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Abstract 

Elastic Guided Wave Dispersion in Layered Piezoelectric Plates: Application to 
Ultrasound Transducers and Acoustic Sensors 

 
Daniel H. Cortes 

 
Elastic wave propagation in layered media has been of interest in many disciplines 

including non-destructive material characterization, acoustic sensors and medical 
ultrasound imaging.  A great variety of devices are based on the propagation of 
electromechanical waves in piezoelectric plates.  Despite the diversity of applications, the 
principles and characteristics of wave propagation are the same regardless the design or 
configuration of the device.  The aim of this study is to develop numerical and analytical 
tools to model and design devices based on the wave propagation in piezoelectric layered 
media; particularly, ultrasound transducers for medical imaging and acoustic sensors for 
biological applications. 

Single-element ultrasound transducers can be modeled as infinite layered 
piezoelectric plates. A Semi-Analytical Finite Element (SAFE) method has been 
implemented and used to theoretically predict the resonant frequencies and the dispersion 
behavior of these plates.  The analysis of piezoelectric layered plates showed that the 
resonant frequencies at the ZGV points of the Lamb wave modes are more significant 
than those at the cut-off frequencies.  On the other hand, 1D array ultrasound transducers 
are modeled as periodic piezoelectric plates with finite cross-section using a modified 
SAFE method.  Dispersion curves, group velocity spectra and mode shapes are obtained 
using this method.  Geometric parameters of the piezoelectric element, such as, aspect 
ratio and subdicing width and depth of the piezoelectric element had an important effect 
on the dispersion behavior.  In general, the lower aspect ratios, as well as lower subdicing 
depth, tend to increase the cut-off frequency and the resonance of all modes. 

An analytical model is presented to study the dynamic behavior of single-element 
ultrasound transducers and acoustic sensors.  This model is based on leaky Rayleigh and 
Lamb wave analysis, which has been widely used for NDT applications.  A procedure to 
calculate the resonance frequencies for ultrasound transducers based on the dispersion 
curves has been derived and experimentally validated.  This analytical solution has also 
been used to calculate and optimize the sensitivity and coupling coefficient of Rayleigh 
and Lamb wave sensors.   

The procedures and results obtained in this study can be used to analyze and design 
devices based on the wave propagation on multilayered piezoelectric plates, i.e. 
ultrasound transducer and sensors.  It is believed that an accurate characterization of the 
wave propagation and dynamic properties, as well as an optimized configuration of the 
device can substantially improve its performance.  These developments can be applied on 
ultrasound biomicroscopy, medical imaging, NDT techniques, MEM devices and 
biosensors. 
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1.1 Scope of this study 
 
Vibration and wave propagation in layered media has been of interest in the fields 

of geophysics, acoustics, MEMs, etc.  A great variety of devices are based on the 
propagation of electromechanical waves in plates.  Despite the diversity of applications, 
the principles and characteristics of wave propagation are the same regardless the design 
or configuration of the device.  Two main applications have been considered for this 
study: ultrasound transducer for medical applications and acoustic sensors.   

Ultrasound medical imaging is a safe, low-cost, versatile technique routinely used 
in medical evaluation and diagnosis.  The details shown in the image are extremely 
important for physicians and clinicians.  Therefore, one important research task in 
ultrasound imaging is the improvement of image contrast and resolution.  Several 
techniques are currently studied to enhance the contrast of ultrasound images.  Tissue 
Harmonic Imaging (THI) is a technique in which the signal is excited at a fundamental 
frequency f0 and the image is constructed using received signals at harmonic frequencies 
2f0, 3f0 and so forth.  These higher harmonic frequency signals are generated due to the 
cumulative nonlinearity of the tissue.  The tissue nonlinearity becomes a significant 
factor as the wave propagates relatively large distance in the tissue.  Another interesting 
nonlinear imaging method is the use of ultrasound contrast agents (microbubbles) for 
contrast-enhanced ultrasound imaging.  This technique employs contrast agents or 
microbubbles, which generate harmonics due to the local nonlinearity of contrast agents 
surrounded by connective tissues.  THI requires sending and receiving ultrasound signal 
at several frequencies, hence, ultrasound transducers must have high efficiency at these 
frequencies.  Design of such transducers is a challenging task that requires a careful 
selection of materials, dimensions and configuration.  

On the other hand, ultrasonic biosensors are devices used to detect changes in the 
environment or the presence of viruses or contaminants in the surroundings.  The 
principle behind all these sensors is that a change in the environment will produce a 
measurable variation of one or several parameters of the wave propagation.  Some 
sensors have a special layer, which absorbs or attract substances or viruses causing a 
change in the mechanical properties of the layer and consequently a change on the 
characteristics of the wave propagation (Gronewold, 2007).  Other sensors do not change 
their properties, but the interaction between the sensor and the surrounding fluid allow 
them to ‘sense’ a change in the properties of the surrounding fluid, such as density, 
viscosity, etc.  These sensors are based on the propagation of ‘leaky’ surface acoustic 
waves (Lindner, 2008).  Leaky waves are characterized by an exchange of energy 
between the solid and fluid.  This effect produces a reduction or attenuation of the 
amplitude of the wave along the direction of propagation.  The severity of this attenuation 
is function of the frequency and the properties of the fluid (Nayfeh, 1995).  For a given 
frequency, a change in the attenuation is an indication of a change of the fluid properties.  
In addition to attenuation, a reduction in the wave velocity is also observed.  Therefore, 
wave velocity can be also used as a probe to measure changes in the fluid. 

Although ultrasound transducers and ultrasonic biosensor are devices with 
different functions, they have several common characteristics.  Usually they make use of 
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the piezoelectric effect to convert electric signals into vibrations and vice versa; 
therefore, they are composed of a combination of elastic and piezoelectric layers.  The 
principle of both devices is based on the generation and propagation of ultrasound waves; 
consequently, in order to model and design them is important to accurately analyze the 
behavior of electromechanical waves as well as determine how these waves are affected 
by the material properties and dimension of each of their components.  The aim of this 
study is to develop numerical and analytical tools to model and design devices based on 
the wave propagation in piezoelectric layered media; particularly, ultrasound transducers 
for medical imaging and biosensors.  It is believed that an accurate characterization of the 
wave propagation and dynamic properties, as well as an optimized configuration of the 
device can substantially improve its performance.  These developments can be applied on 
ultrasound biomicroscopy, medical imaging, NDT techniques, MEM devices and 
biosensors. 
  

1.2 Objectives 
 

The general purpose of the project is to develop and apply numerical and analytical tools 
to optimize the design of ultrasound transducers and biosensors. Our specific aims are 

1) Implement the semi-analytical finite element method to analyze infinite 
multilayered plates. 

Rationale:  A first approach to model ultrasound transducer and sensors is a multilayered 
plate composed of one of several piezoelectric layers and other elastic (passive layers).  
This model can be used to numerically study important features in the wave propagation 
in plates such as wave velocities, dispersion curves and resonance frequencies.   

2) Implement and Develop a 2D semi-analytical finite element method with 
periodic boundary conditions to analyze array transducers. 

Rationale:  Array transducers are composed of many piezoelectric elements that can 
individually excite and record mechanical waves.  A 2D SAFE method with periodic 
boundary conditions can be used to analyze the complete array considering just one 
element of the array. In addition, complicated geometries of piezoelectric element can be 
easily studied.  

3) Develop analytical solutions to analyze guided wave propagation of infinite plates 
with different boundary conditions to account for the effect of surrounding media, 
like fluid, tissue, substrates, etc.  

Rationale:  Ultrasound transducers and acoustic sensors can be represented by a 
multilayered plate surrounded by a half-space solid (representing the backing layer or 
substrate) and half-space fluid (tissue or environment).  Therefore, a model that includes 
the effects of the surrounding media is needed to accurately characterize these devices.  It 
is expected that the dynamic behavior described by this model closely matches 
experimental measurements.   

4) Model and Optimize the sensitivity of ultrasonic biosensors. 
Rationale:  The sensitivity of ultrasonic biosensor depends on the change of the wave 
propagation characteristics due to a change in the surrounding environment.  The 
numerical and analytical solutions proposed in this study can be used to quantitatively 
determine and maximize the sensitivity optimizing geometrical parameters of the device. 
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5) Evaluate and validate the proposed modeling techniques taking measurements 
of resonance frequencies and velocities on transducers and sensors. 

Rationale: Prototype devices will be fabricated and experimental measurements will be 
performed to validate the results obtained from the numerical and analytical models.  
Comparison of resonance frequencies and wave velocities, which are the most important 
parameters for these devices, will determine the accuracy of the proposed models.   

 

1.3 Outline of this thesis 
 
Chapter 2 presents a compilation of the relevant previous studies which were used 

as the basis of this study.  This chapter is divided in three sections.  One section is 
devoted to the previous studies on the wave propagation and dispersion analysis of 
guided waves; a second section about ultrasound harmonic imaging and transducer 
design is presented; and finally, a review of the state of the art for acoustic sensors is 
presented.  

Chapters 3 and 4 deal with the analysis of ultrasound transducers using a Semi-
Analytical Finite Element (SAFE) method.  Chapter 3 presents the analysis of single 
element transducers using 1D SAFE method to obtain the dispersion curves and their 
relation with resonance frequencies.  Chapter 4 presents a similar analysis for array 
transducers using a 2D version of SAFE technique which includes periodic boundary 
conditions.  

 Chapter 5 presents the analytical solution for the wave propagation and resonance 
frequencies on multilayered plates.  This solution includes boundary conditions such as 
half-space fluid and half-space solids, which can not be considered using 1D SAFE.  
Additionally, a procedure to obtain the resonance frequencies was developed and 
validated.  This solution was used to analyze the mechanical behavior of single-element 
ultrasound transducer. 

Based on the results of chapter 5, it was found that this solution can also be used 
to model acoustic sensors.  Chapter 6 presents the modeling of ultrasonic sensors based 
on Rayleigh and Lamb waves.  Important characteristics of the sensor such as coupling 
factor and sensitivity were analytically obtained.  Finally, an optimization procedure to 
obtain important geometrical parameter is proposed.  

Chapter 7 presents a summary of the important conclusions and future work.  
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2 Literature Review Chapter 
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2.1 Harmonic Imaging 
 Ultrasound harmonic imaging began when engineers and clinicians accidentally 
found a second harmonic component on the received ultrasound signals.  This effect was 
first related to problems in the instrumentation.  However, the signals at this harmonic 
frequency had similar characteristics to those at the fundamental frequency.  Therefore, it 
was possible to construct ultrasound images using harmonic signals.  Explanation of this 
phenomenon pointed to the acoustical nonlinearity of tissue (Spencer et al., 1998; 
Kornbluth et al., 1998).  The interest in harmonic images was increased when clinicians 
started to favor second-harmonic images due to the details and better contrast in the 
images (Fig. 2.1). 

 
Figure 2.1. Comparison between ultrasound images of the heart ventricles constructed 

with fundamental frequency (left) and the second harmonic (right) (Spencer et al., 1998). 

 
Figure 2.2. Comparison between ultrasound fields for focused ultrasound. Fundamental 

frequency (left) and the second harmonic (right). (Averkiou, 2000). 
 
 The increase of contrast has been explained by Spencer et al., 1998; Tranquart et 
al., 1999; Humphrey, 2000.  The resolution along the ultrasound beam direction is related 
to the wavelength of the signal.  At higher frequencies the wave length is smaller and 
better resolution is expected.  The ultrasound field at the fundamental and second 
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harmonic also presents differences that favor the second harmonic signal (Averkiou, 
2000).  For instance a comparison of the ultrasound field for focused ultrasound shows 
that the second harmonic field presents fewer amounts of lateral peaks (Fig. 2.2). 
 Second-harmonic ultrasound imaging technique has been well studied and 
established.  However, recent studies have explored the possibility of using not only the 
second but also other higher harmonics (Bouakaz et al., 2002; Akiyama et al., 2005).  The 
advantage of using higher harmonics is that even better contrast can be obtained.  
However, the major disadvantage is that harmonic signals are very weak and it is very 
difficult to acquire then with a good signal-to-noise ratio.  Bouakaz et al. (2002) used a 
dual frequency transducer with two center frequencies one at the fundamental frequency 
f0 and the second one around the fourth harmonic.  The comparison between the images 
obtained using the second and the third through fifth harmonic shows a big improvement 
of the contrast (Fig. 2.3).  Akiyama et al. (2005) constructed ultrasound images 
combining the first nine harmonic images.  From the reconstructed images it is clearly 
seen that for every addition of a harmonic signal, the image contrast is improved (Fig. 
2.4).  
 Conventional ultrasound transducers have a frequency bandwidth around 40%. 
This means that efficiency of the transducer is high (or the losses are low) in a frequency 
range of the 40% of center frequency of the transducer.  However, a higher frequency 
bandwidth is needed to excite a signal with a frequency f0 and receive the harmonic 
component at 2f0.  Several solutions have been proposed to overcome this problem.  
However, the development for high efficiency transducer to detect second and higher 
harmonics is still the objective of many currently research projects. 
 

 
Figure 2.3. B-mode images of an ultrasound phantom constructed with the second 
harmonic (left) and the third through fifth harmonics (right). (Bouakaz et al., 2002). 
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Figure 2.4. Experimental images obtained using each of the nine harmonics (left) and 
images combining images from the fundamental frequency through the ninth harmonic 

(right). (Akiyama et al., 2005). 

2.1.1 Multi-frequency Transducers 
 One of the earliest attempts to increase the frequency bandwidth was the use 
transducers with piezoelectric elements designed to operate at several frequencies 
(Bouakaz et al., 2002; Akiyama et al., 2005; von Ramm and Smith, 1978).  Von Ramm 
and Smith (1978) designed a 1D array with two rows of piezoelectric elements with 
center frequencies of 1.5 MHz and 2.5 MHz, respectively.  Although their aim was to 
increase the overall bandwidth of the transducer, this idea has been used to generate 
designs of multi-frequency transducer for harmonic imaging.  In their study, it was 
proven that using wider bandwidth transducer some problems of ultrasound such as 
grating lobes were reduced. A recent study by Bouakaz et al. (2002) presented a design of 
a 1D array transducer in which the even and the odd elements of the array had different 
center frequencies.  This configuration allowed them to obtain images up to the fifth 
harmonic.  Later, Akiyama et al. (2005) used a conventional single element ultrasound 
transducer at center frequency of 2 MHz with a bandwidth of 31% and a ring-like 
transducer with a 7 MHz center frequency and a bandwidth of 100%.  Many other 
configurations have been also proposed in the literature.  
 Another important concept of transducer design proposed for THI is the use of 
multilayer transducers (Powell et al., 1998; Ramesh et al., 2006; Mills and Smith, 2002; 
Saitoh et al., 1995).  In general, the piezoelectric elements in these transducers are 
composed of several layers, usually of the same material, with electrodes between them 
(Fig. 2.5).  This configuration has been used to improve the reception, emission and 
bandwidth of transducers.  Comparison between a multi-layer and a single layer 
piezoelectric element of the same thickness indicates that layered configuration produces 
larger displacements.  This is caused by the increase in the electric field due to proximity 
of the electrodes.  
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Figure 2.5. Multilayer piezoelectric transducer: a) schematic illustration, b) optical 
micrograph of the piezoelectric element. 

