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ABSTRACT 

Empirical Asset Pricing with Equity Tail Risk 

Jingrui Li 

This dissertation comprises three separate chapters on both risk-neutral and physical 

probability spaced equity tail risk for both the market index and in the cross-section of individual 

stocks.  

The first chapter is titled “Does VIX Truly Measure Return Volatility?” This chapter 

studies the bias of the VIX index as a volatility measure. Particularly, VIX undervalues (overvalues) 

volatility when market return is expected to be negatively (positively) skewed. Alternatively, we 

develop a model-free generalized volatility index (GVIX).  This chapter further derives the risk-

neutral tail risk estimated from the VIX index.  

The second chapter is titled “Decomposing the VIX: Implications for the Predictability of 

Stock Returns” This chapter studies the tail risk for the market index (S&P 500 index) in both risk-

neutral and physical probability space and subsequently quantifies the market tail risk premium. 

Market tail risk premium also is a driving force of the VIX index, especially during a nervous 

market condition. The VIX decomposed market tail risk premium possesses significant prediction 

power for the equity market index (S&P500 index), Fama and French style portfolios, and industry 

portfolios with a prediction range that varies from one month to 12 months. 

The third chapter is titled “The Predictive Power of Tail Risk Premia on Individual Stock 

Returns” This chapter studies both the risk-neutral and physical probability space tail risk for the 

cross-section of individual stocks and examines the characteristics of this premium in the cross-

section of stock returns. The tail risk premium for individual stocks is statistically and 

economically priced in the cross-section of individual stock returns. Specifically, the existence of 

a premium for bearing negative tail risk is significantly associated with negative returns up to one 

month in the future.  In contrast, the premium for bearing positive tail risk has no significant 

predictive power. This phenomenon cannot be explained by size, book-to-market ratio, market 

beta, idiosyncratic volatility, momentum, illiquidity, or lottery effect (maximum and minimum 

monthly returns). 

Overall, the results from the three chapters indicate that equity tail risk is an important 

factor for the market index in both risk-neutral and physical probability spaces, and its premium 

carries strong return predictability for multiple market-level portfolio assets. Furthermore, equity 

tail risk and its premium carry significant return prediction power in the cross-section of individual 

stock returns. This phenomenon is robust to previously documented asset pricing factors.
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Chapter 1 Does VIX Truly Measure Return Volatility? 
 

 

 

Chapter Abstract 

 

This article demonstrates theoretically that without imposing any structure on the underlying 

forcing process, the model-free CBOE volatility index (VIX) does not measure market expectation 

of volatility but that of a linear moment-combination.  Particularly, VIX undervalues (overvalues) 

volatility when market return is expected to be negatively (positively) skewed. Alternatively, we 

develop a model-free generalized volatility index (GVIX). With no diffusion assumption, GVIX 

is formulated directly from the definition of log-return variance, and VIX is a special case of the 

GVIX. Empirically, VIX generally understates the true volatility, and the estimation errors 

considerably enlarge during volatile markets. The spread between GVIX and VIX follows a mean-

reverting process. 
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1.1 Introduction 

 

One of the most frequently used devices to estimate expectation of market volatility is the 

Chicago Board of Option Exchanges (CBOE) Volatility Index (VIX).  The index, designed to 

capture the market’s aggregate expectation of future volatility over the next 30 days, was originally 

introduced in 1993 and based on the implied volatility of at-the-money option prices on the 

S&P100 index.  Since the calculation of implied volatility relied heavily on assumptions of option 

pricing models, in 2003, CBOE made a significant change in the volatility estimating methodology 

to avoid the problem of modeling specification. The 2003 VIX formulation has intuitive appeal in 

that option premiums and the underlying asset (S&P 500 index) prices reflect the same information, 

and the ex-ante volatility of asset’s returns can thus be directly extracted from option market data 

without employing any option pricing model. Simply, a volatility forecast does not require a 

specific model, only current option prices. Coined with Demeterfi, Derman, Kamal and Zou (1999),  

this concept of model-free implied volatility has been formalized by Britten-Jones and Neuberger 

(2000) and further extended by Jiang and Tian (2005, 2007).  

 

Specifically, under diffusion assumptions of the return generating process, the arbitrage-

free argument implies that the fair value of expected volatility is extractable from the market price 

of a portfolio composited by all possible out-of-the-money (OTM) call/put options of the 

underlying index with weight inversely proportional to square value of the strike price.  As 

demonstrated by Jiang and Tian (2005), this model-free implied volatility provides a more efficient 

forecast for future realized volatility and is more efficient than the historical variance even if the 

underlying asset price process has jumps.  Because of the superiority of the model-free approach 

to its predecessor, CBOE has recently applied its formulation to a wide range of indices including 

ones for Nasdaq 100, Dow Jones Industry Average, Russell 2000, interest rate, crude oil, 

gold/silver, energy, currency (Euro), as well as individual stocks such as Amazon, Apple, Goldman 

Sachs, Google and IBM.  

 

 This chapter argues that the expression of the CBOE volatility index (VIX) is in fact not 

model-free because its estimates are dependent on specification of a particular underlying 

stochastic process of returns.  Without any diffusion assumption, VIX theoretically characterizes 

not the fair value of volatility but that of a linear combination of ex-ante distributional return-

moments.1  Particularly, the VIX index constitutes additionally one-third value of the ex-ante third 

return-moment (skewness). This highlights a potentially significant bias for VIX to serve as a 

volatility index because skewness continues to occupy a prominent role in financial markets.  

Intuitively, during a period when asset price-movement experiences downtrend momentum, 

demand for puts increases relatively to calls as investors seek protection, and put options become 

relatively more expensive than call options.  The value of volatility, which is extractable from the 

market price of a long option portfolio, increases as put premiums increase.  Simultaneously, the 

price of the third moment (skewness) is replicable by a long position of OTM calls and a short 

position of OTM puts, on the other hand, becomes largely negative.2 Consequently, even when the 

                                                           
1 Martin (2011) has shown that VIX2 is a liner cumulant-combination of log returns but does not highlight the potential 

bias of VIX due to negative skewness. 
2 Bakshi, Kapadia, and Madan (2003, page 107, Equation [7]) explicitly show that the fair price of the third moment, 

denoted by 𝑊𝑇, is a linear sum of the out-of-the-money call option premium minus that of the put premium. 
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VIX (fear gauge) value increases, the index still understates the true value of volatility due to the 

impact of a negative third moment.  

  

 To avoid the impact of high moments on the volatility index as well as to retain the same 

economic merit as the VIX’s conceptualization, we propose an alternative approach, named 

generalized VIX (GVIX). GVIX is generic because it is based on the direct definition of log-return 

variance with an option formulation extended from Bakshi, Kapadia, and Madan (2003).  Neither 

modeling specification nor diffusion assumption is necessary to be imposed on the underlying 

asset’s return generating process.  Further, we prove that VIX is a special case of GVIX.3   

 

  We empirically investigate estimation errors of VIX and their relationship with ex-ante 

return-moments of the underlying asset (S&P 500 index) over a period from January 2005 to May 

2014.  In general, the empirical findings are consistent with our theoretical argument in that VIX 

statistically and significantly underestimates the true volatility.  The VIX-bias dramatically 

increases as market volatility rises due to the impact of substantially negative third return-moment.    

In short, the larger the VIX, the higher the downward biases, and these errors could be as much as 

559 index basis points.   

 

 Finally, we examine time-series properties of VIX, GVIX, and especially, the difference 

between GVIX and VIX (GV-spread).   The individual dynamic process of both VIX and GVIX 

generally follows a random walk.  However, the time variation of GV-spread over our sample 

period follows a mean-reversion with a break of the stationary trend dated by September 8th, 2008.  

The coexistence of the stationarity of GV-Spread as well as the non-stationarity of VIX and GVIX 

implies that the time-series of VIX and that of GVIX are co-integrated. The movement of the GV-

spread quantifies the shift of distributional asymmetry of return expectations as well as the change 

of market sentiments.  

 

Du and Kapadia (2012) is the closest to the current chapter. Du and Kapadia (2012) derive 

a jump and tail index, JTIX, and uses 22-day moving average of JTIX in their empirical estimation. 

This chapter differentiates itself from Du and Kapadia (2012) in important ways. First, we provide 

the discrete approximation procedure following VIX index methodology, this makes the 

application of our GVIX index more broadly available. Second, in our empirical estimation, we 

use the daily GVIX and GV-spread (the difference between VIX and the “true” volatility index) 

estimates instead of moving averages. Third, we examine the mean-reverting property of GV-

spread and the possibility in terms of spread trading. 

 

  This chapter proceeds as follows. Section 1.2 demonstrates the related literature. Section 

1.3 presents an important theoretical relationship between option premiums and an ex-ante 

moment-combination of returns to the underlying asset. Section 1.4 reviews the derivation of VIX 

and explicitly proves the equivalence between VIX and a moment-combination. An alternative 

model-free expression of the ex-ante volatility valuation is also proposed in Section 1.4. Section 

                                                           
3 Martin (2011) developed a volatility index, named SVIX, based on the risk-neutral variance of holding-period 

returns.  Since VIX is derived from the log-return process, SVIX is not equal to VIX even if the diffusion assumptions 

of VIX hold and/or the holding-period returns are log-normally distributed.  Certainly, the volatility of log-returns 

(GVIX) is different from that of holding-period returns (SVIX). 
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1.5 empirically investigates our theoretical arguments, and Section 1.6 contains brief concluding 

remarks.   

 

1.2 Related Literature 

 

A pioneer work by Breeden and Litzenberger (1978) set the foundation of research on 

extracting risk-neutral distribution and model-free volatility from option market prices. The 

concept of model-fee implied volatility later arose from the research and development of variance-

swaps, for example, see Dupire (1994), Neuberger (1994), Carr and Madan (2001), and Baskshi, 

Kapadia and Madan (2003). 

 

Jiang and Tian (2005) extend Britten-Jones and Neuberger (2000) model-free implied 

volatility framework to asset prices processes with jumps. They state this model-free implied 

volatility provides a more efficient forecast than Black-Sholes implied volatility for future realized 

volatility and is more efficient than the historical variance allowing that the underlying asset price 

process has jumps.  

 

Car and Wu (2006) describe the major differences between the old and the new volatility 

indexes of CBOE, they also derive the theoretical underpinnings for the two indexes. They 

conclude that the switch is due to the fact that the new VIX has a better known and more robust 

economic interpretation. Additionally, the variance swap underlying the new VIX formulation has 

a robust replicating portfolio whose option component is static. 

 

Furthermore, in addition to Du and Kapadia (2012) discussed previously, several other 

papers are close to this chapter. Bakshi, Kapadia and Madan (2003) theoretically derive risk-

neutral skewness and kurtosis for asset returns. This chapter adopts similar approach but applies 

to asset return volatility instead of centralized higher moments of returns and subsequently 

provides estimation details. Jiang and Tian (2007) examine the mispricing of VIX index and 

propose a simple smoothing method instead of VIX formula to estimate model-free return 

volatility. Comparatively, the GVIX volatility measure in this chapter is less restricted to 

interpolation choices and is based on the straight-forward variance concept. Martin (2011) 

develops a volatility index, named SVIX, based on the simple variance swaps. However, Martin 

(2011) does not provide the empirical estimation methodology nor examine the empirical trend of 

SVIX.  

 

Internationally, Zheng, Jiang and Chen (2017) devise an improved model-free implied 

variation index (AVIX) based a generalized semi-martingale process with stochastic interest rates 

and applies it to China 50 ETF option markets. They conclude that AVIX is a better measure of 

investor sentiment compared to iVIX4 in Chinese market. 

 

1.3 Ex-ante Moment-Combination and Option Prices 

 

This section demonstrates a generalized relation between option prices and a distributional 

moments’ combination of log-returns without imposing any structure on the underlying focusing 

                                                           
4 In June 2015, Shanghai Stock Exchange (SSE) launched a model-free volatility index for China 50 ETF option 

market, named iVIX. iVIX is estimated similar to CBOE VIX index based S&P 500 index options. 
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process.  We begin conventionally with a simple holding-period return denoted by a capital 𝑅𝑇 

and a continuously compounded rate of return (or log return) denoted by a lowercase 𝑟𝑇 , 

respectively.   These are written as: 

 

𝑅𝑇 =
𝑆𝑇 − 𝑆0
𝑆0

 (1) 

𝑟𝑇 = [ln( 𝑆𝑇) − ln(𝑆0)] = ln (
𝑆𝑇
𝑆0
) 

 
(2) 

where 𝑆0 and 𝑆𝑇 are the price of the asset at time 0 and T, accordingly.   Consider the Taylor 

expansion with the remainder of ln( 𝑆𝑇) centered at 𝑆0, we have  

 

ln( 𝑆𝑇) = ln(𝑆0) +
𝑆𝑇 − 𝑆0
𝑆0

+∫
−1

𝐾2
(𝑆𝑇 − 𝐾)

+𝑑𝐾 +∫
−1

𝐾2
(𝐾 − 𝑆𝑇)

+𝑑𝐾
𝑆0

0

∞

𝑆0

, (3) 

 

Equivalently, using our return notations in (1) and (2), equation (3) can be rewritten as:  

 

𝑅𝑇 − 𝑟𝑇 = [∫
1

𝐾2
(𝑆𝑇 − 𝐾)

+𝑑𝐾 +∫
1

𝐾2
(𝐾 − 𝑆𝑇)

+𝑑𝐾
𝑆0

0

∞

𝑆0

] ≥ 0. (4) 

 

That is, the return of a long position in a contract that pays a holding-period return (𝑅𝑇) 
and a short position in the contract that pays the logarithm of a total return at time T (𝑟𝑇) can be 

replicated by payoffs of a long position in (1
𝐾2⁄ ) call option struck at K for all strikes above the 

current asset price and these of a similar long position in (1
𝐾2⁄ ) put option struck at K for all strikes 

below the current asset price, where all option contracts have T period of time to expiration.  

Notably, the non-negative option payoffs ensures that  𝑅𝑇 ≥ 𝑟𝑇 .    
 

Consider that under the no-arbitrage condition, a currently fair price of an asset can be 

extracted from the put-call parity of European options so that 𝑆0 = 𝐶𝑇(𝐾𝐴) − 𝑃𝑇(𝐾𝐴) + 𝐾𝐴𝑒
−𝑟𝑇 , 

where  𝐶𝑇(𝐾𝐴) and 𝑃𝑇(𝐾𝐴) are the current premiums of call and put option contracts with an at-

the-money (ATM) strike 𝐾𝐴  and expiration T, respectively. r is the annualized risk-free rate 

corresponding to expiration date T.   The forward asset price and expected return can then be 

determined in a risk-neutral framework in that  𝐸(𝑆𝑇) = 𝑒
𝑟𝑇[𝐶𝑇(𝐾𝐴) − 𝑃𝑇(𝐾𝐴)] + 𝐾𝐴 = 𝑆0𝑒

𝑟𝑇 , and 

importantly 𝐸(𝑅𝑇) =
𝐸(𝑆𝑇)−𝑆0

𝑆0
= 𝑒𝑟𝑇 − 1,  where 𝐸(∙) represents the expectation operator.   This 

implies that the fair value of the expected return-difference in (4) can also be drawn from the risk 

neutral forward value of the replicated option portfolio:   

 

𝐸(𝑅𝑇) −  𝐸(𝑟𝑇) = 𝑒
𝑟𝑇 {∫

1

𝐾2
𝐶𝑇(𝐾)𝑑𝐾

∞

𝑆0

+∫
1

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝑆0

0

}, (5) 

 

For connecting equation (5) to the expression of moment-combination, we apply Taylor 

series to an exponential function of 𝑟𝑇 as follows:  
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 (1 + 𝑅𝑇) =
𝑆𝑇
𝑆0
= 𝑒𝑥𝑝 [ln (

𝑆𝑇
𝑆0
)] = 1 +∑

1

𝜅!
[ln (

𝑆𝑇
𝑆0
)]
𝜅𝑁

𝜅=1
+ 𝑜 [ln (

𝑆𝑇
𝑆0
)]
𝑁

 (6) 

 

Then, taking the expected value of both sides of equation (6) with some re-arrangement, the 

expected value of return difference between 𝑅𝑇  and 𝑟𝑇  is equal to a linear combination of 

distributional moments:  

𝐸(𝑅𝑇) − 𝐸(𝑟𝑇) =
1

2
𝐸(𝑟𝑇

2) +
1

6
𝐸(𝑟𝑇

3) +
1

24
𝐸(𝑟𝑇

4) + 𝑜[𝐸(𝑟𝑇
4)] (7) 

 

Interestingly, Equation (7) shows that the expected holding-period return is the moment generating 

function of the log-returns.  Consequently, when we incorporate (5) with (7), the forward value of 

an OTM option portfolio represents an ex-ante moment-combination of log-returns.  We 

demonstrate formally this important result in the following theorem: 

 

Theorem 1.  Let 𝐶𝑇(𝐾) and 𝑃𝑇(𝐾) be the European call and put options with an exercise price of 

K and expiration date at T, respectively. Without imposing any structure on the underlying 

focusing process, the fair value of ex-ante moment-combination of log-returns can be extracted 

from the market price of an OTM option portfolio with weight inversely proportional to square 

value of the strike price in that 

 

[
1

2
𝐸(𝑟𝑇

2) +
1

6
𝐸(𝑟𝑇

3) +
1

24
(𝑟𝑇
4) + 𝑜[𝐸(𝑟𝑇

4)]] = 𝑒𝑟𝑇 [∫
1

𝐾2
𝐶𝑇(𝐾)𝑑𝐾

∞

𝑆0

+∫
1

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝑆0

0

] (8) 

 

Theorem 1 highlights an essential connection between option premiums and market 

expectations about future return-moments.  Specifically, the market price of a (1
𝐾2⁄ ) weighted 

OTM put/call option portfolio extracts the fair value of a linear combination of ex-ante moments 

(e.g., variance, skewness, kurtosis, etc.).  Next, we note that the VIX index was derived based on 

the concept of fair value of future variance and used forward price instead of current price of the 

underlying asset as a reference point to determine future OTM option payoffs of calls and puts.  In 

addition, since it is almost certain, in practice, no option contract has a strike price exactly equal 

to the forward price, one could select the first strike price below the forward price as the reference 

price.  In the next corollary, we adjust the fair value of the option portfolio by taking the forward 

price into consideration. 

 

Corollary 1.  Let 𝑆0 be the current fair price of the underlying asset determined from ATM Put-

Call parity, and the forward price (𝐹0) at time T is then equal to 𝑆0𝑒
𝑟𝑇, where 𝑟 is the annualized 

risk-free rate of interest.  Further, let 𝐾0 be the first strike price below the forward price (𝐾0 ≤ 𝐹0).  
The forward value of the options portfolio in Theorem 1. has the following equality: 

 

𝑒𝑟𝑇 [∫
1

𝐾2
𝐶𝑇(𝐾)𝑑𝐾

∞

𝑆0

+∫
1

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝑆0

0

]

= [(𝑒𝑟𝑇 − 1) − (
𝐹0
𝐾0
− 1) − ln (

𝐾0
𝑆0
)] + 𝑒𝑟𝑇 [∫

1

𝐾2
𝐶𝑇(𝐾)𝑑𝐾

∞

𝐾0

+∫
1

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝐾0

0

] 

(9) 
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The proof of Corollary 1 is straightforward.  By employing Taylor expansion with the remainder 

of ln( 𝑆𝑇) about the point 𝐾0,  we have  

 

𝑙𝑛( 𝑆𝑇) = 𝑙𝑛(𝐾0) +
𝑆𝑇 − 𝐾0
𝐾0

+∫
−1

𝐾2
(𝑆𝑇 − 𝐾)

+𝑑𝐾 +∫
−1

𝐾2
(𝐾 − 𝑆𝑇)

+𝑑𝐾
𝐾0

0

∞

𝐾0

 (10) 

 

Substituting (3) into (10), take the risk-neutral expectation, and realize that 𝐸(𝑅𝑇) = 𝑒
𝑟𝑇 − 1, we 

have equation (9).  The first term of the right-hand side of equation (9) represents the adjustment 

between 𝐹0, 𝑆0 and 𝐾0.    

 

 In summary, from mathematical applications to the relationship between a holding period 

return (𝑅𝑇) and log-return (𝑟𝑇), we illustrate that without any diffusion assumption and model-

specification, a portfolio of OTM options weighted inversely proportional to the square value of 

the strike price extracts the fair value of a linear combination of ex-ante return-moments.  Since 

the CBOE volatility index is calculated from the price of the identical option portfolio as (9), we 

explicitly prove, in the next section, that the VIX formulation is actually a moment-combination 

not a volatility measure in general.  A generalized model-free volatility index is also proposed in 

the next section.    

 

1.4 The VIX and GVIX Indexes 
 

This section reviews briefly the derivation of the CBOE volatility index, illustrates the 

validity problem of the VIX to serve as a volatility index, and develops a generic method to 

estimate ex-ante volatility.   We first note that although the revamped VIX index on September 

2003 no longer relies on any option pricing model, as shown by Demeterfi, Derman, Kamal and 

Zou (1999), the derivation of the index still assumes that the stochastic process of returns to assets 

follows a specification of Geometric Brownian Motion (GBM) and Ito’s Lemma (IL):  

 

{
 

 
𝑑𝑆𝑡
𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑍𝑡 , and 

𝑑[ln(𝑆𝑡)] = (𝜇 −
1

2
𝜎2)𝑑𝑡 + 𝜎𝑑𝑍𝑡    

 

 

 

(11) 

 

(12) 

 

where 𝑍𝑡 is a Wiener process or Brownian motion, 𝜇 is a fixed drift, and 𝜎 is a constant volatility, 

accordingly.5  GBM and IL assume asset returns to be continuous and symmetrically distributed. 

Thus, higher orders of moments than the variance neither exist nor have impact on the return 

generating process.   Since the log-return over a period of T and its variance can be expressed by 

𝑟𝑇 = ∫ 𝑑[ln(𝑆𝑡)]
𝑇

0
 and ∫ 𝜎2

𝑇

0
𝑑𝑡, respectively, the instantaneous volatility (variance) can then be 

calculated directly from simultaneous equations (11) and (12) as follows: 

 

                                                           
5 It is assumed that  𝑑𝑍𝑡

2 = 𝑑𝑡, 𝑑𝑡 ∙ 𝑑𝑍𝑡 = 0, and 𝑑𝑡 ∙ 𝑑𝑡 = 0. 
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𝐯 =
1

𝑇
∫ 𝜎2
𝑇

0

𝑑𝑡 =
2

𝑇
[∫

𝑑𝑆𝑡
𝑆𝑡
− 𝑟𝑇

𝑇

0

] 

 

(13) 

 

As also illustrated by Demeterfi, Derman, Kamal and Zou (1999), equation (13) indicates that the 

ex-ante volatility is replicated by a portfolio of two positions: (1) a continuous rebalanced position 

of instantaneously long 
1

𝑆𝑡
 shares of the underlying asset worth one dollar, and (2) a short position 

in a contract that pays the logarithm of the total return at time T.    Under the risk-neutral framework, 

𝐸 (∫
𝑑𝑆𝑡

𝑆𝑡

𝑇

0
) = 𝑟𝑇, and 𝐸(𝑅𝑇) = 𝑒

𝑟𝑇 − 1, according to (5) and (13), the expected volatility can be 

expressed as: 

 

𝐸(𝐯) = 𝜎2 =
2

𝑇
{𝑒𝑟𝑇 [∫

1

𝐾2
𝐶𝑇(𝐾)𝑑𝐾

∞

𝑆0

+∫
1

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝑆0

0

] − [(𝑒𝑟𝑇 − 1) − 𝑟𝑇]}, (14) 

 

Consequently, the expected value of return-volatility, under the assumptions (11) and (12), can be 

extracted from the market price of a portfolio of out-of-the money options weighted inversely 

proportional to the square value of the strike prices. The third term of equation (14), expressed 

by (𝑒𝑟𝑇 − 1) − 𝑟𝑇, captures the difference between continuously compounding return and single 

compounding return over a period of T.  This difference approaches zero, when T is small. 

 

By applying the results of Corollary 1 to equation (14), we have the VIX formulation, 

which is identical to that in Demeterfi, Derman, Kamal and Zou (1999), as follows: 

 

𝑉𝐼𝑋2 = 𝐸(𝒗) =
2

𝑇
{𝑟𝑇 − (

𝐹0
𝐾0
− 1) − 𝑙𝑛 (

𝐾0
𝑆0
) + 𝑒𝑟𝑇 [∫

1

𝐾2
𝐶𝑇(𝐾)𝑑𝐾

∞

𝐾0

+∫
1

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝐾0

0

]} (15) 

 

Therefore, independent of any option pricing model, the implied volatility is calculated explicitly 

from a set of out-of-the money option prices, current asset price, and risk-free rate of interest.  

Furthermore, applying Taylor’s expansion of log function and ignoring terms higher than the 

second order, the terms preceding the integrals in (15) can be restated as  

  

[𝑟𝑇 − (
𝐹0
𝐾0
− 1) − ln (

𝐾0
𝑆0
)] = [ln (

𝐹0
𝐾0
) − (

𝐹0
𝐾0
− 1)] ≈ −

1

2
(
𝐹0
𝐾0
− 1)

2

 (16) 

 

Consequently, identical to that shown in CBOE’s VIX whitepaper, the volatility index can be 

calculated under the discrete framework as follows: 

 

𝑉𝐼𝑋̂2 =
2𝑒𝑟𝑇

𝑇
∑

1

𝐾𝑖
2

𝑖

𝑄(𝐾𝑖)∆𝐾𝑖 −
1

𝑇
(
𝐹0
𝐾0
− 1)

2

 (17) 

 

where 𝑄(𝐾𝑖) is the midpoint of the bid-ask spread for the option (a call if 𝐾𝑖 > 𝐾0,  a put if  𝐾𝑖 < 𝐾0, 

both call and put if 𝐾𝑖 = 𝐾0), and  ∆𝐾𝑖 =
1

2
(𝐾𝑖+1 − 𝐾𝑖−1).

6  The forward price is calculated from 

                                                           
6 For the minimum (maximum) strike, ∆𝐾𝑖  is simply the distance to the next strike above (below). 
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at-the-money options using put-call parity so that 𝐹0 = 𝐾A + 𝑒
𝑟𝑇[𝐶𝑇(𝐾A) − 𝑃𝑇(𝐾A)].  Furthermore, 

CBOE calculates the VIX from an interpolation of two volatility indexes with respect to two 

expiration dates: the near-term (𝑇1) and next-term (𝑇2), respectively.  Finally, by taking a weighted 

average of these two VIX measures, one obtains an annualized index (denoted as VIX̂𝑎) as follows: 

 

𝑉𝐼𝑋̂𝑎  = √{[
𝑁(𝑇2) − 𝑁(30)

𝑁(𝑇2) − 𝑁(𝑇1)
] (𝑇1 ∙ 𝑉𝐼𝑋̂1

2)  + [
𝑁(30) − 𝑁(𝑇1)

𝑁(𝑇2) − 𝑁(𝑇1)
] (𝑇2 ∙ 𝑉𝐼𝑋̂2

2)}(
𝑁(365)

𝑁(30)
)    (18) 

 

 

where 𝑁(𝑇1) and 𝑁(𝑇2) are the number of time-intervals (e.g. minutes, days) of the near term and 

next term options.   𝑁(30) and 𝑁(365) are the number of time-intervals in 30 days and in a 365-day 

year, correspondingly. 

 

 The CBOE volatility index is derived based on the model-free volatility expectation shown 

in (14).  The key assumption required to derive VIX is that the stochastic process for the underlying 

asset price is continuous and follows the GBM and IL.  When there are relatively small jumps in 

the stock price process, Jiang and Tian (2005) and Carr and Wu (2006, 2008) show that this model-

free approach is an excellent approximation of the risk-neutral, expected quadratic variation of the 

logarithm of the asset price.  However, if there is an appreciable risk of a large jump, then the 

approximation error can be very significant.  In the next theorem, we show that without any 

diffusion assumption of the underlying asset return generating process, the model-free VIX 

expression is in fact a moment-combination of log-returns to its underlying portfolio.   

 

Theorem 2.  let 𝑉𝑇 = 𝐸(𝑟𝑇
2), 𝑊𝑇  = 𝐸(𝑟𝑇

3), and 𝑋𝑇  = 𝐸(𝑟𝑇
4) be the second, third and fourth ex-ante 

return-moments to an asset.  Without any modeling specification about the stochastic process of 

returns, the formulation of COBE volatility index (VIX) is equal to a linear combination of return-

moments such that: 

𝑉𝐼𝑋 =
1

√𝑇
√[𝑉𝑇 +

𝑊𝑇
3
+
𝑋𝑇
12
+ 𝑜(𝑋𝑇)] − 2[(𝑒

𝑟𝑇 − 1) − 𝑟𝑇],      

and 
     𝑙𝑖𝑚

𝑇→0
[(𝑒𝑟𝑇 − 1) − 𝑟𝑇] = 0   

(19) 

 

Equation (19) can be directly derived from Theorem 1, Corollary 1 as well as equations (14) and 

(15).   Theorem 2 identifies the invalidity of VIX as a volatility index unless high moments of the 

return distribution neither exist nor have impact on the return generating process.   Therefore, any 

approximation error of VIX to the true volatility could intuitively be due to the impact of high 

return-moments. 

 

Bakshi, Kapadia, and Madan (2003) show that without imposing any structure on the 

underlying forcing process, the distributional moments, 𝑉𝑇, 𝑊𝑇 , and 𝑋𝑇 can be extracted from 

prices of OTM option portfolios.  This indicates that the expected value of ex-ante volatility can 

also be estimated without any specification of the underlying stochastic process.  We extend the 

Bakshi, Kapadia, and Madan (2003) approach and propose a direct estimation of ex-ante return-

volatility in the following theorem. 
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Theorem 3.  Let 𝐶𝑇(𝐾) and 𝑃𝑇(𝐾) be the European call and put options with an exercise price of 

K and expiration date T, respectively.   𝑆0 is the current asset value under no-arbitrage condition 

that determined from ATM Put-Call parity, 𝑆0 = 𝐶𝑇(𝐾𝐴) − 𝑃𝑇(𝐾𝐴) + 𝐾𝐴𝑒
−𝑟𝑇 , and the forward 

prices is 𝐹0 = 𝐸(𝑆𝑇) = 𝑆0𝑒
𝑟𝑇 .  Further, let 𝐾0 be the first strike price y below the forward price 

(𝐹0).  Assume that the finite first and second moments of log-return distribution (denoted by 𝜇𝑇 

and 𝑉𝑇 , respectively) exist.  Without any specification about the form of distribution and/or 

stochastic process of returns, a generalized volatility index (GVIX), can be directly formulated by 

the definition of log-return standard deviation as follows:  

𝐺𝑉𝐼𝑋 =
1

√𝑇
√𝑉𝑇 − (𝜇𝑇)

2               (20) 

where  

𝜇𝑇 = 𝑙𝑛 (
𝐾0
𝑆0
) + (

𝐹0
𝐾0
− 1) − 𝑒𝑟𝑇 [∫

1

𝐾2
𝐶𝑇(𝐾)𝑑𝐾

∞

𝐾0

+∫
1

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝐾0

0

], (21) 

and  

𝑉𝑇 = 𝑙𝑛
2 (
𝐾0
𝑆0
) + 2𝑙𝑛 (

𝐾0
𝑆0
) (
𝐹0
𝐾0
− 1)

+ 2𝑒𝑟𝑇 [∫
[1 − 𝑙𝑛 (

𝐾
𝑆0
)]

𝐾2
𝐶𝑇(𝐾)𝑑𝐾

∞

𝐾0

+∫
[1 + 𝑙𝑛 (

𝑆0
𝐾
)]

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝐾0

0

] 
(22) 

 

The ex-ante mean of log-returns, 𝜇𝑇 = 𝐸(𝑟𝑇), can be calculated directly from (5) and (9), and the 

second-moment, 𝑉𝑇 = 𝐸(𝑟𝑇
2),  can be derived based on Taylor expansion.  Note that Taylor’s 

expansion with remainder for any continuously twice differentiable function can be expressed as: 

𝑓(𝑆𝑇) = 𝑓(a) + 𝑓
′(a)(𝑆𝑇 − a) + ∫ 𝑓"(𝐾)(𝑆𝑇 − 𝐾)

+𝑑𝐾
∞

𝑎
+ ∫ 𝑓"(𝐾)(𝐾 − 𝑆𝑇)

+𝑎

0
𝑑𝐾 , where 𝑓(𝑎)  and 𝑓"(𝐾) are 

the first and second derivatives of the payoff with respect to S evaluated at 𝑎 and K, respectively.  

To derive 𝑉𝑇, define 𝑓(𝑆𝑇) = ln2 (
𝑆𝑇

𝑆0
), and let  𝑎 = 𝐾0.   Then,  

 

ln2 (
ST
S0
) = ln2 (

K0
S0
) + 2ln (

K0
S0
) (
ST − K0
K0

) + 2∫
[1 − ln (

K
S0
)]

K2
(ST − K)

+dK
∞

K0

+ 2∫
[1 + ln (

S0
K
)]

K2
(K − ST)

+dK
K0

0

 (23) 

 

Further, by taking the risk-neutral expectation for both sides of equation (23), we have equation 

(22).   Our derivation of (22) provides similar results as shown in Bakshi, Kapadia, and Madan 

(2003).   Theorem 3 formulates a generalized mechanism to extract fair value of ex-ante volatility 

from OTM option portfolios.  In the next theorem, we show that the CBOE’s VIX is just a special 

case of the proposed volatility index (GVIX).  

