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Abstract

 
 

The overall intent of this study is to illustrate how GIS and crime mapping 
methods can be applied to forensic evidence to better understand and comprehend spatial 
patterns that exist in these data. This study bridges common crime mapping principles 
such as hot spot mapping, exploratory data analysis, and spatial statistics to spatial 
forensic evidence investigation.  In particular, forensic shoeprint evidence is examined 
and spatial relationships are analyzed using both exploratory and confirmatory statistical 
analysis.  It is found that crime mapping principles can be indirectly related to shoeprint 
evidence mapping.  Exploratory spatial data analysis is extremely helpful in breaking up 
large sets of shoeprint evidence into smaller and manageable sets for spatial forensic 
analysis.  This work is one of few studies to incorporate shoeprint evident in a crime 
mapping context.  With that in mind the author hopes that this study has shed some light 
on this subject to advance these methods in this field.   
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Chapter 1 
 

Introduction 
 

The importance of geographic information science (GIS) applications in various 

fields cannot be denied.  Many academic and industry fields have benefited from the 

implementation of GIS.  Although early applications were in resource management and 

urban planning, recent GIS applications have been integrated into many practical fields 

including; criminal justice, natural disaster management, health care delivery, ecological 

and environment studies, and various fields in social sciences.  In the field of criminal 

justice in particular, the importance of GIS was recognized by the National Institute of 

Justice and established by the Crime Mapping Research Center in 1997.  One of the 

center’s primary goals was to enhance the ability of researchers and practitioners to 

analyze complex spatial crime patterns (Harries, 1999). 

The use of GIS in the criminal justice field has its roots in an earlier generation of 

police crime mapping.  Recent improvements in GIS technology have pushed this use to 

new heights.  In the past, law enforcement agencies used ‘pin mapping’ to pinpoint crime 

locations on a hardcopy map (Harries, 1999).  While these crime maps were useful for 

showing geographic patterns, as crime events became denser these maps became difficult 

to read.  An additional weakness of ‘pin mapping’ was the limited amount of spatial 

analysis that could be performed on the data.  However, with the implementation of GIS, 

functions such as, hot spot analysis, time-series mapping, and pattern detection have 

become an integral part of crime pattern analysis.  Additionally, the increased availability 

of digital data is opening new opportunities for detailed spatial analysis of criminals’ 

social behaviors, which in turn, can direct resources to where they are most needed 
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(Craglia, Haining, & Wiles, 2000).  One policy area in which the use of geographic 

information systems has made significant progress is in crime analysis and mapping at 

city and neighborhood levels, where neighborhood characteristics and socioeconomic 

conditions have also be linked to crime hot spots.  

While there is a clear advantage to using a GIS for crime mapping, potential GIS 

application areas in forensic investigation and crime scene analysis have rarely been 

explored.  Forensic science is an interdisciplinary study that applies scientific knowledge 

to evidentiary material, and provides crucial information for the courts of law.  Forensic 

evidence is often collected at a crime scene or from a suspect.  While there are many 

potential GIS applications, such as crime scene digital mapping, archiving, and profiling, 

this research assess the utility of spatial aspects of impression evidence, such as shoeprint 

markings or shoeprints in crime investigation.  Shoeprints are just one of many types of 

forensic evidence that are recovered from a crime scene. 

While there are many different types of forensic evidence, two common types are 

trace evidence and biological evidence.  Trace evidence is often found at a crime scene in 

small amounts, examples include hairs, glass shards, clothing fibers, soils, gunshot and 

explosives residue.  Biological evidence, on the other hand, usually consists of evidence 

for which DNA analysis can be performed.  Typical examples are blood, saliva, or other 

body fluids, and even trace evidence such as hair can be processed for DNA analysis.   

 Even though fingerprints are the most prevalent impression evidence, shoeprints, 

tool marks, and tire tracks are also routinely collected at a crime scene.  Shoeprint 

evidence is sometimes overlooked and misinterpreted.  Lead latent print examiner for the 

Scottsdale Police Crime Lab, Dwayne S. Hilderbrand, has written a book on this 
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overlooked evidenced titled, “Footwear, The Missed Evidence (1999)”.  In his work, he 

stresses the importance of shoeprint evidence and discusses why this type of evidence is 

frequently overlooked.  

According to Hilderbrand, criminals must enter and exit crime scene areas, 

therefore, it should be reasonably assumed that they might leave shoeprint impressions.  

Criminals have become smarter and wiser by wearing gloves to avoid leaving 

fingerprints, and masks to avoid identification.  However, they are rarely aware of, or 

make little attempt to conceal footwear (Hilderbrand, 1999).  Because of the blatant 

disregard for concealing footwear, investigators have been able to use shoeprint evidence 

in the apprehension of criminals.  A case in point is from the Ohio Bureau Criminal 

Identification and Investigation annual report 03-04: 

March 2, 2003 

“A footwear impression found at a crime scene can establish not only the presence of the 
wearer, but in certain instances, the time frame of the deposit of the impression.  Such was the 
case in a Greene County house burglary processed by the Trace Evidence Unit.  Examination of 
the kicked-in door at the point of entry revealed three partial footwear impressions in the dust.  
Comparison of a suspect’s shoes revealed a matching wear pattern.  Thus, not only was the 
wearer at the scene, he was at the scene when the door was forced in.  Faced with the evidence 
and with no explanation as to how his shoe impressions got on the door, the suspect pleaded 
guilty to the crime” (p.31, 2004).   

 
Unfortunately, sometimes impression evidence can be overlooked, contaminated, 

or destroyed when a crime scene is improperly secured or is disorganized.  Shoeprints 

can be a crucial piece of evidence if it is properly collected, preserved, and examined.  

This evidence can become an important part of proving or disproving a suspect’s 

presence at the crime scene.  However, forensic evidence such as fingerprints and DNA 

are routinely collected, their recovery rates (percent of crime in which evidence is 

recovered) tend to be low (Leist, 2005).  Therefore, integrating under-utilized forensic 
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evidence, such as shoeprints, bears potential for solving cases that have little DNA and 

fingerprint evidence.  

In conclusion, the primary goal of this study is to bridge the apparent knowledge 

gap that exists between crime mapping and forensic investigation so that both fields can 

benefit from each other through GIS and other information technologies.   
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Chapter 2 

Literature Review 

2.1 Geographic Traditions 
 

The core of this research lies within the spatial science tradition within 

Geography.  Its basic framework was constructed in the 1950s with the quantitative 

revolution.  During this time, geographers supplemented traditional descriptive statistics 

with the application of inferential statistics (Cloke, 1991).  Many geographers of this time 

used a positivist approach to their research, where knowledge was gained through 

experience, but it also argued that knowledge must be verifiable and replicable (Johnson, 

1983).  Many geographers who conducted this type of research studied regions and 

became interested in explaining their differences based on space.  To explain the spatial 

arrangements of people, places and activities spatial scientists used techniques such as 

modeling, mathematics, and statistics.  This work, in particular, makes use of locational 

analysis, an inductive approach witch attempts to explain spatial patterns of shoeprint 

evidence.  Additionally, this research utilizes exploratory data analysis and spatial 

statistics to discern spatial patterns within a given phenomenon.  A brief history of spatial 

science is presented in this literature review. 

In the 1960s the spatial science approach to studying geography was becoming 

more prevalent within the discipline.  This tradition projected the discipline into a new 

direction and critiqued the past approaches of geography.  Spatial science distanced itself 

from idiographic approaches, dismissed the empiricist philosophy, and introduced a 

nomothetic approach which was concerned with the universal and the general, to 

counteract the idiographic approach.  
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 Spatial science became very attractive to geographers that were looking for a 

scientific approach to geography.  “The expression of research results in mathematical or 

statistical form, in a way that implied precision, replicability, and certainty” (Johnson, 

1983).  Many using quantitative analysis felt they had ‘hard evidence’ to support their 

work and some geographers called themselves ‘statistical geographers’.  Until spatial 

science became a prominent geographic approach, the academic world questioned the 

validity of geography because of the lack of theory and emphasis on description.  Many 

geographers adopted this approach and hoped to get better recognition from the academic 

community.  “Science was academically and socially respectable, and so was social 

science; it was useful, and geographers perceived that they, by becoming more scientific, 

could be useful too...” (Johnson, 1983).  By integrating hypotheses, theories, and methods 

to the discipline, scholars felt geography was becoming equally recognized with 

disciplines like psychology, mathematics, and sociology.  

 Within the positivist framework spatial scientists became interested in studying 

regions based on space and distance.  Spatial scientists used quantitative methods, 

mathematical techniques, theorems, and proofs to explain spatial distributions of people 

and activities.  Spatial science proposed the idea that space was the key factor that shapes 

behavior.  The most important addition to the spatial science tradition was the scientific 

method. 

 The scientific method, as known in spatial science, has two distinct methods, the 

inductive and deductive approach.  Most spatial scientist employed the inductive 

approach.  The inductive approach begins with perceptual experiences of the world from 

the researcher.  Next, the research collects unordered facts about the research.  In the next 
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step, the researcher beings working with actual data, and explores facts to identify 

generalized behavior, using quantitative methods.  Now, the research has ordered and 

classified facts which he or she can now make generalizations.  After a generalization 

was made, the researcher constructs a hypothesis, and from that, theories and laws are 

formed.  The last step in the inductive process is the explanation, which is usually 

geographic knowledge produced as a paper or a journal (Johnson, 1979). 

