

Outside Distance (ft.) 4620 
Average Injection 

Pressure (Psi) 
6000 

Porosity (%) 8.9 
Breakdown Pressure 

(Psi) 
6625 

Net Thickness (ft.) 117 Total Proppant (lb) 4.3E6 

Minimum Horizontal 

Stress (Psi/ft.) 
0.7 

Total Clean Volume 

(bbl) 
1.2E5 

Days Between 

Completion to 

Production (days) 

45 

 

Figure 8.1and Figure 8.2 show the impact of increasing injected proppant and net thickness by 30% 

compared with the reference model for different well types. As illustrated in these figures, although, 

increasing the injected proppant and net thickness always improves the production performance; the 

degree of influence for different well types might be different. In both cases, the effect of these two 

parameters on type 1 is highest and is followed by type 2 and type 3 respectively. 
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Figure 8.1: Impact of Increasing Injected Proppant on Different Type of the Wells 
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Figure 8.2: Impact of Increasing Net Thickness on Different Type of the Wells 
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On the other hand, because type 1 wells have either no or little interference with the other wells therefore, 

the effect of injected proppant is not shared with the other wells; and the higher production (achieved by 

increasing the amount of injected proppant mass) is expected. In the other words, during the drilling and 

completion of type 2 and type 3 wells, the area has already been stimulated in some degree by type 1 

wells therefore; the effect of injected proppant on production performance of these two types is less than 

type 1 wells. Figure 8.1 clearly shows this behavior for all three well types. 

For case of increasing thickness, the same analogy can be applied, the more thickness, the better 

performance for type 1 wells with less interference and vice versa. 

A similar analysis has been performed for the rest of parameters and Figure 8.3, Figure 8.4 and Figure 8.5 

shows the Pareto chart of different parameters for all well types. As it can be observed the ranking of 

parameters are changing from type to type as well as the degree of influence for different parameters.  

 

Figure 8.3: Pareto Chart for impact (in percent) of different parameters on production of type 1 wells 

 

Figure 8.4: Pareto Chart for impact (in percent) of different parameters on production of type 2 wells 
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Figure 8.5: Pareto Chart for impact (in percent) of different parameters on production of type 3 wells  

Breakdown Pressure- Breakdown pressure is an indication of rock brittleness. Higher breakdown 

pressure can be interpreted as more brittle rock which is more likely to be naturally fractured and 

responds favorably to hydraulic fracturing treatment. Thus, the production performance would be 

improved by the increase in breakdown pressure.  

From Figure 8.3 to Figure 8.5 it can be observed that the degree of influence of higher breakdown 

pressure for type 1 wells is more than types 2 and 3. This might be due to the fact that during the 

completion and hydraulic fracturing of types 2 and 3 wells, the fracture network has already been 

developed because of the completion of offset wells (which is basically type 1) while for type 1 wells the 

fracture network is in its initial stage of development and therefore the impact of breakdown pressure is 

more apparent for type 1 wells. On the other hand if we look at the actual breakdown pressure in the 

database, the average value of this parameter for type 1 well is more than types 2 and 3. This means that 

during the neural network training the higher weight (related to breakdown pressure) was assigned to type 

1 well and when the breakdown pressure is increased, its impact is more significant.  

Total Injected Proppant- As it shown in Figure 8.3 to Figure 8.5, the production performance of 

the wells has a direct correlation with the amount of injected proppant. Regardless of its rank for each 

type, the degree of impact of injected proppant for type 1 wells is more than types 2 and 3 (12.2% versus 

9.9% and 8.7%). 

Total Injected Clean Volume- Similar to total injected proppant, it seems that better wells were 

treated with more clean volume than wells with lower quality as can be obviously observed from the 

aforementioned figures. 
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Matrix Porosity- Because of relatively high porosity and low TOC, the Marcellus Shale is a system 

dominated by matrix porosity and free gas and therefore porosity plays an important role in production. 

As clearly shown from Figure 8.3 to Figure 8.5, higher porosity results in better production performance 

in all types of wells, although the degree of response from different types of wells to increasing the 

porosity is variable. Type 1 wells are more affected by the porosity increase than type 2 and 3 wells.  

Average Injection Rate- Figure 8.3 to Figure 8.5 show that the increasing average injection rate 

has a negative impact on all types of wells consistently. Increasing the injection rate while the injected 

volume is kept constant, yields a higher maximum fracture width (at wellbore) and fracture height but it 

also creates a shorter fracture. Usually it is recommended injecting the slurry with a lower rate which 

makes the longer fracture with more conductivity. Because of this effect, the higher injection rate is not in 

favor of production performance and has a negative impact. The degree of this impact in type 1 wells is 

more than types 2 and 3. 

Inside/Outside Distance- By the given definitions in previous chapters, the inside distance is the 

distance between the laterals in a pad; the outside distance is the minimum distance between two laterals 

in different pads. Based on this definition the outside and inside distance is the same for type 1 wells in 

reference model and, as it can be seen from Figure 8.3, the degree of influence for these two parameters is 

the same and any increase in these two parameters has a negative impact on production performance.  

For type 2 wells, more inside and outside distance favors production-the more distance, the better 

production. Figure 8.4 shows that the positive impact of increasing outside distance is more than the 

increasing inside distance (2 % versus 0.06%). 

By contrast, Figure 8.5 shows that the degree of influence for inside distance is slightly greater than the 

outside distance for type 3 wells. Similar to type 2 wells, increasing both of these parameters has a 

positive impact on production.  

Days between Completion and Production- Figure 8.3 to Figure 8.5 illustrates that the 

sensitivity of the AI-based model to this parameter is negligible, although it is changing for different well 

types. While the increase of this parameter has a negative impact on production performance of type 1 

wells, it has revealed a positive influence on both types 2 and 3. The actual field data shows that for type 

1 wells the lag between completion and production is much more than the other type of the wells. The 

majority of type 1 wells are those which came to production very early (in 2007 or 2008). Additionally, 
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having brought the well to the production with delay seems to have had a negative impact on their 

production (the neural network assigned a negative weight to this parameter for type 1 wells). 