 

Theorem 4.  CBOE’s VIX is a special case of GVIX in that they are equal only if the stochastic 

process of asset’s return follows Geometric Brownian Motion and Ito’s Lemma as shown in (11) 

and (12). 

 

The proof of the above theorem is straight-forward.  Based on the assumption of Geometric 

Brownian Motion and Ito’s Lemma, 𝐸 [ln2 (
𝑆𝑇

𝑆0
)] = [(𝜇 −

1

2
𝜎2)𝑇]

2

+ 𝜎2𝑇, and 𝐸 [ln (
𝑆𝑇

𝑆0
)] = (𝜇 −

1

2
𝜎2) 𝑇.  
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From (13), (14), and (19), GVIX2 =
1

𝑇
{𝐸 [ln2 (

𝑆𝑇

𝑆0
)] − {𝐸 [ln (

𝑆𝑇

𝑆0
)]}

2

} = 𝜎2 =
1

𝑇
∫ 𝜎2
𝑇

0
𝑑𝑡 = 𝐸(𝑉) = VIX2 .   

Thus, if the diffusion assumptions of (11) and (12) hold, then GVIX ≡ VIX. (Q.E.D.)    

 

Finally, according to equations (19) and (20), it is clear that the deviation of VIX2 from the 

ex-ante variance of log-returns (GVIX2) could be primarily driven by the high moments of returns 

in that 

 

𝑉𝐼𝑋2 − 𝐺𝑉𝐼𝑋2 ≈
1

𝑇
(𝜇𝑇
2 +

𝑊𝑇
3
+
𝑋𝑇
12
) . (24) 

 

The equality of (24) indicates that the spread of GVIX and VIX (GV-Spread) is determined by the 

ex-ante mean return of the underlying asset as well as the ex-ante high moments of the return 

distribution. 

 

In practice, the calculation of our generalized volatility index is as simple as that of VIX 

(equation [17]).  No additional information is necessary, and one is able to compute the GVIX 

based on three aspects: option prices (𝑄𝐾), arbitrage-free forward price of the underlying asset 

(𝐹0 = 𝑆0𝑒
𝑟𝑇) and risk-free rate of interest (r) such that: 

 

 

𝜇̂𝑇 = [𝑙𝑛 (
𝐾0

𝑆0
) + (

𝐹0

𝐾0
− 1)] − 𝑒𝑟𝑇 ∑

1

𝐾𝑖
2𝑖 𝑄(𝐾𝑖)∆𝐾𝑖, (25) 

 

𝑉̂𝑇 = [𝑙𝑛
2 (

𝐾0

𝑆0
) + 2𝑙𝑛 (

𝐾0

𝑆0
) (

𝐹0

𝐾0
− 1)] + 2𝑒𝑟𝑇 ∑

1

𝐾𝑖
2 [1 + 𝑙𝑛 (

𝑆0

𝐾𝑖
)]𝑄(𝐾𝑖)∆𝐾𝑖𝑖 , (26) 

and  

𝐺𝑉𝐼𝑋̂ =
1

√𝑇
√𝑉̂𝑇 − (𝜇̂𝑇)

2               (27) 

 

Furthermore, to be consistent with CBOE’s VIX estimation, we adjust the GVIX index on 

a 30-day basis.  Following the same interpolation procedures as VIX estimation (see equation [18]), 

we first identify option contracts of the near-term and next-term, denoted by 𝑇1  and 𝑇2 , 

accordingly.  Then, one calculates two GVIX indexes according to 𝑇1 and 𝑇2, respectively.  Finally, 

by taking a weighted average, one could calculate the annualized GVIX index based on 30-day 

market returns as follows: 

 

𝐺𝑉𝐼𝑋̂𝑎  = √{[
𝑁(𝑇2) − 𝑁(30)

𝑁(𝑇2) − 𝑁(𝑇1)
] (𝑇1 ∙ 𝐺𝑉𝐼𝑋̂1

2) + [
𝑁(30) − 𝑁(𝑇1)

𝑁(𝑇2) − 𝑁(𝑇1)
] (𝑇2 ∙ 𝐺𝑉𝐼𝑋̂2

2)} (
𝑁(365)

𝑁(30)
)    (28) 

 

Having mathematically explained the bias of the VIX formulation and proposed an 

alternative volatility measure in theory, we now pursue our empirical investigation in the next 

section. 
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1.5 Empirical Investigation 
 

 We empirically examine our theoretical arguments using the S&P500 index (SPX) options 

data during the 2362-daily period between January 2005 and May 2014.7  To ensure the empirical 

calculation is consistent with CBOE’s estimation, our daily VIX estimates, according to equation 

(18), are recalculated following the estimation procedures specified in the CBOE’s VIX 

whitepaper.   

 

[Insert Table 1 here] 

 

Table 1 compares our VIX computation (denoted by VIX̂𝑎) and daily VIX closing price 

(denoted as  VIX̂𝐶𝐵𝑂𝐸 ).  Panel 1 numerically reports the difference between VIX̂𝐶𝐵𝑂𝐸  and VIX̂𝑎 

according to the empirical quantile of VIX̂𝐶𝐵𝑂𝐸.   The difference ranges from -0.05 to 0.16.  We 

note that this difference could be due to the time frequency of data observation in which we use 

daily prices versus the minute basis adopted by CBOE.  Panel 2 shows the bootstrapping test for 

the mean difference of VIX̂𝐶𝐵𝑂𝐸  and VIX̂𝑎 .  By selecting randomly 2000 data from 2362 daily 

observations, we calculate the mean and the associated Z-statistic.  This procedure is then repeated 

10,000 times for computing the average of means and that of Z-statistics.  The mean difference is 

statistically insignificance indicating the estimates of  VIX̂𝐶𝐵𝑂𝐸 and VIX̂𝑎 are consistent with each 

other.  Furthermore, to examine the equality of probability distributions between VIX̂𝐶𝐵𝑂𝐸  and 

VIX̂𝑎, we employ a two-sample Kolmogorov-Smirnov (K-S) Test.  Panel 3 reports the K-S test 

statistic (D = 0.0085) with an associated p-value.  It appears that the test fails to reject the equality 

of the two distributions.  From the analytical results in Table 1, we conclude that the diversity of 

our VIX estimation from CBOE’s VIX is almost undistinguishable. 

 

 After the above robustness check for our estimation procedures, we now inspect the bias 

of VIX in relation to distributional moments.  For formulating the value of ex-ante third and 

fourth return-moments (𝑊𝑇 and 𝑋𝑇), we follow Bakshi, Kapadia, and Madan (2003) with some 

modifications. 

 

𝑊𝑇 = ln
3 (
𝐾0
𝑆0
) + 3ln2 (

𝐾0
𝑆0
) (
𝐹0
𝐾0
− 1)

+ 3𝑒𝑟𝑇 [∫
[2ln (

𝐾
𝑆0
) − ln2 (

𝐾
𝑆0
)]

𝐾2
𝐶𝑇(𝐾)𝑑𝐾

∞

𝐾0

−∫
[2ln (

𝑆0
𝐾
) + ln2 (

𝑆0
𝐾
)]

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝐾0

0

] 

and 

(29) 

𝑋𝑇 = ln
4 (
𝐾0

𝑆0
) + 4ln3 (

𝐾0

𝑆0
) (
𝐹0

𝐾0
− 1)

+ 4𝑒𝑟𝑇 [∫
[3ln2 (

𝐾
𝑆0
) − ln3 (

𝐾
𝑆0
)]

𝐾2
𝐶𝑇(𝐾)𝑑𝐾

∞

𝐾0

+∫
[3ln2 (

𝑆0
𝐾
) + ln3 (

𝑆0
𝐾
)]

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝐾0

0

] 
(30) 

 

Similar to those in (17) and (18), estimates of 𝑊𝑇 and 𝑋𝑇 as well as their annualization can be 

calculated from option data: 

                                                           
7 We obtained options data from Ivolatility.com 
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𝑊̂𝑇 = [ln
3 (

𝐾0

𝑆0
) + 3ln2 (

𝐾0

𝑆0
) (

𝐹0

𝐾0
− 1)] + 3𝑒𝑟𝑇 ∑

1

𝐾𝑖
2 [2 ln (

𝐾𝑖

𝑆0
) − ln2 (

𝐾𝑖

𝑆0
)]𝑄𝐾𝑖∆𝐾𝑖𝑖 ,  (31.1) 

 

𝑊̂𝑎  = {[
𝑁(𝑇2) − 𝑁(30)

𝑁(𝑇2) − 𝑁(𝑇1)
] (𝑇1 ∙ 𝑊̂1) + [

𝑁(30) − 𝑁(𝑇1)

𝑁(𝑇2) − 𝑁(𝑇1)
] (𝑇2 ∙ 𝑊̂2)}(

𝑁(365)

𝑁(30)
),  

  

(31.2) 

 

 

𝑋̂𝑇 = [𝑙𝑛
4 (

𝐾0

𝑆0
) + 4𝑙𝑛3 (

𝐾0

𝑆0
) (

𝐹0

𝐾0
− 1)] + 4𝑒𝑟𝑇 ∑

1

𝐾𝑖
2 [3 𝑙𝑛

2 (
𝐾𝑖

𝑆0
) − 𝑙𝑛3 (

𝐾𝑖

𝑆0
)] 𝑄𝐾𝑖∆𝐾𝑖𝑖 ,  (32.1) 

and 

𝑋̂𝑎  = {[
𝑁(𝑇2) − 𝑁(30)

𝑁(𝑇2) − 𝑁(𝑇1)
] (𝑇1 ∙ 𝑋̂1)  + [

𝑁(30) − 𝑁(𝑇1)

𝑁(𝑇2) − 𝑁(𝑇1)
] (𝑇2 ∙ 𝑋̂2)}(

𝑁(365)

𝑁(30)
),    (32.2) 

  

[Insert Plot 1 here] 

 

Plot 1 illustrates VIX’s estimation bias of volatility and how this bias is related to 

distributional moments.  Expressed by equations (20) and (27), since it directly estimates ex-ante 

standard deviation of log-returns, GVIX could serve as a measure of the true return volatility.  

Therefore, we adopt the difference between GVIX and VIX as the deviation of VIX from the true 

volatility and refer to this deviation as VIX-bias.  Plot 1A depicts the daily VIX-bias over our 

sample period.  The daily VIX-bias, in a range from -0.03 to 5.58, is generally positive indicating 

that VIX understated the true volatility during January 2005 to May 2014.  This volatility 

undervaluation was extremely large during the financial crisis of 2009.  Plot 1B plots the 

divergence of VIX from the second moment (V𝑎).  A similarly reversed pattern as Plot 1A appears 

in Plot 1B.  This provides further evidence of the downward bias of VIX.   Notably, the movement 

of daily market expectation of third-moment estimates (Ŵ𝑎), pictured in Plot 1C, moves almost 

perfectly and adversely with the VIX-bias.   The third-moment estimates were generally non-

positive during our sample period and had a value ranging from -3585 to 19.51.  Since the 

composition of VIX includes one-third of the third-moment according to Theorem 2, the negative 

value of  Ŵ𝑎 appears to be the main cause for VIX’s underestimation of the true volatility.  Plot 

1D displays the impact of the fourth-moment (measured by one-twelfth of  X̂𝑎) over time.  Again, 

the movement of VIX-bias seems to be highly correlated with that of  X̂𝑎.  In addition, the value 

of X̂𝑎 also dramatically increased when the market experienced high volatility.   

 

[Insert Table 2 here] 

 

To test VIX-bias statistically, we again employ a bootstrapping approach.  In addition to 

the overall sample, three subsample periods are defined by 2005-2007, 2008-2011, and 2012-2014, 

respectively.  For each iteration, we select randomly 700 (out of 754), 900 (out of 1008), 500 (out 

of 600) and 2000 (out of 2362) daily observations from the three sub-samples (2205-2007, 2008-

2011 and 2012-2014) as well as the overall sample, respectively.  The sample mean of the VIX-

bias and its associated Z-statistic are then calculated.  We repeat this procedure 10,000 times and 

compute the average of means and that of Z-statistics.  Table 2 reports testing results of two 

measures: the mean difference between GVIX and VIX (GVIX̂𝑎 − VIX̂𝑎) as well as that between VIX 

and the second return-moment (VIX̂𝑎 ─ √V̂𝑎).  It appears that VIX statistically understates the return-

volatility on average.  The sample mean of (GVIX̂𝑎 − VIX̂𝑎) ranges from 22 to 83 index basis-points 
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(BP), and that of (VIX̂𝑎 ─ √V̂𝑎) has a value from -86 to -26 index BP.  The Z-value of all estimates 

is considerably large indicating that the mean deviation of VIX from the return-volatility is 

statistically and strongly significant.   We note that the VIX-bias during the period of highly 

volatile markets (2008-2011) was much higher than that during other time periods.  In addition, 

since from equation (24), the VIX-base is theoretically driven by high moments, we also reports, 

in Table 2, the average value of 1
3
Ŵ 𝑎 and that of 1

12
X̂𝑎 as well as their test statistics.  It shows that all 

test statistics are highly significant indicating all estimates of the high moments are different from 

zero.  The third-moment was largely negative and reached an extreme value of -82.76 during the 

period of (2008-2011).  Although the fourth-moment provides some contribution to the VIX-bias, 

the impact was much smaller than that of the third-moment.  In summary, Table 2 shows that the 

negative third-moment could be the main reason for the downward bias of VIX in estimating ex-

ante volatility.             

 

[Insert Table 3 here] 

 

Corresponding to Plot 1, Table 3 reports correlations of VIX-bias to the return-moments. 

The VIX-bias appears to be highly correlated with all three return-moments: V̂𝑎 , Ŵ𝑎, and X̂𝑎. The 

negative correlation between VIX-bias and Ŵ𝑎 is particularly large (about 97%) and is consistent 

across all sample periods.  The second return-moment ( V̂𝑎 ) is also negatively and almost 

perfectively correlated with the third return-moment (Ŵ𝑎).  This indicates that the non-positive 

skewness of returns becomes more negative as market volatility rises.  Note that the VIX index 

itself is highly correlated with the market volatility as well.  Therefore, one would expect that the 

downward VIX-bias could increase as the value of VIX rises.  We illustrate this phenomenon in 

Plot 2.   

 

[Insert Plot 2 here] 

 

To show the descending bias of VIX, we plot the VIX deviations from the true volatility 

(GVIX) on the y-axis and the corresponding VIX values (sorted from the minimum value of 9.87 

to the maximum value of 80.70) on the x-axis.   Plot 2 shows that the downward bias of VIX is 

quite significant, and the VIX undervaluation accelerates as VIX values increase.  Importantly, the 

magnitude of this acceleration dramatically enlarges as the VIX values reach 30 and above.   This 

accentuates a major drawback of the VIX index that frequently serves as an "investor fear gauge".   

It has been widely viewed that VIX values greater than 30 are generally associated with a large 

amount of volatility as a result of investor fear, while values below 20 generally correspond to less 

stressful times in the markets.  Corresponding to the appearance of Plot 2, we report concisely the 

distribution of the VIX-bias according to three levels of VIX values: VIX < 30, 30 ≤ VIX < 50, and 

VIX > 50, respectively.  The median bias increases from 28 to 126 index BP when VIX index value 

rises from below 30 to above 30.  The median bias for VIX values above fifty even reaches 338 

index BP.   Furthermore, to examine the change of the bias sensitivity to the level of VIX, we let 

𝐼1= 1, if VIX̂𝑎 < 30, and 0 otherwise as well as 𝐼2= 1, if VIX̂𝑎 ≥ 30, and 0 otherwise.  To this end, 

we estimate an ordinary least squares regression: 

 

(𝑉𝐼𝑋̂𝑎 − 𝐺𝑉𝐼𝑋̂𝑎)   = 𝛼 + 𝛽1(𝑉𝐼𝑋̂𝑎 × 𝐼1) + 𝛽2(𝑉𝐼𝑋̂𝑎 × 𝐼2) + 𝜖  (33) 
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We report the regression outcomes in a sub-table under Plot 2.  It appears that the intercept 

(𝛼 = 0.38), and the two beta coefficients (𝛽1 = −0.039; 𝛽2 = −0.053) are all statistically different 

from zero.  The 𝑅2 of the regression is 86%.  Again, further decrease of the beta after VIX index 

passes 30 suggests that the elasticity of VIX-bias increases as the market become more volatile.  

In summary, the COBE volatility index (VIX) significantly underestimates the true market 

volatility, and the degree of bias considerably increases as the VIX index value rises above 30.  

Consequently, the CBOE volatility index could fail to serve as an accurate indicator for investor 

fear, and financial products using VIX as the underlying index could be undervalued as well.  

 

 The last part of empirical investigation focuses on the time-series property of the VIX, 

GVIX and the spread between GIX and VIX (GV-spread).  We employ three different unit-root 

tests including Dickey and Fuller (1979), Phillips and Perron (1988) as well as Zivot and Andrew 

(1992).  The augmented Dickey-Fuller (ADF) investigates a unit root present in an autoregressive 

progress.  The Phillips–Perron (PP) test makes a non-parametric correction for any serial 

correlation and heteroskedasticity in the regressive errors by modifying the ADF test statistics.  

Zivot-Andrews (ZA) test examines unit-root of time series with endogenous structural break.   

Specifically, ZA test is a sequential test which utilizes the full sample and uses a different dummy 

variable for each possible break date.  Identifying potential break of stationary trend is important 

in that our sample period involves market shocks.  As Table 4 presents, VIX and GVIX series are 

non-stationary in that we fail to reject the null hypothesis of unit-root, according to ADF and ZA 

tests.  However, the unit-root hypothesis of GV-spread is strongly rejected indicating that the time-

series of VIX and GVIX are co-integrated.  According to the PP test, the null hypothesis of unit-

root is rejected for all three series.   

 

[Insert Table 4 here] 

 

 Plot 3 depicts the time plots of ZA daily t-statistics over the entire sample period from 

January 2005 to May 2014.  The null hypothesis of ZA test is a unit-root process without any 

exogenous structural breaks, and the alternative hypothesis is a trend-stationary process with 

possible structural change occurring at an unknown point in time.  Any negative daily t-statistic 

that has a value less than the critical value of -4.80 is statistically significant and the null hypothesis 

of unit-root is rejected.  Since all test-statistics of VIX and GVIX are negative but greater than the 

critical value, we fail to reject the unit-root hypothesis.  Nevertheless, for the GV-spread, most of 

the daily t-statistics are located below the critical value line indicating that the unit-root hypothesis 

is strongly rejected in favor of stationarity.  In Plot 3, the break date of the trend is indicated by 

the minimum test statistic and marked by a vertical "dot-line".  Therefore, the endogenous 

structural breakpoint date for the GV-spread is on September 8th, 2008.  This implies that the GV-

spread follows a stationary trend, and the beak of the GV-spread trend could predict the shock or 

crisis.8  Intuitively, according to equation (24), the GV-spread is characterized by the log-return 

moments.  Particularly, the spread enlarges as the expectation of future returns skews negatively.  

On the other hand, the spread reduces, if the returns are expected to be symmetrically distributed.  

In his study of "the crash of ’87", Bates (1991) shows the market sentiment can be reflected by the 

distributional asymmetry of ex-ante returns, and the asymmetry moves back to the symmetry as 

markets calm down.  Therefore, the mean-reverting process of GV-spread, quantified by the 

                                                           
8 The mean-reversion of the GV-Spread suggests that analogous to VIX, GVIX is not just an index of ex-ante return 

volatility but a tradable financial product. 
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asymmetric parameters of return-distribution, thus represents the movement of market sentiment 

over time.   

 

[Insert Plot 2 here] 

 

1.6 Conclusion 

 

The central contributions of this chapter are threefold.  First, we identify that without any 

diffusion assumption, the model-free formulation of the CBOE volatility index (VIX) is actually 

a linear combination of ex-ante return-moments, not the expected volatility.  Precisely, VIX 

constitutes additionally one-third value of the ex-ante third return-moment.  This indicates that 

VIX could considerably understate the true volatility when the market expectation of returns is 

negatively skewed.   Notably, since skewness continues to occupy a prominent role in financial 

markets, VIX’s potential bias of volatility estimation due to skewness is not insignificant.    

 

Second, we present an alternative model-free methodology, extended from Bakshi, 

Kapadia, and Madan (2003), for measuring ex-ante volatility.  This new method, named 

generalized VIX (GVIX), is generic because it is based on the direct formulation of variance, and 

there is no stochastic assumption on the return generating process of the underlying asset.  

Therefore, GVIX serves as a proxy for the true ex-ante volatility. We show that VIX is indeed a 

special case of GVIX, and the calculation of GVIX is as simple as that of VIX.    

 

 Third, we find statistically that the time-series of the spread between GVIX and VIX 

(named GV-Spread) is stationary and mean-reverting.  However, the individual time-series of VIX 

and GVIX appear to be non-stationary or random walk.  This indicates the existence of a co-

integration system between VIX and GVIX.   Intuitively, the inequality between GVIX and VIX 

characterizes the asymmetric (skewed) expectation of future returns, and the mean-reversion of 

the GV-Spread captures the back-and-forth movement of the market sentiment over time.  

 

In addition, we empirically investigate our theoretical arguments using S&P500 option data 

over a period from January 2005 to May 2014.  The analytical results support our theories that 

VIX did statistically understate the true volatility, and the estimation errors were strongly and 

negatively correlated with the third return-moment or skewness.  Importantly, the volatility 

underestimation of VIX is significantly enlarged as market volatility increased, and the magnitude 

of the undervaluation could reach to as much as 559 index basis points.  Consequently, theoretical 

and empirical evidence suggests that the VIX formulation should be applied cautiously when 

estimating ex-ante return volatility as well as for developing volatility based financial products. 
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Tables and Plots 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Consistency between VIX estimate and CBOE VIX index 

Panel A reports the quantile estimates of observed daily closed CBOE’s VIX index (VIX𝐶𝐵𝑂𝐸 ) and our 

calculated daily VIX (VIX𝑎) during a period from January 2005 to May 2014.  Panel B reports the 

bootstrapped means and their associated Z-statistics of the difference between VIX𝐶𝐵𝑂𝐸 and VIX𝑎. By 

selecting randomly 1000 data from 2362 daily observations, we calculate the mean and the associated Z-

statistic.  This procedure is then repeated 10,000 times for computing the average of means and that of 

Z-statistics. Panel C provides results from a K-S nonparametric test for the equivalence of probability 

distributions between VIX𝐶𝐵𝑂𝐸 and VIX𝑎. 
 

 

Panel A:  Quantile estimates 

 Quintile 

 Minimum 25% 50% 75% Maximum 

VIX̂𝐶𝐵𝑂𝐸 9.89 13.51 17.50 23.68 80.86 

Corresponding  

VIX̂𝑎 
9.87 13.56 17.50 23.66 80.70 

Difference 0.02 -0.05 0.00 0.02 0.16 

 

Panel B: Bootstrapping test for mean difference between  VIX𝐶𝐵𝑂𝐸 and  VIX𝑎 

 

Average mean difference 

 0.0015 

 

Average Z-statistics  

0.31 

  

      

Panel C: Two-sample Kolmogorov-Smirnov Test  

 

D-Statistic* 

0.0085 

 

p-value  

1.0 

  

* Critical values of 1%, 5% and 10% are 0.0474. 0.0396, 0.0355, respectively. 
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A.    GVIX̂𝑎 − VIX̂𝑎 B.   VIX̂𝑎 ─ √V̂𝑎 

  

C.   1
3
Ŵ 𝑎 D.   1

12
X̂𝑎 

  
Plot 1. VIX Bias, Ex-ante Volatility and High Moments (2005-2014). These Plots present daily GVIX̂𝑎, VIX̂𝑎, ex-

ante (annualized) moment measures and their differences from January 2005 to May 2014, where subscript letter "a" 

represents annualization.  Plot 1A depicts the difference between GVIX and VIX.  Since GVIX is a direct measure 

of ex-ante volatility of log-return as shown in equations (20) and (27), (GVIX̂𝑎 − VIX̂𝑎) represents the deviation of 

VIX from the true volatility.  We refer this deviation as VIX-bias.  Plot 1B plots the divergence of VIX from the 

second moment (V𝑎).  Plot 1C pictures the movement of the third moment, measured by one-third of Ŵ𝑎.  Plot 1D 

displays the changes of the fourth moment, measured by one-twelfth of  X̂𝑎.  Notably, from Theorem 2, VIX𝑎 ≈

√V𝑎 +
1

3
W𝑎 +

1

12
X𝑎. 

 

 



20 
 

 

Table 2 

The average VIX-Biases and ex-ante high moments 

This table reports the bootstrapped means (Z-statistics) of the difference between annualized 

(extrapolated) VIX calculated from daily option premiums and the annualized GVIX as well as the 

second return-moment (V𝑎), respectively.  In addition, the estimates of ex-ante third and fourth-moment 

(Ŵ𝑎, and X̂𝑎) are presented in this table.   Note that GVIX̂𝑎 measures the ex-ante standard deviation of 

log-return (the true volatility) as shown in equations (20) and (27).  Also, from (24), (VIX2 − GVIX2) ≈
1

𝑇
(𝜇𝑇
2 +

𝑊𝑇

3
+
𝑋𝑇

12
) .   For each iteration, we select randomly 700 (out of 754), 900 (out of 1008), 500 (out 

of 600) and 2000 (out of 2362) daily observations from the three sub-periods, 2205-2007, 2008-2011 

and 2012-2014 as well as the overall period, respectively.  The sample mean and its associated Z-statistic 

are then calculated.  We repeat this procedure 10,000 times and compute the average of means and that 

of Z-statistics.  The numbers in parenthesis are average Z-statistics.  Daily option premiums over a period 

from January 2005 to May 2014 are used for the calculation.  * denotes significantly different from zero 

at the 1% level.  

 

 2005-2007 2008-2011 2012-2014 Overall 

No. of days 754 1008 600 2362 

 GVIX̂𝑎 ─ VIX̂𝑎 
0.22 0.83 0.28 0.49 

(41.38)* (29.59)* (54.91)* (35.24)* 

 

VIX̂𝑎 ─ √V̂𝑎 
-0.26 -0.86 -0.29 -0.52 

(-54.77)* (-28.95)* (-54.53)* (-35.68)* 

     
1

3
Ŵ𝑎 

-7.09 -82.76 -10.42 -40.24 

(-21.96)* (-15.72)* (-35.70)* (-16.41)* 

     
1

12
X̂𝑎 

0.61 18.38 0.90 8.27 

(14.97)* (10.92)* (26.20)* (10.84)* 
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Table 3 

Correlation matrix of VIX bias and distribution moments 

The VIX-bias is measured by  (GVIX̂𝑎 − VIX̂𝑎) .  V̂𝑎  , Ŵ𝑎 , and X̂𝑎 

measures daily (annualized) ex-ante second, third and fourth-moment, 

respectively.   
 

  Panel A: (2005-2007) V̂𝑎 1

3
Ŵ𝑎 

1

12
X̂𝑎 

GVIX̂𝑎─ VIX̂𝑎 0.91 -0.97 0.89 

V̂𝑎  -0.93 0.80 

1

3
Ŵ𝑎 

  -0.95 

  Panel B: (2008-2011)    

GVIX̂𝑎─ VIX̂𝑎 0.95 -0.97 0.92 

V̂𝑎  -0.95 0.88 

1

3
Ŵ𝑎 

  -0.97 

  Panel C: (2012-2014)    

GVIX̂𝑎─ VIX̂𝑎 0.82 -0.97 0.96 

V̂𝑎  -0.91 0.84 

1

3
Ŵ𝑎 

  -0.98 

  Panel D: Overall    

GVIX̂𝑎─ VIX̂𝑎 0.96 -0.97 0.90 

V̂𝑎  -0.95 0.86 

1

3
Ŵ𝑎 

  -0.97 
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Plot 2. VIX downward bias. This Plot plots the VIX downward bias, measured by (VIX̂𝑎 − GVIX̂𝑎), 

corresponding to different levels of VIX values.  For a numerical illustration, coincided with the Plot, we 

present, in the following table, the minimum, medium and maximum value of VIX-bias, measured by 

(GVIX̂𝑎 − VIX̂𝑎), according to three levels of VIX: VIX̂𝑎 < 30, 30 ≤ VIX̂𝑎< 50, and VIX̂𝑎 > 50, respectively.  

It has been widely viewed that VIX values greater than 30 are generally associated with a large amount of 

volatility as a result of investor fear, while values below 20 generally correspond to less stressful times in 

the markets. 

VIX-bias (GVIX – VIX) 

𝐕𝐈𝐗̂𝒂 < 30  30 ≤ 𝐕𝐈𝐗̂𝒂 < 50  𝐕𝐈𝐗̂𝒂 > 50 

Minimum Median Maximum  Minimum Median Maximum  Minimum Median Maximum 

-0.03 0.28 1.21  0.47 1.26 3.28  1.36 3.38 5.59 

 

To see the change of sensitivity of VIX-bias to the level of VIX, we let 𝐼1= 1, if VIX̂𝑎 < 30, and 0 otherwise 

as well as 𝐼2= 1, if VIX̂𝑎 ≥ 30, and 0 otherwise.  To this end, we estimate an ordinary least squares regression: 

We presents the results from a OLS regression, (VIX̂𝑎 − GVIX̂𝑎)   = 𝛼 + 𝛽1(VIX̂𝑎 × 𝐼1) + 𝛽2(VIX̂𝑎 ×

𝐼2) + 𝜖, as follows: 

    VIX < 30  VIX ≥ 30   

𝜶 𝒕(𝜶)   𝜷𝟏 𝒕(𝜷𝟏)  𝜷𝟐 𝒕(𝜷𝟐)  𝑹𝟐 

0.38 21.9   -0.039 -40.4  -0.053 -104.2  0.86 
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Table 4 

Unit-root tests for GVIX, VIX and GV-Spread 

This table reports union-root tests for the time series of GVIX, VIX and GV-Spread, respectively.  The 

augmented Dickey-Fuller (ADF) tests a unit root present in an autoregressive progress.  Phillips–Perron 

(PP) test makes a non-parametric correction for any serial correlation and heteroskedasticity in the 

regressive errors by modifying the ADF test statistics.   Zivot-Andrews (ZA) test examines unit-root of 

time series with endogenous structural break.   Specifically, ZA test is a sequential test which utilizes the 

full sample and uses a different dummy variable for each possible break date. The break date is selected 

where the t-statistic from the ADF test of unit root is at a minimum (most negative). This table presents 

the least ZA test statistic of each time series of GVIX, VIX, and GV-Spread, respectively.   * denotes 

significant rejection of union-root at the 5% level.   

 

 
Dickey- 

Fuller  

Phillips- 

Perron 

Zivot- 

Andrews 

    

A: GVIX 

Test-Statistics 

 

-1.79 -3.42* -4.80 

B: VIX 

Test-Statistics 

 

-1.75 -3.42* -4.80 

C: GV-Spread 

Test-Statistics 
-3.93* -5.07* -6.15*  

5% Critical Value -1.95 -2.86 -4.80 
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GVIX 

 

VIX 

 
 
 

GV-Spread 

 

Plot 3. Trend Stationarity of GV-Spread with a break.  The Plot depicts the time plots of Zivot-

Andrews (ZA) test statistic (daily t-statistics) over the entire sample period from January 2005 to May 

2014.  The null hypothesis of ZA test is a unit-root process without any exogenous structural breaks, and 

the alternative hypothesis is a trend-stationary process with possible structural change occurring at an 

unknown point in time.  The 5% critical value is -4.80.  Therefore, any daily t-statistic that has a value 

below (above) -4.80 is statistically significant (insignificant).  The break date of the trend is indicated by 

the minimum test statistic and marked by a vertical "dot-line".  The breakpoint date for the GV-Spread 

is September 8th, 2008. 
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Chapter 2 Decomposing the VIX: Implications for the Predictability of Stock 

Returns 
 

 

 

Chapter Abstract 

 

The VIX index is not only a volatility index but also a polynomial combination of all possible 

higher moments in market return distribution under the risk-neutral measure. This chapter 

formulates the VIX as a linear decomposition of four fundamentally different elements: the 

realized variance (RV), the variance risk premium (VRP), the realized tail (RT), and the tail risk 

premium (TRP), respectively. The VRP compensates the anticipated (normal) market volatility, 

and the TRP prices the potentially (unusual) large and asymmetric market movements. The chapter 

uses an innovative and nonparametric tail risk measure and finds that approximately one-third of 

the VIX's formation is attributed to the TRP. In addition to VRP, RT and TRP are crucial 

components for predicting future returns on equity portfolios.  
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2.1 Introduction 

 

The VIX index enjoys tremendous popularity as a risk-neutral, forward-looking measure 

of the market’s return volatility, and is a key driver of the equity variance risk premium (VRP) in 

Bollerslev, Tauchen, and Zhou (2009). Specifically, the VRP is calculated as the difference 

between the physical measure of the realized variance (RV) and the square of the VIX, and it 

serves as an important indicator of aggregate risk aversion of market participants. 9  Recent 

empirical evidence suggests that the VRP is a superior predictor of future aggregate market returns 

compared to the traditional predictor variables such as the dividend-price ratio and other valuation 

ratios, particularly for shorter time horizons.10 Interestingly, Bollerslev, Tauchen, and Zhou (2009) 

find that neither the square of the VIX nor the RV is a good predictor of stock market returns, but 

that their difference (the VRP) is. So, a puzzle emerges. If neither the square of the VIX nor the 

RV can predict stock returns, then why does their difference provide such strong predictive power? 

This chapter attempts to unravel the puzzle.  

