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ABSTRACT 
 

PIC 18f452 implementation of digital filters 
 

Vikram A Bose-Mullick 
 
 

This research hopes to explore the computat ional  l imits  of  the PIC18f452 

chip by encompassing the designing and implementat ion of two types of f i l ters  

for the PIC 18F452 microcontrol ler .  The main purpose of this  research is  to 

implement a f loat ing-point  least  mean square (LMS) error adapt ive f i l ter  and 

i ts  secondary goal  is  a  f ixed-point  implementat ion of f ini te  impulse response 

(FIR) f i l ter .  FIR f i l ters  are specif ied via  a  graphical  user  interface (GUI) and 

upon demand,  opt imized C-language code is  generated for the popular  CCS 

PIC C-Compiler .  In is  the intent of this  research to learn whether FIR f i l ters  

can be made computat ional ly  v iable on the PIC18 chips,  can they run stably 

with re l iable and repeatable performance? What is  the minimum execut ion 

t ime possible at  the process ing l imits  of  the chip? And how is  f i l ter  

at tenuat ion affected when taps are scaled down from f loat ing-point  to f ixed 

point?  For the f loat ing point  LMS f i l ter  i t  des ired to explore the re lat ionship 

between sampling-rate and f i l ter  order and to develop a hardware opt imized 

f loat ing point  l ibrary for general  use.  The minimum execut ion t ime for the 

LMS f i l ter  achieved during this  research is  26.7 µs  per order .  The FIR f i l ter  

code generat ion software developed during this  study a l lows graphical  

specif icat ion,  inspect ion of response curves .  I t  u l t imately  presents three 

opt ions for automatic code generat ion — program-space eff ic ient  code (uses 

minimum code space) ,  data-memory eff ic ient  code (uses minimum RAM) and 

speed-eff ic ient  code (opt imized for quickest  execut ion) ,  thereby a l lowing up to 

a 75th order FIR f i l ter  with the best execution t ime of 800ns per MAC 

cycle achieved at the bit-depth of 8-bit  samples and 8-bit  taps.   The fi l ter 

tap conversion from floating-point format to 8-bit  f ixed point reduced 

the attenuation by an average of 28%. In general ,  both f i l ters gave a 

strong performance with consistent,  rel iable and repeatable results . 
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  C H A P T E R  1 :  I N T R O D U C T I O N  

1.1 Personal Motivation 

 

My fascination with single chip microcontrol lers began with my 

undergraduate days and has remained consistent ever since. In a world 

where minimalism is the catchword, they f it  the role perfectly,  being a 

cost effective way to elegantly solve complicated problems, thereby 

making so many aspects of electronics and software accessible to 

engineers and students as well .  During my undergraduate and graduate 

years I part icipated in projects involving electronics and circuit  design 

and always enjoyed finding new opportunit ies for microcontrol ler based 

solutions.  With circuits gett ing more and more complex, f i l ters must be 

instal led to control noise and deal ing with f i l ters meant having to look 

for the r ight capacitors and the r ight resistors,  op amps and repeating the 

same tedium al l  over again, especial ly if  i t  was determined that a new set 

of f i l tering specif icat ions were required. The alternative to a true digital-

f i l ter is  to use a switched capacitor f i l ter but those are usual ly not as 

clean as analog f i l ters and require a clock signal that adds switching 

noise;  with an addit ional circuit  component drawing power,  occupying 

space and incurring an explicit  monetary cost.       

 

I t  i s  h e r e  t h a t  t h e  F i n i t e  I m p u l s e  R e s p o n s e  ( F I R )  f i l ters step 

in,  being an attractive alternative to using analog f i l ters and switched 

capacitor digital  f i l ters.  I  learned about them in theory and conducted a 

couple of Matlab simulations before real izing that these are ideal for use 

with microcontrol ler projects.  They impose no addit ional monetary cost 

upon the circuit ;  can be easi ly reconfigured by changing code, without 

any lag in performance with t ime. The chal lenge is to do a very eff icient 

implementation for the PIC 18 architecture so it  becomes possible for 

the f i l ter to function as a supplementary applicat ion, thereby, providing 
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an intuit ive graphical  interface that wil l  a l low anyone to easi ly generate 

these f i l ters using a simple point and cl ick system. However,  not al l  noise 

problems can be solved by using FIR fi l ters.  

 

Sometimes due to the nature of the noise,  especial ly if  i t  is  correlated, 

i t  is  impossible for an ordinary (f ixed-band) f i l ter to remove it ,  because 

both the signal and noise occupy the same frequency range. For instance, 

if  the echo of the signal was the source of noise,  then the echo could not 

be removed simply by suppressing its frequencies,  because the echo and 

the source have a strong correlat ion. In cases l ike these,  adaptive f i l ters 

are used to reduce noise.  The least mean squared (LMS) error is a 

commonly used adaptive noise cancel lat ion algorithm that is ideal for 

this purpose because it  is  a good compromise between computational 

complexity and performance.  

.  

 

1.2 Signal Processing using the PIC 18F452 Microcontroller 

 

Microcontrol lers such as PIC chips which run at speeds up to 10 

MIPS (mil l ion instructions per second) are useful for gaining valuable 

practical  experience with low bandwidth signal processing ideas.  What 

makes them so convenient is the wealth of built  in hardware,  which can 

sample signals ,  perform ADC conversions and contain mult iple t imers 

for accurate t iming. Moreover,  there are a number of low cost compilers 

making the package avai lable under $6.00 per chip [4] and as low as $175 

for a C-Compiler and an in-circuit  programmer for $75 [2] ,  making it  

feasible cost-wise as well .     
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1.3 Digital Filters Vs Analog Filters 

 

Digital  f i l ters have several  advantages and disadvantages over their 

analog counterparts.   The main advantage of digital  f i l ters is  that they 

occupy no physical  space as they are implemented completely in software 

and operate by applying a mathematical  algorithm designed to produce 

the f i l ter ing effect .  Since digital  f i lters need no physical  components i .e . ,  

capacitors and resistors,  their performance does not degrade with age or 

respond to ambient environmental condit ions.  Another major advantage 

is that some digital  f i l ter (FIR fi lters) can have a unique property cal led 

l inear phase response, which is crit ical  in many communications 

applicat ions.  Analog f i l ters presently,  have a much greater dynamic range 

however,  than digital  f i l ters because they are not l imited by factors l ike 

sampling rate and computation speed [5] .      

 
 
    1.4 PIC 18 Microcontroller Family 

 

Microchip Technologies manufactures a popular l ine of micro 

control lers known as Peripheral  Interface Control ler or PIC chips.   The 

PIC 18F452, released in May 2002, is  currently one of their fastest chips 

[3] .  At the core of this chip is an 8-bit  RISC based ALU that can process 

10 MIPS at 40 MHz.   Its design is based on Harvard architecture,  

al lowing it  to have separate data and program memories.   Its memory is 

divided into 32 KB of f lash based program memory and 1.5 KB of 

volat i le data memory (RAM) as well  as 256 Bytes of EEPROM.  PIC 

chips have a RISC based instruction set consist ing of a small  yet seminal 

set of instructions,  most of which are single cycle,  thereby making them 

fast executing and easy to program. Other valuable devices such as 

analog to digital  converters,  pulse width modulation, mult iple t imers,  

I/O Ports are al l  integrated within the same chip that also contain 

hardware support for several  popular serial  communication protocols 
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such as I2C, SPI and UART. Running at 40 MHz, i t  takes the 18F452 chip 

100ns to mult iply two bytes and compute a 16-bit  result .  The other noted 

feature that makes this chip viable for s ignal processing applicat ions is 

that,  i t  contains mult iple hardware pointers that al low very fast access to 

data stored within the chips’  RAM.  

 

1.5 Detailed Research Objectives and Contributions 
 

The main focus of this research wil l  be to test and val idate the PIC 

chips’  abi l i ty to implement a real-t ime floating-point LMS based 

Adaptive f i l ter ,  which is a very useful way to deal with noise that is too 

closely related to the signal for conventional band compensating f i l ters 

to handle.  

 

1.  A suitable general-purpose, adaptive noise cancel lat ion circuit  wil l  be 

designed, that is  both cost effective and customizable to serve several  

different applicat ions.  The circuit  wil l  be tested using test s ignals 

generated by a PC sound card as shown in Figure 1.5.1.  This wil l  a l low 

the modeling of different types of noise and to test various signal to 

noise rat ios.  The circuit  wil l  process the signals in real-t ime and the 

results wil l  be measured using a data acquisit ion system. Analysis of the 

recorded data should reveal the effective noise reduction versus noise 

reductions predicted via s imulations.   

 

 
 

Figure 1.5.1 Topology for Real-Time LMS Circuit Testing 
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2.  During the course of this research, software wil l  be developed to 

benefit  the users of the popular CCS PIC Compiler.  The software wil l  

include a modular l ibrary for PIC 18XXX with optimized f loating-point 

math support.  Although the compiler is  inherently capable of handling 

f loating-point data,  i t  performs common floating-point operations such 

as addit ion, subtraction, and mult ipl icat ion at an alarmingly slow rate 

rendering it  unpractical  for real-t ime applicat ions.  Therefore,  another 

aim of this research wil l  be to develop a modular l ibrary that wil l  provide 

a faster alternative to the compilers built  in f loating-point system.  

 

3.  The secondary focus of this research wil l  be to test and val idate the 

PIC chips’  abi l i ty to implement a real-t ime fixed-point FIR fi l ter ,  which 

is a very practical  idea,  because it can be seamlessly used in countless 

applications where noise and the signal of interest occupy separate 

frequency bands. 

 

4.  A Graphical  User Interface (GUI) wil l  be developed that al low 

users to design various types of FIR fi l ters,  such as Low-Pass,  High-Pass,  

Band Pass,  Notch or any combination of the above, in short ,  mult i-band 

fi l ters.  The user may design the f i l ter by taking a point and cl ick 

approach to specifying band-edges,  attenuations,  sampling rate etc.  and 

the software wil l  show users the respective frequency and phase response 

graphs. Once the user is sat isf ied with the f i l ter they have designed, the 

software wil l  present them with several  real izat ion options, thereby 

al lowing them to decide whether they want the f i l ter optimized for 

execution speed, or conservative RAM usage or conservative program-

memory usage. Ult imately,  optimized C language source code is 

generated that is ready to be compiled for either PIC 18F452 chip or the 

smaller PIC 18F252 chip or easi ly adapted for the remaining chips in the 

PIC 18FXXX family by a moderately experienced programmer. Final ly ,  

the GUI wil l  generate a diagram of the test circuit  needed to instal l  the 

f i l ter code. 
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5. Each type of FIR fi l ter created by the software wil l  be evaluated 

independently by applying a constant-power frequency sweep generated 

by a f i l ter test program. The real-t ime output of the f i l ter wil l  be 

recorded by a data acquisit ion system and its performance wil l  be 

analyzed though PC based data analysis tools such as FFT.  

 

1.6 Organization 

 

Chapter two wil l  cover a l i terature review and theoretical  background 

of exist ing techniques for digital  f i l ter implementation for both LMS and 

FIR fi l ters.  Chapter three wil l  constitute the implementation detai ls for 

both the f i l ters.  Chapter four wil l  present results and analysis and 

chapter f ive wil l  contain recommendation for future work. An appendix 

is provided that contains al l  codes written during this exploration and a 

user’s manual for the f i l ter design of the GUI. 
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  C H A P T E R  2 :  L I T E R A T U R E  S U R V E Y  

2.1 Classification of  Filtering Methods 
 

The earl iest f i l ters were analog f i l ters.  In recent years,  digital  f i l ters 

have gained popularity due to the lowering cost of microprocessors and 

the increased level of convenience and flexibi l i ty offered by digital  

f i l ters.  Advances in technology al lowed them to function at a faster 

speed and now they are rapidly approaching the large dynamic range of 

analog f i l ters [5] .  A broad classif icat ion of Digital  f i l ters is  presented in 

Figure 2.1.1.  

 

 

 

 

 

 

          Figure 2.1.1 Classif icat ion of Signal f i l ter ing methods 
          

2.2 Digital Filters 
 

A digital  f i l ter is  a discrete-t ime l inear system that operates on an 

input sequence, modifies i t ,  and produces the output sequence.  The 

input sequence is usual ly obtained by digit izing a signal ,  thereby 

converting it  into discrete t ime, with the output sequence being 

transformed back into an analog signal through an appropriate digital  to 

analog process.  The steadily reducing cost of portable computation is 

DIGITAL FILTERS

NON-RECURSIVE

FIR Filters 
Others 

SWITCHING 

Switched-Cap 
Others 

ADAPTIVE 

LMS, RLS, etc 
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thereby making a direct contribution to the r ise of popularity of digital  

f i l ters.   

   

2.3 Non-Recursive Type Digital Filters  
 

The most commonly used Non-Recursive f i l ter is  the FIR fi l ter .  The 

weights of this type of digital  f i l ters are constant and are computed at 

design t ime. Since the weights remain constant,  the stabi l i ty of FIR 

fi l ters can be guaranteed. However,  they can have several  topologies — 

the transversal  topology as shown in Figure 2.3.1 being the most 

common type and the one used for this research [9] .   

 

 
 

   Figure 2.3.1 The transversal  topology of the FIR fi l ter 
 

 

The transversal  FIR fi l ter is  characterized by the fol lowing equation.   