The deductive approach is not dissimilar from the inductive, as the research 

begins with predetermined ideas based on experience.  The next step is to develop a 

theory, or image of real world structure.  Next, the researcher must form a quantitative 

model, a formal representation of the image.  After the model is complete, the researcher 

must form a hypothesis and then proceed to experimental design, which entails 

measurement, definition, and classification.  Now, the researcher must collect data, and 

then use quantitative methods to verify the hypothesis.  At this point, the process could 

return to the theory stage if the results are not supported, or if successful, the supported 

theory becomes a law.   Lastly, the research can provide an explanation of his research 

through journals or other academic mediums (Johnson, 1979). 

While spatial science was a significant improvement within the geographic realm, 

still, many in the discipline felt it had some shortcomings.  Some criticized it for its use 

of mathematics, and its geometric languages filtered out any social or ethical questions.  

Others thought spatial science ‘failed to see beyond the map’(Cloke et al. 1991).  With 

some distrust for spatial science within the discipline, some turned to new ideas that 

would inevitably spawn behavior and humanist geography. 
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Recently, geography has recognized and accepted applied geography as a 

‘tradition’ within the field.  Applied geography is the application of geographical 

knowledge and skills to the solution or resolution of problems within society (Johnson et 

al., 2000).  Applied geography is a ‘different’ geography when comparing it with 

previous traditions.  Applied geography does not have a set philosophy, meaning there is 

no standard epistemology, ontology, or methodology like the other traditions.   

Geography has been applied, and has been solving problems since the late 1800s, 

and is now practiced in both the private and public sectors.  The private sector consists of 

geographers who work for businesses.  Private engineering firms could potentially 

employ geographers to perform GIS analysis and related tasks.  The public sector has two 

main areas that use applied geography; planning is one, and the other is natural resources.  

As relevant to this work, crime analysts and forensic investigators can utilize GIS and 

geography in an applied environment to solve problems within society. 

This research is firmly rooted in the spatial science tradition because of its 

emphasis on distance, space, and statistical methods by using the inductive approach.  

This study draws on both location theory and locational analysis to help explain spatial 

patterns and how phenomena are related to each other based on space.  With the 

utilization of GIS in geography in the past 30 years geographers have applied geography 

in ways that can directly help solve society’s problems.  Applied geography is evident 

within urban planning, crime analysis, and watershed analysis, all of which apply 

geography in a manner which helps society. 

In order to apply the aforementioned tradition, this research relates two separate 

entities within the field of criminal justice.  In an attempt to link common practices in 
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crime mapping with forensic evidence, shoeprint evidence is especially intriguing 

because few researchers have documented the spatial relationship of forensic evidence in 

a crime mapping context.  Much of the crime mapping field is devoted to detecting areas 

of high crimes, or clusters of events into so-called hot spots, and confirming the existence 

of hot spots.  Forensic impression evidence, on the other hand, is collected and usually 

stored in an image database, without explicit spatial reference.  To help connect these two 

distinct fields, the following literature review will first concentrate on crime mapping and 

secondly forensic shoeprint evidence.  Finally, these two areas will be synthesized in 

order to identify the major the objectives for the research project.                                   

2.2 Crime Mapping                                                                                         

 Crime is not uniformly spread across space and it is often clustered in some areas 

and absent in others.  People are aware of this phenomenon and they avoid certain areas 

and gravitate toward others.  Their choices of neighborhoods, stores, and recreation are 

dictated, to a certain degree, by the understanding that their chances of being a victim of 

crime is greater in some places rather than in others (Eck, 2005).  Police are aware of the 

fact that crime is not randomly distributed in space.  More police resources tend to be 

allocated hot spots or areas where crime is more concentrated.  In contrast, few resources 

tend to be distributed in low crime areas (Craglia, Haining, & Wiles, 2000).  Hence, the 

study of geographic distribution of crime is not only relevant to a person’s daily life, but 

is also relevant to public safety management.       

 From a crime mapping context, hot spot mapping is the spatial representation of 

areas with high densities of crime.  One hot spot mapping method is to draw contour lines 

around areas of high concentration of crime.  The maximum concentration contour forms 
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a polygon, which can be used within GIS to calculate the values of the polygon with 

respect to other attribute layers (Eck, 2005).  For instance, one might use crime incident 

data to define a contour hot spot, then, use GIS software to calculate correlation such as 

income, population, or other variables.  “Comparing hot spot contour polygons and their 

correlates across urban areas could provide insight into factors associated with crime 

incidence above a researcher-determined threshold” (Garson, 2001, 473).  The researcher 

must be aware the search for correlates is laden with potential difficulties emerging from 

the ecological fallacy.  Alternatively, one can use a density map, such as various kernel 

methods to provide a continued crime density surface for a study area (Gatrell, et. al 

1996).           

 Crimes occur in different types of place and space, as well as at different scales. 

As a corollary, hot spots occur at different scales, too.  Hot spots exist as streets, 

neighborhoods, regions, and cities.  While some hot spot characteristics exist generally 

across scales, the relative importance of factors that influence hot spots at the street scale 

differ from those that influence hot spot regions, or hot spot cities.  Additionally, the 

actions that must take place to intervene in and reduce these varying hot spots must be 

different.  The level at which crime or hot spots are examined is dictated by the way the 

question, or problem is presented.  These approaches differ on the level of analysis, or the 

size of the geographic area of crime about which one is concerned (Eck, 2005).  

Identifying the appropriate scale of geographical analysis is critical to understanding the 

nature of crime and determining what action to take.  There are a number of theories that 

exist to explain hot spots and they are useful in crime mapping because they aid in the 

interpretation of crime data (Eck, 1998).      
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 Once the scale of analysis is determined, hot spot theories can be integrated into 

the study to help further explain why crime happens at certain places.  Corresponding to 

spatial scale or geographic coverage, there are a number of hot spot theories: place, street, 

and neighborhood theories.  Place theory explains why crime events occur at specific 

locations.  It deals with crimes that occur at the lowest level of analysis, specific places.  

This theory attempts to answer questions like why are burglaries occurring at one home 

and not another?  Street theory deals with crimes that occur at a slightly higher level than 

specific places, usually streets or blocks.  This theory attempts to answer questions such 

as why are drugs being sold on these streets, but not another street?  One theory of crime 

attempts to explain neighborhood differences.
  
At a higher level than place or street, 

neighborhood theory deals with larger areas.  It is generally concerned with why are 

gangs present in a particular area, and absent in others?  Finally, repeat victimization 

theory asks, why are certain victims targeted continually?  It should be noted that this 

theory can operate at any of the scales discussed, and can be represented geographically 

as a point, line, or polygon.          

 In addition to the theories and levels of analysis different types of hot spots exist 

as well.  “The most basic form of a hot spot is a place that has many crimes” (Eck, 2005).  

An area that has repeated crime incidents are known as repeat place hot spots.  The 

underlying cause of this type of hot spot is explained in the routine activity theory.  “The 

routine activity perspective studies the processes and patterns associated with the path of 

the offender and the victim in time and space within an environment suitable for criminal 

activity” (Rossmo, 1999).  “Structural changes in routine activity patterns can influence 

crime rates by affecting the convergence in space and time” (Cohen & Felson, 1979, 
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p.598).  Repeat place hot spots are not alone in this category, repeat street hot spots and 

repeat victimization hot spots exist as well.   When considering the aim of this study, 

repeat place hot spots are most suited for mapping forensic shoeprint data because the 

majority of crimes are committed by repeat offenders.    

 The development and implementation of crime mapping has been beneficial to 

law enforcement agencies in the past, and has given crime analysts various methods to 

visualize crime.  However, what crime mapping has not done is evidence based crime 

solving.  Investigators are vocal about the fact that evidence solves crime, whether it is 

circumstantial, conclusive, or trace evidence. Mapping forensic evidence has the potential 

to solve crime by using spatial relationships based on existing hot spot methods. 

2.3 Shoeprints and Spatial Implications 

Forensic crimes scenes are usually documented in two distinct ways (Gardner, 

2005).  While crime scene sketching and crime scene mapping may seem the similar, 

they are actually quite different.  A crime scene sketch is usually a rough drawing that 

concentrates on measurements and evidence placement.  Crime scene mapping, on the 

other hand, is concerned with documenting the size of the scene, elements within the 

scene, and ‘fixing’ evidence using some common mapping methods. The most common 

methods include: triangulation, rectangular, and polar coordinates (Gardner, 2005).  Both 

of these methods are excellent ways to document a crime scene, yet neither of them 

incorporates spatial relationships between evidence.   

 Several types of forensic evidence can be retrieved from a crime scene (Gardner, 

2005).  According to the Metropolitan Police in London, 2004 evidence recovery rates 

are as follows: DNA 9%, fingerprints 25%, shoe marks 12.4% and tool marks 6.2%.  
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Clearly, shoeprints are a valuable evidence resource and are recovered from a substantial 

amount of crime scenes.  According to Girod (1996) crime scene examiners in the region 

of Neuchatel in Switzerland find usable shoeprints in almost 30% of the burglaries 

investigated.  The majority of these burglaries are committed by repeat offenders living 

within the region.  When forensic evidence is collected it is usually photographed and 

entered into an image database with little or no spatial reference.  At the most, street 

address data might exist.  This limits the potential value of the evidence because forensic 

evidence is intrinsically spatial, and spatially enhanced information has the potential to 

increase the probability of solving a crime. 