2.1.2 Inversion Layer 
 Inversion Layer (IL) transducers are a special kind of multilayered transducer in 
which the piezoelectric properties of a portion of the thickness are inverted by mean of a 
heat treatment of LiNbO3 crystals (Nakamura et al., 1992, Mayazawa, 1979).  Inversion 
of the piezoelectric properties was reported by Mayazawa (1979) as an undesirable effect 
in LiNbO3 crystal when a Ti film was deposited on the surface.  Later Nakamura et al. 
(1992) achieved IL growth of even LiNbO3 plates at temperatures above 1070 °C (Fig. 
2.6).   

 
Figure 2.6. Cross section of a plate of LiNbO3 with inverted domains due to heat 

treatment. (Nakamura et al., 2006). 
  
An important characteristic of single element IL transducers, reported in several studies, 
is that even-order as well as odd-order modes can be piezoelectrically excited.  An early 
study of Saitoh et al. (1995) showed that a two-layer transducer with inverted poling 
directions can be used to construct a dual frequency ultrasonic probe.  Analytical models 
of IL transducers solving the wave propagation problem (Saitoh et al., 1995) or using the 
Mason’s equivalent circuit (Nakamura et al., 2005) have shown better efficiency at the 
fundamental and the second harmonic frequency.  Time-domain finite-element 
simulations have been also used to predict the performance of IL transducers (Zhou et al., 
2006).  Cortes et al. (2008) studied the effect of IL on the resonance frequencies and 
mode shapes of multilayered piezoelectric plates using semi-analytical finite-element 
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(SAFE) method.  This study was also focused to the analysis of the mechanical behavior 
of single-element transducers.   

2.1.3 Thickness and Lateral Modes 
 The aspect ratio of the cross-section of the piezoelectric elements of a 1D array 
transducer has been found to play an important role on their resonance frequencies (Onoe 
and Tiersten, 1963; Wang and Chang, 2003).  For rectangular cross-section, a coupling 
between the thickness and lateral modes is usually observed.  This behavior can be 
approximately predicted by mean of the coupling theory (Onoe and Tiersten, 1963; Chan 
and Unsworth, 1987).  In this theory, the relationship between the first thickness and 
lateral resonance frequencies is approximated by a biquadratic equation.  Wang and Chan 
(2003) found that an aspect ratio of 1.45 produces two resonance peaks on the frequency 
spectrum of the transducer.  Since the coupling theory only relates the first resonance 
frequency in each direction, it would be desirable for broadband transducer design to 
analyze the effect of the aspect ratio on high-order thickness and lateral resonance 
frequencies.   

2.2 Acoustic Sensors  

2.2.1 Principles and Devices 
 

An acoustic sensor is a device used to detect changes in its surrounding 
environment using electromechanical waves as a probe.  The sensor consists of an elastic 
material used as a substrate and one or several piezoelectric layers on top.  White and 
Voltmer (1965) demonstrated that surface waves can be generated and detected 
efficiently using Interdigital Transducers (IDT).  An IDT consists of a series of parallel 
metal electrodes periodically spaced on the surface of the piezoelectric layer (Figure 2.7). 
When a voltage is applied to these terminals, electric fields are generated in the 
piezoelectric material, and these excite alternating stress patterns due to the piezoelectric 
effect.  These induced stresses generate a mechanical wave that propagates away from the 
IDT.  The mechanical wave is then detected by a second IDT located a given distance 
from the emitter.   

 
Figure 2.7.  Geometry of a surface acoustic sensor. 
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The coupling coefficient is an important parameter of the sensor, which quantify 
the effect of piezoelectricity on the wave propagation, and allows comparison between 
several types of configurations (Kallard, 1971).  The presence of piezoelectricity 
increases the velocity of the wave above the value it would have if the components of the 
piezoelectric tensor were equal to zero.  If the surface of the sensor is electrically 
shortened, as produced by a conducting layer placed on the surface, the piezoelectric 
effect would be partially ‘switched off’ (Kino, 1987).  The change in the wave velocity 
due to this boundary condition is then a measurement of the piezoelectric effect.  
Therefore, the coupling coefficient is defined as vvk /22 ∆= .  It has been found (Kallard, 
1971; El Hakiki et al., 2004; Benetti et al., 2005) that the coupling coefficient changes 
when placing the IDTs at the interface between the piezoelectric layer and the substrate 
or between piezoelectric layers.  Figure 2.8 shows a comparison of the coupling 
coefficient for several configurations as a function of the thickness to wavelength ratio.  
It is evident that the coupling coefficient depends on the sensor configuration and the 
wavelength.  

 

 
 

Figure 2.8. Coupling coefficient of an aluminum nitride film on a diamond substrate 
(Benetti et al., 2005).  The broken and continuous thick lines represent the location of the 
IDT and a conducting plate, respectively.    

 
The fluid (i.e. air or water) surrounding the sensor has an important roll on the 

wave propagation parameters such as velocity, amplitude and attenuation (White and 
Wenzel; 1988).  Therefore, a change in the environment can be detected by measuring 
changes on the wave propagation.  An overview of the mechanisms of interaction 
between sensors and overlaying fluids can be found in a review article by Lindner (2008).  
On the other hand, there are sensors that do not use the coupling of the wave with the 
surrounding fluid, but instead a sensing layer, which changes its mechanical properties 
(i.e. density) with the presence of a virus or a chemical substance (Figure 2.9), is utilized 
as a probe (Sivaramakrishnan et al., 2008; Moll et al., 2008).  The change in the 
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mechanical properties of the sensing layer produces a measurable change on the wave 
propagation characteristics.   

 

 
Figure 2.9. Ultrasonic sensor using a sensing layer to detect chemical molecules or 

viruses. 
 
Sensors can be classified according the type of mechanical wave they generate.  

Rayleigh, Lamb and Love waves are commonly used for sensors.  The displacements of 
Rayleigh and Love waves are confined to the surface of material; meanwhile the 
displacements of Lamb waves are contained between the two boundaries of a plate or 
diaphragm (Figure 2.10).  Lamb wave sensors are characterized by larger surface 
displacements; therefore, the coupling with the surrounding fluid and sensitivity are 
higher.  The choice between the type of wave depends mainly in the application; i.e. to 
measure the viscosity of fluids, sensors based on Love or shear Lamb waves are 
preferred. 

 
Figure 2.10.  Types of mechanical waves used for acoustic sensors. (a) Rayleigh waves, 
(b) Love waves, (c) Symmetric and anti-symmetric (out of plane) Lamb waves and (d) 
Shear Lamb waves.   

2.2.2 Applications 
 

Surface acoustic sensors have been designed and used for a great variety of 
applications.  This section does not intend to compile a complete summary of the 
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applications; however some few applications, relevant to this study, will be highlighted.  
The applications can be divided according the sensing mechanism used by the device, i.e. 
solid-fluid coupling and sensing coating.   

Sensors based on solid-fluid coupling are mainly used to monitor changes on the 
properties of the surrounding fluid.  This type of sensors has been successfully applied to 
measure key electromechanical properties of the fluid such as density, viscosity, 
conductivity and permittivity. Density monitoring is one of the earliest and most common 
applications of acoustic sensors (White and Wenzel, 1988; Turton et al., 2006; 
Greenwood, 2006).  The density of the surrounding fluid has an important effect on the 
wave propagation on plates, especially when the ratio between fluid to solid densities is 
high (Nayfeh and Chimenti, 1988). Sensors based on Love and Shear-Horizontal Lamb 
waves are the most suitable for viscosity sensing due to the in-plane displacements of the 
surface. The changes of the propagation parameters of these waves can be directly related 
to the viscosity of the fluid (Lec et al, 1988; Raimbault et al., 2008).  On the other hand, 
changes of the electrical field in the surface of the sensor caused by a change of the 
conductivity of the fluid produce a measurable change in the wave propagation, due to 
the piezoelectric effect of the top layers (Kondoh and Shiokawa, 1995; Huang et al., 
2001).  

Another kind of sensor is based on sensing coatings bonded to the surface.  In this 
case the change in propagation characteristics is not longer related to the 
electromechanical properties of the fluid, but instead with a change of the mechanical 
properties of the coating.  This type of sensors enables to detect particles, chemical, 
proteins, bacteria, viruses present in the surrounding fluid.  The number of application is 
vast, a review of some of these can be found in Lange et al., 2008; Caliendo et al., 1997; 
Hoummady et al., 1997. 
 

2.3 Elastic Guided Waves 
Single-element ultrasound transducers are usually modeled as infinite plates and 

1D array transducer as finite-cross section plates.  These assumptions are in accordance 
with the actual dimension of the transducers. For instance, the piezoelectric crystal of a 
single element transducer can be a disk of diameter 15mm and a thickness of 150 µm. To 
optimally design transducers, the dynamic characteristics of these structures must be well 
understood.   
 Wave propagation is governed by the motion equation. The solution of this 
equation for certain boundary conditions results in a set of wave modes, usually called 
guided waves.   The waves propagating on an infinite plate are usually known as Lamb 
waves.  Three types of waves modes are found for Lamb waves: symmetric (S), anti-
symmetric (A) and in-plane shear (SH) modes (Fig. 2.11).  One important characteristic 
of the propagation guided waves is that the wave velocity depends on the frequency; this 
effect is called dispersion behavior. The group velocity is usually associated with the 
energy propagation; i.e. if the group velocity is zero, there is not energy propagation and 
high-amplitude standing waves are present.   
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Figure 2.11. Anti-symmetric and Symmetric modes in Lamb waves. 

  
Recent experimental studies (Clorennec et al., 2007; Gibson and Popovics, 2005; 

Holland and Chimenti, 2004) have shown that resonance for isotropic plates occur at 
frequencies where the group velocities of symmetric and anti-symmetric modes vanish.  
Since the group velocity of such modes vanishes, mechanical energy is trapped and high 
amplitude vibrations are present.  The frequencies of the zero-group-velocity (ZGV) 
points depend on the materials properties and the thickness of the plate.  The 
displacement spectrum for an impulse excitation shows the resonant peaks, from which 
the frequencies of the ZGV points can be obtained.  These frequencies can be used to 
calculate the thickness or the Poisson’s ratio for isotropic plates (Clorennec et al., 2007).   
 The ZGV point for the first-extensional S1 mode has also been found useful for 
air-coupled ultrasonic imaging (Holland and Chimenti, 2004).  In this case, the center 
frequency of the transducer is set to the frequency of ZGV point for the S1 mode of the 
plate to be imaged.  Color-scans of discontinuities in the thickness or mechanical 
properties can be obtained measuring the transmission efficiency in the region of interest.  
The same concept has been used to refine another NDT method called ‘Impact Test’ 
(Gibson and Popovics, 2005).  In this, the normal displacements of a slab-like structure 
are measured after an impact is applied to the structure.  The frequency spectra of these 
displacements are used to detect the first resonant frequency and then material properties 
or thickness can be calculated. 
 Knowing the dynamic characteristic of plates is important, especially for single-
element transducer design.  Ultrasound transducers are designed to work at the resonance 
frequency of the piezoelectric element.  Several analytic solutions for different materials 
and boundary conditions have been presented in the literature for infinite plates. 
 

2.3.1 Analytical Solutions for Infinite Plates 
 Solutions of the vibration of plates have been of great interest of many researchers 
and used for many applications.  Analytic solutions for infinite plates have been being 
presented for almost two centuries.  In 1828, Poisson and Cauchy presented the solution 
for flexural vibrations at low frequency for isotropic plates.  Of course, not all the 
published works on infinite plates can be referenced in this section; instead, a summary 
of some relatively recent analytic solutions for infinite plates is presented. Frequently, 
linear constitutive relations and small deformations are considered when modeling 
ultrasound transducers.  Furthermore, fluid boundary condition has been considered as a 
subrogate of tissue due to the similarities on the acoustic properties. Hence, the 
references are restricted to those relevant to this research area. 
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 Solutions for isotropic materials surrounded by viscous (Zhu and Wu, 1995) and 
invisid fluids (Zhu and Wu, 1992) have been presented to analyze the change on velocity 
with the frequency (dispersion behavior) and the attenuation of propagating modes. The 
solution for anisotropic plates with and arbitrary periodic loading was presented by (Mal, 
1988).  Piezoelectric homogeneous plates with stress-free boundary condition (Yang and 
Tsai, 2006), dielectric-fluid boundary condition (Yang and Chimenti, 1993; Yang and 
Lai, 2004) and conductive-fluid condition (Lee and Kuo, 2006; Yang and Shue, 2001) 
were studied to analyzed the dispersion behavior and the effect of fluid properties.  Multi-
layered piezoelectric plates, including inversion layer, have been also analyzed (Powell et 
al., 1998; Huang et al., 2005). 
 Although analytical solutions have been proposed for a wide variety of cases, 
sometimes the geometry and/or the boundary conditions increase the mathematical 
complexity of the solution to such degree that numerical methods are required to obtain a 
solution.  Finite Element Method (FEM) is a widely use technique to numerically analyze 
complicated structures.  For instance, multi-layered and finite cross-section plates are 
usually analyzed through this method. 

2.3.2 Finite Element Modeling 
 Finite element method (FEM) is frequently used when complicated geometries, 
loads and material are considered.  For the analysis of guided waves, FEM can be divided 
in time-domain and frequency domain analyses.  Both are used to obtain the dispersion 
behavior, resonance frequencies and other important characteristics of the piezoelectric 
structures.  Time-domain FEM solutions are obtained by integration over time of the 
discretized motion equations.  On the other hand, if Fourier transformation is applied to 
the discretized motion equations, the solution is obtained in terms of the frequency.   
 Time-domain schemes have been used to predict the performance of plates and 
ultrasound transducers (Zhou et al., 2006; McKeighen, 2001; Mills and Smith, 2002; 
Hossack and Hayward, 1991; Lerch, 1990). The effect of matching layers, backing 
layers, bonding layer and electrodes on the operation of the transducer can be addressed 
using this technique (Zhou et al., 2006; McKeighen, 2001).   However, a large number of 
elements and simulation time are usually required.  