 
          

1

0

( ) ( ) * ( ) (2.1)
N

k

y n h k x n k
−

=

= −∑  

Where, 

 
x(n) :  discrete t ime elements of the sampled signal 

y(n) :  is  the computed output of the FIR fi l ter 

h(k):  are the coefficients of the f i l ter also knows as f i l ter-taps 

y(n) 

x(n) 
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 L i n e a r  c o n v o l u t i o n  o f  t h e  f i l t e r  c o e f f i c i e n t  w i t h  t h e  s a m p l e d  

s i g n a l  p r o d u c e s  t h e  f i l t e r i n g  e f f e c t .  Since multipl ication and addit ion 

are the only mathematical  operations involved with the FIR fi l ter ,  this 

process is ideal ly suited for use within the PIC 18F452 microcontrol ler .  

The clear advantage of using FIR fi lters is  the radical  alterat ion in its 

frequency compensation, which can be achieved by simply providing the 

system with a new set of f i l ter coefficients.  Another interest ing property 

of FIR fi l ters is  that,  they are the only type of f i l ter that can have a true 

l inear phase response. Since this research deals exclusively with the 

implementation aspects of FIR fi l ters,  i t  is  assumed that the coefficients 

of the f i l ter have already been computed. For more theoretical  detai ls  

regarding obtaining f i l ter coefficients refer to [7] .    

 

2.4 Switching type digital filters  

 

The switched capacitor f i l ter is  a common type of switching f i l ter .  

Switching type digital  f i l ters are a convenient alternative to using high 

order analog f i l ters.  They are packaged for convenient use and typical ly 

require a clock signal and power to operate.  Most are str ict ly low-pass 

f i l ters;  others can be programmed by addit ional resistors,  to be used as 

band pass and notch fi l ters.  However,  this convenience comes at the 

expense of addit ional monetary cost and components and having to deal 

with the inescapable incurrence of switching noise [1] .   

 

2.5 Adaptive Filters 

 

One of the most successful adaptive algorithms is the LMS fi l ter 

developed by Widrow [14].  LMS, sometimes known as LMSE is excel lent 

for deal ing with correlated noise where noise and the signal are too much 

al ike to be f i l tered using ordinary band-compensating f i l ters such as low-

pass,  band-pass etc.  Such fi l ters are commonly referred to as adaptive 
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fi l ters and they are used in applications such as,  echo-cancel lat ion over 

communication l ines,  noise-cancel lat ion, Electro-cardiogram (ECG) in 

pregnant mothers,  suppressing machine noises in mines and countless 

other applicat ions.   

 

2.6 Least Mean Squared Error (LMS)  

 

The LMS fi l ter is  based on the s teepest  decent  a lgor i thm where the 

weight vector is updated from sample to sample as fol lows: 

 

                                   ( 2 .2 )1W Wk k kµ= − ∇
+

 

 where,  

Wk: Is the weight vector 

k∇ :  I s  the true gradient vector 

µ:  Rate of convergence also referred to as learning rate 

 

T h e  L M S  a l g o r i t h m  i s  a  p r a c t i c a l  m e t h o d  o f  o b t a i n i n g  e s t i m a t e s  

o f  t h e  f i l t e r  w e i g h t s  W k  i n  r e a l  t i m e . The Widrow-Hopf LMS 

algorithm for updating weights from sample to sample is given by: 

 

1 2 (2.3)k k k kW W e Xµ+ = +  

where,  

(2.4)T
k K kek y W X= −

 

ek :  Is the error term 

Xk :  Is the correlated noise vector 

 

LMS algorithm above does not require prior knowledge of the signal 

stat ist ics,  but instead uses instantaneous est imates to tune the f i l ter .  The 

weights obtained by the LMS algorithm only est imates,  but these 
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estimates improve gradual ly with t ime as the weights are adjusted and the 

f i l ter adapts i tself  to the characterist ics of the signals .  Eventual ly,  the 

weights converge. The condit ion for convergence is ,  

 

1
0 (2.5)

max
µ

λ
< <  

where,  

          λmax: Is the maximum Eigen value of covariance matrix.  

 

The main objective in adaptive noise cancel lat ion is to produce an 

optimum estimate of the correlated noise in the contaminated signal .  

This is  done by the simultaneous sampling of two signals — one being 

the signal of interest to be f i l tered and the other being the source of 

correlated noise,  referred to as the r e f e r ence .  The adaptive f i l ter in 

Figure 2.6.1 uses the reference to predict the degree of contamination in 

the signal of interest by the process of correlat ion.   

 
Figure 2.6.1 LMS fi l ter Topology 

 
 

 The adaptive f i l ter attempts to predict the amplitude and phase of 

the noise present in the contaminated signal by correlat ing the reference 

with the contaminated signal .  The predict ion of the adaptive f i l ter 

constantly approaches the actual noise present in the contaminated 
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signal .  With the error signal continuously being used to tune the f i l ter ,  i t  

gradual ly approaches the desired signal .  Figure 2.7.1 shows a f low 

diagram for the LMS fi l ter algorithm. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.7.1 Standard Implementation of LMS Filter 

 

2.8 Implementation of  a digital filter  
 

Digital  f i l ters are a natural  choice for circuits that are interfaced to or 

control led by a microcontrol ler .  Part of the microcontrol ler ’s computing 

power may be dedicated to f i l tering the sampled input signals .  Figure 

2.8.1 is a block diagram for typical  digital  f i l ter implementation. 

 

 

Initialize 
( ),k k iw i x −  

Sample Xk and Yk

Estimate Noise 
1

( )
N

k k k in w i x
−

−= ∑  

  Compute Error 
k k ke y n= −  

  Update Weights 
1( ) ( ) 2k k k kW i W i e xµ+ −= +
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Figure 2.8.1 Standard Implementation of Digital  Fi lter 
 
 

The Ant i -Al ias ing  f i l ter  is  a low-pass f i l ter designed with a cutoff 

that is  at least half the sampling rate of the analog to digital  converter 

(ADC). This is used to prevent sampling of frequencies above Nyquist 

rate [6] .  A smoothing f i l ter is  another low-pass f i l ter that is  used to 

reduce the harmonic distort ion result ing from the quantization process.  

An i l lustrat ion of the described process is presented in Figure 2.8.2.  

  

 

 
 

Figure 2.8.2 Digital  Signal Processing overview 
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  C H A P T E R  3 :  I M P L E M E N T A T I O N  D E T A I L S  

Implementation detai ls for the f ixed-point FIR fi l ter are discussed 

first  fol lowed by the implementation detai ls for the more complicated 

f loating-point LMS fi l ter .   

 

3.1 Finite Impulse Response (FIR) 
 

Development of a FIR fi l ter general ly involves two dist inct phases.  

The f irst  one is the design phase and the other is the real izat ion phase. 

The design phase involves specifying f i l ter characterist ics such as band-

edges,  frequency-response and phase-response etc.  and final ly derives the 

f i l ter coefficients for the intended fi l ter .  There are several  ways to obtain 

f i l ter coefficients.  For this research the Matlab f i l ter design toolbox was 

used to generate them. In FIR fi l ters,  the same hardware can be used to 

real ize many different types of f i l ters.  It  can be seamlessly reconfigured 

from a low-pass to band-pass to notch or a combination of al l  of them 

by simply supplying a new set of coefficients.  The implementation 

discussed in this study is optimized for the PIC 18F452 instruction set 

although it  is  f lexible enough to be easi ly adapted to other inexpensive 

microcontrol lers with similar hardware.  

 

The software developed for building FIR fi l ters includes a program 

that al lows users to visual ly specify the f i l ter parameters.  Once the f i l ter 

has been final ized, optimized code wil l  be automatical ly generated for 

the PIC 18F452 processor.  Since the f i l ter is  usual ly used as a 

supplementary application, i t  must be designed to co-exist with a main 

application. The proposed implementation uses only a fraction of the 

microcontrol lers’  total  computational capacity and the remaining cycles 

are reserved for the main applicat ion. Addit ional ly,  the implementation 

scheme is easy to reconfigure without making changes in hardware. 
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The second phase is the real izat ion phase.  This involves the selection 

of an appropriate platform upon which the f i l ter wil l  be implemented. In 

this case the platform desired is the PIC 18F452 chip. Real-t ime 

implementation involves three dist inct processes — first ly the analog-to-

digital  conversion of a s ignal ;  fol lowed by mathematical  processing by 

the f i l ter ing algorithm; and final ly ,  if  needed the obtained results have to 

be transformed back into an electrical  s ignal using a suitable digital-to-

analog conversion technique. All  three processes mentioned above must 

be performed within a proper t ime constraint or the result  becomes 

inval id.  For instance, if  we are sampling a s ignal at 4000Hz then our 

worst-case t ime is 1/4000Hz or 250us. All  f i l ter computations must be 

completed within the t ime window of 250us. The block diagram of the 

FIR fi l ter is  presented in Figure 3.1.1.  

 

 

 

 

 

Figure 3.1.1 FIR fi l ter block Diagram  
 

 

3.2 Implementation Background 

 

Three different implementation strategies are provided to the user as 

options, each with its advantages and drawbacks. They are m i n i mu m 

RAM  implementation, m i n i mu m p r og r am memor y  implementation and 

m i n i mu m ex ecu t i on  t i me  implementation. Each wil l  be discussed in 

detai l  in the fol lowing sections.  

 

Implementation aims to take advantage of the PIC chip’s hardware 

architecture and instruction sets.  The PIC 18F452 chip has certain 

features in its hardware that makes it  a good choice for f i l ter ing 

  ADC    FIR    DAC

Optional
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applicat ions.  The fol lowing restr ict ions were used while implementing 

the FIR fi l ter algorithm in order to maximize the f i l ter throughout.   

 

1.  Mult ipl icat ion operations are restr icted to unsigned integer data only.  

The Table 3.2.1 is a summary of manufacturer published mult ipl icat ion-

performance for the PIC 18F452 chip [10].  Table 3.2.1 outl ines the speed 

gain from using the hardware mult ipl ier and by favoring unsigned-

multipl icat ion operations instead of signed mult ipl icat ion operations.  

TimeH is the t ime needed performing hardware mult ipl icat ion and TimeS 

is the t ime needed to perform software mult ipl icat ion.  

 

Table  3.2.1 Mult ip l i cat ion speeds for  PIC18452  

ROUTINE METHOD TimeH/TimeS Speedup 

8x8 Unsigned Hardware/Software 100ns/6.9µs 6900% 

8x8 Signed Hardware/Software 600ns/9.1µs 1500% 

16x16 Unsigned Hardware/Software 2.4µs/24µs 1000% 

16x16 Signed Hardware/Software 3.6µs/25.4µs 1400% 

 

 

2.  The analog to digital  converter is  used with 8-bit  resolution. Even 

though the built  in ADC on the PIC chip is capable of sampling up to 

10-bit  resolution, the PIC memory and ALU are both 8-bit  wide. It  is  

therefore most eff icient in handling 8-bit  data.  Hence, al l  f i l ter 

coefficients and ADC data wil l  be restr icted to 8-bit  resolution. 

  

3.  All  memory references are made using indirect addressing. The PIC 

18F452 chip contains three hardware pointers.  FSR0, FSR1, FSR2, each 

being 12 Bits and capable of covering the entire RAM size for the PIC 18 

family (up to 4096 bytes for PIC18f2515).  By shortening the range of 

these pointers to 8-bits we can gain efficiency at the expense of smaller 

memory coverage. The pointer space wil l  be restr icted to 8-bits to cover 
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256 bytes of RAM or a s ingle bank of RAM. This means that al l  our 

buffers and other dynamical ly al located areas of RAM have to be 

confined to 256 bytes of memory.     

 

3.3 FIR Filter Implementation  

  

 FIR fi l ter implementation scheme on the PIC 18F452 chip can be 

categorized using the fol lowing major steps shown in Figure 3.3.1.  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   Figure 3.3.2 FIR fi l ter creation stages 

 

 

3.3.1 User specification 

 

The very f irst  logical  step to making a f i l ter is  to specify f i l ter 

parameters such as band edges,  attenuations and ripples.  To this end, the 

fol lowing interface was developed to al low a user to specify the type and 

Filter Tap Generation

Coefficient Scaling  

Sampling/Buffering  

Filter Processing 

Output Scaling 

 
 
 

MATLAB 
 

 
 
 
 

PIC 18F452 

User Specification 

Code Generation 

Analog Output 
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exact parameters of the f i l ter to be designed. Figure 3.3.2 is a snapshot 

of the developed fi l ter making software.  

 

 
   Figure 3.3.2 Digital Signal Processing overview 

 

 By making use of the menus the user can select from the range of 

f i l ters that can be generated for real-t ime implementation. The avai lable 

options are low-pass,  high-pass,  band-pass,  band-stop, notch and custom. 

Once the type of f i l ter is decided, the user can specify parameters such 

as band edges and attenuations by f i l l ing in the appropriate boxes.  

Before the user is al lowed to generate code, the frequency and phase 

response for the desired f i l ter circuit  must be reviewed. The software 

automatical ly calculates the exact f i l ter order required to achieve f i l tering 

requirements.  The f i l ter coefficients are calculated using the Remez 

exchange [8] method for optimal tap generation for low-pass and high-

pass configurations.  Figure 3.3.3 shows the frequency and phase res- 

ponse curves as well  as the different code generation options avai lable to 

the user.  If sat isf ied the user may generate the desired f i l ter .  
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     Figure3.3.3 Frequency/phase review curves & code generation options 
 
 

Once a sat isfactory design is achieved the user is given three options 

for code generation.  Final ly C-language code, as shown in Figure 3.3.4,   

is  generated that is ready to be compiled or edited.  