In forensic science the importance of image databases has been known for a long 

time (Geradts, 2002).  Common impressions that can become forensic evidence are 

fingerprints, toolmarks, shoeprints, and tire tracks.  There are many successful cases 

where impression evidence at the crime scene has been used to match available evidence 

in databases.  Partially because of its importance and notoriety, many criminals tend to 

avoid leaving fingerprints at crime scenes, but they normally cannot avoid leaving other 

marks.  Hence, other databases (e.g., shoeprints, tool marks, handwriting, cartridge cases, 

and bullets) are also important for casework (Geradts, 1995).  As acknowledged by 

Hamm (1989), “shoe impressions or more correctly track impressions have been around 

for a very long time, well before the identification of fingerprints”. 

Shoe impressions and fingerprints are some types of evidence a criminal may 

leave behind at a crime scene.  Such impressions or other evidence have great potential to 

the investigator.  The fine scratches in outsoles can be used to identify a shoeprint.  A 

database of shoes of suspects in comparison with a database of shoeprints can be valuable 
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for solving crimes.  Often the outsole design has to be classified for the shapes that are 

visible in the design.  Not only can impressions lead to the identification of the make and 

style of a particular shoe, they can also provide approximate sizing of that shoe and the 

direction of gait, and other actions such as dragging or scuffing (Ashley, 1996).  

Currently, shoeprint databases are rarely used.  However, some police regions use these 

databases as first-generation databases.  Searching in the databases on content is still a 

difficult task, since shoeprints are often blurred (Geradts, 2002).  

Girod (1995) lists three common practices that use a shoeprint database:  

1. determine the brand and type of shoe that left the shoeprint at the crime scene, 

2. a comparison of these shoeprints with a suspects’, and 

3. demonstrate that a particular impounded shoe left the shoeprint at the scene.  

As noted previously, shoeprint impressions have great potential to the crime scene 

investigators.  However, some crime investigators neglect to see their potential.  

According to Hilderbrand (1999), shoeprints are sometimes overlooked or under-

evaluated because of a lack of training and education in the proper search for, collection, 

and preservation of evidence.  The failure to properly collect this type of evidence 

revolves around the aforementioned two reasons, but the lack of success in finding this 

evidence is often due to: 1. a result of the investigator not believing that the impressions 

can be found at the scene after people have walked over the scene, 2. incomplete searches 

of the crime scene, 3. prevailing weather conditions, and 4. the impression has been 

intentionally destroyed (Hilderbrand, 1999).  If the potential of shoeprint evidence was 

more widely appreciated, there is a greater likelihood that investigators would collect it.  
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Once the investigators collect it, it is more likely that it would be stored in databases and 

its potential could be recognized. 

2.4 Literature Synthesis and Objectives  

 In order to synthesize these two topics, one must borrow elements from each field 

and intertwine them to expand and enhance them.  This synthesis is comprised of two 

objectives.  First, the research attempts to expand the crime mapping field by integrating 

forensic evidence into set practices, such as hot spot mapping.  Although this study only 

focuses on one aspect of forensic evidence (shoeprints) any of the aforementioned 

evidence could be substituted in its place (e.g. DNA or fingerprint).  The second 

objective is to enhance forensic evidence analysis by explicitly integrating spatial 

information, such as integrating geographic location with forensic shoeprint evidence.  

Investigations are conducted on a local scale, which will attempt to enhance shoeprint 

matching rates by incorporating geographic and crime matching principles from a few 

locations or crime scenes.  This study applies to journey-to-crime and distance decay 

models that will provide insight into criminal’s spatial decisions. 

In summary, the intent of this research is to combine the effectiveness of hot spot 

crime analysis with forensic shoeprint evidence found at crime scenes.  While hot spot 

mapping and shoeprint evidence classification has been noted previously rarely, has a 

study combined both aspects in the field of geography.  This study makes use of 

exploratory spatial data analysis to help bring crime mapping concepts into a forensic 

mapping context.  In addition, results from some exploratory data analyses can help to 

conceptualize and generate hypotheses for forensic investigation.  The potential of this 
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study is intriguing because the coalescing of crime mapping (hot spot) and forensic 

evidence is a fairly new concept in both geography and forensic investigation.   
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Chapter 3  
 

Methodology 
 

3.1 Data and Study Setting 
 

The Bigfoot database is maintained by the Metropolitan Police Department in 

London, England.  They have maintained this database since 1997.  The department 

retrieves shoeprints from approximately 10% of all crime sites and more than 10,000 

shoeprints are retrieved per year.  For the year 2004 the department recovered 10,096 

recovered shoeprints from approximately 100,000 burglaries. 

 Crime and police data are typically sensitive information when the general public 

is concerned.  The nature of this data is no different.  Sensitive data, while interesting and 

unique, can sometimes prove difficult to obtain.  Such is the case with this forensic 

evidence.  Initially, a verbal sharing agreement was established in the fall of 2005 with 

WVU researchers Michael Walnoha and Ge Lin and the London Metropolitan Police.  A 

written contractual agreement was signed later which specified the terms in which the 

London Metropolitan Police could share this data.  Personal information about the 

victim(s) and criminal(s), address locations, and shoeprint images were omitted.  

Sensitivity issues ultimately turned into time issues, and the data was received later than 

expected, in February 2006.  This issue is particularly important when the researcher does 

not collect their own data. 

 Due to the confidentiality and sensitivity issues, there were some limitations 

placed on the data.  As previously mentioned personal information and address locations 

were omitted, but this did not hinder the study.  Shoeprint images were not present either.  

This data would have been useful for determining how the London Metropolitan Police 
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confirmed ‘matched’ prints.  Since the researchers did not collect the data, there was 

some uncertainty about retrieval methods and how the match was determined.  The 

database was limited in this aspect because the only indication of a match was a coded 

letter and number representing a ‘matched’ shoeprint (e.g. A 23).  Additional research 

was conducted as to how shoeprint data was collected and integrated into a database. 

A variety of methods can be employed to collect impression evidence from crime 

scenes.  The common methods to retrieve shoeprints are electrostatic lifting devices, 

plaster casts, and adhesive lifters (Gardner, 2005).  Once the prints are recovered they are 

scanned into an image database where experts can perform matching analysis.  The 

researchers did not perform, nor were they qualified to perform this step in the forensic 

process therefore, some uncertainly was generated as to how a matched is determined.   

 After consulting with forensic experts they assured us a ‘match’ was based on 

many like characteristics of the shoeprint.  Size, brand, and tread design (etc.) were all 

considered when determining a match.  Forensic experts use special image software to 

verify a match and Figure 1 illustrates the basic criteria for a match.  Images similar to 

Figure 1 are example prints that forensic experts use to compare unique and intricate 

patterns when they are deciding whether a shoeprint in matched or not.  The shoeprints 

on the left are obviously the same print declaring a match therefore, the prints would be 

coded the same (e.g. A 15).  However, the prints on the right are not.  Each of these prints 

would be given a separate code and could be matched later.  

 

 

 

Figure 1: 
Example 
shoeprints 
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 The shoeprint database is for data collected in 2004 and has 10,096 total 

shoeprints.  Both point (shoeprint) and polygon (London boroughs) data were projected 

on the British National Grid.  The shoeprints are georeferenced to the x y coordinates 

according to this gridsystem.  Besides coordinates and coded shoeprints, additional 

attribute data about the crime consists of; date, time, borough in which the offence 

occurred, type of offence, and modus operandi.  All of this data lies within the London 

Metropolitan region and was recorded and entered by the London Metropolitan police. 

The study area extends 36 miles from east to west, and 27 miles from north to 

south.  The London Metropolitan region consists of 32 boroughs, however, burglary data 

from the central London (City of London) was suppressed since the metropolitan police 

do not have jurisdiction for this area.  The analyses are conducted at both the point and 

borough levels for 32 boroughs. 

3.2 Methods 

The field of forensic evidence mapping lacks a standardized methodology.  The 

following methods of spatial analysis will be among the first implemented in this setting.  

Normally, when one has little prior knowledge, a good starting point is exploratory data 

analysis.  Here, exploratory spatial data analysis is featured throughout the study by using 

the ArcGIS and GeoDa.  The emphasis is not on investigating a particular crime or a set 

of crime incidents, but on how GIS and spatial analysis can be meaningfully implemented 

to map shoeprint evidence and to aid in forensic investigation.  The following sections 

describe the approaches to meet the intents that were introduced in the literature review.  

 Objective 1 methods.  A variety of existing approaches are used to map shoeprint 

evidence and show geographic patterns.  The first approach uses exploratory data 
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analysis to categorize and display shoeprint evidence.  For example, recovery rate of 

forensic evidence can be represented and displayed spatially.  The recovery rate is 

defined by dividing the total number of recovered shoeprints by the total number of 

crimes.  The geographic distribution of the recovery rate will reveal the spatial 

relationships between the total number of recovered shoeprints the total number of crimes  

If recovery rates across boroughs are fairly evenly distributed, it implies that the spatial 

distribution of matched shoeprints cannot be attributable to potentially biased evidence 

collection from one borough to another borough. 

Even though an area has a high recovery rate, it does not necessarily mean that 

there is a high concentration of matched shoeprints.  Therefore, the second approach is to 

examine the spatial relationship between available and matched shoeprint evidence, so 

that the certainty of matched shoeprint evidence attributed to one or few suspects can be 

enhanced.  Borrowing the concept of journey-to-crime, a time-space constraint can be set 

out to narrow the scope of matched evidence.  If a large geographical distance exists 

between two sets of potentially matched shoeprints, the level of uncertainly is much 

higher than if they were in close proximity.  Existing geographical models, such as 

distance decay, kernel density and nearest neighbor methods are used to supplement 

time-space inquiries.  Once a particular matched shoeprint does not meet time-space 

constraint, it should be excluded from the analysis. For this reason, a self-exclusion 

algorithm is developed and discussed in detail in the next chapter.   

