
Graduate Theses, Dissertations, and Problem Reports

2004

PIC 18F452 implementation of digital filters PIC 18F452 implementation of digital filters

Vikram A. Bose-Mullick
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Bose-Mullick, Vikram A., "PIC 18F452 implementation of digital filters" (2004). Graduate Theses,
Dissertations, and Problem Reports. 1418.
https://researchrepository.wvu.edu/etd/1418

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1418?utm_source=researchrepository.wvu.edu%2Fetd%2F1418&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

PIC 18F452 IMPLEMENTATION OF DIGITAL FILTERS

Vikram A Bose-Mullick

Thesis Submitted to
the college of Engineering

at West Virginia University
in partial fulfillment of the requirements

for the degree of

 Master of Science
in

Electrical Engineering

Powsiri Klinkhachorn, Ph.D., Committee Chairperson
Roy Nutter, Ph.D.

 Robert McConnell, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2004

 Keywords: Microchip PIC, 18F452, FIR filter, LMS, Adaptive Filter,
Noise Cancellation, Echo Cancellation, Filter Design

 Copyright 2004 Vikram A Bose-Mullick

ABSTRACT

PIC 18f452 implementation of digital filters

Vikram A Bose-Mullick

This research hopes to explore the computat ional l imits of the PIC18f452

chip by encompassing the designing and implementat ion of two types of f i l ters

for the PIC 18F452 microcontrol ler . The main purpose of this research is to

implement a f loat ing-point least mean square (LMS) error adapt ive f i l ter and

i ts secondary goal is a f ixed-point implementat ion of f ini te impulse response

(FIR) f i l ter . FIR f i l ters are specif ied via a graphical user interface (GUI) and

upon demand, opt imized C-language code is generated for the popular CCS

PIC C-Compiler . In is the intent of this research to learn whether FIR f i l ters

can be made computat ional ly v iable on the PIC18 chips, can they run stably

with re l iable and repeatable performance? What is the minimum execut ion

t ime possible at the process ing l imits of the chip? And how is f i l ter

at tenuat ion affected when taps are scaled down from f loat ing-point to f ixed

point? For the f loat ing point LMS f i l ter i t des ired to explore the re lat ionship

between sampling-rate and f i l ter order and to develop a hardware opt imized

f loat ing point l ibrary for general use. The minimum execut ion t ime for the

LMS f i l ter achieved during this research is 26.7 µs per order . The FIR f i l ter

code generat ion software developed during this study a l lows graphical

specif icat ion, inspect ion of response curves . I t u l t imately presents three

opt ions for automatic code generat ion — program-space eff ic ient code (uses

minimum code space) , data-memory eff ic ient code (uses minimum RAM) and

speed-eff ic ient code (opt imized for quickest execut ion) , thereby a l lowing up to

a 75th order FIR f i l ter with the best execution t ime of 800ns per MAC

cycle achieved at the bit-depth of 8-bit samples and 8-bit taps. The fi l ter

tap conversion from floating-point format to 8-bit f ixed point reduced

the attenuation by an average of 28%. In general , both f i l ters gave a

strong performance with consistent, rel iable and repeatable results .

 iii

DEDICATION

Both small and large, to everyone that made a difference. Above al l , I

dedicate my work to my kind and loving family.

 iv

ACKNOWLEDGEMENT

I wish to express my deepest possible thanks to Dr Powsiri

Klinkhachorn my advisor and dear fr iend, for his excel lent guidance and

boundless fr iendship. Even though I’ve never received an ‘A’ from him, I

have no regrets because I have learned more in his classes than al l my

‘A’s put together.

A special thanks to Dr. Roy Nutter for bringing microprocessors into

my depth of f ield through his innovative lectures, inspir ing chats and for

showing us the value of journals and periodicals . They contained the very

f irst sparks that led to my intense love of the subject .

 I express my deep appreciat ion for to Dr. McConnell from whom I

learned the fundamentals for analog and digital without which nothing is

possible.

Thank you gentleman for your generosity of spir it , for your infinite

kindness you’re your constant support and final ly for making the t ime to

serve in my committee.

A special thanks to my friend Tal Gottesman for f i l l ing in and picking

up the slack during during zi l l ions of hours that were spent putt ing this

document together.

Final ly my thanks to Braxton Lewis and my boss Dr. McCawley for al l

their constant help and support.

 v

TABLE OF CONTENTS

Abstract .. i i

Dedication ... i i i

Acknowledgements .. iv

Table of contents .. v

List of Figures.. viii

List of Tables .. xii

List of Symbols / Nomenclature ... xiii

CHAPTER 1: INTRODUCTION 1

1.1 Personal Motivation ...1

1.2 Signal Processing using the PIC 18F452..................................2

1.3 Digital Filters Vs Analog Filters ...3

1.4 PIC 18 Microcontroller Family ..3

1.5 Detai led Research Objectives and Contributions4

1.6 Organization ...6

CHAPTER 2: LITERATURE SURVEY 7

2.1 Classif ication of Fil ter ing Methods ..7

2.2 Digital Fi l ters ...7

2.3 Non-Recursive Type Digital Filters ...8

2.4 Switching type digital f i l ters ...9

2.5 Adaptive Filters ..9

2.6 Least Mean Squared Error (LMS) ..10

2.8 Implementation of a digital f i l ter ...12

 vi

CHAPTER 3: IMPLEMENTATION DETAILS ... 14

3.1 Finite Impulse Response (FIR) ..14

3.2 Implementation Background ...15

3.3 FIR Filter Implementation ...17

3.3.1 User specification...17

3.3.2 Fi l ter Tap Generation ..20

3.3.3 Coefficient Scal ing ...22

3.3.4 Code generation...23

3.3.5 Buffering Data ..24

3.3.6 Sampling: Analog to Digital Conversion35

3.3.7 Fi l ter Calculations ..39

3.3.8 Implementation for Shortest Execution Time41

3.3.9 Implementation for Efficient RAM uti l ization51

3.3.10 Implementation for Min Program Memory.............53

3.4 Implementation of the f loating-point LMS fi l ter54

3.5 The compilers f loating point system ..54

3.6 Floating-Point Word lengths...55

3.6.1 Algorithm developed for FP multiplication..............57

3.6.2 Call ing FP Addition function in C-language62

3.6.3 Algorithm developed for floating-point addition62

3.6.4 Converting integer to floating-point format64

3.7 Implementation of a 4t h order LMS algorithm65

3.7.1 Sampling noise and reference for LMS fi l ter66

3.7.2 Program Outline for 4t h order LMS filter68

3.8 Hardware Test Circuit ...73

3.9 Detailed Schematic of the Power Supply74

3.10 Detailed Schematic: Smoothing Filter75

3.11 Detailed Schematic: Signal Conditioning Board76

3.12 Detailed Schematic: Signal Processing Board77

3.13 Photograph of PIC18F452 based Fi lter78

 vii

CHAPTER 4: RESULTS FROM REAL-TIME 79

4.1 FIR FILTER: Data Acquisition Setup79

4.2 FIR FILTER: Real-Time Testing Results80

4.3 LMS FILTER: Test Scenario 1 ..86

CHAPTER 5: AnaLySis & CONCLUSIONS 92

5 .1 FIR f i l ter performance summery ...92

5.2 LMS fi l ter performance summary ..94

5.3 Conclusions and future work ..95

APPENDIX……………………………………………………………..99

A USERS MANUAL FOR FIR FILTER DESIGN………………..99

B MATLAB CODE FOR FIR FILTER DESIGN SOFTWARE..109

C CODE FOR 4t h ORDER FLOATING POINT LMS…………..130

D CODE FOR SWITCHED CAP CLOCK SOURCE………….…143

E C-CODE FOR LDC ON PORT C……………………………….145

VITA……………………………………………………………………148

 viii

LIST OF FIGURES

Figure 1.5.1 Topology for Real-Time LMS Circuit Testing . 4

Figure 2.1.1 Classif icat ion of Signal f i l ter ing methods . 7

Figure 2.3.1 The transversal topology of the FIR fi l ter . 8

Figure 2.6.1 LMS fi l ter Topology . 11

Figure 2.7.1 Standard Implementation of LMS Filter . 12

Figure 2.8.1 Standard Implementation of Digital Filter . 13

Figure 2.8.2 Digital Signal Processing overview .. 13

Figure 3.1.1 FIR fi l ter block Diagram .. 15

Figure 3.3.2 FIR fi l ter creat ion stages . 17

Figure 3.3.2 Digital Signal Processing overview .. 18

Figure3.3.3 Frequency/phase review curves & code generation 19

Figure 3.3.4 Section of C-Code generated . 19

Figure 3.3.5 Intended LPF parameters . 20

Figure 3.3.6 Skeleton code needed for Filter . 20

Figure 3.3.7 Frequency and phase response plot . 21

Figure 3.3.8 Frequency and phase response plot . 21

Figure 3.3.9 Eight-Bit scaled coefficients . 22

Figure 3.3.10 Circular buffer: Used to store ADC values for FIR fi l ter . 25

Figure 3.3.11 Algorithm developed to load circular buffer . 26

Figure 3.3.12 Step 1: Data element 0 is loaded and pointer decrements 26

Figure 3.3.13 Step 2: Data element 1 is loaded and pointer decrements 27

Figure 3.3.14 Step 3: Data element 3 is loaded and EOB is reached 27

Figure 3.3.15 Step 4: Element 4 is loaded and ptr is pre-decremented . . 27

Figure 3.3.16 Element 4 is unloaded from buffer and BOB is reached . . 28

Figure 3.3.17 Pointer is relocated to EOB and 3 is pul led . 28

Figure 3.3.18 Data element 1 is pul led . 29

Figure 3.3.19 Algorithm used to pull data from the circular buffer 29

 ix

Figure 3.3.20 Topology of the Double Circular Buffers . 30

Figure 3.3.21 Data Element 1 is loaded to both buffers . 30

Figure 3.3.22 Data Elements 1-5 are loaded to buffer . 31

Figure 3.3.23 Buffer Data Ready to be unloaded . 32

Figure 3.3.24 Pointer FSR1 is relocated to same location as FSR0 32

Figure 3.3.25 FSR1 pre-increments and unloads data element 5 33

Figure 3.3.26 Algorithm for loading the adjacent circular buffers 34

Figure 3.3.27 Assembly routine written to load the buffers. 34

Figure 3.3.28 Algorithm used to unload from adjacent circular buffers . 35

Figure 3.3.29 Description of the ADCON0 Register . 37

Figure 3.3.30 Description of the ADCON1 Register . 37

Figure 3.3.31 Reading Only ADRESH wil l scale down to 8-bit 38

Figure 3.3.32 RAM used by the FIR fi l ter ing scheme .. 42

Figure 3.3.33 Description of the T1CON Register . 43

Figure 3.3.34 Word space dedicated to storing MAC result 45

Figure 3.3.36 Multiply by 256 algorithm .. 46

Figure 3.3.37 Multiply by 128: Single Right shift of each byte 46

Figure 3.3.38 Buffer setup for storing ADC samples . 47

Figure 3.3.39 Buffer setup for storing Coefficients . 47

Figure 3.3.40 24-Bit Result store for MAC operation . 47

Figure 3.3.41 Multiply-Accumulate Algorithm .. 48

Figure 3.3.42 Init ial izat ion Routine for Fastest Execution . 49

Figure 4.3.43 Fastest Execution Implementation for PIC 18f452 50

Figure 4.3.44 RAM efficient Implementation for PIC 18f452 51

Figure 4.3.45 RAM Efficient Implementation for PIC 18f452 52

Figure 4.3.46 Minimum Program Size Implementation . 53

Figure 3.6.1 Assigned Word Length for Floating Point Format 55

Figure 3.6.2 Memory footprint of f loating point numbers . 57

Figure 3.6.3 Developed Algorithm for Mult ipl icat ion . 58

Figure 3.6.4 Multipl icat ion Step 1: C s i g n = A s i g n XOR B s i g n 59

Figure 3.6.5 Multipl icat ion Step 2: C<FracL: FracH> = AfracH*BfracH . 59

 x

Figure 3.6.6 Multipl icat ion Step 3: ARea l* BFracH . 60

Figure 3.6.7 Multipl icat ion Step 4: AFracH* BRea l . 60

Figure 3.6.8 Multipl icat ion Step 5: ARea l* BRea l . 61

Figure 3.6.9 C-Code for f loating point mult ipl icat ion . 61

Figure 3.6.10 C-Code for f loating point addition . 62

Figure 3.6.11 Developed Algorithm for Addition. 63

Figure 3.6.12 Developed Algorithm for Mult iplication. 64

Figure 3.7.1 Fourth Order LMS Filter . 65

Figure 3.7.2 Sampling for LMS .. 66

Figure 3.7.3 Configuring ADC for Sampling Two Channels 67

Figure 3.7.4 Initia l izat ion Routine for LMS .. 68

Figure 3.7.5 Four element ADC sample bvffer for LMS .. 69

Figure 3.7.6 Arangements of Structs in Memory . 70

Figure 3.7.8 Level 2 Flow Diagram for LMS .. 71

Figure 3.7.9 Level 3 Flow Diagram for LMS .. 72

Figure 3.8.1 Block Overview of Circuit . 73

Figure 3.8.2 Power Supply Board . 74

Figure 3.8.3 Smoothing Filter for R-2R Ladder. 75

Figure 3.8.4 Signal Conditioning Block . 76

Figure 3.8.4 Block Overview of Circuit . 77

Figure 3.8.5 Photograph of Test Board . 78

Figure 4.4.1 Basic setup for low-cost data acquisit ion . 79

Figure 4.2.1 Response Curves of Intended Filter . 80

Figure 4.2.2 Test Signal : Constant Power Sweep [200Hz-4000Hz]. 81

Figure 4.2.3 Filter Performance on PIC18F452 Chip . 81

Figure 4.2.5 Measured BSF Frequency and Amplitude Response 83

Figure 4.2.6 MBF 1 Filter Specif ications for Band Pass f i l ter 84

Figure 4.2.7 Frequency and Amplitude response from PIC18F452 84

Figure 4.2.8 MBF 2 Filter Specif ications for Band Pass f i l ter 85

Figure 4.2.9 Frequency and Amplitude response from PIC18F452 85

 xi

Figure 4.3.1 Sampling Source A at P1 and P2 . 86

Figure 4.3.2 Source B is added to the scene . 86

Figure 4.3.3 Approximation of Signal at p2 . 87

Figure 4.3.4 Time domain graph of signal at p2 . 88

Figure 4.3.5 Frequency domain graph of signal at p2 . 88

Figure 4.3.6 Real-t ime test topology . 89

Figure 4.3.6 Signal p2 (top) and Reference p1 sampled by ADC 89

Figure 4.3.7 Signal Recovered by the PIC chop (source B: 340 Hz) 90

Figure 4.3.8 Signal Recovered in frequency domain (source B: 340 Hz) 91

Figure 5.1 Comparison of exec speed for different implementations 94

 xii

LIST OF TABLES

Table 3.2.1 Multipl icat ion Speeds published by Manufacturer 16

Table 3.6.1 Floating point algorithms developed for LMS…… 56

Table 5.1 LMS Sampling Rate vs Fi lter Taps………………………….95

 xiii

LIST OF NOMENCLATURE

1. MCU .. Microcontrol ler Unit .

2. DSP .. Digital Signal Processor.

3. ADC.. Analog to Digital Converter.

4. DAC.. Digital to Analog Converter.

5. PWM .. Pulse Width Modulat ion.

6. LMS .. Least Mean Squared.

7. FIR .. Finite Impulse Response.

8. IIR . Infinite Impulse Response.

9. ALU .. Arithmetic Logic Unit .

10. MIPS .. Mil l ions of Instructions per Second.

11. MAC.. Mult iply and Accumulate.

12. SMD .. Surface Mount Technology.

13. RAM…… ... ……….Random Access Memory/Read Write Memory.

14. EEPROM.Electrical ly Erasable Programmable Read Only Memory.

15. FFT…………..………………………………Fast Fourier Transform.

16. GUI…………..………………………….…Graphical User Interface.

17. ISR………………………………..…….…Interrupt Service Routine.

18. EOB…………………………..………………………..End of Buffer.

19. BOB………………………..……………………Beginning of Buffer.

20. FSR……………………………………………….File Select Register.

 1

 C H A P T E R 1 : I N T R O D U C T I O N

1.1 Personal Motivation

My fascination with single chip microcontrol lers began with my

undergraduate days and has remained consistent ever since. In a world

where minimalism is the catchword, they f it the role perfectly, being a

cost effective way to elegantly solve complicated problems, thereby

making so many aspects of electronics and software accessible to

engineers and students as well . During my undergraduate and graduate

years I part icipated in projects involving electronics and circuit design

and always enjoyed finding new opportunit ies for microcontrol ler based

solutions. With circuits gett ing more and more complex, f i l ters must be

instal led to control noise and deal ing with f i l ters meant having to look

for the r ight capacitors and the r ight resistors, op amps and repeating the

same tedium al l over again, especial ly if i t was determined that a new set

of f i l tering specif icat ions were required. The alternative to a true digital-

f i l ter is to use a switched capacitor f i l ter but those are usual ly not as

clean as analog f i l ters and require a clock signal that adds switching

noise; with an addit ional circuit component drawing power, occupying

space and incurring an explicit monetary cost.

I t i s h e r e t h a t t h e F i n i t e I m p u l s e R e s p o n s e (F I R) f i l ters step

in, being an attractive alternative to using analog f i l ters and switched

capacitor digital f i l ters. I learned about them in theory and conducted a

couple of Matlab simulations before real izing that these are ideal for use

with microcontrol ler projects. They impose no addit ional monetary cost

upon the circuit ; can be easi ly reconfigured by changing code, without

any lag in performance with t ime. The chal lenge is to do a very eff icient

implementation for the PIC 18 architecture so it becomes possible for

the f i l ter to function as a supplementary applicat ion, thereby, providing

 2

an intuit ive graphical interface that wil l a l low anyone to easi ly generate

these f i l ters using a simple point and cl ick system. However, not al l noise

problems can be solved by using FIR fi l ters.

Sometimes due to the nature of the noise, especial ly if i t is correlated,

i t is impossible for an ordinary (f ixed-band) f i l ter to remove it , because

both the signal and noise occupy the same frequency range. For instance,

if the echo of the signal was the source of noise, then the echo could not

be removed simply by suppressing its frequencies, because the echo and

the source have a strong correlat ion. In cases l ike these, adaptive f i l ters

are used to reduce noise. The least mean squared (LMS) error is a

commonly used adaptive noise cancel lat ion algorithm that is ideal for

this purpose because it is a good compromise between computational

complexity and performance.

.

1.2 Signal Processing using the PIC 18F452 Microcontroller

Microcontrol lers such as PIC chips which run at speeds up to 10

MIPS (mil l ion instructions per second) are useful for gaining valuable

practical experience with low bandwidth signal processing ideas. What

makes them so convenient is the wealth of built in hardware, which can

sample signals , perform ADC conversions and contain mult iple t imers

for accurate t iming. Moreover, there are a number of low cost compilers

making the package avai lable under $6.00 per chip [4] and as low as $175

for a C-Compiler and an in-circuit programmer for $75 [2] , making it

feasible cost-wise as well .

 3

1.3 Digital Filters Vs Analog Filters

Digital f i l ters have several advantages and disadvantages over their

analog counterparts. The main advantage of digital f i l ters is that they

occupy no physical space as they are implemented completely in software

and operate by applying a mathematical algorithm designed to produce

the f i l ter ing effect . Since digital f i lters need no physical components i .e . ,

capacitors and resistors, their performance does not degrade with age or

respond to ambient environmental condit ions. Another major advantage

is that some digital f i l ter (FIR fi lters) can have a unique property cal led

l inear phase response, which is crit ical in many communications

applicat ions. Analog f i l ters presently, have a much greater dynamic range

however, than digital f i l ters because they are not l imited by factors l ike

sampling rate and computation speed [5] .

 1.4 PIC 18 Microcontroller Family

Microchip Technologies manufactures a popular l ine of micro

control lers known as Peripheral Interface Control ler or PIC chips. The

PIC 18F452, released in May 2002, is currently one of their fastest chips

[3] . At the core of this chip is an 8-bit RISC based ALU that can process

10 MIPS at 40 MHz. Its design is based on Harvard architecture,

al lowing it to have separate data and program memories. Its memory is

divided into 32 KB of f lash based program memory and 1.5 KB of

volat i le data memory (RAM) as well as 256 Bytes of EEPROM. PIC

chips have a RISC based instruction set consist ing of a small yet seminal

set of instructions, most of which are single cycle, thereby making them

fast executing and easy to program. Other valuable devices such as

analog to digital converters, pulse width modulation, mult iple t imers,

I/O Ports are al l integrated within the same chip that also contain

hardware support for several popular serial communication protocols

 4

such as I2C, SPI and UART. Running at 40 MHz, i t takes the 18F452 chip

100ns to mult iply two bytes and compute a 16-bit result . The other noted

feature that makes this chip viable for s ignal processing applicat ions is

that, i t contains mult iple hardware pointers that al low very fast access to

data stored within the chips’ RAM.

1.5 Detailed Research Objectives and Contributions

The main focus of this research wil l be to test and val idate the PIC

chips’ abi l i ty to implement a real-t ime floating-point LMS based

Adaptive f i l ter , which is a very useful way to deal with noise that is too

closely related to the signal for conventional band compensating f i l ters

to handle.

1. A suitable general-purpose, adaptive noise cancel lat ion circuit wil l be

designed, that is both cost effective and customizable to serve several

different applicat ions. The circuit wil l be tested using test s ignals

generated by a PC sound card as shown in Figure 1.5.1. This wil l a l low

the modeling of different types of noise and to test various signal to

noise rat ios. The circuit wil l process the signals in real-t ime and the

results wil l be measured using a data acquisit ion system. Analysis of the

recorded data should reveal the effective noise reduction versus noise

reductions predicted via s imulations.

Figure 1.5.1 Topology for Real-Time LMS Circuit Testing

 5

2. During the course of this research, software wil l be developed to

benefit the users of the popular CCS PIC Compiler. The software wil l

include a modular l ibrary for PIC 18XXX with optimized f loating-point

math support. Although the compiler is inherently capable of handling

f loating-point data, i t performs common floating-point operations such

as addit ion, subtraction, and mult ipl icat ion at an alarmingly slow rate

rendering it unpractical for real-t ime applicat ions. Therefore, another

aim of this research wil l be to develop a modular l ibrary that wil l provide

a faster alternative to the compilers built in f loating-point system.

3. The secondary focus of this research wil l be to test and val idate the

PIC chips’ abi l i ty to implement a real-t ime fixed-point FIR fi l ter , which

is a very practical idea, because it can be seamlessly used in countless

applications where noise and the signal of interest occupy separate

frequency bands.

4. A Graphical User Interface (GUI) wil l be developed that al low

users to design various types of FIR fi l ters, such as Low-Pass, High-Pass,

Band Pass, Notch or any combination of the above, in short , mult i-band

fi l ters. The user may design the f i l ter by taking a point and cl ick

approach to specifying band-edges, attenuations, sampling rate etc. and

the software wil l show users the respective frequency and phase response

graphs. Once the user is sat isf ied with the f i l ter they have designed, the

software wil l present them with several real izat ion options, thereby

al lowing them to decide whether they want the f i l ter optimized for

execution speed, or conservative RAM usage or conservative program-

memory usage. Ult imately, optimized C language source code is

generated that is ready to be compiled for either PIC 18F452 chip or the

smaller PIC 18F252 chip or easi ly adapted for the remaining chips in the

PIC 18FXXX family by a moderately experienced programmer. Final ly ,

the GUI wil l generate a diagram of the test circuit needed to instal l the

f i l ter code.

 6

5. Each type of FIR fi l ter created by the software wil l be evaluated

independently by applying a constant-power frequency sweep generated

by a f i l ter test program. The real-t ime output of the f i l ter wil l be

recorded by a data acquisit ion system and its performance wil l be

analyzed though PC based data analysis tools such as FFT.

1.6 Organization

Chapter two wil l cover a l i terature review and theoretical background

of exist ing techniques for digital f i l ter implementation for both LMS and

FIR fi l ters. Chapter three wil l constitute the implementation detai ls for

both the f i l ters. Chapter four wil l present results and analysis and

chapter f ive wil l contain recommendation for future work. An appendix

is provided that contains al l codes written during this exploration and a

user’s manual for the f i l ter design of the GUI.

 7

 C H A P T E R 2 : L I T E R A T U R E S U R V E Y

2.1 Classification of Filtering Methods

The earl iest f i l ters were analog f i l ters. In recent years, digital f i l ters

have gained popularity due to the lowering cost of microprocessors and

the increased level of convenience and flexibi l i ty offered by digital

f i l ters. Advances in technology al lowed them to function at a faster

speed and now they are rapidly approaching the large dynamic range of

analog f i l ters [5] . A broad classif icat ion of Digital f i l ters is presented in

Figure 2.1.1.

 Figure 2.1.1 Classif icat ion of Signal f i l ter ing methods

2.2 Digital Filters

A digital f i l ter is a discrete-t ime l inear system that operates on an

input sequence, modifies i t , and produces the output sequence. The

input sequence is usual ly obtained by digit izing a signal , thereby

converting it into discrete t ime, with the output sequence being

transformed back into an analog signal through an appropriate digital to

analog process. The steadily reducing cost of portable computation is

DIGITAL FILTERS

NON-RECURSIVE

FIR Filters
Others

SWITCHING

Switched-Cap
Others

ADAPTIVE

LMS, RLS, etc

 8

thereby making a direct contribution to the r ise of popularity of digital

f i l ters.

2.3 Non-Recursive Type Digital Filters

The most commonly used Non-Recursive f i l ter is the FIR fi l ter . The

weights of this type of digital f i l ters are constant and are computed at

design t ime. Since the weights remain constant, the stabi l i ty of FIR

fi l ters can be guaranteed. However, they can have several topologies —

the transversal topology as shown in Figure 2.3.1 being the most

common type and the one used for this research [9] .