 

 
 

Figure 3.3.4 Section of C-Code generated 
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3.3.2 Filter Tap Generation 

  

The Matlab f i l ter design toolbox [13] was used to generate f i l ter 

coefficients.  This toolbox contains a set of functions that al low users to 

conveniently make and test different types of f i l ters.  If  for example,  a 

low-pass f i l ter was desired with the characterist ics given in Figure 3.3.5 

and Figure 3.3.6 is the skeleton Matlab-code needed to generate i t .  

 

Sampl ing Frequency of 8000Hz 

Pass band frequency of 500Hz 

Stop Band frequency of 1000Hz 

Pass band ripple of .05 dB 

Stop band ripple of 55 dB 

 

Figure 3.3.5 Intended LPF parameters 
 

 

Figure 3.3.6 Skeleton code needed for Fi lter 
 

1000 Hz 500 Hz 

55 dB 

   0 dB
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The skeleton code presented in Figure 3.3.6 upon execution wil l  

produce the graphs for both phase response and frequency response in 

Figure 3.3.7.  

 

Figure 3.3.7 Frequency and phase response plot 
 

  The f i l ter tap coefficients generated by Matlab are as plotted next:  

 

     Figure 3.3.8 Frequency and phase response plot 
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3.3.3 Coefficient Scaling 

 

The tap coefficients computed by Matlab are computed in f loating 

point format ranging from [-1.0,1.0] .  Before they can be used in the PIC 

chip they need to be converted into 8-bit  f ixed-point format and made 

unsigned. The fol lowing scal ing function apply the to achieve this :  

 

__ *127 128 (3.1)
max( _ )

n
n

floating tapscaled tap ceiling
floating tap

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
 

 

Each tap coefficient provided by Matlab is f irst  normalized to the 

range [-1.00,1.00],  then mult ipl ied by 127 and rounded to the higher 

integer.  Final ly 128 is added to each tap to make it  posit ive.  After the 

scal ing function is applied, the [-1.00,1.00] range becomes [0,255],  shown 

in Figure 3.3.9 and now unsigned integers.  

 

 
 

          Figure 3.3.9 Eight-Bit scaled coefficients 
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3.3.4 Code generation 
 

Once the f i l ter parameters are establ ished and al l  decisions involving 

implementation detai ls are complete,  compiler ready C-language source 

code for the CCS PIC C is generated based on a set of three different 

templates.  Each template is a special ized implementation scheme 

optimized to produce a different f lavor.   

 

1.  Minimum Ram: The c-code generated using this template makes 

minimal demand on RAM. 

 

2.  Minimum Program Size:  This template minimizes the program size.  

 

3.  Minimum Execution Time: This template produces code that achieves 

higher execution speed. 

  

If  the PIC chip is dedicated to performing signal f i l ter ing only then 

either implementation scheme is suitable.  However if  the FIR fi l ter is  

used as a supplementary application that runs along side a primary 

applicat ion then it  competes for the same recourses as the main 

applicat ion. Thus it  may be useful for the user to use the parametric 

optimizations. To faci l i tate the selection of which type of optimization is 

suitable the user interface provides exact values for RAM, program 

memory and execution t ime with each option. The optimizations in RAM, 

execution speed and program size were al l  derived using a combination 

different buffering techniques,  loop unroll ing, and inl ine assembly 

language routines for the real-t ime components.  Each is discussed in 

detai l  in the fol lowing sections.  
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3.3.5 Buffering Data 
 

Once Matlab has generated the f i l ter coefficients,  they need to be 

accommodated within the PIC memory. Addit ional ly,  the constant stream 

of data from the PIC ADC must be accommodated in memory with the 

exact chronological  sequence in which it  was sampled. The buffering 

scheme for tap coefficients is  discussed f irst .  

 

The tap coefficients are stored in the PIC in the form of a look-up 

table in i ts program memory. Before f i l tering begins,  the entire table is 

copied to the RAM and marked with a hardware pointer.  Managing 

coefficients is not complicated because the number of taps is f inite and 

the l ist  is  stat ic (needs to be init ial ized only once).    

 

Buffering the ADC data is a far more interest ing problem. There are 

several  complications that have to be dealt  with. The finite impulse 

response f i l ter is  quite s imply the l inear convolution between a constant 

set of f i l ter taps and a discrete t ime capture of a s ignal .  For example,  say,  

the desired f i l ter has 30 tap coefficients then we would need to capture 

and store not only a latest sample of the signal ,  but the previous 29 

samples as well .  To achieve this ,  two different buffering schemes were 

explored. The f irst  one used a tradit ional one-dimensional circular buffer 

[11].  This technique uses less memory but lengthens the cycle of 

computations. The second technique used two adjacent one-dimensional 

circular buffers [12] .  This technique uses more RAM than the f irst ,  but 

al lows the speed of the f i l ter to approach its shortest possible 

computation t ime on the PIC 18F452 chip (using 8-bit  taps and 8-bit  

data) .  

 

1. Circular buffer implementation on PIC 18F452: A circular buffer is  

a memory al location scheme where memory is reused (reclaimed) when 

an index is incremented to a mult iple of the buffer s ize.  The modulo 
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nature of a circular buffer maintains data in a queue form (chronological  

order) at al l  t imes without overrunning its al located memory or the need 

for re-ordering. The elegance of this type of memory al location is that 

the very same pointer that is used to queue data is eff iciently used to 

dequeue it  and due to its modulo nature,  the dequeueing pointer 

automatical ly terminates at the point of insert ion of the next sample.  On 

a PIC chip, the buffer that was used is i l lustrated in Figure 3.3.10. Oldest 

sample is written over the newest sample and File Select Register (FSR)  

is  the hardware pointer used to load and unload data.  The i l lustrated 

circular buffer holds four elements — EOB marks e n d - o f - b u f f e r ,  BOB 

marks b e g i n n i n g - o f - b u f f e r ,  the numeric values in the f igure are RAM 

locations and the sample buffer occupies memory locations from 0x41 to 

0x44.  

 

 

 

 

 

 

       Figure 3.3.10 Circular buffer: Used to store ADC values for FIR filter 
 

While loading the buffer the pointer FSR could be at any location 

within the buffer,  so before the sample is stored, i t  is  crucial  to f irst  

check if  the pointer has reached EOB. If i t  is  the very f irst  sample then 

the received data is placed at the BOB  or location 0x44  and the pointer is 

post-decremented to location 0x43 .  In PIC18 assembly,  the hardware 

pointer FSR can load data and post-decrement in a single cycle by using 

the POSTDEC register.  There is no post- increment feature to the 

hardware pointer system; hence, the BOB is at a higher memory location 

than the EOB. When the FSR  pointer has been reached, the EOB is 

s imply reset to BOB. Based on this concept,  the newest data sample 

automatical ly replaces the oldest data sample.  

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45 
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Il lustrated in Figure 3.3.11 is a f lowchart showing the process of 

loading the circular buffer as well  as the assembly code written to 

achieve it .  

 

 
 

Figure 3.3.11 Algorithm developed to load circular buffer 
 

If the ADC was capturing a ramp in the form of digital  data ranging 

from 0 to 6 then the buffer would load in the fol lowing way: The f irst  

data point ‘0’  wil l  be stored at the BOB and the pointer is decremented 

as i l lustrated in Figure 3.3.12. The next sampled data point ‘1’  is  stored 

in the location pointed by data pointer FSR and the pointer is 

decremented as shown in Figure 3.3.13. 

 

 

 

 

 

Figure 3.3.12 Step 1:  Data element 0 is loaded and pointer decrements 
 

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45 

0 
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Figure 3.3.13 Step 2:  Data element 1 is loaded and pointer decrements 
 

By the t ime ‘3’  is  sampled the buffer is  ful l  and EOB is reached as 

shown by the i l lustrat ion. ‘3’  is  stored at EOB and the pointer is reset to 

the BOB. Now notice the pointer is at the oldest element as shown in 

Figure 3.3.14.  

 

 

 

 

 

 

Figure 3.3.14 Step 3:  Data element 3 is loaded and EOB is reached 
 

When ‘4’  is  captured it  replaces the oldest element in the buffer and 

the pointer FSR is incremented as normal as shown in Figure 3.3.15. 

 

 

 

 

 

 

 

Figure 3.3.15 Step 4:  Element 4 is loaded and pointer is  pre-decremented 
 
 
 
 

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45 

0 1 

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45 

0 1 2 3 

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45 

4 1 2 3 
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In order to pull  data from the buffer,  the pointer FSR would simply 

travel in the opposite direction and data wil l  be obtained in the exact 

opposite order to which it  had entered. Before each the pointer is 

advanced it  must f irst  check for the BOB or it  wil l  travel beyond the 

buffer.  If BOB is reached the pointer is relocated to EOB. In order to 

extract data the pre-increment function of the pointer is used so data is 

pul led and pointer is advanced in a single-cycle.  To i l lustrate the process 

the pointer is  pre-incremented to 0x44 and ‘4’  is  pul led as i l lustrated in 

Figure 3.3.16.  

 

 

 

  

 

 

Figure 3.3.16 Element 4 is unloaded from buffer and BOB is reached 
 

 

Note the pointer FSR is at the beginning-of-buffer so it  is  f irst  

relocated to the EOB and then the data pulled is ‘3’  as i l lustrated in 

Figure 3.3.17.  

 

 

 

 

 

 

Figure 3.3.17 Pointer is  relocated to EOB and 3 is pul led 
 

 
 

Pointer is  pre-incremented to 0x42 and ‘2’  is  pul led fol lowed by ‘1’  

and after four iterat ions the pointer FSR has automatical ly terminated at 

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x40 0x39 0x38 0x44 0x45 

4 1 2 3 
4 

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x400x39 0x38 0x44 0x45 

4 1 2 3 
3 
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the entry point where the next incoming data sample is to be placed as 

shown in Figure 3.3.18. 

 

 

 

 

 

 

Figure 3.3.18 Data element 1 is pul led 
 
 

 Data went into the buffer in the order {1,2,3,4} and came back out 

{4,3,2,1}. The formal algorithm and assembly code is in Figure 3.3.19. 

 

 
Figure 3.3.19 Algorithm used to pull data from the circular buffer 

 
 

2. Double circular buffer implementation on PIC 18F452 :  In the 

second buffering technique two adjacent circular buffers are used in such 

a way that the second one begins exactly where the f irst one ends. Every 

t ime a fresh sample is made, i t  is  placed in both buffers in place of the 

0x41 0x42 0x43 0x44

EOB BOB

FSR

0x400x39 0x38 0x44 0x45 

4 1 2 3 
1 
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oldest sample respectively.  Each buffer wil l  have it ’s  own pointer and 

both buffers wil l  contain the exact data at any given t ime. [8] 

  

This buffering scheme has a very useful advantage over the previous 

one because the unloading pointer does no longer need to check for the 

end of buffer (EOB). Figure 3.3.20 of the buffering scheme might exp-

lain the process more clearly.  

 

 

 

 

 

 

 

Figure 3.3.20 Topology of the Double Circular Buffers  
 

Once again the same data is being stored in the buffer,  each data 

element is stored in the same respective place in both buffers.  If the f irst  

sample element is ‘1’  then both buffers wil l  store the data and post-

decrement in the same manner as if  each was an independent buffer.  

 

 

 

 

 

 
Figure 3.3.21 Data Element 1 is loaded to both buffers 

 

Since both pointers move in tandem, only one needs to be checked 

for EOB and although this technique takes a l i t t le more t ime to load, i t  

saves a lot more t ime during the unload. Since FIR fi l tering involves only 

0x41 0x42 0x43 0x44

EOB BOB

FSR1

0x400x39 0x38 0x44 0x45 0x37 

EOB BOB

FSR0

Buffer 0 Buffer 1

0x41 0x42 0x43 0x44

EOB BOB

FSR1

0x400x39 0x38 0x44 0x45 0x37 

EOB BOB

FSR0

Buffer 0 Buffer 1

1 1 
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a single load and N number of unloads (N being the number of 

coefficients) ,  over al l  this technique produces a tremendous savings in 

computation t ime for each FIR output calculat ion. 

 

After ‘1’  the next data sample is ‘2’  then ‘3’  then ‘4’  fol lowed by ‘5’  

and the buffer wil l  f i l l  in the manner i l lustrated in Figure 3.3.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3.22 Data Elements 1-5 are loaded to buffer 
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Unloading data from the buffer involves a s l ightly different technique 

than what is used for a s ingle buffer.  Since the FIR  f i l ter ing algorithm 

involves a convolution operation, after every fresh sample is stored the 

f i l ter needs to unload each data point in reverse chronological  order to 

perform computation. Since the size of the buffer is  known, say N ,  there 

is no need to test of e n d - o f - b u f f e r  or b e g i n n i n g - o f - b u f f e r  while 

pull ing the data because pointer FSR1 can now simply cross over from 

its own buffer into the adjacent one and always f ind the chronological ly 

correct sample,  s itt ing beyond the barrier of the adjoining buffer.  To 

i l lustrate the point say we wanted to pull  data from the current buffer.  

The last data sample stored was ‘5’  as shown in Figure 3.3.23. 