Frequency-domain FEM has been broadly used to analyze piezoelectric structures 
and ultrasound transducers (Siao et al., 1994; Bai et al., 2004; Taciroglu et al., 2004; 
Pauley and Dong, 1975; Mukdadi et al., 2003, 2002).  This method has been applied to 
calculate dispersion curves, group and phase velocity spectra for piezoelectric structures.  
Frequency-domain analysis usually offers more information than using time-domain; i.e. 
resonance frequencies can be easily identified.  However, some boundary conditions, like 
fluid loading, are difficult to analysis in this domain. 
 1D and 2D arrays are usually periodic structures with periodic loading.  Periodic 
boundary condition has been analyzed and implemented for FEM in both domains (Wilm 
et al., 2004, 2005; Ballandras et al., 2003, 2005; Predoi et al., 2007).  Considering 
periodicity allows performing the analysis in a small representative region and obtaining 
results relevant to the entire structure.   
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3.1 Finite Element Formulation 
 Consider a layered piezoelectric plate as shown in Fig. 3.1.  The piezoelectric 
plate consists of N parallel, homogeneous, and anisotropic layers, which are perfectly 
bonded together.  A global rectangular coordinate system (X, Y, Z) is adopted such that 
the Z-axis coincides with the thickness direction.  The X and Y axes are parallel to the 
infinite direction of the plate.  We adopt a hybrid analytical-numerical approach to model 
elastic guided wave propagation in layered anisotropic infinite piezoelectric plates.  The 
analysis couples analytical treatment of the motion in the XY plane with a numerical 
treatment of the motion along the thickness direction of the plate using the finite-element 
method.  To effect the latter, we discretize the thickness (Z-axis) of the plate using three-
node finite-elements, each of which has associated with it a local coordinate system (x, y , 
z), which is parallel to the global coordinate system.  The displacement and electric 
potential are assumed to be time-dependent and functions of local coordinates system (x, 
y, z). Since the displacements are small compared to the thickness, a linear stress-strain-
electrical field will be used to describe the dynamic behavior of the plate.  The 
constitutive equation in the matrix form is given by 
  *=Q C q      (3.1) 
where Q = [Txx, Tyy, Tzz, Tyz, Txz, Txy, Dx, Dy, Dz] is a vector of the stress components and 
the electric displacements, q = [Sxx, Syy, Szz, 2Syz, 2Sxz, 2Sxy, Ex, Ey, Ez] is a vector with the 
components of the mechanical strain and electric field components, and C* is a matrix 
containing the elastic constants c, dielectric constants ε and the piezoelectric stress 
constants e: 

 *
T −

=  
 

c e
C

e ε
.  (3.2) 

 Without loss of generality, we assume that the waves are propagating in the x-
direction.  The kinematic equation relates the vector q to the displacements and electric 
potential vector  v = [ux, uy, uz, φ ] as, 
  1 , 2

e e
x= +q B v B v ,  (3.3) 

where B1 and B2 are operator matrices defined in appendix A. 
 The equation of motion can be obtained using the Hamilton’s principle (Tiersten, 
1969): 

 ( )
1

0

0
t

t

KE H W dtδ − + =∫ ,     (3.4) 

where KE, H and W are the kinetic energy, electrical enthalpy, and potential energy of the 
prescribed surface forces and charges, respectively.  These terms can be expressed as: 

 1
2

TKE d
υ

υ= ∫∫∫ v ρv� � , 1
2

TH d
υ

υ= ∫∫∫ q Cq , and  T

S
W dS= ∫∫ v f ,           (3.5) 
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where,  
T −

=  − − 

c e
C

e ε
,       and  

0

ρ
ρ

ρ

 
 
 =
 
 
 

ρ . 

 The thickness direction (z-direction, Fig. 3.1) of the plate is discretized using 
three-node elements. Within each sublayer, quadratic interpolation functions with three 
equally spaced nodal surfaces are used.  The explicit form of these interpolations over a 
sublayer is shown in Appendix A.   
 The field variables v can be written in terms of the vector of nodal variables ve as 
follows: 
 ( , , ) ( ) ( , )ex z t z x t=v N v ,     (3.6) 
where N is a matrix composed of the interpolation functions.  Eq. (3.4) can rewritten in 
terms of Eq. (3.6) and Eq. (3.5) as: 

 ( )1

0
, 11 , , 12 21 , 22

1 0
2

t
eT e e eT e e eT e e eT e e eT e e eT e

x x x xt
dtdxδ   =− − − − −  ∫ ∫ v m v v k v v k v v k v v k v v f� � .

  (3.7) 

 
Figure 3.1. Coordinate system and inversion layer distribution. 

 
where 11

ek , 12
ek , 21

ek  and 22
ek  are element stiffness matrices, me is the element mass 

matrix and fe is a vector of nodal forces (see Appendix A for details).  The global system 
of equations can be obtaining after assembling the element matrices and carrying out the 
variation of Eq. (3.7): 

 1 2 , 3 ,X XX+ + − =MV K V K V K V F�� ,     (3.8) 
To solve Eq. (3.8), a semi-analytical technique will be implemented in the following 
section.  In this study, we consider open circuit (DZ = 0) and traction-free (TXZ = TZZ = 0) 
boundary conditions on the upper and lower surfaces of the plate.  Note that Eq. (3.8) is 
the semi – analytical finite element equation, which is obtained by discretizing in the Z-
direction.  This equation can now be solved by using standard Fourier transforms 
techniques in X and t. 
 Define the Fourier transformation as 

 ( )( , ) ( , ) i kX tk X t e dXdtωω
∞ ∞

− −

−∞ −∞

Φ = Φ∫ ∫� , (3.9) 
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where ( ),X tΦ  is a finite function, k and ω represent the wave numbers along X direction 
and the angular frequency, respectively.  Applying this transformation to Eq. (3.8), the 
differential equation is transformed into: 
 ( )2

1 2 3
2ik k ω− + − =K K K M V F� � . (3.10) 

 The dispersion relations of the propagating modes are found by solving the 
eigenvalue problem arises when considering the homogeneous case ( =F 0� ) of Eq. (3.10).  
If the wavenumber k is defined, then equations (3.10) can be solved for the angular 
frequencies ω of the propagating modes.  The phase and group velocities can be 
expressed, respectively, as, 

                           pv
k
ω

= ,   and    gv
k
ω∂

=
∂

.  (3.11) 

 Dispersion curves showing the dependence of the phase and group velocities on 
the angular frequencies can be obtained using Eqs. (3.10) and (3.11).   

3.2 Electro-Elastodynamic Green’s Functions 
 Solving the homogenous part of Eq. (3.10) will yield the dispersion relation for 
elastic guided waves in infinite piezoelectric plates. To derive the Green’s functions, one 
can rewrite Eq. (3.10)   including the forcing term in the form (Mukdadi and Datta, 
2003), 
 [ ] [ ]γ= +A U B U P , (3.12) 
where 

  2
1 2ω

 
=  − − 

0 I
A

K M K
,  

3

 
=  
 

I 0
B

0 K
, 

and  
T

γ =  U V V� � , 
T

 =  P 0 F� , and ikγ = . 
 Note that matrix A is not symmetric but B is symmetric.  The homogenous part of 
Eq. (3.12) will yield the characteristic equation, the roots of which (eigenvalues) are the 
wavenumbers of the modes for a given frequency ω. These wavenumbers can be real, 
imaginary or complex numbers.  The imaginary and complex eigenvalues correspond to 
the evanescent modes, while real values are for the propagating modes.   
 The right and left eigenvectors, mϕ  and mψ  respectively, associated with each 
eigenvalue can be found solving the systems of equations (written in an abbreviated 
form) 
 m mγ ϕ− =  A B 0 ,  and  T

m mγ ψ − = A B 0 . (3.13) 

Here, mϕ  and mψ satisfy the bi-orthogonality relations: 
          T

m m mn nBψ ϕ δ=B ,        and    T
m m mn m nBψ ϕ δ γ=A . (3.14) 

The eigenvectors can be combined as the upper and lower parts to give 

 mu mu
m

mml ml
ϕ

ϕ ϕ
ϕ γ ϕ
      = =   
      

 , mu mu
m

mml ml
ψ

ψ ψ
ψ γ ψ
      = =   
      

. (3.15) 
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 These eigenvectors can be used to calculate the response spectrum due to 
electrical or mechanical excitations.  The solution of Eq. (3.12) is the weighted sum of all 
modes: 

 
2

1
( , )

N

m m
m

Uγ ω ϕ
=

= ∑U . (3.17) 

 Inserting Eq. (3.17) into Eq. (3.12), the following system of equations is obtained: 

 
2

1

N

m m
m

Uγ ϕ
=

− =  ∑A B P . (3.18) 

 Multiplying Eq. (3.18) on the left side by T
mψ  and applying the bi-orthogonality 

relations, the mU coefficients can be obtained: 

 ( )
T
m

m
m m

U
B

ψ
γ γ

=
−

P . (3.19) 

 In terms of the lower and upper eigenvectors (Eq. 3.15), we expressed the 
resulting Green’s functions in the wavenumber-frequency domain by substituting mU  in 
Eq. (3.17) as follows,  

 
( )

2

1
( , )

TN
m mu

mu
m m mB

γ ψγ ω ϕ
γ γ=

=
−∑ FV

�� . (3.20) 

 The displacement and electrical potential in the space-frequency domain were 
determined by applying the inverse Fourier transform, which was evaluated numerically 
using Cauchy’s residue theorem,  

 
1

( ; ) m
TN

Xm mu
mu

m m
X i e

B
γγ ψω ϕ −

=
= − ∑ FV

��
 (3.21) 

 Equation (3.21) represents the displacement and electrical potential Green’s 
functions in the space-frequency domain due to force or electric excitation.  

 

3.3 Frequency Response Due to Impulse Loading 
 To obtain ultrasound images with optimum axial and lateral spatial resolutions, 
impulsive loads are usually used with broadband ultrasound transducers.  In this study, 
we aim to study the resonance modes of elastic guided waves for harmonic ultrasound 
transducer design.  To do so, we considered an impulsive line load applied to the surface 
of the piezoelectric plate.  This line load along the Y-axis is acting into the thickness 
direction of the plate (Z-axis).  This impulse line load can be expressed in the form, 
 0( , ) ( ) ( )X t X tδ δ=F F , (3.22) 
where F0 is a vector with all the components equal to zero, except one component 
corresponding to force acting into Z-axis or charge applied on the piezoelectric plate.  
Applying the Fourier transform (Eq. 3.9) to Eq. (3.22) results in  
  ( ) 0,k ω =F F� .     (3.23) 
 The frequency spectrum of the normal displacements and electrical potential can 
be expressed, using Eq. (3.21), as: 
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  0
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Xm mu
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X i e
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γγ ψω ϕ −

=
= − ∑ FV

�
.   (3.24) 

 The above equation represents the frequency response of the displacement and 
electrical potential at the point X due to a line force along the Y-axis and acting in the Z-
direction.  The numerical results illustrated in the following section will consider the 
frequency spectrum of the normal displacement calculated at the same point of excitation 
(i.e. X = 0). This is analogous to the experiment reported by Clorennec et al., (2007).  
 

3.4 Numerical Results and Discussion 
 Equations (3.10) and (3.24) govern the dispersion behavior and the frequency 
spectrum of displacements and electrical potential of guided wave propagation in layered 
piezoelectric infinite plates.  In this study, numerical results for single layer and bi-
layered plates used for fabricating single-element medical ultrasound transducers will be 
addressed.   
 Validation of the SAFE method with experiment was made by comparison of 
numerical results for a 0.9 mm steel plate and experimental results reported by Clorennec 
et al., (2007).  The mechanical properties used for steel are shown in Table 3.1a.  The 
dispersion curves for a steel plate of 0.9 mm show two ZGV points at 3.08 and 5.36 MHz 
(Fig. 3.2a), corresponding to the first extensional (S1) and second flexural (A2) modes.  
Excellent agreement for the peaks and off-peak values is observed between the frequency 
spectra of the normal displacement obtained by this method and experimental results 
(Fig. 3.2b).  A comparison between the dispersion curves and the frequency spectra of the 
normal displacement clearly show that resonance peaks correspond to ZGV frequency 
points.  This phenomenon shall be useful for piezoelectric resonators and ultrasound 
transducers used for imaging. Note that even though the experiment was for a point load, 
the frequency dependence of the displacement is the same for the point and line loads 
(except for a normalization factor). This is because the dispersion behavior is the same in 
two and three dimensions for an isotropic plate.  

a)     b)  
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Figure 3.2.  Dynamic characteristics of a steel plate of 0.9mm thick: a) dispersion curves, 
b) displacement spectrum. 

 
 Figure 3.3 shows the dispersion curves and the frequency spectra of the normal 
displacement of a 36° rotated y-cut LiNbO3 layered plate of 0.5 mm total thickness.  The 
effect of the ratio of the thickness of the inversion layer (IL) to the total thickness of the 
plate was examined.  The mechanical and piezoelectric properties are shown in Tables 
3.1a and 3.1b, respectively.  The wavenumber was normalized by multiplying with the 
thickness (h) and the non-dimensional frequency is defined as ω/ω0 where 
by hC ρω /440 = .  Here C44 is an elastic constant and ρ  the mass density.  The 
dispersion curves (Fig. 3.3a) for several ratios (0, 30 and 50%) of IL thickness to the 
plate show negligible differences for shear-horizontal modes SH0, SH2 and SH3.  For the 
first-order shear-horizontal SH1 mode, the curves are identical for k in the range 0-2.5, 
but after that, small differences are seen for the three percentages of IL thickness ratios.  
Small differences are observed for the S0, S1 and S2 modes.  The cut-off frequencies for 
the SH1 and A1 modes show small differences for 0% and 30% of IL, but are the same for 
50% thickness ratio of IL.  On the other hand, for SH2 and S2 modes, the cut-off 
frequencies are slightly different for 30% and 50% thickness ratios of IL.  However, these 
cut-off frequencies for SH2 and S2 modes are equal for single LiNbO3 plate without 
inversion layer (i.e., 0% IL thickness ratio).  The ZGV point for the S1 mode does not 
change considerably.  However, the lowest frequency for this ZGV point corresponds to 
0% IL thickness ratio.  On the other hand, the lowest frequency for the ZGV point 
corresponding to the A2 mode is obtained for 50% IL thickness ratio. 
 

Table 3.1a.  Mechanical properties and mass densities. 
Elastic Properties (GPa) Density 

(Kg/m3) 
 

C11 C12 C13 C14 C33 C44 C66 ρ 
Steel 277.5 113.4 113.4 0 277.5 82 82 7850 
LiNbO3 199 51.85 70.85 7.83 234.18 59.85 72.09 4640 
PZT-4 139 77.8 74.3 0 115 25.6 30.6 7500 

 
Table 3.1b.  Piezoelectric properties. 

Piezoelectric Stress Constant 
(C/m2) 

Clamped dielectric 
constants 

 

e15 e31 e33 ε33 ε11 
LiNbO3 3.655 -0.328 1.894 44.9 26.7 
PZT-4 12.7 -5.2 15.1 635 730 
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a) b)  
 

Figure 3.3.  Vibrational behavior of 36° rotated y-cut LiNbO3 plate for several 
percentages of inversion layer and 0.5mm thickness: a) Dispersion Curves, b) 

Displacement Spectrum 
 
 A similar analysis of the dispersion curves (Fig. 3.4a) for PZT-4 (Table 3.1) 
shows that the shear-horizontal SH0, SH1, SH2, and SH3 modes are similar for all the 
ratios of IL analyzed.  A considerable difference is observed for the cut-off frequencies of 
the A1 mode, especially for 0% IL thickness ratio.  In a similar way, the cut-off 
frequencies for S1 modes show considerable differences.  It is noted that, the cut-off 
frequencies of S1 and SH2 modes are the same for 0% IL thickness ratio.  The same is 
found to be true for the S1 and S2 for 50% of IL.  A very important observation is that for 
this material the second ZGV point is not present on A2 mode dispersion curve, but is 
found on that of S4.  Negish et al. (1987) showed that for isotropic materials a ZGV point 
for the A2 mode exists only when the Poisson’s ratio (v) is less than 0.31.  Furthermore, 
ZGV points can be also found for S3, S4, S6 and A5 modes for specific values of v.  In 
fact, there is not an explicit relation between the ZGV points and the elastic constants for 
anisotropic materials.    



    24

a) b)  
 

Figure 3.4. Vibrational behavior of PZT-4 plate for several percentages of inversion 
layer and 0.5mm thickness: a) Dispersion Curves, b) Displacement Spectrum. 

 
 Figures 3.3b and 3.4b clearly show that the resonant frequencies for the plates 
correspond to the ZGV points on the dispersion curves.  For LiNbO3, the first two 
resonant peaks correspond to the ZGV of S1 and A2 modes.  In the same way, for PZT-4, 
the first two resonant peaks are obtained for the ZGV points of S1 and S4 modes.  The 
change in the frequency for the resonant peaks with the change in percentage of IL is 
small, except for first resonant peak for PZT-4.  In this case, the resonant frequency was 
shifted from 0 6.0ω ω =  to 0 6.95ω ω = .  Small peaks are observed at the cut-off 
frequency for the A2 mode, especially for 50% IL thickness ratio.  A comparison between 
the resonant frequencies obtained using the SAFE method presented here (Table 3.2) 
shows that the second resonant peak for PZT-4 with 50% IL thickness ratio is located at 
almost twice the frequency of the first peak, making this configuration optimum for 
harmonic imaging.  Additionally, there is no significant difference in the ratio of the first 
two resonant frequencies of LiNbO3 when the percentage of IL thickness ratio is 
changed. 
 