 Figure 2.3.1 The transversal topology of the FIR fi l ter

The transversal FIR fi l ter is characterized by the fol lowing equation.

1

0

() () * () (2.1)
N

k

y n h k x n k
−

=

= −∑

Where,

x(n) : discrete t ime elements of the sampled signal

y(n) : is the computed output of the FIR fi l ter

h(k): are the coefficients of the f i l ter also knows as f i l ter-taps

y(n)

x(n)

 9

 L i n e a r c o n v o l u t i o n o f t h e f i l t e r c o e f f i c i e n t w i t h t h e s a m p l e d

s i g n a l p r o d u c e s t h e f i l t e r i n g e f f e c t . Since multipl ication and addit ion

are the only mathematical operations involved with the FIR fi l ter , this

process is ideal ly suited for use within the PIC 18F452 microcontrol ler .

The clear advantage of using FIR fi lters is the radical alterat ion in its

frequency compensation, which can be achieved by simply providing the

system with a new set of f i l ter coefficients. Another interest ing property

of FIR fi l ters is that, they are the only type of f i l ter that can have a true

l inear phase response. Since this research deals exclusively with the

implementation aspects of FIR fi l ters, i t is assumed that the coefficients

of the f i l ter have already been computed. For more theoretical detai ls

regarding obtaining f i l ter coefficients refer to [7] .

2.4 Switching type digital filters

The switched capacitor f i l ter is a common type of switching f i l ter .

Switching type digital f i l ters are a convenient alternative to using high

order analog f i l ters. They are packaged for convenient use and typical ly

require a clock signal and power to operate. Most are str ict ly low-pass

f i l ters; others can be programmed by addit ional resistors, to be used as

band pass and notch fi l ters. However, this convenience comes at the

expense of addit ional monetary cost and components and having to deal

with the inescapable incurrence of switching noise [1] .

2.5 Adaptive Filters

One of the most successful adaptive algorithms is the LMS fi l ter

developed by Widrow [14]. LMS, sometimes known as LMSE is excel lent

for deal ing with correlated noise where noise and the signal are too much

al ike to be f i l tered using ordinary band-compensating f i l ters such as low-

pass, band-pass etc. Such fi l ters are commonly referred to as adaptive

 10

fi l ters and they are used in applications such as, echo-cancel lat ion over

communication l ines, noise-cancel lat ion, Electro-cardiogram (ECG) in

pregnant mothers, suppressing machine noises in mines and countless

other applicat ions.

2.6 Least Mean Squared Error (LMS)

The LMS fi l ter is based on the s teepest decent a lgor i thm where the

weight vector is updated from sample to sample as fol lows:

 (2 .2)1W Wk k kµ= − ∇
+

 where,

Wk: Is the weight vector

k∇ : I s the true gradient vector

µ: Rate of convergence also referred to as learning rate

T h e L M S a l g o r i t h m i s a p r a c t i c a l m e t h o d o f o b t a i n i n g e s t i m a t e s

o f t h e f i l t e r w e i g h t s W k i n r e a l t i m e . The Widrow-Hopf LMS

algorithm for updating weights from sample to sample is given by:

1 2 (2.3)k k k kW W e Xµ+ = +

where,

(2.4)T
k K kek y W X= −

ek : Is the error term

Xk : Is the correlated noise vector

LMS algorithm above does not require prior knowledge of the signal

stat ist ics, but instead uses instantaneous est imates to tune the f i l ter . The

weights obtained by the LMS algorithm only est imates, but these

 11

estimates improve gradual ly with t ime as the weights are adjusted and the

f i l ter adapts i tself to the characterist ics of the signals . Eventual ly, the

weights converge. The condit ion for convergence is ,

1
0 (2.5)

max
µ

λ
< <

where,

 λmax: Is the maximum Eigen value of covariance matrix.

The main objective in adaptive noise cancel lat ion is to produce an

optimum estimate of the correlated noise in the contaminated signal .

This is done by the simultaneous sampling of two signals — one being

the signal of interest to be f i l tered and the other being the source of

correlated noise, referred to as the r e f e r ence . The adaptive f i l ter in

Figure 2.6.1 uses the reference to predict the degree of contamination in

the signal of interest by the process of correlat ion.

Figure 2.6.1 LMS fi l ter Topology

 The adaptive f i l ter attempts to predict the amplitude and phase of

the noise present in the contaminated signal by correlat ing the reference

with the contaminated signal . The predict ion of the adaptive f i l ter

constantly approaches the actual noise present in the contaminated

 12

signal . With the error signal continuously being used to tune the f i l ter , i t

gradual ly approaches the desired signal . Figure 2.7.1 shows a f low

diagram for the LMS fi l ter algorithm.

Figure 2.7.1 Standard Implementation of LMS Filter

2.8 Implementation of a digital filter

Digital f i l ters are a natural choice for circuits that are interfaced to or

control led by a microcontrol ler . Part of the microcontrol ler ’s computing

power may be dedicated to f i l tering the sampled input signals . Figure

2.8.1 is a block diagram for typical digital f i l ter implementation.

Initialize
(),k k iw i x −

Sample Xk and Yk

Estimate Noise
1

()
N

k k k in w i x
−

−= ∑

 Compute Error
k k ke y n= −

 Update Weights
1() () 2k k k kW i W i e xµ+ −= +

 13

Figure 2.8.1 Standard Implementation of Digital Fi lter

The Ant i -Al ias ing f i l ter is a low-pass f i l ter designed with a cutoff

that is at least half the sampling rate of the analog to digital converter

(ADC). This is used to prevent sampling of frequencies above Nyquist

rate [6] . A smoothing f i l ter is another low-pass f i l ter that is used to

reduce the harmonic distort ion result ing from the quantization process.

An i l lustrat ion of the described process is presented in Figure 2.8.2.

Figure 2.8.2 Digital Signal Processing overview

Unfiltered
Signal

Anti-Aliasing
Filter

Analog to Digital
Conversion

Microcontroller
(Digital filter)

Smoothing
 Filter

Digital to Analog
Conversion

 14

 C H A P T E R 3 : I M P L E M E N T A T I O N D E T A I L S

Implementation detai ls for the f ixed-point FIR fi l ter are discussed

first fol lowed by the implementation detai ls for the more complicated

f loating-point LMS fi l ter .

3.1 Finite Impulse Response (FIR)

Development of a FIR fi l ter general ly involves two dist inct phases.

The f irst one is the design phase and the other is the real izat ion phase.

The design phase involves specifying f i l ter characterist ics such as band-

edges, frequency-response and phase-response etc. and final ly derives the

f i l ter coefficients for the intended fi l ter . There are several ways to obtain

f i l ter coefficients. For this research the Matlab f i l ter design toolbox was

used to generate them. In FIR fi l ters, the same hardware can be used to

real ize many different types of f i l ters. It can be seamlessly reconfigured

from a low-pass to band-pass to notch or a combination of al l of them

by simply supplying a new set of coefficients. The implementation

discussed in this study is optimized for the PIC 18F452 instruction set

although it is f lexible enough to be easi ly adapted to other inexpensive

microcontrol lers with similar hardware.

The software developed for building FIR fi l ters includes a program

that al lows users to visual ly specify the f i l ter parameters. Once the f i l ter

has been final ized, optimized code wil l be automatical ly generated for

the PIC 18F452 processor. Since the f i l ter is usual ly used as a

supplementary application, i t must be designed to co-exist with a main

application. The proposed implementation uses only a fraction of the

microcontrol lers’ total computational capacity and the remaining cycles

are reserved for the main applicat ion. Addit ional ly, the implementation

scheme is easy to reconfigure without making changes in hardware.

 15

The second phase is the real izat ion phase. This involves the selection

of an appropriate platform upon which the f i l ter wil l be implemented. In

this case the platform desired is the PIC 18F452 chip. Real-t ime

implementation involves three dist inct processes — first ly the analog-to-

digital conversion of a s ignal ; fol lowed by mathematical processing by

the f i l ter ing algorithm; and final ly , if needed the obtained results have to

be transformed back into an electrical s ignal using a suitable digital-to-

analog conversion technique. All three processes mentioned above must

be performed within a proper t ime constraint or the result becomes

inval id. For instance, if we are sampling a s ignal at 4000Hz then our

worst-case t ime is 1/4000Hz or 250us. All f i l ter computations must be

completed within the t ime window of 250us. The block diagram of the

FIR fi l ter is presented in Figure 3.1.1.

Figure 3.1.1 FIR fi l ter block Diagram

3.2 Implementation Background

Three different implementation strategies are provided to the user as

options, each with its advantages and drawbacks. They are m i n i mu m

RAM implementation, m i n i mu m p r og r am memor y implementation and

m i n i mu m ex ecu t i on t i me implementation. Each wil l be discussed in

detai l in the fol lowing sections.

Implementation aims to take advantage of the PIC chip’s hardware

architecture and instruction sets. The PIC 18F452 chip has certain

features in its hardware that makes it a good choice for f i l ter ing

 ADC FIR DAC

Optional

 16

applicat ions. The fol lowing restr ict ions were used while implementing

the FIR fi l ter algorithm in order to maximize the f i l ter throughout.

1. Mult ipl icat ion operations are restr icted to unsigned integer data only.

The Table 3.2.1 is a summary of manufacturer published mult ipl icat ion-

performance for the PIC 18F452 chip [10]. Table 3.2.1 outl ines the speed

gain from using the hardware mult ipl ier and by favoring unsigned-

multipl icat ion operations instead of signed mult ipl icat ion operations.

TimeH is the t ime needed performing hardware mult ipl icat ion and TimeS

is the t ime needed to perform software mult ipl icat ion.

Table 3.2.1 Mult ip l i cat ion speeds for PIC18452

ROUTINE METHOD TimeH/TimeS Speedup

8x8 Unsigned Hardware/Software 100ns/6.9µs 6900%

8x8 Signed Hardware/Software 600ns/9.1µs 1500%

16x16 Unsigned Hardware/Software 2.4µs/24µs 1000%

16x16 Signed Hardware/Software 3.6µs/25.4µs 1400%

2. The analog to digital converter is used with 8-bit resolution. Even

though the built in ADC on the PIC chip is capable of sampling up to

10-bit resolution, the PIC memory and ALU are both 8-bit wide. It is

therefore most eff icient in handling 8-bit data. Hence, al l f i l ter

coefficients and ADC data wil l be restr icted to 8-bit resolution.

3. All memory references are made using indirect addressing. The PIC

18F452 chip contains three hardware pointers. FSR0, FSR1, FSR2, each

being 12 Bits and capable of covering the entire RAM size for the PIC 18

family (up to 4096 bytes for PIC18f2515). By shortening the range of

these pointers to 8-bits we can gain efficiency at the expense of smaller

memory coverage. The pointer space wil l be restr icted to 8-bits to cover

 17

256 bytes of RAM or a s ingle bank of RAM. This means that al l our

buffers and other dynamical ly al located areas of RAM have to be

confined to 256 bytes of memory.

3.3 FIR Filter Implementation

 FIR fi l ter implementation scheme on the PIC 18F452 chip can be

categorized using the fol lowing major steps shown in Figure 3.3.1.

 Figure 3.3.2 FIR fi l ter creation stages

3.3.1 User specification

The very f irst logical step to making a f i l ter is to specify f i l ter

parameters such as band edges, attenuations and ripples. To this end, the

fol lowing interface was developed to al low a user to specify the type and

Filter Tap Generation

Coefficient Scaling

Sampling/Buffering

Filter Processing

Output Scaling

MATLAB

PIC 18F452

User Specification

Code Generation

Analog Output

 18

exact parameters of the f i l ter to be designed. Figure 3.3.2 is a snapshot

of the developed fi l ter making software.

 Figure 3.3.2 Digital Signal Processing overview

 By making use of the menus the user can select from the range of

f i l ters that can be generated for real-t ime implementation. The avai lable

options are low-pass, high-pass, band-pass, band-stop, notch and custom.

Once the type of f i l ter is decided, the user can specify parameters such

as band edges and attenuations by f i l l ing in the appropriate boxes.

Before the user is al lowed to generate code, the frequency and phase

response for the desired f i l ter circuit must be reviewed. The software

automatical ly calculates the exact f i l ter order required to achieve f i l tering

requirements. The f i l ter coefficients are calculated using the Remez

exchange [8] method for optimal tap generation for low-pass and high-

pass configurations. Figure 3.3.3 shows the frequency and phase res-

ponse curves as well as the different code generation options avai lable to

the user. If sat isf ied the user may generate the desired f i l ter .

 19

 Figure3.3.3 Frequency/phase review curves & code generation options

Once a sat isfactory design is achieved the user is given three options

for code generation. Final ly C-language code, as shown in Figure 3.3.4,

is generated that is ready to be compiled or edited.

Figure 3.3.4 Section of C-Code generated

 20

3.3.2 Filter Tap Generation

The Matlab f i l ter design toolbox [13] was used to generate f i l ter

coefficients. This toolbox contains a set of functions that al low users to

conveniently make and test different types of f i l ters. If for example, a

low-pass f i l ter was desired with the characterist ics given in Figure 3.3.5

and Figure 3.3.6 is the skeleton Matlab-code needed to generate i t .

Sampl ing Frequency of 8000Hz

Pass band frequency of 500Hz

Stop Band frequency of 1000Hz

Pass band ripple of .05 dB

Stop band ripple of 55 dB

Figure 3.3.5 Intended LPF parameters

Figure 3.3.6 Skeleton code needed for Fi lter

1000 Hz 500 Hz

55 dB

 0 dB

 21

The skeleton code presented in Figure 3.3.6 upon execution wil l

produce the graphs for both phase response and frequency response in

Figure 3.3.7.

Figure 3.3.7 Frequency and phase response plot

 The f i l ter tap coefficients generated by Matlab are as plotted next:

 Figure 3.3.8 Frequency and phase response plot

 22

3.3.3 Coefficient Scaling

The tap coefficients computed by Matlab are computed in f loating

point format ranging from [-1.0,1.0] . Before they can be used in the PIC

chip they need to be converted into 8-bit f ixed-point format and made

unsigned. The fol lowing scal ing function apply the to achieve this :

__ *127 128 (3.1)
max(_)

n
n

floating tapscaled tap ceiling
floating tap

⎧ ⎫
= +⎨ ⎬

⎩ ⎭

Each tap coefficient provided by Matlab is f irst normalized to the

range [-1.00,1.00], then mult ipl ied by 127 and rounded to the higher

integer. Final ly 128 is added to each tap to make it posit ive. After the

scal ing function is applied, the [-1.00,1.00] range becomes [0,255], shown

in Figure 3.3.9 and now unsigned integers.

 Figure 3.3.9 Eight-Bit scaled coefficients

 23

3.3.4 Code generation

Once the f i l ter parameters are establ ished and al l decisions involving

implementation detai ls are complete, compiler ready C-language source

code for the CCS PIC C is generated based on a set of three different

templates. Each template is a special ized implementation scheme

optimized to produce a different f lavor.

1. Minimum Ram: The c-code generated using this template makes

minimal demand on RAM.

2. Minimum Program Size: This template minimizes the program size.

3. Minimum Execution Time: This template produces code that achieves

higher execution speed.

If the PIC chip is dedicated to performing signal f i l ter ing only then

either implementation scheme is suitable. However if the FIR fi l ter is

used as a supplementary application that runs along side a primary

applicat ion then it competes for the same recourses as the main

applicat ion. Thus it may be useful for the user to use the parametric

optimizations. To faci l i tate the selection of which type of optimization is

suitable the user interface provides exact values for RAM, program

memory and execution t ime with each option. The optimizations in RAM,

execution speed and program size were al l derived using a combination

different buffering techniques, loop unroll ing, and inl ine assembly

language routines for the real-t ime components. Each is discussed in

detai l in the fol lowing sections.

 24

3.3.5 Buffering Data

Once Matlab has generated the f i l ter coefficients, they need to be

accommodated within the PIC memory. Addit ional ly, the constant stream

of data from the PIC ADC must be accommodated in memory with the

exact chronological sequence in which it was sampled. The buffering

scheme for tap coefficients is discussed f irst .

The tap coefficients are stored in the PIC in the form of a look-up

table in i ts program memory. Before f i l tering begins, the entire table is

copied to the RAM and marked with a hardware pointer. Managing

coefficients is not complicated because the number of taps is f inite and

the l ist is stat ic (needs to be init ial ized only once).

Buffering the ADC data is a far more interest ing problem. There are

several complications that have to be dealt with. The finite impulse

response f i l ter is quite s imply the l inear convolution between a constant

set of f i l ter taps and a discrete t ime capture of a s ignal . For example, say,

the desired f i l ter has 30 tap coefficients then we would need to capture

and store not only a latest sample of the signal , but the previous 29

samples as well . To achieve this , two different buffering schemes were

explored. The f irst one used a tradit ional one-dimensional circular buffer

[11]. This technique uses less memory but lengthens the cycle of

computations. The second technique used two adjacent one-dimensional

circular buffers [12] . This technique uses more RAM than the f irst , but

al lows the speed of the f i l ter to approach its shortest possible

computation t ime on the PIC 18F452 chip (using 8-bit taps and 8-bit

data) .

1. Circular buffer implementation on PIC 18F452: A circular buffer is

a memory al location scheme where memory is reused (reclaimed) when

an index is incremented to a mult iple of the buffer s ize. The modulo

 25

nature of a circular buffer maintains data in a queue form (chronological

order) at al l t imes without overrunning its al located memory or the need

for re-ordering. The elegance of this type of memory al location is that

the very same pointer that is used to queue data is eff iciently used to

dequeue it and due to its modulo nature, the dequeueing pointer

automatical ly terminates at the point of insert ion of the next sample. On

a PIC chip, the buffer that was used is i l lustrated in Figure 3.3.10. Oldest

sample is written over the newest sample and File Select Register (FSR)

is the hardware pointer used to load and unload data. The i l lustrated

circular buffer holds four elements — EOB marks e n d - o f - b u f f e r , BOB

marks b e g i n n i n g - o f - b u f f e r , the numeric values in the f igure are RAM

locations and the sample buffer occupies memory locations from 0x41 to

0x44.

 Figure 3.3.10 Circular buffer: Used to store ADC values for FIR filter

While loading the buffer the pointer FSR could be at any location

within the buffer, so before the sample is stored, i t is crucial to f irst

check if the pointer has reached EOB. If i t is the very f irst sample then

the received data is placed at the BOB or location 0x44 and the pointer is

post-decremented to location 0x43 . In PIC18 assembly, the hardware

pointer FSR can load data and post-decrement in a single cycle by using

the POSTDEC register. There is no post- increment feature to the

hardware pointer system; hence, the BOB is at a higher memory location

than the EOB. When the FSR pointer has been reached, the EOB is

s imply reset to BOB. Based on this concept, the newest data sample

automatical ly replaces the oldest data sample.

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45

 26

Il lustrated in Figure 3.3.11 is a f lowchart showing the process of

loading the circular buffer as well as the assembly code written to

achieve it .

Figure 3.3.11 Algorithm developed to load circular buffer

If the ADC was capturing a ramp in the form of digital data ranging

from 0 to 6 then the buffer would load in the fol lowing way: The f irst

data point ‘0’ wil l be stored at the BOB and the pointer is decremented

as i l lustrated in Figure 3.3.12. The next sampled data point ‘1’ is stored

in the location pointed by data pointer FSR and the pointer is

decremented as shown in Figure 3.3.13.

Figure 3.3.12 Step 1: Data element 0 is loaded and pointer decrements

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45

0

 27

Figure 3.3.13 Step 2: Data element 1 is loaded and pointer decrements

By the t ime ‘3’ is sampled the buffer is ful l and EOB is reached as

shown by the i l lustrat ion. ‘3’ is stored at EOB and the pointer is reset to

the BOB. Now notice the pointer is at the oldest element as shown in

Figure 3.3.14.

Figure 3.3.14 Step 3: Data element 3 is loaded and EOB is reached

When ‘4’ is captured it replaces the oldest element in the buffer and

the pointer FSR is incremented as normal as shown in Figure 3.3.15.

Figure 3.3.15 Step 4: Element 4 is loaded and pointer is pre-decremented

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45

0 1

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45

0 1 2 3

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45

4 1 2 3

 28

In order to pull data from the buffer, the pointer FSR would simply

travel in the opposite direction and data wil l be obtained in the exact

opposite order to which it had entered. Before each the pointer is

advanced it must f irst check for the BOB or it wil l travel beyond the

buffer. If BOB is reached the pointer is relocated to EOB. In order to

extract data the pre-increment function of the pointer is used so data is

pul led and pointer is advanced in a single-cycle. To i l lustrate the process

the pointer is pre-incremented to 0x44 and ‘4’ is pul led as i l lustrated in

Figure 3.3.16.

Figure 3.3.16 Element 4 is unloaded from buffer and BOB is reached

Note the pointer FSR is at the beginning-of-buffer so it is f irst

relocated to the EOB and then the data pulled is ‘3’ as i l lustrated in

Figure 3.3.17.

Figure 3.3.17 Pointer is relocated to EOB and 3 is pul led

Pointer is pre-incremented to 0x42 and ‘2’ is pul led fol lowed by ‘1’

and after four iterat ions the pointer FSR has automatical ly terminated at

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45

4 1 2 3
4

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x400x39 0x38 0x44 0x45

4 1 2 3
3

 29

the entry point where the next incoming data sample is to be placed as

shown in Figure 3.3.18.

Figure 3.3.18 Data element 1 is pul led

 Data went into the buffer in the order {1,2,3,4} and came back out

{4,3,2,1}. The formal algorithm and assembly code is in Figure 3.3.19.

Figure 3.3.19 Algorithm used to pull data from the circular buffer

2. Double circular buffer implementation on PIC 18F452 : In the

second buffering technique two adjacent circular buffers are used in such

a way that the second one begins exactly where the f irst one ends. Every

t ime a fresh sample is made, i t is placed in both buffers in place of the

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x400x39 0x38 0x44 0x45

4 1 2 3
1

 30

oldest sample respectively. Each buffer wil l have it ’s own pointer and

both buffers wil l contain the exact data at any given t ime. [8]

This buffering scheme has a very useful advantage over the previous

one because the unloading pointer does no longer need to check for the

end of buffer (EOB). Figure 3.3.20 of the buffering scheme might exp-

lain the process more clearly.

Figure 3.3.20 Topology of the Double Circular Buffers

Once again the same data is being stored in the buffer, each data

element is stored in the same respective place in both buffers. If the f irst

sample element is ‘1’ then both buffers wil l store the data and post-

decrement in the same manner as if each was an independent buffer.

Figure 3.3.21 Data Element 1 is loaded to both buffers

Since both pointers move in tandem, only one needs to be checked

for EOB and although this technique takes a l i t t le more t ime to load, i t

saves a lot more t ime during the unload. Since FIR fi l tering involves only

0x41 0x42 0x43 0x44

EOB BOB

FSR1

0x400x39 0x38 0x44 0x45 0x37

EOB BOB

FSR0

Buffer 0 Buffer 1

0x41 0x42 0x43 0x44

EOB BOB

FSR1

0x400x39 0x38 0x44 0x45 0x37

EOB BOB

FSR0

Buffer 0 Buffer 1

1 1

 31

a single load and N number of unloads (N being the number of

coefficients) , over al l this technique produces a tremendous savings in

computation t ime for each FIR output calculat ion.

After ‘1’ the next data sample is ‘2’ then ‘3’ then ‘4’ fol lowed by ‘5’

and the buffer wil l f i l l in the manner i l lustrated in Figure 3.3.22.

Figure 3.3.22 Data Elements 1-5 are loaded to buffer

0x41 0x42 0x43 0x44

EOB BOB

FSR1

0x400x39 0x38 0x44 0x450x37

EOB BOB

FSR0

Buffer 0 Buffer 1

1 1 2 2

0x41 0x42 0x43 0x44

EOB BOB

FSR1

0x400x39 0x38 0x44 0x450x37

EOB BOB

FSR0

Buffer 0 Buffer 1

1 1 2 2 3 3

0x41 0x42 0x43 0x44

EOB BOB

FSR1

0x400x39 0x38 0x44 0x450x37

EOB BOB

FSR0

Buffer 0 Buffer 1

1 1 2 2 3 3 4 4

0x41 0x42 0x43 0x44

EOB BOB

FSR1

0x400x39 0x38 0x44 0x450x37

EOB BOB

FSR0

Buffer 0 Buffer 1

5 5 2 2 3 3 4 4

 32

Unloading data from the buffer involves a s l ightly different technique

than what is used for a s ingle buffer. Since the FIR f i l ter ing algorithm

involves a convolution operation, after every fresh sample is stored the

f i l ter needs to unload each data point in reverse chronological order to

perform computation. Since the size of the buffer is known, say N , there

is no need to test of e n d - o f - b u f f e r or b e g i n n i n g - o f - b u f f e r while

pull ing the data because pointer FSR1 can now simply cross over from

its own buffer into the adjacent one and always f ind the chronological ly

correct sample, s itt ing beyond the barrier of the adjoining buffer. To

i l lustrate the point say we wanted to pull data from the current buffer.

The last data sample stored was ‘5’ as shown in Figure 3.3.23.

Figure 3.3.23 Buffer Data Ready to be unloaded

Data can be pulled in ascending order or descending order depending

on which of the two pointers are used. For FIR fi l ter calculat ions the

order of the sample is not important because the coefficients are

symmetric. If descending order were desired we would f irst relocate

FSR1 to the same location as FSR0 as shown in Figure 3.3.24.

 Figure 3.3.24 Pointer FSR1 is relocated to same location as FSR0

0x41 0x42 0x43 0x44

EOB BOB

FSR1

0x400x39 0x38 0x44 0x45 0x37

EOB BOB

FSR0

Buffer 0 Buffer 1

5 5 2 2 3 3 4 4

0x41 0x42 0x43 0x44

EOB BOB

FSR1

0x400x39 0x38 0x44 0x45 0x37

EOB BOB

FSR0

Buffer 0 Buffer 1

5 5 2 2 3 3 4 4

 33

All that remains now is to pre-increment the pointer and pull the

respective data sample from each location the pointer passes t i l l i t

returns to the posit ion it started (location 0x44).