Objective 2 methods.  In contrast to point-based analysis in the previous method 

section, the primary focus of this method is on rate by areal units or boroughs.  Here the 

rate is based on matched shoeprints divided the recovered shoeprints at the borough level.  
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In order to classify or group a large number of the matched shoeprints that meet the time-

space criteria, area based exploratory spatial data analysis methods, such as local Moran 

Ii can be used.  The global Moran’s I tests for spatial independence.  If a set of matched 

shoeprints are deemed spatially dependent or correlated, local Moran Ii can be used to 

classify the detected pattern into hot spots, cool spots, and positively and negatively 

correlated patterns.  
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Chapter 4 
 

Exploratory Spatial Data Analysis 

 Given the lack of a standardized methodology and available literature concerning 

forensic evidence mapping, it is necessary to determine the extent of forensic evidence 

mapping, the concept of a hot spot within this context, and how to utilize them for 

forensic investigation.  The purpose of this chapter is to document the characteristics and 

distribution of shoeprint data by using exploratory data analysis.  The following sections 

briefly sketch the main ideas behind EDA and to determine time-space criteria of 

matched shoeprints for hot-cool spot analysis.  Finally, the results are presented with a 

number of case studies. 

Exploratory data analysis (EDA) is an extremely valuable starting point for this 

investigation.  When there is little knowledge about a phenomenon, investigation is often 

started with exploratory data analysis using its extensive graphic and descriptive statistic 

capabilities.  The intent is to discover inherent patterns in the data and to generate 

hypotheses by imposing as little prior structure as possible (Tukey, 1977).  For example, 

a histogram can be used to determine the frequency distribution of matched shoeprints, so 

that we can visually identify ‘natural breaks’ to decide if a set of shoeprints can be 

analyzed by either EDA or statistical methods. 

When an EDA method is furnished with spatial or map analysis, it becomes 

exploratory spatial data analysis (ESDA).  For instance, we do not know, as a priori, what 

would be considered geographic closeness of shoeprints.  ESDA is likely to provide clues 

because we can visually inspect a number of matched shoeprints that are considered to be 

near each other and measure their distance.  In addition to pattern and knowledge 
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discovery by describing and visualizing spatial distributions for various variables, ESDA 

can be used to identify atypical locations or spatial outliers.  In the context of shoeprints, 

two or three offenders may happen to wear an identical brand and type of shoe, and thus 

leave nearly identical shoeprints over a wide geographic area.  However, if the 

geographic locations, dates, and times are inspected, there may be shoeprints that are 

highly related to other isolated shoeprints.  In this way, spatial clusters, hot spots, and 

spatial patterns can be identified (Anselin, 1998). 

4.1 Forensic Evidence Exploration 

 As previously noted, very little literature exists concerning forensic evidence 

mapping from a geographical perspective.  To establish ‘operational’ definitions of 

clusters and hot spots from a forensic evidence perspective, it is necessary to make 

several distinctions between forensic evidence and crime mapping.  From a crime 

mapping perspective, a hot spot is conventionally defined by a spatial representation of 

areas with high incidence, rates or densities of crime.  Various methods of spatial 

representation of hotspots exist, point mapping being the most common (Jefferies, 1999). 

Additional hot spot mapping methods include: thematic boundary mapping, interpolation, 

and spatial ellipses (Chainey and Ratcliffe, 2005).  Figure 2 represents an example 

hotspot using kernel density, a method that uses a grid function to determine areas with a 

high concentration of points.  

While a hot spot is somewhat similar in forensic evidence mapping, one 

substantial distinction should be noted.  An area that has a high concentration of crime 

does not necessarily mean that it has a high concentration of forensic evidence.  A large 

number of crimes may yield little or no forensic evidence, while a small number of 
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crimes can yield a large amount of evidence.  This depends on how much evidence 

remains at the crime scene and how much effort is devoted to recover the evidence. 

 Figure 2: Kernel Density Map 

Although a direct relationship between hot spots of crime and forensic evidence 

have yet to be established, Figure 3 shows the spatial relationship between recovered 

evidence and total crime at the borough level.  In this case, the recovery rate is calculated 

from shoeprints recovered from residential burglaries divided by total residential 

burglaries.  From this map, it appears the recovery rate is generally lower in the center of 

the metropolitan area and higher on the periphery.  However, the global Moran’s I 

suggests that there is no spatial clustering of the recovery rate (p-value: 0.060).  The 

statistical results suggest that the recovery rate distribution is spatially independent.  
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Therefore there is no direct relationship and or bias toward a particular borough when 

evidence collection was performed.  

 Figure 3: Residential Recovery Rate 

The second distinction between shoeprint evidence and crime is that we cannot 

match crime without matching evidence at the same time.  A crime hot spot may be 

attributed to many suspects, but a matched pair of shoeprints may point to a single 

suspect, especially if the prints are rare enough.  Although shoeprints are far less unique 

than comparing fingerprints, they are analytically similar.  Like a set of matched 

fingerprints point to a single suspect just as a set of matched rare shoeprints can point to a 

single or a few suspects.  However, some shoeprints may not be rare.  Although we can 

infer that two or three pairs of matched shoeprints are highly likely to be from one 

suspect, as the number of matched shoeprints increases, it becomes less reasonable to 
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assume they are from one or two suspects.  Figure 4 shows the frequency distribution of 

the total number of shoeprints after deleting 886 unknown shoeprints.  The histogram 

does not show the frequencies of 900 unique shoeprints (one occurrence) because they 

would suppress visual effects of other matched frequencies.  There are 91 sets of matched 

shoeprints with only 3 matches.  For example, C15 shoeprints were recovered only three 

times, and there are a total of 91 similar cases.  On the other extreme, we find that 8 sets 

of matched shoeprints have at least 200 ‘identical’ shoeprints corresponding to their 

burglary incidents.  It is relatively straightforward to suggest that three matched 

shoeprints corresponding to three burglary incidents are highly likely to be committed by 

one individual.  It is unreasonable to suggest that 300 matched shoeprints in 300 burglary 

incidents are likely to have been committed by one individual.  To reduce uncertainty as 

to whether or not shoeprints are associated with one another, journey-to-crime theories 

were applied when considering our criteria. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Frequency Distribution 
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In order to infer a set of matched shoeprints belong to one or, at most, a few 

suspects, we can borrow the concept of journey-to-crime to set up time-space constraints, 

which presents the final distinction between crime and forensic incidents.  Journey-to-

crime literature suggests that criminals tend to commit crime in geographic locales that 

are familiar to them (Rossmo, 1999).  Two likely locales are neighborhoods near their 

residential and employment locations.  For instance, we might assume that a burglar may 

only burglarize a house within one mile of his residential location.  However, if he 

burglarized twice, one toward the east, and one toward the west of his residential 

location, we would need two miles to cover two matched shoeprint incidents.  In spatial 

journey-to-crime profiling, suspect location is a reference point to a crime location; in 

spatial forensic profiling, an evidence location is a reference point to another evidence 

location.  

In order to infer from one shoeprint evidence location to another, we rely on: 1) 

exploratory data analysis, and 2) expert opinion by interviewing forensic investigators.  

Exploratory data analysis suggests that it is relatively easy to make spatial inference from 

matched shoeprint data with less than 6 crime incidents.  Given there are only a few 

matched cases, most of these shoeprints consist of one or two clusters, or have one cluster 

and a few unseemingly related incidents far from the cluster.  It was suggested from an 

interview with forensic investigators, that a set of matched shoeprints corresponding to 

more than 7 crime incidents would be hard to infer without some space and time 

constraint.  The remaining sections discuss how to reduce highly related shoeprints 

beyond 7 matches  
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4.2 Exploratory Data Analysis 

The beginning stages of the analysis presented a seemingly overwhelming task to 

explore a large amount of data (figure 5).  The dataset consisted of a total of 10,096 

recovered shoeprints from burglary crime scenes in the London Metropolitan Area for 

2004.  To properly assess this data, EDA was used in order to narrow the focus or 

micromanage the data.  While exploring this data, a set of basic criteria was determined 

to help classify shoeprints so the number of prints in each category could become 

manageable.  The first step was to identify apparent geographic clusters.  Once a small 

cluster was identified the date duration and distance attributes were considered among 

each point(s).  If any points were related by small distance proximity and date duration, 

offence types were considered to identify additional relationships.  Finally, time of day 

and modus operandi (MO) were secondary criteria at this stage to help confirm any 

common links. 

The first step in the exploratory stage was to investigate a small set of 

observations that had an apparent geographic cluster.  This was achieved by selecting a 

set of matched shoeprints from attribute data.  There was no previous inclination on how 

to first select these points.  A random set of prints were selected based on a number of 

low occurrences.  Once a cluster was identified, distances were measured from each point 

to gather an estimation of what distances existed between recovered shoeprints.  For 

example, it was found that shoeprints R18 had a cluster of 5 shoeprints within 0.9 mile in 

rectilinear distance, among them, 4 were within 16 days.  Shoeprints A21 had a cluster of 

4 shoeprints that cover a geographic distance of 3 miles in rectilinear distance.  If there  
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Figure 5: Total number (10,096) of shoeprints in London Metropolitan Area  

 

was any suspicion that these points were related, modus operandi and type of offense (eg. 

residential or non residential burglary) were included in this exploratory analysis.  The 

following specific examples show that an informal, exploratory case study would help to 

identify patterns and generate hypotheses. 

A small set of observations of matched shoeprints are much more manageable at 

this stage of the analysis.  Initially, a set of matched Adidas shoeprints were explored.  