Table 3.2.  Comparison of the resonance frequencies for several percentages of IL 
thickness ratio using SAFE method. 

 IL 1st fSAFE  ( 0/ω ω ) 2nd fSAFE ( 0/ω ω ) 2nd fSAFE/1st fSAFE 
 0% 5.25 9.45 1.78 

LiNbO3 30% 5.34 9.44 1.77 
 50% 5.46 9.35 1.71 
 0% 6.00 15.40 2.57 

PZT-4 30% 6.50 15.25 2.35 
 50% 6.95 15.05 2.16 
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a)      c)  

b)  
Figure 3.5.  Group velocity spectrum for 36° y-cut LiNbO3: a) 0% , b) 30% , and c) 50% 

IL thickness ratios. 
 Figure 3.5 shows the frequency dependence of the non-dimensional group 
velocity ( 44v v /g g C ρ= ) for LiNbO3.  The group velocities were calculated using Eq. 
(3.11).  It is clearly seen that for all percentages of inversion layer there is a ZGV point 
for the S1 mode below the cut-off frequency.  However, there is no ZGV point for the 
second anti-symmetric A2 mode with 30% IL thickness ratio, instead a crossing between 
the A2 and SH3 modes is observed.  Figure 3.6 shows the group velocity dispersion 
curves for PZT-4.  The ZGV points for S1 and S4 modes are observed for all thickness 
ratios of IL.  These results show strong influence of the piezoelectric material anisotropy 
on the ZGV modes, resonance characteristics and dispersion behavior of layered 
piezoelectric plates used for ultrasound imaging transducers. These theoretical findings 
provide a means for optimizing resonance characteristics of piezoelectric resonators. 
 In the approximate conventional methods (KLM) for transducer design the 
resonance frequency is defined as f0 = Cd/2h, where 33dC C ρ=  is the bulk dilatational 
speed of the piezoelectrical material and h the thickness.  A comparison of the first and 
second resonance frequencies obtained using this method and the one proposed here for 
0% IL thickness ratio is shown in Table 3.3.  The error in calculating the first resonance 
for 36° rotated y-cut LiNbO3 and PZT-4 is about 10%.  For the second resonant 
frequencies the errors are considerably high for both materials (about 17%).  These 
differences indicate that the resonant frequencies are strongly influenced by the material 
properties and thus should be carefully obtained specially when designing multi-resonant 
transducers for harmonic imaging. 
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a)  

b)  

c)  
Figure 3.6.  Group velocity spectrum for PZT-4: a) 0%, b) 30%, and c) 50% IL thickness 

ratios. 
 

Table 3.3.  Comparison of the resonance frequencies calculated using the KLM 
approximation (f0 = c/2d) and using SAFE method. 

 f0 = c/2d 
(MHz) 

fSAFE  
(MHz) 

fSAFE / f0 2 f0 
(MHz) 

2nd fSAFE 
(MHz) 

2nd fSAFE /2 f0 

LiNbO3 6.63 6.57 0.984 13.26 11.75 0.886 
PZT-4 3.91 3.52 0.901 7.82 9.05 1.157 

 
 Recent studies have shown the improvement in the bandwidth for transducers 
made of LiNbO3 when 30% IL thickness ratio has been included (Zhou et al., 2005, 2006; 
Nakamura et al., 2003; 2005).  Zhou et al (2006) showed that the bandwidth can be 
increased up to 90% using IL and a proper selection of the matching layers.  Nakamura et 
al (2003) found that the transducer characteristics depend on whether the IL is in the front 
(upper) or back (lower) sides of the transducer.  However, in both cases the total 
efficiency of the transducer was improved at f0 and 2f0. 
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3.5 Concluding Remarks 
 A semi-analytical finite element method has been used to theoretically predict the 
resonant frequencies and the dispersion behavior of layered piezoelectric plates.  The 
analysis of piezoelectric layered plates shows that the resonant frequencies at the ZGV 
points of the Lamb wave modes are more significant than those at the cut-off frequencies.  
This is consistent with previous observations on Lamb waves in homogeneous and 
composite plates.  It was also shown that the material properties as well as the percentage 
of inversion layer have measurable effect on the occurrence of the first and second 
resonance peak frequencies.  A comparison between the resonant frequencies obtained by 
this method and analytical approximations, usually adopted for transducer design, 
showed considerable differences, especially for the second resonant frequency.  The 
modal analysis showed that the mechanical displacements and stresses are independent of 
the changes in the thickness of the inversion layer.  The theoretical analysis presented in 
this study provides a useful means for accurately calculating high-order resonance modes 
and ZGV points.  It is believed that the method presented here would be useful for the 
design and optimization of ultrasound transducers for harmonic imaging. 
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4.1 Finite Element Formulation 
 Multi-layered 1D-array ultrasound transducers are composed of a set of elements, 
each of them usually has one dimension much larger than the other two.  In this study, 
each element is modeled as an infinite piezoelectric plate with a finite cross-section (Fig. 
4.1).  For the two geometries considered (Fig. 4.1), the cross section was discretized 
using 2D four-node finite elements in the yz-plane (azimuth plane).  We assume harmonic 
wave motion in the x-axis (elevation direction).  The displacement and electric potential 
are assumed to be time-dependent and functions of local coordinates (x, y, z).  These 
functions can be expressed in terms of the nodal values as follows (Mukdadi et al., 2002, 
2003). 

 ( , , , ) ( , ) ( , )e ex y z t y z x t=v N v , (4.1) 

where v is a 4x1 vector of the three components of displacement (u, v, w) and the electric 
potential (φ) functions, N is a 4x16 matrix of interpolation functions and ve is a 16x1 
vector of nodal values.  The strains and the electric field components can be expressed in 
a matrix form  

 =q Lv , (4.2) 

where q = {Sxx, Syy, Szz, Syz, Sxz, Sxy, Ex, Ey, Ez}T and L* is a 9x16 matrix composed of 
spatial derivatives respect to the local coordinates.  Note that L (Eq. 4.2) and L* have 
different dimensions.  The Hamilton’s principle can be expressed as (see Appendix B for 
details): 

    ( )1

0
, 11 , , 12 21 , 22

1 0
2

t
eT e e eT e e eT e e eT e e eT e e eT e

x x x xt
dtdxδ   =− − − − −  ∫ ∫ v m v v k v v k v v k v v k v v f� � ,            

 (4.3) 

where 11
ek , 12

ek , 21
ek  and 22

ek  are element stiffness matrices, me is the element mass 
matrix and fe is a vector of nodal forces.  The global system of equations can be obtaining 
after assembling the element matrices and carrying out the variation of Eq. (4.3)   

 1 , 2 , 3XX X− − − =K V K V K V MV F�� . (4.4) 

 Eq. (4.4) represents a system of linear partial differential equations.  This system 
can be reduced to an algebraic system of equations applying Fourier transform as 
explained below. 
 

4.2 Frequency-domain Solution 
 For a wave traveling in the X-direction, the Fourier transformation can be defined 
as 

 ( )( , ) ( , ) i kX tk X t e dXdtωω
∞ ∞ − −

−∞ −∞
= ∫ ∫V V� , (4.5) 
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where k and ω represent the wavenumbers along X direction and the angular frequency, 
respectively.  Applying this transformation to Eq. (4.4), the partial differential system of 
equation is transformed into: 
 ( )2 2

1 2 3k ik ω− + − + =K K K V MV F 0� � � . (4.6) 

 Two eigenvalue problems arise when solving Eq. (4.6) for the homogeneous case 
( =F 0� ). First, if k is defined and the equation system (Eq. 4.6) is solved for ω, the 
frequency spectra of the propagating modes are found.  Second, when k serves as 
eigenvalue, the equation system can be reorganized to reduce the order k as follows: 

  2
13 2

0 0
0

k
i k kω

         − =      
−           

I IV V
0

KM K K V V

� �
� � . (4.7) 

 In this work, Eq. (4.6) is preferred to calculate the dispersion curves and the group 
and phase velocity spectra, since the number of equations is lower than that of Eq. (4.7).   

 
Figure 4.1.  Rectangular and subdiced sections considered for this study, where B is the 
piezoelectric element width, H is the height, w and d are the subdicing width and depth, 

respectively. 
 

4.3 Boundary Conditions 
 It can be observed from Figure 1 that the geometry of the transducers considered 
in this study has two symmetry axes (ΓA and ΓB).  Notice that the electrical excitation is 
also symmetric about those axes. Therefore, symmetric boundary conditions at ΓA and ΓB 
can be considered to analyze the dispersion behavior of these periodic structures (Caronti 
et al. 2005; Goldberg et al. 1997; Ballandras et al. 2005).  As explained by Ballandras et 
al. (2005), symmetrical boundary conditions can be obtained by setting the displacement 
in the y-direction equal to zero 
 0

A B
v vΓ Γ= = . (4.8) 
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Additionally, Ballandras et al. (2005) showed the equivalence between symmetrical and 
periodic boundary conditions for an infinite array excited synchronously.  On the other 
hand, traction-free condition is adopted for the upper and lower boundaries (Fig. 4.2).  
These conditions allow the analysis of the complete array with less computational effort.  
Although half cell is used in the calculations, the mode shapes will be presented using the 
complete cell for better understanding of the results. 

 
Figure 4.2.  Schematic representation of FEM mesh and boundary conditions 

 

4.4 Parametric Analysis 
 In this study, rectangular and subdiced cross sections for the 1-D array 

element are considered (Fig. 4.1).  The piezoelectric material for all cases was 36° rotated 
Y-cut LiNbO3.  A polymer filler is considered for kerfs and subdicing slots.  The 
mechanical and piezoelectric properties for these materials are shown in Table 4.1.  
Although the formulation presented in this study is valid for any piezoelectric material, 
36° rotated Y-cut LiNbO3 was chosen since it has been used in several studies for the 
design and fabrication of high frequency transducers for harmonic imaging (Nakamura et 
al. 2005; Nakamura et al. 2003; Zhou et al. 2005). The inversion layer can be generated 
in this material by a thermal process (Nakamura et al. 1992); therefore, there is not need 
of additional connections, electrodes or bonding between layers.    
In this parametric study, we analyzed the effect of 1) the aspect ratio B/H of the 
piezoelectric material, 2) the subdicing depth d and width w, 3) the inclusion of 50% 
inversion layer, and 4) the inclusion of matching layers on the dispersion behavior and 
the thickness and lateral resonance frequencies of 1D-array ultrasound transducers.  The 
kerf width was set as 25% of the element width B for all the models considered in this 
study.  The matching layers were designed according the KLM model.  The impedances 
of the first and second matching layers were selected as 4/ 7 3/ 7

1 c lz z z= and 1/ 7 6/ 7
2 c lz z z=  

(McKeighen, 1998), respectively. Where zc and zl are the acoustical impedances of the 
piezoelectric crystal and the load.  The thickness was selected as a quarter of the 
dilatational wave length.  Without loss of generality, the following non-dimensional 
parameters are used: sH CωΩ =  is the non-dimensional angular frequency; K kH=  the 
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non-dimensional wavenumber; g g sC c C= the non-dimensional group velocity, and 

44sC C ρ=  the shear wave velocity.  Tables 4.2 summarizes the geometric parameters 
considered in this article. 

Table 4.1.  Mechanical properties for polymer filler and matching layers. 
Elastic Properties 

(GPa) 
Density 
(Kg/ m3) Material 

C11 C12 C44 ρ 
Poly. Filler 7.5 5.9 0.78 1080 
Matching Layer 1 24.5 3.35 5.3 3131.5 
Matching Layer 2 6.53 3.73 1.4 833 

4.5 Results and Discussion 
 Equations (4.6) and (4.7) represent the dispersion and resonance behavior of 
elastic guided wave propagation in piezoelectric plates with arbitrary cross-section.  A 
custom Matlab (The Mathworks Inc., Natick, MA, USA) computer program was written 
to solve the dispersion relation (Eqs. 4.6 and 4.7) using appropriate periodic boundary 
condition (Eq. 4.8).  Again, the periodic boundary conditions represent the symmetry of 
the piezoelectrical force excitation, geometry symmetry and periodicity of the considered 
structure.  The number of elements in the horizontal and vertical directions was chosen 
for each aspect ratio to have elements with a height as close as possible to their width.  
Each model used approximately a total of 400 elements.   Figure 4.3 shows the dispersion 
curves and group velocity spectrum of a periodic rectangular cross-section with a 
piezoelectric element aspect ratio B/H (= 2).  Using the periodic boundary condition (Eq. 
4.8) we obtained two types of waveguide modes: extensional L and flexural BY (about Y-
axis).  Figure 4.4 shows the dispersion curves and group velocity spectrum of a periodic 
rectangular cross-section with a piezoelectric element aspect ratio B/H (= 1.5).  
Comparison between Figs. 4.3 and 4.4 shows the effect of the piezoelectric element 
aspect ratio on the cut-off frequencies and thus on the resonance modes.  Furthermore, 
close view windows show strong coupling between extensional and flexural modes.  The 
mode coupling shown in Figs 4.3 and 4.4 is an evident that the guided wave modes are 
quasi extensional and flexural modes (Mukdadi et al., 2003, 2002).  
 
Table 4.2.  Geometric parameters for all the models considered. 

 
Cross Section Figure Sketch % of IL B/H d/H w/B 

4.3 
 

0 2 -- -- 

4.4 
 

0 1.5 -- -- Rectangular 

4.5 
 

50 2 -- -- 
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4.6 
 

0 2 0.9 0.2 

4.7 
 

0 1.5 0.9 0.2 

4.8 
 

0 2 0.7 0.2 

4.9 
 

0 2 0.9 0.15 

4.10 
 

50 2 0.9 0.2 

Subdiced 

4.11 
 

0 2 0.9 0.2 

 

a) b)  
Figure 4.3.  Dispersion curves and group velocity spectra for a rectangular cross-section 

with B/H = 2 and periodic boundary condition. 
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a)  b)  
Figure 4.4.  Dispersion curves and group velocity spectra for a rectangular cross-section 

with B/H = 1.5 and periodic boundary condition. 
 