 The first data sample to be removed is ‘5’ as the pointer FSR1 pre-

increments from location 0x40 to 0x41, both operation in one cycle as

shown in Figure 3.3.25.

 Figure 3.3.25 FSR1 pre-increments and unloads data element 5

Notice that data samples ‘5’ , ’4’ , ’3’ and ’2’ are in chronological order

across both buffers. Since the buffer s ize is a constant, 4, then four bl ind

pre-increment operations wil l unload the buffer and the pointer wil l

automatical ly be returned to the point of insert ion of the next sample.

Using this method neither EOB nor BOB needs to be checked while

unloading the buffer.

0x41 0x42 0x43 0x44

EOB BOB

FSR1

0x400x39 0x38 0x44 0x45 0x37

EOB BOB

FSR0

Buffer 0 Buffer 1

5 5 2 2 3 3 4 4

 34

The Figure 3.3.26 shows the f low-chart describing the algorithm for

loading the adjacent circular buffers and Figure 3.3.27 shows the

assembly language code written to implemented it .

 Figure 3.3.26 Algorithm for loading the adjacent circular buffers

Figure 3.3.27 Assembly routine written to load the buffers

SAMPLED DATA

FSR1 = EOB?

INSERT DATA
IN BUFFER1

&
POSTDEC FSR0

INSERT DATA
IN BUFFER2

&
POSTDEC FSR1

False

INSERT DATA
IN BUFFER1

&
FSR0 = BOB

INSERT DATA
IN BUFFER1

&
FSR1 = BOB

True

 35

The flowchart outl ines the algorithm for pull ing data from the buffers

is shown in Figure 3.3.28:

 Figure 3.3.28 Algorithm used to unload from adjacent circular buffers

3.3.6 Sampling: Analog to Digital Conversion on 18F452

The most convenient option for analog to digital conversion is by

using the integrated ADC module. The built in analog to digital

converter uses a successive approximation algorithm and is capable of

converting an analog voltage into a proportional 10-bit number. The

ADC is capable of a maximum sampling rate of 52KHz for 10Bit

conversions. For 8-Bit conversions, the maximum sampling rate is

62.5KHz at same temperature and impendence [10].

FSR1 = FSR0

PRE-INCREMENT FSR1
&

Pull data

PRE-INCREMENT FSR1
&

Pull data

REPEAT as many times as
the buffer size

stop

 36

The value sampled by the ADC is stored in the register pair

ADRESH/ADRESL. Each is 8 bits , ADRESH contains the high-byte and

ADRESL holds the low-byte. In order to configure the ADC module the

ADC control register pair ADCON0 and ADCON1 must be set with

appropriate values.

The analog-to-digital converter module has eight input channels for

the PIC 18F452. Each input is a separate channel mult iplexed with a

common converter. This al lows sampling of several different sources in

any specif ied order. Since there is only one analog-to-digital converter

s imultaneous sampling is not possible using the internal ADC module.

The minimum wait t ime between the sampling of any two channels is

cal led acqu i s i t i on t ime . The acquisit ion t ime is a function of the

ambient temperature and the source impedance. The maximum

recommended source impedance or input impedance for analog sources is

2.5K. For the FIR fi l ter only one channel is needed but for the adaptive

f i l ter two channels must be sampled nearly s imultaneously.

The first task to setting up the ADC is to setup the control register pair

ADCON0 and ADCON1. Both registers are eight bits wide and allow

unrestricted read/write operations. The ADCON0 register controls ADC

clock options, channel selection, and the bit GO/DONE in the ADCON0

register can be polled in order to check if analog to digital conversion is

complete. The ADCON1 register controls the remaining clock options,

shared with ADCON0 and selects which pins are configured as digital and

which are analog. In order to setup the internal ADC both registers must be

loaded with the appropriate values.

 37

Configuring ADCON0 involves setting five bits on the register. The

following is the contents of the ADCON0 Register shown in Figure 3.3.29.

Figure 3.3.29 Description of the ADCON0 Register

 The ADC clock is derived from the main external osci l lator. The PIC

chip can run up to 40Mhz but the ADC clock cannot exceed 625KHz.

Therefore the PIC must use a clock divide to scale the 40MHz external

frequency to 625KHz, a factor of 64. Hence the ADCS1 and ADCS0 are

1, 0 to make the clock divider equal to 64. The channel for FIR fi l ter is

channel-0 hence the CHS2, CHS1, CHS0 are 0,0,0 and ADON is 1.

ADCON0 = <1 0 0 0 0 1 0 1> or 0x85

The ADCON1, shown in Figure 3.3.30, is set in a s imilar manner as

ADCON0 and it contains:

Figure 3.3.30 Description of the ADCON1 Register

The ADC stores a 10-bit result in two 8-bit registers. The ADFM bit

selects if the result is left just if ied or r ight just if ied. Since the FIR fi l ter

ADCS1 ADCS0 CHS2 CHS1 CHS0 GO - ADON

BIT 7 BIT 6 BIT 5 BIT4 BIT3 BIT 2 BIT 0

ADC Clock Speed ADC Channel Selection Start Sampling Power On

ADFM ADCS2 - PCFG1 PCFG3 PCFG2- ADON

BIT 7 BIT 6 BIT 5 BIT4 BIT3 BIT 2 BIT 0

Result Justification PORT configuration

BIT 1

Clock conversion

 38

is going to use 8-bit samples instead of 10-bit samples, ADFM wil l be set

to 0 to make the result left just if ied. A simple way to get a fast 8-bit

approximation of the 10-bit sample is to only read the ADRESH register

as i l lustrated in Figure 3.3.31.

Figure 3.3.31 Reading Only ADRESH wil l scale down to 8-bit

The ADCS2 bit is set to 1 to make the clock divide equal to 64 as

discussed before. Bits <PCFG3, PCFG2, PCFG1, PCFG0> are set to

1,1,1,0 respectively. This al lows pins A0 to be analog while al l other pins

are made digital . Since technical ly only a s ingle analog pin is required to

make a FIR fi l ter . If more analog pins are needed then this register needs

to be changed. The ADCON1 register is loaded with the fol lowing:

ADCON1 = <0 1 0 0 1 1 1 0> or 0x4E

VD D and VS S are used as voltage references with this configuration.

 The FIR fi l ters performance depends not only on sampling signals

accurately but also on a chips abi l i ty to maintain a constant sampling

rate. To this end, one of the PIC chips three hardware t imers; t imer1 is

dedicated to performing analog to digital conversion at a periodic rate.

This is a 16-bit t imer that derives i ts t iming from the external clock

source and interrupts the PIC chip when it overflows. Once the t imer is

engaged it counts from 0 t i l l 65535 at the what ever speed it been

clocked and at the end of i ts count generates an interrupt.

ADRESH ADRESL

 39

 In order to make a constant sampling rate the t imer is not al lowed to

start from 0 but instead made to start from some offset value from which

it wil l pass 65535 at a predictable interval s ince the clock speed to the

t imer is known. This offset value is calculated using the fol lowing way:

_
1 _ 65535

4 * * _
(3.2)external osc

timer offset
prescaler sampling rate

= −

In this case, the external osci l lator (external-osc) is 40 MHz and the

user determines the sampling rate in the design stage.

The interrupt service routine for t imer1 wil l a lso perform al l the

calculat ions required of the f i l ter and before exit ing the Interrupt Service

Routine (ISR) the result of the f i l ter is generated.

3.3.7 Filter Calculations

Three different strategies are used to perform the necessary f i l ter

calculat ions.

1. Optimized for maximum Speed

2. Optimized to use minimal Ram

3. Optimized to generate smallest program size.

All three strategies make use of the same general idea but are

different in the way the data is buffered and computation is performed.

In general the real izat ion of FIR fi l ters is obtained by the direct

computation of the Equation 3.3 [12].

[] 1
0 0

1 *[128] [1]*128 (3.3)
N N

n Ny x n N K x n N−= − + + − − +∑ ∑

 40

The equation presented above is a variat ion of the classical FIR fi l ter

equation that is presented in most books:

1
0

[1]* (3.4)
N

n Ny x n N k −= − +∑

In both Equations 3.3 and 3.4, the term yn is the output of the f i l ter

and is computed by the l inear convolution of the coefficient matrix KN

and the discrete sample vector xn . Both equations perform exactly the

same computation and produce the same results however Equation 3.3 is

far more PIC18F452 architecture-fr iendly because the signed

mult ipl icat ion operation in Equation 3.4 has been removed. This wil l

a l low PIC to maximize the use of the unsigned hardware-mult ipl ier in the

PIC hardware.

The only difference between Equation 3.4 and Equation 3.3 is that in

Equation 3.3 the tap co-efficient vector KN, which contains signed

numbers ranging from –128 to +128 are made unsigned by adding to

them the integer 128. In order to balance the result from the offset

coefficients i t becomes necessary to subtract 128*Σ xn from yn . To

i l lustrate this point, consider the fol lowing analogy. If we wanted to

calculate the A , which is a product between 8-Bit s igned integer B and 8-

Bit unsigned integer C , i t wil l be given by:

 A = B * C (3.5)

The above computation wil l require a s igned mult ipl icat ion however if

we modified the above equation in the fol lowing manner:

 E = B*(C+128) – B*128 (3.6)

 41

then we ult imately achieve the very same result as A and avoid the signed

mult ipl icat ion altogether.

 A = E (3.7)

3.3.8 Implementation for Shortest Execution Time

As stated before, three different implementations are possible using the

filter design system. The first has the shortest possible execution time and

possibly the most attractive implementation of all. The short execution time

is achieved at the expense of higher RAM usage, since two adjacent circular

buffers are used to store ADC samples instead of one. This doubles RAM

use and also produces a much larger program, because to fully make use of

the double buffer, the main multiply-accumulate loop is unrolled allowing

for program to approach its theoretical minimal computation time, given

the data word length constraints that is used by the program [12].

The implementation is spl it into two routines. The f irst one is the

in i t i a l i za t ion Rout ine and the second is the Computa t ion Rout ine . The

in i t i a l i za t ion rout ine runs just once when the program begins and it

serves only to init ia l ize the buffers and other variables that are required

for FIR fi l ter calculat ions. The computa t ion rout ine performs al l

calculat ion mandated by the f i l ter and runs inside the interrupt service

routine of t imer1. With the confinement of al l f i l ter calculat ions inside

the ISR, we achieve a degree of isolat ion making it possible for any main

application to use the f i l ter and not interfere with its operation or

t iming.

Memory Usage: The PIC 18F452 chip contains 1536 bytes of RAM

and two addressing modes. There is direct-addressing and indirect-

addressing. Indirect-addressing uses three pointers — FSR0, FSR1, FSR2

 42

and each pointer is 12-Bit wide, with a 4-Bit select bank and 8-Bit select

location within a bank. All memory use for the FIR fi l ter is restr icted to

a single bank, thereby l imit ing the avai lable memory for ADC samples

and fi l ter coefficients to a total of 256 Bytes. The obvious advantage of

l imit ing al l pointers use to a s ingle bank is the speed that is gained

because the pointers can be used faster if the bank does not need to be

set before every cal l . Three buffers are used — a stat ic buffer for tap

coefficients that is loaded and init ial ized at start up and two identical

adjacent circular buffers for the incoming ADC samples. All three

buffers are of the same size and each buffer is given its own hardware

pointer. Consider Figure 3.3.32 showing memory footprint

 Figure 3.3.32 RAM used by the FIR filtering scheme

The buffers for the tap coefficients and ADC values can be of

variable size, s ince the number of FIR fi l ter coefficients is not f ixed. The

total memory al located to the buffers cannot exceed 226 bytes. No buffer

can be larger than 75 elements. Hence this design does not al low for FIR

fi l ters larger than 75 taps. The MATLAB user interface wil l generate a

Bank 1: (256 Bytes)
 Tap Coefficient Buffer

Bank 2 (256 Bytes): Free
Bank 3 (256 Bytes): Free
Bank 6 (256 Bytes): Free

ADC Dynamic Buffer 0

ADC Dynamic Buffer 1

FSR0

FSR1

FSR2

Free memory: Not used by
FIR filter Program.

Sampled data from
Analog to digital
converters.

Filter coefficients
generated by Matlab

Additional Filter
Variables (30 Bytes)

 43

warning if the user specif ies a f i l ter that generates more than 75

coefficients and the user is prompted to either accommodate fewer taps

or select a different implementation strategy.

Filter Processing: (Initialization Routine)

If the f i l ter is to produce an output, then an output port needs to be

assigned, the f irst step of the init ia l izat ion routine being the setup of an

I/O port. Analog to digital converter is set to 8-Bit mode by simply left-

shift ing the results and reading the ADRESH register (See 3.3.6) .

The t imer1 interrupt must be set to sample at the user specif ied

sampling rate. All f i l ter processing is conducted in the t imer interrupt.

There are three registers associated with Timer1. These are T1CON ,

TMR1H , and TMR2L. The f irst is the control register the other two are

offset registers that are used to init ial ize the t imer. Timer1 can be setup

as an 8-bit as well as 16-bit as shown in Figure 3.3.33.

Figure 3.3.33 Description of the T1CON Register

In order to setup the t imer bit RD16 = 1, T1CKPSX is calculated in

Matlab and set based on user specif ied sampling rate. T1OSCEN,

T1SYNC are not used, TMR1CS = 0 to specify internal clock and

TMR1ON is 1 to power on the t imer.

The t imer offset is calculated using equation discussed in section

3.3.6. The 16-Bit offset is loaded into register pair TMR1L, TMR1H. All

RD16 - T1CKPS1 TMR1CS T1OSCN T1SYNCT1CKPS0 TMR1ON

BIT 7 BIT 6 BIT 5 BIT4 BIT3 BIT 2 BIT 0 BIT 1

16/8 mode
select

Timer1 Input Pre-scale Bits Oscillator
input bit

External
Clock Sync

Edge
Select

On/Off

 44

the registers are automatical ly loaded by code generated by the MATLAB

program based on the sampling frequency selected by the user.

Before the t imer is engaged the init ial izat ion routine loads the

coefficients into the coefficient buffers and both the ADC buffers are set

up, thereby init ia l izing the pointers. Pointer FSR0 is used to load the co-

efficient buffer and pointers FSR1, FSR2 are used to address the ADC

buffers. ADC buffering method is discussed in detai l in section 3.3.5.

Once al l the buffers are init ia l ized the t imer1 is started.

Filter Processing: (Computation Routine)

The computation routine involves the real-t ime implementation of the

FIR fi l ter ing algorithm given in Equation 3.8.

[] 1
0 0

1 *[128] [1]*128 (3.8)
N N

n Ny x n N K x n N−= − + + − − +∑ ∑

In order to compute f i l ter output Yn or Equation 3.8 is broken into

three different Equations 3.9, 3.10 and 3.11.

 []1 1
0

1 *[128] (3.9)
N

Ny x n N K −= − + +∑

0

[1]*128 (3.10)
N

x x n N= − +∑ ∑

 1 (3.11)nY Y x= − ∑

Multiply & Accumulate(Y1) Accumulate (Σx)

Sample vector Tap Coefficients

Sample Sum

 45

Equation 3.9 is implemented using a f ixed-point mult iply-accumulate

operation block. The MAC block is repeated for N times t i l l y1 is

computed. A 24-Bit register comprised of three 8-bit registers is assigned

to hold the MAC result shown in Figure 3.3.34.

 Figure 3.3.34 Word space dedicated to storing MAC result

Equation 3.10 computes the sample-sum of al l the samples held in the

ADC buffers. Σx is given a 16-Bit unsigned variable comprising to

register pair ΣxL O W and ΣxH I G H , shown in Figure 3.3.35 . It is calculated

with minimal computational effort by simply subtracting from the total ,

the oldest ADC sample and adding the newest one every t ime a new

sample is made. Thus a running total of al l the samples in the buffer is

constantly maintained without having to add up every value in the buffer

each t ime a new sample is added to it .

 Figure 3.3.35 Word space dedicated to storing Sample Sum

Σx has to be mult ipl ied by 128 and subtracted from Y1 to obtain f inal

output Yn. An efficient way to mult iply by 128 is to copy the sum into

another 24-bit variable i .e . moving ΣxL O W to 255ΣxM I D and ΣxH I G H to

MACHIGH MACMID MACLOW

Stores High
Byte of Y1

Stores Middle
Byte of Y1

Stores Low
Byte of Y1

Σx HIGH Σx LOW

Stores Middle
Byte of Σx

Stores Low
Byte of Σx

 46

255ΣxH I G H and clearing the 255ΣxL O W will do an implicit mult iply by 255

as shown in Figure 3.3.36.

Figure 3.3.36 Mult iply by 256 algorithm

Once moved a single r ight-shift with carry on al l three registers

produces the required mult iply by 128 shown in Figure 3.3.37.

Figure 3.3.37 Mult iply by 128: Single Right shift of each byte

The MAC block for computing Y1 uses three buffers that are located

in RAM. The Buffers shown here are 4 elements long but can extend up

to 75 elements depending on fi l ter requirements. All buffers are

dynamical ly scaled depending on fi l ter requirements. A double buffering

scheme is used for storing ADC samples and a single stat ic buffer is used

to store f i l ter tap coefficients. FSR0, FSR1 and FSR2 pointers dedicated

to each buffer as shown in Figure 3.3.38 and Figure 3.3.39.

255Σx MID 255Σx LOW

Stores Middle
Byte of
128Σx

Stores Low
Byte of
128Σx

255Σx HIGH

Stores high
Byte of
128Σx

Σx HIGH Σx LOW 00

255Σx MID 00 255Σx HIGH

Right Shi f t each by 1 place to mul t ip ly by 128

 47

Figure 3.3.38 Buffer setup for storing ADC samples

Figure 3.3.39 Buffer setup for storing Coefficients

The MAC cycle accumulator occupies three bytes of memory to store

a 24-bit number as shown in Figure 3.3.40.

 Figure 3.3.40 24-Bit Result store for MAC operation

0x41 0x42 0x43 0x44

EOB BOB

FSR0

0x400x39 0x38 0x44 0x45 0x37

EOB BOB

FSR1

ADC Buffer 0ADC Buffer 1

0 0 0 0 0 0 0 0

0x640x630x620x610x60

EOB BOB

FSR2

0 0 0 0

0x65

Tap Coefficients

MACHIGH MACMID MACLOW

Stores High
Byte of Y1

Stores Middle
Byte of Y1

Stores Low
Byte of Y1

 48

Given the above constraints of 8-bit unsigned coefficients, 8-bit ADC

samples and 24-Bit accumulator the quickest possible MAC on the PIC

18F452 is shown in Figure 3.3.41.

 Figure 3.3.41 Multiply-Accumulate Algorithm

Move FSR0 to Accumulator(W)
+

Post-decrement FSR0

Multiply FSR2
+

Post-Increment FSR2

Move Low Byte of Product to
Accumulator (W).

Add (W) to MACLOW

Move High Byte of Product to
Accumulator (W).

Add (W) and Carry to MACMID

Clear (W) Register

Add (W) and Carry to MACHIGH

1 cycle
100 ns

1 cycle
100 ns

1 cycle
100 ns

1 cycle
100 ns

1 cycle
100 ns

1 cycle
100 ns

1 cycle
100 ns

1 cycle
100 ns

Begin MAC

End MAC

 49

The entire MAC cycle lasts 800ns and the assembly code generated for

i t is as fol lows:

movf POSTDEC0,W // Move e l ement pointed by FSR0 to (W)

mulwf POSTINC2 // Mult ip ly FSR2 and Post - increment

movf PRODL,W // Move Product Low-byte to (W)

addwf output_least // Add (W) to the MACL O W

movf PRODH,W // Move Product High-Byte to (W)

addwfc output_middle // Add carry + (W) + MACM I D

c l r f WREG // Clear (W)

addwfc output most // Add carry + (W) + MACH I G H

In order to complete the implementation of Equation 3.10 the pointer

FSR2 is f irst moved to the same location as FSR1 then the MAC block is

repeated as many t imes as the f i l ter order. This way there is no need to

check for end-of-buffer or the beginning-of-buffer and final MAC block

terminates with the pointer automatical ly returned to the exact point of

insert ion of the next incoming sample. Figure 3.3.42 is a f low diagram

for the init ia l izat ion routine for a 4-tap FIR fi l ter .

Figure 3.3.42 Init ia l izat ion Routine for Fastest Execution

Start

Set up output Port

Setup Timer 1

Buffer Taps

Initialize Pointers

Enable Global
Interrupt vector

Start ADC

Start Timer1

End

 50

Figure 3.3.43 is a f low diagram for the computation routine the fastest

execution t ime version of a 4 tap FIR fi l ter .

 Figure 4.3.43 Fastest Execution Implementation for PIC 18f452

Begin ISR

Restart Timer1

Reset PointersFSR1 = EOB?
Y

Σx = Σx – INDF0

N

W = ADC Value

Restart ADC

Σx = Σx + W

Restart ADC

Backup Pointers

Set FSR2 to
beginning of Tap

buffer

FSR0 = FSR1

Clear MAC
Registers

MAC

MAC

MAC

MAC

255Σx HIGH = ΣxHIGH

255Σx MID = ΣxLOW

255Σx LOW = 0x00

1-Bit Shift Right
255Σx to divide by 2

Output = MAC

Registers - 255Σx

Scale Output

Send to DAC

End ISR

Restore Pointers

Post-decrement W
to both Buffers

FSR0 FSR1

BUFFER0 BUFFER1

FSR2

COEFFICIENTS

 51

3.3.9 Implementation for Efficient RAM utilization

The use of two circular buffers for storing ADC values is at t imes not

acceptable due to its extensive RAM overhead. Since the FIR fi l ter is

typical ly used as a supplementary application, i t must therefore share the

avai lable RAM with a main applicat ion. It is for this reason a less

memory greedy implementation scheme is developed.

This scheme uses most of the same ideas as the previous method. The

coefficients are stored in memory in the same manner as before but the

MAC cycle is computed differently because since there is only one buffer

and both the end-of-buffer and beginning-of-buffer needs to be checked.

The detai ls of the circular buffer are presented in Section 3.3.5. Figure

3.3.44 is a f low diagram for the init ia l izat ion routine for a 4 tap FIR

fi l ter .

 Figure 4.3.44 RAM efficient Implementation for PIC 18f452

Start

Set up output Port

Setup Timer 1

Buffer Taps

Initialize Pointers

Enable Global
Interrupt vector

Start ADC

Start Timer1

End

 52

Figure 3.3.45 is a flow diagram for the computation routine the fastest execution time

version of a 4 tap FIR filter.

Figure 4.3.45 RAM Efficient Implementation for PIC 18f452

Begin ISRRestart Timer1

Backup pointers

Σx = Σx – INDF0
Store ADC

Sample to INDF0

FSR0 = EOB?
Y

Σx = Σx + Sample

N

FSR1 = BOB

Insert Sample to
Buffer and post

decrement pointer

Clear Registers
used to store

result from MAC

Set FSR1 to
beginning of Tap

buffer

FSR0 = BOB?

Y

Move FSR0 to
EOB

1-Bit Shift Right
255Σx to divide by 2

Output = MAC

Registers - 255Σx

Scale Output

Send to DAC

End ISR

Restore Pointers

255Σx HIGH = ΣxHIGH

255Σx MID = ΣxLOW

255Σx LOW = 0x00

Pull Data & Pre-
Increment FSR0

Perform MAC, by
post-increment

FSR1

FSR0 = EOB?

All MAC’s DONE?

Y
N

Y
N

 53

3.3.10 Implementation for Minimum Program Memory Use

The implementation strategy is exactly l ike the f irst one where

maximum execution speed was attained. In order to reduce program size,

the main loop for the MAC cycle is not unrolled. Instead three more

instructions are added into the MAC cycle. The computation cycle is

shown in Figure 3.3.46.

Figure 4.3.46 Minimum Program Size Implementation

Reset PointersFSR1 = EOB?
Y

Σx = Σx – INDF0

N

W = ADC Value

Restart ADC

Σx = Σx + W

Restart ADC

Set FSR2 to
beginning of Tap

buffer

1-Bit Shift Right
255Σx to divide by 2

Output = MAC

Registers - 255Σx

Scale Output

Send to DAC

End ISR

Restore Pointers

Post-decrement W
to both Buffers

Same as Figure4 .3 .20

255Σx HIGH = ΣxHIGH

255Σx MID = ΣxLOW

255Σx LOW = 0x00

N

FSR0 = FSR1

Clear MAC
Registers

MAC

 All MACs Done?

Y

 54

3.4 Implementation of the f loating-point LMS filter

Unlike the FIR fi l ters that have predetermined coefficients,

implemented as constant data, the coefficients of the Least-Mean Square

(LMS) f i l ter are adaptive and continuously change as a response to input.

Due to this reason, several complications must be dealt with while

designing and implementing them in hardware. Since the coefficients or

f i l ter weights change with input, they may grow so large they overflow

the word-space assigned to them during design t ime.

Stabi l i ty of the LMS fi l ter is not as easi ly guaranteed as i t is for FIR

fi l ters. The constantly adapting coefficients are control led by a f ixed

value cal led the learning-rate . Determining an optimal value for the

learning rate requires experience gained from simulations and as the

order of the adaptive f i l ter increases, thus choice for an appropriate

learning rate becomes even less intuit ive. Rigorous simulations were

conducted before attempting to perform real-t ime implementation.

The choice of the f loating-point system was used to perform the

implementation because the f loating-point system provides both

convenience and degree of immunity against both rol l-off errors as well

as al lowing for wider lat i tude in the selection of learning-rate.