 

 

   

 

 

Figure 3.3.23 Buffer Data Ready to be unloaded 
 

Data can be pulled in ascending order or descending order depending 

on which of the two pointers are used. For FIR fi l ter calculat ions the 

order of the sample is not important because the coefficients are 

symmetric.  If descending order were desired we would f irst  relocate 

FSR1 to the same location as FSR0 as shown in Figure 3.3.24. 

 

 

 

 

      Figure 3.3.24 Pointer FSR1 is relocated to same location as FSR0 
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All  that remains now is to pre-increment the pointer and pull  the 

respective data sample from each location the pointer passes t i l l  i t  

returns to the posit ion it  started ( location 0x44).  

 

 The first data sample to be removed is ‘5’  as the pointer FSR1  pre-

increments from location 0x40 to 0x41, both operation in one cycle as 

shown in Figure 3.3.25. 

  

 

 

 

      Figure 3.3.25 FSR1 pre-increments and unloads data element 5 
 

 

Notice that data samples ‘5’ , ’4’ , ’3’  and ’2’  are in chronological  order 

across both buffers.  Since the buffer s ize is a constant,  4,  then four bl ind 

pre-increment operations wil l  unload the buffer and the pointer wil l  

automatical ly be returned to the point of insert ion of the next sample.  

Using this method neither EOB nor BOB needs to be checked while 

unloading the buffer.   
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The Figure 3.3.26 shows the f low-chart describing the algorithm for 

loading the adjacent circular buffers and Figure 3.3.27 shows the 

assembly language code written to implemented it .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.3.26 Algorithm for loading the adjacent circular buffers 
 

 
 

Figure 3.3.27 Assembly routine written to load the buffers 
 

SAMPLED DATA

FSR1 = EOB?

INSERT DATA
IN BUFFER1 

& 
POSTDEC FSR0

INSERT DATA
IN BUFFER2 

& 
POSTDEC FSR1

False

INSERT DATA
IN BUFFER1 

& 
FSR0 = BOB 

INSERT DATA
IN BUFFER1 

& 
FSR1 = BOB 

True
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The flowchart outl ines the algorithm for pull ing data from the buffers 

is  shown in Figure 3.3.28: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 3.3.28 Algorithm used to unload from adjacent circular buffers 
 
 

3.3.6 Sampling: Analog to Digital Conversion on 18F452 

 

The most convenient option for analog to digital  conversion is by 

using the integrated ADC module.  The built  in analog to digital  

converter uses a successive approximation algorithm and is capable of 

converting an analog voltage into a proportional 10-bit  number.  The 

ADC is capable of a maximum sampling rate of 52KHz for 10Bit 

conversions.  For 8-Bit conversions,  the maximum sampling rate is 

62.5KHz at same temperature and impendence [10].   

 

 

FSR1 = FSR0

PRE-INCREMENT FSR1
& 

Pull data 

PRE-INCREMENT FSR1
& 

Pull data 

REPEAT as many times as 
the buffer size 

stop 
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The value sampled by the ADC is stored in the register pair 

ADRESH/ADRESL. Each is 8 bits ,  ADRESH contains the high-byte and 

ADRESL holds the low-byte.  In order to configure the ADC module the 

ADC  control register pair ADCON0 and ADCON1 must be set with 

appropriate values.  

 

The analog-to-digital  converter module has eight input channels for 

the PIC 18F452. Each input is a separate channel mult iplexed with a 

common converter.  This al lows sampling of several  different sources in 

any specif ied order.  Since there is only one analog-to-digital  converter 

s imultaneous sampling is not possible using the internal ADC  module.  

The minimum wait t ime between the sampling of any two channels is  

cal led acqu i s i t i on  t ime . The acquisit ion t ime is a function of the 

ambient temperature and the source impedance. The maximum 

recommended source impedance or input impedance for analog sources is 

2.5K. For the FIR fi l ter only one channel is  needed but for the adaptive 

f i l ter two channels must be sampled nearly s imultaneously.  

 

The first task to setting up the ADC is to setup the control register pair 

ADCON0 and ADCON1. Both registers are eight bits wide and allow 

unrestricted read/write operations. The ADCON0 register controls ADC 

clock options, channel selection, and the bit GO/DONE in the ADCON0 

register can be polled in order to check if analog to digital conversion is 

complete. The ADCON1 register controls the remaining clock options, 

shared with ADCON0 and selects which pins are configured as digital and 

which are analog. In order to setup the internal ADC both registers must be 

loaded with the appropriate values.  
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Configuring ADCON0 involves setting five bits on the register. The 

following is the contents of the ADCON0 Register shown in Figure 3.3.29. 

 

 

 

 

 
 

Figure 3.3.29 Description of the ADCON0 Register 
  
 

    The ADC clock is derived from the main external osci l lator.  The PIC 

chip can run up to 40Mhz but the ADC clock cannot exceed 625KHz. 

Therefore the PIC must use a clock divide to scale the 40MHz external 

frequency to 625KHz, a factor of 64. Hence the ADCS1 and ADCS0 are 

1,  0 to make the clock divider equal to 64. The channel for FIR fi l ter is  

channel-0 hence the CHS2, CHS1, CHS0 are 0,0,0 and ADON is 1.  

  

ADCON0 = <1 0 0 0 0 1 0 1> or 0x85 

 

The ADCON1, shown in Figure 3.3.30, is  set in a s imilar manner as 

ADCON0 and it  contains:  

 

 

 

  

 

 

Figure 3.3.30 Description of the ADCON1 Register 
 

The ADC stores a 10-bit  result  in two 8-bit  registers.  The ADFM bit 

selects if  the result  is  left  just if ied or r ight just if ied. Since the FIR fi l ter 

ADCS1 ADCS0 CHS2 CHS1 CHS0 GO - ADON

BIT 7 BIT 6 BIT 5 BIT4 BIT3 BIT 2 BIT 0 

ADC Clock Speed ADC Channel Selection Start Sampling Power On 

ADFM ADCS2 - PCFG1 PCFG3 PCFG2- ADON

BIT 7 BIT 6 BIT 5 BIT4 BIT3 BIT 2 BIT 0 

Result Justification PORT configuration 

BIT 1 

Clock conversion 
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is going to use 8-bit  samples instead of 10-bit  samples,  ADFM wil l  be set 

to 0 to make the result  left  just if ied. A simple way to get a fast 8-bit  

approximation of the 10-bit  sample is to only read the ADRESH  register 

as i l lustrated in Figure 3.3.31. 

 

  

 

 

 

 

Figure 3.3.31 Reading Only ADRESH wil l  scale down to 8-bit  
 

The ADCS2 bit is  set to 1 to make the clock divide equal to 64 as 

discussed before.  Bits <PCFG3, PCFG2, PCFG1, PCFG0> are set to 

1,1,1,0 respectively.  This al lows pins A0 to be analog while al l  other pins 

are made digital .  Since technical ly only a s ingle analog pin is required to 

make a FIR fi l ter .  If more analog pins are needed then this register needs 

to be changed. The ADCON1 register is  loaded with the fol lowing: 

 

ADCON1 = <0 1 0 0 1 1 1 0> or 0x4E 

 

VD D and VS S are used as voltage references with this configuration. 

 

 The FIR fi l ters performance depends not only on sampling signals 

accurately but also on a chips abi l i ty to maintain a constant sampling 

rate.   To this end, one of the PIC chips three hardware t imers;  t imer1 is 

dedicated to performing analog to digital  conversion at a periodic rate.  

This is  a 16-bit  t imer that derives i ts t iming from the external clock 

source and interrupts the PIC chip when it  overflows. Once the t imer is 

engaged it  counts from 0 t i l l  65535 at the what ever speed it  been 

clocked and at the end of i ts count generates an interrupt.  

 

ADRESH ADRESL 
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 In order to make a constant sampling rate the t imer is not al lowed to 

start from 0 but instead made to start from some offset value from which 

it  wil l  pass 65535 at a predictable interval s ince the clock speed to the 

t imer is known. This offset value is calculated using the fol lowing way: 

 

_
1 _ 65535

4 * * _
(3.2)external osc

timer offset
prescaler sampling rate

= −  

 

In this case,  the external osci l lator (external-osc )  is  40 MHz and the 

user determines the sampling rate in the design stage. 

 

The interrupt service routine for t imer1 wil l  a lso perform al l  the 

calculat ions required of the f i l ter and before exit ing the Interrupt Service 

Routine (ISR) the result  of the f i l ter is  generated.  

 

 

3.3.7 Filter Calculations 

 

Three different strategies are used to perform the necessary f i l ter 

calculat ions.   

 

1.  Optimized for maximum Speed 

2. Optimized to use minimal Ram 

3. Optimized to generate smallest program size.  

  

All  three strategies make use of the same general  idea but are 

different in the way the data is buffered and computation is performed. 

In general  the real izat ion of FIR fi l ters is obtained by the direct 

computation of the Equation 3.3 [12].   

 

[ ] 1
0 0

1 *[ 128] [ 1]*128 (3.3)
N N

n Ny x n N K x n N−= − + + − − +∑ ∑  
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The equation presented above is a variat ion of the classical  FIR fi l ter 

equation that is presented in most books:  

 

1
0

[ 1]* (3.4)
N

n Ny x n N k −= − +∑  

 

In both Equations 3.3 and 3.4,  the term yn  is  the output of the f i l ter 

and is computed by the l inear convolution of the coefficient matrix KN  

and the discrete sample vector xn .  Both equations perform exactly the 

same computation and produce the same results however Equation 3.3 is 

far more PIC18F452 architecture-fr iendly because the signed 

mult ipl icat ion operation in Equation 3.4 has been removed. This wil l  

a l low PIC to maximize the use of the unsigned hardware-mult ipl ier in the 

PIC hardware.    

 

The only difference between Equation 3.4 and Equation 3.3 is that in 

Equation 3.3 the tap co-efficient vector KN, which contains signed 

numbers ranging from –128 to +128 are made unsigned by adding to 

them the integer 128. In order to balance the result  from the offset 

coefficients i t  becomes necessary to subtract 128*Σ xn  from yn . To 

i l lustrate this point,  consider the fol lowing analogy. If we wanted to 

calculate the A ,  which is a product between 8-Bit s igned integer B  and 8-

Bit unsigned integer C ,  i t  wil l  be given by: 

 

       A = B * C       (3.5) 

 

The above computation wil l  require a s igned mult ipl icat ion however if  

we modified the above equation in the fol lowing manner:  

 

    E = B*(C+128) – B*128     (3.6) 
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then we ult imately achieve the very same result as A  and avoid the signed 

mult ipl icat ion altogether.  

 

        A = E  (3.7) 

 

3.3.8 Implementation for Shortest Execution Time 

 

As stated before, three different implementations are possible using the 

filter design system. The first has the shortest possible execution time and 

possibly the most attractive implementation of all. The short execution time 

is achieved at the expense of higher RAM usage, since two adjacent circular 

buffers are used to store ADC samples instead of one. This doubles RAM 

use and also produces a much larger program, because to fully make use of 

the double buffer, the main multiply-accumulate loop is unrolled allowing 

for program to approach its theoretical minimal computation time, given 

the data word length constraints that is used by the program [12].  

 

The implementation is spl it  into two routines.  The f irst  one is the 

in i t i a l i za t ion  Rout ine  and the second is the Computa t ion  Rout ine .   The 

in i t i a l i za t ion  rout ine  runs just once when the program begins and it  

serves only to init ia l ize the buffers and other variables that are required 

for FIR fi l ter calculat ions.  The computa t ion  rout ine  performs al l  

calculat ion mandated by the f i l ter and runs inside the interrupt service 

routine of t imer1. With the confinement of al l  f i l ter calculat ions inside 

the ISR, we achieve a degree of isolat ion making it  possible for any main 

application to use the f i l ter and not interfere with its operation or 

t iming.  

 

Memory Usage: The PIC 18F452 chip contains 1536 bytes of RAM 

and two addressing modes. There is direct-addressing and indirect- 

addressing. Indirect-addressing uses three pointers — FSR0, FSR1, FSR2 
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and each pointer is 12-Bit wide, with a 4-Bit select bank and 8-Bit select 

location within a bank. All  memory use for the FIR fi l ter is  restr icted to 

a single bank, thereby l imit ing the avai lable memory for ADC samples 

and fi l ter coefficients to a total  of 256 Bytes.  The obvious advantage of 

l imit ing al l  pointers use to a s ingle bank is the speed that is gained 

because the pointers can be used faster if  the bank does not need to be 

set before every cal l .  Three buffers are used — a stat ic buffer for tap 

coefficients that is  loaded and init ial ized at start up and two identical  

adjacent circular buffers for the incoming ADC samples.  All  three 

buffers are of the same size and each buffer is  given its own hardware 

pointer.  Consider Figure 3.3.32 showing memory footprint 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

         Figure 3.3.32 RAM used by the FIR filtering scheme 
 

The buffers for the tap coefficients and ADC values can be of 

variable size,  s ince the number of FIR fi l ter coefficients is not f ixed. The 

total  memory al located to the buffers cannot exceed 226 bytes.  No buffer 

can be larger than 75 elements.  Hence this design does not al low for FIR 

fi l ters larger than 75 taps.  The MATLAB user interface wil l  generate a 
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Additional Filter 
Variables (30 Bytes) 
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warning if  the user specif ies a f i l ter that generates more than 75 

coefficients and the user is prompted to either accommodate fewer taps 

or select a different implementation strategy.  