 Figure 4.5 shows the dispersion behavior of guided wave propagation in layered 
piezoelectric plate element with rectangular cross-section and inversion layer.  The 
layered structure consists of an inversion layer on top of a 36° Y-cut LiNbO3 layer. The 
inverted layer has similar elastic properties that are used for 36° Y-cut LiNbO3 but with 
inverted dielectric constants (Zhou et al., 2005). The thickness ratio used for the inverted 
layer is 50% of the total thickness of the piezoelectric plate.  In this figure, mode 
coupling is clearly shown between L0 and BY1 and between L1 and BY2.  A close view is 
illustrating the mode interchange.  Comparison between Figs. 4.3 and 4.5 indicates that 
the inversion layer appears to lower both the cut-off frequencies and the group velocities.  
Another feature appears in Figs. 4.3, 4.4 and 4.5 for piezoelectric plates with rectangular 
cross-sections is the absence of the zero-group-velocity points within the region of 
interest shown in the figures. 
 To illustrate the effect of the subdicing micro-fabrication process used in industry 

theoretical dispersion and group velocity analysis is shown in Fig. 4.6 for a piezoelectric 
plate with aspect ratio B/H (= 2), subdicing depth d/H (=0.9), and subdicing width w/B (= 
0.2).  A periodic boundary condition is applied at the edges of the polymer filling as 
shown in Fig. 4.6. Comparison between rectangular and subdiced cross-sections (see, 
Figs. 4.3 and 4.6) shows a drastic change of guided wave dispersion and resonance 
behavior.  Guided wave propagation in subdiced piezoelectric plate (Fig. 4.6) exhibits the 
following interesting features; 1) increase in the number of the lateral modes; 2) lower 
cut-off frequencies; 3) strong mode coupling between any two successive modes, which 
indicate quasi-mode behavior; 4) increase in the number of zero-group-velocity points; 5) 
lower flexural and surface wave velocity; and 6) lower extensional (L0) group velocity at 
zero wavenumber (i.e., k = 0).  Some of these features are strongly influence the 
resonance behavior of piezoelectric plate and thus alter the transducer resonance 
frequencies and the overall bandwidth. 
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 Figure 4.7 shows the effect of the piezoelectric aspect ratio B/H on the dispersion 
behavior.  Comparison between Figs. 4.6 and 4.7 indicates that increasing the aspect ratio 
will increase the number of resonance modes at cut-off frequencies.  Also, comparing 
Figs. 4.4 and 4.7 shows the effect of the subdicing process on the resonance 
characteristics.  Analogous features of the subdicing effects mentioned above are also 
observed in this figure.  This theoretical study provides a means to clearly elucidate the 
effect of piezoelectric material and geometry on the dispersion behavior, characteristic 
resonance frequencies, and group velocity spectrum. 

a)  b)  
 

Figure 4.5.  Dispersion curves and group velocity spectra for a rectangular cross-section 
with B/H = 2, inversion layer and periodic boundary condition. 

a)  b)  
 

Figure 4.6.  Dispersion curves and group velocity spectra for the subdiced section with 
B/H = 2, d/H = 0.9, w/B = 0.2 and periodic boundary condition. 
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a) b)  
 

Figure 4.7.  Dispersion curves and group velocity spectra for the subdiced section with 
B/H = 1.5, d/H = 0.9, w/B = 0.2 and periodic boundary condition. 

a) b)  
 

Figure 4.8.  Dispersion curves and group velocity spectra for the subdiced section with 
B/H = 2, d/H = 0.7, w/B=0.2 and periodic boundary condition. 

 
 The piezoelectric subdicing process is mainly limited by both the thickness of the 
dicing saw and the material and thickness of the piezoelectric material.  These factors 
determine the ratios of the element subdicing width (w/B) and depth (d/H).  To study the 
effect of these two parameters, we calculated the dispersion curves and the group velocity 
spectrum in Figs. 4.9 and 4.10, respectively.   Figure 4.9 shows the dispersion behavior of 
guided wave propagation in a subdiced piezoelectric plate with aspect ratio B/H (=2), 
subdicing width w/B (=0.2), and subdicing depth d/H (=0.7).  Note that in this case, the 
piezoelectric element has an analogous geometry to that presented in Fig. 4.7 but lower 
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subdicing depth d/H (= 0.7).  The effect of subdicing depth (d/H) is clearly shown to 
cluster high-order waveguide modes between L1 and L3 extensional modes. Also, fewer 
modes are observed in the same frequency range in Fig. 4.9.  This effect may be due by 
the increase of the rigidity caused by the small depth of the subdicing.  Furthermore, the 
first extensional mode L1 exhibits zero-group-velocity point, where in Fig. 4.7 the second 
flexural BY2 mode shows similar ZGV point.  These ZGV points have strong resonance 
characteristics that could be used for designing 1D-array ultrasound transducers.  Figure 
4.10 illustrates the effect of the subdicing width w/B of the piezoelectric plate on the 
dispersion behavior.  Comparison between Fig. 4.7 and Fig. 4.10 shows a slight 
difference in the dispersion behavior and group velocity spectrum.  This may imply that 
the effect of subdicing width is not as important as that of the depth.   

 
 
Figure 4.9.  Dispersion curves and group velocity spectra for the subdiced section with 
B/H = 2, d/H = 0.9, w/B = 0.15 and periodic boundary condition. 
 
 The dispersion curves and group velocity spectra for the subdiced cross-section 
with an inversion layer are shown in Fig. 4.11.  Comparison between the results for the 
subdiced cross-section (Fig. 4.11) and Fig. 4.7 shows small differences for all the modes.  
In general, inversion layer has a minor effect on the dispersion behavior of guided wave 
propagation.  This could be explained by the significant influence of the geometric 
factors of the subdiced piezoelectric element rather than the material selection on 
generating both lateral and thickness guided waves.   
 Matching layers have an important effect on the dispersion curves and their 
corresponding group velocity spectra (Fig. 4.12).  In this case, the dispersion curves show 
that extra modes appear especially at high frequencies.  This may be due to the additional 
restriction to the lateral movement of the piezoelectric columns imposed by the matching 
layers.  The effect of the matching layers on the dynamic response of ultrasound 
transducer was addressed by Zhou et al.16 who found the frequencies with optimum 
efficiency changed when different configuration of matching layer were considered. 
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a)  b)  
 

Figure 4.10.  Dispersion curves and group velocity spectra for the subdiced section with 
B/H = 2, d/H = 0.9, w/B = 0.2, inversion layer and periodic boundary condition. 
 
 Both thickness and lateral-mode resonance frequencies can occur at cut-off 
frequencies (i.e., wavenumber k = 0) and at zero-group-velocity (ZGV) points (i.e., wave 
group velocity Cg = 0).  Mode shapes at the cut off frequency for the first and second 
order modes are shown in Fig. 4.13.  A close look into the deformed shapes reveals that 
some of the extra-modes present in the subdiced section are associated with the lateral 
movement of the piezoelectric columns.  The mode shapes can be divided into 
extensional and flexural groups.  Extensional modes are characterized by quasi 
symmetric displacements about Y-axis.  In contrary, flexural modes indicate quasi anti-
symmetric wave displacements about Y-axis.  It is clearly shown that there are two types 
of resonance behavior of these extensional and flexural modes.  First, there are resonance 
modes with significant in-plane displacements (YZ plane) with negligible out-of the 
plane displacement along X-axis.  These modes could be quasi symmetric extensional (L) 
modes or quasi anti-symmetric flexural modes as shown in Fig. 4.13.  These modes with 
dominant in-plane thickness and lateral displacements of the piezoelectric pillars may 
increase the acoustic emission and the frequency bandwidth of the transducer.  Second, 
mode shapes with significant out-of the plane displacement along X-axis but negligible 
in-plane displacements (in YZ plane). The latter modes will not play a significant role in 
improving the acoustic emission not the frequency bandwidth of the transducer.   
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a)  b)  
 

Figure 4.11.  Dispersion curves and group velocity spectra for the subdiced section with 
B/H = 2, d/H = 0.9, w/B = 0.2 two matching layers and periodic boundary condition. 
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Figure BY1 BY2 L1 L2 
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4.11 
 

Ω = 0.6618 
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Ω = 1.062 
 

Ω = 1.687 
 
Figure 4.12.  Mode shapes at cut-off frequencies (wavenumber k =0) of the first two 
extensional and flexural modes about Y-axis for all the geometries considered.  
Extensional modes are characterized by the quasi symmetry of displacements about Y-
axis.  Conversely, flexural modes have quasi anti-symmetric displacements about the Y-
axis.  Density plots shown here correspond to displacements along the X-axis, YZ plane 
displacements for those modes are negligible.  
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K = 0.412,   Ω = 0.8905 

(a) 

 

 
K = 0.547,   Ω = 1.200 

(b) 
 

 

 
K = 0.360,   Ω = 0.9335 

(c) 

 

 
K = 0.452,   Ω = 0.8913 

(d) 
 

Figure 4.13.  Mode shapes corresponding to the zero group velocity points in (a) Fig. 4.7, 
BY2 mode, (b) Fig. 4.8, L1 mode, (c) Fig. 4.10, BY2 mode, (d) Fig. 4.11, BY2 mode.  
Values of the wavenumber k and angular frequency ω are also shown for each ZGV 
point.  For subfigure (b), the YZ-plane displacements are negligible compared with the X-
axis displacements (shown as a density plot); therefore, they are not shown.  
 
 Figure 4.13 shows plots of the mode shapes at zero-group-velocity points.  These 
mode shapes exhibit a resonance behavior analogous to that shown at cut-off frequencies.  
However, the associated wavenumber is not equal to zero (i.e. k ≠ 0) as shown in Fig. 
4.13.  ZGV points below the cut-off frequency in the second-order flexural BY2 mode 
were found in all subdiced geometries.  In addition, a ZGV above the cut-off frequency 
for the first-order extensional L1 mode was observed in Fig. 4.8.  The mode shapes for 
ZGV points on Figs. 4.7, 4.8, 4.9 and 4.11 are shown in Fig. 4.13.  It can be clearly seen 
the similarity between these modal shapes and those of the cut-off frequencies of the 
corresponding mode. Again, analogous behavior to that indicated in Fig. 4.12 can be 
deduced.  Here, resonance modes with significant in-plane (YZ plane) displacements are 
of interest for designing multi-resonance ultrasound transducers.  Figure 4.13 (a, c and d) 
show strong in-plane displacements at ZGV points of the second-order flexural BY2 
mode.  On the other hand Fig. 4.13(b) indicates significant out of the plane displacement 
(along X-axis), yet weak in-plane displacement of the first-order extensional L1 mode.  
This analysis provides a comprehensive assessment of the resonance modes in periodic 
piezoelectric plates for 1D ultrasound transducers, and whether these resonance modes 
will be significant for multi-resonance ultrasound transducers. 
 

4.6 Concluding Remarks 
 In this work, 1D-array ultrasound transducers are modeled as periodic 
piezoelectric plates with finite cross-section.  A semi-analytic finite-element formulation 
is adopted to analyze the dispersion behavior of these structures.  Dispersion curves, 
group velocity spectra and mode shapes are obtained using the method presented here.  
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Geometric parameters such as aspect ratio and subdicing width and depth had an 
important effect on the dispersion behavior. In general, the lower aspect ratios, as well as 
lower subdicing depth, tend to increase the cut-off frequency of all modes.  Inversion 
layer was shown to have discrete effect of the dispersion relation for this type of 
structures.  Matching layers caused some resonance modes to cluster over a certain 
frequency range.  It was also shown that the mode shapes for the zero-group-velocity 
points show characteristic resonance behavior analogous to that at the cut-off frequencies.  
This study shows that both material anisotropy and subdiced cross-section play a strong 
role on the mode coupling behavior and zero-group-velocity of guided waves.  In-plane 
and out of the plane wave displacements can be easily evaluated for ultrasound 
transducer design.  These factors generate more complicated dispersion and resonance 
characteristics of 1D-array ultrasound transducers.   The method presented here can be 
used to analyze complicated geometries to get useful information for design of such 
transducers and a better understanding of the dynamic response of 1D-array ultrasound 
transducers. 
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5.1 Introduction 
 The design of ultrasound transducer is commonly based on equivalent circuits 
such as KLM, Mason, and Redwood.  In these models, the dynamic characteristics of the 
piezoelectric element, such as resonance frequency, are usually obtained using equivalent 
models, which may not represent accurately the behavior of these devices.  In this study, 
the mechanical behavior of single element transducer is modeled analytically.  In 
addition, the effect of the fluid loading and matching and backing layer on the dispersion 
curves, resonance frequencies and other dynamic parameters is analyzed.  An analytical 
model of leaky Lamb wave propagation in a thin piezoelectric plate surrounded a solid 
half-space on bottom and another half-space of tissue-like material on top is implemented 
to calculate the dispersion curves, resonance and attenuation behavior.  Several important 
changes on the dynamic characteristics of the transducer are observed when the 
piezoelectric plate is bonded to the backing layer.  The plate bonded to a backing layer 
has multiple resonance frequencies corresponding to A1, S1, A2, and S4 wave modes.  
These modes may be associated with the mutual interaction between the plate and the 
backing layer.  On the other hand, only S1 and S4 modes are observed when the backing 
layer is removed.  Interestingly, these resonance frequencies do not correspond to the cut-
off frequencies or to the zero-group-velocity points as known in the case of Lamb wave 
propagation in plates surrounded by air or vacuum.  This study shows that adding a 
backing layer affects the resonance characteristics, in which the resonance will occur at 
transition frequencies where the magnitude of the wavenumber reaches a minimum value 
(min|K|).  The addition of matching layers increases the number of modes present in the 
frequency range considered.  This study may be helpful to predict the dynamic behavior 
of piezoelectric devices, such as, single-element ultrasound transducers and Lamb wave 
acoustic sensors. 
 

5.2 Analytical Model  

5.2.1 Model Description 
 In this section, the dynamic characteristics of laminated piezoelectric structures, 
such as ultrasound transducers, are theoretically analyzed.  Usually, the transducer is 
composed of elastic and piezoelectric layers on top of a thick layer called backing layer 
(Figure 5.1).  To model the transducer, a multilayered plate surrounded by a solid half-
space, which represents the backing layer, is considered.  Another half-space of ‘tissue-
like’ fluid, representing the tissue to be imaged, needs to be considered at the front side of 
the transducer.  In this study, we are modeling the tissue using fluid acoustic properties.  
Figure 5.1 shows a schematic plot of single-element ultrasound transducer.  It is expected 
that the presence of the backing layer and tissue around the piezoelectric plate 
significantly alters wave propagation characteristics, such as attenuation and wave 
velocities.  The wave propagation can be modeled by means of leaky Lamb waves, where 
the surrounding media will be considered. 
 The theoretical analysis presented here is based on the partial wave approach, in 
which the constitutive relations and the motion equations are combined to find all the 
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possible wave components (partial waves) for a given mode.  The partial waves are 
function of the wavenumber and the frequency.  However, these two parameters are not 
independent from each other.  To satisfy the boundary conditions, it found the 
wavenumber and the frequency must be related.  That relation is known as the dispersion 
equation.  The dispersion equation provides important information such as phase and 
group velocities, cut-off frequencies and attenuation. 

 
Figure 5.1.  Schematic representation of the analytical model for analyzing the wave 
propagation on single-element ultrasound transducers. 
 

5.2.2 Dispersion Relations 
 The dispersion equations are the relation between the frequency and the 
wavenumber of a particular wave mode.  When the wavenumber is proportional to the 
frequency, the wave is called non-dispersive.  However, leaky Lamb waves are 
dispersive; this indicates that the dispersion relations are function of the material 
properties, fluid properties and dimensions of the layered plate.  In this section, an 
analytical procedure to obtain the dispersion behavior of leaky Lamb waves propagating 
in a piezoelectric layered plate and surrounded by a fluid and a solid half-spaces is 
presented.  
 In order to obtain the solution in the frequency domain, all the variables are 
Fourier transformed as follows 

 1
1ˆ i xi te e dtdxζωϕ ϕ

∞ ∞ −

−∞ −∞
= ∫ ∫ . (5.1) 

where ζ is the wavenumber in the x1 direction and ω is angular frequency.  The 
displacements, stresses and electrical displacement and potential can be stated, after 
transformation (Nayfeh, 1995), as  
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where m indicates the layer considered, q corresponds to the partial wave, m
qα  the ratio 

between the wavenumber in the x3 and x1 directions for the layer m and the partial wave 
q, the coefficients m

qU , m
qW  and m

qΦ  are generalized coordinates for the displacements 

and the electric potential, m
qβ  is an unknown coefficient for the partial wave q of the 

layer m, the coefficients Diq can be expressed in terms of the elastic stiffness matrix of the 
layer m ( m

ijC ), m
qα  and ζ  (Lee and Kuo, 2006). 