8.1.2 Sensitivity Analysis Based on the Best 3 and 24 Months of Production 

Because of the effect of operational constraints in history matched AI-based model, the sensitivity of the 

model to some parameters may not be very clear or doesn’t show any reasonable trend. Moreover some of 

these parameters were not involved in best history matched AI-based model. Therefore, operational 

constraints, including any unexpected shut downs, sudden changes in pressure, number of days of 

production and etc. were removed and the actual performance of the wells was taken into account by 

considering the best 3 months and 24 months of production. Two separate neural networks were 

developed in order to predict the best 3 months and 24 months cumulative rich gas production as a 

function of reservoir characteristics, well completion and stimulation design parameters. The sensitivity 

analysis was then performed using these two models to evaluate the impact of different parameters on the 

early and late time production from shale. It’s worth mentioning that in order to conduct such analysis, a 

software application named IMproveTM was used. Table 8-2 shows the list of parameters that have been 

used to develop these two models. 

Table 8‐2: Input Parameters used in the best 3 months and 24 months models 

Group1- 

Well Information 

Easting Group 4- 

Completion Data 

 

Stimulated Lateral 
Length(ft) 

Northing 
Days Between 
Completion & 

Production 
Well Type Total Clusters 
BTU Area Cluster Spacing 

Minimum Distance to 
Offset Well (ft.) 

Group 5- 

Stimulation Data 

Avg. Injection 
Pressure(psi) 

Deviation Type  
(Down-Dip, Straight, 

Up-Dip) 

Avg. Breakdown 
Pressure(psi) 

Group 2- 

Reservoir 

Characteristics 

Matrix Porosity 
Avg. Injection 
Rate(bbl./min) 

Net Thickness (ft) Avg. Max Rate 
Water Saturation (%) Slurry Vol.(bbl.) 

TOC (%) Proppant per Stage(lb.) 

Group 3-

Geomechanical 

Properties 

Brittleness Index Total Proppant Inj.(lb) 

Min Horizontal Stress 

Slurry per Stage (bbl.) 

Duration of Flow 
Regime 1 
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The models were developed using 80% of the data while the remaining 20% was left for calibration and 

validation purposes and was not used during the model building (as blind data). Figure 8.6 and Figure 8.7  

show the results of neural network prediction versus actual best 3 months and 24 months of production. 

The training dataset in the best 3 months model has an R-Square of 0.95 and the calibration and 

verification have an R-Square of 0.90 and 0.97 respectively. These parameters for the best 24 months of 

production are 0.94, 0.88, and 0.92 correspondingly.  

 

Figure 8.6: The Scatter plots of training. Calibration and verification for the best 3 months production model 

 

Figure 8.7: The Scatter plots of training. Calibration and verification for the best 24 months production model 

Upon having the acceptable models, the sensitivity analyses can be performed on individual well which 

includes the analysis for each single parameter and multiple parameters. During the single parameter 

sensitivity analysis, parameters are selected one at a time to be studied, while all other parameters are kept 

constant at their original value. The value of the target parameter is varied throughout its range and the 

model output (the best 3 months and 24 months cumulative rich gas production) is calculated (using the 

trained neural network) and plotted for each variation. Figure 8.8 to Figure 8.10 show the single 

parameter sensitivity result for TOC, Brittleness Index, Stimulated Lateral Length and Cluster Spacing for 

three different types of wells (type 1, 2 and 3) resulting from both models (the best 3 months and 24 

months cumulative rich gas production).  

Training  Calibration  Verification 

Verification Calibration Training 

Actual 

Model

Actual 

Model
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Figure 8.8: Sensitivity Result for different parameters based on the best 3 and 24 months of production for type 1 well 

 

Figure 8.9: Sensitivity Result for different parameters based on the best 3 and 24 months of production for type 2 well 
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Figure 8.10: Sensitivity Result for different parameters based on the best 3 and 24 months of production for type 3 well 

As explained earlier in this section, these parameters mostly didn’t show such a clear trend by performing 

the sensitivity analysis using the best history match AI-based model while the above figures illustrate a 

very apparent behavior that can be achieved by doing sensitivity analysis based on the production 

indicators (best 3 months and best 24 months of production). 

Regardless of each parameter’s degree of influence, the impact of all shown parameters on production 

performance of different well types is qualitatively the same. In these examples, both early and late 

production performance of the wells increases as the stimulated lateral length increases. It is expected that 

similar behavior to be followed in the case of TOC and Brittleness Index and figures show this trend. For 

the case of cluster spacing, the example shows that for all types of the wells, by having farthest clusters, 

the production performance in the early time of production will be decreased as well as the performance 

in late time.  

Just like the single parameter sensitivity analysis, combinational sensitivity analysis was performed on 

individual wells. If sensitivity analysis is investigated for two parameters simultaneously, the result is 

called a combinational sensitivity analysis and it can be displayed using a three dimensional plot as seen 
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in Figure 8.11 through Figure 8.13 where the best 3 months and 24 months of cumulative rich gas 

production were plotted against easting and net thickness. 

Similar to single-parameter sensitivity analysis, during this process all the parameters except two target 

parameters are kept constant at their actual values. The value of these target parameters are changed 

throughout their ranges and the model output (the best 3 months and the best 24 months cumulative rich 

gas production) is estimated and plotted for each variation.  

 

Figure 8.11: Combinational sensitivity analysis for the best 3 and 24 months models‐Type 1 Well‐Easting vs. Net Thickness 

 

Figure 8.12: Combinational sensitivity analysis for the best 3 and 24 months models‐Type 2 Well‐Easting vs. Net Thickness 

 

Figure 8.13: Combinational sensitivity analysis for the best 3 and 24 months models‐Type 3 Well‐Easting vs. Net Thickness 
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As illustrated in these figures in all types of the wells, by moving towards the east part of the reservoir, 

the net thickness is increased and alternatively the production performance of the wells improves in both 

early time and late time of well life. 

It is worth noting that Figure 8.11 through Figure 8.13 represents the combinational sensitivity analysis 

results for the same wells as the single parameter sensitivity analyses were performed for. 