 

Filter Processing: (Initialization Routine) 

 

If  the f i l ter is  to produce an output,  then an output port needs to be 

assigned, the f irst  step of the init ia l izat ion routine being the setup of an 

I/O port.  Analog to digital  converter is set to 8-Bit mode by simply left-

shift ing the results and reading the ADRESH register (See  3.3.6) .  

 

The t imer1 interrupt must be set to sample at the user specif ied 

sampling rate.  All  f i l ter processing is conducted in the t imer interrupt.  

There are three registers associated with Timer1. These are T1CON ,  

TMR1H ,  and  TMR2L. The f irst  is  the control register the other two are 

offset registers that are used to init ial ize the t imer.  Timer1 can be setup 

as an 8-bit  as well  as 16-bit  as shown in Figure 3.3.33. 

 

 

 

 

 

 

Figure 3.3.33 Description of the T1CON Register 
 

In order to setup the t imer bit  RD16 = 1, T1CKPSX is calculated in 

Matlab and set based on user specif ied sampling rate.  T1OSCEN, 

T1SYNC are not used, TMR1CS = 0 to specify internal clock and 

TMR1ON is 1 to power on the t imer.  

 

The t imer offset is  calculated using equation discussed in section 

3.3.6.  The 16-Bit offset is  loaded into register pair TMR1L, TMR1H. All  

RD16 - T1CKPS1 TMR1CS T1OSCN T1SYNCT1CKPS0 TMR1ON

BIT 7 BIT 6 BIT 5 BIT4 BIT3 BIT 2 BIT 0 BIT 1 

16/8 mode 
select 

Timer1 Input Pre-scale Bits Oscillator 
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External 
Clock Sync

Edge 
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the registers are automatical ly loaded by code generated by the MATLAB 

program based on the sampling frequency selected by the user.  

 

Before the t imer is engaged the init ial izat ion routine loads the 

coefficients into the coefficient buffers and both the ADC buffers are set 

up, thereby init ia l izing the pointers.  Pointer FSR0 is used to load the co-

efficient buffer and pointers FSR1, FSR2 are used to address the ADC 

buffers.  ADC buffering method is discussed in detai l  in section 3.3.5.  

Once al l  the buffers are init ia l ized the t imer1 is started. 

 

Filter Processing: (Computation Routine) 

 

The computation routine involves the real-t ime implementation of the 

FIR fi l ter ing algorithm given in Equation 3.8.  

 

[ ] 1
0 0

1 *[ 128] [ 1]*128 (3.8)
N N

n Ny x n N K x n N−= − + + − − +∑ ∑  

 
   

 

In order to compute f i l ter output Yn or Equation 3.8 is broken into 

three different Equations 3.9,  3.10 and 3.11. 

 

                  [ ]1 1
0

1 *[ 128] (3.9)
N

Ny x n N K −= − + +∑  

 
 

                 
0

[ 1]*128 (3.10)
N

x x n N= − +∑ ∑  

 

   

   1 (3.11)nY Y x= − ∑  

Multiply & Accumulate(Y1)  Accumulate (Σx)  

Sample vector Tap Coefficients 

Sample Sum 
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Equation 3.9 is implemented using a f ixed-point mult iply-accumulate 

operation block. The MAC block is repeated for N times t i l l  y1  is  

computed. A 24-Bit register comprised of three 8-bit  registers is  assigned 

to hold the MAC result  shown in Figure 3.3.34. 

 

 

 

 

 

                Figure 3.3.34 Word space dedicated to storing MAC result  
 

Equation 3.10 computes the sample-sum of al l  the samples held in the 

ADC buffers.  Σx is given a 16-Bit unsigned variable comprising to 

register pair ΣxL O W and ΣxH I G H ,  shown in Figure 3.3.35 .  It is  calculated 

with minimal computational effort by simply subtracting from the total ,  

the oldest ADC sample and adding the newest one every t ime a new 

sample is made. Thus a running total  of al l  the samples in the buffer is  

constantly maintained without having to add up every value in the buffer 

each t ime a new sample is added to it .  

 

   

 

 

 

 

     Figure 3.3.35 Word space dedicated to storing Sample Sum 

 

Σx  has to be mult ipl ied by 128 and subtracted from Y1  to obtain f inal  

output Yn. An efficient way to mult iply by 128 is to copy the sum into 

another 24-bit  variable i .e .  moving ΣxL O W to 255ΣxM I D  and ΣxH I G H  to  
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255ΣxH I G H  and clearing the 255ΣxL O W  will  do an implicit  mult iply by 255 

as shown in Figure 3.3.36. 

  

 

 

 

 

 

 

 

 

 

Figure 3.3.36 Mult iply by 256 algorithm 
 

Once moved a single r ight-shift  with carry on al l  three registers 

produces the required mult iply by 128 shown in Figure 3.3.37. 
 

 

 

 

 

Figure 3.3.37 Mult iply by 128: Single Right shift  of each byte 
 

The MAC block for computing Y1  uses three buffers that are located 

in RAM. The Buffers shown here are 4 elements long but can extend up 

to 75 elements depending on fi l ter requirements.  All  buffers are 

dynamical ly scaled depending on fi l ter requirements.  A double buffering 

scheme is used for storing ADC samples and a single stat ic buffer is  used 

to store f i l ter tap coefficients.  FSR0, FSR1 and FSR2 pointers dedicated 

to each buffer as shown in Figure 3.3.38 and Figure 3.3.39. 
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Figure 3.3.38 Buffer setup for storing ADC samples 
 

 

 

 

 

  

 

Figure 3.3.39 Buffer setup for storing Coefficients 
 

 
The MAC cycle accumulator occupies three bytes of memory to store 

a 24-bit  number as shown in Figure 3.3.40. 

 
 
 
  
 

 
 
 

           
            Figure 3.3.40 24-Bit Result store for MAC operation 
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Given the above constraints of 8-bit  unsigned coefficients,  8-bit  ADC 

samples and 24-Bit accumulator the quickest possible MAC on the PIC 

18F452 is shown in Figure 3.3.41. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     Figure 3.3.41 Multiply-Accumulate Algorithm 
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The entire MAC cycle lasts 800ns and the assembly code generated for 

i t  is  as fol lows: 

 
movf    POSTDEC0,W // Move e l ement pointed by FSR0 to (W) 

mulwf   POSTINC2  // Mult ip ly  FSR2 and Post - increment  

movf     PRODL,W  // Move Product  Low-byte  to  (W) 

addwf   output_least   // Add (W) to the MACL O W 

movf     PRODH,W  // Move Product  High-Byte  to  (W) 

addwfc   output_middle  // Add carry + (W) +  MACM I D 

c l r f       WREG  // Clear (W) 

addwfc    output most             // Add carry + (W) +  MACH I G H 
 
 

In order to complete the implementation of Equation 3.10 the pointer 

FSR2 is f irst  moved to the same location as FSR1 then the MAC block is 

repeated as many t imes as the f i l ter order.  This way there is no need to 

check for end-of-buffer or the beginning-of-buffer  and final  MAC block 

terminates with the pointer automatical ly returned to the exact point of 

insert ion of the next incoming sample.  Figure 3.3.42 is a f low diagram 

for the init ia l izat ion routine for a 4-tap FIR fi l ter .  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.42 Init ia l izat ion Routine for Fastest Execution 
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Figure 3.3.43 is a f low diagram for the computation routine the fastest 

execution t ime version of a 4 tap FIR fi l ter .  

 

 

 

 

 

 

  

 

 

 

  

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

       Figure 4.3.43 Fastest Execution Implementation for PIC 18f452 
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3.3.9 Implementation for Efficient RAM utilization 
 

The use of two circular buffers for storing ADC values is at t imes not 

acceptable due to its extensive RAM overhead. Since the FIR fi l ter is  

typical ly used as a supplementary application, i t  must therefore share the 

avai lable RAM with a main applicat ion. It  is  for this reason a less 

memory greedy implementation scheme is developed. 

 

This scheme uses most of the same ideas as the previous method. The 

coefficients are stored in memory in the same manner as before but the 

MAC cycle is computed differently because since there is only one buffer 

and both the end-of-buffer and beginning-of-buffer needs to be checked. 

The detai ls  of the circular buffer are presented in Section 3.3.5.  Figure 

3.3.44 is a f low diagram for the init ia l izat ion routine for a 4 tap FIR 

fi l ter .  

 

 

 

 

   

 

 

 

 

       Figure 4.3.44 RAM efficient Implementation for PIC 18f452 
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Figure 3.3.45 is a flow diagram for the computation routine the fastest execution time 

version of a 4 tap FIR filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3.45 RAM Efficient Implementation for PIC 18f452 
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3.3.10 Implementation for Minimum Program Memory Use 

 

The implementation strategy is exactly l ike the f irst one where 

maximum execution speed was attained. In order to reduce program size,  

the main loop for the MAC cycle is not unrolled. Instead three more 

instructions are added into the MAC cycle.  The computation cycle is 

shown in Figure 3.3.46. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.46 Minimum Program Size Implementation 
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3.4 Implementation of  the f loating-point LMS filter 
 

Unlike the FIR fi l ters that have predetermined coefficients,  

implemented as constant data,  the coefficients of the Least-Mean Square 

(LMS) f i l ter are adaptive and continuously change as a response to input.  

Due to this reason, several  complications must be dealt  with while 

designing and implementing them in hardware.  Since the coefficients or 

f i l ter weights change with input,  they may grow so large they overflow 

the word-space assigned to them during design t ime.  

 

Stabi l i ty of the LMS fi l ter is  not as easi ly guaranteed as i t  is  for FIR 

fi l ters.  The constantly adapting coefficients are control led by a f ixed 

value cal led the learning-rate .   Determining an optimal value for the 

learning rate requires experience gained from simulations and as the 

order of the adaptive f i l ter increases,  thus choice for an appropriate 

learning rate becomes even less intuit ive.  Rigorous simulations were 

conducted before attempting to perform real-t ime implementation. 

 

The choice of the f loating-point system was used to perform the 

implementation because the f loating-point system provides both 

convenience and degree of immunity against both rol l-off errors as well  

as al lowing for wider lat i tude in the selection of learning-rate.  

 

3.5 The compilers f loating point system 
 

The compilers built  in math abil i t ies were evaluated to perform the 

necessary f i l ter computations but later found to be inadequate because 

they were extremely slow. The lack of speed is attr ibuted to several  

factors.  First ly ,  the compiler used generic routines that are designed to 

work on the entire PIC family rather than applying hardware specif ic 

optimizations for the PIC18452 chip. Secondly the generic algorithms are 
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optimized to be compact and not for speed. This decision is certainly 

well  warranted as f loating point algorithms written for chips that do not 

contain f loating point hardware can use a lot of code and the lower 

members in the PIC family have modest s ized program memories.   

 

In order to real ize the LMS fi l ter on the PIC 18 chip it  became 

necessary to f irst  develop a set of f loating-point routines that are 

optimized for the hardware at hand. New math routines were optimized 

for speed and designed to perform floating-point calculat ions much 

faster than the compilers generic algorithms. A standard f ixed-point 

real izat ion might have been more efficient however in the long run a 

highly optimized f loating point l ibrary is far more useful as i t  is  a 

reusable resource and easi ly applied to many other projects in the future.  

 

3.6 Floating-Point Word lengths 
 

The word lengths used to define the stored values were selected from 

information gathered from simulations.  Figure 3.6.1 shows the word 

lengths that were assigned to the f loating-point format numbers were 

used in the implementation of the LMS fi l ter .  

 

 

 
 
  

             Figure 3.6.1 Assigned Word Length for Floating Point Format 
 

The al located word space is 1-bit  for s ign, 16-Bits for the fractional 

part of the number and 8-bits for the real  part of the number.  This 

al lowed for the possible range of [255.000000 to –255.000000]  with the 

smallest possible magnitude of 0.000015 .  This was determined to be 

sufficient resolution to be able to handle the computation requirements 

of the LMS fi l ter .  The next step was to develop functions that would 

SIGN FRACL FRACH REAL 

1bit 8bits 8bits 8bits



 

 56

conveniently perform type conversions from the standard IEEE floating 

point to this modified f loating point.  Addit ional ly other functions were 

developed to perform hardware-optimized operations such as signed 

mult ipl icat ion and signed addit ion and a high-speed re-scal ing algorithm 

was added to convert a number between [0 255] to [-0.5 0.5] .   

 

The fol lowing ideas were used to accelerate f loating-point 

mathematics using the PIC hardware. Parameter passing was found to be 

the f irst  obvious over-head because each math operation required the 

passing of variables into temporary ones that were then used to compute 

results .  The computed result  needed to be passed to the output variable.  

It  takes 2 cycles to move a single byte from one register to another and 

considering large numbers occupy up to 4 bytes a total  of 24 cycles were 

spent simply in the parameter passing. This overhead is easi ly avoided if  

hardware pointers are used to directly reference data.  Since The PIC chip 

has 3 hardware pointers,  2 are used to reference the two input 

parameters and the last one is used to reference the output parameter.  

This al lows efficient movement of data through memory and since the 

pointers auto increment or decrement,  addit ional cycles are not lost to 

pointer overhead. 

 

 
FUNCTION DESCRIPTION      TIME@40Mhz 

void fixIeee(* float, *mfloat) IEEE float -> modified float Worst case (40us) 

void fix8x16(float, *mfloat) modified float -> IEEE float Worst case(40us) 

void add(void) adds 2 modified signed floats 5 us 

void mul(void) multiply 2 modified signed floats 3 us 

255/integer -> mfloat Normalize [0  255] -> [0.00  0.99] 400ns 

Table 3.6.1: Function list developed for floating point math on PIC 
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3.6.1 Algorithm developed for f loating point multiplication 

 

The mult ipl icat ion algorithm operates on two floating-point variables 

each stored in RAM in the format described Figure 3.6.2.   