 1 13 35 35 33 13 33
m m m m m m m m m m m m m m m m
q q q q q q q q q qD C U C W C U C W e eα α α= + + + + Φ + Φ . (5.4a) 

 2 51 55 55 53 15 35
m m m m m m m m m m m m m m m m
q q q q q q q q q qD C U C W C U C W e eα α α= + + + + Φ + Φ . (5.4b) 

 3 31 35 35 33 13 33
m m m m m m m m m m m m m m m m
q q q q q q q q q qD e U e W e U e Wα α ε ε α= + + + − Φ − Φ .  (5.4c) 

 The displacements and pressure for the fluid on top of the plate can be expressed 
as (Lee and Kuo, 2006) 
 ( ) ( ) 3( / 2)2

1 3 33
ˆˆ ˆ, , 1, , / fi x Hf f f f

f fu u T i e ζαα ρ ω ζ β −= − , (5.4) 

where ( )2
1f fα ζ ζ= − , fβ  is an unknown amplitudes of the waves in the upper half-

space fluid and fζ  is the wavenumber of bulk waves in the fluid.  Since viscosity of the 

fluid is not considered 13 23 0f fT T= = .  The electric potential for a dielectric fluid satisfies 
the condition , 0f

kkφ = .  A solution of this differential equation for a wave traveling in the 
x1-x3 plane can be expressed as: 
 3( / 2)ˆ x Hf f e ζφ − −= Φ , (5.5) 
where, fΦ  is an arbitrary constant.  The sign of the exponential must be chosen such that 
the electric potential vanishes towards infinite.  The electric displacement for the fluid 
can be written as: 
 3( / 2)

3
ˆ x Hf f fD e ζε ζ − −= Φ , (5.6) 

where fε  is the electric permittivity of the fluid.   
 The continuity condition between layers implies that the displacements, stresses 
and electrical parameters must be continuous at the interfaces.  A well known method to 
satisfy these conditions is the use of the transfer matrix; which relates the displacements 
and stresses of the top and bottom surfaces of the plate (Nayfeh, 1995) 
  P AP+ −=  (5.7) 
where { }

3
33 13 3 / 2

ˆ ˆ ˆ ˆˆ ˆ, , , , ,
x H

P u w T T Dφ+

=
= , { }

3
33 13 3 / 2

ˆ ˆ ˆ ˆˆ ˆ, , , , ,
x H

P u w T T Dφ−

=−
= , H is total thickness 

of the plate, and A is a 6x6 transfer matrix in terms of the elastic properties and 
dimensions of the layered plate (Appendix C). 

5.2.3 Boundary Conditions 
 The boundary conditions can be easily treated using transfer matrix approach.  
The displacements and stresses at the top surface of the plate must match those of the 
fluid  
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where *
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ˆ ˆT T iζ=  and *

3 3
ˆ ˆD D iζ= .  The displacements and stresses at the bottom of the 

plate are the same of those of the half-space solid 
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where the matrix [P] is equivalent to the transfer matrix, but derived for the half-space 
(Appendix C), and the parameters βi and sΦ are the amplitudes of the partial waves in the 
solid half-space.  Since radiation of energy from the plate to the half-space solid is 
expected, two partial waves which have increasing amplitude with depth are the only 
ones present in the half-space solid; therefore, the amplitude β of the other two partial 
waves must be equal to zero.  Substituting Eq. (5.8) and (5.9) in (5.7), the following 
system of equations is obtained 
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 (5.10) 

where Qij are the elements of the matrix result of the product of the transfer matrix [A] 
and the [P] matrix of Eq. (5.9).  The dispersion relations can be obtained, for a given ω, 
by finding the values of ζ for which the determinant of 5x5 matrix [M] in Eq. (5.10) is 
equal to zero.  This process can be carried out using Muller’s method.  From the 
dispersion relations, a series of useful parameters can be calculated, such as phase and 
group velocity and attenuation: 
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=p , (5.11) 
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, (5.12) 
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    and Im( )
Re( )

ζγ
ζ

= . (5.13) 

5.2.4 Frequency Response to an External Force 
 In this section a novel analytic procedure to obtain the resonance frequencies, 
based on the transient response structure, is developed.  The displacement spectra of the 
laminate plate bonded to a half-space solid can be calculated using inverse Fourier 
transformation.  First, the amplitudes of the partial waves in the fluid and the solid half-
space are obtained after considering a force excitation at the transducer top surface 

  

121 22 23

231 32 33
2 2

41 42 43

51 52 53

61 62 63

0 0
0 0 1

( , ) / 0
0 0 0
0 0

f

f
s

f
ff

Q Q Q
Q Q Q

F Q Q Q
Q Q Q
Q Q Q i

βα
β

ω ζ ρ ω ζ
β

ε

    
     −        = Φ−   
    
    
  Φ       

. (5.14) 

The vector of unknown amplitudes can now be obtained by solving Eq. (5.14): 

 { } [ ] [ ]{ }1 adj
det

M F
M

β = ,   (5.15) 

where {F} is the impulse vector (left hand side of Eq. 5.14) and adj[M] is the adjugate 
matrix of [M].  The displacements on the top of the plate can be obtained using Eq. (5.9) 
and the results from Eq. (5.15). The displacements response at a certain point x1 can be 
obtained by the inverse transformation: 

 1
3 1 3

1 ˆ( , ; ) ( ; , )
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i xx x x e dζϕ ω ϕ ζ ω ζ
π

∞

−∞
= ∫    (5.16) 

 The integration of Eq. (5.16) is a complex integration that must be carried out 
over half of the complex plane.  The residue theorem states that the integral is equal to 
2πi multiplied by the summation of the residues enclosed by the path.  Both of ui and φ 
have a series of singularities when det [M] = 0.  However, these singularities are poles of 
first order since the singularity vanishes when Eq. (5.15) is multiplied by (ζ-ζn).  
Therefore, the residues for displacements normal to the top of the plate can be defined as: 
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where, 
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The displacement frequency response at the top of the plate can now be written as: 

 1*
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1 1,2
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i x

q q
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u x i Q e ζω β
= =

= ∑ ∑ , (5.19) 

where N is the number of poles considered in the integration.  Pan and Datta [31] 
determined that accurate results can be obtained with 40 ≤ N ≤ 60.  Choosing the 
displacement response at the point of excitation (x1 = 0), Eq. (5.19) can be expressed as  
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1 1,2
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q q
n q

u i Qω β
= =

= ∑ ∑ . (5.20) 
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Equation (5.20) represents the frequency response of the displacement and electric 
potential due to an external force.  If an impulse force is considered, the resonance 
frequencies can be obtained by plotting the amplitude of the displacement vs. frequency. 

5.3 Experimental Validation  
 To validate the results of the analytical model, the resonance frequencies of PZT-
5H plates with and without backing layer were obtained experimentally.  The 
experimental setup shown in Figure 5.2 was used to obtain the resonance frequencies by 
measuring the displacement response of the piezoelectric plate after an electric impulse 
excitation.  A function generator (Model AFG3102, Tektronix Inc., Beaverton, OR) was 
used to apply an electric impulse to plate with voltage amplitude of 10 V and duration of 
1 µs.  Then, the displacements in the normal direction of the plate were measured using a 
Nd:YAG interferometer (Model Tempo, Bossa Nova Technologies, Venice, CA).  The 
data was acquired using an oscilloscope (Model TDS 2024B Tektronix Inc., Beaverton, 
OR).  The resonance frequencies were obtained by calculating the Fast Fourier 
Transformation (FFT) of the time domain signal.   

 
Figure 5.2.  Experimental setup to measure the resonance frequencies of piezoelectric 
plates with and without backing layer. 

5.4 Results and Discussion  
 The dispersion relations for the structures considered in this study can be obtained 
by solving Eqs. (5.10). This means that for a given value of the frequency ω there are 
several values of the wavenumber ζ that satisfy the conditions expressed in Eq. (5.10).  
Once the dispersion relation is determined, the wave attenuation and velocities can be 
obtained.  The dispersion curves for several transducer configurations are compared to 
evaluate the effect of backing layer, matching layers and fluid loading on the dynamic 
behavior of these devices.  The results in this study are presented using non-dimensional 
frequency ( ( )44h Cω ρΩ = ) and non-dimensional wavenumber ( hζΚ = ), where h, ρ 
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and C44 are the thickness, density and shear modulus of the piezoelectric plate, 
respectively. 

5.4.1 Validation 
To validate the present analytical formulation, results from two special cases reported by 
Achenbach and Kasheva (1967) and Nayfeh and Chimenti (1984) were adopted.  First, an 
elastic isotropic plate bonded to an isotropic half-space was considered (Achenbach and 
Keshava, 1967).  The ratio between the mass densities L hsρ ρ was set equal to 0.75, the 
ratio between the shear moduli /L hsG G  was 0.1 and the Poisson’s ratio was 0.25 for both 
materials.  The comparison for the phase velocity vs wavenumber for the first four modes 
shows an excellent agreement between the formulations (Fig. 5.3).  Second, a comparison 
between experimental and theoretical results of Rayleigh wave propagation in a steel 
half-space coated with chromium and surrounded by water on top was considered.  The 
densities and mechanical properties are presented in Table 5.1.  A very good agreement 
between the present formulation and the theoretical and experimental results reported by 
Nayfeh and Chimenti (1984) was observed (Fig. 5.4).  
Table 5.1a.  Mechanical properties for the materials used in the analysis. 

Elastic Properties 
(GPa) 

Density 
(Kg/ m3) 

Impedance 
(MRalys) Material 

C11 C12 C13 C33 C44 C66 ρ  
PZT-5H 120 75.2 75.1 111 21.1 22.6 7750 30.5 
PZT-4 139 77.8 74.3 115 25.6 30.6 7500 32.3 
Steel 255 103 103 255 76 76 7900 46.6 
Chromium 313 83 83 313 115 115 7200 47.5 
Backing Layer 1 7.98 5.18 5.18 7.98 1.4 1.4 1130 3.0 
Backing Layer 2 13.0 5.6 5.6 13.0 3.7 3.7 3888 7.1 
Matching Layer 1 26.0 10.0 10.0 26.0 8.0 8.0 2889 8.6 
Matching Layer 2 4.64 1.64 1.64 4.64 1.5 1.5 1160 2.3 

 
Table 5.1b. Piezoelectric properties for PZT-4. 

Piezoelectric Stress Constant 
(C/m2) 

Clamped Dielectric 
Constants Material 

e15 e31 e33 ε33 ε11 
PZT-5H 12.3 -5.4 15.8 830 916 
PZT-4 12.7 -5.2 15.1 635 730 

 
 The effect of the backing layer on the resonance frequency for a piezoelectric 
plate has been studied experimentally and analytically.  First, the resonance frequency for 
a PZT-5H with and without backing was obtained following the procedure described 
above.  Figure 5.5a shows a reduction of 9.1% of the resonance frequency when a 
backing layer of acoustical impedance of 3 MRayls (Table 5.1) is bonded to the 
piezoelectric plate.  This difference is important for the selection of the operation 
frequency and the design of matching layers for the transducer.  The resonance 
frequencies, obtained using the analytical model, were also validated and compared with 
experimental measurements.  Figure 5.5b shows the comparison of the resonance 
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frequencies for a PZT-5H plate bonded to a 3.0 MRayls backing layer. The difference 
between analytical prediction and experimental values was 5.8% and 4.7% for the first 
and second resonance frequencies, respectively.  This comparison shows a good 
agreement between the analytical analysis presented here and experimental 
measurements. 

 

 
Figure 5.3. Validation of the model: Comparison of the analytical results for the first four 
modes presented by Achenbach and Keshava (1967) for an elastic layer on top of an 
elastic half-space. 

 
Figure 5.4. Validation of the model: Comparison between the analytical and 
experimental results reported by Nayfeh and Chimenti (1984) for a chromium layer 
surrounded by a half-space solid (steel) and a half-space fluid (water). kts is wavenumber 
of the shear mode of the substrate and h is the thickness of the chromium layer. 
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                                     a)                                                                    b) 
Figure 5.5.  Effect of backing layer on the resonance frequencies of a piezoelectric plate. 
a) comparison between experimental resonance frequencies for a PZT-5H plate with and 
without backing layer, and b) comparison between experimental and analytical prediction 
of the resonance frequencies of PZT-5H plate on a backing layer. 

5.4.2 Effect of the backing layer on the dispersion curves and resonance frequencies 
 Once the analytical formulation has been validated, the effect of the backing and 
matching layers on the dispersion curves and resonance frequencies can be now studied 
analytically.  First, the dispersion curves for a PZT-4 plate bonded to an elastic half-
space, representing the backing layer (7.1 MRayls), are compared to those obtained for 
the PZT-4 plate in vacuum or air (Fig. 5.6a).  The dispersion curves for the S0 and A0 
modes present small variations compared with plate in vacuum or air.  The dashed line of 
the A0 mode corresponds to the non-radiating portion of this mode; details about 
radiation are given below.  The A1 and S2 modes exist at lower frequencies and their cut-
off frequency has been considerably reduced.  Figure 5.6b shows the trajectory on the 
complex plane of the first five modes.  It can be observed that, for the piezoelectric plate 
bonded to a backing layer, the wavenumber for all the modes are complex values, even at 
the cut-off frequencies when Real (Κ) = 0.  On the contrary, for the plate in vacuum the 
wavenumbers are real values, except for the S1 mode which is complex for low 
frequencies (Ω < 6.0) and becomes real for frequencies larger than the zero-group-
velocity (ZGV) point. 



    53

a) b)  

 c) d)  
Figure 5.6.  Comparison between a PZT-4 surrounded by air and bonded to a half-space 
solid representing a backing layer: a) Three-dimensional dispersion curves for a PZT-4 in 
vacuum, b) Three-dimensional dispersion curves for PZT-4 plate bonded to a backing 
layer (7.1 MRayls), c) Comparison between two-dimensional dispersion curves, d) 
comparison between the trajectory of all the modes in the complex plane. 
. 
 