 

Specifically, the VIX index is not just a measure of volatility (that is, a pure measure of the 

second moment of a return distribution); it is also a polynomial combination of all possible higher 

moments in the market return distribution under the risk-neutral measure. Therefore, to explain the 

puzzle, one needs to find a way to carve out the impact of these higher moments.  To this end, this 

chapter provides a novel methodology for decomposing the VIX index and documents that it is 

indeed the higher moments, that is the tail-risk components of the VIX, that are driving the returns.  

 

The VIX index was originally designed to measure the quadratic variation (ℚ𝕍) of a jump-

free process.11 Nevertheless, Du and Kapadia (2012) and Chow, Jiang, and Li (2014) observe that 

the VIX index rapidly deviates from the true volatility measure when a larger proportion of stock 

return variability is determined by substantial jumps of returns. Also, the deviation of VIX from 

ℚ𝕍 estimation is proportional to the jump intensity. In fact, it has often been overlooked that 

Bakshi-Kapadia-Madan’s (2003) measure of variance (VBKM) is insensitive to tail variation and 

can serve as an unbiased ex-ante estimate of ℚ𝕍.12 A question then arises: if the VIX is not simply 

a ℚ𝕍 (volatility risk) measure, then what does it truly measure?   

 

Empirical findings of Todorov and Tauchen (2011) suggest that the volatility risk either 

coincides or is highly correlated with the price jump risk, while Bollerslev and Todorov (2011) 

show that the risk premium for unusual tail events cannot be explained exclusively by the level of 

volatility and argue that the jump-tail risk is still present even if the investment opportunity set is 

                                                           
9 See Campbell and Cochrane (1999); Bekaert and Engstrom (2010); Bollerslev, Gibson and Zhou (2011); Bekaert, 

Hoerova; and Lo Duca (2013); and Bekaert and Hoerova (2014).  
10 These studies include but are not limited to Bollerslev, Tauchen and Zhou (2009); Drechsler and Yaron (2010); Han 

and Zhou (2012); Du and Kapadia (2012); Andreou and Ghysels (2013); Bondarenko (2014); Eraker and Wang 

(2015); Almeida, Vicente, and Guillen (2013); Bekaert and Hoerova (2014); Bali and Zhou (2016); Camponovo, 

Scaillet, and Trojani (2014); Kelly and Jiang (2014); Li and Zinna (2018); Vilkov and Xiao (2013) and Bollerslev, 

Marrone, Xu, and Zhou (2014).  
11 See Carr and Madan (2001); Demeter, Derman, Kamal and Zou (1999a, 1999b); and Britten-Jones and Neuberger 

(2000). 
12 Du and Kapadia (2012) and Chow, Jiang and Li (2014) explicitly demonstrate that the Bakshi, Kapadia and Madan 

(2003)’s measure of the variance of the holding period return is the most appropriate for measuring quadratic variation.   
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approximately constant. Cremers, Halling, and Weinbaum (2015) also show that aggregate jump 

and volatility risk collectively explain variation in expected returns, and aggregate stock market 

jump risk is priced in the cross section. Thus, volatility and price jump-tail risk premia share 

compensations for similar risks and therefore should be modeled jointly. Recently, Bollerslev, 

Todorov, and Xu (2015) reveal that most of the predictability for the aggregate market portfolio 

previously attributed to the VRP stems from not just the volatility but the tail risk component; and 

that the compensation for tail risk drives out most of the predictability stemming from the part of 

the VRP associated with “normal” sized price fluctuations. 13  Intuitively, the compensation 

demanded by investors for bearing tail risk contributes to the expectation as well as the 

predictability of future market returns.  

 

The main goals of this chapter are twofold. First, by explicitly recognizing the underlying 

stochastic process of the VIX index that follows the polynomial (not quadratic) variation, we 

formulate the (squared) VIX as a linear decomposition of four fundamentally different elements: 

the RV, the VRP, the realized tail (RT), and the tail risk premium (TRP). Through the process of 

VIX decomposition, we are able to differentiate the TRP from the VRP, both of which are 

embedded in the VIX index. Second, relying on our decomposition of the VIX index, we seek to 

clarify where the inherent market return predictability of the conventional variance risk premium, 

or VRPc (i.e., VIX2 - RV), is coming from and how it plays out over different return horizons and 

for various portfolios with different risk exposures.  

 

Our empirical results confirm that the return predictability for the aggregate market 

portfolio afforded by the VRPc is attributed to the return predictability of the decomposed 

components: the unbiased VRP, the RT, and the TRP. Importantly, the tail variation and its risk 

premia do not just offer some additional predictability for the market portfolio over and above that 

of the VRP but also provide the main impetus for the total predictability. This is consistent with 

recent findings of Bollerslev, Todorov, and Xu (2015) that most of the predictability for market 

return previously ascribed to the VRP originates from the tail risk component.  

 

This chapter differentiates itself from Bollerslev, Todorov, and Xu (2015) in important 

ways. First, we formally define TRP through VIX decomposition and through quantifying a 

converged tail risk measure. The polynomial combination of all possible moments with orders 

higher than two boils down to one simple analytical form, the difference between the squared 

realized VIX and the realized variance. Second, the methodology used to estimate market TRP in 

this chapter is nonparametric in nature, which ensures a more accurate estimation process. Third, 

we find even greater increases in the predictive performance of RT and TRP from decomposed 

market portfolios: Size, Value, and Momentum as well as Industrial Sectors. In summary, the 

significant empirical evidence of the market returns predictability of the VRP previously 

documented in the literature is dominated by the predictability of the TRP in this chapter and, more 

importantly, to a larger extent. 

                                                           
13 In addition, several papers have related jump-tail risk to asset risk premia. For example, Naik and Lee (1990); 

Longstaff and Piazzesi (2004); Liu, Pan, and Wang (2004); Bollerslev and Todorov (2011, 2014); Kelly and Jinag 

(2014); and Andersen, Fusari and Todorov (2015) model jump-tail risk premia in equity returns, while Gabaix (2012) 

and Wachter (2013), extending initial work of Rietz (1988) and Barro (2006), relate equity risk premia to time-varying 

consumption disaster risk. 
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The rest of the chapter is organized as follows: Section 2.2 begins with a simple derivation 

of the VIX formulation, wherein the realized VIX and polynomial variation are formally defined. 

A simple approach for determining the market TRP as well as our decomposition of the VIX index 

are also presented, and we show the sample estimating procedures of the statistics in Section 2.3. 

Section 2.3 also presents the statistical estimations for both unconditional and conditional risk 

premiums of return variation. Section 2.4 describes the data and illustrates our empirical analysis 

of the VIX decomposition. Section 2.5 reports our empirical findings of equity return predictability 

of the four VIX decomposed components, Section 2.6 performs several robustness checks. Section 

2.7 contains brief concluding remarks. 

 

2.2 VIX Decomposition  

  

The Chicago Board Options Exchange's (CBOE) VIX index is the most widely used 

option-based (forward-looking) measure of stock return variability. Nevertheless, it is well known 

that the index contains compensation for risk in addition to that for time-varying volatilities.  Those 

include risk premium of jump intensities as well as that of jump-tail events. As such, this does lend 

acceptance to the common use of the term “investor’s fear gauge” as an epithet for the VIX 

volatility index, although admittedly an imperfect proxy. This section presents an unambiguous 

approach to distinguish risk between volatility and the tail variation embedded in the VIX index.  

We begin with a simple formulating process of the VIX index. 

 

2.2.1 A Simple VIX Formulation 

 

Without any specification of the return generating process, Chow, Jiang, and Li (2014) 

show that the formulation of VIX can be derived mathematically and straightforwardly as follows:  

Let 𝑅𝑡+1 (=
𝑆𝑡+1−𝑆𝑡

𝑆𝑡
)  be the forward arithmetic return and 𝑟𝑡+1 (= ln (

𝑆𝑡+1

𝑆𝑡
))  denote the 

logarithmic forward return over a period from 𝑡 to 𝑡 + 1.  Employing the Taylor series expansion 

and the expansion with the remainder, the difference between the arithmetic and logarithmic 

returns can be expressed as follows: 

 

𝑅𝑡+1 − 𝑟𝑡+1 = [∫
1

𝐾2
(𝑆𝑡+1 − 𝐾)

+𝑑𝐾 +∫
1

𝐾2
(𝐾 − 𝑆𝑡+1)

+𝑑𝐾
𝑆𝑡

0

∞

𝑆𝑡

] =∑
1

𝑛!
𝑟𝑡+1
𝑛

∞

𝑛=2
. (1) 

 

Now, let ℚ denote the risk-neutral distribution associated with the time dynamic of forward 

returns.  Under the no-arbitrage framework, the time-series conditional expected return-

difference can be measured by current option prices, which is equivalent to the basic formulation 

of the (squared) VIX:14   

 

                                                           
14 Under a purely continuous process of the quadratic variation, equation (2) serves as a basis for the derivation of the 

VIX.  See Carr and Madan (2001); Demeterfi, Derman, Kamal, and Zou (1999a, 1999b); and Britten-Jones and 

Neuberger (2000), and others. 
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𝐸𝑡
ℚ(𝑅𝑡+1 − 𝑟𝑡+1) = 𝑒

𝑟𝑓 {∫
1

𝐾2
𝐶𝑡,𝑡+1(𝐾)𝑑𝐾

∞

𝑆𝑡

+∫
1

𝐾2
𝑃𝑡,𝑡+1(𝐾)𝑑𝐾

𝑆𝑡

0

} 
(2) 

 =
1

2
VIX𝑡

2  =  
1

2
[𝐸𝑡

ℚ(𝑟𝑡+1
2 ) +∑

2

𝑛!
𝐸𝑡
ℚ(𝑟𝑡+1

𝑛 )
∞

𝑛=𝟑
] 

 

where 𝐸𝑡
ℚ(∙) is the risk-neutral conditional expectation operator at time t, 𝑟𝑓 is the annualized risk-

free rate corresponding to expiration date 𝑡 + 1, and 𝐶𝑡,𝑡+1(𝐾) and 𝑃𝑡,𝑡+1(𝐾) are the current (at 

time t) premiums of call and put option contracts with a strike K and expiration 𝑡 + 1, respectively.  

That is, the arbitrage-free argument implies that the VIX index can be extracted from the market 

price of a portfolio composed of all possible out-of-the-money (OTM) call/put options of the 

underlying index with weight inversely proportional to the square value of the strike price.   

Equivalently, equation (2) shows that instead of employing a long list of OTM options, the VIX 

also can be simply replicated by a portfolio of only two assets: a long position of a forward contract 

with a settlement price, 𝑆𝑡+1 and a short position of a log contract with a settlement price, ln(𝑆𝑡+1), 
where the log contract has been proposed by Neuberger (1994) for hedging volatility.15   

 

2.2.2 The Polynomial Variation and the Realized Tail 

 

The most notable result from equation (2) is that the VIX index, calculated from the fair 

market price of either an options portfolio or that of long-short forward contracts, provides not 

only a forward-looking estimate of the market volatility but information about the future return 

distribution in its entirety. The distributional information in addition to the volatility (the second 

moment) is characterized by a polynomial combination of a series of all higher distributional 

moments (e.g. skewness, kurtosis, etc.). This aggregate of high moments implanted in the VIX 

formulation perhaps explains why the VIX index is often referred to as the investor’s fear gauge.  

To examine and analyze the VIX index as a market fear indicator, decomposing the index 

regarding different risk characteristics is necessary. For convenience, we define RVIX𝑡+1 as the 

future realized outcomes of the VIX such that 

 

𝑅𝑉𝐼𝑋𝑡+1
2 = 2(𝑅𝑡+1 − 𝑟𝑡+1). (3) 

 

Then, the (squared) VIX is a conditionally risk-neutral estimate of twice the future arithmetic and 

logarithmic return differences (as called RVIX𝑡+1):   

 

𝑉𝐼𝑋𝑡
2 = 𝐸𝑡

ℚ(𝑅𝑉𝐼𝑋𝑡+1
2 ). (4) 

 

Next, following the classical approach and without losing generality, we assume that asset returns  

follow Merton’s (1976) diffusion-jump process:   

 

𝑅𝑡+1 = ∫ (𝛼𝑡 − 𝜆𝜇𝐽)𝑑𝑡 + ∫ 𝜎𝑡𝑑𝑊𝑡

𝑡+1

𝑡

𝑡+1

𝑡

+∫ ∫ (𝑒𝑥 − 1)
ℝ0

𝑡+1

𝑡

𝜇[𝑑𝑥, 𝑑𝑡]. (5) 

                                                           
15  Precisely, the replicated portfolio consists 

1

𝑆𝑡
 long position for every short position. 
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𝑟𝑡+1 = ∫ (𝛼𝑡 −
1

2
𝜎𝑡
2 − 𝜆𝜇𝐽) 𝑑𝑡 + ∫ 𝜎𝑡𝑑𝑊𝑡

𝑡+1

𝑡

𝑡+1

𝑡

+∫ ∫ 𝑥
ℝ0

𝑡+1

𝑡

𝜇[𝑑𝑥, 𝑑𝑡], 
(6) 

 

where 𝛼𝑡  is the instantaneous expected return of the asset, 𝜎𝑡  is the volatility, 𝑊𝑡  is standard 

Brownian motion, ℝ0 is the real line excluding zero, and 𝜇[𝑑𝑥, 𝑑𝑡] is the Poisson random measure 

for the compound Poisson process with the compensator equal to 𝜆
1

√2𝜋𝜎𝐽
2 𝑒

−
1

2
(𝑥−𝛼)2

, with 𝜆 as the 

jump intensity. Now, by taking the square of (6) and based on the Brownian properties, the future 

quadratic return, 𝑟𝑡+1
2 , can be expressed by a sum of two decomposed components: the integrated 

value of a continuously instant variance (ℂ𝕍) and that of a discontinuously (or jump) quadratic 

variability (𝕁ℚ𝕍). This decomposed process of return variability is the ℚ𝕍, and  𝑟𝑡+1
2  is the future 

realized outcome of the quadratic variation (denoted RV𝑡+1).
16 We summarize this as follows: 

 

ℚ𝕍[𝑡,𝑡+1] = 𝑟𝑡+1
2  = ∫ 𝜎𝑡

2
𝑡+1

𝑡

𝑑𝑡 + ∫ ∫ 𝑥2𝜇(𝑑𝑥, 𝑑𝑡)
ℝ0

𝑡+1

𝑡

 
(7) 

 =  ℂ𝕍[𝑡,𝑡+1]  +     𝕁ℚ𝕍[𝑡,𝑡+1]. 
 

Carr and Wu (2008) have shown that the theoretical determination of the VIX is 

inconsistent with the ℚ𝕍 in that  

  

VIX𝑡
2 = 𝐸𝑡

ℚ(ℚ𝕍[𝑡,𝑡+1]) +
1

2
𝐸𝑡
ℚ (∫ ∫ (𝑒𝑥 − 1 − 𝑥2)

ℝ0

𝑡+1

𝑡

𝜇[𝑑𝑥, 𝑑𝑡]). (8) 

 

A question then arises: What should be the fundamental process of determining the VIX 

value? To answer this question, we consider (3), (5) and (6) and define a generalized stochastic 

process of return variations, polynomial in form, as follows: 

 

Definition 1. The infinite-order polynomial variation (ℙ𝕍 ) of returns, based on the return 

generating process of (5) and (6), from time 𝑡 to 𝑡 + 1 is defined as  

 

ℙ𝕍[𝑡,𝑡+1] = 2(𝑅𝑡+1 − 𝑟𝑡+1) = ∫ 𝜎𝑡
2𝑑𝑡

𝑡+1

𝑡

  +     ∑
2

𝑛!

∞

𝑛=𝟐
∫ ∫ 𝑥𝑛

ℝ0

𝑡+1

𝑡

𝜇(𝑑𝑥, 𝑑𝑡)          
(9) 

 = ℂ𝕍[𝑡,𝑡+1]   +     𝕁ℙ𝕍[𝑡,𝑡+1]. 

 

where  𝕁ℙ𝕍  denotes a weighted sum of all of the predictable jumps of the  ℙ𝕍 .  The linear 

combination of all orders of the return variability in (9) characterizes the entire probability 

distribution of 𝑅𝑡+1, and thus the ℚ𝕍 is just a special case of the ℙ𝕍, if 𝑛 = 2. It is also important 

to note that since the continuous component of the polynomial variation converges to that of the 

ℚ𝕍 under the Brownian motion, ℙ𝕍 equals ℚ𝕍 with the absence of jump. 

 

Theorem 1.  Based on Definition 1 as well as equations (3) and (4), the theoretical value of the  

VIX index at time 𝑡 is the (square-rooted) risk-neutral estimate of the polynomial variation from  

                                                           
16 See Andersen et al. (2001); Cont and Tankov (2003), and others. 
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time 𝑡 to 𝑡 + 1: 

 

𝑉𝐼𝑋𝑡 = √𝐸𝑡
ℚ(ℙ𝕍[𝑡,𝑡+1])    (10) 

 

In short, the VIX index is a risk-neutral forward-looking measure of the polynomial 

variation of log-returns: not that of the ℚ𝕍.  Consequently, the realized variance (RV𝑡+1) is not 

generally the future realized outcome of the VIX. This highlights the potential bias of the 

conventional calculation of the VRP by simply taking the difference between the squared VIX and 

the RV.   

 

Structurally, although polynomial and quadratic variations are similar in form, ℙ𝕍 

provides additional information beyond the jump process of return variability. That is, statistically, 

the difference between ℙ𝕍 and ℚ𝕍 simultaneously captures the asymmetry, tail thickness, and 

other characteristics of the return distribution. We refer to this difference as the tail variation 

(hereafter 𝕋𝕍) or whose physical measure is the realized tail (RT) of returns: 

 

Corollary 1.    From (10) in Theorem 1 and (7), the difference between the polynomial and the 

quadratic variations of returns characterizes the jump tail variation (denoted 𝕋𝕍), which can be 

measured by the realized tail (denoted RT). The realized tail is a polynomial combination of all 

possible higher orders (higher than the 2nd order) of log-returns that are calculated by the spread 

between the squared realized VIX and the realized variance:  

 

𝑅𝑇𝑡+1 ≡ 𝕋𝕍[𝑡,𝑡+1] = ℙ𝕍[𝑡,𝑡+1] −ℚ𝕍[𝑡,𝑡+1] 

(11) 
 = [2(𝑅𝑡+1 − 𝑟𝑡+1) − 𝑟𝑡+1

2 ] = ∑
2

𝑛!

∞

𝑛=𝟑
𝑟𝑡+1
𝑛  . 

 

Note that, based on (6), the higher order of the jump process, 𝑥𝑛 for 𝑛 > 2, is equivalent 

to the same order of the log-returns, 𝑟𝑛 for 𝑛 > 2. Therefore, the expected RT is a polynomial sum 

of all higher order moments of an asset’s log-return distribution. Corollary 1 highlights the 

important relationship between the ℚ𝕍 and the VIX: Under the risk-neutral framework as well as 

from (4) and (11),  

 

𝐸𝑡
ℚ(ℚ𝕍[𝑡,𝑡+1]) =  VIX𝑡

2 − 𝐸𝑡
ℚ(𝕋𝕍[𝑡,𝑡+1]). (12) 

 

Consistent with Proposition 1 of Carr and Wu (2008), we show that the (risk-neutral) 

conditional ℚ𝕍 is just a tail-free VIX2. Further, the option based conditional tail variation can then 

be measured by the spread between the squared VIX and the BKM’s unbiased variance measure 

(VBKM): 

 

𝐸𝑡
ℚ(𝑅𝑇𝑡+1) =  VIX𝑡

2 − V𝑡
𝐵𝐾𝑀 = ∑

2

𝑛!

∞

𝑛=𝟑
𝐸𝑡
ℚ(𝑟𝑡+1

𝑛 ) (13) 

 

where 
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V𝑡
𝐵𝐾𝑀 ≡ 𝐸𝑡

ℚ
(ℚ𝕍[𝑡,𝑡+1]) = 𝑒

𝑟𝑓 [∫
2 [1 − 𝑙𝑛 (

𝐾
𝑆𝑡
)]

𝐾2
𝐶𝑡,𝑡+1(𝐾)𝑑𝐾

∞

𝑆𝑡

+∫
2 [1 + 𝑙𝑛 (

𝑆𝑡
𝐾
)]

𝐾2
𝑃𝑡,𝑡+1(𝐾)𝑑𝐾

𝑆𝑡

0

] (14) 

 

The spread between the squared VIX and the BKM variance equals the negative value of 

Du and Kapadia (2012) jump and tail index, the JTIX. Here the V𝑡
𝐵𝐾𝑀 serves as an appropriate 

(risk-neutral) forward-looking measure of the quadratic variation, while the JTIX serves as an 

appropriate (risk-neutral) forward-looking measure of the TV. As discussed in Du and Kapadia 

(2012), the JTIX is a short position in a risk reversal and the hedge that a dealer in short variance 

swaps would buy to protect against the risk of discontinuities. 

 

2.2.3 VIX Decomposition  

 

Following Bollerslev, Tauchen and Zhou (2009)’s basic notion, we define formally three 

different risk premiums: the VIX risk premium (VIXRP), the unbiased VRP, and the TRP as 

follows: First, 

 

𝑉𝐼𝑋𝑅𝑃[𝑡,𝑡+1] = 𝐸𝑡
ℚ(ℙ𝕍[𝑡,𝑡+1]) − 𝐸𝑡

ℙ(ℙ𝕍[𝑡,𝑡+1]) = VIX𝑡
2 − 𝐸𝑡

ℙ(𝑅𝑉𝐼𝑋𝑡+1
2 ), (15) 

 

where 𝐸𝑡
ℙ(RVIX𝑡+1) is the physical measure of the polynomial variation in the actual probability 

space ℙ, and VIX𝑡
2, as shown in (4), is the risk-neutral estimation of ℙ𝕍. Since ℙ𝕍 identifies the 

overall variation of returns, VIXRP contains both the risk premium of return volatility and that of 

potentially abnormal variability. Second,  

 

𝑉𝑅𝑃[𝑡,𝑡+1] = 𝐸𝑡
ℚ(ℚ𝕍[𝑡,𝑡+1])  − 𝐸𝑡

ℙ(ℚ𝕍[𝑡,𝑡+1]) = V𝑡
𝐵𝐾𝑀 − 𝐸𝑡

ℙ(RV𝑡+1). (16) 

 

VRP serves as a risk premium proxy for ordinary price fluctuation with normal jumps. Third,  

 

 𝑇𝑅𝑃[𝑡,𝑡+1] = (VIX𝑡
2 − V𝑡

𝐵𝐾𝑀) − 𝐸𝑡
ℙ(RT𝑡+1), (17) 

 

where  

 

 𝐸𝑡
ℙ(RT𝑡+1) = 𝐸𝑡

ℙ(𝑅𝑉𝐼𝑋𝑡+1
2 ) − 𝐸𝑡

ℙ(RV𝑡+1). (18) 

 

TRP is the difference between VIXRP and VRP, which characterizes the compensation for 

the prospectively unusual jumps of the market return distribution. Finally, the VIX index can then 

be decomposed into four fundamentally different constituents such that: 

 

 VIX𝑡
2 = [𝐸𝑡

ℙ(𝑅𝑉𝑡+1) + 𝑉𝑅𝑃[𝑡,𝑡+1]] + [𝐸𝑡
ℙ(RT𝑡+1) + 𝑇𝑅𝑃[𝑡,𝑡+1]]. (19) 

 

Intuitively, the first two components of the (squared) VIX index reflect the conditional 

(physical) expectation of future volatility and the risk compensation of the future variability from 

normal economic uncertainty. The third and fourth elements characterize the conditional (physical) 
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TV of returns and the corresponding TRP for compensating the potentially abnormal market 

variation. The RT and TRP could be negative if market returns are negatively skewed. This implies 

that the VIX index could understate the true return volatility due to negative RT and TRP, although 

VIX tends to be highly correlated with return volatility. Importantly, the conventional Bollerslev, 

Tauchen and Zhou (2009) VRPc, is also biased toward the true variance risk premium from (19), 

 

𝑉𝑅𝑃[𝑡,𝑡+1]
𝑐 = VIX𝑡

2 − 𝐸𝑡
ℙ(𝑅𝑉𝑡+1) = 𝑉𝑅𝑃[𝑡,𝑡+1] + [𝐸𝑡

ℙ(RT𝑡+1) + 𝑇𝑅𝑃[𝑡,𝑡+1]]. (20) 

 

It is clear that the widely used VRPc is influenced by not only the volatility risk premium 

but the RT and its associated risk premium. Consequently, the impact of tail risk on future market 

price fluctuation could be the source of the predictability of Bollerslev, Tauchen and Zhou (2009) 

VRPc to US aggregate equity returns. This chapter addresses this issue by empirically examining 

the return predictability of our four decomposed VIX measures.   

  

Traditionally, the past realized variation is often used as the ℙ estimate of the conditional 

variation of stock market returns, which is, in fact, an unconditional sample estimate of the 

historical return variability. Consequently, to ensure the accuracy of risk estimation, developing 

robust statistical methods for measuring conditional (physical) return variation is necessary. We 

present our estimation procedures of conditional RVIX, RV, and RT based on Bekaert and 

Hoerova (2014) forecasting models in the next section.  

 

2.3 Unconditional and Conditional Estimates 

  

For quantifying the actual return variations, standard approaches employ high-frequency 

price observations, and the time interval [𝑡 − 1, 𝑡] is split into 𝑛 equally spaced increments. (e.g. 

78, 5-minute trading intervals in a day). Let 𝑝𝑡 denote the logarithmic price of the asset. The jth 

intraday return 𝑟𝑗 on day 𝑡 is defined as 𝑟𝑗 = 𝑝𝑡−1+𝑗
𝑛

  −  𝑝
𝑡−1+

𝑗−1

𝑛
(∆)

. According to Andersen and 

Bollerslev (1998), the unconditional (ex-post) estimate of the realized variance can be defined:  

 

𝑅𝑉̂𝑡 =∑ 𝑟𝑗
2  

𝑛

𝑗=1

𝑝
→  ℚ𝕍[𝑡−1,𝑡], for 𝑛 →  ∞ (21) 

 

where 
𝑝
→  standard for convergence in probability. Analogous to RV estimation, Jiang and Oomen 

(2008) show that the sum of twice the difference between arithmetic and logarithmic returns 

convergence in probability are limited to quadratic variation plus jumps in exponential form.   

Mathematically, that is, 
𝑝𝑙𝑖𝑚
𝑛 → ∞

∑ 2(𝑅𝑗 − 𝑟𝑗) =
𝑛
𝑗=1 ℚ𝕍[𝑡−1,𝑡] + 2∫ [exp (𝐽𝑢

𝑡

𝑡−1
) − 𝐽𝑢

2 − 𝐽𝑢 −

1]𝑑𝑞𝑢 = ℙ𝕍[𝑡−1,𝑡], with 𝐽 being the jump process. Therefore, the sample estimate of our realized 

VIX can be calculated as:  

 

𝑅𝑉𝐼𝑋̂𝑡
2 =∑ 2(𝑅𝑗 − 𝑟𝑗)

𝑛

𝑗=1

𝑝
→  ℙ𝕍[𝑡−1,𝑡], for 𝑛 →  ∞, (22) 
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and the asymptotically unbiased, unconditional measure of the RT can thus be computed by RT̂𝑡 =

∑ [2(𝑅𝑗 − 𝑟𝑗)
𝑀
𝑗=1 − 𝑟𝑗

2]   
𝑝
→  𝕋𝕍[𝑡−1,𝑡] = [ℙ𝕍[𝑡−1,𝑡] −ℚ𝕍[𝑡−1,𝑡]], for 𝑛 →  ∞ . Further, the 

estimation of VIX (denoted VIX̂𝑡) based on finite option prices can be obtained from CBOE. We 

also apply the same procedure as the CBOE’s VIX formulation to the unbiased variance measure 

of V𝑡
𝐵𝐾𝑀  (denoted V̂𝑡

𝐵𝐾𝑀).17 Then, the calculation of our risk premiums can be summarized as 

follows:18 

 

Unconditional VIX Risk Premium:   𝑉𝐼𝑋𝑅𝑃̂
𝑡 = 𝑉𝐼𝑋̂𝑡

2 − 𝑅𝑉𝐼𝑋̂𝑡
2, 

Unconditional Unbiased Variance Risk Premium:   𝑉𝑅𝑃̂𝑡 = 𝑉̂𝑡
𝐵𝐾𝑀 − 𝑅𝑉̂𝑡, 

Unconditional Tail Risk Premium:   𝑇𝑅𝑃̂𝑡 = (𝑉𝐼𝑋̂𝑡
2 − 𝑉̂𝑡

𝐵𝐾𝑀) − 𝑅𝑇̂𝑡. 
 

Economically, the return VRP, as shown in (15), (16), and (17), is the difference between 

the conditional variation using a risk-neutral probability measure and that uses the actual physical 

probability measure. Both of the option-based estimates of V̂𝑡
𝐵𝐾𝑀  and VIX̂𝑡  are risk-neutral 

conditional measures. Conventionally, the physical measures employed are backward-looking 

(past) sample estimations, where the options based ℚ  measures are forward-looking.  This 

counterintuitive approach used for calculating VRP could naturally produce biased results. 

Recently, Bekaert and Hoerova (2014) evaluate a plethora of state-of-the-art volatility forecasting 

models based on the decomposition of the squared VIX index to produce an accurate measure of 

the conditional variance. We adopt one of Bekaert and Hoerova (2014) winning models (model 

11) as our forecasting model for estimating conditional return variation. Bekaert and Hoerova 

(2014) model 11 features continuous and jump variations at three frequencies: 1-day, 5-day, and 

22-day, respectively, in that the presence of realized variability at all three frequencies is important 

in delivering lower error statistics. We present the application of Bekaert and Hoerova (2014) 

model 11 to our variables as follows. 

 

We begin with daily measures of RV, RVIX, and RT, calculated from 5-minute intraday 

returns as well as an overnight close-to-open return (79 increments in total per day). They are   

𝑅𝑉̂𝑡
(1)
=
79

𝜅
∑ 𝑟𝑖

2𝜅
𝑖=1 , 𝑅𝑉𝐼𝑋̂𝑡

2(1)
=
79

𝜅
∑ 2(𝑅𝑖 − 𝑟𝑖)
𝜅
𝑖=1 , and RT̂𝑡

(1)
=
79

𝜅
∑ 2(𝑅𝑖 − 𝑟𝑖) −
𝜅
𝑖=1

𝑟𝑖
2, respectively, where 𝜅 is the actual trading increment. Next, the h-day estimate of the continuous 

as well as the discontinuous components of the quadratic and polynomial variations in (7) and (10) 

are calculated:   ℂ𝕍𝑡
(ℎ)
= (

22

ℎ
∑ 𝑅𝑉̂𝑡−𝑗+1

(1)ℎ
𝑗=1 ) − 𝕁ℚ𝕍𝑡

(ℎ), 𝕁ℚ𝕍𝑡
(ℎ)
=
22

ℎ
∑ 𝑚𝑎𝑥 [(𝑅𝑉̂𝑡−𝑗+1

(1)
−ℎ

𝑗=1

TBPV𝑡−𝑗+1
(1)

), 0] , and  𝕁ℙ𝕍𝑡
(ℎ)
=
22

ℎ
∑ (𝑅𝑉𝐼𝑋̂𝑡−𝑗+1

2(1)
− ℂ𝕍𝑡−𝑗+1

(1)
)ℎ

𝑗=1 ,  where TBPV𝑡
(1)

 stands for the 

daily threshold bipower variation defined in Corsi et al. (2010). Note that we scale up all measures 

to the monthly (22-day) basis. Then, three rollover series of continuous and discontinuous sample 

estimates, daily (h = 1), weekly (h = 5), and monthly (h = 22), accordingly, are used as independent 

variables for the following forecasting models: 

 

2[𝑅 𝑡
(22)

− 𝑟 𝑡
(22)
] = 𝛼 + 𝛽𝑚ℂ𝕍𝑡−22

(22)
+ 𝛽𝑤ℂ𝕍𝑡−22

(5)
+ 𝛽𝑑ℂ𝕍𝑡−22

(1)
                  (23) 

                                                           
17 See the VIX white paper, URL: http://www.cboe.com/micro/vix/vixwhite.pdf. 
18 All variables are annualized whenever appropriate. 

http://www.cboe.com/micro/vix/vixwhite.pdf
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 + 𝛾𝑚𝕁ℙ𝕍𝑡−22
(22)

+ 𝛾𝑤𝕁ℙ𝕍𝑡−22
(5)

+ 𝛾𝑑𝕁ℙ𝕍𝑡−22
(1)

+ 𝜀𝑡 
 

[𝑟 𝑡
(22)
]
2

= 𝑎 + 𝑏𝑚ℂ𝕍𝑡−22
(22)

+ 𝑏𝑤ℂ𝕍𝑡−22
(5)

+ 𝑏𝑑ℂ𝕍𝑡−22
(1)

                     
(24) 

  +𝑐𝑚𝕁ℚ𝕍𝑡−22
(22)

+ 𝑐𝑚𝕁ℚ𝕍𝑡−22
(5)

+ 𝑐𝑑𝕁ℚ𝕍𝑡−22
(1)

+ 𝑒𝑡 
 

and  

 

2[𝑅 𝑡
(22)

− 𝑟 𝑡
(22)
] − [𝑟 𝑡

(22)]
2

= 𝒜 + 𝒞𝑚[𝕁ℙ𝕍𝑡−22
(22)

− 𝕁ℚ𝕍𝑡−22
(22)

] 

(25)  + 𝒞𝑤 [𝕁ℙ𝕍𝑡−22
(5)

− 𝕁ℚ𝕍𝑡−22
(5)

] 

 + 𝒞𝑑  [𝕁ℙ𝕍𝑡−22
(1)

− 𝕁ℚ𝕍𝑡−22
(1)

] + 𝜖𝑡 

 

where 𝑅 𝑡
(22)
 and 𝑟 𝑡

(22)
 are the monthly rollover arithmetic and logarithmic returns over the time 

interval [𝑡 − 22, 𝑡] , respectively. Consequently, the conditional measures of return variations as 

well as their risk premiums can be computed using the estimated coefficients from regressions of 

(23), (24), and (25), accordingly. We summarize the calculation as follows: Let 𝑅𝑉𝐼𝑋̅̅ ̅̅ ̅̅
𝑡̅
2  

=   𝐸̂𝑡
ℙ(𝑅𝑉𝐼𝑋𝑡+22

2 ) , 𝑅𝑉̅̅ ̅̅ 𝑡 = 𝐸̂𝑡
ℙ(𝑅𝑉𝑡+22) , and 𝑅𝑇̅̅ ̅̅ 𝑡 = 𝐸̂𝑡

ℙ(𝑅𝑇𝑡+22)  be the empirical conditional 

estimates of next month’s return variations. 