 

 

 

  

 

 

  

 

 

  

 

 
                  Figure 3.6.2 Memory footprint of floating point numbers 

 
 

Numbers A, B and C are stored in RAM and each is given 4 bytes of 

memory. FracL  and FracH  make up the fractional portion given 16-bits of 

storage the real  part or the integer part  is  given 8-Bits of storage each. In 

order to save t ime from parameter passing, pointers FSR0 ,  FSR1  and 

FSR2 are used to manipulate the f loating-point variables.  The 

mult ipl icat ion algorithm is designed to take advantage of both the 

hardware-mult ipl ier to compute the products of integer and fractional 

portions and PIC18  memory addressing features that provide single cycle 

pointer operation and advance.  
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The formal algorithm for mult ipl icat ion is described next.  The three 

numbers are setup in memory as shows in Figure 3.6.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.3 Developed Algorithm for Multiplication 
 

The step-by-step i l lustrat ion of the above algorithm is presented next 

along with the assembly code that was written to implement it .  The 

purpose of such a detai led presentation is to clarify pointer use in the 

PIC18F452 chip and to show the functional ity of the algorithm.   

 

Step 1 shown in Figure 3.6.4,  the numbers to be mult ipl ied are stored 

in RAM  and each is given it ’s  own dedicated pointer as shown below. 

The first step is to determine the sign of the computed product.  

Begin Multiplication

Csign = A sign XOR B sign 

C<FracL:FracH> = AfracH*BFracL

<PRODL:PRODH> =  AReal* BFracH

Cfrac = Cfrac + PRODL 
Creal = Creal + PRODH + Carry

<PRODL:PRODH> =  BReal* AFracH

Cfrac = Cfrac + PRODL 
Creal = Creal + PRODH + Carry

<PRODL: PRODH> =  BReal* AReal 
Creal = Creal + PRODL + Carry 

END Multiplication
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Evaluating the XOR  of the signs of the two numbers being mult ipl ied 

results in the sign of C .  

 

 

 

 

 

 
 

 

 

 

 

Figure 3.6.4 Mult ipl icat ion Step 1:  C s i g n  = A s i g n  XOR B  s i g n  
 

 

Step 2 shown in Figure 3.6.5,  the fractional portion of the result  C  is  

evaluated next by computing the product:  C<FracL: FracH> = 

AfracH*BfracH. 
 

 
 

 

 

 

 

Figure 3.6.5 Mult ipl icat ion Step 2:  C<FracL: FracH> = AfracH*BfracH 
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Step 3 shown in Figure 3.6.6,  The real  part of result  C  is  evaluated 

next by computing the product of AR e a l*BF r a c H  and adding the low-byte of 

the product to Cfra c  and adding the high-byte of the product to Creal with 

the carry from the previous addit ion.  

 

 
 

 

 

 

Figure 3.6.6 Mult ipl icat ion Step 3:  ARea l* BFracH 
 

 

Step 4 shown in Figure 3.6.7,  The real  part of result  C  is  evaluated 

next by computing the product of AF r a c H*BR e a l  and adding the low-byte of 

the product to Cfra c  and adding the high-byte of the product to Creal with 

the carry from the previous addit ion. 

 

 
 

 

 

 

 

Figure 3.6.7 Mult ipl icat ion Step 4:  AFracH* BRea l  
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Step 5 shown in Figure 3.6.8,  The real  part of number A  and the real  

part of number B  are mult ipl ied next and the low byte of the result  is  

added to the real  part of number C .  This concludes the mult ipl icat ion 

operation. 

 

 
 

 

 

 

   Figure 3.6.8 Mult ipl icat ion Step 5:  ARea l* BRea l  
 

There are no condit ions to be checked in the algorithm hence the 

two-stage pipel ine of the PIC chip is constantly maintained. All  

instructions are single cycle (100ns) with the exception of the register-to-

register move instruction (movf f) ,  which is two-cycle (200ns).  The total  

t ime used by this algorithm is 3us.  An addit ional advantage is that this 

algorithm always takes the same amount of t ime to execute.  The 

compilers worst case f loating point mult ipl icat ion algorithm is 45us 

according to their published manual [3] .  

 

The use of the mult ipl icat ion algorithm in C-language is demonstrated 

next.  No condit ion checking is avai lable to determine and warn users 

about over and underflows in the interest of eff iciency. Figure 3.6.9 is 

the C-code needed to use the mult iply function. 

 
Figure 3.6.9 C-Code for floating point multiplication 
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3.6.2 Calling The Floating-Point Add in C 
 

The algorithm developed for performing f loating-point addit ion was 

implemented along the same l ines as the mult ipl icat ion algorithm. Both 

operate on the same type of data format and both use hardware pointers 

to reference data.  

 

  

Figure  3.6.10 C-Code for floating point addition 
 
 

3.6.3 Algorithm developed for f loating-point addition 
 

The f loating-point addit ion algorithm was developed keeping in mind 

the fact that nether of the input parameters are corrupted during the 

addit ion process.  To clarify the point assumes that two numbers A and B 

are being added to calculate C. After the addit ion is completed neither A 

or B wil l  change in value.  The algorithm would have been sl ightly shorter 

if  this constraint were removed, however we would loose the abi l i ty to 

perform MAC operations where parameters are added to themselves.  The 

detai led algorithm is i l lustrated in Figure 3.6.11. 
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   Figure 3.6.11 Developed Algorithm for Addit ion 
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3.6.4 Converting integer to f loating-point format 
 

A quick way to convert integer values to f loating-point needs to be 

implemented because data read in by the analog-to-digital  ranging from  

[0 255] needs to be converted to f loat range between [-0.5,  0.5] .  

 

( int) 128( ) (3.12)
256

unsigned NNfloat float −
=  

 

A division operation is out of the question because it ’s  

computational ly prohibit ive if  performed in real  t ime. Instal l ing a look 

up table was the f irst  option however a more elegant approximation is 

given in Figure 3.6.12. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 3.6.12 Developed Algorithm for Mult ipl icat ion 
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// Number is Negative 
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3.7 Implementation of  a 4th order real-time LMS algorithm 
 

The topology of the LMS algorithm used is i l lustrated f irst .  The f i l ter 

samples two channels where Yk is the signal that needs to be f i l tered and 

Xk is the reference. W0,  W1,  W2 and W3 are al l  weights or f i l ter 

coefficients of the LMS fi l ter .  These are init ia l ized as 0 however as the 

f i l ter trains the weights converges to a solution value.  The variable ek  is  

cal led the error signal and it  is  both the output of the f i l ter and the 

feedback signal that trains the f i l ter weights.     

 

 
 

Figure 3.7.1 Fourth Order LMS Filter 
 

The fi l ter equations are to be implemented and computed in real-t ime 

in the PIC 18F452 chip are presented next.  The error signal ek  is  

evaluated by a dot product of the weight vector Wk and the reference 

signal vector Xk and is calculated using the Equation 3.13. 
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1
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⎡ ⎤
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After each iterat ion the f i l ter weights or sometimes known as f i l ter 

coefficients must be updated using the feedback error value ek and 

update values for each of the weights are calculated separately using the 

fol lowing Equations 3.15a,b,c and d. 

 

1 1

2 2 2

3 3 2

1' * * (3.15 )
' * * ( )
' * * ( )
' * * ( )

k

k

k

n n k n

W W e X a
W W e X b
W W e X c
W W e X d

ε
ε
ε
ε

= +

= +
= +
= +

 

  Where,  

ek :  Fi lter Output (used to train the f i l ter weights) 

Wn: Weight Vector also known as Fi lter Taps 

ε  :  Learning Rate (controls rate of descent) 

 n:  Fi lter Order 

 

All variables used in here are in the f loating-point format and the 

f loating-point math algorithms described in the previous section are used 

to handle the computational load of the f i l ter .  

 

3.7.1 Sampling noise and reference for LMS filter 
 

Two channels of the PIC18F452 ADC are used to sample for the LMS 

fi l ter .  The f irst  channel samples the noise Yk and the second channel 

samples the reference Xk. Shown in Figure 3.7.2.  

  

  

 

 

 

 
Figure 3.7.2 Sampling for LMS 
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The LMS fi l ter doesn’t  have to necessari ly be used with audio as the 

i l lustrat ion above suggests.  It  can be used with any two signals that are 

correlated. The Analog to digital  converters are used with 8-bits of 

precision and are configured exactly l ike the FIR fi l ters except 2 

channels are used for this f i l ter instead of one. The sampling used to 

implement a 4 t h  order LMS fi l ter was 8000 Hz. 

 

Configuring the ADC involved writ ing the appropriate registers as 

shown in Figure 3.7.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7.3 Configuring ADC for Sampling Two Channels 
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3.7.2 Program Outline for 4th order LMS filter 

 

Like the FIR fi l ter ,  the Implementation scheme for the LMS fi l ter is  

also presented as two routines.  First ly the init ial izat ion routine, where 

the variables and buffers are init ia l ized and al l  the hardware that plays a 

part in LMS are init ia l ized for use and secondly the computation routine  

in which the LMS algorithm is computed. The computation routine,  l ike 

the FIR fi l ter ,  runs entirely in the interrupt service routine of a t imer,  in 

this case t imer 2 was used. 

  

The f loating-point variables for Wk  ,  ∆Wk  ,  Yk  ,  Xk  ,  Hk  ,  ek are al l  

declared as structures with four members,  Sign, FracH, FracL, and Real .  

Data collected in real-t ime by the ADC’s include one 8-bit  sample value 

for the signal and four buffered 8-bit  sample values for reference. Both 

signal and reference need to be converted into f loating-point format 

before they can be processed. A single 4-point circular buffer is  used to 

store four values of reference. Figure 3.7.4 presents the init ia l izat ion 

routine for the 4 t h  order LMS algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7.4 Initialization Routine for LMS 
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Computation Routine for LMS: Buffering schemes  

 

Most variables used in this f i l ter are declared as global structs and are 

not dynamical ly written or read. However,  the reference signal sampled 

by the ADC needs to be saved in chronological  order for LMS 

calculat ions.  A four element circular buffer was used to store and 

maintain the ADC samples of the reference signal as 8-bit  unsigned bytes 

per sample as shown in Figure 3.7.5.  

 

 

  

 

 

 

 

Figure 3.7.5 Four element ADC sample bvffer for LMS 
 

The ADC samples have to be converted into f loating-point format 

and stored in the appropriate structs eff iciently before the can be used 

for LMS. To achieve this the structs are declared in chronological  order 

for storing reference samples in f loating-point format and placed 

sequential ly in RAM and a single pointer is used to load al l  the structs 

with data pulled from the circular sample buffer.  Once al l  structs are 

loaded they can be addressed as ordinary variables during computation 

t ime.  Essential ly the structs are loaded dynamical ly and read stat ical ly as 

if  the were the union of four structs and a 16 byte array as shown in  

Figure 3.7.6.   
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0 0 0 0 

0x65

Reference Sample Buffer 
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Figure 3.7.6 Arangements of Structs in Memory 
 

Computation Routine for LMS: Level 1 

 

The Implementation of LMS algorithm in the PIC18F452 chip fol lows 

the fol lowing basic steps as shown in Figure 3.7.5.  The level 1 f low 

diagram shows an over view of the instal lat ion. The entire algorithm is 

t iming sensit ive and there fore it  runs in the ISR of t imer 2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7.7 Level 1 Flow Diagram for LMS   
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Figures 3.7.8 show the contents of the ISR in detai l  and Figure 3.7.9 

shows in expanded form the detai led computational section of the LMS 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7.8 Level 2 Flow Diagram for LMS  
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The detai led computational f low diagram of the LMS algorithm is 

given in Figure 3.7.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7.9 Level 3 Flow Diagram for LMS 
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3.8 Hardware Test Circuit 
 

The same test circuit  was used for both FIR and LMS fi l ter .  Figure 

3.8.1 is a block diagram of the circuits that are used. 

 

 

 

 

  

 

 

 

 

 

 

Figure 3.8.1 Block Overview of Circuit  
 

The power supply board was developed to provide the fol lowing 

voltages from a unregulated 12V+ power supply.  This board is labeled 

optional because it  was developed purely to make convenient voltage 

supplies and references.  The board provides the fol lowing voltages.  

 

a .  Regulated 5V / 1A (Power for PIC 18F452 and other IC’s) 

b. Regulated 2.5V (Offset Voltage for Amplif iers) 

c.  –5V/100mA Unregulated (DC/DC) 
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3.9 Detailed Schematic of  the Power Supply  
 

The power supply board uses the TC1121 DC/DC converter to 

generate the –5 supply.   The 5V supply is regulated by the 7805 and the 

2.5 Volt reference level is  generated with a zener.  All  the voltages are 

derived from a 12 V external supply.  

 

 
 

Figure 3.8.2 Power Supply Board 
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3.10 Detailed Schematic: Smoothing Filter  

 

The output signal from the R-2R fi l ter must be buffered and 

smoothed before it  can be sent for data analysis .  To that end the Maxim 

291 switched capacitor f i l ter is  used. The fi l ter is  clocked with a small  

PIC chip PIC 12F629. The f irmware for the switch capacitor f i l ter clock 

signal is  in Appendix D. 