These shoeprints, coded AD 21 have a total of 8 observations (Figure 6).  This particular 

shoeprint is interesting for two reasons: 1) it appears only 8 times out of 10,096 

observations, deeming it a ‘rare’ mark, meaning the probability of it coming from the 
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same offender is high, and 2) within these 8 marks there is an apparent geographic cluster 

of 4 marks within 2 miles (Figure 7). 

 
Figure 6: Adidas 21 matched 

 

Upon further review of this cluster, it was speculated that the likelihood of these 

marks being left by the same offender was quite high.  This speculation was attributed to 

the exploration of the aforementioned criteria.  Once the cluster was identified, the 

attributes of these marks were examined closely.  The cluster of 4 marks (Figure 7)were 

within 2 miles of each other.  Secondly, the duration of time in which the evidence was 

recovered from the scene was considered; three of the four marks were within 12 days of 

each other.  Lastly, the type of offense was considered.  All marks were recovered from 

residential burglaries.  These 4 steps aided to help produce a set of primary criteria that 
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could be used to develop a ‘profile’ to base our analysis upon.  A secondary criterion was 

also considered which consisted of the time of day in which the crime was committed and 

the modus operandi (MO).  In this case the MO is useful only as a secondary 

characteristic because only a short, vague description of the crime is present, such as: 

“suspects kicked in front door of flat and entered premises and searched through 

occupier’s property”.  Specific details of the crime(s) are not released due to 

confidentially issues. 

This set of criteria works well with a small set of observations, but it is not very 

conducive to analyzing a set of data with 50 or more observations.  It is very difficult to 

explore a set of matched shoeprints with a large number of observations, therefore, the 

previous criteria had to be amended for this purpose.  

1122//77

1122//1100

1122//1199  

Figure 7: Close up of Adidas 21 
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4.3 Time-Space Criteria 

In order to assess a large set of observations a time-space constraint was 

implemented to narrow the number of observations.  To establish the criteria, two general 

assumptions were based on the characteristics of matched shoeprints: 1) matched 

shoeprints were likely left behind by the same offender(s), and 2) within a small time-

space constraint a set of clustered matched shoeprints could implicate a single offender.  

Based on these assumptions a self-exclusion algorithm was constructed to eliminate 

points that did not fit the time-space criteria.  A time constraint of 15, 30, and 45 days, 

and a distance constraint of 1, 3, and 5 miles were provided for the algorithm.  This 

process was replicated nine times.  

 
Figure 8: Self-exclusion algorithm graphic 

 

Figure 8 illustrates how the self-exclusion algorithm eliminates points based on 

the criteria.  The center point in Figure 8a represents the point of interest.  The center 

point will remain only if there is a point within the respective distance buffer (1mile) and 

if the dates are within the specified time frame.  Figure 8b illustrates the opposite, where 

the center point is excluded because there are no points within the specified time frame, 
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even though a point lies within the specified buffer.  In order for a point to remain it must 

satisfy both criteria.  The end result of this algorithm eliminates points that have low 

probability of clustering. 

Figure 9 shows an example of the self-exclusion algorithm as it relates to the set 

of matched N 175 shoeprints.  This set of points is based on the 15 day 1 mile time-space 

constraint.  The white triangles represent the total count of matched shoeprints (201), and 

the points represent the remaining number of prints (38) based on the aforementioned 

exclusion criteria. 

 
Figure 9: N 175 Shoeprints after algorithm 
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Figure 10: Results from the space-time algorithm 
  1 mile 3 miles 5 miles 
45 days 5427(41.1%) 6214(32.2%) 6578(28.6%) 
30 days 4373(52.5%)

 
5122(44.4%) 5693 (38.2%) 

15 days 2003(78.3%) 2621(71.5%) 3077(66.6%)  

 

Figure 10 illustrates the number of shoeprints that remained after the algorithm 

processed the total number of shoeprints based on each set of criteria.  As expected, the 

greatest reduction resulted from the smallest time-space constraint of 15 days and 1 mile 

(lower left) from the original of 9,210 to 2,003 or 78.3% reduction from the original 

sample.  On the other extreme, the widest space-time constraint yielded the largest 

number of observations with only 28.6% sample reduction. 

Upon reviewing the results, it was concluded that the 45 day 5 mile time-space 

constraint was the least useful due to its tendency to produce points that did not generally 

cluster together.  This time-space constraint had the lowest reduction percentage and the 

average nearest neighbor distance was calculated to confirm this.  There was an average 

distance of 1,152 meters for shoeprints N846.  It should be noted that there is no time 

constraint on this distance, unlike the self-exclusion algorithm, only distance is 

considered.  Several other matches were also calculated for average nearest neighbor 

distances and their range was from 0.5 m to 1 mile.  From this analysis it is determined 

that most neighboring shoeprints lie within a mile radius.  This was the basis of the 

distance constraint.  The nearest neighbor is not necessarily linked to the same type of 

crime/shoeprint burglary within a particular time frame, only the distance between the 
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events were linked.  From this analysis it was decided that the smaller time-space 

constraints were likely to yield related clusters and they were examined first. 

Given the largest time-space constraint(45 days, 5miles) it was obvious that it 

would yield the most prints, but not necessarily yield the most favorable spatial 

clustering.  Therefore, the results of the 15 day 1 mile constraint were the first to be 

examined.  From this exploratory stage a hotspot cluster classification scheme was 

implemented.  After reviewing the observations, three classes of hotspot would be 

assessed in the analysis, as depicted in Figure 11.  First, Co-location - a set of matched 

shoeprints retrieved from the same crime scene.  From a ‘zoomed-out’ view these clusters 

appear to lie on top of each other; the marks are clustered very tightly together and are 

almost certainly left behind by the same offender(s).  Second, Borough Specific Hotspot - 

a set of matched shoeprints that exist and lie within by a borough boundary.  These 

hotspots are apparent after the algorithm was run.  A later case study demonstrates the 

likelihood of a small cluster of prints in one borough after the self-exclusion are likely 

related.  These types of hotspots exist in a particular borough or two and are not found 

uniformly or sporadically across the metropolitan area.   Third, Conventional Hotspot - is 

a hotspot of matched shoeprints that exists throughout the metropolitan region.  This type 

is best suited for hotspot statistical analysis so that significant clusters can be identified.  

A number of case studies are presented to expand on these types of clusters.  These case 

studies examine shoeprints based on the 15 day time criteria. 
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 Figure 11:  Illustrates 3 different classes of hotspots from 
3 different sets of matched shoeprints. 
 
Top to bottom: Co-location, Borough Specific, and 
Conventional Hotspots.  
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4.4 Case Study: E 46 

 A total of 23 matched E 46 shoeprints existed before the algorithm eliminated 

points at each time-space constraint. While the original 23 matched shoeprints are spaced 

out fairly evenly over the metropolitan area, the set of matched E 46 shoeprints exist 

mostly as a borough specific hotspot after the algorithm was implemented.  This is an 

interesting hotspot because of the concentrated location of the shoeprints in Ealing 

Borough.  As shown in Figure 12, the first three algorithm runs at 15 days yielded 10 

marks at 1 mile, 11 marks at 3 miles, and 13 marks at 5 miles.  The E 46 marks are a 

highly concentrated hotspot because the largest time-space constraint of 45 days with a 5 

mile buffer only yielded 14 shoeprints, only 5 more prints than the smallest time-space 

constraint.  This particular print is rare because it occurs at a very low frequency and 

probability of the prints are left behind by multiple offenders is unlikely.  At this point 

the rest of the primary and secondary criteria are considered.  The offence pattern is very 

consistent, 12 of the 13 prints are present at residential burglaries; providing a means of 

association when developing a ‘profile’.  Additionally, 9 of the 13 of the crimes were 

committed in the early or late evening hours, only a few were committed in the morning.  

Lastly, the MO is considered to reinforce the possibility of regularity within the 

criminals’ mode of operation (e.g. suspect may always enter though an open window, or 

break a basement window).  As previously noted, the MO provided in the dataset is 

vague and is only considered as an indication of a possible secondary source for links 

with the crime description.  The MO description of this particular set of matched 

shoeprints has the term ‘window’ appear in 10 of the 13 and the terms ‘rear’ or ‘back’ in 
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 Figure 12: Matched E 46 shoeprints each at the 15 day 
time constraint. 
From top to bottom: 
1m-10 points, 3m-11 points, and 5m-13points
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 8 of the 13 descriptions, indicating a possible consistent point of entry as a rear or back 

window.  Based on the primary and secondary criteria it is highly likely that the matched 

E 46 shoeprints were left behind by the same offender.  If an additional piece of matched 

forensic evidence (e.g. fingerprints) were recovered from any of the locations with 

matched shoeprints it is much more likely that a criminal investigation could be 

performed. This case study shows that self-exclusion algorithm is effective for these 

types of hot spots. 