8.2 Optimization Study 

Given all the facts about the complexity of the shale reservoirs, the physics of production from these 

reservoirs are not fully understood. Therefore making decisions and reservoir management based on the 

available tools (such as analytical and numerical) could be challenging. Then data mining may be a good 

alternative which gives a hand to the engineers and operators to make better decision when it comes to the 

shale assets.  

The main objective of this section is to provide insight into the operation practice of Marcellus Shale and 

to evaluate the role of each native and design parameters in production from shale. The outcome of this 

analysis is used to identify the optimum completion and stimulation design to achieve maximum 

productions which are the key factors in shale reservoir management.   

In order to accomplish this task, three different approaches all based on the Pattern Recognition were 

used. When fuzzy set theory is used to determine the appropriate multidimensional space that would 

provide optimum separation of overlapping classes, the result is known as “Fuzzy Pattern Recognition”. 

This analysis was also performed by using IMproveTM. 

When Fuzzy Pattern Recognition is applied to a limited number of well classes (Such as Poor, Average 

and Good wells) the process is called the “Step Analysis2” or “Well Quality Analysis (WQA)”. When a 

similar analysis is performed while every single well in the dataset is treated as a potential unique well 

quality3 the result is a continuous curve (rather than a discrete set of steps), called a “Fuzzy Trend 

Analysis (FTA)”. Another application of Fuzzy Pattern Recognition is investigating the contribution 

(influence) of each of the parameters on any given production indicator which is known as “Key 

Performance Indicator”. Such analyses were performed on several native and design parameters in 

different time intervals such as the best 3 months, 12 months, 24 months and 36 months. By definition, 

                                                            
2 The name reflects the shape of the resulted graphs that are in the form of ascending or descending steps. 
3 Multiple wells with similar production indicator will be classified similarly. 
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the native parameters are those inherent reservoir characteristics and the design parameters refer to those 

manageable information that are usually measured during the operation such as injected fluid amount, 

injection pressure, rate etc. 

The results of WQA and FTA will be shown together while the results of KPI analyses will be presented 

as a separate sub-section. 

8.2.1 Well Quality Analysis and Fuzzy Trend Analysis 

In all “Step Analysis” or “Well Quality Analyses”, three different well qualities (Poor, Average and 

Good) were defined based on the production indicators which are the best 3 months of production, the 

best 12 months of production, the best 24 months of production and the best 36 months of production. 

Figure 8.14 to Figure 8.17 shows the fuzzy sets that were defined for each of the time intervals.  

 

Figure 8.14: The fuzzy clusters plot and values for the best 3 months of production in WQA 

 

Figure 8.15: The fuzzy clusters plot and values for the best 12 months of production in WQA 

Poor  Average  Good 
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Figure 8.16: The fuzzy clusters plot and values for the best 24 months of production in WQA 

 

Figure 8.17: The fuzzy clusters plot and values for the best 36 months of production in WQA 

A shown in these figures, there are several regions in which wells with different qualities overlap and 

because of this definition, some of the wells have membership in more than one class of wells. These 

class memberships are referred to fuzzy membership function and it is a very unique feature of this 

technology. For example in Figure 8.15, a well belongs to a fuzzy set of “Poor Wells” with a degree of 

membership equal to 0.7 and to fuzzy set of “Average Wells” with a degree of membership equal to 0.3. 

In “Fuzzy Trend Analysis”, on the other hand, the integrated fuzzy pattern recognition was used in order 

to deduce understandable trends from seemingly chaotic behavior. The result of such analysis is the 

continuous curves rather than a discrete set of steps. 

As mentioned earlier, several native and design parameters were selected to be analyzed; Table 8-3 shows 

the list of these parameters. Both Well Quality Analysis and Fuzzy Trend Analysis were performed for 

the 4 different time intervals (3, 12, 24 and 36 Months). The detailed result for each individual parameter 

will be discussed as following: 

Poor 

Poor 

Average 

Average 

Good 

Good



112 
 

Table 8‐3: List of the Native and Design Parameters in FTA and WQA 

Design Parameters Native Parameters 

Location Drilling Matrix Porosity 

Deviation Type TOC 

Minimum Distance to the Offset Well Brittleness Index 

Stimulated Lateral Length Net Thickness 

Total Number of Clusters  
Days between Completion & Production  

Amount of Proppant per Stage  
Cluster Spacing   

Location of Drilling- The production wells used in this study cover an area of around 190,000 acres and 

have been drilled very scattered, therefore it is very important to know which part of the reservoir is the 

better candidate for drilling. By looking at the production performance versus location of the wells 

(Easting) in this area (Figure 8.18 and Figure 8.19 ), it clearly shows a preferential trend towards gas 

production (in all time intervals) as we move to east.  

 

Figure 8.18: The Trend of Rich Gas Production in different time intervals versus location of the drilling‐ FTA Result 
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On the other hand, the limited available FMI logs for some vertical wells in this area show indications of 

open or partially open natural fractures in the center towards the east of the area (positive impact on well 

performance) while most of the natural fractures in the western part are healed fractures. Moreover some 

faults have been observed in the west part of the reservoir and seem to have a negative impact on 

production performance of the wells on that area. 

Well Deviation Type- In this area of study, wells were drilled with different types of configuration and 

deviation. As discussed in chapter five, mainly three types of deviation, identified as Up-Dip, Down-Dip 

and No Dip can be observed. 

The Well Quality Analysis (Figure 8.21) shows that in this part of Marcellus Shale, the well performance 

in both early and late time has been impacted by the well deviation favoring the Down-Dip wells. The 

Down-Dip wells are either completely or partially hydraulically fractured in Lower Marcellus which is 

more prolific in terms of reservoir characteristics and net thickness. Moreover those wells with downward 

deviation, which are hydraulically fractured in Upper and Lower Marcellus, show better performance 

because of more exposure to the entire pay zone. 