 

Conditional VIX Risk 

Premium: 
𝑉𝐼𝑋𝑅𝑃̅̅ ̅̅ ̅̅ ̅̅

𝑡̅ =
1

12
𝑉𝐼𝑋̂𝑡

2 − 𝑅𝑉𝐼𝑋̅̅ ̅̅ ̅̅
𝑡̅
2, where  

 𝑅𝑉𝐼𝑋̅̅ ̅̅ ̅̅
𝑡̅
2 = 𝛼̂ +  𝛽̂𝑚ℂ𝕍𝑡

(22)
+ 𝛽̂𝑤ℂ𝕍𝑡

(5)
+ 𝛽̂𝑑ℂ𝕍𝑡

(1)
 

                     + 𝛾𝑚𝕁ℙ𝕍𝑡
(22)

+ 𝛾𝑤𝕁ℙ𝕍𝑡
(5)
+ 𝛾𝑑𝕁ℙ𝕍𝑡

(1)
, 

 

Conditional Unbiased  

Variance Risk Premium: 
𝑉𝑅𝑃̅̅ ̅̅ ̅̅

𝑡 =
1

12
V̂𝑡
𝐵𝐾𝑀 − RV̅̅ ̅̅ 𝑡, where 

𝑅𝑉̅̅ ̅̅ 𝑡 = 𝑎̂ + 𝑏̂
𝑚ℂ𝕍𝑡

(22)
+ 𝑏̂𝑤ℂ𝕍𝑡

(5)
+ 𝑏̂𝑑ℂ𝕍𝑡

(1)
 

                +𝑐̂𝑚𝕁ℚ𝕍𝑡
(22)

+ 𝑐̂𝑤𝕁ℚ𝕍𝑡
(5)
+ 𝑐̂𝑑𝕁ℚ𝕍𝑡

(1)
, 

 

Conditional Tail Risk 

Premium: 
𝑇𝑅𝑃̅̅ ̅̅ ̅̅

𝑡 = 
1

12
(VIX̂𝑡

2 − V̂𝑡
𝐵𝐾𝑀) − RT̅̅̅̅ 𝑡,  where 

 𝑅𝑇̅̅ ̅̅ 𝑡 = 𝒜̂ + 𝒞̂𝑚[𝕁ℙ𝕍𝑡
(22)

− 𝕁ℚ𝕍𝑡
(22)
] + 𝒞̂𝑤[𝕁ℙ𝕍𝑡

(5)
− 𝕁ℚ𝕍𝑡

(5)
] 

                    +  𝒞̂𝑑[𝕁ℙ𝕍𝑡
(1)
− 𝕁ℚ𝕍𝑡

(1)
]. 

 

2.4 Empirical Analysis of VIX Decomposition 

 

This section describes data and empirical analysis of our VIX decomposition. Particularly, 

the focus is on examining the source of the intrinsic market return predictability on different return 

horizons as well as different decomposed aggregate market portfolios with various types of risk 

exposures. 
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2.4.1 Data Description 

  

We employ the aggregate S&P 500 composite index as a proxy for the aggregate market 

portfolio. Our high-frequency data for the S&P 500 index span the period of January 2, 1990 to 

October 10, 2014. The prices are recorded at 5-minute intervals, with the first price for the day at 

9:30 A.M. and the last price at 4:00 P.M.19 Along with the close-to-open overnight return, this 

leaves us with a total of 79 intraday return observations for each of the 5,979 trading days in the 

sample. The daily VIX index is obtained directly from the website of the CBOE. We also obtain 

the daily CBOE SKEW index for comparison purposes. The CBOE SKEW index typically ranges 

from 100 to 150. A SKEW value of 100 means that the perceived distribution of S&P 500 log-

returns is normal and the probability of outlier returns is therefore negligible. As SKEW rises 

above 100, the left tail of the S&P 500 distribution acquires more weight, and the probabilities of 

outlier returns become more significant. 

 

For calculating VBKM, we use closing bid and ask quotes for all S&P 500 options traded on 

the CBOE.20 Further, for analyzing the predictive performance of VRP and TRP on various size, 

book-to-market, and momentum sorted portfolios, we downloaded return data from Kenneth R. 

French's data library.21  Finally, the data of the control variables in our analytical models are from 

Compustat and the Federal Reserve Bank dataset and the Federal Reserve Bank of St. Louis 

website. 

 

2.4.2 Sample Estimates of the VIX Decomposed Components 

 

Basic summary statistics for the daily, weekly and monthly measures of return variations 

and risk premiums are provided in Table 1. In addition to ex-post (unconditional) sample estimates, 

we calculate the daily conditional measures of return variations using the resulting coefficients 

from the forecasting regressions of (23), (24) and (25) over the full sample as follows:  

 

𝑅𝑉𝐼𝑋̅̅ ̅̅ ̅̅
𝑡̅
2 = 

12.747
(2.184)

−
 
0.164
(0.132)

ℂ𝕍𝑡
(22)+ 0.456

(0.169)
ℂ𝕍𝑡

(5)− 0.071
(0.089)

ℂ𝕍𝑡
(1)

 

(26) 

 
+ 0.544
(0.226)

𝕁ℙ𝕍𝑡
(22)+

 
0.370
(0.316)

𝕁ℙ𝕍𝑡
(5)

−
0.028
(0.041)

𝕁ℙ𝕍𝑡
(1)

, 

 

𝑅𝑉̅̅ ̅̅ 𝑡 = 
12.752
(2.212)

−
 
0.171
(0.143)

ℂ𝕍𝑡
(22)+ 0.487

(0.180)
ℂ𝕍𝑡

(5)− 0.086
(0.091)

ℂ𝕍𝑡
(1)

 

(27) 

 
+ 0.530
(0.229)

𝕁ℚ𝕍𝑡
(22)+

 
0.392
(0.334)

𝕁ℚ𝕍𝑡
(5)

+
0.029
(0.042)

𝕁ℚ𝕍𝑡
(1)

, 

 

𝑅𝑇̅̅ ̅̅ 𝑡 = 
−0.234
(0.195)

−
 
2.013
(1.300)

[𝕁ℙ𝕍𝑡
(22)

− 𝕁ℚ𝕍𝑡
(22)
]− 0.608
(0.890)

[𝕁ℙ𝕍𝑡
(5)
− 𝕁ℚ𝕍𝑡

(5)
]
 (28) 

                                                           
19 The source of our high-frequency data is from Genesis Financial Technologies. 
20 We obtained options data from Ivolatility.com 
21 Website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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+ 0.129
(0.123)

[𝕁ℙ𝕍𝑡
(1)
− 𝕁ℚ𝕍𝑡

(1)
]
; 

 

 [Insert Table 1 here] 

 

The heteroscedasticity-robust standard errors are reported in parenthesis. Numerically, due 

to the similarity of scale between RVIX2 and RV, the magnitude of the RT measures is quite small 

in that the means of daily, weekly and monthly RT are only -0.172, -0.312, and -0.206 percentage 

points, respectively.22 Nevertheless, the significant t-statistics for all RT estimates indicate that 

RVIX2 is statistically different from RV, and thus the higher order jump (tail) process of market 

returns cannot be ignored.  Implicitly, it shows that market return variability results from two parts: 

volatility as well as TV. Therefore, the risk compensation of market variation can be decomposed 

by the risk premium of the VRP and that of the TRP, accordingly. Empirically, both the VRP and 

the TRP are statistical non-zero. To illustrate, Plot 1 plots the daily time series of the VRP and the 

TRP based on conditional measures. We also plot the CBOE VIX index and SKEW index, the 

BKM volatility, the TJIX, and the unconditional measures of RV and TV for comparison purposes. 

 

[Insert Plot 1 here] 

 

Consistent with empirical evidence in previous studies, the spread between the unbiased 

implied (risk-neutral, VBKM) and RV is generally positive. We show that the spread between the 

realized and implied TV, on the other hand, is mostly negative and seems to be highly and 

negatively correlated with the VRP. The dynamics in the TRP capture compensation for unusually 

large and asymmetric risks in the market return distribution. From Plot 1, the VIX index and the 

BKM variance are very close to each other, which results that the average magnitude of the JTIX 

is relatively small. The TRP is driven more by large volatility values (as shown by the BKM V 

and Unconditional Realized V in Plot 1) than SKEW values, although some spikes (the spikes 

around 1990-1991 and 1998-1999) seem correlated to the high SKEW level. Back in Table 1, 

conditional and unconditional risk premium measures are alike on average. However, conditional 

(unconditional) VRP tends to be positively (negatively) skewed. This highlights the potential 

difference between ex-ante and ex-post approaches in market return predictability analysis.  

 

    

2.4.3 Decomposable Goodness-of-Fit Test  

  

To examine fundamental attributions of the four individual components (RV, VRP, RT, 

and TRP) to the variation of VIX, we employ Klein and Chow (2013, KC hereafter) decomposed 

R-square approach. Based on an optimal simultaneous orthogonal data transformation, KC 

methodology allows us to identify the underlying uncorrelated components of RV, VRP, RT, and 

TRP, respectively. Since squared VIX is a linear combination of the four decomposed factors as 

shown in (19), without losing generality and to avoid the problem of multicollinearity, a multiple 

factor regression model with orthogonally transformed variables can be set up as follows: 

                                                           
22 Bondarenko (2014) also shows the numerical similarity between ∑ 2(𝑅𝑗 − 𝑟𝑗)

𝑛
𝑗=1  and ∑ 𝑟𝑗

2𝑛
𝑗=1 . 
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𝑉𝐼𝑋𝑡
2 = 𝛼𝑡 + 𝛽𝑅𝑉

⊥ RV𝑡
⊥ + 𝛽𝑉𝑅𝑃

⊥ 𝑉𝑅𝑃𝑡
⊥ + 𝛽𝑅𝑇

⊥ 𝑅𝑇𝑡
⊥ + 𝛽𝑉𝑅𝑇

⊥ 𝑇𝑅𝑃𝑡
⊥ + 𝑒𝑡, (29) 

 

where ⊥  denotes variables or coefficients after orthogonal data transformation.  

Specifically, the essential components of the four factors retain their original variances before 

orthogonalization, but their cross-sectional covariances are zero. In addition, the multi-factor 

regression (29) maintains the same coefficient of determination (R-square, i.e. the ratio of 

systematic variation to the overall variability of the VIX) as that using the fundamental, non-

orthogonalized factors. Since R-square represents a goodness-of-fit of the VIX from data of the 

four components, disentangling the R-square, based on factors' volatility and their corresponding 

betas, is thus able to determine the individual contribution of to the VIX's variation from different 

components. Statistically, this decomposition of the R-square can be expressed as:  

 

𝑅VIX
2 = (𝛽𝑅𝑉

⊥
𝜎RV
𝜎VIX

)
2

+ (𝛽𝑉𝑅𝑃
⊥

𝜎VRP
𝜎VIX

)
2

+ (𝛽𝑅𝑇
⊥
𝜎RT
𝜎VIX

)
2

+ (𝛽𝑇𝑅𝑃
⊥

𝜎TRP
𝜎VIX

)
2

 
(30) 

= 𝐷𝑅RV
2      +        𝐷𝑅VRP

2      +      𝐷𝑅RT
2       +       𝐷𝑅TRP

2 , 
  

where DR2 denotes the decomposed R-square.  Further, note that from (19), since the squared VIX 

is a sum of the four factors, 𝑅VIX
2  in (30) is one.   

 

[Insert Table 2 here] 

 

[Insert Table 3 here] 

 

Table 2 and 3 report the empirical results of (29) and (30) with the unconditionally and 

conditionally daily estimations of RV, VRP, RT, and TRP, respectively. For preventing bias results 

due to measurements at different scales, all variables are standardized for the analyses. Over the 

sample period of January 1993 to September 2014, the (unconditional) realized volatility 

characterizes more than two-thirds (66.83 percent) of the VIX daily variation. Notably, the 

decomposed R-square of the TRP is 26.64 percent, which is almost four times larger than that of 

the VRP. The impact of both unconditional and conditional RT on VIX's variability appears to be 

small. This demonstrates that the investors' required compensation of potential significant market 

movements (tail risk) is a major factor in determining the variation of the VIX.   

  

Nevertheless, as shown in Table 3, the influence of conditional RV to the VIX is much 

smaller than that of unconditional RV, where the decomposed R-square drops to 29.8 percent.  

Since the conditional RV is an ex-ante measure calculated from the forecasting model (27), the 

results of both unconditional and conditional analyses (Tables 2 and Table 3) strongly indicate that 

although the formulation of the VIX is a forward-looking (options) based measure, the major 

determinant of the VIX is actually the physically (ex-post) realized volatility.   
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To further analyze the impact of the decomposed components of the VIX variability under 

different market conditions, we divide the overall sample into sub-samples based on three distinct 

levels of the VIX: (1) nervous market condition for VIX ≥ 23.32 (75 percentile), (2) normal market 

condition for 14.17 ≤ VIX < 23.32, and (3) calm market condition for VIX < 14.17 (25 percentile), 

correspondingly. It appears that the TRP has the largest influence on the VIX determination during 

Nervous Market Condition. This suggests that the VIX is not only a volatility index but the 

market’s fear gauge regarding the higher moments of the market return distribution.   

  

2.5 Stock Return Predictability 

  

Mounting empirical evidence suggests that equity market future returns could be predicted 

by the long-term VRP, defined as the difference between the risk-neutral and the actual 

expectations (i.e. VIX2 – RV), especially over a 3- to 6-month time horizon. Bollerslev, Todorov, 

and Xu (2015) argues that the VRP can be naturally decomposed into two fundamentally different 

sources of market variance risk: normal size price fluctuations and jump tail risk.  Specifically, by 

differentiating the left and right (risk-neutral) jump components from the ℚ𝕍 based on a threshold 

of log-jump size, the part of the VRP associated with compensation for left jump (tail) risk may 

be seen as a proxy for market fears. Bollerslev, Todorov, and Xu (2015) show that the left jump 

(or tail variation) serves as a predictor variable for market future returns.  Instead of discriminating 

the quadratic jump variation between left and right, we measure tail risk based on the spread 

between the ℙ𝕍 and ℚ𝕍 (i.e. 𝕋𝕍 = ℙ𝕍 − ℚ𝕍).   

 

2.5.1 S&P 500 Index Return Predictability  

  

Following the analytical procedures of Bollerslev, Tauchen and Zhou (2009) and Bekaert 

and Hoerova (2014), we investigate the relationship between aggregate stock market (the S&P 500 

Index) monthly excess returns and a set of lagged predictor variables with a focus on the RT and 

the TRP. The main predictive variables include the four decomposed VIX risk factors: RV, VRP, 

RT, and TRP, respectively. In addition, to ensure the robustness of our analysis, we also include a 

set of control variables employed by Bekaert and Hoerova (2014) that consists of the real 3-month 

rate (the 3-month T-bill minus CPI inflation, denoted 3MTB), the logarithm of the dividend yield 

(denoted Log(DY)), the credit spread (the difference between Moody’s BAA and AAA bond yield 

indices, denoted CS) and the term spread (the difference between the ten-year and the 3-month 

Treasury yields, denoted TS).   Table 4 reports two correlation matrices of predictor variables with 

respect to the unconditional and conditional measures. The RT has relatively low cross-sectional 

correlations with other variables.  It ranges from -0.18 (with VRP) to 0.24 (with TRP) for the 

unconditional RT, and from -0.28 (with TRP) to 0.50 (with RV) for the conditional RT.   

    

[Insert Table 4 here] 

 

 Our main analytical results of stock market predictability appear in Table 5.  We employ 

the standard approaches of Bollerslev, Tauchen and Zhou (2009) and Bekaert and Hoerova (2014) 
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by regressing excess stock returns (the annualized monthly S&P500 return in excess of the 

annualized 3-month T-bill rate) against the risk factors described above. All variables, except RT, 

are expressed in annualized percentages; the RT is expressed in basis points. The analysis is also 

based on three different horizons, monthly, quarterly and annual (denoted by 1, 3 and 12, 

respectively), averaging returns over a quarter/year. To correct for serial correlation, the Newey-

West t-statistics with a relatively large number of lags is adopted.23 For each Panel of Table 5, we 

report the results from simple regressions with respect to each risk variable and their risk premium 

individually as well as with multiple regressions that consider jointly individual risk factors, its 

premium, and control variables. Panel A reveals monthly return predictability.   

 

There are fairly different outcomes between unconditional and conditional measurements.  

Based on a conventional ex-post approach of simple historical (unconditional) estimation, 

individual t-statistics for all risk factors (except the RT), extending from -2.311 to 3.204, are 

significant at the 5% level. At the monthly prediction horizon, TRP is significant for both 

unconditional and conditional measures; this result is in line with the findings in Table 2 and 3 that 

TRP is of larger significance among the four decomposed VIX components.   

 

[Insert Table 5 here] 

 

Importantly, as shown in Panel A of Table 5, almost an opposite result appears when we 

employ the Bekaert and Hoerova (2014) conditional approach. From simple return predictability 

regressions, the RT and TRP are the only significant predictors for future monthly market returns. 

A similar result holds from the multiple variable regression, except that VRP is significant, where 

Newey-West t-statistics of conditional VRP, RT, and TRP regressor coefficients are 3.172, 2.651, 

and 2.513, respectively. By extending the prediction period from a month to a quarter, Panel B of 

Table 5 shows that from the regression with multiple control variables, both conditional and 

unconditional RT still retain their predictive power of stock market returns.  However, Panel C of 

Table 5 reports that both conditional RT and TRP fail to predict stock market returns.  Therefore, 

the tail risk factor and its risk premium have predictive power for stock return over a relatively 

short period of time. On the other hand, the predictability of VRP increases as the time horizon 

increases from a month to a quarter. In summary, the empirical evidence from Table 5 concludes 

that from multiple regressions including control variables, RV does not predict S&P 500 index 

returns for almost all time horizons (except the unconditional monthly prediction). Nevertheless, 

the time series conditional tail risk factor and its premium proxy, on the contrary, statistically 

predict the next month’s (and quarter’s) stock market returns.    

 

 Next, consider that the two decomposed components of the VIX risk premium derived from 

the polynomial variation (i.e., VRP and TRP) are separate potential predictors of stock market 

returns. To compare the predictability of VRP with that of TRP, we plot the corresponding Newey-

West t-statistics and adjusted regression R2s for all of the 1- through 12-month return regressions 

in Plot 2. The t-statistics from the simple regressions based on unconditional (conditional) VRP 

are all significant (insignificant), and the R2s increase with the return horizons.  However, the R2s 

of the unconditional VRP regression decreases after they reach the maximum value of 10% at the 

                                                           
23 Econometrics literature such as Newey and West (1987) and Smith (2005) documents that the Newey-West t-

statistics are Heteroscedasticity and Autocorrelation Consistent (HAC). 
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four-month horizon. Consistent with the results in Table 5, the t-statistics from the simple 

regressions based on either unconditional or conditional TRP are significant in the short time 

horizon (shorter than two-month), and the R2s decrease with the return horizon. In addition, the 

adjusted R2s from the multiple regressions based on both unconditional (conditional) predictor 

variables are higher but close to those from the simple regressions based on unconditional VRP 

(conditional TRP) only.  In summary, the risk premium of the market return variation contains two 

components: compensation for economic uncertainty, measured by the VRP, and that for the 

unusually large and asymmetric market movements, measured by the TRP. To further examine the 

sources of the predictability, we follow Bollerslev, Todorov, and Xu (2015) by analyzing a series 

of predictability regressions for various style portfolios.  

 

 [Insert Plot 2 here] 

 

2.5.2 Return Predictability of Style Portfolios 

   

Portfolios with different styles represent different risk characteristics and exposures.  

Therefore, their reaction to a change in aggregate risk and risk-aversion could vary. Table 6 reports 

the results from multiple regressions based on lagged RV, VRP, TRP, RT, and control variables 

similar to those in Table 5. The dependent variables are based on monthly excess returns of 

different style portfolios. The style portfolios are classified by three different risk factors of Fama-

French-Carhart: Size, Value/Growth, and Momentum, accordingly. The six equally weighted 

portfolios, obtained from the data library of Kenneth R. French, comprise the top and bottom 

quintiles for each of the three different stock sorts according to their market capitalization, book-

to-market (B/M) value, and most recent annual return. The predictability analysis is again based 

on three different horizons: monthly, quarterly and annual.   

  

The most notable result shown in Table 6 is that neither conditional nor unconditional RV 

predicts style portfolios for all time horizons. Now, we begin with the analysis relating to the size-

sorted portfolios. From the monthly and quarterly results, both unconditional and conditional 

measures of VRP and those of TRP are significant predictors for the small-stock portfolio. The 

influence of the conditional RT to the small-stock portfolio is insignificant till the predictive time 

horizon increases to one quarter (one-year), where the t-statistics of conditional (unconditional) 

RT reaches 2.967 (2.536). The predictability of a big-stock portfolio mainly comes from the VRP, 

although conditional TRP and RT show some influence on monthly and quarterly predictability. 

Further, the zero-cost long-short portfolio of small minus big (SMB) is a proxy portfolio that 

removes the market risk but retains only the size effect. From Panels A and B of Table 6, in contrast 

to Bollerslev, Todorov, and Xu (2015), we find that the TRP contributes to the predictability of 

the SMB portfolio, where the VRP shows no impact on SMB prediction at all.   

 

 For the B/M sorted value and growth portfolios, both the conditional and unconditional 

VRPs (TRPs) seem to be significant predictors for the monthly and quarterly (annual) returns on 

the zero-cost High-Minus-Low (HML) portfolios. The t-statistics of conditional TRP and RT 

predictors for the next month returns on the growth (low B/M) portfolios are significant at the 5% 

percent level. However, this tail risk influence on the value portfolios declines as the predictive 

time horizon increases. Both the VRP and TRP appear to have an impact on the monthly and 
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quarterly return prediction for the value portfolios.  Our VIX decomposed measures seem to have 

relatively low predictability for the returns on the momentum (WML) portfolios. Particularly, none 

of the t-statistics of the quarterly predictive regression coefficients is significant. However, the 

unconditional VRP and RT, as well as the conditional TRP, retains some predictive power on the 

monthly return prediction of the WML portfolios.  Both the winner and loser portfolios have some 

influence from the VRP, TRP, and RT.  

 

[Insert Table 6 here] 

 

 Plot 3 shows the predictability patterns (t-statistics and R2) of VRP (solid lines) and TRP 

(dashed lines) over time for size, value/growth, and momentum portfolios. The general patterns 

are similar between unconditional and conditional measures. The impact of TRP (VRP) on SMB 

appears to be relatively short-term (long-term). For the HML portfolios, the predictive power of 

TRP seems to be much larger than that of VRP, where the R2s of TRP for the HML portfolio appear 

to be maximized at the intermediate four-month horizon. Finally, the pattern of increasing 

(decreasing) predictability from TRP (VRP) on the WML portfolio indicates that the short-term 

(long-term) predictability of momentum portfolios is attributable to VRP (TRP).  In summary, the 

results of Table 6 and Plot 3 describe that variance and tail risk have various impacts on portfolios 

with different fundamental risk exposures. In addition to style portfolios, we further investigate 

the effects of our decomposed VIX premiums on disintegrative equity market portfolio based on 

various mutually exclusive industrial sectors. 

 

[Insert Plot 3 here] 

 

2.5.3 Return Predictability of Industrial Portfolios  

 

 Table 7 reports results from multiple predictability regressions that include the four 

conditional measures of the VIX decomposed components (RV, VRP, TRP, and RT) as well as all 

control variables. Once again, the RV has no influence on return predictability for all sector 

portfolios.  The conditional RT of the S&P index return distribution (RT), on the other hand, 

significantly attributes monthly return predictability to industrial sectors of non-durables, 

chemicals, equipment, telecommunication, utilities, and wholesale. By extending the predictive 

time horizon from a month to a quarter, RT has significant impact on 11 of the 12 sectors. Although 

both VRP and TRP have predictive power for monthly and quarterly returns on some industrial 

stocks, it is less significant than the predictability of RT. This suggests that the realized jump-tail 

could be a significant risk factor in determining future returns on disintegrative market portfolios 

or even on individual assets. The insignificance of t-statistics of all our predictor variables in Panel 

C of Table 7 suggests that the influence of VRP and TRP to less diversified market portfolios (e.g., 

industrial equity funds) occurs only in the relative short run. Interestingly, from our empirical 

outcomes shown in all Panels of Table 7, returns on energy stocks appear to be independent of 

both equity market volatility and jump-tail risk.     

 

[Insert Table 7 here] 
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2.6 Robustness Checks 

 

In this section, we discuss the robustness of our main findings to the methods used in 

calculating the variables of interest. We discuss if the TRP provides additional information to VRP 

in 2.6.1. We then calculate a new “unbiased” conditional measure in 2.6.2 and test the predictive 

regressions based on this measure in 2.6.3. 

 

2.6.1 Regression Using Residuals from TRP and VRP  

 

In Table 4, the correlation between the conditional VRP and TRP is -0.62, which may raise 

concern if the TRP provides additional information content to the VRP. To further test the 

information content between the VRP and the TRP, we use the residuals from the regression of 

the TRP on the VRP (and regression of the VRP on the TRP) to repeat the results in the Conditional 

Panel of Table 5.  

 

We run the two-stage regression as follows. First, regress the conditional VRP on the 

conditional TRP, 

 

𝑉𝑅𝑃 = 𝑎1 + 𝑏1 × 𝑇𝑅𝑃 + 𝜀1 (31) 

 

We find that the coefficient 𝑏1 is statistically significant. We use the residuals, 𝜀1, to repeat 

the regressions in the Conditional Panel of Table 5. We report the results in Panel A of Table 8 

which indicate that the part of the 𝑉𝑅𝑃 that is not linearly correlated with the 𝑇𝑅𝑃 significantly 

predicts future index returns.  

 

We then try a reverse version of the above two-stage regression. We first run a regression 

of the TRP on the VRP, 

 

𝑇𝑅𝑃 = 𝑎2 + 𝑏2 × 𝑉𝑅𝑃 + 𝜀2 (32) 

 

The coefficient 𝑏2 is statistically significant. We then use the residuals, 𝜀2, to repeat the 

regressions in the Conditional Panel of Table 5 and report the results in Panel A of Table 8. The 

results indicate that the part of the 𝑇𝑅𝑃 that is not linearly correlated with the 𝑉𝑅𝑃 significantly 

predicts future index returns.  

 

Overall, by combining the two sets of results, we observe that both the VRP and the TRP 

possess a unique component that is not linearly correlated with the other. This unique component 

significantly predicts future index returns. 

  

2.6.2 An “Unbiased” Conditional Measure  

 

The conditional measures from Bekaert and Hoerova that are implemented in this chapter 

are estimated over the entire period. To verify that the predictive results from the conditional 

measures are not driven by this estimation, we calculate a new conditional measure using 

subsample estimation and is not biased estimation, and it is not biased from future data.  



44 

 
 

 

We split our sample into two equal subsamples in time series. The first subsample is from 

January 31, 1990, to November 14, 2002. The second half of the sample is from November 15, 

2002, to September 10, 2014. We estimate the conditional regression parameters using the first 

subsample of data and then apply them to the second subsample to calculate the “unbiased” 

conditional variables for November 15, 2002, to September 10, 2014. To compare this conditional 

variable with the unconditional one, we repeat the tests in Table 2 and Table 3 using the 

conditional measure and a new unconditional measure for the second half of the sample. We 

report the results in Table 9 and Table 10, respectively.  

 

The coefficient estimates and the decomposed 𝑅2 using the new “unbiased” conditional 

measure for the second subsample in Table 9 are consistent to what has been reported in Table 2, 

which uses the conditional measure estimated over the entire sample. The RV is still the 

dominating component and the systematic attribution of the TRP accounts for more than that of 

the VRP. These results are also comparable to the results in Table 10, which uses the same 

subsample but the unconditional measure. Note that the decomposed 𝑅2𝑠 for the TRP in Table 9 

and Table 10 are much higher than those reported in Table 2 and Table 3. (The decomposed 𝑅2 

for the entire sample in Table 2 is 26.64% and that for the second sample in Table 9 is 41.86%). 

This observation is mainly driven by the differences in sample periods, in which the second 

subsample is a much more volatile period.  

2.6.3 Predictive Power using the “Unbiased” Conditional Measure  

 

 To test the actual predictive power of the proposed decomposition, we first apply the 

conditional measure calculated in 6.2 to investigate the out-of-sample performance of the 

“unbiased” conditional measure. We compare the in-sample R2 and the out-of-sample R2 for the 

second half of the sample and report the results in Table 11. The in-sample R2 is obtained using 

the conditional measure which is calculated from the parameters estimated for the same (second) 

subsample, while the out-of-sample R2 is obtained using the “unbiased” conditional measure which 

is calculated from the parameters estimated for the first subsample. From Table 11, we observe 

that the TRP has the highest R2 out-of-sample and outperforms other decomposed components of 

the VIX index.  

 

We then repeat the predictive regressions in the Conditional Panel of Tables 5 through 7. 

Due to the space constraint, we report only regression results for monthly returns in Table 12-14, 

respectively. From Table 12, it is evident that the TRP calculated using the new conditional 

measure for the second subsample has significant predictive power for the monthly index returns. 

Overall, the new conditional measures yield similar results to the conditional variables estimated 

using the entire sample in terms of index return prediction, style portfolio return prediction and 

industry portfolio return prediction. 

 

2.7 Conclusion 

 

Based on our notion of the PV, the VIX index is composed of four fundamentally different 

elements: the realized variance (RV), the underlying (unbiased) variance risk premium (VRP), the 
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realized tail (RT), and the tail risk premium (TRP). RV measures the current (normal) volatility of 

returns; VRP quantifies the risk premium of anticipated (normal) market volatility; RT captures 

the present (abnormal) jumps of market returns; and TRP compensates the potentially (unusual) 

large and asymmetric market price movements, respectively. In short, the VIX index consists of 

investors' required compensations to two separately expected market risks: the volatility risk 

(normal price fluctuations from economic uncertainty) and jump-tail risk (abnormally large and 

asymmetric price movement). Empirically, although the daily variation of the VIX index is largely 

attributed to the contemporarily realized volatility, premiums of both the volatility and tail risk 

play a major role in formatting the VIX.  

 

 Our VIX decomposition also highlights the bias of the conventional measure of variance 

risk premium (VRPc; the squared VIX minus RV) toward the actual premium of its underlying 

variance risk (VRP) in that VRPc is actually the sum of VRP, RT, and TRP. We investigate if the 

high predictive power of the popular VRPc previously reported in the literature can be actually 

from the predictability of the conditional RT and that of the TRP by investigating empirically the 

joint predictive ability of the decomposed VIX components for future returns on the S&P 500, 

style, and sector portfolios. To ensure the accuracy of risk estimation, we employ both the 

Bollerslev, Tauchen and Zhou (2009) unconditional and the Bekaert and Hoerova (2014) 

conditional approaches for calculating RV, VRP, RT, and TRP, respectively.  

Statistically, our analysis, consistent with previous researchers' findings, also shows that 

the RV has no predictive power of future market returns. However, the RT, on the other hand, has 

a significant influence on market return prediction, particularly, for relatively short time horizons. 

In addition, both the unbiased premiums of variance risk and tail risk play an important role in 

predicting future returns on the market, and style as well as different sector portfolios. Specifically, 

the predictability of the zero-cost small-minus-big (size) portfolios appears to be driven by the 

TRP. The VRP has a significant impact on the return prediction of the HML B/M (growth/value) 

portfolios. Nevertheless, the influence of the four VIX decomposed components on return 

prediction of the winners-minus-losers (momentum) portfolios is quite weak. Finally, although 

none of our VIX decomposed measures has long-term predictive power for forecasting (annual) 

returns on industrial portfolios, the conditional RT and TRP, particularly, appear to be strong return 

predictors for monthly and quarterly returns on almost all sector portfolios. Interestingly, the 

insignificance of all of our predictors for predicting returns on the energy portfolio demonstrates 

the unique pricing behavior of energy stocks from other sectors.   