3.5 The compilers f loating point system

The compilers built in math abil i t ies were evaluated to perform the

necessary f i l ter computations but later found to be inadequate because

they were extremely slow. The lack of speed is attr ibuted to several

factors. First ly , the compiler used generic routines that are designed to

work on the entire PIC family rather than applying hardware specif ic

optimizations for the PIC18452 chip. Secondly the generic algorithms are

 55

optimized to be compact and not for speed. This decision is certainly

well warranted as f loating point algorithms written for chips that do not

contain f loating point hardware can use a lot of code and the lower

members in the PIC family have modest s ized program memories.

In order to real ize the LMS fi l ter on the PIC 18 chip it became

necessary to f irst develop a set of f loating-point routines that are

optimized for the hardware at hand. New math routines were optimized

for speed and designed to perform floating-point calculat ions much

faster than the compilers generic algorithms. A standard f ixed-point

real izat ion might have been more efficient however in the long run a

highly optimized f loating point l ibrary is far more useful as i t is a

reusable resource and easi ly applied to many other projects in the future.

3.6 Floating-Point Word lengths

The word lengths used to define the stored values were selected from

information gathered from simulations. Figure 3.6.1 shows the word

lengths that were assigned to the f loating-point format numbers were

used in the implementation of the LMS fi l ter .

 Figure 3.6.1 Assigned Word Length for Floating Point Format

The al located word space is 1-bit for s ign, 16-Bits for the fractional

part of the number and 8-bits for the real part of the number. This

al lowed for the possible range of [255.000000 to –255.000000] with the

smallest possible magnitude of 0.000015 . This was determined to be

sufficient resolution to be able to handle the computation requirements

of the LMS fi l ter . The next step was to develop functions that would

SIGN FRACL FRACH REAL

1bit 8bits 8bits 8bits

 56

conveniently perform type conversions from the standard IEEE floating

point to this modified f loating point. Addit ional ly other functions were

developed to perform hardware-optimized operations such as signed

mult ipl icat ion and signed addit ion and a high-speed re-scal ing algorithm

was added to convert a number between [0 255] to [-0.5 0.5] .

The fol lowing ideas were used to accelerate f loating-point

mathematics using the PIC hardware. Parameter passing was found to be

the f irst obvious over-head because each math operation required the

passing of variables into temporary ones that were then used to compute

results . The computed result needed to be passed to the output variable.

It takes 2 cycles to move a single byte from one register to another and

considering large numbers occupy up to 4 bytes a total of 24 cycles were

spent simply in the parameter passing. This overhead is easi ly avoided if

hardware pointers are used to directly reference data. Since The PIC chip

has 3 hardware pointers, 2 are used to reference the two input

parameters and the last one is used to reference the output parameter.

This al lows efficient movement of data through memory and since the

pointers auto increment or decrement, addit ional cycles are not lost to

pointer overhead.

FUNCTION DESCRIPTION TIME@40Mhz

void fixIeee(* float, *mfloat) IEEE float -> modified float Worst case (40us)

void fix8x16(float, *mfloat) modified float -> IEEE float Worst case(40us)

void add(void) adds 2 modified signed floats 5 us

void mul(void) multiply 2 modified signed floats 3 us

255/integer -> mfloat Normalize [0 255] -> [0.00 0.99] 400ns

Table 3.6.1: Function list developed for floating point math on PIC

 57

3.6.1 Algorithm developed for f loating point multiplication

The mult ipl icat ion algorithm operates on two floating-point variables

each stored in RAM in the format described Figure 3.6.2.

 Figure 3.6.2 Memory footprint of floating point numbers

Numbers A, B and C are stored in RAM and each is given 4 bytes of

memory. FracL and FracH make up the fractional portion given 16-bits of

storage the real part or the integer part is given 8-Bits of storage each. In

order to save t ime from parameter passing, pointers FSR0 , FSR1 and

FSR2 are used to manipulate the f loating-point variables. The

mult ipl icat ion algorithm is designed to take advantage of both the

hardware-mult ipl ier to compute the products of integer and fractional

portions and PIC18 memory addressing features that provide single cycle

pointer operation and advance.

0x41 0x43 0x44 0x45

FSR0

0x400x39 0x38 0x46 0x470x37

Sign

FSR1

Number B Number A

0 0 0 0 0 0 0 0

0x42

FracL FracH Real Sign FracL FracH Real

0x640x630x620x610x60

FSR2

0 0 0 0

0x65

Number C (Result)

Sign FracL FracH Real

 58

The formal algorithm for mult ipl icat ion is described next. The three

numbers are setup in memory as shows in Figure 3.6.2.

Figure 3.6.3 Developed Algorithm for Multiplication

The step-by-step i l lustrat ion of the above algorithm is presented next

along with the assembly code that was written to implement it . The

purpose of such a detai led presentation is to clarify pointer use in the

PIC18F452 chip and to show the functional ity of the algorithm.

Step 1 shown in Figure 3.6.4, the numbers to be mult ipl ied are stored

in RAM and each is given it ’s own dedicated pointer as shown below.

The first step is to determine the sign of the computed product.

Begin Multiplication

Csign = A sign XOR B sign

C<FracL:FracH> = AfracH*BFracL

<PRODL:PRODH> = AReal* BFracH

Cfrac = Cfrac + PRODL
Creal = Creal + PRODH + Carry

<PRODL:PRODH> = BReal* AFracH

Cfrac = Cfrac + PRODL
Creal = Creal + PRODH + Carry

<PRODL: PRODH> = BReal* AReal
Creal = Creal + PRODL + Carry

END Multiplication

 59

Evaluating the XOR of the signs of the two numbers being mult ipl ied

results in the sign of C .

Figure 3.6.4 Mult ipl icat ion Step 1: C s i g n = A s i g n XOR B s i g n

Step 2 shown in Figure 3.6.5, the fractional portion of the result C is

evaluated next by computing the product: C<FracL: FracH> =

AfracH*BfracH.

Figure 3.6.5 Mult ipl icat ion Step 2: C<FracL: FracH> = AfracH*BfracH

21 22 23 24 25 26 27 28 29 30 31 32 33 34

SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL

21 22 23 24 25 26 27 28 29 30 31 32 33 34

SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL

FSR0 FSR1 FSR2

21 22 23 24 25 26 27 28 29 30 31 32 33 34

SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL

FSR0 FSR1 FSR2

FSR0 FSR1 FSR2

Number A Number B Number C

 60

Step 3 shown in Figure 3.6.6, The real part of result C is evaluated

next by computing the product of AR e a l*BF r a c H and adding the low-byte of

the product to Cfra c and adding the high-byte of the product to Creal with

the carry from the previous addit ion.

Figure 3.6.6 Mult ipl icat ion Step 3: ARea l* BFracH

Step 4 shown in Figure 3.6.7, The real part of result C is evaluated

next by computing the product of AF r a c H*BR e a l and adding the low-byte of

the product to Cfra c and adding the high-byte of the product to Creal with

the carry from the previous addit ion.

Figure 3.6.7 Mult ipl icat ion Step 4: AFracH* BRea l

21 22 23 24 25 26 27 28 29 30 31 32 33 34

SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL

FSR0 FSR1 FSR2

21 22 23 24 25 26 27 28 29 30 31 32 33 34

SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL

FSR0 FSR1 FSR2

 61

Step 5 shown in Figure 3.6.8, The real part of number A and the real

part of number B are mult ipl ied next and the low byte of the result is

added to the real part of number C . This concludes the mult ipl icat ion

operation.

 Figure 3.6.8 Mult ipl icat ion Step 5: ARea l* BRea l

There are no condit ions to be checked in the algorithm hence the

two-stage pipel ine of the PIC chip is constantly maintained. All

instructions are single cycle (100ns) with the exception of the register-to-

register move instruction (movf f) , which is two-cycle (200ns). The total

t ime used by this algorithm is 3us. An addit ional advantage is that this

algorithm always takes the same amount of t ime to execute. The

compilers worst case f loating point mult ipl icat ion algorithm is 45us

according to their published manual [3] .

The use of the mult ipl icat ion algorithm in C-language is demonstrated

next. No condit ion checking is avai lable to determine and warn users

about over and underflows in the interest of eff iciency. Figure 3.6.9 is

the C-code needed to use the mult iply function.

Figure 3.6.9 C-Code for floating point multiplication

21 22 23 24 25 26 27 28 29 30 31 32 33 34

SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL

FSR0 FSR1 FSR2

 62

3.6.2 Calling The Floating-Point Add in C

The algorithm developed for performing f loating-point addit ion was

implemented along the same l ines as the mult ipl icat ion algorithm. Both

operate on the same type of data format and both use hardware pointers

to reference data.

Figure 3.6.10 C-Code for floating point addition

3.6.3 Algorithm developed for f loating-point addition

The f loating-point addit ion algorithm was developed keeping in mind

the fact that nether of the input parameters are corrupted during the

addit ion process. To clarify the point assumes that two numbers A and B

are being added to calculate C. After the addit ion is completed neither A

or B wil l change in value. The algorithm would have been sl ightly shorter

if this constraint were removed, however we would loose the abi l i ty to

perform MAC operations where parameters are added to themselves. The

detai led algorithm is i l lustrated in Figure 3.6.11.

 63

 Figure 3.6.11 Developed Algorithm for Addit ion

 64

3.6.4 Converting integer to f loating-point format

A quick way to convert integer values to f loating-point needs to be

implemented because data read in by the analog-to-digital ranging from

[0 255] needs to be converted to f loat range between [-0.5, 0.5] .

(int) 128() (3.12)
256

unsigned NNfloat float −
=

A division operation is out of the question because it ’s

computational ly prohibit ive if performed in real t ime. Instal l ing a look

up table was the f irst option however a more elegant approximation is

given in Figure 3.6.12.

Figure 3.6.12 Developed Algorithm for Mult ipl icat ion

Convert to Float

N =128-N

N = N-128

Nfloat.sign = 0

N > 128
N

Nfloat.fracl = N

Nfloat.frach = N

Done

Nfloat.sign = 0xff
Y

// Number is Negative

 65

3.7 Implementation of a 4th order real-time LMS algorithm

The topology of the LMS algorithm used is i l lustrated f irst . The f i l ter

samples two channels where Yk is the signal that needs to be f i l tered and

Xk is the reference. W0, W1, W2 and W3 are al l weights or f i l ter

coefficients of the LMS fi l ter . These are init ia l ized as 0 however as the

f i l ter trains the weights converges to a solution value. The variable ek is

cal led the error signal and it is both the output of the f i l ter and the

feedback signal that trains the f i l ter weights.

Figure 3.7.1 Fourth Order LMS Filter

The fi l ter equations are to be implemented and computed in real-t ime

in the PIC 18F452 chip are presented next. The error signal ek is

evaluated by a dot product of the weight vector Wk and the reference

signal vector Xk and is calculated using the Equation 3.13.

0

1
0 1 2

2

3

*[, , ,] (3.13)newest oldest
k k n

W
W

e y X X X X
W
W

⎡ ⎤
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 66

After each iterat ion the f i l ter weights or sometimes known as f i l ter

coefficients must be updated using the feedback error value ek and

update values for each of the weights are calculated separately using the

fol lowing Equations 3.15a,b,c and d.

1 1

2 2 2

3 3 2

1' * * (3.15)
' * * ()
' * * ()
' * * ()

k

k

k

n n k n

W W e X a
W W e X b
W W e X c
W W e X d

ε
ε
ε
ε

= +

= +
= +
= +

 Where,

ek : Fi lter Output (used to train the f i l ter weights)

Wn: Weight Vector also known as Fi lter Taps

ε : Learning Rate (controls rate of descent)

 n: Fi lter Order

All variables used in here are in the f loating-point format and the

f loating-point math algorithms described in the previous section are used

to handle the computational load of the f i l ter .

3.7.1 Sampling noise and reference for LMS filter

Two channels of the PIC18F452 ADC are used to sample for the LMS

fi l ter . The f irst channel samples the noise Yk and the second channel

samples the reference Xk. Shown in Figure 3.7.2.

Figure 3.7.2 Sampling for LMS

Reference
LMS Filter Mic 1

Mic 2

Signal

Noise free signal
Noise

 67

The LMS fi l ter doesn’t have to necessari ly be used with audio as the

i l lustrat ion above suggests. It can be used with any two signals that are

correlated. The Analog to digital converters are used with 8-bits of

precision and are configured exactly l ike the FIR fi l ters except 2

channels are used for this f i l ter instead of one. The sampling used to

implement a 4 t h order LMS fi l ter was 8000 Hz.

Configuring the ADC involved writ ing the appropriate registers as

shown in Figure 3.7.3.

Figure 3.7.3 Configuring ADC for Sampling Two Channels

ConfigureADC

ADCON0 = 0x81

ADCON1 = 0x85

ADCON0 = 0x89

ADCON1 = 0x8d

Process LMS

Configure and
Sample Channel 0

Configure and
Sample Channel 1

Wait Acquisition Time

Wait Conversion Time

Wait Acquisition Time

Wait Conversion Time

 68

3.7.2 Program Outline for 4th order LMS filter

Like the FIR fi l ter , the Implementation scheme for the LMS fi l ter is

also presented as two routines. First ly the init ial izat ion routine, where

the variables and buffers are init ia l ized and al l the hardware that plays a

part in LMS are init ia l ized for use and secondly the computation routine

in which the LMS algorithm is computed. The computation routine, l ike

the FIR fi l ter , runs entirely in the interrupt service routine of a t imer, in

this case t imer 2 was used.

The f loating-point variables for Wk , ∆Wk , Yk , Xk , Hk , ek are al l

declared as structures with four members, Sign, FracH, FracL, and Real .

Data collected in real-t ime by the ADC’s include one 8-bit sample value

for the signal and four buffered 8-bit sample values for reference. Both

signal and reference need to be converted into f loating-point format

before they can be processed. A single 4-point circular buffer is used to

store four values of reference. Figure 3.7.4 presents the init ia l izat ion

routine for the 4 t h order LMS algorithm.

Figure 3.7.4 Initialization Routine for LMS

Start

Make PortD output

Setup Timer 2 for
8000Hz Sampling Rate

Setup ADC

Initialize bufferEnable Global
Interrupt vector

End

Initialize all weights to
0

Initialize Hk and
∆W to 0

Initialize learning
rate ε = 0.1

TempPtr = BOB

 69

Computation Routine for LMS: Buffering schemes

Most variables used in this f i l ter are declared as global structs and are

not dynamical ly written or read. However, the reference signal sampled

by the ADC needs to be saved in chronological order for LMS

calculat ions. A four element circular buffer was used to store and

maintain the ADC samples of the reference signal as 8-bit unsigned bytes

per sample as shown in Figure 3.7.5.

Figure 3.7.5 Four element ADC sample bvffer for LMS

The ADC samples have to be converted into f loating-point format

and stored in the appropriate structs eff iciently before the can be used

for LMS. To achieve this the structs are declared in chronological order

for storing reference samples in f loating-point format and placed

sequential ly in RAM and a single pointer is used to load al l the structs

with data pulled from the circular sample buffer. Once al l structs are

loaded they can be addressed as ordinary variables during computation

t ime. Essential ly the structs are loaded dynamical ly and read stat ical ly as

if the were the union of four structs and a 16 byte array as shown in

Figure 3.7.6.

0x640x630x620x610x60

FSR2

0 0 0 0

0x65

Reference Sample Buffer

BOB EOB

 70

Figure 3.7.6 Arangements of Structs in Memory

Computation Routine for LMS: Level 1

The Implementation of LMS algorithm in the PIC18F452 chip fol lows

the fol lowing basic steps as shown in Figure 3.7.5. The level 1 f low

diagram shows an over view of the instal lat ion. The entire algorithm is

t iming sensit ive and there fore it runs in the ISR of t imer 2.

Figure 3.7.7 Level 1 Flow Diagram for LMS

21 22 23 24 25 26 27 30 31 32 33 34

SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL

n0 n1 n2 n3

FSR0

Begin ISR

Restart Timer2

Set ADC Channel 0

Clear All LMS
Variables

Start ADC: Sample
Reference

Store in Noise Buffer

Convert Entire Noise
Buffer to floating point

and fill structs.

Set ADC Channel 1

Start ADC: Sample
Signal

Convert Signal to float

Perform LMS
Computations

Convert error to
Integer

Send To DAC

Begin ISR

 71

Figures 3.7.8 show the contents of the ISR in detai l and Figure 3.7.9

shows in expanded form the detai led computational section of the LMS

algorithm.

Figure 3.7.8 Level 2 Flow Diagram for LMS

Begin ISRRestart Timer2

Set ADC Channel 0

Clear all Hk and ∆W
and ek while waiting
for acquisition time.

Wait 6us more

Start ADC conversion

Wait till complete

Set ADC channel 1

FSR1 = EOB?
Y

N

Store ADC post-
increment FSR0

Save Ptr FSR0, FSR2

FSR1 = tempPtr

Store ADC

FSR1 = BOB

FSR1 = BOB?
Y

N

FSR1 = EOB

Pull Data sample

Pre-Increment
Pointer and pull

data sample

Is Sample positive?

Sample – 0x7F

Y

Convert Sample to
floating-point and

post- increment
FSR2

FSR2 = &n0.sign

0x7F - Sample

N

All conversion done?

Y

N

Start ADC conversion

Wait for Conversion

Subtract 0x7f

Perform LMS
Computations

Convert to float

Convert error to
Integer Send To DAC

End ISR
3

 72

The detai led computational f low diagram of the LMS algorithm is

given in Figure 3.7.9.

Figure 3.7.9 Level 3 Flow Diagram for LMS

Begin LMS

H k 0 = W 0 * N 0
H k 1 = W 1 * N 1
H k 2 = W 2 * N 2
H k 3 = W 3 * N 3

H k 0 = - H k 0
H k 1 = - H k 1
H k 2 = - H k 2
H k 3 = - H k 3

e r r o r = s i g n a l + H k 0 +
H k 1 + H k 2 + H k 3

e r r = e r r o r * ε

∆W0 = W 0 * N 0
∆W1 = W 1 * N 1

∆W2 = W 2 * N 2

∆W3 = W 3 * N 3

W0 = W 0 *∆W0
W1 = W 1 *∆W1

W2 = W 2 *∆W2

W3 = W 3 *∆W3

End LMS

Compute Estimates

Subtract Estimated
noise from signal

Apply Learning Rate

Compute Weight
updates

Update Weights

Change Sign

 73

3.8 Hardware Test Circuit

The same test circuit was used for both FIR and LMS fi l ter . Figure

3.8.1 is a block diagram of the circuits that are used.

Figure 3.8.1 Block Overview of Circuit

The power supply board was developed to provide the fol lowing

voltages from a unregulated 12V+ power supply. This board is labeled

optional because it was developed purely to make convenient voltage

supplies and references. The board provides the fol lowing voltages.

a . Regulated 5V / 1A (Power for PIC 18F452 and other IC’s)

b. Regulated 2.5V (Offset Voltage for Amplif iers)

c. –5V/100mA Unregulated (DC/DC)

POWER SUPPLY

SIGNAL

CONDITIONING

PIC 18F452

PROCESSING

SMOOTHING

12V, 5V, -5V, Gnd

5V, Gnd

5V, -5V, Gnd

12V Supply

Left From PC

Right From PC

Common (PC)

DAC OUT

Out to PC

 74

3.9 Detailed Schematic of the Power Supply

The power supply board uses the TC1121 DC/DC converter to

generate the –5 supply. The 5V supply is regulated by the 7805 and the

2.5 Volt reference level is generated with a zener. All the voltages are

derived from a 12 V external supply.

Figure 3.8.2 Power Supply Board

 75

3.10 Detailed Schematic: Smoothing Filter

The output signal from the R-2R fi l ter must be buffered and

smoothed before it can be sent for data analysis . To that end the Maxim

291 switched capacitor f i l ter is used. The fi l ter is clocked with a small

PIC chip PIC 12F629. The f irmware for the switch capacitor f i l ter clock

signal is in Appendix D.

Figure 3.8.3 Smoothing Filter for R-2R Ladder

 76

3.11 Detailed Schematic: Signal Conditioning Board

The signal condit ioning board contains amplif iers to scale two signals

from the l ine out of the PC sound card or external microphones to the 0

to 5 volt range so they can be sampled by the analog two digital

converters as shown in Figure 3.8.4.

Figure 3.8.4 Signal Condit ioning Block

 77

3.12 Detailed Schematic: Signal Processing Board

The signal processing board is bui lt around the PIC18F452 chip. It

contains the bare minimum circuitry that is required by the f i l ter . The

DAC uses a R-2R ladder to generate an output for convenience.

Figure 3.8.4 Block Overview of Circuit

 78

3.13 Photograph of PIC18F452 based Filter

This photograph of the test device, shown in Figure 3.8.5, was built

to val idate the f i l ters designed and built during this project .

Figure 3.8.5 Photograph of Test Board

 79

 C H A P T E R 4 : R E S U L T S F R O M R E A L - T I M E

All data acquisit ion was performed using a PC based audio processing

program cal led Wavlab™ Pro by Steinberg [14]. The program used the

PC microphone input for data acquisit ion and contained a powerful set

of visual izat ion and analysis functions. This technique for data

acquisit ion proved to be both elegant and efficient. The same software

was used to generate various frequency sweeps that were used as input

data to the PIC chip. LMS fi l ters were also tested using the same

apparatus.

4.1 FIR FILTER: Data Acquisition Setup

The apparatus setup for FIR fi l ter test ing is i l lustrated in Figure 4.1.1.

In order to test the circuit with control led waveforms, they were

generated on a PC and send to the processing board via the l ine out of

the sound card. The PIC board sampled the signals on the l ine out and

after applying the processing LMS, send the DAC output back to the PC

sound card, where it is sampled and stored as a wave f i le . This f i le is

analyzed in WavLab™ [14] and results are presented.

Figure 4.4.1 Basic setup for low-cost data acquisit ion

PIC Board

From PC Sound Card

To PC Sound Card

C:>

 80

4.2 FIR FILTER: Real-Time Testing Results

Several f i l ter configurations were tested to val idate and verify the

operation of the FIR fi l ter in the PIC chip. Matlab was used to generate

f i l ter coefficients (Taps) that were then transferred to the PIC chip.

LOW PASS FILTER: Testing and Analysis

The first test was a basic low pass f i l ter with the fol lowing

parameters. The f i l ter i l lustrated in Figure 4.2.1 was generated with the

PIC fi l ter design software developed for MATLAB during the course of

this research. The low-pass f i l ter in Figure 4.2.1 was made with the

desired attenuation of 50dB in the stop-band [0.6K-1K] with a 1KHz

cutoff.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
-1 5 0 0

-1 0 0 0

-5 0 0

0

F re q u e n c y (H z)

P
ha

se
 (d

eg
re

es
)

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
-1 5 0

-1 0 0

-5 0

0

5 0

F re q u e n c y (H z)

M
ag

ni
tu

de
 (d

B
)

Figure 4.2.1 Response Curves of Intended Filter

The sampling frequency is 8000Hz al lowing the sampling of up to

4000Hz. Once the PIC was loaded with the f irmware it was then tested

using the test-signal shown in Figure 4.2.2. The test-signal is a constant-

power frequency sweep 10 seconds long from [200 Hz to 4000 Hz]. The

sweep has constant amplitude in t ime domain and the frequency steadily

 81

increase from 200Hz up to 4000Hz. Since the f i l ter is designed to begin

attenuation at 600Hz and reach 50dB at 1000Hz, the analysis of the test

s ignal after running through the PIC fi l ter should show how well the

f i l ter worked. Since this is a constant-power sweep the amplitude of the

sweep attenuates with increasing frequency in as the FFT chart .

Figure 4.2.2 Test Signal : Constant Power Sweep [200Hz-4000Hz]

The frequency response of the output from the f i l ter captured by a

data acquisit ion system is shown in the Figure 4.2.3.

Figure 4.2.3 Fi lter Performance on PIC18F452 Chip

 82

The fast Fourier transform (FFT) of the DAC output shown in Figure

4.2.4 verif ies the performance of the f i l ter . The sweep does indeed begin

attenuation from 600Hz as desired and is almost entirely decimated at

1Kz. In the t ime domain graph (also Figure 4.2.4) the amplitude of the

sweep does indeed show attenuation in the high frequency side of the

sweep. Notice the small attenuation in the low-frequency side of the

sweep. This attenuation is not the result of the f i l tering in the PIC. This

attenuation is due to a DC blocking capacitor in the PC sound card.

Sound cards by design cannot sample DC and this is one of the

drawbacks of not using an expensive PC based data acquisit ion systems.

BAND STOP FILTER: Testing and Analysis

The second fi l ter generated by the f i l ter design software was a band

pass f i l ter with the characterist ics i l lustrated in Figure 4.2.4. Once a

attenuation of 50dB is desired in the stop-band [600Hz-1800Hz]. The

sampling frequency remains 8000Hz.

0 500 1000 1500 2000 2500 3000 3500 4000
-3000

-2000

-1000

0

F requenc y (H z)

P
ha

se
 (d

eg
re

es
)

0 500 1000 1500 2000 2500 3000 3500 4000
-150

-100

-50

0

50

F requenc y (H z)

M
ag

ni
tu

de
 (d

B
)

 Figure 4.2.4 BSF Filter Specifications for Band Pass filter

 83

The FFT of the sampled data from the PIC chip i l lustrated in Figure

4.2.5 shows attenuation in the desired band [600Hz – 1800Hz].

 Figure 4.2.5 Measured BSF Frequency and Amplitude Response

 84

MULTI-BAND FILTER 1 (FIR): Testing and Analysis

The second fi l ter that was implemented was a band stop fi l ter . In

Figure 4.2.6 a more complex mult i-band FIR fi l ter is shown. The f i l ter

has two stop-bands at [600Hz – 1800Hz] and [2700Hz-4000Hz]. Figure

4.2.7 shows the FFT of the PIC fi l ter performance. Both stops bands

have been attenuated as intended.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
- 2 0 0 0

- 1 5 0 0

- 1 0 0 0

- 5 0 0

0

F r e q u e n c y (H z)

P
ha

se
 (d

eg
re

es
)

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
- 1 5 0

- 1 0 0

- 5 0

0

5 0

F r e q u e n c y (H z)

M
ag

ni
tu

de
 (d

B
)

Figure 4.2.6 MBF 1 Filter Specifications for Band Pass filter

 Figure 4.2.7 Frequency and Amplitude response from PIC18F452

 85

MULTI-BAND FILTER 2 (FIR): Testing and Analysis

Figure 4.2.8 is a f i l ter with three pass-bands; Figure 4.2.9 shows the

performance of the PIC chip. The f igure shows that al l three bands have

been compensates as specif ied in Figure 4.2.8.