 

Figure 8.21: Well Quality Analysis for Deviation type‐ Different time intervals 
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Stimulated Lateral Length- Drilling the horizontal wells with a long lateral length became a successful 

strategy in production from shale and Marcellus Shale is not an exception. Figure 8.22 shows the trend of 

production behavior of the field in different time intervals as a function of stimulated lateral length.  

This figure shows that the impact of stimulated lateral length at an early time (3 Months) of production is 

not as much as its impact at late time of production. Nevertheless the existence of an increasing trend in 

production performance by increasing the stimulated lateral length is quite clear from this figure.  

Another important feature of this figure is that the impact of stimulated lateral length on production 

performance in all time intervals when it goes beyond 4000 feet is insignificant, although this might be 

due to the fact that the number of control point (the number of wells with more than 4000 feet stimulated 

lateral length ) is limited in the database. 

Figure 8.23 also presents that those wells with longer stimulated laterals show the better performance in 

either early or late times of production.  

 

Figure 8.22:  The Trend of Rich Gas Production in different time intervals versus Stimulated Lateral Length‐ FTA Result 
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Figure 8.23: Well Quality Analysis for Stimulated Lateral Length‐ Different time intervals 

Total Number of Clusters- the common practice in developing the Marcellus Shale is hydraulic 

fracturing the wells with multi stages multi clusters. The number of clusters in this dataset changes 

widely, some wells have experienced up to 45 clusters while other wells possess a number of clusters as 

low as 8. 

Figure 8.24 shows the increasing trend of production (for all time intervals) as a function of total number 

of clusters. This behavior is also observed in Figure 8.25 in which the wells were categorized into fuzzy 

clusters.  

Although the increasing trend of production performance is clearly observed in Figure 8.24, it also shows 

that as times goes on; the impact of the number of clusters in wells becomes more important. The FTA 

curves in this figure show a non-linearly increasing pattern in the production performance with the total 

number of clusters that start with the sharp slope and decreases in steepness as the number of total clusters 

increases beyond 24.   

Minimum Distance to the Offset Well- Most of the laterals in the Marcellus Shale are spaced from 

1000 ft. to 2000 ft. apart even though some operators experimented drilling with decreasing spacing. 
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Figure 8.26 shows the Fuzzy Trend Analysis result for the effect of minimum distance to the offset well 

on production behavior of the wells in different time intervals. 

 

Figure 8.24: The Trend of Rich Gas Production in different time intervals versus total number of clusters‐ FTA Result 

 

Figure 8.25: Well Quality Analysis for total number of clusters‐ Different time intervals 
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Figure 8.26: The Trend of Rich Gas Production in different time intervals versus minimum distance to the offset well‐ FTA 
Result 

As illustrated in this figure, the production performance of the wells slightly decreases by increasing the 

minimum distance between the laterals. This descending trend is more obvious for the time interval up to 

two years of production where the closer distance between the laterals (it might be translated to more so-

called stimulated reservoir volume because of more interaction between the hydraulic fractures and 

existing natural fractures) causes the higher productivity.  

For the longer production indicator (36 months of production) the impact of minimum distance between 

the laterals becomes insignificant where the wells start to produce from the absorbed gas in matrix.  

Figure 8.27 also represents the result of Well Quality Analysis for the behavior of production in different 

time intervals versus minimum distance between the laterals. As expected the production performance of 

the wells decreases as the minimum distance between the laterals increases. This trend cannot obviously 

be observed in the time intervals of 3 months and 12 months.   

It should be noted that increasing the inside distances between laterals does not necessarily increase the 

well performance as the well produces more, therefore there should be an optimum distance to (1) 

establish enough connectivity to the matrix and (2) avoid well interference. The WQA in Figure 8.27 
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justifies this statement and shows that for the wells in this study, the minimum distance of around 2000 

feet might be an optimum distance between the laterals.  

 

Figure 8.27: Well Quality Analysis for Minimum distance to the offset wells‐ Different time intervals 

Injected Proppant per Stage- The unique characteristics of shale (ultra-low permeability) have led to the 

evolution of hydraulic fracture stimulation involving high rates, low viscosities, and large volumes of 

proppant. As illustrated in Figure 8.28 and Figure 8.29 the production performance of the wells has a 

direct correlation with the amount of proppant pumped in each stage. These figures show that better wells 

were treated with more proppant than wells with lower quality. 

Days between Completion and Production- As explained in chapter six, the damages caused by 

injected water can be different in cases of having delay in bringing the well to production because in this 

case the injected water may reduce the formation permeability in the invaded zone because of clay 

swelling, scaling and fines migration [Holditch, 1979]. This process along with relative permeability and 

capillary pressure changes can potentially cause severely adverse impacts on long-term production. 

Figure 8.30, shows the production performance of the well in different time intervals as a function of days 

between completion and production. 
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Figure 8.28: The Trend of Rich Gas Production in different time intervals versus injected proppant per stage‐ FTA Result 

 

Figure 8.29: Well Quality Analysis for injected proppant per stage‐ Different time intervals 
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Figure 8.30: The Trend of Rich Gas Production in different time intervals versus Days between the Completion and 
Production‐ FTA Result 

 

Figure 8.31: Well Quality Analysis for Days between the Completion and Production‐Different time intervals 
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As it illustrated in Figure 8.30, the performance of the well decreases very slightly as there is more delay 

after completion of the well towards the production start-up date.  

Similarly, the inverse effect of this delay can be observed from the Well Quality Analysis. Figure 8.31 

represents such a result which shows that the good wells are those which came to production without 

delay or with little delay after completion. The figure also shows that the effect of this parameter cannot 

obviously be observed in the early time of production while as time goes on, the inverse trend of 

production performance becomes more apparent.  

Cluster Spacing – Increasing the number of clusters and stimulated lateral length always favors more 

rich gas production (as it shown), but inadequate cluster spacing can actually lead to lower ultimate 

recovery. Cheng (2012) showed that decreasing the cluster spacing so as to increase the total number of 

fractures may significantly reduce gas production when the cluster spacing is reduced to an adequately 

small size, where the width growth of fractures is strongly inhibited because of the mechanical 

interaction. 