 

Perceptibly, despite the fact that the physical measure of the RT is numerically 

unnoticeable, our empirical evidence reveals that its impact on future returns is statistically 

significant and should not be ignored. Notably, the increase in statistical significance from the 

market indexes to less diversified industrial portfolios indicates that the influence of tail risk on 

individual stocks could be nontrivial. Therefore, mapping the cross-sectional dynamics of time-

varying tail variations in individual asset prices so that the asset pricing model can generate 

sufficient compensations for investors' fear of potential disasters becomes a consequential line of 

further research. 
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Tables and Plots 

 

Table 1. Summary Statistics 
This table reports descriptive statistics for our realized volatility (RV), realized tail (RT) as well as both the 

conditional and unconditional (annualized) risk premiums of the variance (VRP) and these of the jump-tail (TRP) 

with respect to no overlapping 1-day, 5-day (weekly) and 22-day (monthly) time horizon, respectively. The sample 

of 5-minute returns of S&P 500 index extends from January 31, 1990 to September 10, 2014. The conditional 

measures are based on the forecasting models shown in equations (26), (27) and (28), accordingly. All our 

measures are on the daily overlapping basis with 5979 observations in total. RT is in annualized basis point, and 

all other variables are in annualized percentage. In addition, all numbers are scaled up by a factor of 100. 

 

    Unconditional  Conditional 

 RV         RT  VRP* TRP  VRP* TRP 
 

Panel A. Daily Measure 

Mean 3.803 -0.172  1.013 -0.179  2.051 -0.156 

Std. Dev. 8.716 6.523  6.241 0.740  3.971 0.744 

Skewness 11.912 -49.538  -15.959 -5.038  5.014 -5.051 

Max 282.739 50.690  25.947 3.606  59.072 3.289 

Min 0.099 -429.90  -226.595 -9.521  -5.869 -9.620 

t-value 33.611 -2.035  12.505 -18.673  39.791 -16.160 

 

Panel B. Weekly Measure  

Mean 3.943 -0.312  0.901 -0.183  2.054 -0.161 

Std. Dev. 7.479 4.770  4.752 0.701  3.784 0.708 

Skewness 6.910 -15.493  -8.144 -4.913  4.480 -4.846 

Max 109.415 26.492  14.991 1.328  43.839 1.325 

Min 0.234 -100.389  -69.897 -7.625  -3.886 -7.545 

t-value 18.723 -2.320  6.736 -9.264  19.274 -8.100 

         

Panel C. Monthly Measure 

Mean 3.879 -0.206  0.970 -0.177  2.044 -0.154 

Std. Dev. 6.154 1.548  2.840 0.637  3.606 0.641 

Skewness 6.616 -7.694  -5.208 -4.600  4.076 -4.515 

Max 74.069 4.630  9.610 0.648  31.758 0.490 

Min 0.389 -19.569  -30.766 -5.611  -2.166 -5.555 

t-value 10.790 -2.276  5.848 -4.752  9.705 -4.122 
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Plot 1. Variance and Tail Risk Premiums 
The monthly conditional estimates of VRP and TRP are based on 5-minute sample returns of the S&P 500 index and extends from January 31, 1990 to September 

10, 2014 for a total of 5979 trading days. VRP = VBKM – RV, TRP = (VIX2– RVIX) – VRP, and the conditional measures are based on the forecasting models 

shown in equations (26), (27), and (28), accordingly.  Both VRP and TRP are reported in annualized percentage and scaled up by a factor of 100. The VIX index 

and the SKEW index are obtained from the CBOE website. The unconditional measures are calculated using equations (21) and (22). 



51 

 
 

Table 2. Goodness-of-Fit of the VIX Decomposition (Unconditional Estimates)  

This table reports the decomposed 𝑅2of the orthogonalized VIX components, RV⊥, VRP⊥, RT⊥, and 

TRP⊥ , respectively. In addition to the overall sample analysis, we also examine the decomposed 

goodness of fit from three different sub-samples.  The sub-samples are classified by three different levels 

of the VIX. These include (1) Nervous Market Condition: VIX ≥ 23.32 (75 percentile), (2) Normal 

Market Condition: 14.17 ≤ VIX < 23.32, and (3) Calm Market Condition: VIX < 14.17 (25 percentile), 

correspondingly. We employ Klein and Chow (2013) to orthogonalize the VIX’s decomposed variables 

and further calculate their decomposed 𝑅2. Also, to avoid bias results due to measurements at different 

scales, all variables are standardized for the analyses. The overall sample period of daily data ranges from 

January 1993 to September 2014.   
 

A. Overall Sample 𝐑𝐕⊥ 𝐕𝐑𝐏⊥ 𝐑𝐓⊥ 𝐓𝐑𝐏⊥ 

Coefficient 0.82 0.26 -0.01 -0.53 

Decomposed 𝑅2(%) 66.83 6.52 0.01 26.64 

 

B. Subsample for VIX ≥ 23.32 (Nervous Market Condition) 

Coefficient 0.68 0.16 -0.06 -0.49 

Decomposed 𝑅2(%) 63.70 3.84 0.12 32.35 

 

C. Subsample for 14.17 ≤ VIX < 23.32 (Normal Market Condition) 

Coefficient 0.34 0.16 -0.00 -0.05 

Decomposed 𝑅2(%) 69.93 28.37 0.04 1.67 

 

D. Subsample for VIX < 14.17 (Calm Market Condition) 

Coefficient 0.55 0.29 -0.02 0.02 

Decomposed 𝑅2(%) 65.81 33.32 0.01 0.87 
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Table 3. Goodness-of-Fit of the VIX Decomposition (Conditional Estimates) 

This table reports the decomposed 𝑅2 of the four orthogonalized VIX components, RV⊥, VRP⊥, RT⊥, 

and TRP⊥, respectively. In addition to the overall sample analysis, we also examine the decomposed 

goodness of fit from three different sub-samples.  The sub-samples are classified by three different levels 

of the VIX. These include (1) Nervous Market Condition: VIX ≥ 23.32 (75 percentile), (2) Normal 

Market Condition: 14.17 ≤ VIX < 23.32, and (3) Calm Market Condition: VIX < 14.17 (25 percentile), 

correspondingly.  We employ Klein and Chow (2013) to orthogonalize the VIX’s decomposed variables 

and further calculate their decomposed 𝑅2. In addition, to avoid bias results due to measurements at 

different scales, all variables are standardized for the analyses. The conditional measures are based on 

the forecasting models shown in equations (26), (27) and (28), accordingly. The overall sample period 

of daily data ranges from January 1993 to September 2014.   

 

A. Overall Sample 𝐑𝐕⊥ 𝐕𝐑𝐏⊥ 𝐑𝐓⊥ 𝐓𝐑𝐏⊥ 

Coefficient 0.55 0.76 0.03 -0.34 

Decomposed 𝑅2(%) 29.80 58.37 0.08 11.74 

 

B. Subsample for VIX ≥ 23.32 (Nervous Market Condition) 

Coefficient 0.46 0.71 -0.01 -0.34 

Decomposed 𝑅2(%) 28.82 55.24 0.01 15.93 

 

C. Subsample for 14.17 ≤ VIX < 23.32 (Normal Market Condition) 

Coefficient 0.34 0.68 -0.00 -0.02 

Decomposed 𝑅2(%) 22.86 76.94 0.00 0.20 

 

D. Subsample for VIX < 14.17 (Calm Market Condition) 

Coefficient 0.29 0.62 -0.01 0.04 

Decomposed 𝑅2(%) 24.70 72.94 0.00 2.36 
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Table 4. Correlation Matrices  

This table depicts pairwise correlations for monthly non-overlapping measures of 

variation (i.e., VIX, RV, VBKM, and RT), those of risk premiums (i.e., VRP and, TRP) 

as well as those of our control variables including 3MTB (3-month T-bill minus CPI 

inflation), Log(DY), the log-dividend yield, CS (the spread between Moody’s BAA 

and AAA bond yield), and TS (the spread between 10-year and 3-month Treasury 

yields), respectively. The sample period extends from January 31, 1990 to September 

10, 2014. 

 

  Unconditional     

  RV VRP RT TRP 3MTB log(DY) CS TS 

U
n

co
n

d
itio

n
a
l 

         

VIX 0.86 0.35 -0.18 -0.69 -0.17 0.12 0.66 0.09 

RV 1.00 -0.17 -0.10 -0.71 -0.15 0.16 0.59 0.08 

VRP  1.00 -0.18 -0.13 -0.06 -0.04 0.20 0.02 

RT   1.00 0.24 -0.06 0.04 0.09 0.08 

TRP    1.00 0.18 -0.23 -0.49 -0.04 

3MTB     1.00 -0.66 -0.43 -0.72 

 log(DY)      1.00 0.31 0.08 

 CS       1.00 0.31 

          

  Conditional     

  RV VRP RT TRP 3MTB log(DY) CS TS 

    C
o
n
d
itio

n
a
l 

         

VIX 0.80 0.93 0.15 -0.69 -0.17 0.12 0.66 0.09 

RV 1.00 0.53 0.50 -0.71 -0.07 0.08 0.43 0.03 

VRP  1.00 -0.09 -0.62 -0.21 0.14 0.68 0.11 

RT   1.00 -0.28 0.08 -0.04 -0.10 -0.08 

TRP    1.00 0.17 -0.22 -0.46 -0.03 

3MTB     1.00 -0.66 -0.43 -0.72 

 log(DY)      1.00 0.31 0.08 

 CS       1.00 0.31 
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Table 5. S&P 500 Return Predictability Regressions 

This table reports the estimated regression coefficients and adjusted R2’s from return predictability regressions for monthly, quarterly, and annual 

excess returns on the S&P 500 market portfolio, respectively. RV is the realized variance; VRP is the unbiased variance risk premium; RT is the 

realized tail; and TRP is the tail risk premium. The term 3MTB is the 3-month T-bill minus CPI inflation; Log(DY) is the log-dividend yield; CS is 

the spread between Moody’s BAA and AAA bond yield; and TS is the term spread between 10-year and 3-month Treasury yields. The sample extends 

from January 31, 1990 to September 10, 2014.  Newey-West t-statistics are reported in parentheses.  Adj. R2 is the adjusted coefficient of determination. 

RT is in annualized basis point, and all other variables are measured by annualized percentage. 
 

Panel A. Monthly Return Prediction 
Unconditional 

VIX -0.281         0.523   

 (-0.221)         (0.408)   

RV  -1.788         1.668  

  (-2.311)         (1.260)  
VRP   4.598        6.597  

   (3.204)        (4.756)  

RT    0.110       0.543  
    (0.036)       (0.132)  

TRP     16.164      26.064  

     (2.448)      (1.961)  

Conditional  
RV      -2.127      -2.207 

      (-0.835)      (-0.660) 

VRP       -0.052     5.168 
       (-0.033)     (3.172) 

RT        0.484    2.376 

        (2.056)    (2.651) 
TRP         15.155   29.260 

         (2.470)   (2.513) 
             

3MTB          -1.784 1.260 0.769 

          (-0.358) (0.328) (0.195) 

Log(DY)          -5.023 15.831 12.016 
          (-0.224) (0.843) (0.656) 

CS          -13.477 -12.808 -12.593 

          (-0.911) (-0.923) (-0.806) 
TS          -0.970 2.674 2.126 

          (-0.140) (0.503) (0.388) 

Constant 5.618 8.850 -5.819 4.341 6.600 10.243 4.430 5.489 6.113 36.084 -52.486 -19.072 
 (1.126) (3.390) (-1.543) (1.342) (2.409) (1.599) (1.469) (1.692) (2.174) (0.392) (-0.680) (-0.253) 

Adj. R2(%) -0.290 2.022 4.034 -0.343 2.573 0.405 -0.343 0.183 2.341 -1.046 6.766 4.602 
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Panel B. Quarterly Return Prediction 
Unconditional 

VIX 0.086         0.720   

 (0.106)         (0.732)   

RV  -1.149         0.480  
  (-2.588)         (0.630)  

VRP   4.096        4.765  

   (6.855)        (6.228)  
RT    -2.288       -0.910  

    (-1.940)       (-0.923)  

TRP     5.501      8.678  
     (0.898)      (1.707)  

Conditional 
RV      -0.937      -2.673 

      (-0.457)      (-1.668) 

VRP       0.401     3.553 

       (0.288)     (3.313) 
RT        0.562    1.779 

        (1.631)    (3.699) 

TRP         4.851   10.824 
         (0.795)   (2.161) 
             

3MTB          -3.582 -1.043 -1.612 

          (-0.929) (-0.346) (-0.480) 
Log(DY)          -12.740 1.878 -2.160 

          (-0.637) (0.109) (-0.123) 
CS          -11.194 -9.818 -10.985 

          (-0.814) (-0.799) (-0.806) 

TS          -3.787 -0.461 -1.139 
          (-0.720) (-0.107) (-0.241) 

Constant 3.878 7.198 -4.776 4.011 5.049 6.889 3.488 5.621 4.847 64.995 1.279 33.498 

 (1.114) (4.059) (-1.516) (1.489) (1.759) (1.330) (1.220) (1.841) (1.671) (0.824) (0.020) (0.500) 
Adj. R2(%) -0.332 2.356 9.265 0.192 0.589 0.056 -0.177 0.253 0.416 0.084 10.200 4.820 
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Panel C. Annual Return Prediction 
Unconditional 

VIX 0.460         0.353   

 (1.327)         (0.820)   

RV  0.057         -0.112  
  (0.193)         (-0.177)  

VRP   1.452        1.144  

   (3.099)        (2.079)  
RT    -0.125       0.764  

    (-0.144)       (0.735)  

TRP     -2.897      -3.594  
     (-1.369)      (-0.755)  

Conditional 
RV      0.416      -0.767 

      (0.904)      (-0.994) 

VRP       0.722     0.629 

       (1.524)     (0.798) 
RT        0.074    0.225 

        (0.585)    (0.827) 

TRP         -2.813   -2.519 
         (-1.380)   (-0.591) 
             

3MTB          -3.007 -2.281 -2.581 

          (-0.985) (-0.788) (-0.813) 
Log(DY)          -20.012 -16.750 -18.599 

          (-0.872) (-0.748) (-0.793) 
CS          2.325 1.466 1.718 

          (0.385) (0.267) (0.297) 

TS          -3.173 -2.039 -2.467 
          (-0.682) (-0.467) (-0.521) 

Constant 2.144 4.153 1.052 4.287 3.892 3.129 2.844 4.479 3.967 72.049 58.536 68.997 

 (0.668) (1.421) (0.319) (2.531) (1.545) (0.945) (0.937) (1.460) (1.690) (0.917) (0.762) (0.861) 
Adj. R2(%) 0.942 -0.335 3.614 -0.352 0.500 -0.097 1.445 0.3224 0.490 2.976 4.612 2.685 
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Plot 2. S&P 500 Return Predictability Regressions 

The left panels show the Newey-West t-statistics from the simple return predictability regressions for the S&P 500 portfolio based on the unbiased 

variance risk premiums, VRP (solid line), and the tail risk premium, TRP (dashed line), respectively. The right panels depict the corresponding R2s 

along with the R2s from multiple regressions including both VRP and TRP (dotted line). The results shown on the top (bottom) panels are based on 

unconditional (conditional) measures of risk premiums.   
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Table 6. Style Portfolio Return Predictability Regressions 

This table reports the predictability regression results from excess returns on Size (20% smallest and biggest firms), Book-to-Market (20% highest and lowest B/M 

ratios), and Momentum (20% top and bottom performance), along with the corresponding zero-cost portfolios. All other variables are described in Table 3.  

Panel A. Monthly Return Prediction 
  Unconditional        

 Constant RV VRP TRP RT  3MTB Log(DY) CS TS Adj. R2(%) 

Small 3.804 0.110 0.568 3.133 0.504  -0.326 -1.101 0.265 -0.059 
6.238 

(0.429) (0.805) (3.236) (2.207) (1.049)  (-0.699) (-0.491) (0.201) (-0.098) 

Big -4.792 0.152 0.599 1.957 0.003  0.147 1.464 -1.187 0.273 
6.797 

(-0.776) (1.331) (4.930) (1.737) (0.011)  (0.463) (0.985) (-1.029) (0.604) 

SMB 8.596 -0.042 -0.032 1.176 0.501  -0.474 -2.565 1.453 -0.332 
3.707 

(1.479) (-0.390) (-0.215) (1.774) (2.017)  (-1.369) (-1.810) (1.776) (-0.669) 

High 0.098 0.085 0.447 2.300 0.195  -0.124 0.259 -0.586 0.028 
4.213 

(0.014) (0.763) (3.029) (1.986) (0.476)  (-0.313) (0.148) (-0.391) (0.057) 

Low -8.822 0.140 0.701 1.821 0.020  0.376 2.289 -0.761 0.527 
7.276 

(-1.290) (0.995) (4.935) (1.479) (0.074)  (0.990) (1.378) (-0.742) (0.937) 

HML 8.920 -0.054 -0.255 0.479 0.175  -0.499 -2.030 0.174 -0.499 
2.693 

(2.071) (-0.658) (-2.164) (0.769) (0.742)  (-1.894) (-2.025) (0.213) (-1.094) 

Winners -2.819 0.021 0.557 1.124 0.270  0.132 1.048 -1.600 0.472 
4.932 

(-0.452) (0.202) (4.338) (1.100) (0.920)  (0.438) (0.698) (-1.684) (0.909) 

Losers -2.436 0.318 1.080 4.450 0.141  -0.265 0.114 0.779 -0.069 
8.492 

(-0.191) (1.577) (4.622) (2.419) (0.317)  (-0.382) (0.036) (0.309) (-0.079) 

WML 
-0.384 -0.297 -0.523 -3.326 0.129  0.398 0.934 -2.378 0.540 

5.392 
(-0.040) (-1.836) (-2.566) (-2.507) (0.460)  (0.773) (0.385) (-1.261) (0.777) 

  Conditional        

  RV VRP TRP RT        

Small 6.534 -0.205 0.406 3.561 0.144  -0.379 -1.465 0.428 -0.123 
4.461 

(0.755) (-0.662) (2.436) (2.920) (1.587)  (-0.831) (-0.660) (0.286) (-0.213) 

Big -1.564 -0.161 0.455 2.251 0.203  0.087 1.053 -1.186 0.200 
3.906 

(-0.257) (-0.555) (3.513) (2.330) (2.909)  (0.264) (0.730) (-0.916) (0.431) 

SMB 8.098 -0.044 -0.049 1.309 -0.059  -0.465 -2.518 1.614 -0.324 
3.142 

(1.413) (-0.198) (-0.338) (1.978) (-0.883)  (-1.298) (-1.751) (1.836) (-0.622) 

High 2.736 -0.101 0.293 2.628 0.127  -0.196 -0.152 -0.493 -0.066 
2.502 

(0.381) (-0.249) (1.850) (2.781) (1.105)  (-0.474) (-0.089) (-0.282) (-0.127) 

Low -5.075 -0.331 0.560 2.130 0.254  0.331 1.893 -0.828 0.481 
4.073 

(-0.779) (-0.895) (3.529) (1.754) (3.001)  (0.913) (1.244) (-0.677) (0.912) 

HML 7.810 0.231 -0.268 0.498 -0.128  -0.526 -2.046 0.335 -0.547 
2.716 

(1.879) (1.200) (-2.964) (0.830) (-1.897)  (-1.915) (-2.046) (0.500) (-1.202) 

Winners 1.053 -0.267 0.344 1.566 0.145  0.031 0.457 -1.558 0.342 
1.266 

(0.153) (-0.885) (2.437) (1.617) (2.004)  (0.080) (0.288) (-1.266) (0.587) 

Losers 2.275 -0.386 0.913 4.873 0.379  -0.298 -0.308 0.739 -0.090 
6.781 

(0.197) (-0.585) (2.949) (2.941) (1.964)  (-0.452) (-0.115) (0.217) (-0.101) 
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WML -1.222 0.118 -0.569 -3.307 -0.235  0.329 0.765 -2.297 0.431 
5.860 

(-0.126) (0.374) (-2.967) (-2.513) (-3.070)  (0.664) (0.293) (-1.230) (0.652) 

 

Panel B. Quarterly Return Prediction 
  Unconditional        

 Constant RV VRP TRP RT  3MTB Log(DY) CS TS Adj. R2(%) 

Small 7.424 0.111 0.458 2.142 0.041  -0.501 -2.061 0.527 -0.396 
8.769 

(0.881) (1.342) (4.690) (3.478) (0.229)  (-1.063) (-0.967) (0.408) (-0.654) 

Big -0.507 0.041 0.412 0.471 -0.101  -0.026 0.350 -0.855 0.029 
10.240 

(-0.096) (0.611) (5.910) (1.084) (-1.164)  (-0.104) (0.252) (-0.868) (0.078) 

SMB 7.931 0.071 0.046 1.671 0.141  -0.475 -2.410 1.383 -0.425 
9.358 

(1.569) (0.901) (0.509) (3.049) (1.168)  (-1.577) (-1.946) (2.117) (-0.945) 

High 3.051 0.034 0.320 1.617 -0.200  -0.267 -0.610 0.122 -0.239 
7.480 

(0.507) (0.468) (3.833) (3.296) (-1.546)  (-0.830) (-0.388) (0.086) (-0.579) 

Low -3.182 0.057 0.466 0.148 -0.054  0.142 0.900 -0.716 0.217 
9.634 

(-0.564) (0.776) (5.800) (0.303) (-0.527)  (0.499) (0.626) (-0.757) (0.509) 

HML 6.233 -0.023 -0.146 1.469 -0.146  -0.408 -1.511 0.839 -0.456 
11.250 

(1.710) (-0.326) (-1.932) (2.866) (-1.505)  (-1.912) (-1.721) (1.286) (-1.136) 

Winners 1.331 0.004 0.365 0.337 0.019  -0.049 -0.048 -1.325 0.236 
6.655 

(0.246) (0.059) (4.030) (0.646) (0.186)  (-0.170) (-0.035) (-1.482) (0.533) 

Losers 6.077 0.118 0.713 1.757 -0.178  -0.613 -2.145 1.750 -0.689 
13.910 

(0.545) (1.041) (4.094) (2.082) (-0.677)  (-1.127) (-0.733) (0.823) (-0.981) 

WML 
-4.746 -0.114 -0.348 -1.420 0.197  0.564 2.097 -3.075 0.924 

16.450 
(-0.591) (-1.078) (-1.746) (-1.664) (0.884)  (1.370) (1.040) (-2.206) (1.622) 

  Conditional        

  RV VRP TRP RT        

Small 9.976 -0.129 0.352 2.345 0.136  -0.551 -2.400 0.459 -0.457 
6.659 

(1.193) (-0.734) (3.403) (4.404) (2.967)  (-1.204) (-1.090) (0.338) (-0.784) 

Big 2.268 -0.242 0.313 0.643 0.155  -0.071 0.013 -0.976 -0.024 
4.543 

(0.414) (-1.759) (3.304) (1.398) (3.454)  (-0.257) (0.009) (-0.890) (-0.060) 

SMB 7.709 0.113 0.039 1.703 -0.018  -0.479 -2.413 1.435 -0.433 
9.289 

(2.200) (0.798) (0.458) (3.835) (-0.479)  (-2.280) (-2.757) (2.710) (-1.346) 

High 5.899 -0.051 0.180 1.809 0.123  -0.361 -1.106 0.071 -0.365 
4.082 

(1.022) (-0.262) (1.800) (3.084) (2.604)  (-1.119) (-0.746) (0.049) (-0.851) 

Low -0.382 -0.300 0.378 0.320 0.167  0.112 0.612 -0.860 0.188 
4.895 

(-0.066) (-1.867) (3.477) (0.642) (3.261)  (0.357) (0.417) (-0.817) (0.409) 

HML 6.281 0.249 -0.198 1.489 -0.043  -0.472 -1.718 0.931 -0.553 
13.020 

(1.844) (2.369) (-2.354) (2.945) (-1.477)  (-2.251) (-2.046) (1.588) (-1.436) 

Winners 3.881 -0.271 0.266 0.533 0.132  -0.090 -0.359 -1.401 0.188 
3.140 

(0.666) (-1.925) (2.565) (1.196) (3.226)  (-0.289) (-0.247) (-1.321) (0.396) 

Losers 11.109 -0.200 0.498 2.078 0.208  -0.742 -2.907 1.533 -0.856 
8.772 

(1.558) (-0.578) (3.083) (2.121) (1.983)  (-1.915) (-1.656) (0.988) (-1.652) 

WML -7.228 -0.072 -0.231 -1.545 -0.076  0.652 2.549 -2.934 1.043 
14.560 

(-0.852) (-0.354) (-1.314) (-1.629) (-0.954)  (1.517) (1.101) (-1.868) (1.738) 
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 Panel C. Annual Return Prediction 
  Unconditional        

 Constant RV VRP TRP RT  3MTB Log(DY) CS TS Adj. R2(%) 

Small 12.109 0.071 0.169 0.270 0.229  -0.521 -3.518 0.908 -0.544 
21.380 

(1.698) (1.519) (2.548) (0.819) (2.536)  (-1.828) (-1.697) (1.962) (-1.402) 

Big 4.090 -0.013 0.102 -0.393 0.050  -0.132 -1.127 0.096 -0.097 
4.825 

(0.670) (-0.236) (2.202) (-0.976) (0.638)  (-0.567) (-0.637) (0.214) (-0.266) 

SMB 8.019 0.084 0.068 0.663 0.178  -0.389 -2.390 0.812 -0.447 
19.060 

(2.279) (1.689) (1.035) (2.352) (2.613)  (-2.348) (-2.655) (1.608) (-1.488) 

High 5.118 0.009 0.025 0.201 0.030  -0.166 -1.545 0.942 -0.154 
5.108 

(0.750) (0.191) (0.421) (0.594) (0.291)  (-0.558) (-0.784) (1.730) (-0.378) 

Low 1.883 -0.009 0.149 -0.582 0.084  -0.014 -0.602 0.157 0.012 
8.814 

(0.326) (-0.154) (3.234) (-1.438) (1.012)  (-0.061) (-0.365) (0.376) (0.030) 

HML 3.236 0.018 -0.124 0.783 -0.054  -0.152 -0.943 0.785 -0.166 
10.510 

(0.869) (0.390) (-2.266) (2.594) (-0.840)  (-0.722) (-1.051) (2.143) (-0.378) 

Winners 4.437 -0.035 0.144 -0.503 0.065  -0.087 -1.224 -0.261 0.154 
10.170 

(0.657) (-0.625) (3.014) (-1.192) (0.866)  (-0.339) (-0.633) (-0.583) (0.365) 

Losers 11.586 0.050 0.112 -0.382 0.127  -0.578 -3.814 2.101 -0.597 
26.440 

(1.200) (0.622) (1.347) (-0.682) (1.150)  (-1.570) (-1.338) (3.553) (-1.188) 

WML 
-7.149 -0.085 0.032 -0.121 -0.061  0.491 2.590 -2.363 0.751 

37.160 
(-1.231) (-1.510) (0.443) (-0.383) (-0.922)  (1.982) (1.574) (-4.887) (2.353) 

  Conditional        

  RV VRP TRP RT        

Small 13.353 0.125 0.079 0.442 -0.041  -0.591 -3.870 0.998 -0.651 
19.820 

(1.769) (1.873) (1.042) (1.621) (-1.816)  (-1.932) (-1.770) (2.085) (-1.537) 

Big 5.058 -0.074 0.055 -0.300 0.023  -0.159 -1.296 0.113 -0.136 
2.579 

(0.794) (-1.088) (0.821) (-0.823) (1.036)  (-0.621) (-0.699) (0.233) (-0.344) 

SMB 8.295 0.199 0.023 0.741 -0.064  -0.432 -2.574 0.885 -0.515 
20.370 

(2.360) (2.419) (0.317) (3.019) (-2.689)  (-2.580) (-2.854) (1.899) (-1.760) 

High 5.590 0.060 -0.012 0.259 -0.011  -0.199 -1.698 0.994 -0.204 
5.213 

(0.787) (1.097) (-0.171) (0.840) (-0.482)  (-0.632) (-0.826) (1.721) (-0.471) 

Low 3.209 -0.091 0.085 -0.451 0.027  -0.052 -0.835 0.179 -0.042 
4.902 

(0.529) (-1.209) (1.226) (-1.219) (1.210)  (-0.203) (-0.481) (0.381) (-0.098) 

HML 2.381 0.151 -0.096 0.710 -0.039  -0.147 -0.863 0.814 -0.162 
8.095 

(0.634) (2.258) (-1.773) (2.451) (-2.401)  (-0.676) (-0.927) (2.104) (-0.360) 

Winners 6.120 -0.103 0.060 -0.346 0.031  -0.143 -1.545 -0.229 0.074 
5.520 

(0.846) (-1.310) (0.849) (-0.956) (1.278)  (-0.493) (-0.748) (-0.458) (0.158) 

Losers 12.340 0.074 0.057 -0.273 -0.021  -0.619 -4.021 2.173 -0.659 
26.040 

(1.231) (0.763) (0.589) (-0.524) (-0.734)  (-1.573) (-1.351) (3.343) (-1.218) 

WML -6.220 -0.177 0.002 -0.073 0.052  0.476 2.475 -2.402 0.733 
36.110 

(-1.053) (-1.662) (0.035) (-0.260) (1.950)  (1.835) (1.473) (-4.643) (2.149) 
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Unconditional Measures  Conditional Measures 
SMB t-Statistics SMB R2  SMB t-Statistics SMB R2 

  

 

  
HML t-Statistics HML R2  HML t-Statistics HML R2 

  

 

  
WML t-Statistics WML R2  WML t-Statistics WML R2 

  

 

  
     

 

Plot 3. Sorted Zero-Cost Style Portfolio Return Predictability Regressions  
This Plot depicts the Newey-West t-statistics and the corresponding R2s from simple return predictability regressions for the sorted zero-cost style portfolios based on the unbiased variance 

risk premiums, VRP (solid lines), and the tail risk premium, TRP (dashed lines), respectively. The dotted lines are the t-statistics and adjusted R2s from multiple regressions including both 

VRP and TRP.  SMB, HML, and WML stands for Small Minus Big, High Minus Low, and Winners Minus Losers, accordingly. 
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Table 7. Industry Portfolio Return Predictability Regressions  

This table reports the predictability regression results from excess returns on twelve industry portfolios. All other variables are described in Table 3. 

We employ the data directly from the Fama-French data library.   