4.5 Case Study: Rectangle 

 The code Rectangle refers to a specific geometric pattern, in this case a matched 

rectangle, not a specific matched shoeprint like E 46.  There is a total of 34 matched 

Rectangle shoeprints before the algorithm eliminated points at each respective time-space 

constraint. Unlike the set of E 46 shoeprints, Rectangle shoeprints are primarily scattered 

in the north-west region of the metropolitan area, with a few in the south.  Much like the 

set of E 46 shoeprints, the set of Rectangle prints exist as a borough specific hot spot, yet 

there is one large distinction between the two sets.  This type of shoeprint forms an 

important hot spot because of what can be inferred by the lack of a ‘match’ in the 

traditional sense.  While this shoeprint is not matched as a specific type of shoe, it is 

matched to a specific design or shape.  The uncertainty that surrounds the match is 

interesting because of its spatial pattern.  One would expect that this set of prints would 

have no spatial pattern because they are only a partial print and they are not matched to a 

specific brand of shoe.  However, at the highest time-space constraint they are 

concentrated mainly in 3 boroughs; Haringey, Harrow, and Islington.  As shown in 

Figure 13, the first three algorithm runs at 15 days yielded 13 marks at 1 mile, 27 marks  
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 Figure 13:  Matched Rectangle shoeprints at the 15 day 
time constraint 
 
From top to bottom: 1m-13 points, 2m -27 points, and 
3m -31 points 
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at 3 miles, and 31 at 5 miles.  The 3 mile space constraint was selected because of its 

manageability and clustering potential.  As previously noted, it was decided that the 1 and 

3 mile(s) buffer yielded the best results.  The results are clustered in three boroughs, but 

the majority of the marks are in two boroughs.  Based on exploratory data analysis two 

assumptions can be made: 1) the concentration of the these shoeprints are from one 

offender whose home is in one borough and works in the other, or 2) the prints are left 

behind by two separate offenders in their respective boroughs.  Of the 27 total shoeprints 

that remain from the 3 mile buffer, 23 of them are residential burglaries.  In this particular 

set of burglaries, the term ‘smashed’ or ‘forced’ appears in 15 of the 27 MO descriptions.  

It appears that the suspect(s) favored smashing windows (window appears 16 times) or 

forcing open windows or doors as a point of entry.  Additionally, about half of the 

burglaries are committed in the evening or early morning hours, but there is no 

convincing cluster in a specific borough.  However, when specific clusters in each 

borough are observed there are some interesting results.  A cluster of residential 

burglaries exists in the borough of Harrow and 7 of the 11 residential burglaries were 

committed during the workday hours (7:30 am-5:00 pm) and are tightly clustered, 

revealing some consistency within that particular borough.  It can be speculated that there 

is more than one offender(s) in this borough.  However, it can be assumed, due to that 

consistency, one offender has left behind a majority of rectangle shoeprints in that 

borough.  Additionally, the Borough of Haringey has a similar cluster that exists within 

the smallest time-space constraint, but is not as convincing as the borough of Harrow.  

Four of the 5 nonresidential burglaries occur in this borough and all 4 occur in the 

evening or early morning hours, opposite of the usual workday hours.  However, these 4 
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points are not very tightly clustered and the dates of the offences are not within a 

convincing time interval.  Overall, there is some uncertainty with the set of matched 

shoeprints generally, but there is one cluster that exists in the Borough of Harrow that 

warrants further investigation.  Most of the residential burglaries that exist in that 

borough have some consistency within the set criteria and present an above average 

chance of implementing one offender to those specific crimes.  If another piece of 

matched forensic evidence (e.g. fingerprints) was recovered from any of the residential 

burglaries within the Borough of Harrow it is likely that there would be a match.  The 

case study further implies that when shoeprints are relatively concentrated in few 

boroughs, the space-time algorithm may not be the best method to break them up into 

smaller and consistent clusters.   

  In conclusion, crime mapping studies are abundant but, conceptual frameworks 

and hypotheses derived from them cannot be directly applied to forensic mapping.  This 

is attributed to the said distinctions between crime and forensic evidence mapping.  To 

extend them to forensic mapping, both EDA and ESDA have proved useful for 

generating hypotheses and discovering patterns that have not been reported previously.  

In this study, it was found that the most valuable matched shoeprint clusters were likely 

to occur within 1 mile in rectilinear or Manhattan distance, although a 3 mile-range 

would also cover some clusters where burglary incidents were within 15 or 30 days of 

each other.  Based on these exploratory analyses, a time-space algorithm was developed 

to systematically capture and break down these spatial patterns.  Even though the 

algorithm was very effective, some shoeprints from popular brands may still have 

hundreds of occurrences that were deemed to be unmanageable using the current method.  
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The problem of ubiquitous prints will be further addressed in the next chapter using hot 

spot analysis. 
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Chapter 5 
 

Hot Spot Analysis 
 

 Chapter five expands on methods to identify significant spatial clusters using 

local indicators of spatial autocorrelation (LISA).  The previous chapter used ESDA to 

identify significant clusters by exploring selected spatial and attribute data.  Those 

methods were effective for smaller sets of observations, but were impractical for a set of 

matched shoeprints with a large number of observations.  To help better understand and 

identify spatial hot spots, LISA analysis was executed for matched shoeprint data that 

have a large number of observations.  Two case studies based on 1 mile and 15 day 

criteria were furnished, and the LISA statistic was implemented in hopes to find a spatial 

relationship between the total number of shoeprints verses the total number of recovered 

matched shoeprints by establishing a ratio or rate of recovery. 

Based on the notion that most burglaries are committed by repeated offenders in 

the same region (Girod, 1996) boroughs were used as the aeral unit of analysis.  It can be 

assumed that the ratio of the matched and recovered shoeprints in each borough can 

provide some clues about a large set of matched shoeprints across the Greater London 

area.  A high ratio in a borough suggests that the set of matched shoeprints is more likely 

to be concentrated in this borough; a low ratio, on the other hand, suggests that the set of 

matched shoeprints is less likely to be concentrated in this borough.  The LISA statistic is 

implemented in hopes to find a spatial relationship between the number of matched 

shoeprints versus the total number of recovered shoeprints in a spatial context.  In this 

way, a relatively large set of matched shoeprints in the study area can be further broken 

down into smaller and more manageable sets for spatial forensic investigation.  
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In order to calculate the univariate Moran’s I statistic a rate or percentage value 

must be established.  According to Anselin (1995),  

Global Moran’s I can be specified as: 

 

Local Moran’s Ii can be specified as: 

 

where Xi is the variable of interest in Borough unit i (i=1, …,m) in London; 

X = , and wmX i /∑ ij is the (i,j)-the element of a spatial weight matrix W.  Commonly, 

wij =1 if boroughs i and j are adjacent and wij=0 if the two boroughs do not share a 

common boundary. 

Significant and positive Moran’s I typically indicates positive autocorrelation, 

which is attributed to high-high or low-low value clustering.  Conversely, a significant 

and negative Moran’s I indicates negative autocorrelation when high values are adjacent 

to low values.  When Moran’s I is close to 0, it represents no spatial autocorrelation. 

(Anselin, 1995; Kitchen and Tate, 2000). 

Local indicators of spatial association test a null hypothesis of local spatial 

randomness by comparing the values (shoeprint occurrences) in each borough with 

values in neighboring boroughs.  Several LISA statistics can be considered, but a local 

version of Moran’s I is particularly useful because it allows for the breakdown of the 
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patterns of spatial association into four distinct categories.  These categories can also be 

represented with four quadrants in the Moran Scatterplot (Anselin, 1995).  

Two of these categories imply positive spatial association.  When an above 

average value in a location is surrounded by neighbors whose values are above average 

(high-high) or when a below average value is surrounded by neighbors with below 

average values (low-low). 

By contrast, negative spatial association is implied when a high value is 

surrounded by low neighbors and vice versa (high-low or low-high).  Both of these 

instances are labeled spatial outliers when the matching LISA statistics are significant.  

Each of the quadrants matches a different color in the LISA map, a map that shows both 

the locations with significant LISA statistics (i.e., a rejection of the null hypothesis of 

spatial randomness) as well as the category of spatial association (Anselin, 1995). 

In this case, the total number of shoeprints (matched or unmatched) that occurred 

in each London Borough was summarized by a spatial join.  Once this total count was 

established, another count of a particular matched shoeprint was summarized by each 

borough.  These two counts were divided (matched/total shoeprint count) by borough to 

establish a percentage or rate of occurrence.  Once this is established a spatial weight 

must be created.  For this study, a queen-based contiguity was chosen because it assesses 

its neighbor’s values that share common borders and/or corners.  The queen-based 

contiguity assesses the values of each borough and its neighbors to determine whether 

there is a cluster of similar values in the surrounding area (Anselin, 2004). 
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Figure 14: 
example of 
Moran’s I  
scatter plot.  

Figure 14 represents an example Moran’s I scatter plot.  The x axis represents the 

occurrences of shoeprints per borough and the y axis represents the spatial weight.  In this 

particular case, Moran’s I finds that there is positive spatial autocorrelation which can be 

confirmed by a positive slope and significant p value.  The scatter plot illustrates the 

number of observations that lie within each category.  The scatter plot can be read as 

follows: quadrant 1: high-high, quadrant 2: high-low, quadrant 3: low-low and quadrant 

4: low-high.  

According to local Moran’s I, an area that has positive spatial autocorrelation is 

an area that possesses high values as does its neighbors.  This area can be considered a 

hot spot, because it has a high concentration of high values in a specific location.  

Conversely, an area can still be positively correlated even if its values are low, and its 

surrounding areas are low.  This type of correlation would be considered a cool spot, or 

an area with a low concentration of observations.  
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 Figure 15:  Example Cluster Map 

Figure 15 shows positive spatial autocorrelation.  This particular map shows the 

total number of shoeprints (count) per London borough.  This map illustrates which 

boroughs have a high count of recovered shoeprints when compared with other boroughs.  

This map is useful because it depicts where the most total shoeprints were recovered in 

2004.  Whether or not those areas are correlated to crime incidents has yet to be seen.  A 

number of case studies are presented to illustrate positive and negative spatial 

autocorrelation and show relationships between matched shoeprints. 