Figure 8.33 and Figure 8.34 illustrate the result of FTA and WQA for cluster spacing.  

 

Figure 8.32: The Trend of Rich Gas Production in different time intervals versus Cluster Spacing‐ FTA Result 
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Figure 8.33: Well Quality Analysis for Cluster Spacing‐Different time intervals 

As shown in Figure 8.33, the production performance shows an increasing trend as cluster spacing 

increases from 50 feet to about 90 feet and then starts to decrease gradually.   

Moreover, from Figure 8.34, it is observed that those wells with closer clusters (cluster spacing less than 

100 feet) have significantly better production performance than those with higher cluster spacing. It can 

be concluded that the optimum cluster spacing for the wells in this area could be around 90 feet.  

Matrix Porosity- As explained earlier in sensitivity analysis based on the best history matched AI-based 

model, the matrix porosity plays an important role in production of the Marcellus Shale.  

As seen in Figure 8.34 and Figure 8.35, higher matrix porosity results in better production performance in 

both early and late time of well life. 

Total Organic Carbon (TOC) - The amount of natural gas present in the Marcellus Shale is the 

product of the quantity of undecomposed organic matter trapped in the shale and it is measured as the 

total organic carbon (TOC) present. In comparison to some other well-known shale plays in the United 

States, the amount of TOC in the Marcellus Shale is fairly average to low with around 2 to 10 percent.  
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Figure 8.34: The Trend of Rich Gas Production in different time intervals versus Matrix Porosity‐ FTA Result 

 

Figure 8.35: Well Quality Analysis for Matrix porosity‐Different time intervals 
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Figure 8.36 and Figure 8.37 show the trend of improving production in all time intervals as a function of 

total organic carbon content.  

 

Figure 8.36: The Trend of Rich Gas Production in different time intervals versus TOC‐ FTA Result 

 

Figure 8.37: Well Quality Analysis for Total Organic Carbon‐Different time intervals 
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The Fuzzy Trend Analysis in Figure 8.37 illustrates that those wells with TOC around 2.7 percent and 

less (which are categorized as poor and average wells) show the same production trend and the effect of 

TOC on production performance can be negligible while the good wells are those with TOC above 3 

percent and the impact of this parameter on their production behavior is more apparent. 

Although the TOC content is an important factor in evaluating the production potential in shale, it is not 

the only parameter that plays a role, the other factors such as the clay percentage and the ratio of quartz to 

carbonate should also be taken into account when it comes to production performance of Marcellus Shale. 

In the Marcellus Shale the recommended values are 40 percent for clay percentage, 3.3 for the ratio of 

quartz to carbonate, and 6.5 for TOC content [Wang et al. 2012]. 

Net Pay Thickness – The Marcellus Shale is extremely variable in thickness, ranging from a few feet to 

more than 250 feet, and generally becomes thicker to the east. The range of net thickness in the area of 

this study is 90 to 170 feet. Due to different well trajectory (deviation type), landing targets and 

completed stages, the pay zone is fully or partially accessible therefore this is another important factor in 

the production performance of the wells. Figure 8.38 shows the clear increasing trend of rich gas 

production for higher thickness based on FTA. The same trend can be observed in Figure 8.39 from the 

poor to good wells with thicker net pay. 

 

Figure 8.38: The Trend of Rich Gas Production in different time intervals versus Net Pay Thickness‐ FTA Result 
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Figure 8.39: Well Quality Analysis for Net Pay Thickness‐Different time intervals 

Brittleness Index (BI) – As mentioned earlier in chapter 6 (section 6.9), the brittleness index was 

defined as a combination of Young’s modulus and Poisson’s ration to reflect the rock’s ability to fail 

under stress (Poisson’s ration) and maintain a fracture (Young’s modulus).  

By given definition, the shale with a higher brittleness factor (meaning a higher Young’s modulus and 

lower Poisson’s ration) better responds to hydraulic fracture stimulation. Alternatively those wells drilled 

in an area with higher brittleness index are expected to have better performance. Figure 8.40 and Figure 

8.41 show the result of FTA and WQA for brittleness index. 

As these figure represent, the trend of increasing production performance by increasing the brittleness 

index may not be very obvious and can be due to error associated with the estimation of these values. In 

previous chapters it was explained that out of 135 wells in the area, the geomechanical logs for 30 wells 

was available and by developing several data driven models, theses parameters were generated for 

another 50 wells which became the control points for geostatsitcal distribution maps.  

The final values for each geomechanical properties (Young’s Modulus, Shear Modulus, Bulk Modulus, 

Poisson’s ration and Minimum Horizontal Stress) were extracted from the distribution map; therefore 

some unavoidable errors are involved with these values which might be the reason for not having such a 
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clear trend. Nevertheless, the better performance of “Good Wells” due to higher BI is quite clear 

compared to the “Poor Wells” and “Average Wells” in Well Quality Analysis. 

 

Figure 8.40: The Trend of Rich Gas Production in different time intervals versus Brittleness Index‐ FTA Result 

 

Figure 8.41: Well Quality Analysis for Brittleness Index‐Different time intervals 
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8.2.2 Key Performance Indicator Analysis 

In a similar analysis, by using the Pattern Recognition technology, the contribution (influence) of each of 

the parameters on any given production indicator can be calculated and compared which is known as 

“Key Performance Indicator (KPI)”. In this study, the impact of 32 parameters (Table 8-4) including 

native and design (16 per each category) were analyzed against the best 3 months, 12 months, 24 months 

and 36 months of rich gas production.  

Table 8‐4: List of the Design and Native Parameters in KPI Analysis 

Design Parameters Native Parameters 

Deviation Type Average Lang P(psi) 

Easting  Average Lang Vol.(scf/ton) 

Minimum Distance (ft.) Net Thickness(ft.) 