Panel A. Monthly Return Prediction 

  Conditional      

 Constant RV VRP TRP RT 3MTB Log(DY) CS TS Adj. R2(%) 

Non-Durables -2.939 -0.230 0.229 1.706 0.213 0.202 1.099 0.408 0.271 
2.619 

 (-0.576) (-1.063) (1.584) (1.942) (3.556) (0.696) (0.893) (0.403) (0.745) 

Durables 4.102 -0.560 0.751 3.806 0.269 -0.252 -0.655 0.033 0.182 
6.054 

 (0.395) (-1.122) (3.068) (2.614) (1.931) (-0.438) (-0.262) (0.015) (0.251) 

Manufacturing -0.374 -0.265 0.525 3.126 0.244 0.002 0.704 -0.432 0.154 
4.296 

 (-0.047) (-0.584) (2.466) (2.460) (1.925) (0.004) (0.374) (-0.233) (0.270) 

Energy 4.095 -0.136 0.181 0.700 0.009 -0.286 -0.190 -1.306 -0.344 
-1.131 

 (0.605) (-0.461) (1.258) (0.822) (0.137) (-0.754) (-0.114) (-1.533) (-0.651) 

Chemicals -2.197 -0.220 0.325 2.197 0.202 0.124 0.986 -0.251 0.417 
3.268 

 (-0.362) (-0.601) (1.791) (2.466) (1.986) (0.346) (0.697) (-0.163) (0.833) 

Equipment -4.373 -0.364 0.968 3.899 0.350 0.281 2.006 -1.902 0.543 
5.055 

 (-0.416) (-0.957) (4.549) (2.321) (4.053) (0.533) (0.764) (-1.246) (0.615) 

Telecommunications 3.529 0.046 0.404 1.766 0.196 -0.329 -0.080 -1.789 -0.234 
1.621 

 (0.501) (0.153) (2.059) (1.451) (2.384) (-0.895) (-0.044) (-1.281) (-0.405) 

Utilities -0.912 -0.090 0.026 -0.037 0.108 0.034 0.915 -0.925 0.068 
-0.764 

 (-0.168) (-0.482) (0.223) (-0.046) (2.544) (0.127) (0.657) (-0.921) (0.192) 

Wholesale -2.329 -0.187 0.509 2.662 0.233 0.108 1.073 -0.439 0.272 
4.310 

 (-0.325) (-0.566) (3.236) (2.647) (2.785) (0.241) (0.641) (-0.356) (0.488) 

Healthcare -4.089 -0.182 0.264 0.552 0.111 0.325 1.667 -0.831 0.176 
-0.599 

 (-0.617) (-0.555) (1.973) (0.577) (1.296) (0.842) (1.037) (-0.742) (0.316) 

Finance 3.581 -0.096 0.429 3.661 0.183 -0.112 -0.588 -0.463 -0.045 
4.746 

 (0.433) (-0.178) (2.075) (3.145) (1.173) (-0.217) (-0.309) (-0.201) (-0.071) 

Other -0.372 -0.159 0.507 2.976 0.167 -0.101 0.798 -1.358 0.154 
4.674 

 (-0.053) (-0.337) (2.635) (2.166) (1.419) (-0.259) (0.491) (-0.785) (0.291) 
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Panel B. Quarterly Return Prediction 

  Conditional      

 Constant RV VRP TRP RT 3MTB Log(DY) CS TS Adj. R2(%) 

Non-Durables -2.202 -0.202 0.204 0.752 0.133 0.184 0.889 -0.021 0.269 
2.398 

 (-0.502) (-1.524) (2.711) (1.916) (3.636) (0.724) (0.827) (-0.025) (0.845) 

Durables 10.763 -0.312 0.438 1.904 0.214 -0.637 -2.576 0.642 -0.442 
7.689 

 (1.221) (-1.180) (2.906) (2.410) (3.205) (-1.341) (-1.144) (0.364) (-0.692) 

Manufacturing 5.166 -0.155 0.312 1.435 0.152 -0.297 -0.798 -0.392 -0.268 
3.469 

 (0.765) (-0.846) (3.263) (2.785) (2.907) (-0.848) (-0.465) (-0.280) (-0.584) 

Energy 3.168 -0.116 0.147 0.489 -0.006 -0.223 -0.037 -1.080 -0.308 
0.883 

 (0.634) (-0.643) (1.574) (0.998) (-0.117) (-0.860) (-0.029) (-1.225) (-0.758) 

Chemicals 3.169 -0.176 0.135 0.906 0.119 -0.151 -0.537 0.226 -0.027 
2.202 

 (0.664) (-0.855) (1.309) (1.886) (2.140) (-0.560) (-0.465) (0.229) (-0.073) 

Equipment 3.566 -0.300 0.597 0.866 0.210 -0.097 -0.180 -1.670 -0.004 
5.009 

 (0.456) (-1.297) (3.607) (1.035) (2.691) (-0.235) (-0.089) (-1.152) (-0.006) 

Telecommunications 2.124 -0.140 0.358 0.612 0.178 -0.207 0.289 -1.690 -0.028 
5.359 

 (0.322) (-0.836) (2.344) (1.006) (3.905) (-0.638) (0.164) (-1.361) (-0.053) 

Utilities -4.198 -0.029 0.132 0.516 0.069 0.192 1.726 -1.296 0.347 
1.978 

 (-0.896) (-0.259) (1.553) (1.343) (2.113) (0.841) (1.379) (-1.349) (1.269) 

Wholesale 3.803 -0.256 0.370 0.670 0.163 -0.171 -0.485 -0.611 -0.094 
5.679 

 (0.787) (-1.499) (3.272) (1.261) (3.107) (-0.538) (-0.418) (-0.730) (-0.231) 

Healthcare -2.107 -0.183 0.210 -0.171 0.099 0.241 1.136 -0.913 0.096 
2.957 

 (-0.392) (-1.439) (2.306) (-0.394) (2.742) (0.767) (0.815) (-0.988) (0.202) 

Finance 9.651 -0.241 0.290 2.013 0.188 -0.370 -2.253 0.231 -0.457 
7.465 

 (1.605) (-0.921) (2.279) (2.982) (2.505) (-1.025) (-1.533) (0.169) (-0.964) 

Other 5.336 -0.254 0.329 1.324 0.172 -0.367 -0.746 -0.688 -0.265 
5.683 

 (0.912) (-1.203) (3.159) (2.523) (3.057) (-1.116) (-0.516) (-0.571) (-0.610) 
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Panel C. Annual Return Prediction 

  Conditional      

 Constant RV VRP TRP RT 3MTB Log(DY) CS TS Adj. R2(%) 

Non-Durables 0.170 -0.010 0.043 0.186 0.004 0.072 -0.082 0.447 0.088 
1.750 

 (0.032) (-0.213) (0.834) (0.916) (0.237) (0.305) (-0.055) (1.213) (0.233) 

Durables 6.142 0.015 0.064 0.174 0.030 -0.244 -2.259 1.863 -0.067 
17.170 

 (0.617) (0.213) (0.597) (0.404) (1.060) (-0.593) (-0.763) (2.435) (-0.111) 

Manufacturing 7.961 -0.029 0.034 -0.155 0.000 -0.345 -2.121 0.671 -0.380 
6.759 

 (1.052) (-0.579) (0.508) (-0.460) (0.017) (-1.210) (-0.944) (1.215) (-0.917) 

Energy 5.663 -0.074 0.012 -0.359 -0.017 -0.300 -1.018 -0.484 -0.288 
2.595 

 (0.969) (-1.366) (0.200) (-1.254) (-0.863) (-1.272) (-0.604) (-0.962) (-0.883) 

Chemicals 4.607 -0.029 -0.018 -0.057 0.001 -0.154 -1.353 0.872 -0.143 
6.068 

 (0.905) (-0.633) (-0.326) (-0.221) (0.044) (-0.751) (-0.916) (2.250) (-0.455) 

Equipment 8.948 -0.124 0.129 -0.803 0.037 -0.285 -2.279 -0.144 -0.254 
6.417 

 (1.146) (-0.923) (1.292) (-1.278) (1.202) (-0.925) (-1.070) (-0.199) (-0.393) 

Telecommunications 3.302 -0.142 0.059 -0.609 0.052 -0.166 -0.700 -0.044 0.085 
4.184 

 (0.422) (-1.151) (0.501) (-1.087) (1.601) (-0.473) (-0.323) (-0.059) (0.153) 

Utilities -2.808 -0.051 0.054 0.040 0.015 0.171 0.956 -0.317 0.358 
-0.894 

 (-0.466) (-0.996) (0.807) (0.146) (0.633) (0.687) (0.561) (-0.777) (1.124) 

Wholesale 2.535 -0.017 0.123 0.015 0.024 -0.064 -0.632 0.084 -0.003 
8.430 

 (0.478) (-0.311) (1.989) (0.061) (1.237) (-0.246) (-0.420) (0.180) (-0.008) 

Healthcare 2.354 -0.009 0.060 -0.002 0.008 -0.025 -0.452 0.124 -0.235 
1.360 

 (0.414) (-0.134) (0.905) (-0.006) (0.322) (-0.083) (-0.283) (0.264) (-0.524) 

Finance 9.994 0.057 0.041 0.371 -0.009 -0.252 -3.104 0.770 -0.292 
10.720 

 (1.059) (0.823) (0.502) (0.961) (-0.350) (-0.622) (-1.122) (1.379) (-0.540) 

Other 5.799 -0.048 0.028 -0.108 0.003 -0.282 -1.681 0.649 -0.152 
7.538 

 (0.746) (-0.854) (0.414) (-0.319) (0.112) (-0.919) (-0.741) (1.368) (-0.352) 
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Table 8. Regressions Using Residuals  

This table reports the predictability regression results using the two-stage regression that is explained in 

section 2.6.1. All other variables are described in Table 3. We employ the data directly from the Fama-

French data library.  

 

Panel A. Regression using residuals from VRP on TRP 

Conditional Monthly Return Quarterly Return Annual Return 

RV -2.207 -2.673 -0.768 

 (-0.660) (-1.674) (-0.994) 

ε1 5.168 3.553 0.629 

 (3.172) (3.297) (0.798) 

RT 2.376 1.779 0.225 

 (2.651) (3.683) (0.827) 

TRP 11.044 -1.696 -4.732 

 (0.996) (-0.312) (-1.460) 

3MTB 0.769 -1.612 -2.581 

 (0.195) (-0.476) (-0.813) 

Log(DY) 12.016 -2.160 -18.599 

 (0.656) (-0.120) (-0.793) 

CS -12.593 -10.985 1.718 

 (-0.806) (-0.816) (0.297) 

TS 2.126 -1.139 -2.467 

 (0.388) (-0.237) (-0.521) 

Constant -11.111 39.008 70.004 

 (-0.148) (0.567) 0.877 

Adj. R2(%) 4.602 4.820 2.685 

 

Panel B. Regression using residuals from TRP on VRP 

Conditional Monthly Return Quarterly Return Annual Return 

RV -2.207 -2.673 -0.768 

 (-0.660) (-1.668) (-0.994) 

ε2 29.260 10.824 -2.519 

 (2.513) (2.161) (-0.591) 

RT 2.376 1.779 0.225 

 (2.651) (3.699) (0.827) 

VRP 2.009 2.383 0.904 

 (1.192) (2.213) (1.502) 

3MTB 0.769 -1.612 -2.581 

 (0.195) (-0.480) (-0.813) 

Log(DY) 12.016 -2.160 -18.599 

 (0.656) (-0.123) (-0.793) 

CS -12.593 -10.985 1.718 

 (-0.806) (-0.806) (0.297) 

TS 2.126 -1.139 -2.467 

 (0.388) (-0.241) (-0.521) 

Constant -16.340 34.523 68.743 

 (-0.218) (0.515) (0.859) 

Adj. R2(%) 4.602 4.820 2.685 
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Table 9. Goodness-of-Fit of the VIX Decomposition for the second subsample (Unconditional 

Estimates) 

This table reports the decomposed 𝑅2of the orthogonalized VIX components, RV⊥, VRP⊥, RT⊥, and 

TRP⊥, respectively, for the second subsample from November 15, 2002, to September 10, 2014. We also 

examine three different VIX levels for the second subsample, including (1) Nervous Market Condition: 

VIX ≥ 23.07 (75 percentile), (2) Normal Market Condition: 13.74 ≤ VIX < 23.07, and (3) Calm Market 

Condition: VIX < 13.74 (25 percentile), correspondingly. We employ Klein and Chow (2013) to 

orthogonalize the VIX’s decomposed variables and further calculate their decomposed 𝑅2. Also, to avoid 

bias results due to measurements at different scales, all variables are standardized for the analyses.  

 

A. Second Subsample 𝐑𝐕⊥ 𝐕𝐑𝐏⊥ 𝐑𝐓⊥ 𝐓𝐑𝐏⊥ 

Coefficient 0.76 0.21 -0.12 -0.75 

Decomposed 𝑅2(%) 54.60 3.39 0.15 41.86 

 

B. Second Subsample for VIX ≥ 23.07 (Nervous Market Condition) 

Coefficient 0.56 0.08 -0.05 -0.61 

Decomposed 𝑅2(%) 45.72 1.20 0.41 52.68 

 

C. Second subsample for 13.74 ≤ VIX < 23.07 (Normal Market Condition) 

Coefficient 0.77 0.33 0.01 -0.36 

Decomposed 𝑅2(%) 67.00 26.69 0.02 6.30 

 

D. Second subsample for VIX < 13.74 (Calm Market Condition) 

Coefficient 0.55 0.25 -0.00 -0.12 

Decomposed 𝑅2(%) 64.13 34.00 0.00 1.87 
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Table 10. Goodness-of-Fit of the VIX Decomposition for the second subsample (“Unbiased” 

Conditional Estimates) 

This table reports the decomposed 𝑅2 of the four orthogonalized VIX components, RV⊥, VRP⊥, RT⊥, 

and TRP⊥, respectively, for the second subsample from November 15, 2002, to September 10, 2014. We 

also examine three different VIX levels for the second subsample, including (1) Nervous Market 

Condition: VIX ≥ 23.07 (75 percentile), (2) Normal Market Condition: 13.74 ≤ VIX < 23.07, and (3) 

Calm Market Condition: VIX < 13.74 (25 percentile), correspondingly.  We employ Klein and Chow 

(2013) to orthogonalize the VIX’s decomposed variables and further calculate their decomposed 𝑅2. The 

conditional measures for the second subsample are calculated using the parameters estimated from the 

first subsample based on the forecasting models shown in equations (26), (27) and (28). In addition, to 

avoid bias results due to measurements at different scales, all variables are standardized for the analyses.  

 

A. Second Subsample 𝐑𝐕⊥ 𝐕𝐑𝐏⊥ 𝐑𝐓⊥ 𝐓𝐑𝐏⊥ 

Coefficient 0.63 0.61 -0.02 -0.47 

Decomposed 𝑅2(%) 39.76 37.66 0.04 22.54 

 

B. Second Subsample for VIX ≥ 23.07 (Nervous Market Condition) 

Coefficient 0.56 0.53 -0.04 -0.46 

Decomposed 𝑅2(%) 43.11 27.56 0.24 29.08 

 

C. Second Subsample for 13.74 ≤ VIX < 23.07 (Normal Market Condition) 

Coefficient 0.73 0.62 -0.02 -0.17 

Decomposed 𝑅2(%) 29.04 69.45 0.10 1.41 

 

D. Second Subsample for VIX < 13.74 (Calm Market Condition) 

Coefficient 0.59 0.54 -0.02 -0.04 

Decomposed 𝑅2(%) 27.06 72.45 0.28 0.20 
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Table 11. Out-of-Sample Prediction (December 2002 to September 2014) 

This table reports the out-of-sample performance of the four variables decomposed from the 

VIX. The in-sample R2 is obtained using the conditional measure which is calculated from the 

parameters estimated for the same (second) subsample, while the out-of-sample R2 is obtained 

using the “unbiased” conditional measure, which is calculated from the parameters estimated for 

the first subsample.  

  Prediction Begins From December 2002 

Conditional In-Sample R2 In-Sample R2 Out-of-Sample R2 

RV 0.405 2.924 1.927 

VRP -0.343 -0.431 -0.517 

RT -0.183 -0.589 -0.597 

TRP 2.341 2.832 2.773 
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Table 12. Monthly Return Prediction using the “Unbiased” Conditional Variable for the Second 

Subsample 

This table reports the regression coefficients and adjusted R2 from return predictability regressions 

for monthly excess returns on the S&P 500 market portfolio using the “unbiased” conditional 

measures for the second subsample. We use the first subsample to estimate the conditional 

regression parameters and then apply the estimated parameters to calculate the “unbiased” 

conditional RV, VRP, RT, and TRP. The second subsample extends from December 2002 to 

September 2014.  Newey-West t-statistics are reported in parentheses. Adj. R2 is the adjusted 

coefficient of determination. RT is in annualized basis point, and all other variables are measured 

by annualized percentage. 

 

 December 2002 to September 2014 

RV -2.685    

 (-1.709)    

VRP  -0.742   

  (-0.287)   

RT   -5.703  

   (-0.452)  

TRP    16.795 

    (2.761) 

Constant 13.514 6.493 4.534 9.263 

 (3.536) (1.663) (0.895) (2.264) 

     

Adj. R2 (%) 1.927 -0.517 -0.594 2.773 
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Table 13. Monthly Return Prediction using the “Unbiased” Conditional Variable for the Second Subsample 

This table reports the monthly predictability regression results from excess returns on Size (20% smallest and biggest firms), Book-to-Market (20% 

highest and lowest B/M ratios), and Momentum (20% top and bottom performance), along with the corresponding zero-cost portfolios using the 

“unbiased” conditional variable for the second subsample, which is described in 6.2. All other variables are described in Table 3.  

 

  December 2002 to September 2014        

 Constant RV VRP TRP RT  3MTB Log(DY) CS TS Adj. R2(%) 

Small 10.780 0.022 0.161 3.234 -0.754  -0.244 -3.342 1.039 0.201 
2.411 

(0.843) (0.041) (0.391) (1.496) (-0.436)  (-0.319) (-1.030) (0.562) (0.197) 

Big 3.330 0.093 0.386 2.262 -0.450  -0.204 -0.416 -1.134 -0.135 
0.566 

(0.404) (0.226) (1.535) (1.280) (-0.436)  (-0.425) (-0.209) (-0.852) (-0.211) 

SMB 7.450 -0.071 -0.225 0.672 -0.304  -0.040 -2.926 2.173 0.336 
6.017 

(1.191) (-0.328) (-1.109) (0.904) (-0.405)  (-0.105) (-1.799) (2.510) (0.584) 

High 7.027 0.387 0.021 4.181 -0.836  -0.397 -1.847 0.366 -0.173 
0.155 

(0.605) (0.717) (0.052) (1.706) (-0.526)  (-0.517) (-0.667) (0.208) (-0.173) 

Low -0.297 -0.013 0.500 2.587 -0.605  -0.054 0.437 -0.710 0.066 
1.721 

(-0.036) (-0.031) (2.186) (1.295) (-0.514)  (-0.118) (0.219) (-0.649) (0.104) 

HML 7.324 0.400 -0.480 1.594 -0.231  -0.343 -2.284 1.076 -0.239 
4.006 

(1.230) (1.865) (-2.308) (2.423) (-0.194)  (-0.706) (-1.759) (0.982) (-0.361) 

Winners 6.235 0.087 0.285 2.507 0.159  -0.164 -1.150 -1.629 0.101 
0.450 

(0.596) (0.186) (0.911) (1.296) (0.131)  (-0.227) (-0.490) (-1.009) (0.099) 

Losers 7.555 0.277 0.836 6.469 -3.554  -0.254 -2.617 1.139 -0.248 
5.226 

(0.419) (0.339) (1.813) (1.685) (-1.240)  (-0.274) (-0.575) (0.412) (-0.201) 

WML -1.321 -0.189 -0.551 -3.962 3.713  0.091 1.467 -2.767 0.349 
7.750 

 (-0.105) (-0.290) (-1.564) (-1.207) (1.375)  (0.123) (0.472) (-1.516) (0.327) 
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Table 14. Monthly Return Prediction using the “Unbiased” Conditional Variable for the Second Subsample 

This table reports the monthly predictability regression results from excess returns on twelve industry portfolios using the “unbiased” 

conditional variable for the second subsample, which is described in 6.2. All other variables are described in Table 3. We employ the data 

directly from the Fama-French data library.  

 

  December 2002 to September 2014      

 Constant RV VRP TRP RT 3MTB Log(DY) CS TS Adj. R2(%) 

Non-Durables 2.594 -0.057 0.198 1.519 0.380 -0.147 -0.336 -0.304 0.025 
0.107 

 (0.451) (-0.164) (0.849) (0.936) (0.484) (-0.406) (-0.227) (-0.279) (0.048) 

Durables 1.718 -0.024 0.951 4.794 -2.587 0.038 -0.554 -0.517 0.331 
2.351 

 (0.099) (-0.033) (1.789) (1.204) (-0.856) (0.034) (-0.134) (-0.228) (0.228) 

Manufacturing 4.697 -0.024 0.506 2.391 -1.140 0.138 -1.057 -1.163 0.245 
-1.531 

 (0.385) (-0.045) (1.144) (0.944) (-0.616) (0.198) (-0.359) (-0.627) (0.263) 

Energy 12.857 -0.096 0.187 0.337 0.862 -0.180 -2.792 -1.628 -0.303 
-2.992 

 (1.202) (-0.182) (0.463) (0.128) (0.556) (-0.239) (-1.183) (-0.854) (-0.287) 

Chemicals 0.378 -0.051 0.527 2.369 -0.495 0.188 0.305 -1.496 0.350 
2.215 

 (0.044) (-0.137) (2.157) (1.341) (-0.379) (0.329) (0.160) (-1.061) (0.456) 

Equipment -2.595 0.090 0.538 3.913 -0.643 0.188 0.649 -0.057 0.423 
1.329 

 (-0.261) (0.185) (1.859) (1.804) (-0.437) (0.332) (0.254) (-0.043) (0.515) 

Telecommunications 1.835 0.328 0.225 2.754 -0.471 -0.244 -0.084 -0.909 -0.186 
-3.345 

 (0.195) (0.591) (0.906) (0.965) (-0.377) (-0.387) (-0.038) (-0.709) (-0.224) 

Utilities 9.655 0.079 0.086 0.710 0.646 -0.153 -2.156 -1.460 -0.062 
-1.245 

 (1.552) (0.197) (0.351) (0.278) (0.895) (-0.447) (-1.377) (-1.066) (-0.121) 

Wholesale 4.209 0.361 0.403 3.990 -0.300 -0.419 -0.686 -0.900 -0.332 
2.183 

 (0.538) (0.876) (1.899) (2.289) (-0.262) (-0.834) (-0.353) (-1.043) (-0.516) 

Healthcare 0.230 -0.195 0.070 0.067 1.040 -0.406 0.645 -0.041 -0.217 
-0.853 

 (0.032) (-0.504) (0.314) (0.041) (1.249) (-0.903) (0.364) (-0.035) (-0.342) 

Finance 11.345 0.225 0.471 4.235 -2.340 -0.802 -2.415 -1.187 -0.878 
3.363 

 (0.891) (0.349) (1.284) (1.711) (-1.106) (-0.957) (-0.802) (-0.538) (-0.843) 

Other 7.245 0.222 0.603 3.815 -1.143 -0.248 -1.385 -2.254 -0.141 
2.792 

 (0.656) (0.371) (1.972) (1.322) (-0.742) (-0.361) (-0.536) (-1.352) (-0.159) 



72 

 
 

Chapter 3 The Predictive Power of Tail Risk Premia on Individual Stock 

Returns 

 
 

 

Chapter Abstract 

 

This chapter introduces a novel, option-free methodology to calculate the tail risk premium for 

individual stocks and examines the characteristics of this premium in the cross-section of stock 

returns. The existence of a premium for bearing negative tail risk is significantly associated with 

negative returns up to one month in the future. In contrast, the premium for bearing positive tail 

risk has no significant predictive power. Further, the larger the magnitude of the premium for 

bearing negative tail risk, the greater and longer lasting its impact on expected future returns. 
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3.1 Introduction 

 

Compensation for extreme tail event risk is formally referred to in academic finance 

literature as a “tail risk premium.” Bollerslev, Todorov and Xu (2015) shows that a majority of the 

predictability in the variance risk premium is attributed to this premium for bearing jump tail risk, 

and that, specifically, it is negative tail risk and not positive tail risk that seems to be priced. The 

impact of tail events on returns is well-documented at the aggregate market level, but not so much 

is known about its impact at the individual stock level. One reason why is that out of the money 

call and put options are required to determine the tail risk in the risk-neutral probability space. 

Although out of the money options are prevalent for an index such as the S&P500, they either do 

not exist or are illiquid for most stocks. For this reason, to date no paper has directly examined 

both the impact of tail risk and its premium on the cross-section of individual stock returns. Given 

that the return distribution for individual stocks will likely exhibit a greater proclivity for extreme 

events than the return distribution for a diversified market portfolio (where extreme negative 

events in some securities might be tempered by extreme positive events in others), one would 

expect that tail risk should play a more prominent role in the returns for individual stocks than it 

would for a market portfolio. Consequently, a careful study of tail risk premia for individual stocks 

may yield new and heretofore unseen insights into their predictive power for future returns.  

 

Kelly and Jiang (2014) are the first to examine tail risk in the cross section of individual 

stock returns. This important paper employs an aggregate measure of time-varying tail risk that 

relies on panel estimation from the cross-section of stock returns. It then measures a stock’s 

sensitivity to this measure of tail risk by sorting portfolios into quintiles based on tail beta-

exposure, and documents that the lowest tail beta quintile is associated with the lowest future 

returns, while the highest tail beta quintile is associated with the highest future returns. Although 

Kelly and Jiang (2014) provide strong evidence that tail risk is priced in individual stocks, their 

paper does not directly calculate the tail risk premium nor does it examine any asymmetry in the 

way positive and negative tail risk premia affect future returns. 

 

The current chapter differentiates itself from Kelly and Jiang (2014) in three critical ways.  

First, rather than using an aggregate measure of tail risk and indirectly examining the sensitivity 

of a stock’s return to this aggregate measure, the current chapter directly calculates the tail risk 

premium for individual stocks and examines how this premium varies across the cross-section of 

stock returns. Specifically, the chapter introduces a novel, nonparametric approach to directly 

determine the tail risk premium. The approach avoids the need for the use of liquid out of the 

money stock options (which don’t exist for most stocks). The second contribution is that this new 

approach allows stocks to be sorted by their exposure to tail risk, so that the impact of positive and 

negative tail risk premia on future returns can be examined separately. Stocks with exposure to 

negative tail risk require a tail risk premium that is positive (investors demand a higher return 

today than otherwise expected for bearing negative tail risk), while those with positive tail risk 

require a tail risk premium that is negative (investors are willing to accept a lower return today 

when there is a chance for extreme positive events). Third, this chapter documents that almost all 

of the extreme jumps are concentrated in the first and tenth deciles; consequently, an analysis of 

deciles, and even percentiles, rather than the quintiles examined in prior studies, is necessary if 

researchers are to better understand how extreme jump tail risk is priced. 
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The results in this chapter provide evidence on the differential pricing of information 

related to negative and positive tail risk. Bollerslev, Todorov and Xu (2015) and Kelly and Jiang 

(2014) find evidence of pricing for negative tail risk, but neither fully examines the extent to which 

positive tail risk is priced. The current chapter documents that the existence of a premium for 

bearing negative tail risk today is associated with significantly lower future monthly returns, but 

that the existence of a premium for positive tail risk does not have statistically significant 

predictive power in the cross-section of individual stock returns.  In addition, the current chapter 

presents evidence that it is not only the sign of the tail risk premium that matters in predicting 

future returns but also its magnitude. The larger and more positive the current tail risk premium 

(that is, the greater the concerns about a big negative jump), the more negative and persistent the 

association with future returns will be.  

 

The chapter’s empirical methodology controls for several explanations previously offered 

in the literature for the existence and pricing of tail risk, including momentum (Lehmann, 1990; 

Jegadeesh & Titman, 1993), lottery effects (Barberis & Huang, 2008; Bali, Cakici & Whitelaw, 

2011), idiosyncratic volatility (Ang, Hoderick, Xing, & Zhang, 2006), illiquidity (Amihud, 2002), 

market beta (Scholes & Williams, 1977; Dimson, 1979), maximum and minimum monthly return 

(Bali, Cakici, & Whitelaw, 2011). The predictive power of the premium for bearing negative tail 

risk on future returns survives the inclusion of these control variables.  

 

This chapter is organized as follows: Section 3.2 contains the literature review; Section 3.3 

demonstrates individual stock level tail risk premium estimation and the data; Section 3.4 contains 

the tail risk premium cross-sectional pricing characteristics and cross-sectional return tests; Section 

3.5 includes robustness checks; and Section 3.6 concludes the chapter. 

 

 

3.2 Literature Review 

 

In addition to the papers mentioned in the introduction, there are several recent papers that 

examine the pricing of downside risk that are related to the current chapter. Ang, Chen, and Xing 

(2006) find that stocks that covary strongly with the market during periods of market decline tend 

to have higher average returns than other stocks. Investors are downside risk averse and therefore 

require a premium to hold these assets. Bali, Cakici and Whitelaw (2014) introduce a hybrid tail 

covariance risk measure that measures stock return tail covariance risk.  The measure is based on 

the basic form of lower partial moments. The paper documents a significant positive premium for 

bearing negative tail risk captured in the cross-section.  

 

This chapter is also related to the literature on crash risk.  Kelly and Jiang (2014) are among 

the first of the papers that examine extreme crash risk on stock returns.  The paper finds that stocks 

with high loadings on market tail risk earn higher abnormal returns. Chabi-Yo, Ruenzi, and 

Weigert (2018) find that investors are crash-averse; that is, they receive positive compensation for 

holding crash-sensitive stocks through the measure of “lower tail dependence” from individual 

stock price distributions. The findings in these papers are consistent with the downside risk 
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literature (Ang, Chen, & Xing, 2006; Bali, Cakici, & Whitelaw, 2014) that investors are downside 

risk averse and require a positive premium for holding the crash risk sensitive stocks. 

 

Bali, Cakici, and Whitelaw (2014) construct a firm-specific tail risk measure based on 

lower partial moments of stock returns and find that it negatively predicts future stock returns. 

Almeida, Ardison, Garcia, and Vicente (2017) adopt a risk-neutral excess expected shortfall 

approach to construct a nonparametric tail risk measure. The paper finds that the risk-neutral tail 

risk measure possesses negative predictive power for intermediate horizon stock returns. Lu and 

Murray (2017) construct a proxy for bear-market risk and finds it to be negatively priced; that is, 

stocks with a high sensitivity to bear-market risk are found to underperform their low-sensitivity 

counterparts. 

 

This chapter is also related to the asset pricing literature on higher moments. Traditional 

finance theory assumes a normal distribution of asset returns, for which mean and variance 

together are sufficient to characterize the entire return distribution. The capital asset pricing model 

(Sharpe, 1964; Lintner, 1965; Mossin, 1966) predicts that market volatility is a determinant of the 

market equity premium. Contrary to this notion, Ang et al. (2006) examines whether aggregate 

volatility innovation is priced in the cross-section of stock returns, and concludes that high 

sensitivity stocks have subsequently lower average returns. Given this controversy, it is natural to 

ask whether other return distributional characteristics are also priced in the cross-section. Chang, 

Christofferson and Jacobs (2013) show that the cross-section of stock returns has substantial 

exposure to higher moments. Cremers, Halling and Weinbaum (2015) find that although both 

jumps and volatility are priced in the cross-section, jumps seem to have a larger impact on returns 

than does volatility. Bali, Cakici, and Whitelaw (2011) find that stocks with maximum returns 

have a significant negative return in the following month. These pricing findings are consistent 

with the erroneous probability weighting of investors as modeled in Barberis and Huang (2008) 

and the optimal belief framework of economic agents modeled in Brunnermeier, Gollier, and 

Parker (2007). 

 

 

3.3 Calculation of the Tail Risk Premium in the Cross Section of Individual Stock 

Returns  

3.3.1 Methodology 

 

This section discusses the construction of the tail risk premium associated with jumps in 

returns for individual stocks. The methodology is an innovation on the well-established notion – 

Bollerslev, Todorov and Xu (2015), Carr and Wu (2008), and others – that the jump tail risk 

premium can be calculated as the difference between the expectation of the tail variation in the 

physical probability space (ℙ-space) and its counterpart in the risk-neutral probability space (ℚ-

space).   

 

To this end, we define the infinite-order polynomial variation of log returns, which captures 

not only the second-order (quadratic) variation (see Carr & Wu, 2008), but also the higher-order 

(third-order and up) variations, which Jiang and Oomen (2008) have shown to be associated with 

jumps in stock returns. We denote the simple return 𝑅𝑡+1 =
𝑆𝑡+1−𝑆𝑡

𝑆𝑡
 and logarithmic return 𝑟𝑡+1 =
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ln (
𝑆𝑡+1

𝑆𝑡
)  over a period from  𝑡  to  𝑡 + 1 . Formally, based on Merton’s (1976) jump diffusion 

process, the realized infinite-order polynomial variation (ℙ𝕍) for individual asset 𝑖 at time 𝑡 + 1 

can be expressed as follows: 

 

ℙ𝕍𝑖,[𝑡,𝑡+1] = 2(𝑅𝑖,𝑡+1 − 𝑟𝑖,𝑡+1) 
= 2 × (

1

2!
× 𝑟𝑖,𝑡+1

2 +
1

3!
× 𝑟𝑖,𝑡+1

3 +⋯+
1

𝑛!
× 𝑟𝑖,𝑡+1

𝑛 )
⏟                                

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑓𝑜𝑟𝑚 𝑜𝑓 log𝑟𝑒𝑡𝑢𝑟𝑛 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠

 

(1) 

 = ∫ 𝜎𝑖,𝑡
2 𝑑𝑡

𝑡+1

𝑡

  +    ∑
2

𝑛!

∞

𝑛=2
∫ ∫ 𝑥𝑖

𝑛

ℝ0

𝑡+1

𝑡

𝜇(𝑑𝑥𝑖 , 𝑑𝑡) 

 = ℂ𝕍𝑖,[𝑡,𝑡+1]   +     𝕁ℙ𝕍𝑖,[𝑡,𝑡+1]. 

 

where 𝜎 is the volatility. 𝜇(𝑑𝑥𝑖 , 𝑑𝑡) is the Poisson random measure for the compound Poisson 

process with compensator equal to 𝜆
1

√2𝜋𝜎𝐽
2 𝑒

−
1

2
(𝑥−𝛼)

2

, with  𝜆 as the jump intensity. ℂ𝕍 is the 

integral of the continuously instantaneous variance (often referred to as the integrated volatility), 

and 𝕁ℙ𝕍  represents the realized jump component of the infinite-order polynomial variation. 

Analogously, the second-order polynomial variation (the realized quadratic variance, denotes ℚ𝕍) 

can be written by the following equation: 

 

ℚ𝕍𝑖,[𝑡,𝑡+1] = 𝑟𝑖,𝑡+1
2 = ∫ 𝜎𝑖,𝑡

2
𝑡+1

𝑡

𝑑𝑡 + ∫ ∫ 𝑥𝑖
2𝜇(𝑑𝑥𝑖 , 𝑑𝑡)

ℝ0

𝑡+1

𝑡

=  ℂ𝕍𝑖,[𝑡,𝑡+1] + 𝕁ℚ𝕍𝑖,[𝑡,𝑡+1]. (2) 

 

By subtracting Equation 2 from Equation 1, we then have the realized tail-jump variation 

at time t such that  

 

𝕋𝕍𝑖,[𝑡,𝑡+1] = 2(𝑅𝑖,𝑡+1 − 𝑟𝑖,𝑡+1) − 𝑟𝑖,𝑡+1
2 = ℙ𝕍𝑖,[𝑡,𝑡+1] −ℚ𝕍𝑖,[𝑡,𝑡+1]  

 =∑
2

𝑛!

∞

𝑛=3
∫ ∫ 𝑥𝑖

𝑛

ℝ0

𝑡+1

𝑡

𝜇(𝑑𝑥𝑖, 𝑑𝑡). (3) 

 

Now that we have the unconditional realized tail-jump variation, we next present the 

conditional ex-ante estimation of the tail-jump variation and then will develop a proxy for the tail-

risk premium.  

 

Following Bollerslev, Tauchen and Zhou (2009), under the assumption that 𝕋𝕍  is a 

martingale24, the ℙ-space expected tail-variation of returns at time 𝑡 can be expressed as follows:  

                                                           
24  Under the Merton (1976) jump diffusion model assumption, the compensated compound Poisson process 

𝜇(𝑑𝑥𝑖 , 𝑑𝑡), with compensator 𝜆
1

√2𝜋𝜎𝐽
2 𝑒

−
1

2
(𝑥−𝛼)

2
, is a martingale process; consequently, ℙ𝕍𝑖,[𝑡,𝑡+1] is also a martingale.  