 The attenuation of the first five modes for the PZT-4 plate bonded to the backing 
layer (7.1 MRayls) is presented in Fig. 5.7.  The phase velocity of all the modes, except a 
small portion of the A0 mode at low frequency Ω (< 0.81), is larger than the shear 
velocity of the backing layer; therefore, acoustic waves are radiated from plate to the 
backing layer.  On the other hand, when the phase velocity of the A0 mode is smaller than 
the phase velocity of the substrate, there is not radiation of energy to the backing layer 
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and the displacements in the substrate decay with depth, similar to Rayleigh waves.  The 
radiation of acoustic waves implies that the waves propagating in the plate are gradually 
losing energy and amplitude with distance.  This effect is known as attenuation and can 
be calculated from the dispersion relations by Eq. (5.13).  It can be observed that both A0 
and S0 modes have low attenuation in the considered range of frequencies.  The A0 mode 
is not attenuated when its phase velocity is lower than the shear velocity of the backing 
layer at frequency Ω (< 0.81).  The S1 mode exhibits a very high attenuation behavior at 
low frequency Ω (< 6.3).  An interesting behavior is observed for the A1 and S2 modes 
that they have infinite attenuation component although the imaginary component of the 
wavenumber is finite at cut-off frequency (i.e., Real(Κ) = 0).  However, the ratio between 
the imaginary and real parts of the wavenumber tends to infinity.  The attenuation of 
these modes decreases to values similar to those of propagating modes (A0 and S0) after a 
certain frequency denoted as ‘transition frequency’.  On the other hand, the S1 mode has 
a finite attenuation component at low frequency; however, there is a significant reduction 
of the attenuation occurs as the frequency increases beyond the transition frequency.  The 
transition frequency can be defined qualitatively as the frequency for which the 
attenuation reduces to values similar to those of the propagating modes (A0 and S0).  
Physically, this frequency can be interpreted as the frequency for which a given mode 
becomes propagating; similar to the concept of cut-off frequency for plates in vacuum.  A 
quantitative definition can be given for some modes as the frequency for which the 
magnitude of the wavenumber (|K|) reaches a minimum value.  The A1 and S1 modes 
have a minimum magnitude of the wavenumber at wave frequency Ω (= 3.26, and 6.3), 
respectively.  If these two points are marked in the attenuation curves (Fig. 5.7), it can be 
observed that they are related to transition from high to low attenuation.   
 It is important to notice that there exists a relation between the resonance 
frequencies and the frequencies for which the wavenumber has a minimum magnitude 
(transition frequency).  Figure 5.8 shows the displacement response and the magnitude of 
the wave for the corresponding modes for a PZT-4 plate bonded to a backing layer of 3.0 
MRayls.  It is evident that the resonance frequencies are associated with the frequencies 
for which the absolute value of the wavenumber reaches a minimum (i.e., transition 
frequencies).  This relation shows the importance of the dispersion curves on the dynamic 
behavior of these structures.  
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Figure 5.7.  Attenuation spectra of the first five modes for a PZT-4 plate bonded to a 
backing layer (Zb = 7.1 MRayls). Transition frequencies for A1 and S1 modes are 
presented by (min|K|) points. 
 
 The effect of the backing layer on the resonance frequencies can be observed in 
Fig. 5.9.  Comparing the displacement response of a plate in vacuum and one bonded to 
backing layers, it can be observed that the resonance frequencies associated with the S1 
and S4 modes are very similar (~2% difference).  This observation may suggest that these 
resonance frequencies are mainly influenced by the mechanical behavior of the 
piezoelectric plate.  On the other hand, the resonance points associated with the A1 and 
A2 modes were not observed for the plate without backing layer; therefore, they must be 
related to the mutual interaction between the plate and the backing layer.   

 
Figure 5.8.  Relation between the resonance frequencies and the minimum magnitude of 
the wavenumber for a PZT-4 plate with a backing layer (Zb = 3.0 MRayls). 

 
Figure 5.9.  Comparison of the first two resonance frequencies for a PZT-4 plate with 
and without backing layer. 
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5.4.3 Effect of fluid loading on the dispersion curves and resonance frequencies 
 The effect of fluid-loading on the characteristics of wave propagation is also 
studied.  A comparison between the dispersion curves for air/vacuum and water loading 
on a PZT-4 plate bonded to a backing layer (7.1 MRayls) is presented in Fig. 5.10.  It can 
be observed that the difference on the dispersion curves is small especially for the lowest 
modes.  This indicates that the main changes in the dispersion curves are caused by the 
presence of the backing layer and no significant change will be observed on dynamic 
behavior of transducer when the fluid loading is considered.  However, a change in 
attenuation for air and water loading was observed for low-order modes (Fig. 5.11).  The 
attenuation increases approximately 30% at low frequencies for the A0 mode and about 
15% at Ω = 5 for the S0 mode. 

 
Figure 5.10.  Comparison of the dispersion curves for a PZT-4 plate bonded to a backing 
layer (Zb = 7.1 MRayls) with air and water on top. 
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Figure 5.11.  Comparison of the attenuation between water and air on top for a PZT-4 
plate supported by a backing layer (Zb = 7.1 MRayls). 
 

5.4.4 Effect of matching layers on the dispersion curves and resonance frequencies 
 
 The effect of matching layers has been also considered.  The matching layers 
were designed following the KLM methodology for water loading.  The mechanical 
properties are shown in Table 5.1.  This configuration represents a fully functional 
immersion single-element transducer.  The dispersion curves show an increase in the 
number of modes present in the frequency range considered (Fig. 5.12).  Furthermore, the 
number of modes starting from the complex plane (highly attenuated at low frequencies) 
has increased.  Comparing Figs. 5.6 and 5.12, it is noticed hat the matching layers 
decrease the cut-off frequencies and increase the number of propagating modes within the 
same frequency range.  The attenuation for some of the modes is presented in Figure 
5.13.  It can be observed that the attenuation presents similar behavior than the previous 
cases.  The relation between the resonance frequencies and the magnitude of the 
wavenumber can be observed in Figure 5.14.  Again, the resonance frequencies are 
present at the frequency for which the magnitude of the wavenumber is minimum.   

 
Figure 5.12.  Dispersion curves for a PZT-4 transducer including backing layer (7.1 
MRayls), matching layers (Table 5.1). 
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Figure 5.13.  Attenuation of selected modes for a PZT-4 transducer with a backing layer 
(7.1 MRayls), matching layers (Table 5.1). 

 
Figure 5.14.  Comparison between the resonance frequencies and the magnitude of 
magnitude of the wavenumber for a PZT-4 transducer with a backing layer (7.1 MRayls), 
matching layers (Table 5.1). 
 

5.5 Conclusions 
 An analytical model has been presented to study the dynamic behavior of single-
element ultrasound transducers.  This model is based on leaky Lamb wave analysis, 
which has been widely used for NDT applications.  A procedure to calculate the 
resonance frequencies for ultrasound transducers based on the dispersion curves has been 
derived and experimentally validated.  The analysis of the effect of matching and backing 
layers showed that significant differences can be observed in the dispersion curves, 
attenuation and resonance frequencies.  The addition of a backing layer lowered cut-off 
frequencies of the modes.  It was also found that those modes have infinite attenuation at 
the cut-off frequency. However, the attenuation decreased to very low values after certain 
transition frequency.  The transition frequency occur at minimum wavenumber values 



    59

(min |K|), and the wave displacements exhibit resonance behavior at these frequencies.  
This study would be useful for accurate characterization of multi-resonant frequencies of 
ultrasound transducers using leaky Lamb wave analysis. 
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6 Modeling and Optimization of Acoustic Sensors Chapter 

6 
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6.1 Introduction 
 
Many types of sensors have been designed and fabricated based on surface acoustic 

waves (SAW).  The principle behind all these sensors is that a change in the mechanical 
properties (i.e. density) of the surrounding environment will produce a measurable 
variation of one or several parameters of the wave propagation.  Some sensors have a 
special layer, which absorbs or attract substances or viruses causing a change in the 
mechanical properties of the layer and consequently alters the characteristics of the wave 
propagation (Gronewold, 2007).  Other sensors do not change their properties, but the 
interaction with the surrounding fluid allows them to ‘sense’ a change in the fluid 
properties, such as density, viscosity, etc.  These sensors are based on the propagation of 
‘leaky’ surface acoustic waves (Lindner, 2008).  Leaky waves are characterized by an 
exchange of energy between the solid and fluid, which produces a reduction or 
attenuation of the amplitude of the wave along the direction of propagation.  The severity 
of this attenuation is function of the frequency and the properties of the fluid (Nayfeh, 
1995).  Therefore, for a given frequency, a change in the attenuation is an indication of a 
change of the fluid properties.  In addition to attenuation, a reduction in the wave velocity 
may also be observed.  Consequently, wave velocity can be also used as a probe to 
measure changes in the fluid. 
 Several types of surface waves have been applied in ultrasonic sensors (Ballentine 
et al., 1997).  Rayleigh wave sensors are composed of one or several thin layers bounded 
to an elastic substrate.  Rayleigh wave is a surface wave characterized by an elliptic 
displacement of the surface particles.  This displacement is contained in the plane formed 
by the propagation direction and the axis normal to the surface (Auld, 1990).  The out of 
plane component of the displacement produces a strong coupling between the surface and 
the bulk wave in the fluid.  On the other hand, shear-horizontal surface waves are 
characterized by an oscillatory displacement parallel to the surface and perpendicular to 
the propagation direction (Auld, 1990).  This implies that the out-of-plane component of 
the displacement is negligible or not present at all.  This type of wave has been frequently 
used to measure of monitor changes in the viscosity of the fluid (Ricco and Martin, 
1987).  Usually the displacements of surface waves are confined to surface, i.e. the 
penetration depth of these waves is about one wave length. 
 When the thickness of the substrate is finite, i.e., the thickness of the substrate is 
comparable with the wave length, the propagated wave is called Lamb waves.  Three 
modes of Lamb waves can be excited: symmetric, anti-symmetric and shear-horizontal.  
The displacements of these modes are similar to those of Rayleigh waves, but the 
amplitude is higher.  Usually, for thin plates, only the lowest-order symmetric and anti-
symmetric modes (S0 and A0, respectively) can be excited.  In fact, these modes exhibit 
dispersion behavior, where the wave velocity is dependent on the wave frequency.  For 
very high frequencies the wave velocity of these modes tends to the Rayleigh wave 
velocity.  Sensors based on Lamb waves usually have a strong coupling with the 
surrounding fluid and a high sensitivity (Ballentine et al., 1997); consequently, they are 
preferred over Rayleigh wave sensors. 
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 Sensitivity is a property of the sensor related to its capacity to detect changes in 
its environment.  Therefore, each type of sensor has a different measurement of the 
sensitivity (Abdollahi, et al., 2007; Duhamel et al., 2006; Wu et al., 2008; Wenzel and 
White, 2008).  For instance, sensors based on a sensitive layer which attracts certain 
biological molecules or agents have a sensitivity defined as the shift in resonant 
frequency over the gain in mass.  In this study, the sensor is meant to monitor variations 
of the density of the surrounding fluid using attenuation of phase velocity.  Several 
studies have addressed the sensitivity of this type of sensors (Wenzel and White, 1988; 
White and Wenzel, 1988).  A detailed description of the sensitivity will be presented 
below.  
 The design of ultrasonic sensors requires the determination of geometrical 
parameters such as thickness of the piezoelectric layer and width and spacing of the IDT 
(Fig. 6.1).  The width and spacing of the IDT is very important since it determines the 
wavelength and therefore the operation frequency of the transducer.  On the other hand, 
thickness of the piezoelectric plate is related to the wave velocity, coupling factor and 
attenuation of the transducer.  These two parameters can be selected to optimize the 
sensitivity for a given application.   
 To design a sensor for maximum sensitivity, it is necessary to calculate the 
change on attenuation and phase velocity for Lamb waves as a function of the density or 
other fluid parameters (Dickherber et al., 2009; Wang et al., 2007).  Usually, numerical 
methods such as Finite Elements are used to simulate the wave propagation on this type 
of structures (Abdollahi et al., 2007).  However, they are time consuming and the analysis 
of the data is often complicated.  In this study, the analytical solution presented in 
Chapter 5, which is valid for multilayered piezoelectric plates surrounded by a fluid, is 
used to calculate the attenuation and wave velocities directly in the frequency domain.  A 
design procedure based on these results will also be presented. 
 
 
 

 
Figure 6.1.  Geometrical parameters to be optimized for maximum sensitivity. 
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6.2 Model Description 
 
Rayleigh sensors are modeled as a multilayered infinite medium since the distance 

between IDTs is much larger than the thickness of the piezoelectric layer (Fig. 6.1).  A 
piezoelectric plate is surrounded by a half-space solid and a half-space fluid on the other 
side representing the substrate and the environment, respectively. On the other hand 
Lamb wave sensors are modeled as a plate with fluid in one or both sides.  The presence 
of fluid on the surface of the plate introduces several changes in the waves travelling 
between IDTs.  Attenuation and reduction of the wave velocities are among the principal 
effects of the surrounding fluid.  
 The theoretical analysis of these sensors is based on the solution presented in 
Chapter 5, in which the constitutive relations and the motion equations are combined to 
find all the possible wave modes (partial waves) present on the plate (Nayfeh, 1995).  
The analytical formulation describes the procedure to obtain phase and group velocities 
and attenuation.  The coupling coefficient and sensitivity can be obtained from the wave 
velocity and attenuation.    

6.3 Coupling Coefficient 
 
The coupling coefficient is a measurement of the piezoelectric effect on the sensor 
(Kallard, 1971).  The presence of piezoelectricity increases the velocity of Rayleigh 
waves compared with the velocity it would have if only the elastic behavior were 
considered. This solution sometimes is called stiffened Rayleigh wave (Matthews, 1977).  
The effect of piezoelectricity can be partially ‘switched-off’ by short-circuiting the 
surface where the IDTs are located.  The change in the Rayleigh wave velocity as a 
function of frequency can be observed in Fig. 6.2, for an Aluminum Nitride (AlN) layer 
bonded to a Silicon substrate (Table 6.1). Lower velocities are observed for the short-
circuit condition, especially at high frequencies.  
 

 
 

Figure 6.2. Comparison of the Rayleigh wave velocity for open-circuit and short-circuit 
boundary conditions for an AlN piezoelectric layer bonded to Silicon substrate.  
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Table 6.1a.  Mechanical properties for the materials used in the analysis. 
Elastic Properties 

(GPa) 
Density 
(Kg/ m3) 

Impedance 
(MRalys) Material 

C11 C12 C13 C33 C44 C66 ρ  
AlN 345 125 120 395 118 110 3290 19.4 
SiO2 78.5 16.1 16.1 78.5 3.12 3.12 2200 13.1 

 
Table 6.1b. Piezoelectric properties for PZT-4. 

Piezoelectric Stress Constant 
(C/m2) 

Clamped Dielectric 
Constants Material 

e15 e31 e33 ε33 ε11 
AlN -0.48 -0.6 1.46 9.0 10.7 
SiO2 --- --- --- 4.5 4.5 

 
 

A measurement of the piezoelectric effect on the wave velocity is defined by the 
coupling coefficient 

 2 2 vk
v
∆

= , (6.1) 

where v∆  is the change in velocity due to the electrical shortening of the surface of the 
sensor. A high value of the coupling coefficient represents a high interaction efficiency of 
the wave with the electrodes (IDT) placed on the surface. This factor is important in the 
choice of substrate materials and layer dimensions for many surface wave devices.  For a 
sensor composed of an AlN layer deposited on top a silicon substrate the coupling factor 
as a function of the product of frequency by thickness is shown in Fig. 6.3.  It can be 
observed that the coupling coefficient is maximum close to 2.5 GHz⋅µm.  This parameter 
can be used to select the optimum thickness at a given frequency. 

 
Figure 6.3. Coupling coefficient as function of the frequency and thickness of the AlN 
layer.  
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6.4 Wavelet Analysis 
 

The group velocity of Rayleigh and Lamb waves is associated with the energy 
carried by the wave.  For Lamb waves the wave energy is distributed in all the 
propagating modes at a given frequency; and each of these modes travels at a different 
velocity.  Therefore, the signal acquired by the receiving IDT is a combination of 
individual signals with different amplitudes and arriving times.  The wavelet 
transformation of the acquired signal can provide useful information since it quantifies 
the amount of energy carried by each mode as a function of time and frequency 
(Kishimoto et al., 1995).  This decomposition of the signal allows an easy identification 
of the modes and calculation of the group-velocities of the wave.  