Type Permeability (md) 

Cluster Spacing Porosity (%) 

Stimulated Lateral Length(ft.) Water Saturation (%) 

Days Comp to Prod TOC (%) 

Total Clusters Brittleness Index 

Average Max Rate Bulk Modulus 

Average Injection Pressure (Psi) Min Horizontal Stress 

Average Injection Rate (bbl./min) Poisson's Ratio 

Average ISIP Shear Modulus 

Average Max Pressure Young’s Modulus 

Max Proppant Concentration (lb./gal) Average Breakdown Pressure 

Proppant per Stage (lb.) Average Breakdown Rate 

Slurry per Stage (bbl.) Duration of Flow Regime 1 (Days) 

Upon completion of KPI analyses, the score of the ranking of the parameters (representing the influence 

of each parameters-the higher score, the more influence) for all time intervals of rich gas production can 

be processed in order to analyze the overall impact of each category (native and design parameters) as a 

function of the production length.  

In this analysis, for simplicity, the average of the scores for all native parameters and design parameters 

were separately calculated and plotted versus 3 months, 12 months, 24 months and 36 months of 
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Figure  8.43:  The  Key  Performance  Indicator  (KPI)  Results  for  design  and  native  parameters  for  the  best  3 months  of 
cumulative rich gas 

 

Figure  8.44:  The  Key  Performance  Indicator  (KPI)  Results  for  design  and  native  parameters  for  the  best  12 months  of 
cumulative rich gas 
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Figure  8.45:  The  Key  Performance  Indicator  (KPI)  Results  for  design  and  native  parameters  for  the  best  24 months  of 
cumulative rich gas 

 

Figure  8.46:  The  Key  Performance  Indicator  (KPI)  Results  for  design  and  native  parameters  for  the  best  36 months  of 
cumulative rich gas 
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8.2.3 Key Findings in Optimization Study 

From optimization study the following conclusions can be drawn: 

1- Drilling the new wells in the eastern part of the reservoir can result in better performance of the 

well due to better reservoir quality (thickness, more open natural fractures) 

2- The wells with the deviation type of down-dip have shown more cumulative production in early 

and late time of production. The wells with down-dip deviation type which are partially 

completed in Upper and Lower Marcellus are the most productive wells. 

3- The longer stimulated lateral and more clusters are always in favor of more gas production 

although given the same stimulated lateral length for a horizontal well, increasing the number of 

clusters results in reducing the cluster spacing which does not necessarily improve well 

performance. This study showed that the cluster spacing of about 90 feet could be a good 

estimation for the optimum space. 

4- The minimum distance between the laterals that makes enough connectivity to the matrix and 

avoids well interference could be about 2000 feet. A parallel study on the economic impact of  

 “Frac Hit” on well performance in Marcellus also showed that this process is more significant for 

those laterals with a distance of less than 2000 feet and causes substantial decline in gas 

production.   

5- This study also revealed that bringing the well to the production after completion with delay is 

not in favor of production performance. Those wells with longer delay have shown poor 

performance.  

6- The more injected proppant per stage and injected slurry per stage will improve well 

performance. 

7- Drilling the wells in part of the reservoir with more matrix porosity, thicker pay zone, more TOC 

content and more brittleness index may result in better production in both early and late time of 

well life. Other factors should also be taken into account when selecting the well location such as 

the ratio of quartz to carbonate, the clay content, the stress of the area and etc.  

8.3 Type Curves 

A type curve represents the variations in pressure or rate versus time for a specific reservoir-well 

configuration. It is usually calculated using an analytic model and expresses in dimensionless variables. 

Since the discovery of shale reservoirs, the role of type curves as a handy tool for quick production 
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analysis has become very important. Type curves for shale reservoirs can be generated for different 

purposes such as evaluating the gas in place, determining flow regimes, some reservoir properties and etc. 

During the past decade, so many type curves were generated by researchers; “Agarwal-Gardner”, 

“Blasingame”, “Fetkovich” and “Wattenbarger” are the most well-known existing type curves for 

production analysis from shale. Because of the complexity of fluid flow in shale, the generated type 

curves are usually based on some assumptions such as elliptical shape of fractures, the limited outer and 

etc. Nevertheless for a quick look shale reservoir interpretation, having type curves will make the 

production analysis even more convenient for practical purposes. 

Upon completion of the AI-based model for different time intervals (as explained in section 8.1.2), type 

curves can be generated to assist operators during the decision making process: where to place the next 

well (or which wells should receive priority for drilling) and how to complete and stimulate that well. 

Type curves can be generated for individual wells, for groups of wells and for the entire field. In type 

curves, the y-axis is the model output (in this case, the best 3 months and 24 months cumulative rich gas 

production). The x-axis should be selected from one of the input parameters and curves represent a third 

parameter. Figure 8.47 shows two sets of type curves (3 months and 24 months) for total injected 

proppant (curves) as a function of stimulated lateral length (x-axis) for the entire field. Similar type 

curves can be developed for a group of wells as shown in Figure 8.48 and Figure 8.49. 
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Figure 8.47: Type curves for entire field showing changes in best 3 Months and 24 Months Cum. Rich Gas as a function of 
stimulated lateral length and different total injected proppant 
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Figure 8.48: Type curves for different well types showing changes in best 3 Months Cum. Rich Gas as a function of stimulated 
lateral length and different total injected proppant 

Type 1 Wells

Type 2 Wells

Type 3 Wells
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Figure 8.49: Type curves for different well types showing changes in best 24 Months Cum. Rich Gas as a function of 
stimulated lateral length and different total injected proppant 
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In order to validate the generated type curves, it was tried to predict the best 3 months production of two 

new wells that their production was forecasted in chapter 7 by using the type curves. 

New Well 1-Pad 4- Coming into production during March 2012, this type 3 well is located in a pad with 

four more wells. This well was completed in 10 stages (30 clusters) and in the best 3 months of its 

production life it produced about 185,300 MCF rich gases. The location and some stimulation 

information of this well were available and used to predict its production performance for the best 3 

months by using the type curves. In order to accomplish this, either the type curves of the entire field or 

the type curves for type 3 wells can be used, although for this specific problem the type curves of entire 

filed were considered. 