5.1 Case Study: N/K 

Once faced with the problem of how to break down a large set of matched 

shoeprints, a test for spatial autocorrelation using Moran’s I is a good starting point.  N/K 

shoeprints were selected because they have a large number of observations (347) even 
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after the self-exclusion algorithm.  The spatial pattern of this set of shoeprints is of 

interest because they are coded N/K, which indicates a pattern cannot be found.  Given 

the uncertainly surrounding these prints, what kind of spatial pattern would be revealed, 

and if there is a pattern, would it be positively or negatively correlated?  

Results:  

 

Figure 16: 
N/K  
Moran’s I 
scatter plot 

Moran’s I: 0.2475    p-value:  0.0140 

A permutation test based on 499 runs was conducted to test the results for spatial 

randomness.  The results show the Moran’s I value of 0.2475 with a significant p-value, 

which reject the null hypothesis of spatial independence.  In other words, there is less 

than 5 percent chance that this pattern was spatially random.  This particular set of 

shoeprints, although having an unknown source possess positive spatial autocorrelation.  

This means a high percentage of matched shoeprints are close to each other, while a low 

percentage of matched shoeprints are near each other.  Figure 17 displays the local 

Moran’s I N/K cluster map.  The map shows that hot spots exist in the south and east of 

central London, while the cool spots exist to the northwest of central London.  Even 
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though high-low and low-high patterns are detected, they are not statically significant 

according to the global Moran’s I test.  

 
Figure 17:  N/K Cluster Map

  

The patterns displayed in this cluster map can be used for specific targeted 

forensic spatial analysis.  For example, the cool spot suggests there are very few matched 

shoeprints centered in that region.  It can be speculated that the prints recovered in that 

region are from a few suspects due to the low percentage of occurrences.  It should be 

noted that prints that exist at this stage have already gone through self-exclusion 

algorithm, and are related by a small distance and time frame.  A low percentage (cool 

spot) means that each set of matched shoeprints are much less likely to happen by chance 

given its ratio to the total number of recovered shoeprints in that region.  However, the 
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hot spot suggests there is a more than expected number of matched shoeprints clustered 

in that region.  Given this region has a high number of matched shoeprints, it may be less 

appropriate to implicate a few suspects but still renders further review by forensic 

investigators. 

5.2 Case Study: N 846 
 

The set of N 846 shoeprints has a smaller number of observations (74) after the 

self-exclusion algorithm.  Even though there are significantly fewer shoeprints than the 

previous case study, 74 prints are still unmanageable when considering the previous EDA 

and EDSA methods.  Additionally, there is no obvious or apparent spatial pattern from 

the point data.  This set of shoeprints can be further investigated by using Moran’s I to 

identify significant clusters or other spatial relationships.  

Results:  

 

Figure 18:         
N 846 Moran’s 
I scatter plot 

N846
 
Moran’s I: -0.1236  P value: 0.1460 
 

A permutation test based on 499 runs was conducted to test the results for spatial 

randomness.  The value of Moran’s I is -0.1236, and the p-value of 0.146 is not 
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significant; however the Moran’s I scatter plot (Figure 18) suggests negative spatial 

autocorrelation.  According to Anselin (1995) even though the global Moran’s I is not 

significant a local cluster can still be significant.  In this case, the set of shoeprints is 

spatially random and possess negative spatial autocorrelation.  Figure 19 illustrates the 

local Moran’s I N 846 cluster map.  Clustering is not apparent within the set of matched 

shoeprints therefore, no significant hot or cool spots exist.  

 Figure 19: N 846 Cluster Map 
 

The implication of the cool spot scenario has been discussed in the previous case 

study, yet the significance of high-low and low-high spatial relationships may also shed 

some light on forensic spatial analysis.  In this particular case, negative autocorrelation is 

obvious.  As the high-low relationship suggests, a large ratio of matched shoeprints is 
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surrounded by no or very few matches.  To some extent, the results may be interpreted in 

terms of the edge effect.  All identified clusters are located on the boundary of 

Metropolitan London.  Therefore boroughs with observations are bordered by regions 

with no observations; and they could skew the results because they are outside the study 

area.  The isolation of a high percentage of matched shoeprints further suggests that 

shoeprints could be left behind by one suspect within a local area because there are no 

matched shoeprints of the same kind in the surrounding boroughs.  Because of the edge 

effect, this suggestion is probably an over identification of the results. 

 Additional concerns with spatial autocorrelation and hot spot clustering can be 

assessed with other methods.  Some methods that might reinforce or supplement this 

study could be implemented in further studies. (e.g. grid and kernel mapping)  Issues of 

scale and how it relates to correlation could also be assessed as correlation at the borough 

level in somewhat ambiguous.  This research simply implies the possibility of correlation 

in a conceptual context. Given the lack of forensic investigative knowledge, the author’s 

aim of this was not to identify these clusters in order to solve crime in this environment, 

but rather to identify and lay groundwork for further investigations. 

 In conclusion, Moran’s I, scatter plots, and cluster maps prove to be useful when 

further classifying forensic shoeprint evidence after the self-exclusion algorithm was 

imposed.  The four types of local associations may provide clues to different types of 

shoeprint clustering.  The previous case studies showed how both positively and 

negatively autocorrelated patterns can be used to identify spatial cluster in forensic 

evidence investigation, but care must be taken not to infer patterns that result purely from 

the spatial arrangement of the areal units and the inevitable effect of the boundary of the 
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study area.  Finally, spatial autocorrelation is a measure of the similarity or independence 

of an object with surrounding objects (Kitchen and Tate, 2000).  As these prints exist 

presently, it is reasonable to assume a relationship between matched shoeprints is 

apparent, but to what extent, it is not known.  Further investigations could further 

determine which spatial unit is most appropriate to assess significant spatial 

autocorrelation. 
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Chapter 6 

Conclusion 

As explained in this thesis, forensic evidence mapping is a relatively new concept 

on the boundary between the fields of geography and forensic investigation.  While both 

fields exist as well-founded disciplines, rarely have the two been combined previously to 

form a spatial or geographical perspective on forensic science.  This initial study has 

shown that the combination of these two fields has considerable potential for joint 

investigation and for future research. 

  Using exploratory spatial data analysis methods, this study has extended common 

principles of crime mapping and analysis, such as hot spot mapping, to forensic evidence 

mapping.  In particular, forensic shoeprint evidence from Greater London was examined 

and spatial relationships were analyzed using exploratory and confirmatory statistics.  To 

assist in crime solving, local spatial autocorrelation statistics, and consideration of 

models such as distance decay and journey-to-crime, were employed to better understand 

the spatial relationships that exist in forensic evidence.  

Based on these exploratory tools and crime mapping principles, the study has 

presented an approach that systematically breaks down a large set of matched shoeprints 

to a set of spatially clustered shoeprints, either in time-space, or in terms of spatial 

adjacency within a given spatial unit.  A smaller and clustered set of matched shoeprints 

is not only much more manageable than unsorted shoeprints, but also more likely to 

reveal and is able to profile and prioritize evidence to improve the efficiency of 

investigations. 
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As journey-to-crime and distance decay theories suggest, crimes are more likely 

to be committed within a short distance of the offender’s residence.  This study examines 

these relationships from a reverse perspective, similar to that of geographic profiling.  If a 

number of matched shoeprints exist within a short distance of each other they may be 

said to form a cluster, it can then be inferred that the offender lives relatively close to the 

crime scene.  From relationships inferred from both ESDA and the LISA statistic, 

investigators could consider these relationships, along with other information, when they 

are establishing a priority in the search for suspects. 

The study has also showed that, although there are plentiful and varied spatial 

examples, the conceptual frameworks and hypotheses underlying crime mapping studies 

cannot be applied directly to forensic mapping.  Crime mapping principles such as 

distance decay have not been tested thoroughly enough in a forensic evidence perspective 

to apply the methods routinely.  As with crime mapping, both EDA and ESDA have 

proved useful for generating hypotheses and discovering patterns in forensic evidence 

that have not been reported previously. This study implemented a time-space constraint 

to filter massive amounts of evidence so that forensic investigators can better manage 

large databases of matched shoeprints for cluster and other pattern analyses.  It was found 

that matched clusters were most likely to be within 1 mile in rectilinear or Manhattan 

distance.  The 3 mile-range also uncovered some significant clusters.  Clustered revealed 

under the larger time constraints were rendered insignificant because of the high number 

of shoeprint occurrences. 

Although the algorithm was very effective in reducing the number of records and 

placing focus on subsets most likely to be related, some shoeprints from popular brands 
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still have hundreds of occurrences.  These large subsets were deemed to be unmanageable 

using the proposed method and were assessed using the LISA statistic.  It is stressed that 

the LISA method was investigated as a proof-of-concept rather than an empirical test. 

 Scatter plots and cluster maps proved to be extremely useful when further 

classifying forensic shoeprint evidence after the self-exclusion algorithm was imposed.  

The four types of local associations (high-high, high-low, low-low, and low-high) can 

provide clues to different types of shoeprint clustering.  The case studies showed how 

both positively and negatively autocorrelated patterns can be used to identify spatial 

clusters, or lack thereof, in forensic evidence investigation.   

Areas that are positively correlated have a high percentage of a specific matched 

shoeprint when compared to the overall number of shoeprints in that area.  In many cases, 

areas that are positively autocorrelated have hot spots.  They provide a focus for further 

forensic investigation.  Negatively correlated areas suggest that the shoeprint in question 

does not occur at a high percentage when compared with the total number of prints in that 

area.  There are usually no hot or cool spots associated with negative correlation.  

However, as stated this study was performed on a conceptual level, therefore it is difficult 

to discern to what extent an investigator will find it useful in practical terms. 