0 5 00 1 00 0 1 50 0 2 00 0 250 0 30 00 35 00 40 00
-6 00

-4 00

-2 00

0

F req ue nc y (H z)

P
ha

se
 (d

eg
re

es
)

0 5 00 1 00 0 1 50 0 2 00 0 250 0 30 00 35 00 40 00
-80

-60

-40

-20

0

20

F req ue nc y (H z)

M
ag

ni
tu

de
 (d

B
)

 Figure 4.2.8 MBF 2 Filter Specif icat ions for Band Pass f i l ter

Figure 4.2.9 Frequency and Amplitude response from PIC18F452

 86

4.3 LMS FILTER: Test Scenario 1

In order to test the real-t ime adaptive f i l ter a s ignal and noise vectors

are careful ly prepared. The LMS adaptive f i l ter essential ly applies the

phenomenon of destructive interference to perform noise cancel lat ion.

Two waves can be successful ly cancel led by destructive interference if

they are both correlated in phase and amplitude. To i l lustrate the point

made in the previous statement consider the scenario presented in Figure

4.3.1, the source A produces a signal that is sampled at two points in

space, p1 and p2. Even though at both points the signal is very similar

however they cannot be directly subtracted because by the t ime the signal

is sampled at p2 i t is different in both phase as well as amplitude and

cannot be simply destroyed by simple subtracting p1.

Figure 4.3.1 Sampling Source A at P1 and P2

To make the problem even more interest ing a second source is added

to the scenario presented in Figure 4.3.1 where a source B is introduced:

Figure 4.3.2 Source B is added to the scene

Sampler

P1 P2

Source A

LMS

P1 P2

Source A

Source B

Source B

 87

 Figure 4.3.2 shows that p2 wil l sample not only the signal from

source B but also signal from Source A. The LMS adaptive f i l ter has the

abi l i ty to intel l igently subtract Source A from source B by predicting the

degree of contamination from Source A in the sample of source B and

recursively improving its ’ predict ions unti l source A has been

successful ly el iminated from the sample made at p2 . The test scenario

uses two monotonic sin waves one for source A (220Hz) and another for

Source B (340Hz) . To simulate the effects of Source A travel ing through

space t i l l sampling point p2 source A is given a phase-shift of 375us

(micro seconds) and a gain added to source B and the sum is normalized

to approximate the signal sampled at p2 . See Figure 4.3.3.

Figure 4.3.3 Approximation of Signal at p2

The signal used at p2 for the simulation was compiled in Matlab and a

t ime domain graph is presented in Figure 4.3.4. This waveform is the

superposit ion of source A and source B sampled at point p2.

357us
delay

Source A (220Hz)

Source B (340Hz)

Gain

Gain
Signal
at p2

 88

 Figure 4.3.4 Time domain graph of signal at p2

Figure 4.3.5 shows the frequency domain representation of the signal

sampled at p2. The two spikes are the two monotonic signatures of

source A (220Hz) and source B (340Hz).

Figure 4.3.5 Frequency domain graph of signal at p2

 89

The real-t ime test topology is presented in Figure 4.3.6. The signal

sampled at point p1 is approximated as source A (220Hz) with a gain.

Figure 4.3.6 Real-t ime test topology

The signal sampled at point p2 and the signal at p1 (reference) going

into the PIC chip are shown next in Figure 4.3.6 in t ime domain.

 Figure 4.3.6 Signal p2 (top) and Reference p1 sampled by ADC

357us
delay

Source A (220Hz)

Source B (340Hz)
Gain

Gain

Signal
at p2

PIC 18F452
LMS Chip

Gain
Signal
at p1

Recovered
Signal

 90

The signal p1 and reference p2 are sampled by the PIC 18F452. The

algorithm implemented in the PIC chip is a fourth order f loating-point

LMS with a sampling frequency of 8000Hz and learning rate of 0.1. Both

signal and reference are simultaneously presented to the PIC chip as

shown in Figure 4.3.5, the hardware setup for the experiment is the same

as Figure 4.4.1. The output of the chip or the recovered signal is

recorded and graphed in Figure 4.3.7 in t ime domain.

Figure 4.3.7 Signal Recovered by the PIC chop (source B: 340 Hz)

Figure 4.3.7 show that the LMS algorithm running in the PIC chip

was indeed able to recover the Source B and the experiment was

successful however, the lack of smoothness in the recovered signal

suggests high-frequency noise. The smoothing-fi l ter was given a cutoff

of 4000Hz however shift ing that cutoff to a lower value wil l improve the

signal to noise rat io. The frequency domain graph of the recovered signal

is presented next in Figure 4.3.8.

 91

Figure 4.3.8 Signal Recovered in frequency domain (source B: 340 Hz)

 92

 C H A P T E R 5 : A N A L Y S I S & C O N C L U S I O N S

Despite the hardware l imitat ions of the PIC chip, both the FIR and

LMS fi l ters gave a strong performance with consistent, measurable and

repeatable results .

5.1 FIR filter performance summery

 The FIR fi l ter attenuation requested in the f i l ter presented in Section

4.2 is 50dB in Matlab. Although the PIC chip faithful ly reproduces the

frequency response designed by Matlab, the attenuation of 50dB could

not be achieved. The best attenuation possible was 36dB.

The difference of 14dB is attr ibuted to the combined effect produced

from two main factors. First ly , the coefficients generated by Matlab are

in double precision f loating-point format, which were re-scaled into 8-bit

f ixed-point format numbers. This rescal ing process is the major factor

that contributes to the observed precision gap. The other factor is that

the samples of the signal are made at 8-bit precision. In Matlab the test

were made with the signal data sampled at 16 bits . The low bit depth in

the sampled signal is also a factor that affects precision.

The best computation speed achieved is the theoretical minimum of

800ns per MAC cycle by selecting the fastest execution-speed option.

Equation 5.2 calculates the number of CPU cycles required to implement

a FIR fi l ter of a specif ied sized.

_ () 8* 45 (5.1)Num cycles taps taps= +

 93

By using the smallest program size option, two addit ional instructions

are added to the MAC loop thus increasing the size of the MAC cycle to

1000ns. The Total cycles can is calculated using Equation 5.2.

_ () 10* 45 (5.2)Num cycles taps taps= +

By using the smallest RAM size option, the size of each MAC loop is

extended further to 22 cycles per MAC. Thus the total number of cycles

used by the PIC chip is calculated using Equation 5.3.

_ () 22* 45 (5.3)Num cycles taps taps= +

Equation 5.4 determines RAM usage for a given f i l ter order for

fastest-execution speed option.

_ () 2* 8 (5.4)Ram needed taps taps= +

Equation 5.5 determines RAM usage for a given f i l ter-order in the

minimum RAM implementation case:

_ () 8 (5.5)Ram needed taps taps= +

The execution speeds from al l three avai lable implementation models

are plotted and shown in Figure 5.1.

 94

Execution Speed

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80 90
Fi l t e r Or de r (TAP S)

C
PU

 C
yc

le
s

Minimum Execution Speed Minimum Program Memory Minimum RAM

 Figure 5.1 Comparison of execution speed for different
implementations

5.2 LMS filter performance summary

One of the intentions of this research was to obtain a reasonable

approximation of how many orders can be achieved on the PIC 18F452

chip given it ’s many l imitat ions. Using the f loating-point l ibrary and best

speed achieved for the adaptive f i l ter is 267 cycles per tap.

At 10 mil l ion instructions per second (MIPS), achievable with a

10MHz external crystal osci l lator, the PIC chip can execute 267 cycles in

26.7 µs. Equation 5.6 est imates the highest achievable order for a

specif ied sampling rate and Equation 5.7 est imates the max sampling

frequency for the specif ied number of taps.

 95

__ (_) (5.6)
4* _ *267

__ _ _ (5.7)
4* *267

ext oscMax LMSOrder sampling freq floor
sampling freq

ext oscMax LMS Sampling freq
LMSOrder

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

=

Table 5.1 shows the relat ionship between Sampling frequency and the

maximum fi l ter order achievable using the implementation strategy

developed during this research. The number of Taps cannot exceed 375

because the PIC wil l run out of RAM.

Table 5.1: LMS Sampling Rate vs. Taps

Sampling Freq (Hz) Taps

100 375
200 187
400 94
800 47
1600 23
3200 12
6400 6

12800 3
25600 1

External Clock 40000000

5.3 Conclusions and future work

The fol lowing conclusions were draws regarding the various f i l ter

implementations that were explored during the course of this research.

1. The PIC 18F452 chip is an excel lent candidate for f ixed-point FIR

fi l ter implementation. At 800ns per MAC cycle, there is no obvious

disadvantage to divert ing part of the PIC CPU cycles.

 96

2. No more than a fourth, order LMS fi l ter is possible using the f loating

point system using the PIC 18 family. Higher orders are possible at

lower sampling rates, however the lack of the normalization operation

in the f loating-point variables makes it prone to loss of precision

from rol l-off errors. The newer chips in the same class and price

bracket, such as the dsPIC family, contains specif ic hardware such as

a 40 bit barrel shifter , 16-bit s igned mult ipl ier and 16 bit ALU with

speeds up to 30-40MIPS. These chips overcome many of the hardware

l imitat ions of the PIC 18 family, making them highly suited for

building practical applicat ions of adaptive f i l ters, neural networks etc

without having to resort to using the cost prohibit ive DSP boards.

Future work can include developing programming tools and software

l ibraries for this new family of chips.

3. In the LMS fi l ter developed during this research is not used in any

part icular applications. It was merely evaluated and tested on

simulated data and meant as to be a resource that can be applied to a

specif ic applicat ion. There is scope for f inding a suitable applicat ion

for this f i l ter such as adaptive noise cancel lat ion headphones,

standing wave decimation, l ine echo cancel lat ions etc.

 97

BIBLIOGRAPHY

[1] Ananda Mohan P.V, Ramachandran V., Swamy M.N.S, Switch capac i tor f i l t ers : Theorm,

Analys i s and Design , Prentice-Hall PTR, June 1995.

[2] CCS compilers, www.ccsinfo.com/picc.shtml, 2004

[3] CCS Compilers, C Compiler Reference Manual, Custom Computer Services Incorporated,

Brookfield WI, 2003.

[4] Digikey, www.digikey.com, 2003

[5] Emmanuel C. Ifeachor, Barrie W. Jervis. Digital Signal Processing: A practical Approach,

Addison-Wesley Publishing Company, 1993.

[6] Hall V. Douglas, Microprocessors and Interfacing programming and hardware, Glencoe McGraw-Hill,

New York, New York, 1997.

[7] Hamming, R. W. Digital Filters third edition, Dover Publications, INC. Minneola, New York,

1989.

[8] Karam L. J, McCellah, J.H., Design of optimal digital filters with arbitrary magnitude and phase

responses. IEEE International Symposium on Circuit and Systems. Circuits and Systems

connecting the World, 1996.

[9] Lathi B. P. Signal Processing and Linear Systems, Berkeley Cambridge Press, Carmichael,

California, 1998.

[10] Microchip, PIC18FXX2 Data Sheet: High Performance, Enhanced FLASH Microcontrollers with

10-Bit A/D, 2002.

[11] Predko Mike, Programming and customizing PICmicro® Microcontrollers, McGraw-Hill, New

York, New York, 2002.

 98

[12] Ramu Anantha B. K. “Implementation of FIR and IIR Digital Filters Using PIC18
Microcontrollers”, Microchip Application Note: AN853, Appendix A, 2002.

[13] The Math works, Filter Design Toolbox 2 for designing and analyzing advanced
floating-point and fixed-point filter. www.mathworks.com/products/filterdesign, 2003.

[14] Widrow B. and Winter R. Neural nets for adaptive filtering and adaptive pattern recognition. IEEE

Computer, 1998.

 99

APPENDIX A

USERS MANUAL FOR FILTER DESIGN SOFTWARE

 100

INTRODUCTION

The PIC18F452: FILTER DESIGN SOFTWARE was built on the

Matlab environment and wil l only operate on MATLAB Version 6.1.0.450

(R12.1) and up. Fi lter Design Toolbox Version 2.1 must also be instal led

within the MATLAB environment.

In order to begin the f i l ter design system a path must be set to the

directory in which the source f i les are held. There are two ways of

sett ing the path to the correct directory.

Method1: The path can be set directly by entering it on the provided

space on the main tool bar or by cl icking on the button.

Method2: An alternate way to set the directory path is to use the

command l ine option in the main window of Matlab.

Once the path has been set the f i l ter design system can be launched

by typing in ‘ f i ldes’ at the command prompt.

 101

The fi l ter design system main window offers the fol lowing functions,

low-pass f i l ter design, high-pass f i l ter design, band-pass f i l ter design,

band-stop fi l ter design and custom fi l ter design.

LOW PASS FILTER DESIGN

Clicking on the button in the main window and enables

the low-pass f i l ter design interface where the parameters for the intended

low-pass FIR fi l ter can be entered.

Enter Attenuations values
for Pass Band Ripple and
Stop Band Attenuations.

Enter Sampling Rate for
FIR filter

Enter Band edges for low
pass filter.

 102

Once the desired band-edges and attenuations have been entered, by

pressing the button the

simulated f i l ter response is plotted to the screen.

The frequency response and the phase response curves are graphed

for user inspection. Addit ional ly new options appear in the main window

of the LPF design interface.

 103

The new items that appear in the interface present three

implementation options. Each option l ists the bytes of RAM used by the

program on the PIC Chip as well as the number of cycles used by the

program. Running at 40,000,000 each cycle lasts 100ns. Final ly the

 button wil l generate the

c-language f i le that can be instal led into the PIC chip.

HIGH PASS FILTER DESIGN

The high-pass FIR fi l ter is designed in the same way as the low-pass

f i l ter by selecting the ‘High Pass’ button on the main menu.

The rest of the design fol lows exactly the same set of steps as the

low pass f i l ter design.

Click on This
button to design

a High-Pass
filter.

 104

BAND PASS FILTER DESIGN

Designing the band-pass f i l ter starts as the previous ones by cl icking

on the band-pass button in the main window.

Unlike the LPF and the HPF the optimal number of coefficients are

not automatical ly determined for the FIR band-pass f i l ter configuration.

As the Filter order is increased the qual ity of the f i l ter improves as well .

Enter Attenuations values
for Pass Band Ripple and
Stop Band Attenuations.

Enter Sampling Rate for
FIR filter

Enter Band edges for low
pass filter.

The Desired Filter order
needs to be entered here

 105

BAND STOP FILTER DESIGN

Band stop fi l ter is design fol lows the same set of steps as the Band

pass f i l ter . If the f i l ter order is under est imated then the f i l ter response

curves indicate the deficiency. Say the user specif ies a band stop fi l ter

with the given specif icat ions. Notice that only 13 orders are al lowed to

obtain a 40db drop in the stop band.

By plott ing the frequency and phase curves it is possible to check

whether 13 f i l ter taps are enough to attain 40db in the stop band.

Enter Attenuations values
for Pass Band Ripple and
Stop Band Attenuations.

Sampling Frequency

Only 13 taps are allowed
for the implementation of

the filter

 106

The graph reveals that a 13-tap f i l ter is not sufficient to attain the

desired attenuations. The order must be revised to a higher value, say 40

taps, and the f i l ter curves are plotted again.

The updated response curve reveals that 40db drop has been achieved

and the code can now be generated in the same manner as before.

CUSTOM FILTER DESIGN

This is probably the most f lexible aspect of FIR fi l ter design because

it al lows the development of complex f i l ters, which can compensate

several different bands at once. The specif icat ion of Custom fi l ters is a

s l ightly different than the previous f i l ters. In order to design them the

custom button must be selected f irst in the main window.

Press Custom to begin
Design

 107

The custom fi l ter design interface is different from the basic f i l ter

design interface. In order to create a custom fi l ter four boxes must be

f i l led with the appropriate information. The filter profile , the

frequency profile , the band attenuations and the desired filter order .

Filter Profile

Fi lter profi le determines the band edges of the f i l ter . A stop-band is

designated by [0,0] and a pass-band is designated by [1,1] .

Filter Profile Box

Frequency Profile

 Attenuation Profile

Desired Filter Order

0 0

1 1

0 0

1 1

0 0

 108

Frequency Profile

The frequency profi le is s imply the corner frequencies for each band

edge and is supplied to the program in the appropriate box.

Band Attenuation Profile

Attenuation for each stop-band must be provided as well as the pass

band ripple for every pass-band.

Desired Filter Order

This box is f i l led with the number of coefficients desired by the

designer. As before it is important to check the response curve to make

sure the specif ied attenuations are being correctly met.

0 100

 200 300

400 600

700 800

900 4000 Hz

40 dB

1 dB

40 dB

1 dB

40 dB Hz

 109

Plott ing the frequency response button shows the curves and after

increasing the f i l ter order from 50 to 70 the target attenuations are met.

Fi lter code can be generated as before after selecting an appropriate

implementation strategy desired by the user.

 110

APPENDIX B

MATLAB CODE FOR FILTER DESIGN SOFTWARE

 111

function varargout = fildes(varargin)
% FILDES Application M-file for fildes.fig
% FIG = FILDES launch fildes GUI.
% FILDES('callback_name', ...) invoke the named callback.
% Last Modified by GUIDE v2.0 11-Apr-2004 21:33:20

global gdata;
global handles;

if nargin == 0 % LAUNCH GUI
 fig = openfig(mfilename,'reuse');

 % Use system color scheme for figure:
 set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

 % Generate a structure of handles to pass to callbacks, and store it.
 handles = guihandles(fig);
 guidata(fig, handles);
 if nargout > 0
 varargout{1} = fig;
 end

 % INVOKE NAMED SUBFUNCTION OR CALLBACK
 elseif ischar(varargin{1})
 try
 if (nargout)
 [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard
 else
 feval(varargin{:}); % FEVAL switchyard
 end
 catch
 disp(lasterr);
 end
 end

% --
function varargout = FIRpush(h, eventdata, handles, varargin)
set(handles.lms,'enable','off');

% --
function varargout = LMSpush(h, eventdata, handles, varargin)
set(handles.fir,'enable','off');

% --
function varargout = lpf_Callback(h, eventdata, handles, varargin)
global gdata;

set(handles.cover,'visible','off');
custom_off;
axes(handles.box);
x=ones(1,30);
y=1:-1/25:0;
z=zeros(1,30);
plot([x y z]);
set(handles.box,'xlim',[1 90]);
set(handles.box,'ylim',[0 1.5]);
set(handles.box,'color',[0.6 0.6 0.6]);
set(handles.pfr,'enable','on');
set(handles.bpa,'visible','off');
set(handles.bpb,'visible','off');
set(handles.bpc,'visible','off');

 112

set(handles.bpd,'visible','off');
set(handles.pbco,'visible','on');
set(handles.sbc,'visible','on');
set(handles.tapn,'visible','off');
set(handles.taptext,'visible','off');
gdata.type = 1;

% --
function varargout = hpf_Callback(h, eventdata, handles, varargin)
global gdata;
set(handles.cover,'visible','off');
custom_off;
axes(handles.box);
x=ones(1,37);
y=0:1/25:1;
z=zeros(1,30);
plot([z y x]);
set(handles.box,'xlim',[1 90]);
set(handles.box,'ylim',[0 1.5]);
set(handles.box,'color',[0.6 0.6 0.6]);
set(handles.pfr,'enable','on');
set(handles.bpa,'visible','off');
set(handles.bpb,'visible','off');
set(handles.bpc,'visible','off');
set(handles.bpd,'visible','off');
set(handles.pbco,'visible','on');
set(handles.sbc,'visible','on');
set(handles.tapn,'visible','off');
set(handles.taptext,'visible','off');
gdata.type = 2;

% --
function varargout = bpf_Callback(h, eventdata, handles, varargin)
global gdata;
set(handles.cover,'visible','off');
custom_off;
axes(handles.box);
z = zeros(1,15);
x = ones(1,20);
r = 0:1/15:1;
f = 1:-1/15:0;
plot([z r x f z]);
set(handles.box,'xlim',[1 80]);
set(handles.box,'ylim',[0 1.5]);
set(handles.box,'color',[0.6 0.6 0.6]);
set(handles.pbco,'visible','off');
set(handles.sbc,'visible','off');
set(handles.bpa,'visible','on');
set(handles.bpb,'visible','on');
set(handles.bpc,'visible','on');
set(handles.bpd,'visible','on');
set(handles.pfr,'enable','on');
set(handles.tapn,'visible','on');
set(handles.taptext,'visible','on');
gdata.type = 3;

% --
function varargout = bsf_Callback(h, eventdata, handles, varargin)
global gdata;
set(handles.cover,'visible','off');
custom_off;
axes(handles.box);

 113

z = zeros(1,15);
x = ones(1,20);
r = 0:1/15:1;
f = 1:-1/15:0;
plot([x f z r x]);
set(handles.box,'xlim',[1 80]);
set(handles.box,'ylim',[0 1.5]);
set(handles.box,'color',[0.6 0.6 0.6]);
set(handles.pbco,'visible','off');
set(handles.sbc,'visible','off');
set(handles.bpa,'visible','on');
set(handles.bpb,'visible','on');
set(handles.bpc,'visible','on');
set(handles.bpd,'visible','on');
set(handles.pfr,'enable','on');
set(handles.tapn,'visible','on');
set(handles.taptext,'visible','on');
gdata.type = 4;

% --
function varargout = m2o_Callback(h, eventdata, handles, varargin)
global gdata;
set(handles.cover,'visible','on');
set(handles.tprofile,'visible','on');
set(handles.profile,'visible','on');
set(handles.bedges,'visible','on');
set(handles.text12,'visible','on');
set(handles.customtaps,'visible','on');
set(handles.attnt,'visible','on');
set(handles.atten,'visible','on');
set(handles.pfr,'enable','on');
gdata.type = 6;

% --
function varargout = gccc_Callback(h, eventdata, handles, varargin)
global g;
global gdata;
global imptype;

fid = fopen('filter.c','w');
time = clock;
% Come to here..........

type = imptype ; % 1. DBUR, 2. DBNUR, 3. SBNUR

% Double Buffer + UNROLLED LOOPS..
if (type==1)

fprintf(fid,'%s \n',['// PIC 18F452 CODE FOR FIR FILTER GENERATION']);
fprintf(fid,'%s \n',['// Date: ' Date ' , Time (Hr:Min:Sec)-> ' num2str(time(4)) ':' num2str(time(5)) ':'
num2str(time(6))]);
fprintf(fid,'%s \n',['// FIR Filter Type: ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n',['#include <18f452.h>']);
fprintf(fid,'%s \n',['#use delay(clock = 40000000)']);
fprintf(fid,'%s \n',['#fuses H4,PUT,NOWDT']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n', ['const int filter_length = ' num2str(length(g)) ';']);

fprintf(fid,'%s', ['const int taps[filter_length] = {']);
for n=1:1:length(g)
 fprintf(fid,'%i',g(n));

 114

 if n<length(g)
 fprintf(fid,',');
 end
end
fprintf(fid,'%s \n',['};']);

fprintf(fid,'\n \n');

fprintf(fid,'%s \n',['// PIC 18F452 Register
MAP... //']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['// ACCUMULATOR ADDRESS ']);
fprintf(fid,'%s \n',['#byte WREG = 0xFE8 // Register Stores the Carry Bit ']);
fprintf(fid,'%s \n',['#byte PRODL =0xff3 // Product Low Byte ']);
fprintf(fid,'%s \n',['#byte PRODH =0xff4 // Product High Byte ']);
fprintf(fid,'%s \n',['#byte ADRESL = 0xfc3 // Low Byte for ADC Sample ']);
fprintf(fid,'%s \n',['#byte ADRESH = 0xfc4 // High Byte for ADC Sample ']);
fprintf(fid,'%s \n',['#byte STATUS = 0xfd8 // Status Register ']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['// DC CONTROL REGISTERS ']);
fprintf(fid,'%s \n',['#byte ADCON0 = 0xfc2 // ADC Control Register (High) ']);
fprintf(fid,'%s \n',['#byte ADCON1 = 0xfc1 // ADC Control Register (Low) ']);
fprintf(fid,'%s \n',['#byte ADRESL = 0xfc3 // Low Byte for ADC Sample ']);
fprintf(fid,'%s \n',['#byte ADRESH = 0xfc4 // High Byte for ADC Sample ']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['// DIGITAL IO PORT ADDRESSES ']);
fprintf(fid,'%s \n',['#byte PORTA = 0xf80 // Port A Address ']);
fprintf(fid,'%s \n',['#byte PORTB = 0xf81 // Port B Address ']);
fprintf(fid,'%s \n',['#byte PORTC = 0xf82 // Port C Address ']);
fprintf(fid,'%s \n',['#byte PORTD = 0xf83 // Port D Address ']);
fprintf(fid,'%s \n',['#byte PORTE = 0xf84 // Port E Address ']);
fprintf(fid,'%s \n',['#byte LATA = 0xf89 // Set Driection for PORTA ']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['// INDIRECT ADDRESSING ']);
fprintf(fid,'%s \n',['#byte FSR0H = 0xfeA // Hardware File Pointer0 (High) ']);
fprintf(fid,'%s \n',['#byte FSR0L = 0xfe9 // Hardware File Pointer0 (Low) ']);
fprintf(fid,'%s \n',['#byte FSR1H = 0xfe2 // Hardware File Pointer1 (High) ']);
fprintf(fid,'%s \n',['#byte FSR1L = 0xfe1 // Hardware File Pointer1 (Low) ']);
fprintf(fid,'%s \n',['#byte FSR2H = 0xfda // Hardware File Pointer2 (High) ']);
fprintf(fid,'%s \n',['#byte FSR2L = 0xfd9 // Hardware File Pointer2 (Low) ']);
fprintf(fid,'%s \n',['#byte INDF0 = 0xfef // Read Data Pointed by FSR0 ']);
fprintf(fid,'%s \n',['#byte INDF1 = 0xfe7 // Read Data Pointed by FSR1 ']);
fprintf(fid,'%s \n',['#byte INDF2 = 0xfdf // Read Data Pointed by FSR2 ']);
fprintf(fid,'%s \n',['#byte PLUSW0 = 0xfeb // Add Pointed data to WREG ']);
fprintf(fid,'%s \n',['#byte PLUSW1 = 0xfe3 // Add Pointed data to WREG ']);
fprintf(fid,'%s \n',['#byte PLUSW2 = 0xfdb // Add Pointed data to WREG ']);
fprintf(fid,'%s \n',['#byte PREINC0 = 0xfec // Pre-increment pointer0 ']);
fprintf(fid,'%s \n',['#byte PREINC1 = 0xfe4 // Pre-increment pointer1 ']);
fprintf(fid,'%s \n',['#byte PREINC2 = 0xfdc // Pre-increment pointer2 ']);
fprintf(fid,'%s \n',['#byte POSTINC0 = 0xfee // Post-Incerement Pointer0 ']);
fprintf(fid,'%s \n',['#byte POSTDEC0 = 0xfed // Post-Decrement Pointer0 ']);
fprintf(fid,'%s \n',['#byte POSTINC1 = 0xfe6 // Post-Increment Pointer1 ']);
fprintf(fid,'%s \n',['#byte POSTDEC1 = 0xfe5 // Post-Decrement Pointer1 ']);
fprintf(fid,'%s \n',['#byte POSTINC2 = 0xfde // Post-Increment Pointer2 ']);
fprintf(fid,'%s \n',['#byte POSTDEC2 = 0xfdd // Post-Decrement Pointer2 ']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['// TIMER REGISTERS ']);
fprintf(fid,'%s \n',['#byte PR2 = 0xfcb ']);