The first type curve is the changes in the best 3 months of cumulative rich gas as a function of stimulated 

lateral length and total injected proppant. For this well, the stimulated lateral length is about 2700 ft. and 

the total injected proppant for all the stages is 3.02 million pounds. As shown in Figure 8.50, for the 

stimulated lateral length of 2700ft. and the total injected proppant of 3 MMlb, the best 3 months of rich 

gas is predicted to be 200,000 MCF which is very close to the actual production. 

 

Figure 8.50: Type curve for the entire field‐ the Best 3 months cum. Gas as a function of stimulated lateral length and total 
injected proppant. For the New Well 1‐Pad 4, by 2700 ft. stimulated lateral length and 3,000,000 total injected proppant, the 

best 3 months of rich gas is predicted about 200K MCF. 

2700 ft.

200K MCF 
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This task can be done by using the other type curves, for instance if the location of the well is known (the 

easting), by using one of the completion or stimulation information such as maximum injection rate, the 

best 3 months of cumulative rich gas can be predicted by using the type curve as illustrated is Figure 8.51. 

As shown in this figure, by knowing the location of the well (easting coordinate of this well is 558166 m) 

and the average of maximum rate for all stages (which is around 70 bbl./min), the best 3 months of 

cumulative rich gas would be 205,000 MCF. 

 

Figure 8.51: Type curve for entire field‐the best 3months cum. Gas as a function of well location and average maximum 

injection rate. For the New Well 1‐Pad 4 which is located in easting of 558K, and was completed by average maximum 

injection rate of 70 bbl./min, the best 3 months of rich gas is predicted to be about 205K MCF. 

New Well 1-Pad 6 – This well is located on a pad with two more wells in the west part of the reservoir 

and it came to production on September 2012. During the best 3 months of production, 98,200 MCF rich 

gas was produced by this well. The well was completed by 9 hydraulic fracture stages (27 clusters) along 

the stimulated lateral of 2200 feet.  

By using this stimulated lateral length and total injected proppant (which is about 2.7 million pounds, the 

total cumulative rich gas for the best 3 months of this well was predicted to be about 155,000 MCF by 

using the type curve (Figure 8.52). 

558K (m)
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Figure 8.52: Type curve for the entire field‐ the Best 3 months cum. Gas as a function of stimulated lateral length and total 
injected proppant. For the New Well 1‐Pad 6, by 2200 ft. stimulated lateral length and 2,700,000 total injected proppant, the 

best 3 months of rich gas is predicted about 155K MCF. 

 

Figure 8.53: Type curve for entire field‐the best 3months cum. Gas as a function of well location and average maximum 
injection rate. For the New Well 1‐Pad 6 which is located in easting of 547K, and was completed by average maximum 

injection rate of 71.1 bbl./min, the best 3 months of rich gas is predicted to be about 105K MCF. 
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Using the location (easting) and the average of maximum injection rate (Figure 8.53 ), this well’s best 3 

months of production were estimated around 105,000 MCF which is closer to the actual production of the 

well.  

The difference between the values from two type curves is due to the fact that during the generation of 

type curves as a function of one specific parameter, the other parameters are kept constant. Therefore two 

different values with the error of about 20% are expected to be observed.  

Moreover, the west part of the reservoir has relatively less wells (possibly due to the existing of some 

faults) and because of this, the generated type curve as a function of easting for the values less than 555K 

are very close to each other (as it shown in Figure 8.53).  
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9. CHAPTER IX 

CONCLUDING REMARKS AND RECOMMENDATIONS 

9.1 Concluding Remarks 

The major conclusions of this work can be summarized as follows: 

1- An AI-based shale reservoir model was developed with the aim of overcoming current issues in 

numerical and analytical modeling of shale reservoirs. The beauty of this technology is its 

capability of handling and incorporating all the data and instead of imposing our vague 

knowledge of flow and transport mechanism in the shale system, let the data identify its 

functional relationship using pattern recognition approach in a non-linear and complex system. 

2-  The full-field history matching was performed (history matching for every single well) by using 

the optimum number of parameters with acceptable accuracy. The history matching result for 

90% of the wells showed an error less than 15% which is a good indication of the model’s 

accuracy. 

Out of 135 wells, five wells showed the history matching error above 20%. The detailed analysis 

of these five wells revealed that these are the first wells that were drilled and completed either in 

the field or in their own pad and therefore the existing of the offset well (which is not necessarily 

a closest well) has a reverse impact particularly at the beginning of the production. 

On the other hand, due to the lack of enough information from the field and the early experience 

of the operator in drilling and completing the horizontal wells, these wells usually produces less 

than the typical gas rate in Marcellus and the  very erratic production behavior cannot be easily 

captured by the AI-based model 

3- Upon completion of history matching, the AI-based model was validated by using the blind 

dataset. The last four months of production were consistently removed from the production 

history and it was tried to predict the production behavior by using the AI-based model. The 

estimated error of 5.7% for the prediction of these four months simply showed the capability and 

validity of the AI-based model.  

4- Once the developing and validating of an AI-based model is completed, its utilization is similar to 

a conventional full field model. It was used for forecasting the well/field production performance 

(short term). The results showed that about 10% of the wells have a forecasting error above 20%. 
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These wells show a very different trend in the period of forecasting (a year after history matching 

period) and because of not using the corresponding operational constraints (the days of 

production and well head pressure), the AI-based model could not be able to forecast this 

abnormality. In order to confirm this, the operational constraints were updated by using the 

available actual values for these wells and the forecast of the AI-based model was improved 

significantly.  

Moreover, the history matched and validated model were used to predict the production behavior 

of some new wells which were drilled at different locations of the reservoir. The production 

performance of 29 new wells on 6 different pads was predicted by the AI-based model with 

acceptable accuracy. The operational constraints, stimulation, completion and other reservoir 

characteristics of these wells were not provided to the AI-based model and the model used the 

information of offset well in order to predict the production performance. 

5- A comprehensive sensitivity analysis was performed by both using the best history matched AI-

based model and different production indicators(the best 3 months and 24 month of cumulative 

rich gas) in order to investigate the impact of different parameters on production behavior of the 

wells/field. 