The wavelet transform used in this study was the Gabor wavelet which is based 
on the Gaussian function.  Gabor Wavelet has been widely used in the field of acoustic 
emission because of the small window in the time as well as in the frequency domain that 
it can provide (Kishimoto et al., 1995; Wang and Yuan, 2007).  The mother wavelet and 
its Fourier transform are given as: 

 

1 21 22
4( ) exp

2
p p

p
tt i t

ω ω
π ω

γ γ
−     

Ψ = − +    
     

, (6.2) 
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2

p p
p

tω ω
ω π π ω ω

γ γ
−     

Ψ = − −    
     

 . (6.3) 

where pω is the center frequency and γ  is a constant taken as ( )1 22 ln 2γ π= =5.336 
(Jeong and Jang, 2000). 
 A Rayleigh wave sensor composed of an AlN layer with thickness of 900 nm 
bonded to a SiO2 substrate and with a distance between IDTs of 220 µm was considered 
for this analysis.  An impulse voltage of 20 ns and 10V was applied to the emitting IDT.  
This impulse signal was also used to trigger the data acquisition at the receiving IDT.  
The received signal was then transformed as explained above to obtain the arrival time.  
Figure 6.4a shows the impulse signal fed to the emitting IDT, Fig. 6.4b shows the 
acquired signal from receiving IDT and Fig. 6.4c shows the wavelet contours of the 
acquired signal.  The dark red spot in the wavelet contour corresponds to the arrival time 
and frequency of the received signal 73 ns.  
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a) b)  

c)  
Figure 6.4.  Determination of the experimental arrival time for a Rayleigh wave sensor 
using wavelet transformation: a) Impulse signal applied to the emitting IDT, b) Acquired 
signal from receiving IDT, c) wavelet contour of the acquired signal.  The dark red spot 
indicates the frequency and arrival time of the wave.  
 
 

To compare the measured values with those obtained using the analytical model, 
the group velocities as a function of frequency (Fig. 6.5a) were calculated using the 
analytical formulation.  It can be observed from this figure that the group velocity 
presents a small change with an increase of the frequency.  The theoretical arrival time 
can be calculated dividing the distance between IDTs by the group velocity (Fig. 6.5b).  
A comparison between theory and experiments can be observed in Fig. 6.5c, which 
shows a good agreement of the arrival time (difference 9.8%). 
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a) b)  

c)  
Figure 6.5.  Theoretical prediction of the arrival time using the analytical model 
presented in chapter 5: a) group velocity spectra, b) arrival time as function of frequency, 
c) comparison of the theory with the experiments.  

6.5 Sensitivity and Optimization 
 

 In this section, several sensitivity measurements are defined and an optimization 
procedure based on the wave propagation on SAW sensors is described.  Several 
parameters of the wave propagation, such as phase velocity or attenuation can be used to 
monitor changes on the properties of the fluid surrounding the sensor.  Sensitivity can be 
defined as the ratio of a change of a certain parameter of the propagating wave to the 
change in the property of the surrounding fluid.  Therefore, the sensor sensitivity can be 
defined as: 

 v
v v

g

g g
f fS

ρ ρ
∆

=
∆

, and γ
γ γ

ρ ρ
∆

=
∆ f fS ,             (6.4) 

where γ  is the attenuation of the amplitude of the wave due to radiation of energy to the 
fluid, vg is the group velocity and fρ  is the density of the fluid.  Using Eqs. (5.24) and 
(5.25), the sensitivities of Rayleigh and Lamb wave sensor can be analytically calculated. 
 For the case of Rayleigh wave sensors it was found that the sensitivity for air does 
not depend on the frequency (Figure 6.6). However, when the external fluid is water, 
there is a small variation of the sensitivity as a function of the frequency and thickness of 
the piezoelectric (Figure 6.6).  Notice that the sensitivity of the group velocity for a 
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change in the density of air or water is very small. Therefore, the group velocity should 
not be used as a probe for density sensing.  On the other hand, sensitivities close to 1.0 
are obtained for the attenuation.  This means that a ratio 1:1 is obtained between the 
changes in attenuation and density. 
 

 
 
Figure 6.6.  Comparison of the sensitivity for a Rayleigh sensor for air and water as 
surrounding fluids: a) Sensitivity using the group velocity as a probe, b) Sensitivity using 
attenuation as a probe. 
 
 Due to the difference in the shear wave velocities between the AlN layer and the 
SiO2 substrate there will be a transition from Rayleigh wave to A0 Lamb wave mode 
when the phase velocity of the Rayleigh wave reaches the shear velocity of the substrate.  
This transition can be observed in Fig. 6.7.  Notice that there is gap in frequency where 
neither Rayleigh nor A0 Lamb modes exist, however, other modes like S0 may propagate 
at that frequency band. The sensitivities for A0 and S0 Lamb modes are presented in Fig. 
6.8.  It can be observed that the sensitivity of the attenuation of the A0 mode increases 
asymptotically to 1.0; while the sensitivity of the S0 mode is very small compared with 
that of the A0 mode.  On the other hand, the sensitivity of the group velocity has 
comparable values for both modes, however is small when compared with the attenuation 
sensitivity of the A0 mode. 

 
 

Figure 6.7.  Transition form Rayleigh wave to A0 Lamb Wave for a sensor composed of 
an AlN layer on a SiO2 substrate.  
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a) b)  
Figure 6.8.  Density sensitivity using attenuation (a) and group velocity (b) for a sensor 
composed of an AlN layer on SiO2 substrate. 
 
 The model presented in Chapter 5 can be also used to analyze the wave 
propagation and sensitivity of Lamb wave sensors.  This type of sensor is characterized 
by having fluid on both sides of the diaphragm.  Figure 6.9 shows the dimensions and 
materials for the sensor considered in this analysis.  The sensitivities of the attenuation 
and group velocity for air and water are shown in Fig. 6.10.  It can be observed the 
sensitivities for the attenuation are similar for the A0 and S0 for both air and water as 
surrounding fluids. However, the sensitivity of the group velocity for air is negligible 
when compared to that of water.  In general, the sensitivity of the attenuation has always 
shown higher values than the sensitivity using velocities as probe.   
 

 
Figure 6.9.  Dimensions and materials for a Lamb wave sensor.  

 

a) b)  
Figure 6.10. Sensitivity of the A0 and S0 modes for a Lamb wave sensor: a) using the 
attenuation, b) using the group velocity. 
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 For Rayleigh and Lamb wave sensors, the wavelength of the excited wave is 
determined by the width of the IDT fingers.  This implies that wave excited will have 
mainly one wavelength component.  From the dispersion equations, the frequency 
associated with that wavelength can be obtained.  Therefore, the sensor can only be 
operated at a single frequency, which is indirectly determined by the dimensions of the 
IDTs.  For these reasons, it is very important to determine at which frequency the 
maximum sensitivity is obtained.  The analytical solution presented above can be used to 
obtain the sensitivity as a function of the frequency and wavelength.  Therefore, the 
design of the sensor and the IDTs can be optimized to get the maximum sensitivity.  In 
addition to this, the solution also allows analyzing which of the wave parameters (γ, vp or 
vg) is more suitable to use as a probe for the sensor for a given application.  The 
optimization procedure is illustrated in the flow chart presented in Fig. 6.11. 

 
Figure 6.11. Optimization procedure for Lamb-wave sensors using the analytic solution 
presented here.   
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 The analytical model presented in Chapter 5 can be used to get all the parameters 
required optimize the sensor.  The optimization procedure will be illustrated for a Lamb 
wave sensor using the sensitivity of the group velocity for A0 mode.  It can be observed 
that there is a value of Frequency×Thickness (f⋅H = 5.8 GHz⋅µm) for which the 
sensitivity is maximal (Fig. 6.12a).  From the dispersion curves, a relation between the 
wavelength and the frequency can be obtained for this mode (Fig. 6.12b).  Therefore, the 
value of the ratio λ/H for maximum sensitivity is 0.8. In general, the fabrication process 
imposes restrictions on the minimum width of the IDT fingers and maximum thickness 
that can be achieved by photolithography and sputtering.  In this example the IDT’s 
finger width 2 µm was selected; therefore a total thickness of the diaphragm should be 
2.5 µm to obtain the maximum sensitivity. 
 

a) b)  
 
Figure 6.12. Procedure to design parameters for maximum sensitivity. a) f⋅H values and 
b) λ/H. 

6.6 Conclusions 
 

In this chapter, the modeling of Rayleigh and Lamb wave sensors was presented.  
Several important parameters of the sensor such as coupling coefficient and sensitivity 
were determined analytically.  It was observed that the sensitivity of the attenuation has 
higher values than that of the wave velocities when air or water were considered as 
surrounding fluids.  Additionally, the sensitivity of the wave velocity for air was 
negligible when compared to that for water.  A procedure to optimize the dimension of 
the components of the sensor based on the dispersion curves and the sensitivity was 
proposed and illustrated. 
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7 Conclusions and Future Work Chapter 

7 
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This dissertation was focused on the analytical and numerical modeling of ultrasound 

transducer and acoustic sensors.  Single-element ultrasound transducers were analyzed 
numerically and analytically in Chapters 3 and 5, respectively.  In these chapters, the 
wave propagation and resonance frequencies were obtained numerically and analytically.  
It was found that when free-boundary conditions are assumed for the piezoelectric plate, 
the resonance frequencies at the ZGV points are more significant than those at the cut-off 
frequencies.  However, this relation changes when a fluid or solid is bounded to the plate.  
It was also observed that resonance frequencies correspond to the frequencies at which 
the absolute values of wave number are minima.  Another important finding related to the 
effect of the presence of a fluid or solid around the plate is that some modes do not longer 
have cut-off frequencies, but instead a transition frequency from highly attenuated to a 
propagating state was observed.  The effect of inversion layer was found to slightly 
change the values of the first and second resonance frequencies, which are very important 
for the design of harmonic imaging transducers.   
 On the other hand, 1D array ultrasound transducers are modeled as periodic 
piezoelectric plates with finite cross-section.  A 2D semi-analytic finite-element 
formulation combined with periodic boundary conditions was developed to analyze the 
dispersion behavior of these structures.  Dispersion curves, group velocity spectra and 
mode shapes were obtained using the method presented here.  The effect of geometrical 
parameters such as aspect ratio, subdicing width and depth, matching layers and inversion 
layers were analyzed using this model. In general, the lower aspect ratios, as well as 
lower subdicing depth, tend to increase the cut-off frequency of all modes.  Inversion 
layer was shown to have discrete effect of the dispersion relation for this type of 
structures.  Matching layers caused some resonance modes to cluster over a certain 
frequency range.  The method presented here can be used to analyze complicated 
geometries for 1D array ultrasound transducers. 

Finally, it was found that the analytical model presented for single-element 
ultrasound transducer could be also used to model Rayleigh and Lamb wave sensors.  
This analytical formulation allows the calculation of important parameters of the 
transducers like sensitivity.  As part of the validation of the model, the wave velocity was 
obtained experimentally and compared with the analytical prediction; a good agreement 
between them was obtained.  It was observed that the sensitivity of the attenuation has 
higher values than that of the wave velocities when air or water were considered as 
surrounding fluids.   

 In the future, several studies can continue the developments presented in this 
dissertation.  As mentioned before, this dissertation was focused in the analytical and 
numerical modeling of piezoelectric devices.  However, it would be desirable to evaluate 
the improvement on the efficiency of the transducer and quality of the ultrasound images 
obtained using transducers designed with the methodologies presented in this study.  In 
the same way, acoustic sensor designed according the optimization procedure presented 
here can be fabricated and tested for several environments and applications.  
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Appendix A:  Mass and Stiffness Matrices for 1D SAFE 
 
The matrices shown in Eq. (3.3) are defined as, 
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where 
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N1, N2 and N3 are quadratic interpolation functions with three equally spaced nodal 
surfaces given as, 
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Equation (3.5) can be expressed in terms of Eq. (3.3) as: 
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Eq. (3.4) can be rewritten using Eq. (A.2) as  
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Assembling the global matrices according to the connectivity of the elements, Eq. (A.3) 
can be written in terms of the global matrices as: 
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where, 
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e=M m∪ ,  e
ij ij=K k∪ , e=F f∪ , and e=V v∪ . 

Carrying out the variations in Eq. (A4), the global system of equation of motion is 
obtained 
 1 2 , 3 ,X XX+ + − =MV K V K V K V F�� . (A5) 
where K2 = K21 – K12. 
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Appendix B:  Mass and Stiffness Matrices for 2D SAFE 
 
The terms of the Eq. (4) can be written in terms of v y q as follows: 

 1
2

TKE dυ υ= ∫∫∫ v ρv� � ,  1
2

TH dυ υ= ∫∫∫ q Cq , and  T

S
W dS= ∫∫ v f ,    (B1) 

where,  
T −

=  − − 

c e
C

e ε
  and 

0

ρ
ρ

ρ

 
 
 =
 
 
 

ρ . 

Eqs. (27) can be rewritten in terms of Eq. (26) as follows: 
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Here, N = [N1 N2 N3 N4] are the isoparametric interpolation functions for a four-node 2D 
element. Eq. (B1) can be expressed in terms of Eq. (B2) as: 
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The Hamilton’s principle in terms of single element displacements and velocities can be 
written as 
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  (B4) 
An equivalent equation to (A4) for global coordinates can be assembled from the element 
matrices according to their connectivity 
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Carrying out the variation of Eq. (B5) the following system of differential equations is 
obtained 
  1 , 2 , 3XX X− − − =K V K V K V MV F��  (B6)  
where 

1 11=K K ,  2 21 12= −K K K ,  3 22=K K . 

Appendix C:  Transfer Matrix  
 
 A convenient procedure to handle these boundary conditions is called the 
Transfer Matrix method (Mal, 1988).  For each layer of the plate, the displacement and 
stresses on each side of the layer can be linearly related through the transfer matrix.  The 
displacements and stresses (Eqs. 5.2 and 5.3) at the top of each layer can be expressed as: 
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The superscript m+ corresponds to the layer m and top surface, h is the thickness of the 
layer and *

33 33
ˆ ˆ /T T iζ= .  Equation (C1) can be rewritten in an abbreviated for as: 

 m m m mP X D β+ += , (C2) 
where Dm+ is a diagonal 6x6 matrix with / 2qi he ζα  (q = 1,…,6) as elements of the diagonal. 
For the bottom surface, an equivalent equation can be written as: 
 m m m mP X D β− −= . (C3) 
The vector Pm- represents the displacements and stresses of the bottom surface and the 
matrix Dm- is diagonal with / 2qi he ζα−  (q = 1,…,6) as its elements.  Note that mβ  is a 
common vector for Eqs. (C2) and (C3).  Therefore, they can be combined into a single 
relation as shown: 
 ( ) ( )1 1m m m m m m m mP X D D X P A P

− −+ + − − −= = , (C4) 
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where the matrix Am is the transfer matrix of the layer m.  This matrix linearly relates the 
displacement and stresses of top and bottom surfaces for the layer m.  This representation 
of the solution is convenient to handle the continuity conditions between layers, which 
can be simply expressed by Pm+ = P(m+1)-  for the layer m and (m+1).  For an N-layered 
plate the following relation is obtained: 
 1 2 1N NP A A A A P AP+ − −= =… , (C5) 
where A is global transfer matrix, P+ and P- are the displacements and stresses at the top 
and bottom of the entire laminated plate.  
 For the dielectric half-space solid the displacements and stresses can be expressed 
in a form equivalent to Eq. (C1).  However, since radiation of energy from the plate to the 
half-space solid is expected, two partial waves which have increasing amplitude with 
depth are the only ones present in the half-space solid; therefore, the amplitude β of the 
other two partial waves must be equal to zero 
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Equation (C6) is valid for x3 < -H/2, where H is total thickness of the laminated plate. 
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