Todorov and Tauchen (2011) provide empirical evidence that the VIX index is a pure-jump process without a 

continuous component, which supports the notion that ℙ𝕍𝑖,[𝑡,𝑡+1] is a martingale process. [Du and Kapadia (2012) 

demonstrates that ℙ𝕍𝑖,[𝑡,𝑡+1] is the underlying process of the VIX index]. Furthermore, it is widely accepted in both 
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𝐸𝑡
ℙ(𝕋𝕍𝑖,[𝑡,𝑡+1]) = 2(𝑅𝑖,𝑡 − 𝑟𝑖,𝑡) − 𝑟𝑖,𝑡

2 . (4a) 

 

Then, the difference between expected 𝕋𝕍 in the ℙ-space and that in the risk-neutral ℚ-

space, 𝐸𝑡
ℙ(𝕋𝕍𝑖,[𝑡,𝑡+1]) − 𝐸𝑡

ℚ
(𝕋𝕍𝑖,[𝑡,𝑡+1]), serves as a proxy for the tail-risk premium. The advantages 

of using  𝐸𝑡
ℙ(𝕋𝕍𝑖,[𝑡,𝑡+1])  as a tail risk measure in the physical space are threefold. First, it is 

nonparametric, i.e., it does not require the estimation of a cutoff value as in Kelly and Jiang (2014) 

or Bollerslev and Todorov (2011b). Second, it does not require the estimation of a jump 

compensator in order for the instantaneous arithmetic stock return to be a semi-martingale process 

as in Bollerslev and Todorov (2011a), Bollerslev and Todorov (2011b), or Bollerslev, Todorov 

and Xu (2015). Third, 𝐸𝑡
ℙ(𝕋𝕍𝑖,[𝑡,𝑡+1])  only relies on stock price information and can be easily 

calculated using databases such as the WRDS CRSP database. Thus, relative to the measures used 

in the afformentioned papers, our measure not only lessens estimation error but also shortens the 

calculation time, and because it only relies on prices, it is broadly applicable to other asset classes. 

Once the ℙ-space tail risk measure is calculated, then one can examine the innovations in this 

measure 

 

∆𝐸𝑡
ℙ(𝕋𝕍𝑖,[𝑡,𝑡+1]) = ∆[2(𝑅𝑖,𝑡 − 𝑟𝑖,𝑡) − 𝑟𝑖,𝑡

2 ] (4b) 

 

In contrast to the ℙ -space tail variation measure, which is easy to calculate, the 

corresponding calculation of Equation 4a in the ℚ-space for individual stocks is much more 

problematical, since the necessary data is not readily available. If, instead of examining individual 

stocks, one were interested in calculating the ℚ-space tail variation of the market as a whole, then 

the methodology would be relatively easy to implement. For example, Carr and Wu (2008) shows 

that the CBOE VIX index is a measure of moment combinations, and therefore a polynomial 

variation in the risk-neutral probability space. Specifically, that paper argues that the VIX index 

measures the risk-neutral expectation of the polynomial variation process for the S&P 500 market 

index,25 

 

𝐸𝑡
ℚ(ℙ𝕍𝑀,[𝑡,𝑡+1]) = 𝑉𝐼𝑋𝑡

2 (5) 

 

Once Equation 5 has been calculated, Du and Kapadia (2012) and Chow, Jiang, and Li 

(2014) show that the ℚ-space measure of tail variation for the market can be calculated as the 

difference between the square of the VIX and the centralized Bakshi, Kapadia, and Madan (2003) 

volatility measure, 𝑉𝐵𝐾𝑀
𝐶  such that 26 

                                                           
theory and practice that ℚ𝕍𝑖,[𝑡,𝑡+1] is a martingale process; consequently, the claim that 𝕋𝕍𝑖,[𝑡,𝑡+1] is a martingale 

process has both theoretical and practical support. 
25 Note that, Equation 5 clearly indicates that the literature-prevalent variance risk premium estimation methodology, 

which takes the difference between the VIX index and physical probability space quadratic variation is biased. 

Specifically, the VIX, because it includes higher order moments, undervalues (overvalues) volatility when the market 

return is expected to be negatively (positively) skewed. 

26 𝑉𝐵𝐾𝑀
𝐶 = 𝑉𝐵𝐾𝑀 − 𝜇𝐵𝐾𝑀

2 , where 𝜇𝐵𝐾𝑀 = ln (
𝐾0

𝑆0
) + (

𝐹0

𝐾0
− 1) − 𝑒𝑟𝑇[∫

1

𝐾2
𝐶𝑇(𝐾)𝑑𝐾 + ∫

1

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝐾0
0

∞

𝐾0
] and 𝑉𝐵𝐾𝑀 =

ln2 (
𝐾0

𝑆0
) + 2 ln (

𝐾0

𝑆0
) (

𝐹0

𝐾0
− 1) + 2𝑒𝑟𝑇[∫

[1−ln (
𝐾

𝑆0
)]

𝐾2
𝐶𝑇(𝐾)𝑑𝐾 + ∫

[1+ln (
𝐾

𝑆0
)]

𝐾2
𝑃𝑇(𝐾)𝑑𝐾

𝐾0
0

∞

𝐾0
]} as in Bakshi, Kapadia, and 

Madan (2003). 
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𝐸𝑡
ℚ(𝕋𝕍𝑀,[𝑡,𝑡+1]) = 𝑉𝐼𝑋𝑡

2 − 𝑉𝐵𝐾𝑀,𝑡
𝐶  (6) 

 

It is important to note that the calculation of both the VIX and 𝑉𝐵𝐾𝑀
𝐶  rely on highly liquid 

out of the money put and call options27, which fortunately are prevalent on the S&P 500 index. 

Recent papers by Gao, Gao, and Song (2018) and Gao, Lu and Song (2018) estimate tail risk based 

on the ℚ-space tail variation measure (in Equation 6) for the market index and portfolio of assets 

where there exists liquid option trading. Unfortunately, these options often either do not even exist 

for individual stocks or, if they do exist, are not frequently traded, and thus an analogue of the 

aforementioned methodology to calculate the ℚ -space tail variation for individual stocks is 

impossible to implement.  Consequently, an alternative is required. 

 

To this end, we propose a methodology for the estimation of the ℚ-space tail variation that 

is based on the groundbreaking work on tracking portfolios presented in Breeden, Gibbons, and 

Litzenberger (1989) and Lamont (2001).  According to Lamont (2001), “A tracking portfolio for 

any variable y can be obtained as the fitted value of a regression of y on a set of base asset returns.  

The portfolio weights for the economic tracking portfolio for y are identical to the coefficients of 

an OLS regression.” Ang et al. (2006) apply the tracking portfolio technology and use returns to 

capture innovations in the VIX index. We employ a modified version of Ang et al. (2006); 

specifically, we use first-order difference in the ℚ-space tail variation measures, rather than the 

raw measures themselves, in order to capture innovations in ℙ-space tail variation measures. 

Accordingly, we estimate the following ordinary least squares regression for each stock in each 

month to obtain our portfolio weights, 𝛽𝑖
28 

 

∆[2(𝑅𝑖,𝑡 − 𝑟𝑖,𝑡) − 𝑟𝑖,𝑡
2 ] = 𝛼𝑖 + 𝛽𝑖 ∙ ∆(𝑉𝐼𝑋𝑡−22

2 − 𝑉𝐵𝐾𝑀,𝑡−22
𝐶 ) + 𝜀𝑖,𝑡 (7) 

 

where 𝑉𝐼𝑋𝑡−22
2 − 𝑉𝐵𝐾𝑀,𝑡−22

𝐶  represents the tail variation in the ℚ-space, as delineated in Equation 

6, and 2(𝑅𝑖,𝑡 − 𝑟𝑖,𝑡) − 𝑟𝑖,𝑡
2  represents the tail variation in the ℙ-space, as shown in Equation 4a. 

Note that we follow the precedent set by Bekaert and Hoerova (2014) which estimates ℙ-spaced 

conditional realized variation utilizing a 22-day lag. Their approach is based on the notion that 

options-based ℚ-spaced measures, such as the VIX, are forward-looking, and thus there is a time 

lag error of one month (22 trading days) that must be corrected.    

 

 Once the 𝛽𝑖 coefficients have been obtained, then 𝛽𝑖 ∙ ∆(𝑉𝐼𝑋𝑡−22
2 − 𝑉𝐵𝐾𝑀,𝑡−22

𝐶 ) represents 

the ℚ-space tracking portfolio that mimics innovations in tail variation that occur in the ℙ-space. 

Formally, 

 

∆𝐸𝑡
ℚ(𝕋𝕍𝑖,[𝑡,𝑡+1]) = 𝛽𝑖 ∙ ∆(𝑉𝐼𝑋𝑡−22

2 − 𝑉𝐵𝐾𝑀,𝑡−22
𝐶 ) (8) 

 

                                                           
27 Demeterfi, Derman, Michael and Zou (1999) present a methodology for estimating the ℚ-space measure of implied 

volatility for individual securities that is based on the variance swap concept, which requires highly liquid out of the 

money put and call options.   
28 Stocks must have at least 17 observations in any given month to be included in that month’s regression. 
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Now that the daily innovations in the  ℙ -space and ℚ -space tail variation measures 

(Equations 4b and 8, respectively) have been obtained, the daily tail risk premium for any asset 

can be estimated by taking their difference 

 

𝑇𝑅𝑃𝑖,[𝑡,𝑡+1]
𝑑𝑎𝑖𝑙𝑦

= ∆𝐸𝑡
ℙ(𝕋𝕍𝑖,[𝑡,𝑡+1]) − ∆𝐸𝑡

ℚ(𝕋𝕍𝑖,[𝑡,𝑡+1]) (9) 

 

Since there are 22 trading days in a month, the corresponding monthly tail risk premium 

for each individual stock can be estimated as  

 

𝑇𝑅𝑃𝑖
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

 = 22 ∙ 𝑇𝑅𝑃𝑖,[𝑡,𝑡+1]
𝑑𝑎𝑖𝑙𝑦

 (10) 

 

3.3.2 Data 

 

We run the baseline regression model in Equation 7 for all common stocks on AMEX, 

NASDAQ, and NYSE, with more than 17 daily observations in any given month. Daily stock 

returns come from the WRDS CRSP database, over the sample period from January 1990 to 

September 2014. S&P index option data are obtained from IVolatility.com, which provides end-

of-day and high frequency option data on major stock market indices across countries.  

 

[Insert Table 1 Here] 

 

Table 1 reports the summary statistics for portfolios sorted into deciles by the tail risk 

premium. Definitions for all the variables can be found in the Appendix. Panel A presents the 

decile portfolio firm-specific characteristics sorted by the tail risk premium. Firms with a higher 

tail risk premium tend to have lower lagged 1-month returns (short-term return reversal effect).  

Firms that fall into the extreme first and 10th decile also tend to be smaller firms that have higher 

market betas, higher idiosyncratic volatility, more illiquidity, higher maximum monthly returns, 

lower minimum monthly returns, lower trading volumes, and lower prices. 

 

To examine the correlation structure among the explanatory variables, we report in 

percentage form Pearson correlation coefficients of the variables in Table 2. 

 

[Insert Table 2 Here] 

 

Idiosyncratic volatility (Ang et al., 2006) is negatively correlated with size (correlation 

coefficient of -49.70%), which is consistent with the findings in Fu (2009). Moreover, 

idiosyncratic volatility is also correlated with maximum and minimum monthly returns (Bali, 

Cakici, & Whitelaw, 2011), with correlation coefficients of 89.72% and 80.77%, respectively). 

Maximum and minimum monthly returns (Bali, Cakici, & Whitelaw, 2011) are correlated with 

size, but to a much lesser extent (-37.24% and 39.00%, respectively).  
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3.4       Predictive Power of the Tail Risk Premium on Future Returns 

3.4.1 Portfolios Sorted by the Tail Risk Premium 

 

To investigate the predictive power of the tail risk premium in the cross-section, we first 

calculate the tail risk premium for each of the stocks in our sample, and then sort the stocks into 

decile portfolios by the magnitude of their monthly tail risk premium. We next calculate the one 

month forward buy and hold returns for each decile portfolio.  We term these returns as the 1/0/1 

(sort in one month, examine the one-month return for the following month) return.  The results are 

reported in Panel A of Table 3. 

 

[Insert Table 3 Here] 

 

The lowest (Decile 1) tail risk premium portfolio earns the highest return of 2.02% in the 

following month, while the highest (Decile 10) portfolio earns the lowest return of 0.27%. The 

difference between the lowest and highest quintile portfolio is 1.75% monthly, and has a 𝑡-statistic 

of -11.26. After a Newey-West (1986) adjustment for heteroskedasticity and autocorrelation, the 

𝑡-statistic is still strongly significant with a value of -7.30.  

 

We next examine the length of time it takes for the market to correct this pricing error, by 

comparing the results for the 1/0/1 (sort in one month, examine the one-month return for the 

following month) portfolio strategy discussed in the previous paragraph with 1/1/1 and 1/2/1 

(sort in one month, examine the one-month return starting two months from now, and three months 

from now, respectively) portfolio strategies.   

 

These results are reported in Panels B and C of Table 3. The existence of a tail risk premium 

at time t possesses virtually no impact on future returns moving from the second-next month into 

the future. This suggests that the adjustment period for market perception of tail risk seems to be 

somewhere between one month and two months, after which the market fully incorporates 

information about tail risk into the price.  

 

 

3.4.2 Cross-Sectional Return Test for the Predictive Power of the Tail Risk Premium 

 

The above evidence suggests that tail risk is priced at the individual stock level.  Consistent 

with prior studies, we perform a more thorough firm-level cross-sectional return and examine 

whether the predictive power of the tail risk premium remains. Specifically, we estimate the 

following monthly regression: 

 

𝑅𝑖,𝑡+1 = 𝛾0,𝑡+1 + 𝛾1,𝑡+1 × 𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

+ 𝜙𝑡+1
′ × 𝑍𝑖,𝑡 + 𝜀𝑖,𝑡+1 (11) 

 

where 𝑅𝑖,𝑡+1 is the monthly stock return for stock 𝑖 in month 𝑡 + 1. 𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

 is the individual 

stock tail risk premium, delineated by Equation 11.  𝑍𝑖,𝑡 represents a vector of characteristics and 

controls for firm 𝑖 at the end of month 𝑡, such as size, book-to-market ratio, and market beta. 

Controls are also provided for illiquidity following Amihud (2002), idiosyncratic volatility 
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following Ang et al. (2006), lagged 1-month return for short-term return reversal effect following 

Jegadeesh (1990) and Lehmann (1990), lagged 12-month return accounting for the momentum 

effect, and maximum and minimum monthly return following Bali, Cakici, and Whitelaw (2011).  

  

Table 4 reports the time-series average of 𝛾  and 𝜙  coefficients for the cross-sectional 

regressions. 

 [Insert Table 4 Here] 

 

Column 1 provides univariate results, and Column 2 adds firm-specific control variables.29  

The coefficient for the tail risk premium is negative and is statistically significant in both the 

univariate and multivariate regressions, with coefficients of -0.801 and -1.155 and Newey-West 

(1986) 𝑡-statistic equal to -5.60 and -5.50, respectively. Specifically, stocks with tail risk require a 

premium in the current month, and this premium is associated with lower returns the following 

month.  

 

The results for the impact of overall tail risk on one-month future returns are interesting, 

but tail risk involves concerns about both extreme positive events and extreme negative events. 

Consequently, it may be of interest to examine, separately, the impact of positive and negative tail 

risk on future returns. 

 

 

3.4.2.1 The Monthly Predictive Power of Positive versus Negative Tail Risk Premia 

 

To investigate the extent to which positive and negative tail risk may be priced 

differentially in the cross-section of returns, we again perform firm-level cross-sectional monthly 

regressions, but this time we include dummy variables to identify those stocks in the top and 

bottom deciles when sorted by their tail risk premia. The regression is specified in Equation 12. 

 

𝑅𝑖,𝑡+𝑛 = 𝛾0,𝑡+𝑛 + 𝛾1,𝑡+𝑛 × 𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

× 𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 1 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
]
+ 𝛾2,𝑡+𝑛 × 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦

× 𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 10 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
]
+ 𝜙𝑡+𝑛

′ × 𝑍𝑖,𝑡 + 𝜀𝑖,𝑡+𝑛 
(12) 

 

where   𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 1 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
]
 is a dummy variable that equals 1  if  𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
 is in Decile 1 and 

equals 0 otherwise, and  𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 10 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
]
  is the corresponding dummy variable for Decile 10. 

𝑅𝑖,𝑡+𝑛  is monthly stock return for stock 𝑖  in month 𝑡 + 𝑛 , where 𝑁 = 1,2. 𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

 is the 

individual stock tail risk premium calculated in Equation 10. 𝑍𝑖,𝑡  represents a vector of 

characteristics and controls for firm 𝑖 at the end of month 𝑡 such as size, B/M ratio, market beta, 

illiquidity, etc. 

 

[Insert Table 5 Here] 

 

                                                           
29 See Appendix for variable definitions. 
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Table 5 presents the results. In the t+1 regression, the coefficient on the interacted variable 

𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

× 𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 10 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
]
 is statistically significant with 𝛾  coefficient of -1.971 and 

Newey-West (1986) 𝑡-statistic of -5.09.   The negative coefficient implies that the greater the tail 

risk premium today (i.e., the greater the negative tail risk) the more negative the next month’s 

return will be. The coefficient on the Decile 1 interacted variable is also negative with a 𝛾 

coefficient of -0.830, but it is statistically significant at only the 10% level; thus, we refrain from 

making any claims about the premium for bearing positive tail risk’s ability to impact future 

returns. In the t+2 regression, neither the Decile 1 nor the Decile 10 interacted dummies are 

significant different from zero.  

 

3.4.2.2 The Daily Predictive Power of Positive versus Negative Tail Risk Premia 

 

In order to more fully examine the relationship between negative tail risk premia and future 

returns, we replicate the study conducted in the previous section using daily returns. Specifically, 

we conduct a firm-level cross-sectional predictive regression as in Equation 13. We add the caveat 

that, at the daily level, there is likely to be some noise in our estimates; thus, any conclusions 

should be tempered somewhat. 

 

𝑅𝑖,𝑡+𝑛
𝐷𝑎𝑖𝑙𝑦

= 𝛾0,𝑡+𝑛 + 𝛾1,𝑡+𝑛 × 𝑇𝑅𝑃𝑖,𝑡
𝐷𝑎𝑖𝑙𝑦

× 𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 10 𝑇𝑅𝑃𝑖,𝑡

𝐷𝑎𝑖𝑙𝑦
]
+ 𝜙𝑡+𝑛

′ × 𝑍𝑖,𝑡 + 𝜀𝑖,𝑡+𝑛 (13) 

 

[Insert Table 6 Here] 

 

Panel 1 of Table 6 presents the results of the regression of the relationship in Equation 13, 

day into the future. The coefficient on the interacted variable for Decile 10 shows that the existence 

of a premium for bearing negative tail risk continues to have predictive power for about 10 days. 

Even on Day 10, the coefficient for the interacted variable for Decile 10 is -5.910 with NW 𝑡-
statistic -2.68. The daily results corroborate the findings of the previous section and offer 

additional evidence on the way that concerns about extreme negative tail events impact future 

returns.  

 

3.4.3 Do Larger Tail Risk Premia Have More Predictive Power? 

 

The results in the previous section suggest that the larger the tail risk premium, the greater 

its impact on future returns. This suggests that using a finer grid to sort stocks, for example, sorting 

the stock by tail risk premia into percentiles rather than deciles, and then redoing the earlier 

analysis may yield interesting results. To this end, we sort and then split the stocks contained in 

Deciles 1 and 10 into deciles once again; that is, we effectively create 10 extreme high and low 

percentile portfolios, with percentiles 1-10 belonging to Decile Portfolio 1 and percentiles 91-100 

belonging to Decile Portfolio 10. We then apply the 1/0/1 (sort in one month, examine the one-

month return for the following month) portfolio strategy for percentile 1 and 100 portfolios, 2 and 

99 portfolios, and 3 and 98 portfolios, and report the results in Table 7.  

 

 [Insert Table 7 Here] 
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The results are consistent with the notion that there is a monotonic relationship between 

the magnitude of the tail risk premium and the impact on future returns. The t+1 return difference 

is most negative when comparing the two most extreme (1 and 100) portfolios and decreases 

monotonically thereafter. The return difference (in percentage) for the 100-1 portfolio is -3.91, for 

the 99-2 portfolio is -2.50, and for the 98-3 portfolio is -2.44, respectively. All are significant at 

the 1% level.   

 

As a robustness check, we combine percentiles 98-100 into one portfolio and percentiles 

1-3 into another portfolio and then do the same for percentiles 97-99 and 2-4. The t+1 return 

difference for the (98-100)-(1-3) portfolio is -2.95 and for the (97-99)-(2-4) portfolio is -2.35, with 

both being significant at the 1% level, once again lending support to the notion that predictive 

power of the current premium for bearing negative tail risk should be directly related to its 

magnitude. 

 

3.5 Robustness Checks 

  

We perform a variety of robustness checks in order to ensure that our results are not being 

driven by other factors.   

 

3.5.1 Monte Carlo Analysis of Regression Beta  

 

The first robustness check is on the beta of the baseline regression model in Equation 7.  

There may be a concern that the beta may not be statistically different from zero both cross-

sectionally and in the time series. The standard unidimensional t-test cannot capture this 

possibility.  Instead, to capture both the time series and cross-sectional properties of the regression 

beta, we use Monte Carlo simulation to test whether beta is statistically different from zero.  Monte 

Carlo simulation has two advantages. First, it is a distributional-free approach. Second, it allows 

us to make statistical inferences on both the cross-sectional and time-series dynamics of the 

regression beta in Equation 7. 

 

In our sample, the number of firms that have more than 17 trading days in a given month 

ranges from 3626 to 7471. We denote sample size as 𝑆 and number of random draws as 𝑁. For a 

given month in a given year, we perform the following simulation, 

 

1) Random draw (with placement) 𝛽1, 𝛽2, 𝛽3, ⋯, 𝛽𝑆 and compute the mean of 𝛽1, 𝛽2, 𝛽3, ⋯, 

𝛽𝑆, denote 𝛽𝑛̅̅ ̅. 
2) Repeat 1) 𝑁 times and get 𝛽1̅̅ ̅, 𝛽2̅̅ ̅, 𝛽3̅̅ ̅, ⋯, 𝛽𝑁̅̅̅̅ . 

3) Compute 𝑡-statistic for 𝛽1̅̅ ̅, 𝛽2̅̅ ̅, 𝛽3̅̅ ̅, ⋯, 𝛽𝑁̅̅̅̅ . 

We then compute the average of the (time series) year-month 𝑡-statistic to get the simulated 

𝑡-statistics. 

 

[Insert Plot 1 Here] 

 

From Panels A through B in Plot 1, we observe that the bootstrapped  𝑡 -statistic is 

statistically and significantly different from zero even if we limit the sample size to only 500 firms 
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in each independent random draw30. This indicates that the beta of the baseline regression model 

in Equation 7 is both statistically and economically important and that it carries important pricing 

information. In other words, our tail risk premium estimation methodology indeed captures the 

difference between the ℙ- and ℚ- spaced expectations of tail risk variation. 

 

3.5.2 Sensitivity to Market Aggregate Tail Risk Premium 

 

The second robustness check is to ensure that our results are not being driven by the 

sensitivity of the individual stock’s loadings to the market tail risk premium. To this end, we follow 

Ang et al. (2006), which adopts a “beta approach.” They obtain an individual stock’s sensitivity 

(beta) to innovation in market aggregate volatility (specifically ∆𝑉𝐼𝑋) and then determine whether 

this beta has predictive power for the next-month’s stock returns. We run the following regression 

model, 

 

𝑟𝑡
𝑖 = 𝛽0 + 𝛽𝑀𝐾𝑇

𝑖 𝑀𝐾𝑇𝑡 + 𝛽∆𝑇𝑅𝑃𝑀𝑎𝑟𝑘𝑒𝑡
𝑖 ∆𝑇𝑅𝑃𝑡

𝑀𝑎𝑟𝑘𝑒𝑡 + 𝜀𝑡
𝑖 (14) 

 

where 𝑀𝐾𝑇 is the market excess return and ∆𝑇𝑅𝑃𝑡
𝑀𝑎𝑟𝑘𝑒𝑡 is estimated tail risk premium for the 

S&P 500, which is our proxy for innovations in the market aggregate tail risk compensation; that 

is, factor loading, 𝛽
∆𝑇𝑅𝑃𝑀𝑎𝑟𝑘𝑒𝑡
𝑖 , captures the sensitivity of individual stock monthly returns to the 

change in market aggregate tail risk premium. The results are reported in Table 8. 

 

[Insert Table 8 Here] 

 

The value weighted mean t+1 return for Deciles 1 and 10 are 1.16 and 1.31, respectively.   

This difference is not statistically significant, which implies that sensitivity to the market aggregate 

tail risk premium has no predictive power for these stocks.  Moreover, it implies that our tail risk 

premium estimation methodology captures an individual stock’s idiosyncratic tail risk premium, 

which provides pricing information beyond the individual stock’s loadings to the market tail risk 

premium.  

 

3.5.3 Contemporaneous Regression 

 

Our methodology uses a 22-day lag adjustment between the risk neutral and the physical 

probability space measures. However, in the literature on the variance risk premium normally does 

not require a lag adjustment for the ℚ- spaced variables calculation in the baseline regression 

model in Equation 7. For example, Bollerslev, Tauchen, and Zhou (2009) are among the first to 

document the variance risk premium’s return predictability at the quarterly horizon. They compute 

the variance risk premium using a relatively conventional approach, where the risk premium of 

return variation is defined as the difference between the time series conditional expected future 

return variation in the (options based) risk-neutral (ℚ-spaced) framework and in the physical 

probability (ℙ-) space in a contemporaneous manner; however, this approach is inherently biased 

in that it assumes the risk neutral measures are backward-looking.  

                                                           
30 In Plot 1 we limit the number of random draws to 10000. We also perform the Monte Carlo simulation by varying 

the number of random draws from 1000 to 10000 and the sample size from 500 to 3000; results are similar. 



85 

 
 

 

As a robustness check, we employ the non-lagged methodology of Bollerslev, Tauchen, 

and Zhou (2009) and redo the analysis presented in Section 3.4.1.  We sort the stocks into ten equal 

groups (decile portfolios) by 𝑇𝑅𝑃𝑖
𝑀𝑜𝑛𝑡ℎ𝑙𝑦,𝑛𝑜𝑙𝑎𝑔

 calculated on the following regression model, 

 

∆[2(𝑅𝑖,𝑡 − 𝑟𝑖,𝑡) − 𝑟𝑖,𝑡
2 ] = 𝛼𝑖 + 𝛽𝑖 ∙ ∆(𝑉𝐼𝑋𝑡

2 − 𝑉𝐵𝐾𝑀,𝑡
𝐶 ) + 𝜀𝑖,𝑡 (15) 

 

The results are reported in Table 9.  

 

[Insert Table 9 Here] 

 

As can be seen by comparing the results of Table 9 to those presented in Table 3, using 

contemporaneous rather than 22-day lagged ℚ-spaced measures makes little qualitative difference.  

 

3.6 Potential explanations for the asymmetric way positive and negative tail risk premia 

impact returns 

 

 Tversky and Kahneman (1992) propose the concept of prospect theory, whereby 

individuals perceive the utility of gains and losses differentially. Barberis and Huang (2008) apply 

this theory to investor behavior and argue for the existence of a lottery effect, where biases in the 

probability weighting of investors cause them to overvalue stocks that have a small probability of 

a large positive return. The lottery effect predicts that positively skewed securities will be 

overvalued, and thus the existence of a negative premium for bearing positive tail risk today would 

imply lower returns in the future. Bali, Cakici, and Whitelaw (2011) documents that when stocks 

are sorted by their monthly returns, those stocks with the maximum (minimum) monthly return 

tend to have a lower (higher) return in the following month. They interpret these results as support 

for the lottery effect. We control for the MAX and MIN effect in our regression analysis, and find 

that predictive power of both the positive and negative tail survive the inclusion of these variables. 

Moreover, in fact, our results for negative tail risk not only survive the inclusion of the MIN control 

variable, but are in stark contrast to the predictions of the lottery effect. If biases in investor’s 

probability weightings cause them to overvalue stocks with positive skewness, then it stands to 

reason that these same biases should also be causing them to undervalue stocks with negative 

skewness. In which case, the existence of a premium for bearing negative tail risk today, should 

predict a higher return in the future. However, we find just the opposite: the existence of a premium 

for bearing negative tail risk predicts lower future returns, not higher ones. Thus, the lottery effect, 

although consistent with our findings for positively skewed stocks, cannot explain our results 

regarding negatively skewed ones.  

 

 An alternative explanation for the relationship between positive skewness and lower 

returns is presented in Brunnermeier, Gollier, and Parker (2007). The paper presents a general 

equilibrium model where individuals optimally balance a bias toward optimism with the real costs 

of making bad decisions. The result is that investors prefer heterogeneous, under-diversified 

portfolios that overweight assets with positive skewness, so they can obtain skewed portfolio 

returns. This preferential weighing scheme, in turn, raises the prices of and lowers the returns of 

positively skewed assets. However, it is reasonable to expect that, if investors are overweighting 
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positively skewed stocks in their portfolios, they would also be underweighting negatively skewed 

ones. If this were the case, then – similar to the predictions of the lottery effect – stocks with 

negative skewness should be undervalued and thus be associated with higher future returns.  Again, 

the opposite is observed in the data. 

 

 Although Barberis and Huang (2008) and Brunnermeier, Gollier, and Parker (2007) offer 

well accepted explanations for the association between positive tail risk and negative future 

returns, neither can explain our findings regarding stocks with negative tail risk. A potential 

explanation, however, may come from psychology literature: unrealistic optimism.  

 

Harris and Guten (1979) and Weinstein (1980, 1982, 1984, 1987, and 1989) document the 

existence of unrealistic optimism, a phenomenon whereby human beings have an optimistic bias 

about their personal risk; specifically, they perceive their own future as more optimistic compared 

to others. People believe that extreme negative future events are less likely to happen to themselves 

than to the average person, and extreme positive future events are more likely to happen to 

themselves than to others. In other words, humans believe that negative (positive) tail events have 

a lower (higher) probability of occurring to themselves than occurring to others. Consequently, 

when people determine the expected impact of extreme tail events on value, the results are 

exaggerated and optimistically biased. In addition, the more extreme the event, the greater the 

exaggeration of reality.   

 

Sharot, Guitart-Masip, Korn, Chowdhury, and Dolan (2012), Sharot, Korn and Dolan 

(2011) and Sharot, Kanai, Marston, Korn, Rees, and Dolan (2012) provide evidence that the human 

memory process actually reinforces the distortions associated with unrealistic optimism. People 

update their beliefs more frequently in response to information that is better than expected 

compared to information that is worse than expected. In addition, Moutsiana, Garett, Clarke, Lotto, 

Blakemore, and Sharot (2013) show that humans possess a natural tendency to discount bad news 

while incorporating good news into beliefs.   

  

Taken as a whole, the literature on unrealistic optimism yields interesting predictions for 

asset pricing. If unrealistic optimism causes investors to overestimate the likelihood of positive 

tail events and to simultaneously underestimate the likelihood of negative tail events, then 

investors will tend to pay too much for securities with exposure to either kind of tail risk. 

Consequently, the existence of a premium for bearing tail risk, irrespective of whether it is negative 

or positive tail risk, will be associated with lower future returns as the overpricing is eventually 

corrected. Moreover, the more extreme the tail events the greater the exaggeration/overpricing will 

be, and the predictive power of the associated tail risk premium on future returns should be longer 

lasting. We are not claiming that unrealistic optimism is the only explanation consistent with our 

empirical results; we merely show that our results are consistent with its predictions. 
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3.7 Conclusion 

 

Bollerslev, Todorov, and Xu (2015) and Kelly and Jiang (2014) find evidence of pricing 

for negative tail risk, the first in an index and the second for individual securities.  The current 

chapter extends this literature by introducing a novel methodology to directly calculate the tail risk 

premium for individual stocks, and then employs this measure to examine the impact of equity tail 

risk in the cross-section of stock returns.  The methodology allows for the explicit examination of 

positive and negative tail risk, and finds a differential impact on return predictability based upon 

which type of tail risk is being priced. The current chapter controls for a variety of variables 

associated with positive and negative return skewness and finds at the monthly level that the 

existence of a premium for bearing positive tail risk today holds no statistically significant power 

for predicting future returns. In contrast, its counterpart for bearing negative tail risk does have 

significant predictive power for predicting future returns.  The relationship between the premium 

for bearing negative tail risk in one-month future returns is negative and significant. The monthly 

results are confirmed by those at the daily level.  The predictive power associated with a premium 

for bearing negative tail risk lasts for 10 trading days. In addition, an analysis at the daily level 

yields even deeper insights. The size of the current premium for bearing negative tail risk matters 

significantly for the prediction of future returns. The larger the premium associated with exposure 

to negative tail risk, the more negative and longer lasting its impact is on expected future returns. 

This is the first academic work to establish a link between the magnitude of the tail risk premium 

and the length of its predictive power.  

 

The chapter discusses several potential explanations for our results including the lottery 

effect, selective probability weighting, crash risk, and momentum, among others. The chapter 

introduces the concept of unrealistic optimism, and discusses its consequences for asset pricing.  

Unrealistic optimism is the well documented psychological phenomenon whereby people believe 

that extreme negative future events are less likely to happen to themselves than to the average 

person, and extreme positive future events are more likely to happen to themselves than to the 

average person; in other words, they are overly optimistic about their prospects. Further, the more 

extreme and remote the likelihood of the event, the greater the optimistic bias is. The result of this 

optimistic bias is that investors will tend to pay too much for a security that has extreme positive 

or negative tail risk, because they will overestimate the likelihood of the extreme positive payoffs 

and underestimate the likelihood of the extreme negative payoffs. Thus, one would expect the 

existence of a tail risk premium, regardless of whether it is for bearing positive or negative tail 

risk, would be associated with lower future returns. Our empirical results are consistent with this 

finding.       