 115

fprintf(fid,'%s \n',['#byte TMR2 = 0xfcc ']);
fprintf(fid,'%s \n',['#byte T2CON = 0xfca ']);

fprintf(fid,'\n \n');

fprintf(fid,'%s \n',['// GLOBAL VARIABLES ']);
fprintf(fid,'%s \n',['int buf0[filter_length] = {0}; // Store ADC Values ']);
fprintf(fid,'%s \n',['int buf1[filter_length] = {0}; // Store ADC Values ']);
fprintf(fid,'%s \n',['int coef[filter_length] = {0}; // Store offset Coefficients ']);
fprintf(fid,'%s \n',['int output_most = 0; // Most Significant Byte of Output ']);
fprintf(fid,'%s \n',['int output_middle = 0; // Middle Significant Byte of Output . ']);
fprintf(fid,'%s \n',['int output_least = 0; // Least Significant Byte of Output ']);
fprintf(fid,'%s \n',['int Xn_high_256=0; // Most Significant Byte of Xn Summation * 255 ']);
fprintf(fid,'%s \n',['int Xn_mid_256=0; // Mid Significant Byte of Xn Summation * 255 ']);
fprintf(fid,'%s \n',['int Xn_low_256=0; // Least Significant Byte of Xn Summation * 255 ']);
fprintf(fid,'%s \n',['int Xn_high_128=0; // Most Significant Byte of Xn Summation * 128 ']);
fprintf(fid,'%s \n',['int Xn_mid_128=0; // Mid Significant Byte of Xn Summation * 128 ']);
fprintf(fid,'%s \n',['int Xn_low_128=0; // Least Significant Byte of Xn Summation * 128 ']);
fprintf(fid,'%s \n',['int EOB, MAC_count; // Counters for MAC and END of Buffer. ']);
fprintf(fid,'%s \n',['int n,c, tptr0, tptr1; // Temporary Variabes ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n',['// GLOBAL PROTOTYPES ']);
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void); ']);
fprintf(fid,'%s \n',['void initialize_pointers(void);']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n',['// INTERRUPT SERVICE ROUTINE']);
fprintf(fid,'%s \n',['#INT_TIMER2 ']);
fprintf(fid,'%s \n',['isr() {']);
fprintf(fid,'%s \n',[' T2CON = 0x06; // Restart Timer']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',[' FSR0L = tptr0; ']);
fprintf(fid,'%s \n',[' FSR1L = tptr1;']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',[' if (EOB == 0) { ']);
fprintf(fid,'%s \n',[' FSR0L = &buf0[0]; ']);
fprintf(fid,'%s \n',[' FSR1L = &buf1[0];']);
fprintf(fid,'%s \n',[' FSR2L = &coef[0];']);
fprintf(fid,'%s \n',[' EOB = filter_length;']);
fprintf(fid,'%s \n',[' }']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',[' // Subtract The oldest Xn Value from Total']);
fprintf(fid,'%s \n',[' #asm']);
fprintf(fid,'%s \n',[' movf INDF0,W']);
fprintf(fid,'%s \n',[' subwf Xn_mid_256,F']);
fprintf(fid,'%s \n',[' clrf WREG']);
fprintf(fid,'%s \n',[' subwfb Xn_high_256,F']);
fprintf(fid,'%s \n',[' #endasm']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',[' // Get the latest ADC value;']);
fprintf(fid,'%s \n',[' WREG = ADRESH;']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',[' // Restart ADC; ']);
fprintf(fid,'%s \n',[' bit_set(ADCON0,2);']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',[' // Add Latest ADC value to Y1(n)']);
fprintf(fid,'%s \n',[' #asm']);
fprintf(fid,'%s \n',[' movwf INDF0']);
fprintf(fid,'%s \n',[' movwf POSTINC1 ']);
fprintf(fid,'%s \n',[' addwf Xn_mid_256,F ']);
fprintf(fid,'%s \n',[' clrf WREG']);

 116

fprintf(fid,'%s \n',[' addwfc Xn_high_256,F ']);
fprintf(fid,'%s \n',[' #endasm ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Prepare for MAC Cycles ']);
fprintf(fid,'%s \n',[' FSR2L = &coef[0];']);
fprintf(fid,'%s \n',[' FSR0L = FSR0L+filter_length;']);
fprintf(fid,'%s \n',[' EOB = EOB - 1;']);
fprintf(fid,'%s \n',[' MAC_count = filter_length;']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Begin MAC Cycle repeat till done then computer Output']);
fprintf(fid,'%s \n',[' #asm']);
fprintf(fid,'%s \n',[' clrf output_least']);
fprintf(fid,'%s \n',[' clrf output_middle']);
fprintf(fid,'%s \n',[' clrf output_most']);
for n=1:1:length(g)
fprintf(fid,'%s \n',['// MAC CYCLE NUMBER: ', num2str(n) ' ----------------------------// ']);
fprintf(fid,'%s \n',[' movf POSTDEC0,W']);
fprintf(fid,'%s \n',[' mulwf POSTINC2']);
fprintf(fid,'%s \n',[' movf PRODL,W']);
fprintf(fid,'%s \n',[' addwf output_least']);
fprintf(fid,'%s \n',[' movf PRODH,W']);
fprintf(fid,'%s \n',[' addwfc output_middle']);
fprintf(fid,'%s \n',[' clrf WREG']);
fprintf(fid,'%s \n',[' addwfc output_most']);
end

fprintf(fid,'%s \n',[' COMPUTE_OUTPUT:']);
fprintf(fid,'%s \n',[' bcf STATUS, 0']);
fprintf(fid,'%s \n',[' incf FSR0L']);
fprintf(fid,'%s \n',[' rrcf Xn_high_256,W ']);
fprintf(fid,'%s \n',[' movwf Xn_high_128 ']);
fprintf(fid,'%s \n',[' rrcf Xn_mid_256,W ']);
fprintf(fid,'%s \n',[' movwf Xn_mid_128 ']);
fprintf(fid,'%s \n',[' rrcf Xn_low_256,W ']);
fprintf(fid,'%s \n',[' movwf Xn_low_128 ']);
fprintf(fid,'%s \n',[' subwf output_least,F ']);
fprintf(fid,'%s \n',[' movf Xn_mid_128,W']);
fprintf(fid,'%s \n',[' subwfb output_middle,F']);
fprintf(fid,'%s \n',[' movf Xn_high_128,W']);
fprintf(fid,'%s \n',[' subwfb output_most,F']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' #endasm ']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',[' tptr0 = FSR0L;']);
fprintf(fid,'%s \n',[' tptr1 = FSR1L;']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',[' // Scale output...........']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',[' #asm']);
fprintf(fid,'%s \n',[' rrcf output_most,F']);
fprintf(fid,'%s \n',[' rrcf output_middle,F']);
fprintf(fid,'%s \n',[' rrcf output_most,F']);
fprintf(fid,'%s \n',[' rrcf output_middle,F ']);
fprintf(fid,'%s \n',[' #endasm']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',[' PORTD = output_middle; ']);
fprintf(fid,'%s \n',[' } // End Interrupt']);
fprintf(fid,'\n \n');

 117

fprintf(fid,'%s \n',['void main() { ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' set_tris_d(0); ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Setup ADC in interrupt mode ']);
fprintf(fid,'%s \n',[' setup_adc_ports(ALL_ANALOG); ']);
fprintf(fid,'%s \n',[' setup_adc(ADC_CLOCK_DIV_64); ']);
fprintf(fid,'%s \n',[' set_adc_channel(0); ‘]);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Setup Timer0 in interrupt Mode ']);
fprintf(fid,'%s \n',[' T2CON = 0x06; ']);
fprintf(fid,'%s \n',[' PR2 = 76; ']);
fprintf(fid,'%s \n',[' enable_interrupts(INT_TIMER2); ']);
fprintf(fid,'%s \n',[' enable_interrupts(GLOBAL); ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // FIR filter Code ']);
fprintf(fid,'%s \n',[' offset_and_buffer_tap_coefficients(); ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Initialize Pointers ']);
fprintf(fid,'%s \n',[' tptr0 = &buf0[0]; ']);
fprintf(fid,'%s \n',[' tptr1 = &buf1[0]; ']);
fprintf(fid,'%s \n',[' FSR2L = &coef[0]; ']);
fprintf(fid,'%s \n',[' EOB = filter_length; ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Start ADC. ']);
fprintf(fid,'%s \n',[' bit_set(ADCON0,2); ']);
fprintf(fid,'%s \n',[' set_rtcc(65517); ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Main Loop ']);
fprintf(fid,'%s \n',[' while(1) { ']);
fprintf(fid,'%s \n',[' // Main Application ']);
fprintf(fid,'%s \n',[' } ']);
fprintf(fid,'%s \n',['} ']);

fprintf(fid,'\n \n \n');
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void) { ']);
fprintf(fid,'%s \n',[' int n; ']);
fprintf(fid,'%s \n',[' for (n=0; n<filter_length; n++) { ']);
fprintf(fid,'%s \n',[' coef[n] = taps[n]+0x80; ']);
fprintf(fid,'%s \n',[' } ']);
fprintf(fid,'%s \n',['} ']);

end

% DOUBLE BUFFERED: Non UNROLLED LOOPS..

if (type == 2)

fprintf(fid,'%s \n',['// PIC 18F452 CODE FOR FIR FILTER GENERATION']);
fprintf(fid,'%s \n',['// Date: ' Date ' , Time (Hr:Min:Sec)-> ' num2str(time(4)) ':' num2str(time(5)) ':'
num2str(time(6))]);
fprintf(fid,'%s \n',['// FIR Filter Type: ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n',['#include <18f452.h>']);
fprintf(fid,'%s \n',['#use delay(clock = 40000000)']);
fprintf(fid,'%s \n',['#fuses H4,PUT,NOWDT']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n', ['const int filter_length = ' num2str(length(g)) ';']);

fprintf(fid,'%s', ['const int taps[filter_length] = {']);
for n=1:1:length(g)

 118

 fprintf(fid,'%i',g(n));
 if n<length(g)
 fprintf(fid,',');
 end
end
fprintf(fid,'%s \n',['};']);

fprintf(fid,'\n \n');

fprintf(fid,'%s \n',['// PIC 18F452 Register
MAP.. //']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['// ACCUMULATOR ADDRESS ']);
fprintf(fid,'%s \n',['#byte WREG = 0xFE8 // Register Stores the Carry Bit ']);
fprintf(fid,'%s \n',['#byte PRODL =0xff3 // Product Low Byte ']);
fprintf(fid,'%s \n',['#byte PRODH =0xff4 // Product High Byte ']);
fprintf(fid,'%s \n',['#byte ADRESL = 0xfc3 // Low Byte for ADC Sample ']);
fprintf(fid,'%s \n',['#byte ADRESH = 0xfc4 // High Byte for ADC Sample ']);
fprintf(fid,'%s \n',['#byte STATUS = 0xfd8 // Status Register ']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['// DC CONTROL REGISTERS ']);
fprintf(fid,'%s \n',['#byte ADCON0 = 0xfc2 // ADC Control Register (High) ']);
fprintf(fid,'%s \n',['#byte ADCON1 = 0xfc1 // ADC Control Register (Low) ']);
fprintf(fid,'%s \n',['#byte ADRESL = 0xfc3 // Low Byte for ADC Sample ']);
fprintf(fid,'%s \n',['#byte ADRESH = 0xfc4 // High Byte for ADC Sample ']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['// DIGITAL IO PORT ADDRESSES ']);
fprintf(fid,'%s \n',['#byte PORTA = 0xf80 // Port A Address ']);
fprintf(fid,'%s \n',['#byte PORTB = 0xf81 // Port B Address ']);
fprintf(fid,'%s \n',['#byte PORTC = 0xf82 // Port C Address ']);
fprintf(fid,'%s \n',['#byte PORTD = 0xf83 // Port D Address ']);
fprintf(fid,'%s \n',['#byte PORTE = 0xf84 // Port E Address ']);
fprintf(fid,'%s \n',['#byte LATA = 0xf89 // Set Driection for PORTA ']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',['// INDIRECT ADDRESSING ']);
fprintf(fid,'%s \n',['#byte FSR0H = 0xfeA // Hardware File Pointer0 (High) ']);
fprintf(fid,'%s \n',['#byte FSR0L = 0xfe9 // Hardware File Pointer0 (Low) ']);
fprintf(fid,'%s \n',['#byte FSR1H = 0xfe2 // Hardware File Pointer1 (High) ']);
fprintf(fid,'%s \n',['#byte FSR1L = 0xfe1 // Hardware File Pointer1 (Low) ']);
fprintf(fid,'%s \n',['#byte FSR2H = 0xfda // Hardware File Pointer2 (High) ']);
fprintf(fid,'%s \n',['#byte FSR2L = 0xfd9 // Hardware File Pointer2 (Low) ']);
fprintf(fid,'%s \n',['#byte INDF0 = 0xfef // Read Data Pointed by FSR0 ']);
fprintf(fid,'%s \n',['#byte INDF1 = 0xfe7 // Read Data Pointed by FSR1 ']);
fprintf(fid,'%s \n',['#byte INDF2 = 0xfdf // Read Data Pointed by FSR2 ']);
fprintf(fid,'%s \n',['#byte PLUSW0 = 0xfeb // Add Pointed data to WREG ']);
fprintf(fid,'%s \n',['#byte PLUSW1 = 0xfe3 // Add Pointed data to WREG ']);
fprintf(fid,'%s \n',['#byte PLUSW2 = 0xfdb // Add Pointed data to WREG ']);
fprintf(fid,'%s \n',['#byte PREINC0 = 0xfec // Pre-increment pointer0 ']);
fprintf(fid,'%s \n',['#byte PREINC1 = 0xfe4 // Pre-increment pointer1 ']);
fprintf(fid,'%s \n',['#byte PREINC2 = 0xfdc // Pre-increment pointer2 ']);
fprintf(fid,'%s \n',['#byte POSTINC0 = 0xfee // Post-Incerement Pointer0 ']);
fprintf(fid,'%s \n',['#byte POSTDEC0 = 0xfed // Post-Decrement Pointer0 ']);
fprintf(fid,'%s \n',['#byte POSTINC1 = 0xfe6 // Post-Increment Pointer1 ']);
fprintf(fid,'%s \n',['#byte POSTDEC1 = 0xfe5 // Post-Decrement Pointer1 ']);
fprintf(fid,'%s \n',['#byte POSTINC2 = 0xfde // Post-Increment Pointer2 ']);
fprintf(fid,'%s \n',['#byte POSTDEC2 = 0xfdd // Post-Decrement Pointer2 ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',['// TIMER REGISTERS ']);

 119

fprintf(fid,'%s \n',['#byte PR2 = 0xfcb ']);
fprintf(fid,'%s \n',['#byte TMR2 = 0xfcc ']);
fprintf(fid,'%s \n',['#byte T2CON = 0xfca ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n',['// GLOBAL VARIABLES]);
fprintf(fid,'%s \n',['int buf0[filter_length] = {0}; // Store ADC Values ']);
fprintf(fid,'%s \n',['int buf1[filter_length] = {0}; // Store ADC Values ']);
fprintf(fid,'%s \n',['int coef[filter_length] = {0}; // Store offset Coefficients ']);
fprintf(fid,'%s \n',['int output_most = 0; // Most Significant Byte of Output ']);
fprintf(fid,'%s \n',['int output_middle = 0; // Middle Significant Byte of Output ']);
fprintf(fid,'%s \n',['int output_least = 0; // Least Significant Byte of Output ']);
fprintf(fid,'%s \n',['int Xn_high_256=0; // Most Significant Byte of Xn Summation * 255 ']);
fprintf(fid,'%s \n',['int Xn_mid_256=0; // Mid Significant Byte of Xn Summation * 255 ']);
fprintf(fid,'%s \n',['int Xn_low_256=0; // Least Significant Byte of Xn Summation * 255 ']);
fprintf(fid,'%s \n',['int Xn_high_128=0; // Most Significant Byte of Xn Summation * 128 ']);
fprintf(fid,'%s \n',['int Xn_mid_128=0; // Mid Significant Byte of Xn Summation * 128 ']);
fprintf(fid,'%s \n',['int Xn_low_128=0; // Least Significant Byte of Xn Summation * 128 ']);
fprintf(fid,'%s \n',['int EOB, MAC_count; // Counters for MAC and END of Buffer. ']);
fprintf(fid,'%s \n',['int n,c, tptr0, tptr1; // Temporary Variabes ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n',['// GLOBAL PROTOTYPES ']);
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void); ']);
fprintf(fid,'%s \n',['void initialize_pointers(void); ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n',['// INTERRUPT SERVICE ROUTINE ']);
fprintf(fid,'%s \n',['#INT_TIMER2 ']);
fprintf(fid,'%s \n',['isr() { ']);
fprintf(fid,'%s \n',[' T2CON = 0x06; // Restart Timer ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' FSR0L = tptr0; ']);
fprintf(fid,'%s \n',[' FSR1L = tptr1; ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' if (EOB == 0) { ']);
fprintf(fid,'%s \n',[' FSR0L = &buf0[0]; ']);
fprintf(fid,'%s \n',[' FSR1L = &buf1[0]; ']);
fprintf(fid,'%s \n',[' FSR2L = &coef[0]; ']);
fprintf(fid,'%s \n',[' EOB = filter_length; ']);
fprintf(fid,'%s \n',[' } ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Subtract The oldest Xn Value from Total ']);
fprintf(fid,'%s \n',[' #asm ']);
fprintf(fid,'%s \n',[' movf INDF0,W ']);
fprintf(fid,'%s \n',[' subwf Xn_mid_256,F ']);
fprintf(fid,'%s \n',[' clrf WREG ']);
fprintf(fid,'%s \n',[' subwfb Xn_high_256,F ']);
fprintf(fid,'%s \n',[' #endasm ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Get the latest ADC value; ']);
fprintf(fid,'%s \n',[' WREG = ADRESH; ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Restart ADC; ']);
fprintf(fid,'%s \n',[' bit_set(ADCON0,2); ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Add Latest ADC value to Y1(n) ']);
fprintf(fid,'%s \n',[' #asm ']);
fprintf(fid,'%s \n',[' movwf INDF0 ']);
fprintf(fid,'%s \n',[' movwf POSTINC1 ']);
fprintf(fid,'%s \n',[' addwf Xn_mid_256,F ']);
fprintf(fid,'%s \n',[' clrf WREG ']);
fprintf(fid,'%s \n',[' addwfc Xn_high_256,F ']);

 120

fprintf(fid,'%s \n',[' #endasm ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Prepare for MAC Cycles ']);
fprintf(fid,'%s \n',[' FSR2L = &coef[0]; ']);
fprintf(fid,'%s \n',[' FSR0L = FSR0L+filter_length; ']);
fprintf(fid,'%s \n',[' EOB = EOB - 1; ']);
fprintf(fid,'%s \n',[' MAC_count = filter_length; ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Begin MAC Cycle repeat till done then computer Output ']);
fprintf(fid,'%s \n',[' #asm ']);
fprintf(fid,'%s \n',[' clrf output_least ']);
fprintf(fid,'%s \n',[' clrf output_middle ']);
fprintf(fid,'%s \n',[' clrf output_most ']);
fprintf(fid,'%s \n',[' MAC: ']);
fprintf(fid,'%s \n',[' movf POSTDEC0,W ']);
fprintf(fid,'%s \n',[' mulwf POSTINC2 ']);
fprintf(fid,'%s \n',[' movf PRODL,W ']);
fprintf(fid,'%s \n',[' addwf output_least ']);
fprintf(fid,'%s \n',[' movf PRODH,W ']);
fprintf(fid,'%s \n',[' addwfc output_middle ']);
fprintf(fid,'%s \n',[' clrf WREG ']);
fprintf(fid,'%s \n',[' addwfc output_most ']);
fprintf(fid,'%s \n',[' decfsz MAC_count ']);
fprintf(fid,'%s \n',[' bra MAC ']);
fprintf(fid,'%s \n',[' COMPUTE_OUTPUT: ']);
fprintf(fid,'%s \n',[' bcf STATUS, 0 ']);
fprintf(fid,'%s \n',[' incf FSR0L ']);
fprintf(fid,'%s \n',[' rrcf Xn_high_256,W ']);
fprintf(fid,'%s \n',[' movwf Xn_high_128 ']);
fprintf(fid,'%s \n',[' rrcf Xn_mid_256,W ']);
fprintf(fid,'%s \n',[' movwf Xn_mid_128 ']);
fprintf(fid,'%s \n',[' rrcf Xn_low_256,W ']);
fprintf(fid,'%s \n',[' movwf Xn_low_128 ']);
fprintf(fid,'%s \n',[' subwf output_least,F ']);
fprintf(fid,'%s \n',[' movf Xn_mid_128,W ']);
fprintf(fid,'%s \n',[' subwfb output_middle,F ']);
fprintf(fid,'%s \n',[' movf Xn_high_128,W ']);
fprintf(fid,'%s \n',[' subwfb output_most,F ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' #endasm ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' tptr0 = FSR0L; ']);
fprintf(fid,'%s \n',[' tptr1 = FSR1L; ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Scale output........... ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' #asm ']);
fprintf(fid,'%s \n',[' rrcf output_most,F ']);
fprintf(fid,'%s \n',[' rrcf output_middle,F ']);
fprintf(fid,'%s \n',[' rrcf output_most,F ']);
fprintf(fid,'%s \n',[' rrcf output_middle,F ']);
fprintf(fid,'%s \n',[' #endasm ']);
fprintf(fid,'%s \n',['']);
fprintf(fid,'%s \n',[' PORTD = output_middle; ']);
fprintf(fid,'%s \n',[' } // End Interrupt ']);

fprintf(fid,'\n \n');

fprintf(fid,'%s \n',['void main() { ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' set_tris_d(0); ']);
fprintf(fid,'%s \n',[' ']);

 121

fprintf(fid,'%s \n',[' // Setup ADC in interrupt mode ']);
fprintf(fid,'%s \n',[' setup_adc_ports(ALL_ANALOG); ']);
fprintf(fid,'%s \n',[' setup_adc(ADC_CLOCK_DIV_64); ']);
fprintf(fid,'%s \n',[' set_adc_channel(0); ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Setup Timer0 in interrupt Mode ']);
fprintf(fid,'%s \n',[' T2CON = 0x06; ']);
fprintf(fid,'%s \n',[' PR2 = 76; ']);
fprintf(fid,'%s \n',[' enable_interrupts(INT_TIMER2); ']);
fprintf(fid,'%s \n',[' enable_interrupts(GLOBAL); ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // FIR filter Code ']);
fprintf(fid,'%s \n',[' offset_and_buffer_tap_coefficients(); ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Initialize Pointers ']);
fprintf(fid,'%s \n',[' tptr0 = &buf0[0]; ']);
fprintf(fid,'%s \n',[' tptr1 = &buf1[0]; ']);
fprintf(fid,'%s \n',[' FSR2L = &coef[0]; ']);
fprintf(fid,'%s \n',[' EOB = filter_length; ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Start ADC. ']);
fprintf(fid,'%s \n',[' bit_set(ADCON0,2); ']);
fprintf(fid,'%s \n',[' set_rtcc(65517); ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' // Main Loop ']);
fprintf(fid,'%s \n',[' while(1) { ']);
fprintf(fid,'%s \n',[' // Main Application ']);
fprintf(fid,'%s \n',[' } ']);
fprintf(fid,'%s \n',['} ']);
fprintf(fid,'\n \n \n');
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void) { ']);
fprintf(fid,'%s \n',[' int n; ']);
fprintf(fid,'%s \n',[' for (n=0; n<filter_length; n++) { ']);
fprintf(fid,'%s \n',[' coef[n] = taps[n]+0x80; ']);
fprintf(fid,'%s \n',[' } ']);
fprintf(fid,'%s \n',['} ']);
end