 

 

Figure 3.8.3 Smoothing Filter for R-2R Ladder 
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3.11 Detailed Schematic: Signal Conditioning Board 

 

The signal condit ioning board contains amplif iers to scale two signals 

from the l ine out of the PC sound card or external microphones to the 0 

to 5 volt range so they can be sampled by the analog two digital  

converters as shown in Figure 3.8.4.   

 

 

Figure 3.8.4 Signal Condit ioning Block 
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3.12 Detailed Schematic: Signal Processing Board 
 

The signal processing board is bui lt  around the PIC18F452 chip. It  

contains the bare minimum circuitry that is  required by the f i l ter .  The 

DAC uses a R-2R ladder to generate an output for convenience.  

  

 
 

Figure 3.8.4 Block Overview of Circuit  
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3.13 Photograph of  PIC18F452 based Filter 

 

This photograph of the test device,  shown in Figure 3.8.5,  was built  

to val idate the f i l ters designed and built  during this project .  

  
 

  
 

Figure 3.8.5 Photograph of Test Board  
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  C H A P T E R  4 :  R E S U L T S  F R O M  R E A L - T I M E    

 
All data acquisit ion was performed using a PC based audio processing 

program cal led Wavlab™ Pro by Steinberg [14].  The program used the 

PC microphone input for data acquisit ion and contained a powerful set 

of visual izat ion and analysis functions.  This technique for data 

acquisit ion proved to be both elegant and efficient.  The same software 

was used to generate various frequency sweeps that were used as input 

data to the PIC chip. LMS fi l ters were also tested using the same 

apparatus.    

 

4.1 FIR FILTER: Data Acquisition Setup 

 

The apparatus setup for FIR fi l ter test ing is i l lustrated in Figure 4.1.1.  

In order to test the circuit  with control led waveforms, they were 

generated on a PC and send to the processing board via the l ine out of 

the sound card. The PIC board sampled the signals on the l ine out and 

after applying the processing LMS, send the DAC output back to the PC 

sound card, where it  is  sampled and stored as a wave f i le .  This f i le is  

analyzed in WavLab™ [14] and results are presented.  

   

 

 

 

 

 

 

 

 

 

Figure 4.4.1 Basic setup for low-cost data acquisit ion 
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4.2 FIR FILTER: Real-Time Testing Results 

 

Several  f i l ter configurations were tested to val idate and verify the 

operation of the FIR fi l ter in the PIC chip.  Matlab was used to generate 

f i l ter coefficients (Taps) that were then transferred to the PIC chip. 

 

LOW PASS FILTER: Testing and Analysis 

  

The first test was a basic low pass f i l ter with the fol lowing 

parameters.  The f i l ter i l lustrated in Figure 4.2.1 was generated with the 

PIC fi l ter design software developed for MATLAB during the course of 

this research. The low-pass f i l ter in Figure 4.2.1 was made with the 

desired attenuation of 50dB in the stop-band [0.6K-1K] with a 1KHz 

cutoff.  
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Figure 4.2.1 Response Curves of Intended Filter   

 
The sampling frequency is 8000Hz al lowing the sampling of up to 

4000Hz. Once the PIC was loaded with the f irmware it  was then tested 

using the test-signal shown in Figure 4.2.2.  The test-signal is  a constant-

power frequency sweep 10 seconds long from [200 Hz to 4000 Hz].   The 

sweep has constant amplitude in t ime domain and the frequency steadily 
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increase from 200Hz up to 4000Hz. Since the f i l ter is  designed to begin 

attenuation at 600Hz and reach 50dB at 1000Hz, the analysis of the test 

s ignal after running through the PIC fi l ter should show how well  the 

f i l ter worked. Since this is  a constant-power sweep the amplitude of the 

sweep attenuates with increasing frequency in as the FFT chart .   

 
 

Figure 4.2.2 Test Signal :  Constant Power Sweep [200Hz-4000Hz] 
 

The frequency response of the output from the f i l ter captured by a 

data acquisit ion system is shown in the Figure 4.2.3.  

  

 
 

Figure 4.2.3 Fi lter Performance on PIC18F452 Chip 
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The fast Fourier transform (FFT) of the DAC output shown in Figure 

4.2.4 verif ies the performance of the f i l ter .  The sweep does indeed begin 

attenuation from 600Hz as desired and is almost entirely decimated at 

1Kz. In the t ime domain graph (also Figure 4.2.4) the amplitude of the 

sweep does indeed show attenuation in the high frequency side of the 

sweep. Notice the small  attenuation in the low-frequency side of the 

sweep. This attenuation is not the result  of the f i l tering in the PIC. This 

attenuation is due to a DC blocking capacitor in the PC sound card. 

Sound cards by design cannot sample DC and this is  one of the 

drawbacks of not using an expensive PC based data acquisit ion systems.  

 

BAND STOP FILTER: Testing and Analysis 

 

The second fi l ter generated by the f i l ter design software was a band 

pass f i l ter with the characterist ics i l lustrated in Figure 4.2.4.  Once a 

attenuation of 50dB is desired in the stop-band [600Hz-1800Hz].  The 

sampling frequency remains 8000Hz.  
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     Figure 4.2.4 BSF Filter Specifications for Band Pass filter 
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The FFT of the sampled data from the PIC chip i l lustrated in Figure 

4.2.5 shows attenuation in the desired band [600Hz – 1800Hz].  

 

 
 

            Figure 4.2.5 Measured BSF Frequency and Amplitude Response  
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MULTI-BAND FILTER 1 (FIR): Testing and Analysis 

 

The second fi l ter that was implemented was a band stop fi l ter .  In 

Figure 4.2.6 a more complex mult i-band FIR fi l ter is  shown. The f i l ter 

has two stop-bands at [600Hz – 1800Hz] and [2700Hz-4000Hz].  Figure 

4.2.7 shows the FFT of the PIC fi l ter performance. Both stops bands 

have been attenuated as intended. 
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Figure 4.2.6 MBF 1 Filter Specifications for Band Pass filter 

 

 
 

        Figure 4.2.7 Frequency and Amplitude response from PIC18F452 
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MULTI-BAND FILTER 2 (FIR): Testing and Analysis 

 

Figure 4.2.8 is a f i l ter with three pass-bands; Figure 4.2.9 shows the 

performance of the PIC chip. The f igure shows that al l  three bands have 

been compensates as specif ied in Figure 4.2.8.  
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    Figure 4.2.8 MBF 2 Filter Specif icat ions for Band Pass f i l ter 

 

 
 

Figure 4.2.9 Frequency and Amplitude response from PIC18F452 
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4.3 LMS FILTER: Test Scenario 1 
 

 

In order to test the real-t ime adaptive f i l ter a s ignal and noise vectors 

are careful ly prepared. The LMS adaptive f i l ter essential ly applies the 

phenomenon of destructive interference to perform noise cancel lat ion. 

Two waves can be successful ly cancel led by destructive interference if  

they are both correlated in phase and amplitude. To i l lustrate the point 

made in the previous statement consider the scenario presented in Figure 

4.3.1,  the source A produces a signal that is  sampled at two points in 

space, p1 and p2. Even though at both points the signal is  very similar 

however they cannot be directly subtracted because by the t ime the signal 

is  sampled at p2  i t  is  different in both phase as well  as amplitude and 

cannot be simply destroyed by simple subtracting p1. 

 

 

 

 

 

 

Figure 4.3.1 Sampling Source A at P1 and P2 
 

To make the problem even more interest ing a second source is added 

to the scenario presented in Figure 4.3.1 where a source B is introduced: 

 

 

 

 

 

 
 

 
Figure 4.3.2 Source B is added to the scene 
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 87

 Figure 4.3.2 shows that p2 wil l  sample not only the signal from 

source B but also signal from Source A. The LMS adaptive f i l ter has the 

abi l i ty to intel l igently subtract Source A from source B  by predicting the 

degree of contamination from Source A in the sample of source B and 

recursively improving its ’  predict ions unti l  source A has been 

successful ly el iminated from the sample made at p2 .   The test scenario 

uses two monotonic sin waves one for source A (220Hz )  and another for 

Source B (340Hz ) .  To simulate the effects of Source A travel ing through 

space t i l l  sampling point p2 source A is given a phase-shift  of 375us 

(micro seconds) and a gain added to source B and the sum is normalized 

to approximate the signal sampled at p2 .  See Figure 4.3.3.  
 

 
 
 
 
 
 
 
 

 
Figure 4.3.3 Approximation of Signal at p2  

 
 

The signal used at p2 for the simulation was compiled in Matlab and a 

t ime domain graph is presented in Figure 4.3.4.  This waveform is the 

superposit ion of source A and source B  sampled at point p2. 
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      Figure 4.3.4 Time domain graph of signal at p2  
 

Figure 4.3.5 shows the frequency domain representation of the signal 

sampled at p2. The two spikes are the two monotonic signatures of 

source A (220Hz) and source B (340Hz).   
 
 

 
 

Figure 4.3.5 Frequency domain graph of signal at p2  
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The real-t ime test topology is presented in Figure 4.3.6.  The signal 

sampled at point p1 is approximated as source A (220Hz) with a gain.  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.3.6 Real-t ime test topology  
 
 

The signal sampled at point p2 and the signal at p1 (reference) going 

into the PIC chip are shown next in Figure 4.3.6 in t ime domain. 

 

 
 

   Figure 4.3.6 Signal p2 (top) and Reference p1 sampled by ADC  
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The signal p1  and reference p2 are sampled by the PIC 18F452. The 

algorithm implemented in the PIC chip is a fourth order f loating-point 

LMS with a sampling frequency of 8000Hz and learning rate of 0.1.  Both 

signal and reference are simultaneously presented to the PIC chip as 

shown in Figure 4.3.5,  the hardware setup for the experiment is the same 

as Figure 4.4.1.  The output of the chip or the recovered signal is  

recorded and graphed in Figure 4.3.7 in t ime domain. 

 

 
 

Figure 4.3.7 Signal Recovered by the PIC chop (source B: 340 Hz) 
 
 

Figure 4.3.7 show that the LMS algorithm running in the PIC chip 

was indeed able to recover the Source B and the experiment was 

successful however,  the lack of smoothness in the recovered signal 

suggests high-frequency noise.  The smoothing-fi l ter was given a cutoff 

of 4000Hz however shift ing that cutoff to a lower value wil l  improve the 

signal to noise rat io.  The frequency domain graph of the recovered signal 

is  presented next in Figure 4.3.8.  
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Figure 4.3.8 Signal Recovered in frequency domain (source B: 340 Hz)  
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  C H A P T E R  5 :  A N A L Y S I S  &  C O N C L U S I O N S  

Despite the hardware l imitat ions of the PIC chip, both the FIR and 

LMS fi l ters gave a strong performance with consistent,  measurable and 

repeatable results .  

 

5.1 FIR filter performance summery 

 

 The FIR fi l ter attenuation requested in the f i l ter presented in Section 

4.2 is 50dB in Matlab. Although the PIC chip faithful ly reproduces the 

frequency response designed by Matlab, the attenuation of 50dB could 

not be achieved. The best attenuation possible was 36dB.  

 

The difference of 14dB is attr ibuted to the combined effect produced 

from two main factors.  First ly ,  the coefficients generated by Matlab are 

in double precision f loating-point format,  which were re-scaled into 8-bit  

f ixed-point format numbers.  This rescal ing process is the major factor 

that contributes to the observed precision gap. The other factor is that 

the samples of the signal are made at 8-bit  precision. In Matlab the test 

were made with the signal data sampled at 16 bits .  The low bit depth in 

the sampled signal is  also a factor that affects precision. 

 

The best computation speed achieved is the theoretical  minimum of 

800ns per MAC cycle by selecting the fastest execution-speed option.  

Equation 5.2 calculates the number of CPU cycles required to implement 

a FIR fi l ter of a specif ied sized.   

 

_ ( ) 8* 45 (5.1)Num cycles taps taps= +  
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By using the smallest program size option, two addit ional instructions 

are added to the MAC loop thus increasing the size of the MAC cycle to 

1000ns. The Total  cycles can is calculated using Equation 5.2.  

 

_ ( ) 10* 45 (5.2)Num cycles taps taps= +  

By using the smallest RAM size option, the size of each MAC loop is 

extended further to 22 cycles per MAC. Thus the total  number of cycles 

used by the PIC chip is calculated using Equation 5.3.  

  

_ ( ) 22* 45 (5.3)Num cycles taps taps= +  

 

Equation 5.4 determines RAM usage for a given f i l ter order for 

fastest-execution speed option. 

 

_ ( ) 2* 8 (5.4)Ram needed taps taps= +  

Equation 5.5 determines RAM usage for a given f i l ter-order in the 

minimum RAM implementation case:  

 

_ ( ) 8 (5.5)Ram needed taps taps= +  

 

The execution speeds from al l  three avai lable implementation models 

are plotted and shown in Figure 5.1.   
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                    Figure 5.1 Comparison of execution speed for different 
implementations 

 

 

5.2 LMS filter performance summary 

 

One of the intentions of this research was to obtain a reasonable 

approximation of how many orders can be achieved on the PIC 18F452 

chip given it ’s  many l imitat ions.  Using the f loating-point l ibrary and best 

speed achieved for the adaptive f i l ter is  267 cycles per tap. 