 

The methodology in this chapter can be easily extended to other asset classes and to 

investor behavior in different countries, for example, bond markets, foreign exchange markets, and 

commodity markets in both U.S. and foreign markets.  As future research, it would be interesting 

to investigate how tail risk is priced in these other asset classes, especially in the presence of 

liquidity risk.   
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Appendix Variable Definitions 

Tail risk premium: We compute tail risk premium as in Equation 10 in Section 3.1. 

Log (Size): Following Fama and French (1993), size is computed each June as stock price times 

number of shares outstanding (in hundreds). Size is measured in hundred thousand. We control for 

size effect by taking the natural logarithm of Size. 

Log (B/M): Following Fama and French (1993), book-to-market is computed as the ratio of book 

common equity over market capitalization (size). Book common equity is calculated using 

Compustat’s book value of stockholders’ equity plus balance-sheet deferred taxes and investment 

tax credit minus the book value of preferred stock. The ratio is computed as the book common 

equity at the end of fiscal year over size as the December end of fiscal year end.31 

Market beta: We follow Scholes and Williams (1977) and Dimson (1979) to address 

nonsynchronous trading in beta estimation. We run regression including lag, current and lead 

market risk premium as independent variables as in Equation 16, 

𝑅𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽1,𝑖(𝑅𝑚𝑎𝑟𝑘𝑒𝑡,𝑡−1 − 𝑟𝑓,𝑡−1) + 𝛽2,𝑖(𝑅𝑚𝑎𝑟𝑘𝑒𝑡,𝑡 − 𝑟𝑓,𝑡)

+ 𝛽3,𝑖(𝑅𝑚𝑎𝑟𝑘𝑒𝑡,𝑡+1 − 𝑟𝑓,𝑡+1) + 𝜀𝑖,𝑡 
(16) 

 

where 𝑅𝑖,𝑡 is return for stock 𝑖 on day 𝑡. 𝑅𝑚𝑎𝑟𝑘𝑒𝑡,𝑡 is market return on day 𝑡 and 𝑟𝑓,𝑡 is risk free rate 

on day 𝑡. We estimate the above equation for each stock using daily returns within each month. 

For each month, the market beta is estimated as follows in Equation 17 for each stock 𝑖,  

𝛽𝑖̂ = 𝛽1,𝑖̂ + 𝛽2,𝑖̂ + 𝛽3,𝑖̂ (17) 

Idiosyncratic Volatility: Following Ang, Hodrick, Xing and Zhang (2006), idiosyncratic 

volatility is calculated as 

𝐼𝑑𝑖𝑜𝑠𝑦𝑛𝑐𝑟𝑎𝑡𝑖𝑐 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 = √𝑣𝑎𝑟(𝜀𝑡,𝑡) (18) 

where 𝜀𝑡,𝑡  is the error term from the three-factor Fama and French (1993) regression. The 

regression is estimated monthly with more than 17 daily observations in a month. 

Lagged 1-month return: Following Jegadeesh (1990) and Lehmann (1990), we use lagged 1-

month return to account for short-term return reversal effect; the reversal variable for each stock 

in month 𝑚 is defined as the return on the stock over the previous month, i.e., the return in month 

𝑚 − 1.  

Lagged 12-month return: As Jegadeesh and Titman (1993) documented intermediate-term 

momentum effect, we use lagged 12-month return to account for momentum effect; it is defined 

as return 𝑚 − 12 for each stock in month 𝑚. 

Illiquidity: Following Amihud (2002), we compute stock illiquidity for each stock 𝑖 in each month 

𝑚 as the ratio of the absolute monthly stock return to its dollar trading volume: 

𝐼𝑙𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑖,𝑚 =
|𝑅𝑖,𝑚|

|𝑉𝑜𝑙𝑢𝑚𝑛𝑚 × 𝑃𝑟𝑖𝑐𝑒𝑚|
 (19) 

 

Maximum (Minimum) monthly return: Following Bali, Cakici and Whitelaw (2011), we 

control for maximum (minimum) monthly return for each stock 𝑖 in month 𝑚 as the maximum 

(minimum) daily return within month 𝑚. 

 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑟𝑒𝑡𝑢𝑟𝑛𝑚 = max{𝑅𝑖,𝑡} , 𝑡 = 1,⋯ , 𝑇 (20) 

 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑟𝑒𝑡𝑢𝑟𝑛𝑚 = min{𝑅𝑖,𝑡} , 𝑡 = 1,⋯ , 𝑇 (21) 

                                                           
31 To avoid issues with extreme values, the book-to-market ratios are winsorized at the 1% and 99% levels. 
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where 𝑇 is the maximum number of daily observations in month 𝑚. These are estimated monthly 

with more than 17 daily observations in a month. 

Log (trading volume): Trading volume is the sum of the trading volumes during that month. We 

control for size effect by taking natural logarithm of Size. 

Price: The price on the last trading date of the month. 
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Tables and Plots 

 

Table 1. Characteristics of Portfolios Sorted by Tail Risk Premium 

Each week, stocks in the CRSP database are ranked by their respective tail risk premium. The equal-weighted characteristics of each 

quintile are computed over the same week. The procedure is repeated for every month from January 1990 to September 2014. Tail risk 

premium and illiquidity are in 10-6. Lagged 1-month return, Lagged 12-month return, Maximum monthly return, and Minimum monthly 

return are in percentages. Log (Size), Log (B/M), Market beta, Idiosyncratic Volatility, Log (trading volume), and Price are in absolute 

values. See Appendix for variable definitions. 

 

Characteristics of Portfolios Sorted by Tail Risk Premium      

Deciles 1 2 3 4 5 6 7 8 9 10 

Tail risk premium -88.01 -4.33 -1.27 -0.44 -0.08 0.16 0.53 1.42 4.53 89.05 

Log (Size) 4.00 4.87 5.56 6.10 6.49 6.54 6.14 5.59 4.88 3.95 

Log (B/M) -0.53 -0.59 -0.60 -0.59 -0.57 -0.57 -0.60 -0.61 -0.59 -0.53 

Market beta 0.91 0.96 0.91 0.81 0.71 0.74 0.82 0.99 0.94 0.81 

Idiosyncratic volatility 6.15 3.73 2.76 2.10 1.66 1.66 2.12 2.77 3.76 6.35 

Lagged 1-month return 2.47 2.05 1.97 1.88 1.61 1.48 0.88 0.54 -0.23 -2.44 

Lagged 12-month return 0.18 0.96 1.51 1.20 1.50 1.34 1.34 1.27 1.11 0.37 

Illiquidity 123.92 28.31 19.43 9.67 7.85 5.32 10.36 15.29 37.74 125.65 

Maximum monthly return 15.11 8.93 6.64 5.05 4.04 4.10 5.17 6.81 9.30 16.71 

Minimum monthly return -12.19 -7.59 -5.74 -4.46 -3.60 -3.60 -4.48 -5.71 -7.51 -11.63 

Log (trading volume) 9.02 9.31 9.58 9.71 9.80 9.84 9.75 9.60 9.34 8.99 

Price 7.92 16.95 28.76 40.00 58.04 48.50 44.57 25.91 16.46 8.13 

Number of stocks 13749 14237 13977 13307 12515 12635 13221 14023 14273 13792 
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Table 2. Pearson Correlation Matrix 

Pearson correlation coefficients reported as percent for firm characteristics of all CRSP stocks from January 1990 to September 2014. 

See Appendix for variable definitions. 

 

   
Tail risk 

premium 
Log (Size) Log (B/M) Market beta 

Idiosyncratic 

volatility 

Lagged 1-

month return 

Lagged 12-

month return 
Illiquidity 

Maximum 
monthly 

return 

Minimum 
monthly 

return 

Log (trading 

volume) 

  
Tail risk 

premium 
100.00 -0.09 -0.33 0.28 1.56 -2.55 0.26 -0.35 3.74 0.78 0.01 

Log (Size) 100.00 -27.87 12.54 -49.70 5.59 4.67 -2.82 -37.25 39.00 76.96 

Log (B/M) 100.00 -6.32 4.90 3.91 -7.55 1.62 3.72 -1.22 -28.95 

Market beta 100.00 -0.12 0.58 1.29 -0.38 3.44 -2.71 17.09 

Idiosyncratic volatility 100.00 -10.41 -5.05 3.27 89.72 -80.77 -19.94 

Lagged 1-month return 100.00 0.06 -0.58 -10.29 9.54 2.65 

Lagged 12-month return 100.00 -0.20 -4.20 4.19 1.61 

Illiquidity 100.00 2.53 -3.26 -2.46 

Maximum monthly return 100.00 -60.25 -11.99 

Minimum monthly return 100.00 11.32 

Log (trading volume) 100.00 
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Table 3.  Portfolio Returns Sorted into Deciles by Tail Risk Premium 

We form value-weighted decile portfolios every month by sorting stocks based on tail risk premium in Equation 10. Portfolios are 

formed every month, based on tail risk premium in Equation 10 computed using daily data over the previous month. Panel A displays 

the 1/0/1 portfolio strategy (sort in one month, examine the one-month return for the following month); Panel B displays the 1/1/1 

portfolio strategy strategy (sort in one month, examine the one-month return starting two months from now); and Panel C displays the 

1/2/1 portfolio strategy (sort in one month, examine the one-month return starting three months from now). Portfolio 1 (10) is the 

portfolio of stocks with the lowest (highest) previous month tail risk premium. The statistics in the columns labeled Mean and Std. Dev. 

are measured in monthly percentage terms and apply to the total, not excess, and simple returns. Size reports the average log market 

capitalization for firms within the portfolio, and B/M reports the average book-to-market ratio. The row "10-1" refers to the difference 

in monthly returns between portfolio 10 and portfolio 1. NW 𝑡-stat refers to robust Newey-West (1986) 𝑡-stat. Pre-formulation 𝑇𝑅𝑃 is 

reported in basis points. The sample period is January 1990 to September 2014. 

 

Panel A: Portfolios Sorted by Tail Risk Premium, 1/0/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 

Share 
Size B/M Pre-Formation 𝑻𝑹𝑷 

1 2.02 7.19 1.76% 4.03 0.94 -1.023 

2 1.70 6.25 4.45% 4.92 0.79 -0.042 

3 1.61 5.31 8.72% 5.53 0.73 -0.013 

4 1.49 4.52 14.48% 6.03 0.70 -0.004 

5 1.43 3.98 19.92% 6.40 0.70 -0.001 

6 1.31 4.10 19.73% 6.39 0.70 0.002 

7 1.22 4.71 15.20% 6.07 0.70 0.005 

8 1.09 5.48 9.44% 5.56 0.73 0.014 

9 1.02 6.47 4.40% 4.93 0.78 0.044 

10 0.27 7.39 1.88% 4.03 0.93 1.063 

10-1 -1.75      

𝑡-stat (-11.26)           

NW 𝑡-stat (-7.30)      
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Panel B: Portfolios Sorted by Tail Risk Premium, 1/1/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 

Share 
Size B/M Pre-Formation 𝑻𝑹𝑷 

1 0.76 7.51 1.76% 4.05 0.94 -0.982 

2 0.97 6.36 4.45% 4.93 0.79 -0.042 

3 1.11 5.54 8.75% 5.53 0.73 -0.013 

4 1.12 4.62 14.46% 6.04 0.70 -0.004 

5 1.06 4.13 19.97% 6.40 0.70 -0.001 

6 1.06 4.19 19.75% 6.40 0.70 0.002 

7 1.06 4.66 15.22% 6.07 0.70 0.005 

8 1.06 5.48 9.41% 5.56 0.72 0.014 

9 0.97 6.52 4.37% 4.93 0.78 0.044 

10 0.84 7.28 1.85% 4.04 0.94 0.997 

10-1 0.08      

𝑡-stat (0.73)           

NW 𝑡-stat (0.76)      
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Panel C: Portfolios Sorted by Tail Risk Premium, 1/2/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 

Share 
Size B/M Pre-Formation 𝑻𝑹𝑷 

1 0.96 7.58 1.72% 4.06 0.95 -0.934 

2 1.24 6.60 4.44% 4.93 0.79 -0.042 

3 1.16 5.60 8.78% 5.53 0.73 -0.013 

4 1.24 4.70 14.48% 6.04 0.70 -0.004 

5 1.16 4.18 19.96% 6.41 0.70 -0.001 

6 1.18 4.11 19.79% 6.40 0.70 0.002 

7 1.18 4.67 15.21% 6.08 0.70 0.005 

8 1.21 5.38 9.43% 5.57 0.73 0.014 

9 1.14 6.41 4.37% 4.94 0.78 0.044 

10 0.99 7.33 1.82% 4.06 0.94 0.969 

10-1 0.03      

𝑡-stat (0.18)           

NW 𝑡-stat (0.18)      

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 

 
 

Table 4. Fama-MacBeth Cross-Sectional Regression 

Results of a Fama-MacBeth cross-sectional regression of stock returns for the following: 

 

𝑅𝑖,𝑡+1 = 𝛾0,𝑡+1 + 𝛾1,𝑡+1 × 𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

+ 𝜙𝑡+1
′ × 𝑍𝑖,𝑡 + 𝜀𝑖,𝑡+1 (11) 

𝑅𝑖,𝑡+1 is monthly stock return for stock 𝑖 in month 𝑡 + 1. 𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

 is individual stock tail risk premium for stock 𝑖 in month 𝑡, 

calculated in Equation 10. 𝑍𝑖,𝑡 represents a vector of characteristics and controls for firm 𝑖 at the end of month 𝑡 such as size, B/M ratio, 

market beta, illiquidity, etc. The control variables are described in the Appendix. The Newey-West (1976) HAC robust 𝑡-statistic is 

reported in parentheses.  Specification (1) is univariate regression; Specification (2) is multiple regression adding control variables. The 

sample period is from January 1990 to September 2014. 
 (1) (2) 

Intercept 0.009 0.021 

 (2.42) (6.16) 

Tail risk premium -0.801 -1.155 

 (-5.60) (-5.50) 

Log (Size)  0.000 

  (0.19) 

Log (B/M)  0.003 

  (3.52) 

Market beta  0.000 

  (0.74) 

Illiquidity  19.715 

  (1.11) 

Idiosyncratic volatility  -0.001 

  (-1.90) 

Lagged 1-month return  0.003 

  (0.85) 

Lagged 12-month return  -0.001 

  (-0.40) 

Maximum monthly return  -0.032 

  (-2.02) 

Minimum monthly return  -0.019 

  (-1.06) 

Log (trading volume)  -0.001 

  (-0.80) 

Adjusted R2 (%) 0.133 4.765 
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Table 5.  Fama-MacBeth Regression including dummy variables for Decile 1 and Decile 10 Tail Risk Premia 

Results of a Fama-MacBeth cross-sectional regression of stock returns for the following: 

 

𝑅𝑖,𝑡+𝑛 = 𝛾0,𝑡+𝑛 + 𝛾1,𝑡+𝑛 × 𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

× 𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 1 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
]
+ 𝛾2,𝑡+𝑛 × 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
× 𝐼

[𝐷𝑒𝑐𝑖𝑙𝑒 10 𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

]
+ 𝜙𝑡+𝑛

′ × 𝑍𝑖,𝑡 + 𝜀𝑖,𝑡+𝑛 (12) 

Where   𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 1 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
]
 is a dummy variable that equals 1 if  𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
 is in Decile 1 and equals 0 otherwise, and  

𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 10 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
]
  is the corresponding dummy variable for Decile 10. 𝑅𝑖,𝑡+𝑛 is monthly stock return for stock 𝑖 in month 𝑡 + 𝑛, 

where 𝑁 = 1,2. 𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

 is individual stock tail risk premium for stock 𝑖 in month 𝑡, calculated in Equation 10.  𝑍𝑖,𝑡 represents a 

vector of characteristics and controls for firm 𝑖 at the end of month 𝑡 such as size, B/M ratio, market beta, illiquidity, etc. The control 

variables are described in the Appendix. The Newey-West (1976) HAC robust 𝑡-statistic is reported in parentheses.  Specification (1) is 

the multiple regression adding control variables for monthly return 𝑅𝑖,𝑡+1; Specification (2) is the multiple regression adding control 

variables for monthly return 𝑅𝑖,𝑡+2. The sample period is from January 1990 to September 2014. 
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 (1) (2) 

Return t+1 t+2 

Intercept 0.020 0.022 

 (5.92) (6.51) 

𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

× 𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 10 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
]
 -1.971 -0.022 

 (-5.09) (-0.05) 

𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

× 𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 1 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
]
 -0.803 -0.668 

 (-1.86) (-1.39) 

Log (Size) 0.000 0.001 

 (0.00) (0.63) 

Log (B/M) 0.003 0.003 

 (3.46) (3.19) 

Market beta 0.000 0.000 

 (0.55) (0.23) 

Illiquidity 21.788 14.994 

 (1.73) (1.33) 

Idiosyncratic volatility -0.002 -0.002 

 (-2.73) (-2.73) 

Lagged 1-month return 0.003 0.014 

 (0.91) (4.47) 

Lagged 12-month return -0.002 -0.004 

 (-0.97) (-1.72) 

Maximum monthly return -0.026 0.005 

 (-1.98) (0.40) 

Minimum monthly return -0.025 0.020 

 (-1.62) (1.58) 

Log (trading volume) -0.000 -0.001 

 (-0.52) (-1.41) 

Adjusted R2 (%) 4.063 3.947 
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Table 6. Fama-MacBeth Regression of Positive and Negative Tails using Daily Returns 

Results of daily Fama-MacBeth cross-sectional regression of stock returns for the following: 

 

𝑅𝑖,𝑡+𝑛
𝐷𝑎𝑖𝑙𝑦

= 𝛾0,𝑡+𝑛 + 𝛾1,𝑡+𝑛 × 𝑇𝑅𝑃𝑖,𝑡
𝐷𝑎𝑖𝑙𝑦

× 𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 10 𝑇𝑅𝑃𝑖,𝑡

𝐷𝑎𝑖𝑙𝑦
]
+𝜙𝑡+𝑛

′ × 𝑍𝑖,𝑡 + 𝜀𝑖,𝑡+𝑛 (13) 

Where   𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 10 𝑇𝑅𝑃𝑖,𝑡

𝐷𝑎𝑖𝑙𝑦
]
   is a dummy variable that equals 1 if  𝑇𝑅𝑃𝑖,𝑡

𝐷𝑎𝑖𝑙𝑦
 is in Decile 10 and equals 0 otherwise. 𝑅𝑖,𝑡+𝑛

𝐷𝑎𝑖𝑙𝑦
 is one-day 

holding period return for stock 𝑖 from day 𝑡 + 𝑛 − 1 to day 𝑡 + 𝑛, where 𝑛 = 1,2⋯ , 18. A maximum of 18 days is used since we require 

stocks to have a minimum of 18 days to be included in the sample. 𝑇𝑅𝑃𝑖,𝑡
𝐷𝑎𝑖𝑙𝑦

 is individual stock tail risk premium for stock 𝑖 in month 

𝑡, calculated in Equation 10.  𝑍𝑖,𝑡 represents a vector of characteristics and controls for firm 𝑖 at the end of month 𝑡 such as size, B/M 

ratio, market beta, illiquidity, etc. The control variables are described in the Appendix. The table reports predictive regression using 

next-month daily return (Day 1, 7, 10, 14, 18) as a dependent variable. The Newey-West (1976) HAC robust 𝑡-statistic is reported in 

parentheses. Decile portfolio sort section, similar to Table 3, reports Decile 10 return minus Decile 1 return difference in basis points, 

as well as t-statistic and Newey-West (1976) HAC robust 𝑡-statistic associated with it (see Table 3 for detailed testing methodology). 

For ease of reading, significant coefficients are highlighted in bold.  
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 (1) (2) (3) (4) (5) 

Return Day 1 Day 7 Day 10 Day 14 Day 18 

Intercept -0.005 0.000 -0.000 0.001 0.001 

 (-5.92) (0.74) (-0.07) (2.05) (1.34) 

𝑇𝑅𝑃𝑖,𝑡
𝑀𝑜𝑛𝑡ℎ𝑙𝑦

× 𝐼
[𝐷𝑒𝑐𝑖𝑙𝑒 10 𝑇𝑅𝑃𝑖,𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦
]
 -23.931 -5.609 -5.910 0.531 4.511 

 (-5.80) (-2.34) (-2.68) (0.16) (1.53) 

Log (Size) 0.001 -0.000 0.000 -0.000 -0.000 

 (2.95) (-1.07) (1.68) (-1.88) (-0.24) 

Log (B/M) 0.001 0.000 0.000 0.000 0.000 

 (4.69) (1.54) (2.21) (2.59) (1.05) 

Market beta 0.000 -0.000 -0.000 -0.000 0.000 

 (0.30) (-0.64) (-0.06) (-2.26) (1.05) 

Illiquidity 12.796 5.576 12.852 4.756 -1.524 

 (3.12) (1.76) (2.67) (1.78) (-1.47) 

Idiosyncratic volatility 0.001 0.000 0.000 0.000 0.000 

 (1.62) (2.15) (2.02) (1.85) (1.52) 

Lagged 1-month return -0.001 -0.000 0.001 0.002 0.000 

 (-0.56) (-0.02) (0.82) (2.07) (0.58) 

Lagged 12-month return -0.001 -0.001 -0.001 -0.000 -0.000 

 (-1.11) (-1.73) (-1.15) (-0.03) (-0.16) 

Maximum monthly return -0.010 -0.004 -0.008 -0.008 -0.002 

 (-1.52) (-0.81) (-1.95) (-1.88) (-0.48) 

Minimum monthly return -0.017 0.002 0.001 0.001 0.001 

 (-2.37) (0.39) (0.12) (0.28) (0.21) 

Log (trading volume) 0.000 0.000 -0.000 -0.000 -0.000 

 (0.95) (0.02) (-0.98) (-0.49) (-0.10) 

Adjusted R2 (%) 3.989 2.360 2.115 2.095 1.832 
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Table 7.  Extreme Tail: Percentile Portfolio Returns Sorted by Tail Risk Premium 

We form value-weighted percentile portfolios every month by sorting stocks based on tail risk premium in Equation 10. Portfolios are 

formed every month, based on tail risk premium in Equation 10 computed using daily data over the previous month. The table displays 

the 1/0/1 portfolio strategy (sort in one month, examine the one-month return for the following month). Portfolio 1 (100) is the portfolio 

of stocks with the lowest (highest) previous month tail risk premium. The statistics in the columns labeled Mean and Std. Dev. are 

measured in monthly percentage terms and apply to the total, not excess, simple returns. Size reports the average log market 

capitalization for firms within the portfolio, and B/M reports the average book-to-market ratio. The row "100-1" refers to the difference 

in monthly returns between portfolio 100 and portfolio 1; the row "99-2" refers to the difference in monthly returns between portfolio 

99 and portfolio 2; and the row "98-3" refers to the difference in monthly returns between portfolio 98 and portfolio 3. The row “98-100 

minus 1-3” stands for the difference between mean monthly returns of portfolio 98 through 100 and mean monthly returns of portfolio 

1 through 3. The row “97-99 minus 2-4” represents the difference between mean monthly returns of portfolio 97 through 99 and mean 

monthly returns of portfolio 2 through 4. NW 𝑡-stat refers to robust Newey-West (1986) 𝑡-stat. Pre-formulation 𝑇𝑅𝑃 is reported in basis 

points. The sample period is January 1990 to September 2014. 
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Percentile Portfolio Returns Sorted by Tail Risk Premium Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 

Share 
Size B/M Pre-Formation 𝑻𝑹𝑷 

1 2.74 9.19 6.18% 3.28 1.10 -8.330 

2 2.20 8.54 6.68% 5.53 1.06 -1.072 

3 2.14 8.21 6.70% 3.74 1.01 -0.570 

4 2.32 7.97 8.25% 3.91 0.97 -0.368 

5 1.83 7.81 8.63% 4.04 0.93 -0.264 

∙ ∙ ∙ ∙ ∙ ∙ ∙ 

∙ ∙ ∙ ∙ ∙ ∙ ∙ 

∙ ∙ ∙ ∙ ∙ ∙ ∙ 

96 0.44 8.39 8.23% 4.02 0.93 0.268 

97 0.20 7.91 8.03% 3.89 0.96 0.373 

98 -0.30 7.84 7.05% 3.74 1.00 0.572 

99 -0.30 8.56 6.58% 3.54 1.04 1.074 

100 -1.17 8.81 6.29% 3.26 1.12 8.504 

100-1 -3.91      

𝑡-stat (-8.34)            

NW 𝑡-stat (-7.21)      

99-2 -2.50      

𝑡-stat (-7.14)      

NW 𝑡-stat (-7.24)      

98-3 -2.44      

𝑡-stat (-7.01)      

NW 𝑡-stat (-6.35)      

98-100 minus 1-3 -2.95      

𝑡-stat (-13.02)      

NW 𝑡-stat (-9.14)      

97-99 minus 2-4 -2.35      

𝑡-stat (-12.11)      

NW 𝑡-stat (-9.58)      
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Table 8.  Portfolios Returns Sorted into Deciles by Sensitivity to Market Aggregate Tail Risk Premium 

We form value-weighted decile portfolios every month by sorting stocks based on sensitivity to market tail risk premium, 𝛽𝑀𝐾𝑇
𝑖 , in 

Equation 14.  

𝑟𝑡
𝑖 = 𝛽0 + 𝛽𝑀𝐾𝑇

𝑖 𝑀𝐾𝑇𝑡 + 𝛽∆𝑇𝑅𝑃𝑀𝑎𝑟𝑘𝑒𝑡
𝑖 ∆𝑇𝑅𝑃𝑡

𝑀𝑎𝑟𝑘𝑒𝑡 + 𝜀𝑡
𝑖 (14) 

Portfolios are formed every month, based on sensitivity to market tail risk premium, 𝛽𝑀𝐾𝑇
𝑖 , in Equation 14 computed using daily data 

over the previous month. The table displays the 1/0/1 portfolio strategy (sort in one month, examine the one-month return for the 

following month). Portfolio 1 (10) is the portfolio of stocks with the lowest (highest) previous month tail risk premium. The statistics in 

the columns labeled Mean and Std. Dev. are measured in monthly percentage terms and apply to the total, not excess, simple returns. 

Size reports the average log market capitalization for firms within the portfolio and B/M reports the average book-to-market ratio. The 

row "10-1" refers to the difference in monthly returns between portfolio 10 and portfolio 1. NW 𝑡-stat refers to robust Newey-West 

(1986) 𝑡-stat. Pre-formulation 𝑇𝑅𝑃 is reported in basis points. The sample period is January 1990 to September 2014. 

 

 

 Factor Loadings 

Rank Mean Std. Dev. 
%Mkt 

Share 
Size B/M Pre-Formation 𝑻𝑹𝑷 

1 1.16 7.05 2.31% 4.20 0.90 -24.86 

2 1.34 5.71 6.73% 5.17 0.76 -10.00 

3 1.26 5.01 11.29% 5.65 0.73 -5.73 

4 1.35 4.66 14.23% 5.92 0.72 -3.08 

5 1.31 4.42 14.98% 6.03 0.72 -1.03 

6 1.33 4.37 15.28% 6.00 0.73 0.83 

7 1.33 4.58 14.54% 5.95 0.72 2.86 

8 1.38 5.06 11.41% 5.68 0.74 5.47 

9 1.45 5.83 6.89% 5.20 0.77 9.71 

10 1.31 6.84 2.34% 4.20 0.92 24.64 

10-1 0.15      

𝑡-stat (1.08)      

NW 𝑡-stat (0.95)      
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Table 9. Portfolios Returns Sorted into Deciles by Contemporaneous Tail Risk Premium 

We form value-weighted decile portfolios every month by sorting stocks by tail risk premium estimated based on Equation 15. Portfolios 

are formed every month, based on tail risk premium in Equation 15 computed using daily data over the previous month. Panel A displays 

the 1/0/1 portfolio strategy (sort in one month, examine the one-month return for the following month), Panel B displays the 1/1/1 

portfolio strategy (sort in one month, examine the one-month return starting two month from now) and Panel C displays the 1/2/1 

portfolio strategy (sort in one month, examine the one-month return starting three month from now). Portfolio 1 (10) is the portfolio of 

stocks with the lowest (highest) previous month tail risk premium. The statistics in the columns labeled Mean and Std. Dev. are measured 

in monthly percentage terms and apply to the total, not excess, simple returns. Size reports the average log market capitalization for 

firms within the portfolio, and B/M reports the average book-to-market ratio. The row "10-1" refers to the difference in monthly returns 

between portfolio 10 and portfolio 1. NW 𝑡-stat refers to robust Newey-West (1986) 𝑡-stat. Pre-formulation 𝑇𝑅𝑃 is reported in basis 

points. The sample period is January 1990 to September 2014. 

 

 
Panel A: Portfolios Sorted by Tail Risk Premium, 1/0/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 

Share 
Size B/M Pre-Formation 𝑻𝑹𝑷 

1 2.00 7.23 1.83% 4.03 0.94 -1.006 

2 1.69 6.31 4.46% 4.92 0.79 -0.043 

3 1.59 5.23 8.89% 5.54 0.73 -0.013 

4 1.52 4.38 14.92% 6.05 0.70 -0.005 

5 1.40 4.02 19.56% 6.39 0.70 -0.001 

6 1.30 4.14 19.84% 6.39 0.70 0.001 

7 1.26 4.75 15.16% 6.07 0.70 0.005 

8 1.19 5.44 9.05% 5.55 0.72 0.014 

9 0.91 6.46 4.41% 4.92 0.78 0.045 

10 0.34 7.45 1.89% 4.03 0.94 1.108 

10-1 -1.66      

𝑡-stat (-9.92)           

NW 𝑡-stat (-6.96)      
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Panel B: Portfolios Sorted by Tail Risk Premium, 1/1/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 

Share 
Size B/M Pre-Formation 𝑻𝑹𝑷 

1 0.72 7.60 1.82% 4.04 0.94 -0.973 

2 0.89 6.48 4.48% 4.93 0.79 -0.043 

3 1.13 5.54 8.91% 5.55 0.73 -0.013 

4 1.08 4.72 14.93% 6.06 0.70 -0.004 

5 1.06 4.13 19.62% 6.39 0.70 -0.001 

6 1.08 4.12 19.85% 6.39 0.70 0.001 

7 1.14 4.55 15.14% 6.07 0.70 0.005 

8 1.12 5.45 9.01% 5.55 0.72 0.014 

9 0.99 6.45 4.36% 4.92 0.78 0.045 

10 0.80 7.24 1.87% 4.05 0.94 1.030 

10-1 0.08      

𝑡-stat (0.68)           

NW 𝑡-stat (0.73)      
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Panel C: Portfolios Sorted by Tail Risk Premium, 1/2/1 Portfolio Strategy Factor Loadings (bps) 

Rank Mean Std. Dev. 
%Mkt 

Share 
Size B/M Pre-Formation 𝑻𝑹𝑷 

1 1.03 7.55 1.78% 4.06 0.94 -0.922 

2 1.27 6.70 4.46% 4.93 0.79 -0.043 

3 1.19 5.62 8.91% 5.55 0.73 -0.013 

4 1.23 4.78 14.96% 6.06 0.70 -0.005 

5 1.21 4.18 19.64% 6.40 0.70 -0.001 

6 1.20 4.07 19.85% 6.40 0.70 0.001 

7 1.18 4.62 15.15% 6.08 0.70 0.005 

8 1.11 5.30 9.03% 5.56 0.72 0.014 

9 1.11 6.37 4.37% 4.92 0.79 0.044 

10 0.99 7.31 1.86% 4.06 0.95 1.010 

10-1 -0.04      

𝑡-stat (-0.33)           

NW 𝑡-stat (-0.37)      
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Plot 1.  Monte Carlo Analysis of Regression Beta 

The Monte Carlo analysis is performed to test whether the baseline regression (7) beta equal to zero. Denote sample size as 𝑆, number 

of random draws as 𝑁. For a given month in a given year, we perform the following, 

 

1) Random draw (with placement) 𝛽1, 𝛽2, 𝛽3, ⋯, 𝛽𝑆 and compute the mean of 𝛽1, 𝛽2, 𝛽3, ⋯, 𝛽𝑆, denote 𝛽𝑛̅̅ ̅. 
2) Repeat 1) 𝑁 times and get 𝛽1̅̅ ̅, 𝛽2̅̅ ̅, 𝛽3̅̅ ̅, ⋯, 𝛽𝑁̅̅̅̅ . 

3) Compute 𝑡-statistic for 𝛽1̅̅ ̅, 𝛽2̅̅ ̅, 𝛽3̅̅ ̅, ⋯, 𝛽𝑁̅̅̅̅ . 

 

We then compute the average of the (time series) year-month 𝑡-statistic to get the simulated 𝑡-statistic. The sample period is January 

1990 to September 2014. In the following graphs, Panels A through C plot the Monte Carlo simulated regression beta values for different 

combinations of sample size (S=500, 1000) and number of random draw values (N=10000). 

 

 

 

Panel A: Sample Size (𝑆) = 500, Number of Random Draw (𝑁) = 10000. Average 𝑡-statistic=3.684. 
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Panel B: Sample Size (𝑆) = 1000, Number of Random Draw (𝑁) = 10000. Average 𝑡-statistic=5.152. 

 

 

 


	Empirical Asset Pricing with Equity Tail Risk
	Recommended Citation

	tmp.1559158778.pdf.UTuqC