% SINGLE BUFFERD: Non UNROLLED LOOPS..
if (type==3)

fprintf(fid,'%s \n',['// PIC 18F452 CODE FOR FIR FILTER GENERATION ']);
fprintf(fid,'%s \n',['// Date: ' Date ' , Time (Hr:Min:Sec)-> ' num2str(time(4)) ':' num2str(time(5)) ':'
num2str(time(6))]);
fprintf(fid,'%s \n',['// FIR Filter Type: ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n',['#include <18f452.h> ']);
fprintf(fid,'%s \n',['#use delay(clock = 40000000) ']);
fprintf(fid,'%s \n',['#fuses H4,PUT,NOWDT ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n', ['const int filter_length = ' num2str(length(g)) '; ']);
fprintf(fid,'%s', ['const int taps[filter_length] = { ']);
for n=1:1:length(g)
 fprintf(fid,'%i',g(n));
 if n<length(g)
 fprintf(fid,',');
 end
end
fprintf(fid,'%s \n',['}; ']);
fprintf(fid,'%s \n',['// PIC 18F452 Register MAP...// ']);
fprintf(fid,'%s \n',[' ']);

 122

fprintf(fid,'%s \n',['// ACCUMULATOR ADDRESS ']);
fprintf(fid,'%s \n',['#byte WREG = 0xFE8 // Register Stores the Carry Bit ']);
fprintf(fid,'%s \n',['#byte PRODL =0xff3 // Product Low Byte ']);
fprintf(fid,'%s \n',['#byte PRODH =0xff4 // Product High Byte ']);
fprintf(fid,'%s \n',['#byte ADRESL = 0xfc3 // Low Byte for ADC Sample ']);
fprintf(fid,'%s \n',['#byte ADRESH = 0xfc4 // High Byte for ADC Sample ']);
fprintf(fid,'%s \n',['#byte STATUS = 0xfd8 // Status Register ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',['// DC CONTROL REGISTERS ']);
fprintf(fid,'%s \n',['#byte ADCON0 = 0xfc2 // ADC Control Register (High) ']);
fprintf(fid,'%s \n',['#byte ADCON1 = 0xfc1 // ADC Control Register (Low) ']);
fprintf(fid,'%s \n',['#byte ADRESL = 0xfc3 // Low Byte for ADC Sample ']);
fprintf(fid,'%s \n',['#byte ADRESH = 0xfc4 // High Byte for ADC Sample ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',['// DIGITAL IO PORT ADDRESSES ']);
fprintf(fid,'%s \n',['#byte PORTA = 0xf80 // Port A Address ']);
fprintf(fid,'%s \n',['#byte PORTB = 0xf81 // Port B Address ']);
fprintf(fid,'%s \n',['#byte PORTC = 0xf82 // Port C Address ']);
fprintf(fid,'%s \n',['#byte PORTD = 0xf83 // Port D Address ']);
fprintf(fid,'%s \n',['#byte PORTE = 0xf84 // Port E Address ']);
fprintf(fid,'%s \n',['#byte LATA = 0xf89 // Set Driection for PORTA ']);
fprintf(fid,'%s \n' [‘ ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',['// INDIRECT ADDRESSING ']);
fprintf(fid,'%s \n',['#byte FSR0H = 0xfeA // Hardware File Pointer0 (High) ']);
fprintf(fid,'%s \n',['#byte FSR0L = 0xfe9 // Hardware File Pointer0 (Low) ']);
fprintf(fid,'%s \n',['#byte FSR1H = 0xfe2 // Hardware File Pointer1 (High) ']);
fprintf(fid,'%s \n',['#byte FSR1L = 0xfe1 // Hardware File Pointer1 (Low) ']);
fprintf(fid,'%s \n',['#byte FSR2H = 0xfda // Hardware File Pointer2 (High) ']);
fprintf(fid,'%s \n',['#byte FSR2L = 0xfd9 // Hardware File Pointer2 (Low) ']);
fprintf(fid,'%s \n',['#byte INDF0 = 0xfef // Read Data Pointed by FSR0 ']);
fprintf(fid,'%s \n',['#byte INDF1 = 0xfe7 // Read Data Pointed by FSR1 ']);
fprintf(fid,'%s \n',['#byte INDF2 = 0xfdf // Read Data Pointed by FSR2 ']);
fprintf(fid,'%s \n',['#byte PLUSW0 = 0xfeb // Add Pointed data to WREG ']);
fprintf(fid,'%s \n',['#byte PLUSW1 = 0xfe3 // Add Pointed data to WREG ']);
fprintf(fid,'%s \n',['#byte PLUSW2 = 0xfdb // Add Pointed data to WREG ']);
fprintf(fid,'%s \n',['#byte PREINC0 = 0xfec // Pre-increment pointer0 ']);
fprintf(fid,'%s \n',['#byte PREINC1 = 0xfe4 // Pre-increment pointer1 ']);
fprintf(fid,'%s \n',['#byte PREINC2 = 0xfdc // Pre-increment pointer2 ']);
fprintf(fid,'%s \n',['#byte POSTINC0 = 0xfee // Post-Incerement Pointer0 ‘]);
fprintf(fid,'%s \n',['#byte POSTDEC0 = 0xfed // Post-Decrement Pointer0 ']);
fprintf(fid,'%s \n',['#byte POSTINC1 = 0xfe6 // Post-Increment Pointer1 ']);
fprintf(fid,'%s \n',['#byte POSTDEC1 = 0xfe5 // Post-Decrement Pointer1 ']);
fprintf(fid,'%s \n',['#byte POSTINC2 = 0xfde // Post-Increment Pointer2 ']);
fprintf(fid,'%s \n',['#byte POSTDEC2 = 0xfdd // Post-Decrement Pointer2 ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',[' ']);
fprintf(fid,'%s \n',['// TIMER REGISTERS ']);
fprintf(fid,'%s \n',['#byte PR2 = 0xfcb ']);
fprintf(fid,'%s \n',['#byte TMR2 = 0xfcc ']);
fprintf(fid,'%s \n',['#byte T2CON = 0xfca ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n', ['int buf[filter_length] = {0}; // Store ADC Values\\ ']);
fprintf(fid,'%s \n', ['int coef[filter_length] = {0}; // Store offset Coefficients\\ ']);
fprintf(fid,'%s \n', ['int output_most = 0; // Most Significant Byte of Output\\ ']);
fprintf(fid,'%s \n', ['int output_middle = 0; // Middle Significant Byte of Output\\ ']);
fprintf(fid,'%s \n', ['int output_least = 0; // Least Significant Byte of Output\\ ']);
fprintf(fid,'%s \n', ['int Xn_high_256=0; // Most Significant Byte of Xn Summation * 255.....\\ ']);
fprintf(fid,'%s \n', ['int Xn_mid_256=0; // Mid Significant Byte of Xn Summation * 255......\\ ']);
fprintf(fid,'%s \n', ['int Xn_low_256=0; // Least Significant Byte of Xn Summation * 255....\\ ']);
fprintf(fid,'%s \n', ['int Xn_high_128=0; // Most Significant Byte of Xn Summation * 128.....\\ ']);

 123

fprintf(fid,'%s \n', ['int Xn_mid_128=0; // Mid Significant Byte of Xn Summation * 128......\\ ']);
fprintf(fid,'%s \n', ['int Xn_low_128=0; // Least Significant Byte of Xn Summation * 128....\\ ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n\n', [' // General Globals ']);
fprintf(fid,'%s \n\n', ['int b,EOB,BOB,x,tptr, out, mac_count; ']);
fprintf(fid,'%s \n\n', [' // FIR Filter Prototypes ']);
fprintf(fid,'%s \n\n', ['void offset_and_buffer_tap_coefficients(void); ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n', ['#INT_TIMER2 ']);
fprintf(fid,'%s \n', ['void t2_isr() { ']);
fprintf(fid,'%s \n', [' T2CON = 0x06; // Restart Timer ']);
fprintf(fid,'%s \n', [' ADCON0 = 0x8d; // Start ADC Conversion ']);
fprintf(fid,'%s \n', [' while(bit_test(ADCON0,2)); // Wait for Conversion to Complete ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' b = ADRESH; // Read ADC Value ']);
fprintf(fid,'%s \n', ['']);
fprintf(fid,'%s \n', [' FSR0L = tptr; ']);
fprintf(fid,'%s \n', [' // Subtract the oldest ADC value in buffer from total ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' #asm ']);
fprintf(fid,'%s \n', [' movf INDF0,W ']);
fprintf(fid,'%s \n', [' subwf Xn_mid_256,F ']);
fprintf(fid,'%s \n', [' clrf WREG ']);
fprintf(fid,'%s \n', [' subwfb Xn_high_256,F ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' // Add the latest ADC value to the buffer ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' movf EOB,0 // Move to W Register ']);
fprintf(fid,'%s \n', [' cpfseq FSR0L // Check if ptr is at EOB ']);
fprintf(fid,'%s \n', [' bra neq ']);
fprintf(fid,'%s \n', [' movff b,INDF0 // ptr has reached EOB: insert value ']);
fprintf(fid,'%s \n', [' movff BOB,FSR0L // Reset pointer to begining of Buffer']);
fprintf(fid,'%s \n', [' bra end']);
fprintf(fid,'%s \n', [' neq: ']);
fprintf(fid,'%s \n', [' movff b,POSTDEC0 // Put data in Buffer and advance ptr']);
fprintf(fid,'%s \n', [' end: ']);
fprintf(fid,'%s \n', ['']);
fprintf(fid,'%s \n', [' // Add the latest value to ADC to total ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' movf b,0 ']);
fprintf(fid,'%s \n', [' addwf Xn_mid_256,F ']);
fprintf(fid,'%s \n', [' clrf WREG ']);
fprintf(fid,'%s \n', [' addwfc Xn_high_256,F ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' #endasm ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' // Prepare for MAC cycles. ']);
fprintf(fid,'%s \n', [' // Set pointer to begining of coeff buffer. ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' FSR1L = &coef[0]; ']);
fprintf(fid,'%s \n', [' mac_count = filter_length; ']);
fprintf(fid,'%s \n', [' output_least = 0; ']);
fprintf(fid,'%s \n', [' output_middle = 0; ']);
fprintf(fid,'%s \n', [' output_most = 0; ']);
fprintf(fid,'%s \n', ['']);
fprintf(fid,'%s \n', [' #asm ']);
fprintf(fid,'%s \n', ['']);
fprintf(fid,'%s \n', [' // (1) Unload data from Buffer: Newest First. ']);
fprintf(fid,'%s \n', [' ']);

 124

fprintf(fid,'%s \n', [' mac: ']);
fprintf(fid,'%s \n', [' movf BOB,0 // Move to W Register ']);
fprintf(fid,'%s \n', [' cpfseq FSR0L // Check if ptr is at BOB ']);
fprintf(fid,'%s \n', [' bra aneq ']);
fprintf(fid,'%s \n', [' movff EOB,FSR0L // Pointer is at BOB.. Warp Pointer to EOB ']);
fprintf(fid,'%s \n', [' movff INDF0,out // Extract Data ']);
fprintf(fid,'%s \n', [' bra aend ']);
fprintf(fid,'%s \n', [' aneq: ']);
fprintf(fid,'%s \n', [' movff PREINC0,out // Extract Data from Buffer ']);
fprintf(fid,'%s \n', [' aend: ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' // (2) Perform MAC cycle. ']);
fprintf(fid,'%s \n', [' movf out,W ']);
fprintf(fid,'%s \n', [' mulwf POSTINC1 ']);
fprintf(fid,'%s \n', [' movf PRODL,W ']);
fprintf(fid,'%s \n', [' addwf output_least ']);
fprintf(fid,'%s \n', [' movf PRODH,W ']);
fprintf(fid,'%s \n', [' addwfc output_middle ']);
fprintf(fid,'%s \n', [' clrf WREG ']);
fprintf(fid,'%s \n', [' addwfc output_most ']);
fprintf(fid,'%s \n', [' decfsz mac_count ']);
fprintf(fid,'%s \n', [' bra mac ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' // (3) Compute output. ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' bcf STATUS,0']);
fprintf(fid,'%s \n', [' rrcf Xn_high_256,W ']);
fprintf(fid,'%s \n', [' movwf Xn_high_128 ']);
fprintf(fid,'%s \n', [' rrcf Xn_mid_256,W ']);
fprintf(fid,'%s \n', [' movwf Xn_mid_128 ']);
fprintf(fid,'%s \n', [' rrcf Xn_low_256,W ']);
fprintf(fid,'%s \n', [' movwf Xn_low_128 ']);
fprintf(fid,'%s \n', [' subwf output_least,F ']);
fprintf(fid,'%s \n', [' movf Xn_mid_128,W ']);
fprintf(fid,'%s \n', [' subwfb output_middle,F ']);
fprintf(fid,'%s \n', [' movf Xn_high_128,W ']);
fprintf(fid,'%s \n', [' subwfb output_most,F ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' #endasm ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' tptr = FSR0L; ']);
fprintf(fid,'%s \n', [' ‘]);
fprintf(fid,'%s \n', [' // Scale output........... ']);
fprintf(fid,'%s \n', ['']);
fprintf(fid,'%s \n', [' #asm ']);
fprintf(fid,'%s \n', [' bcf STATUS,0 ']);
fprintf(fid,'%s \n', [' rrcf output_most,F ']);
fprintf(fid,'%s \n', [' rrcf output_middle,F ']);
fprintf(fid,'%s \n', [' rrcf output_most,F ']);
fprintf(fid,'%s \n', [' #endasm ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' PORTD = output_middle; ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' } ']);
fprintf(fid,'\n \n');
fprintf(fid,'%s \n', [' void main() { ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' set_tris_d(0); ']);
fprintf(fid,'%s \n', [' x = 0; ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' T2CON = 0x06; ']);

 125

fprintf(fid,'%s \n', [' PR2 = 76; ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' // Setup ADC for conversion ']);
fprintf(fid,'%s \n', [' ADCON0 = 0x85; // Start ADC: ']);
fprintf(fid,'%s \n', [' ADCON1 = 0x02; // Right Justified Result, All Analog ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' enable_interrupts(INT_TIMER2); ']);
fprintf(fid,'%s \n', [' enable_interrupts(GLOBAL); ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' // Setup ADC Channel 1 ']);
fprintf(fid,'%s \n', [' ADCON0 = 0x89; // Set ADC Channel 1 ']);
fprintf(fid,'%s \n', [' delay_us(10); ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', [' // FIR Filter Initializations ']);
fprintf(fid,'%s \n', [' offset_and_buffer_tap_coefficients(); ']);
fprintf(fid,'%s \n', ['']);
fprintf(fid,'%s \n', [' // Buffer Stuff ']);
fprintf(fid,'%s \n', [' EOB = &buf[0]; ']);
fprintf(fid,'%s \n', [' BOB = &buf[filter_length-1]; ']);
fprintf(fid,'%s \n', [' tptr = BOB; ']);
fprintf(fid,'%s \n', ['']);
fprintf(fid,'%s \n', [' while(1) { ']);
fprintf(fid,'%s \n', [' } ']);
fprintf(fid,'%s \n', [' ']);
fprintf(fid,'%s \n', ['} ']);
fprintf(fid,'\n \n \n');
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void) { ']);
fprintf(fid,'%s \n',[' int n; ']);
fprintf(fid,'%s \n',[' for (n=0; n<filter_length; n++) { ']);
fprintf(fid,'%s \n',[' coef[n] = taps[n]+0x80; ']);
fprintf(fid,'%s \n',[' } ']);
fprintf(fid,'%s \n',['} ']);
end
set(handles.messages, 'String', 'filter.c written to directory');
fclose(fid);

% --
function varargout = pfr_Callback(h, eventdata, handles, varargin)
 global han;
 global gdata;
 global g;
 hand = 0;

 % Read Sampling Rate:
 sf = str2num(get(handles.sf,'string'));
 sf = 2*sf;
 set(handles.gccc,'enable','on');

 % Low Pass Filter...
 if (gdata.type == 1)
 pbc = str2num(get(handles.pbco,'string'));
 pba = str2num(get(handles.pba,'string'));
 sbc = str2num(get(handles.sbc,'string'));
 sba = str2num(get(handles.sba,'string'));

 % Generate Filter:
 Pass = pbc;
 Stop = sbc;
 Fs = sf;
 Rp = pba;
 Rs = sba;

 126

 f = [0 Pass Stop Fs/2]/Fs*2;
 m = [1 1 0 0];
 devs = [(10^(Rp/20)-1)/(10^(Rp/20)+1) 10^(-Rs/20)];
 w = [1 1]*max(devs)./devs;
 n = remezord([Pass Stop],[1 0],devs,Fs); order = max(3,n);
 b = remez(order+1,f,m,w); disp(['Taps needed: ',num2str(n)]);
 a = 1;

 % scaled taps
 for n=1:1:length(b)
 g(n) = round(b(n)/max(b)*127);
 end

 msg = ['Number of Taps Needed: ',num2str(length(g))];
 set(handles.messages,'string', [msg, ', Type: ', num2str(gdata.type)]);

 figure;
 [H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs);

 if ishandle(han)
 delete (han);
 end

 han = freqzplot(H,W,S);

 end

 % High Pass Filter...
 if (gdata.type == 2)

 pbc = str2num(get(handles.pbco,'string'));
 pba = str2num(get(handles.pba,'string'));
 sbc = str2num(get(handles.sbc,'string'));
 sba = str2num(get(handles.sba,'string'));

 Pass = sbc;
 Stop = pbc;
 Fs = sf;
 Rp = pba;
 Rs = sba;

 f = [0 Stop Pass Fs/2]/Fs*2;
 m = [0 0 1 1];
 devs = [(10^(Rp/20)-1)/(10^(Rp/20)+1) 10^(-Rs/20)];
 w = [1 1]*max(devs)./devs;
 n = remezord([Pass Stop],[1 0],devs,Fs); order = max(3,n);

 if isodd(order)
 order = order+1;
 end

 b = remez(order,f,m,w); disp(['Taps needed: ',num2str(n)]);
 a = 1;

 % scale taps
 for n=1:1:length(b)
 g(n) = round(b(n)/max(b)*127);

 127

 end

 msg = ['Number of Taps Needed: ',num2str(length(g))];
 set(handles.messages,'string', [msg, ', Type: ', num2str(gdata.type)]);

 figure;
 figure;
 [H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs);

 if ishandle(han)
 delete (han);
 end

 han = freqzplot(H,W,S);

 end

 % band pass filter...
 if (gdata.type == 3)
 num_of_taps = str2num(get(handles.tapn,'string'));
 a = str2num(get(handles.bpa,'string'));
 b = str2num(get(handles.bpb,'string'));
 c = str2num(get(handles.bpc,'string'));
 d = str2num(get(handles.bpd,'string'));
 pba = str2num(get(handles.pba,'string'));
 sba = str2num(get(handles.sba,'string'));

 % Code to Generate Filter
 Rp = pba;
 Rs = sba;
 Fs = sf;

 f = [0 a b c d Fs/2]/Fs*2;
 m = [0 0 1 1 0 0];
 devs = [(10^(Rp/20)-1)/(10^(Rp/20)+1) 10^(-Rs/20) (10^(Rp/20)-1)/(10^(Rp/20)+1)];
 w = [Rs Rp Rs]*max(devs)./devs;

 n = num_of_taps;
 order = n;

 if isodd(order)
 order = order+1;
 end

 b = remez(order,f,m,w);
 a = 1;

 % scaled taps
 g = round(b/max(b)*127);

 for n=1:1:order
 g(n) = round(b(n)/max(b)*127);
 end

 msg = ['Number of Taps Needed: ',num2str(length(g))];
 set(handles.messages,'string', [msg, ', Type: ', num2str(gdata.type)]);

 figure;
 figure;

 128

 [H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs);

 if ishandle(han)
 delete (han);
 end
 han = freqzplot(H,W,S);
 end

 % band stop filter...

 if (gdata.type == 4)
 num_of_taps = str2num(get(handles.tapn,'string'));
 a = str2num(get(handles.bpa,'string'));
 b = str2num(get(handles.bpb,'string'));
 c = str2num(get(handles.bpc,'string'));
 d = str2num(get(handles.bpd,'string'));
 pba = str2num(get(handles.pba,'string'));
 sba = str2num(get(handles.sba,'string'));

 % Code to Generate Filter
 % bpf...

 Rp = pba;
 Rs = sba;
 Fs = sf;

 if isodd(num_of_taps)
 num_of_taps = num_of_taps+2;
 end

 f = [0 a b c d Fs/2]/Fs*2;
 m = [1 1 0 0 1 1];
 devs = [(10^(Rp/20)-1)/(10^(Rp/20)+1) 10^(-Rs/20) (10^(Rp/20)-1)/(10^(Rp/20)+1)];
 w = [Rs Rp Rs]*max(devs)./devs;

 n = num_of_taps;
 order = num_of_taps;

 if isodd(order)
 order = order+1;
 end

 b = remez(order,f,m,w);
 a = 1;

 figure;
 figure;
 [H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs);

 % scale taps
 g = round(b/max(b)*127);

 msg = ['Number of Taps Needed: ',num2str(length(g))];
 set(handles.messages,'string', [msg, ', Type: ', num2str(gdata.type)]);

 if ishandle(han)
 delete (han);
 end

 han = freqzplot(H,W,S);
 end

 129

 % Custom Filter

 if (gdata.type == 6)

 num_of_taps = str2num(get(handles.customtaps,'string'));
 edges = str2num(get(handles.bedges,'string'));
 profile = str2num(get(handles.profile,'string'));
 attn = str2num(get(handles.atten,'string'));
 Fs = sf;
 f = edges;
 m = profile;
 f = f/Fs*2;
 w = attn;
 n = num_of_taps;
 order = num_of_taps;

 if isodd(order)
 order = order+1;
 end

 b = remez(order+1,f,m,w);
 a = 1;

 figure;
 figure;
 [H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs);

 g = round(b/max(b)*127);

 msg = ['Number of Taps Needed: ',num2str(length(g))];
 set(handles.messages,'string', [msg, ', Type: ', num2str(gdata.type)]);

 if ishandle(han)
 delete (han);
 end

 han = freqzplot(H,W,S);

 end

 set(handles.ra,'visible','on');
 set(handles.rb,'visible','on');
 set(handles.rc,'visible','on');

 tra = ['Fastest Execution ', num2str(8*length(g)+45), ' cycles, ', num2str(length(g)*2+8), ' Bytes RAM used'];
 trb = ['Small Program ', num2str(10*length(g)+45), ' cycles, ', num2str(length(g)*2+8), ' Bytes RAM used '];
 trc = ['Best Memory ', num2str(22*length(g)+48), ' cycles, ',num2str(length(g)+8), ' Bytes RAM Used '];

 set(handles.ra,'string',tra);
 set(handles.rb,'string',trb);
 set(handles.rc,'string',trc);

function y = isodd(x)

 g = x - floor(x);
 if (g > 0)
 y = 1;
 else
 y = 0;

 130

 end

function custom_off()

global handles;

set(handles.cover,'visible','off');
set(handles.tprofile,'visible','off');
set(handles.profile,'visible','off');
set(handles.bedges,'visible','off');
set(handles.text12,'visible','off');
set(handles.customtaps,'visible','off');
set(handles.attnt,'visible','off');
set(handles.atten,'visible','off');

% --
function varargout = ra_Callback(h, eventdata, handles, varargin)
global imptype;
set(handles.rb, 'value', 0);
set(handles.rc, 'value', 0);
imptype = 1;

% --
function varargout = rb_Callback(h, eventdata, handles, varargin)
global imptype;
set(handles.ra, 'value', 0);
set(handles.rc, 'value', 0);
imptype = 2;

% --
function varargout = rc_Callback(h, eventdata, handles, varargin)
global imptype;
set(handles.ra, 'value', 0);
set(handles.rb, 'value', 0);
imptype = 3;

func t ion va ra rgout = sba_Ca l lback (h , even tda t a ,hand les ,va ra rg in)

 131

APPENDIX C

 CODE FOR 4t h ORDER Floating-Point LMS Filter

 132

#inc lude <18f452 .h>
#use de l ay (c lock = 40000000)
#fuses H4 ,PUT,NOWDT
#inc lude < lms l ib .h>
#inc lude < lms l ib . c>
#inc lude <c lcd . c>

// Globa l s . \\

cons t in t f i l t e r_ l eng th = 4 ;
in t buf [f i l t e r_ l eng th] = {0} ; // S tore ADC Va lues . \\
in t s i gna l ,no i se ,EOB,BOB, tp t r ,buf_count ;
in t ou t , i , ou t s ;

// LMS va r i ab l e s . \\
 sp l i t_ f loa t fou t , * fp t r ;
 sp l i t w0 ,w1 ,w2 ,w3 ;
 sp l i t n0 ,n1 ,n2 ,n3 ;
 sp l i t e s0 , e s1 , e s2 , e s3 ;
 sp l i t up0 ,up1 ,up2 ,up3 ;
 sp l i t s , e t a , e r r , e r ro r , * p t r ;

#INT_TIMER2
vo id t2_ i s r () {
 T2CON = 0x06 ; // Res t a r t T imer
 // Sample channe l 0 fo r no i se
 ADCON0 = 0x81 ; // Se t ADC Channe l 0
 e s0 . r ea l = 0 ; e s0 . f r ach = 0 ; e s0 . f r ac l = 0 ; e s0 . s i gn = 0 ;
 e s1 . r ea l = 0 ; e s1 . f r ach = 0 ; e s1 . f r ac l = 0 ; e s1 . s i gn = 0 ;
 e s2 . r ea l = 0 ; e s2 . f r ach = 0 ; e s2 . f r ac l = 0 ; e s2 . s i gn = 0 ;
 e s3 . r ea l = 0 ; e s3 . f r ach = 0 ; e s3 . f r ac l = 0 ; e s3 . s i gn = 0 ;
 up0 . rea l = 0 ; up0 . f r ach = 0 ; up0 . f r ac l = 0 ; up0 . s i gn = 0 ;
 up1 . rea l = 0 ; up1 . f r ach = 0 ; up1 . f r ac l = 0 ; up1 . s i gn = 0 ;
 up2 . rea l = 0 ; up2 . f r ach = 0 ; up2 . f r ac l = 0 ; up2 . s i gn = 0 ;
 up3 . rea l = 0 ; up3 . f r ach = 0 ; up3 . f r ac l = 0 ; up3 . s i gn = 0 ;
 e r r . r ea l = 0 ; e r r . f r ach = 0 ; e r r . f r ac l = 0 ; e r r . s i gn = 0 ;

de l ay_us (6) ;
 ADCON0 = 0x85 ; // S t a r t ADC Convers ion
 wh i l e (b i t_ te s t (ADCON0,2)) ;
 no i s e = ADRESH; // Read ADC Va lue