In the sensitivity analysis based on the best history matched AI-based model, the effect of 9 

parameters, which were involved in obtaining the model, were studied. The influence of 30% 

increasing of these parameters (relative to the reference model) was evaluated for different types 

of the well (type 1, 2 and 3) and it was found that the different well types respond differently to 

the changes in parameters in terms of degree of influence although the general response (negative 

or positive) is almost the same. For example, increasing the injected clean volume has improved 

the production performance of all types and increasing in average injection rate has shown a 

negative impact on all types of wells even though the degree of influence for these two 

parameters in different well types is different. The 30% increasing in injected clean volume has 

improved the production of type 1 wells by 10.8% while it has increased the production of type 2 

and type 3 wells by 5.2% and 10.3% respectively. The degree of influence for the increasing 

average injection rate on type 1 wells is about -2.6%, for type 2 wells is about -2.4% and for type 

3 wells, is about -1.5%.  

In the sensitivity analysis by using the different production indicators (the best 3 months and 24 

months of cumulative rich gas) the impact of different parameters on early and late times of 
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production from three types of wells were studied. The objective of such analysis was 

investigating the behavior of the wells as a function of those parameters which didn’t show the 

clear trend in previous sensitivity analysis and those parameters that were not involved in best 

history matched AI-based model such as TOC, Brittleness Index and etc. Both single-parameter 

and combinational parameters sensitivity analysis was performed for the three types of the wells. 

The result of such analysis confirmed that any variation in parameters could affect the different 

type of wells by different degrees, although the overall behavior (increasing or decreasing trend) 

is the same. For instance, both early and late production performance of all well types increases 

as the stimulated lateral length increases.  The similar behavior is followed in the case of TOC 

and Brittleness Index. For the case of cluster spacing, the analysis showed that for all types of 

wells, by having farthest clusters, the production performance in early time of production will be 

decreased as well as the performance in late time.  

6- Using the artificial intelligence and data mining, an optimization study with the purpose of 

providing a tool for operators in terms of the location of new wells, the optimum hydraulic 

fractures design and the best practices for completion and etc. was performed. In this analysis, 

different production indicators was used and by using two techniques of “Fuzzy Trend Analysis 

“and “Well Quality Analysis”. Some recommendations for effective and integrated reservoir 

management have been provided.  

This study shows that an increasing trend toward gas production is obviously observed as we 

move to the east part of the reservoir (thicker pay zone and better reservoir characteristics). Also 

the down-dip deviation seems to be the best deviation type for these wells as they partially 

completed in Upper and Lower Marcellus and have been exposed to the whole pay zone. 

In terms of the reservoir characteristics, the optimization study showed that the higher matrix 

porosity, higher TOC, thicker pay zone and higher brittleness index are in favor of rich gas 

production either in early time or late time, although for determination of the drilling location, 

some other factors should be taken into account such as the ratio of quartz to carbonate, the clay 

content, the stress of the area and etc. 

The optimization study also illustrated that the wells with a longer stimulated lateral and more 

clusters have better production performance in both early and late times of their life, although 

such analysis showed that the for all time intervals, the production performance does not change 

significantly when the length of the stimulated lateral goes above 3800 feet. Very special 
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attention should be paid to the number of clusters; although increasing the number of 

clusters/stages would improve the production performance, the closer clusters/stages (decrease in 

cluster spacing), on the other hand can have the reverse impact. This study shows that the cluster 

spacing around 90 feet is a good estimation for the optimum spacing and the production of the 

new wells confirms this analogy. The completion history of the new wells shows that the operator 

has tried to complete the new wells with more stages but closer clusters (up to 23 stages-

70clusters with the spacing of 70 ft.) and the production has not been changed significantly.  

This study also showed that the optimum distance between the laterals is about 2000 feet to 

establish enough connectivity to the matrix and to avoid well interference. A parallel study shows 

that the process of “Frac Hit” happens for those wells with the minimum distance of less than 200 

feet and it causes a significant decrease in gas and condensate production in the long term. 

During the completion of the wells, it’s been noticed that some wells have a considerable delay 

between the completion and production; the optimization study discloses that this delay can 

potentially cause severely adverse impacts on long-term production. 

In terms of hydraulic fracturing design, injecting more proppant per stage can always improve the 

production performance of the well as well as pumping more slurry for each stage.  

As shown and discussed in sensitivity analysis, the increase of average injection rate has a 

negative impact on production performance, although it was not shown in the optimization study, 

it was confirmed by such analysis too. It is recommended to inject the slurry volume  

(after breaking the rock) with a lower rate, which makes the longer and more conductive 

fractures. 

7- The type curves were also generated for entire field and different types of the wells in order to 

assist operators during the decision making process and gives them an estimation about the 

production performance of new and existing wells. The generated type curves were validated by 

the information of two new wells and the result showed an acceptable consistency between the 

estimation from type curves and actual production of these wells. 
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9.2 Recommendations for Future Work 

Since they are data dependent, AI-based models are organic in nature. As more data becomes available, 

the model can re-trained in order to learn from the new data and to enhance its performance. The 

following modifications are recommended for future work in this area: 

1- Incorporating the dynamic geomechanical properties in the dataset instead of static properties: 

The stress profile is changing during well drilling and completion. This variation may have a 

significant impact on production of the wells which is still unknown. By using the Artificial 

Intelligence, and the available geomechanical logs (which were collected in different time 

intervals of field development), some dynamic data-driven models can be developed which are 

representative of stress changes in the area during the field development.  

2- The existence of natural fractures and their role in production from shale asset is one of the 

important issues in understanding of fluid flow in shale production. The FMI logs information 

can be incorporated in AI-based modeling to show the existence of natural fractures as well as 

their type in different locations of the field and, most importantly, their impact on production 

performance of the wells.  

3- Advances in Microseismic application for shale reservoirs, have made it very valuable 

information which can be used in AI-based modeling.  

4- As explained earlier, in the development of AI-based models, the decline curve analysis and type 

curves can be performed which the results might be useful especially in the forecasting part, 

although the existing type curve and decline curve functions in IMAGINETM should be modified 

in order to be used for Shale reservoirs.  
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