 Reflecting back on the study, there are a number of beneficial suggestions that 

could be used to improve this type of analysis.  If this study was to be conducted based 

on what has been learnt, a similar form of analysis would be performed, but with 

modified techniques and data.  For example, it is possible that in being of irregular size 

and shape, borough boundaries are not the best areal units, even though some studies 

suggest repeat regional offenders.  Census units and police jurisdiction boundaries could 
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be used to see if the hot spot relationships persist with different sets of boundaries.  The 

appropriate spatial resolution or scale of areal units requires further study. 

 Additionally, the use of borough boundaries may have affected the LISA statistics 

due to the fact that evidence was slightly denser in the center of the Greater London study 

area and the inner boroughs are significantly smaller than peripheral ones.  A grid was 

considered to provide regular areal units, but cells with no evidence counts render the 

LISA statistic unusable and at a small spatial resolution many cells had no data.  An 

alternative would be to experiment with grids of several spatial resolutions to ensure that 

all cells had values.  Some investigators have overcome the problem of sparse data by 

adding one observation to all zones. 

The Modifiable Areal Unit Problem (MAUP) is another issue that could be 

considered if the analysis was to be repeated.  If the nature and degree of spatial 

relationships between variables change with the choice of different areal units, the 

reliability of the results is called into question (Chainey and Ratcliffe, 2005).  As noted 

before, the borough boundaries may not be best suited for this analysis and other 

boundaries would likely provide different results. 

Finally, looking back on this analysis, its basis is reminiscent of geographic 

profiling.  Geographic profiling connects series of crime locations to determine the most 

likely area of offender residence (Rossmo, 1999).  The present analysis is similar by 

seeking to link common evidence and speculating that the offender could live within a 

close proximity to the matched evidence.  This research is conceptual, but hopes to 

establish a foundation and an interest in forensic evidence so it can be used from a spatial 

perspective to aid in crime solving. 
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In conclusion, the field of geography is a multidisciplinary study.  Many facets of 

geography are utilized in other disciplines.  GIS, for example is one technology that has 

been integrated into many private and public applications.  This study is an example of 

how geography can be utilized in other fields.  Police and law enforcement officials have 

benefited from the implementation of GIS and its applications.  The field of forensic 

investigation can employ the same methods in a different context.  In a similar manner to 

crime mapping, forensic investigators can apply principles such as hot spot mapping into 

their analysis.  A method including the forensic recovery rate, which is similar in theory 

to a crime rate, was shown to illustrate spatial relationships between total evidence and 

matched evidence.  Hot spot analysis of shoeprint data was used to identify matched 

shoeprint clusters that were related by a set of criteria.  Finally, tests for spatial 

autocorrelation using the LISA statistic were performed to reveal spatial relationships of 

shoeprints in boroughs when compared with their neighbors.  As noted previously, 

although conceptual, this is one of the first studies to implement these principles within 

forensic evidence and the author hopes this work will establish a foundation for later 

studies 
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Appendix A 
 

Time-Space Algorithm 
 
 
Private Sub TimeSpace_Click() 
      '********************************************** 
      '********************************************** 
      '********* Part I: Preparation of the function*********** 
      '********************************************** 
      '********************************************** 
       
      'Get the focus map 
      Dim pDoc As IMxDocument 
      Set pDoc = ThisDocument 
      Dim pMap As IMap 
      Set pMap = pDoc.FocusMap 
     
      ' Get the selected layer 
      Dim pLayer As IGeoFeatureLayer 
      Set pLayer = pDoc.SelectedLayer 
     
      ' Make sure a layer was selected 
      If pLayer Is Nothing Then 
            MsgBox "You must select the destination Layer" 
            Exit Sub 
      End If 
    
      ' Get the selected features from the layer 
      Dim pActiveView As IActiveView 
      Dim pFeatureLayer As IFeatureLayer 
      Dim pFeatureSelection As IFeatureSelection 
      Dim pQueryFilter As IQueryFilter 
    
      Set pActiveView = pMap 
     
      'For simplicity sake let's use the first layer in the map 
      If Not TypeOf pMap.Layer(0) Is IFeatureLayer Then Exit Sub 
      Set pFeatureLayer = pMap.Layer(0) 
      Set pFeatureSelection = pFeatureLayer 'QI 
      
      Dim pFSel As IFeatureSelection 
      Set pFSel = pLayer 
     
      Dim pSelSet As ISelectionSet 
      Dim pFCur1 As IFeatureCursor, pFCur2 As IFeatureCursor 
     
      Dim pFeat1 As IFeature, pFeat2 As IFeature 
      Dim pPnt1 As IPoint, pPnt2 As IPoint, pTemp As IPoint 
         
      Dim dDate1 As Date, dDate2 As Date 
      Dim difDate As Integer 
       
      Dim strSql As String 
      Dim SelectedTotal As Integer 
      Dim i As Integer, j As Integer 
      Dim Dbl_Distance As Double 
      Dim delOrNot As Boolean                         ' Mark the point will be deleted or not 
     
      delOrNot = False 
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      '********************************************** 
      '********************************************** 
      '**** Part II: Delete points based on Criteria************ 
      '**** The predefined field for footprint is: SHOEMARK*** 
      '**** The distance and time period can be customized ***** 
      '********************************************** 
      '********************************************** 
      Dim pData As esriGeoDatabase.IDataStatistics 
      Dim pCursor As esriGeoDatabase.ICursor, pStatResults As esriSystem.IStatisticsResults 
       
      Dim num As Integer 
      num = 0 
       
      Set pCursor = pLayer.Search(Nothing, False) 
   
      Set pData = New esriGeoDatabase.DataStatistics 
       
      '$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
      '$$$$$$$$ modify the field name to it should be $$$$$$$$$$ 
      '$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
      pData.Field = "SHOEMARKS" 
      Set pData.Cursor = pCursor 
   
      Dim pEnumVar As esriSystem.IEnumVariantSimple, value As Variant 
      Set pEnumVar = pData.UniqueValues 
      value = pEnumVar.Next 
     
      ' This loop is to pick the points with the same shoemarker value 
      Do Until IsEmpty(value) 
            'Create the query filter 
            Set pQueryFilter = New QueryFilter 
             
            '******************************************** 
            '**** The single quote in the field can be handled here**** 
            '******************************************** 
            pQueryFilter.WhereClause = "SHOEMARKS = '" & Replace(value, "'", "''") & "'" 
              

p ActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing  'Invalidate only the selection cache.    
Flag the original selection 

            pFeatureSelection.SelectFeatures pQueryFilter, esriSelectionResultNew, False  ' Perform the selection 
            pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing        'Flag the new selection 
         
            Set pSelSet = pFSel.SelectionSet 
            pSelSet.Search Nothing, False, pFCur1 
         
            SelectedTotal = pSelSet.Count 
            'MsgBox SelectedTotal 
            num = num + pSelSet.Count 
         
            Debug.Print pQueryFilter.WhereClause & "          " & pSelSet.Count & "          " & num 
         
            Set pFeat1 = pFCur1.NextFeature 
             
            ' If there is only one point for one shoemarker, this point will be deleted 
            If SelectedTotal = 1 Then 
                  pFeat1.Delete 
                  pSelSet.Search Nothing, False, pFCur1 
            End If 
         
            'If there is more than one points for one shoemarker, delete the points based on the criteria. 
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            If SelectedTotal > 1 Then 
         
                  For i = 0 To SelectedTotal 
                         Set pPnt1 = New Point 
                         Set pPnt1 = pFeat1.Shape 
                         Set pTemp = pFeat1.Shape 
                         dDate1 = pFeat1.value(5) 
                          
                         pSelSet.Search Nothing, False, pFCur2 
                          
                         Set pFeat2 = pFCur2.NextFeature 
                         Do Until pFeat2 Is Nothing 
                              Set pPnt2 = New Point 
                              Set pPnt2 = pFeat2.Shape 
                              dDate2 = pFeat2.value(5) 
                              difDate = Abs(DateDiff("d", dDate1, dDate2)) 
                               
                              '$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
                              '$$$$$$$$ modify 15 to correct time period in day $$$$$$$$ 
                              '$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
                              If difDate < 15 Then 
                                    If pPnt1.X <> pPnt2.X And pPnt1.Y <> pPnt2.Y Then 
                                          'Dbl_Distance = Sqr((pPnt1.X - pPnt2.X) ^ 2 + (pPnt1.Y - pPnt2.Y) ^ 2) 
                                          Dbl_Distance = (Abs(pPnt1.X - pPnt2.X) + Abs(pPnt1.Y - pPnt2.Y)) / 1609.3 
                                          'MsgBox Dbl_Distance 
                                           
                                          '$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
                                          '$$$$$$$$ modify 1 to correct distance  in mile $$$$$$$$$$ 
                                          '$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
                                          If Dbl_Distance < 1 Then 
                                                delOrNot = False 
                                                Exit Do 
                                          End If 
                                          delOrNot = True 
                                    End If 
                              Else 
                                    delOrNot = True 
                              End If 
                              Set pFeat2 = pFCur2.NextFeature 
                         Loop 
                          
                         If delOrNot Then 
                                   pFeat1.Delete 
                                
                                   pSelSet.Search Nothing, False, pFCur1 
                                   SelectedTotal = pSelSet.Count 
                                   i = 0 
                        End If 
                               
                        Set pFeat1 = pFCur1.NextFeature 
                                
                         If pFeat1 Is Nothing Then Exit For 
                  Next i 
        End If 
         
        value = pEnumVar.Next 
    Loop 
     
End Sub 
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