ADCON0 = 0x89 ; // Se t ADC Channe l 1

// Buf fe r No i se Va lues and conver t to f loa t s
 buf_count = f i l t e r_ l eng th ;
 FSR1L = tp t r ;
 FSR2L = &n0 . s ign ;

 #asm
 // Add the l a t e s t ADC va lue to the buf fe r
 movf EOB,0 // Move to W Reg i s t e r
 cp fseq FSR1L // Check i f p t r i s a t EOB
 b ra neq
 movf f no i se , INDF1 //p t r has r eached EOB: in se r t va lue
 movf f BOB,FSR1L //Rese t po in te r to beg in ing o f Buf fe r
 b r a end
 neq :
 movf f no i se ,POSTDEC1 //Put da ta in Buf fe r and advance p t r
 end :
 // Un load ADC Va lue f rom Buf fe r and poppu la t e n0 . .nN
 un l :
 movf BOB,0 // Move to W Reg i s t e r
 cp fseq FSR1L // Check i f p t r i s a t BOB
 b r a aneq

 133

 movf f EOB,FSR1L // Po in te r i s a t BOB. . Warp Po in te r to EOB
 movf f INDF1 ,ou t // Ext rac t Data
 b r a a end
 aneq :
 movf f PREINC1,out // Ext r ac t Da ta f rom Buf fe r
 a end :

 // S to re popped va lue in to n0
 mov lw 0x80
 cp fs l t ou t // Sk ip nex t in s t i f (f) < (W)
 b r a n0pos
 mov lw 0x7f
 b s f STATUS,0
 subfwb ou t ,W // W-f -B -> W
 c l r f INDF2
 inc f POSTINC2
 movf f WREG,POSTINC2
 movf f WREG,POSTINC2
 c l r f POSTINC2
 b ra dne
 n0pos :
 mov lw 0x7f
 subwf ou t ,W // f - W -> W
 c l r f POSTINC2
 movf f WREG,POSTINC2
 movf f WREG,POSTINC2
 c l r f POSTINC2
 dne :
 dec f sz buf_count
 b r a un l
 #endasm

 tp t r = FSR1L ;
 // Sample Channe l 1 fo r S igna l

 ADCON0 = 0x8d ; // S t a r t ADC Convers ion
 wh i l e (b i t_ te s t (ADCON0,2)) ;
 s i gna l = ADRESH; // Read ADC Va lue

 i f (s i gna l>=127) {
 s i gna l = s igna l -127 ;
 s . f r ach = s igna l ;
 s . f r ac l = s igna l ;
 s . r ea l = 0 ;
 s . s i gn = 0 ;
 }
 e l s e {
 s i gna l = 128- s igna l ;
 s . f r ach = s igna l ;
 s . f r ac l = s igna l ;
 s . r ea l = 0 ;
 s . s i gn = 1 ;
 }

 // Ca l cu l a t e e s t ima te us ing // ' e sN = wN * nN; '

 FSR0L = &w0. s i gn ; FSR1L = &n0 . s ign ; FSR2L = &es0 . s i gn ; mu l () ;
 FSR0L = &w1. s i gn ; FSR1L = &n1 . s ign ; FSR2L = &es1 . s i gn ; mu l () ;
 FSR0L = &w2. s i gn ; FSR1L = &n2 . s ign ; FSR2L = &es2 . s i gn ; mu l () ;
 FSR0L = &w3. s i gn ; FSR1L = &n3 . s ign ; FSR2L = &es3 . s i gn ; mu l () ;

 134

 // Change S ign o f Est imates // ' e s0 = -e s0 ; '
 e s0 . s i gn ^= 1 ;
 e s1 . s i gn ^= 1 ;
 e s2 . s i gn ^= 1 ;
 e s3 . s i gn ^= 1 ;

 // Ca l cu l a t e Er ror // ' e r ro r = s + e s0 . . e sN; '
 FSR0L = &s . s i gn ; FSR1L = &es0 . s i gn ; FSR2L = &er ro r . s i gn ; add () ;
 FSR0L = &er ror . s i gn ; FSR1L = &es1 . s i gn ; FSR2L = &er ror . s i gn ; add () ;
 FSR0L = &er ror . s i gn ; FSR1L = &es2 . s i gn ; FSR2L = &er ror . s i gn ; add () ;
 FSR0L = &er ror . s i gn ; FSR1L = &es3 . s i gn ; FSR2L = &er ror . s i gn ; add () ;

 // Modu la te Er ror us ing l ea rn ing cons tan t // ' e r r = e r ror*e t a ; '
 FSR0L = &er ror . s i gn ; FSR1L = &eta . s i gn ; FSR2L = &er r . s i gn ; mu l () ;

 // Ca l cu l a t e We igh t Upda te s // ' up0 = e r r * n0 . .nN; '
 FSR0L = &er r . s i gn ; FSR1L = &n0 . s ign ; FSR2L = &up0 . s i gn ; mu l () ;
 FSR0L = &er r . s i gn ; FSR1L = &n1 . s ign ; FSR2L = &up1 . s i gn ; mu l () ;
 FSR0L = &er r . s i gn ; FSR1L = &n2 . s ign ; FSR2L = &up2 . s i gn ; mu l () ;
 FSR0L = &er r . s i gn ; FSR1L = &n3 . s ign ; FSR2L = &up3 . s i gn ; mu l () ;

 // App ly upda te s to we igh t s // ' wN = wN + upN; '
 FSR0L = &w0. s i gn ; FSR1L = &up0 . s i gn ; FSR2L = &w0. s i gn ; add () ;
 FSR0L = &w1. s i gn ; FSR1L = &up1 . s i gn ; FSR2L = &w1. s i gn ; add () ;
 FSR0L = &w2. s i gn ; FSR1L = &up2 . s i gn ; FSR2L = &w2. s i gn ; add () ;
 FSR0L = &w3. s i gn ; FSR1L = &up3 . s i gn ; FSR2L = &w3. s i gn ; add () ;

 // Change S ign o f Es t imates // ' e s0 = -e s0 ; '

 i f (e r ror . f r ach > 80) e r ror . f r ach = 80 ;

 i f (e r ror . s i gn)
 ou t s = 127 - e r ro r . f r ach ;
 e l s e
 ou t s = e r ro r . f r ach + 127 ;

 PORTD = out s ;

}

vo id ma in () {

 // Se tup Por t s and Per iphera l s

 s e t_ t r i s_d (0) ;
 l cd_ in i t () ;

 // Se t s amp l ing r a t e o f 8000 Hz

 T2CON = 0x06 ;
 PR2 = 76 ;

 // Se tup ADC for conver s ion

 ADCON0 = 0x85 ; // S t a r t ADC:
 ADCON1 = 0x02 ; // R igh t Jus t i f i ed Resu l t , A l l Ana log

 // Enab le T imer in te r rup t s fo r s ampl ing .

 enab le_ in te r rup t s (INT_TIMER2) ;
 enab le_ in te r rup t s (GLOBAL) ;

 135

 // In i t i a l i ze LMS var i ab l e s

 p t r = &w0; f i x8x16 (0 .0 ,p t r) ;
 p t r = &w1; f i x8x16 (0 .0 ,p t r) ;
 p t r = &w2; f i x8x16 (0 .0 ,p t r) ;
 p t r = &w3; f i x8x16 (0 .0 ,p t r) ;

 p t r = &es0 ; f i x8x16 (0 .0 ,p t r) ;
 p t r = &es1 ; f i x8x16 (0 .0 ,p t r) ;
 p t r = &es2 ; f i x8x16 (0 .0 ,p t r) ;
 p t r = &es3 ; f i x8x16 (0 .0 ,p t r) ;

 p t r = &up0 ; f i x8x16 (0 .0 ,p t r) ;
 p t r = &up1 ; f i x8x16 (0 .0 ,p t r) ;
 p t r = &up2 ; f i x8x16 (0 .0 ,p t r) ;
 p t r = &up3 ; f i x8x16 (0 .0 ,p t r) ;

 p t r = &er r ; f i x8x16 (0 .0 ,p t r) ;
 p t r = &eta ; f i x8x16 (0 .1 ,p t r) ;
 p t r = &er ror ; f i x8x16 (0 .0 ,p t r) ;

 // In i t i a l i ze buf fe r po in te r s fo r LMS

 EOB = &buf [0] ;
 BOB = &buf [f i l t e r_ l eng th -1] ;
 tp t r = BOB;

 wh i l e (1) {

 }

}

Fi leName: lms l ib .h

// ACCUMULATOR ADDRESS . //
#byte WREG = 0xFE8 // Reg i s t e r S to res the Car ry B i t //
#byte PRODL =0xf f3 // Product Low Byte //
#byte PRODH =0xf f4 // Product H igh Byte //
#byte ADRESL = 0xfc3 // Low Byte fo r ADC Sample //
#byte ADRESH = 0xfc4 // High Byte fo r ADC Sample //
#byte STATUS = 0xfd8 // S t a tus Reg i s t e r //

// ADC CONTROL REGISTERS. //
#byte ADCON0 = 0xfc2 // ADC Cont ro l Reg i s t e r (H igh) //
#byte ADCON1 = 0xfc1 // ADC Cont ro l Reg i s t e r (Low) //
#byte ADRESL = 0xfc3 // Low Byte fo r ADC Sample //
#byte ADRESH = 0xfc4 // High Byte fo r ADC Sample //
#byte INTCON = 0xf f2 // In te r rup t cont ro l r eg i s t e r //
#byte INTCON2 = 0xf f1 // In te r rup t cont ro l r eg i s t e r //
#byte INTCON3 = 0xf f0 // In te r rup t cont ro l r eg i s t e r //

// DIGITAL IO PORT ADDRESSES . //
#byte PORTA = 0xf80 // Por t A Addres s //
#byte PORTB = 0xf81 // Por t B Addres s //
#byte PORTC = 0xf82 // Por t C Addres s //

 136

#byte PORTD = 0xf83 // Por t D Addres s //
#byte PORTE = 0xf84 // Por t E Addres s //
#byte LATA = 0xf89 // Se t Dr iec t ion fo r PORTA //
#byte LATB = 0xf8a // Se t Dr iec t ion fo r PORTB //
#byte LATC = 0xf8b // Se t Dr iec t ion fo r PORTC //
#byte LATD = 0xf8c // Se t Dr iec t ion fo r PORTD //
#byte LATE = 0xf8d // Se t Dr iec t ion fo r PORTE //

// INDIRECT ADDRESSING. //
#byte FSR0H = 0xfeA // Hardware F i l e Po in te r0 (H igh) //
#byte FSR0L = 0xfe9 // Hardware F i l e Po in te r0 (Low) //
#byte FSR1H = 0xfe2 // Hardware F i l e Po in te r1 (High) //
#byte FSR1L = 0xfe1 // Hardware F i l e Po in te r1 (Low) //
#byte FSR2H = 0xfda // Hardware F i l e Po in te r2 (High) //
#byte FSR2L = 0xfd9 // Hardware F i l e Po in te r2 (Low) //
#byte INDF0 = 0xfe f // Read Data Po in ted by FSR0 //
#byte INDF1 = 0xfe7 // Read Data Po in ted by FSR1 //
#byte INDF2 = 0xfdf // Read Data Po in ted by FSR2 //
#by te PLUSW0 = 0xfeb // Add Po in ted da t a to WREG //
#by te PLUSW1 = 0xfe3 // Add Po in ted da ta to WREG //
#by te PLUSW2 = 0xfdb // Add Po in ted da t a to WREG //
#byte PREINC0 = 0xfec // Pre - inc rement po in te r0 //
#byte PREINC1 = 0xfe4 // Pre - inc rement po in te r1 //
#byte PREINC2 = 0xfdc // Pre - inc rement po in te r2 //
#byte POSTINC0 = 0xfee // Pos t - Incerement Po in te r0 //
#byte POSTDEC0 = 0xfed // Pos t -Decrement Po in te r0 //
#byte POSTINC1 = 0xfe6 // Pos t - Increment Po in te r1 //
#byte POSTDEC1 = 0xfe5 // Pos t -Decrement Po in te r1 //
#byte POSTINC2 = 0xfde // Pos t - Increment Po in te r2 //
#byte POSTDEC2 = 0xfdd // Pos t -Decrement Po in te r2 //

// INTERRUPT REGISTERS. //
#byte INTCON = 0xf f2 // In te r rup t Reg i s t e r0 //
#byte INTCON2 = 0xf f1 // In te r rup t Reg i s t e r2 //
#byte INTCON3 = 0xf f0 // In te r rup t Reg i s t e r3 //

// STACK ADDRESSES . //
#byte STKPTR = 0xf fc // S t ack Po in te r //
#byte TOSU = 0xf f f // Top o f S tack //
#byte TOSH = 0xf fe // Top o f S t ack High //
#byte TOSL = 0xf fd // Top o f S t ack Low //

// EEPROM ADDRESSES . //
#byte EEADR = 0xfA9 // EEPROM Reg i s t e r //
#byte EEDATA = 0xfa8 // EEPROM Reg i s t e r //
#byte EECON2 = 0xfa7 // EEPROM Reg i s t e r //
#byte EECON1 = 0xfa6 // EEPROM Reg i s t e r //

// TIMER REGISTERS. //
#byte PR2 = 0xfcb
#byte TMR2 = 0xfcc
#byte T2CON = 0xfca

Fi leName: lms l ib .c

t ypedef s t ruc t g type {
 in t s i gn ;
 in t f r ac l ;
 in t f r ach ;
 in t r ea l ;
 } sp l i t ;

 137

typedef un ion f t ype { f loa t op ;
 s t ruc t { in t exp ;
 in t mana ;
 in t manb ;
 in t manc ; } s ; } sp l i t_ f loa t ;

vo id in t2 f loa t (in t adc) {

 #asm
 mov lw 0x7f
 subwf adc ,W
 b t f s c WREG,7
 b r a ng
 c l r f POSTINC0
 movwf POSTINC0
 movwf INDF0
 b r a over
 ng :
 neg f WREG
 c l r f INDF0
 inc f POSTINC0
 movwf POSTINC0
 movwf INDF0
 over :
 #endasm
}

vo id f i x Ieee (sp l i t_ f loa t * fp t r , sp l i t * p t r) {

in t s i gn , r ea l , f r ach , f r ac l , expo ;

 s i gn = p t r ->s ign ;
 r ea l = p t r ->rea l ;
 f r ach = p t r ->frach ;
 f r ac l = p t r ->f rac l ;
 expo = 0x86 ;

 #asm
 b s f f r ac l , 0
 ad j :
 b t f s c r ea l , 7
 b r a done
 bc f STATUS,0
 r l c f f r ac l
 r l c f f r ach
 r l c f r ea l
 dec f expo
 b r a ad j
 done :
 #endasm

 fp t r ->s .mana = rea l ;
 fp t r ->s .manb = f r ach ;
 fp t r ->s .manc = f r ac l ;
 fp t r ->s . exp = expo ;

 i f (s i gn) {
 fp t r ->s .mana = fp t r ->s .mana | 0x80 ;
 }

 138

 e l s e
 {
 fp t r ->s .mana = fp t r ->s .mana & 0x7f ;
 }
}

vo id f i x8x16(f loa t num, sp l i t * p t r) {

sp l i t_ f loa t a ;
in t sh i f t , l e f t ;
in t32 out ;

a .op = num;

p t r ->rea l = 0 ;
p t r ->s ign = 0 ;
p t r ->f rach = 0 ;
p t r ->f rac l = 0 ;

i f (a . s . exp >= 0x7f) {
 sh i f t = a . s . exp - 0x7f ;
 l e f t = 1 ;
 }
 e l s e {
 sh i f t = 0x7f - a . s . exp ;
 l e f t = 0 ;
 }

 // Get S ign and Res tore h igh B i t .

 p t r ->s ign = b i t_ te s t (a . s .mana ,7) ;
 a . s .mana = a . s .mana | 0x80 ;

 i f (l e f t) {
 p t r ->rea l = a . s .mana >> (7 - sh i f t) ;
 #asm
 mov lw 0x02
 addwf sh i f t ,F
 ad j :
 dec f sh i f t
 bc f STATUS,0
 bz f in
 r l c f a . s .manc
 r l c f a . s .manb
 r l c f a . s .mana
 bc f STATUS,0
 b r a ad j
 f in :
 #endasm

 p t r ->f rach = a . s .mana ;
 p t r ->frac l = a . s .manb ;
 }

 e l s e {
 #asm
 ad j a :
 dec f sh i f t
 bc f STATUS,0
 bz over

 139

 r r c f a . s .mana
 r r c f a . s .manb
 r r c f a . s .manc

 bc f STATUS,0
 b r a ad j a
 over :
 #endasm

 p t r ->frach = a . s .mana ;
 p t r ->frac l = a . s .manb ;

 }

}

vo id add(vo id) {

 #asm
 movf INDF0,W
 xo rwf INDF1,W
 bnz d s

 s s :
 movf POSTINC0,W
 andwf POSTINC1,W
 movwf POSTINC2
 movf POSTINC0,W
 addwf POSTINC1,W
 movwf POSTINC2

 movf POSTINC0,W
 addwfc POSTINC1,W
 movwf POSTINC2

 movf INDF0,W
 addwfc INDF1,W
 movwf INDF2
 b r a done

 d s :
 mov lw 0x3
 addwf FSR0L ,F
 addwf FSR1L ,F

 movf INDF0,W
 cp fseq INDF1
 b r a rneq
 b r a r equ

 rneq :
 cp fsg t INDF1
 b r a ah

 bh :
 mov lw 0x3
 subwf FSR0L
 subwf FSR1L

 movf f POSTINC1,POSTINC2
 inc f FSR0L

 140

 movf POSTINC0,W
 subwf POSTINC1,W
 movwf POSTINC2

 movf POSTINC0,W
 subwfb POSTINC1,W
 movwf POSTINC2

 movf INDF0,W
 subwfb INDF1,W
 movwf INDF2
 b r a done

 ah :
 mov lw 0x3
 subwf FSR0L
 subwf FSR1L

 movf f POSTINC0,POSTINC2
 inc f FSR1L

 movf POSTINC1,W
 subwf POSTINC0,W
 movwf POSTINC2

 movf POSTINC1,W
 subwfb POSTINC0,W
 movwf POSTINC2

 movf INDF1,W
 subwfb INDF0,W
 movwf INDF2
 b r a done

 r equ :
 dec f FSR0L
 dec f FSR1L
 movf INDF0,W
 cp fseq INDF1
 b r a fhneq
 b r a fhequ

 fhneq :
 cp fsg t INDF1
 b r a a fh

 b fh :
 mov lw 0x02
 subwf FSR0L
 subwf FSR1L

 movf f POSTINC1,POSTINC2
 inc f FSR0L

 movf POSTINC0,W
 subwf POSTINC1,W
 movwf POSTINC2

 movf POSTINC0,W
 subwfb POSTINC1,W
 movwf POSTINC2

 c l r f INDF2

 141

 b r a done

 a fh :
 mov lw 0x02
 subwf FSR0L
 subwf FSR1L

 movf f POSTINC0,POSTINC2
 inc f FSR1L

 movf POSTINC1,W
 subwf POSTINC0,W
 movwf POSTINC2

 movf POSTINC1,W
 subwfb POSTINC0,W
 movwf POSTINC2

 c l r f INDF2
 b r a done

 fhequ :
 dec f FSR0L
 dec f FSR1L
 movf INDF0,W
 cp fseq INDF1
 b r a f lneq
 b r a f l equ

 f lneq :
 cp fsg t INDF1
 b r a a f l

 b f l :
 dec f FSR0L
 dec f FSR1L

 movf f POSTINC1,POSTINC2
 inc f FSR0L

 movf POSTINC0,W
 subwf POSTINC1,W
 movwf POSTINC2

 c l r f POSTINC2
 c l r f POSTINC2
 b r a done

 a f l :
 dec f FSR0L
 dec f FSR1L

 movf f POSTINC0,POSTINC2
 inc f FSR1L

 movf POSTINC1,W
 subwf POSTINC0,W
 movwf POSTINC2
 b r a done

 f l equ :
 c l r f POSTINC2
 c l r f POSTINC2
 c l r f POSTINC2

 142

 c l r f POSTINC2
 done :
 #endasm

}

vo id mu l (vo id) {

 #asm
 movf POSTINC0,W
 xorwf POSTINC1,W
 movwf POSTINC2

 movf PREINC0,W
 mu lwf PREINC1
 movf f PRODL, POSTINC2
 movf f PRODH, INDF2

 movf PREINC0,W
 mu lwf POSTINC1
 movf f PRODL,WREG
 addwf POSTINC2,F
 movf f PRODH,WREG
 addwfc POSTDEC2,F

 dec f FSR0L ,F
 movf POSTINC0,W
 mu lwf INDF1
 movf f PRODL,WREG
 addwf POSTINC2,F
 movf f PRODH,WREG
 addwfc INDF2,F
 movf f INDF0,WREG
 mu lwf INDF1
 movf PRODL,W
 addwfc INDF2,F
 #endasm
}

 143

APPENDIX D

 C-Code for the Clock Signal to the Switched Cap filter

 144

// The fol lowing code generates a 50000Hz Clock signal of 55555 Hz
// Allowing the Switched capasitor MAX 297 to have a cutoff of
//1KHz.

#include <12f629.h>
#use delay(clock = 10000000)

#fuses HS,PUT,NOWDT
#define GP0 PIN_A0
#define GP1 PIN_A1
#define GP2 PIN_A2
#define GP3 PIN_A3
#define GP4 PIN_A4
#define GP5 PIN_A5

void main() {

while(1) {
 output_high(PIN_A2);
 delay_us(9);
 output_low(PIN_A2);
 delay_us(9);
}

}

 145

APPENDIX E

 C-Code for the PORTC HD44780 LCD DEVICE

 146

s t ruc t l cd_p in_map { // Th i s s t ruc ture i s over l ayed
 boo lean r s ; // on to an I/O por t to ga in
 boo lean unused1 ; // acces s to the LCD p ins .
 boo lean unused2 ; //
 boo lean enab le ; //
 in t da t a : 4 ; //
 } l cd ;

#byte l cd = 0x f82 // Th i s put s the en t i r e s t ruc ture
 // on to por t C (a t addres s 7)

by te CONST LCD_INIT_STRING[4] = {0x28 , 0xc , 1 , 6} ;
by te CONST LCD_LINE_ADDRESSES[4] = {0x00 , 0x40 , 0x14 , 0x54} ;

// Sends a s ing le n ibb le to the LCD.

vo id l cd_send_n ibb le (by t e n) {
 l cd .da t a = n ;
 de l ay_cyc l e s (1) ;
 l cd . enab le = 1 ;
 de l ay_us (2) ;
 l cd . enab le = 0 ;
}

// Sends a who le by te to the LCD by mak ing use o f the Send n ibb le func t ion
// The f i r s t pa ramete r ‘ addres s ’ dec ided whether the by te i s an ins t ruc t ion or da t a

vo id l cd_send_by te (by te addres s , by t e n) {
 de l ay_ms(3) ;
 l cd . r s = 0 ;
 de l ay_us (1) ;
 l cd . r s = addres s ;
 de l ay_cyc l e s (1) ;
 l cd . enab le = 0 ;
 l cd_send_n ibb le (n >> 4) ;
 l cd_send_n ibb le (n & 0xf) ;
}

// In i t i a l i ze s the LCD d i sp l ay . .

vo id l cd_ in i t () {
 by t e i ;
 s e t_ t r i s_c (0) ;
 l cd . r s = 0 ;
 l cd . enab le = 0 ;
 de l ay_ms(15) ;
 fo r (i=1 ; i<=3 ;++i) {
 l cd_send_n ibb le (3) ;
 de l ay_ms(5) ;
 }
 l cd_send_n ibb le (2) ;
 fo r (i=0 ; i<=3 ;++i)
 l cd_send_byte (0 ,LCD_INIT_STRING[i]) ;
}

 147

// Se t s the cur so r on the s c reen where the charac te r i s to be p r in ted .

vo id l cd_gotoxy (by te x , by t e y) {
 by t e addres s ;
 addres s= lcd_ l ine_addres ses [y]+x ;
 l cd_send_by te (0 ,0x80|addres s) ;
}

vo id l cd_putc (by te c) {
 sw i t ch (c) {
 ca se ' \ f ' : l cd_send_byte (0 ,1) ;
 de l ay_ms(2) ;
 b r eak ;
 ca se ' \b ' : l cd_send_byte (0 ,0x10) ; b reak ;
 de fau l t : l cd_send_byte (1 , c) ; b reak ;
 }
}

 148

VITA

I was born in Lucknow, India and I spent most of my childhood in

New Delhi . I received my undergraduate in Electrical Engineering from

West Virginia University and continued on to f inish my masters degree

from here as well . During my graduate years, I have held both GTA and

GRA posit ions and spend my t ime doing either research or teaching. My

research interests, inherited from my teacher Dr. Klinkhachorn, are

Neural Networks, Fuzzy Logic, Digital Fi lter design and implementation,

and embedded control .

	PIC 18F452 implementation of digital filters
	Recommended Citation

	Microsoft Word - may7_1135.doc

		2004-05-07T17:43:16-0400
	John H. Hagen
	I am approving this document