 

At 10 mil l ion instructions per second (MIPS),  achievable with a 

10MHz external crystal  osci l lator,  the PIC chip can execute 267 cycles in 

26.7 µs.  Equation 5.6 est imates the highest achievable order for a 

specif ied sampling rate and Equation 5.7 est imates the max sampling 

frequency for the specif ied number of taps.   
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__ ( _ ) (5.6)
4* _ *267

__ _ _ (5.7)
4* *267

ext oscMax LMSOrder sampling freq floor
sampling freq

ext oscMax LMS Sampling freq
LMSOrder

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

=

   

Table 5.1 shows the relat ionship between Sampling frequency and the 

maximum fi l ter order achievable using the implementation strategy 

developed during this research. The number of Taps cannot exceed 375 

because the PIC wil l  run out of RAM. 

 

Table 5.1:  LMS Sampling Rate vs.  Taps  

Sampling Freq (Hz) Taps 
    

100 375 
200 187 
400 94 
800 47 
1600 23 
3200 12 
6400 6 

12800 3 
25600 1 

    
External Clock 40000000 

 

 

5.3 Conclusions and future work 

  
The fol lowing conclusions were draws regarding the various f i l ter 

implementations that were explored during the course of this research. 

 

1.  The PIC 18F452 chip is an excel lent candidate for f ixed-point FIR 

fi l ter implementation. At 800ns per MAC cycle,  there is no obvious 

disadvantage to divert ing part of the PIC CPU cycles.    
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2. No more than a fourth, order LMS fi l ter is  possible using the f loating 

point system using the PIC 18 family.  Higher orders are possible at 

lower sampling rates,  however the lack of the normalization operation 

in the f loating-point variables makes it  prone to loss of precision 

from rol l-off errors.  The newer chips in the same class and price 

bracket,  such as the dsPIC family,  contains specif ic hardware such as 

a 40 bit  barrel  shifter ,  16-bit  s igned mult ipl ier and 16 bit  ALU with 

speeds up to 30-40MIPS. These chips overcome many of the hardware 

l imitat ions of the PIC 18 family,  making them highly suited for 

building practical  applicat ions of adaptive f i l ters,  neural  networks etc 

without having to resort to using the cost prohibit ive DSP boards.  

Future work can include developing programming tools and software 

l ibraries for this new family of chips.   

 

3.  In the LMS fi l ter developed during this research is not used in any 

part icular applications.  It  was merely evaluated and tested on 

simulated data and meant as to be a resource that can be applied to a 

specif ic applicat ion. There is scope for f inding a suitable applicat ion 

for this f i l ter such as adaptive noise cancel lat ion headphones, 

standing wave decimation, l ine echo cancel lat ions etc.   
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APPENDIX A 

USERS MANUAL FOR FILTER DESIGN SOFTWARE 
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INTRODUCTION 

The PIC18F452: FILTER DESIGN SOFTWARE  was built  on the 

Matlab environment and wil l  only operate on MATLAB Version 6.1.0.450 

(R12.1) and up. Fi lter Design Toolbox Version 2.1 must also be instal led 

within the MATLAB environment.  

 

In order to begin the f i l ter design system a path must be set to the 

directory in which the source f i les are held. There are two ways of 

sett ing the path to the correct directory.  

 

Method1: The path can be set directly by entering it  on the provided 

space on the main tool bar or by cl icking on the  button. 

 

 
Method2: An alternate way to set the directory path is to use the 

command l ine option in the main window of Matlab. 

 

 
 

Once the path has been set the f i l ter design system can be launched 

by typing in ‘ f i ldes’ at the command prompt. 
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The fi l ter design system main window offers the fol lowing functions,  

low-pass f i l ter design, high-pass f i l ter design, band-pass f i l ter design, 

band-stop fi l ter design and custom fi l ter design. 

 

 
 

LOW PASS FILTER DESIGN 

 

Clicking on the  button in the main window and enables 

the low-pass f i l ter design interface where the parameters for the intended 

low-pass FIR fi l ter can be entered.  

 

 
 

Enter Attenuations values 
for Pass Band Ripple and 
Stop Band Attenuations.

Enter Sampling Rate for 
FIR filter

Enter Band edges for low 
pass filter.  
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Once the desired band-edges and attenuations have been entered, by 

pressing the  button the 

simulated f i l ter response is plotted to the screen. 

 

 
 

The frequency response and the phase response curves are graphed 

for user inspection. Addit ional ly new options appear in the main window 

of the LPF design interface.  
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The new items that appear in the interface present three 

implementation options. Each option l ists the bytes of RAM used by the 

program on the PIC Chip as well  as the number of cycles used by the 

program. Running at 40,000,000 each cycle lasts 100ns. Final ly the 

 button wil l  generate the 

c-language f i le that can be instal led into the PIC chip. 

 

 
 

HIGH PASS FILTER DESIGN 

 

The high-pass FIR fi l ter is  designed in the same way as the low-pass 

f i l ter by selecting the ‘High Pass’  button on the main menu. 

 

 
 

The rest of the design fol lows exactly the same set of steps as the 

low pass f i l ter design.  

 

 

Click on This 
button to design 

a High-Pass 
filter. 
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BAND PASS FILTER DESIGN  

 

Designing the band-pass f i l ter starts as the previous ones by cl icking 

on the band-pass button in the main window. 

 

 
 

Unlike the LPF and the HPF the optimal number of coefficients are 

not automatical ly determined for the FIR band-pass f i l ter configuration. 

As the Filter order is increased the qual ity of the f i l ter improves as well .    

 

  
 

Enter Attenuations values 
for Pass Band Ripple and 
Stop Band Attenuations.

Enter Sampling Rate for 
FIR filter 

Enter Band edges for low 
pass filter.  

The Desired Filter order 
needs to be entered here 
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BAND STOP FILTER DESIGN 

 

Band stop fi l ter is  design fol lows the same set of steps as the Band 

pass f i l ter .  If  the f i l ter order is  under est imated then the f i l ter response 

curves indicate the deficiency. Say the user specif ies a band stop fi l ter 

with the given specif icat ions.  Notice that only 13 orders are al lowed to 

obtain a 40db drop in the stop band. 

 

 
 

By plott ing the frequency and phase curves it  is  possible to check 

whether 13 f i l ter taps are enough to attain 40db in the stop band. 

 

 
 

Enter Attenuations values 
for Pass Band Ripple and 
Stop Band Attenuations.

Sampling Frequency 

Only 13 taps are allowed 
for the implementation of 

the filter
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The graph reveals that a 13-tap f i l ter is  not sufficient to attain the 

desired attenuations.  The order must be revised to a higher value,  say 40 

taps,  and the f i l ter curves are plotted again. 

 

 
  

The updated response curve reveals that 40db drop has been achieved 

and the code can now be generated in the same manner as before.  

 

CUSTOM FILTER DESIGN  

 

This is  probably the most f lexible aspect of FIR fi l ter design because 

it  al lows the development of complex f i l ters,  which can compensate 

several  different bands at once. The specif icat ion of Custom fi l ters is  a 

s l ightly different than the previous f i l ters.  In order to design them the 

custom button must be selected f irst in the main window. 

 

 

Press Custom to begin 
Design  
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The custom fi l ter design interface is different from the basic f i l ter 

design interface.  In order to create a custom fi l ter four boxes must be 

f i l led with the appropriate information. The filter profile ,  the 

frequency profile ,  the band attenuations  and the desired filter order .  

 

 
 

Filter Profile 

 

Fi lter profi le determines the band edges of the f i l ter .  A stop-band is 

designated by [0,0] and a pass-band is designated by [1,1] .   

 

 

 

 

 

 

           

Filter Profile Box 

Frequency Profile   

 Attenuation Profile   

Desired Filter Order   

0 0

1 1

0 0

1 1

0 0
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Frequency Profile 

 

The frequency profi le is  s imply the corner frequencies for each band 

edge and is supplied to the program in the appropriate box. 

 

 

 

 

 

 

 

 
 

Band Attenuation Profile 

 

Attenuation for each stop-band must be provided as well  as the pass 

band ripple for every pass-band.  

 

 

 

 

 

 

 
 

Desired Filter Order 

 

This box is f i l led with the number of coefficients desired by the 

designer.  As before it  is  important to check the response curve to make 

sure the specif ied attenuations are being correctly met.  
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 109

Plott ing the frequency response button shows the curves and after 

increasing the f i l ter order from 50 to 70 the target attenuations are met.  

 

 
 

Fi lter code can be generated as before after selecting an appropriate 

implementation strategy desired by the user.  
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APPENDIX B 

MATLAB CODE FOR FILTER DESIGN SOFTWARE 
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function varargout = fildes(varargin) 
% FILDES Application M-file for fildes.fig 
% FIG = FILDES launch fildes GUI. 
% FILDES('callback_name', ...) invoke the named callback. 
% Last Modified by GUIDE v2.0 11-Apr-2004 21:33:20 
 
global gdata;  
global handles; 
 
if nargin == 0  % LAUNCH GUI 
 fig = openfig(mfilename,'reuse'); 
 
 % Use system color scheme for figure: 
 set(fig,'Color',get(0,'defaultUicontrolBackgroundColor')); 
 
 % Generate a structure of handles to pass to callbacks, and store it.  
 handles = guihandles(fig); 
 guidata(fig, handles); 
 if nargout > 0 
  varargout{1} = fig; 
 end 
     
    % INVOKE NAMED SUBFUNCTION OR CALLBACK 
    elseif ischar(varargin{1})  
 try 
  if (nargout) 
   [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard 
  else 
   feval(varargin{:}); % FEVAL switchyard 
  end 
 catch 
  disp(lasterr); 
 end 
    end 

 
 
% -------------------------------------------------------------------- 
function varargout = FIRpush(h, eventdata, handles, varargin) 
set(handles.lms,'enable','off'); 
 
% -------------------------------------------------------------------- 
function varargout = LMSpush(h, eventdata, handles, varargin) 
set(handles.fir,'enable','off'); 
 
% -------------------------------------------------------------------- 
function varargout = lpf_Callback(h, eventdata, handles, varargin) 
global gdata; 
 
set(handles.cover,'visible','off'); 
custom_off; 
axes(handles.box); 
x=ones(1,30); 
y=1:-1/25:0; 
z=zeros(1,30); 
plot([x y z]); 
set(handles.box,'xlim',[1 90]); 
set(handles.box,'ylim',[0 1.5]); 
set(handles.box,'color',[0.6 0.6 0.6]); 
set(handles.pfr,'enable','on'); 
set(handles.bpa,'visible','off'); 
set(handles.bpb,'visible','off'); 
set(handles.bpc,'visible','off'); 
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set(handles.bpd,'visible','off'); 
set(handles.pbco,'visible','on'); 
set(handles.sbc,'visible','on'); 
set(handles.tapn,'visible','off'); 
set(handles.taptext,'visible','off'); 
gdata.type = 1; 
 
% -------------------------------------------------------------------- 
function varargout = hpf_Callback(h, eventdata, handles, varargin) 
global gdata; 
set(handles.cover,'visible','off'); 
custom_off; 
axes(handles.box); 
x=ones(1,37); 
y=0:1/25:1; 
z=zeros(1,30); 
plot([z y x]); 
set(handles.box,'xlim',[1 90]); 
set(handles.box,'ylim',[0 1.5]); 
set(handles.box,'color',[0.6 0.6 0.6]); 
set(handles.pfr,'enable','on'); 
set(handles.bpa,'visible','off'); 
set(handles.bpb,'visible','off'); 
set(handles.bpc,'visible','off'); 
set(handles.bpd,'visible','off'); 
set(handles.pbco,'visible','on'); 
set(handles.sbc,'visible','on'); 
set(handles.tapn,'visible','off'); 
set(handles.taptext,'visible','off'); 
gdata.type = 2; 
 
% -------------------------------------------------------------------- 
function varargout = bpf_Callback(h, eventdata, handles, varargin) 
global gdata; 
set(handles.cover,'visible','off'); 
custom_off; 
axes(handles.box); 
z = zeros(1,15); 
x = ones(1,20); 
r = 0:1/15:1; 
f = 1:-1/15:0; 
plot([z r x f z]); 
set(handles.box,'xlim',[1 80]); 
set(handles.box,'ylim',[0 1.5]); 
set(handles.box,'color',[0.6 0.6 0.6]); 
set(handles.pbco,'visible','off'); 
set(handles.sbc,'visible','off'); 
set(handles.bpa,'visible','on'); 
set(handles.bpb,'visible','on'); 
set(handles.bpc,'visible','on'); 
set(handles.bpd,'visible','on'); 
set(handles.pfr,'enable','on'); 
set(handles.tapn,'visible','on'); 
set(handles.taptext,'visible','on'); 
gdata.type = 3; 
 
% -------------------------------------------------------------------- 
function varargout = bsf_Callback(h, eventdata, handles, varargin) 
global gdata; 
set(handles.cover,'visible','off'); 
custom_off; 
axes(handles.box); 
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z = zeros(1,15); 
x = ones(1,20); 
r = 0:1/15:1; 
f = 1:-1/15:0; 
plot([x f z r x]); 
set(handles.box,'xlim',[1 80]); 
set(handles.box,'ylim',[0 1.5]); 
set(handles.box,'color',[0.6 0.6 0.6]); 
set(handles.pbco,'visible','off'); 
set(handles.sbc,'visible','off'); 
set(handles.bpa,'visible','on'); 
set(handles.bpb,'visible','on'); 
set(handles.bpc,'visible','on'); 
set(handles.bpd,'visible','on'); 
set(handles.pfr,'enable','on'); 
set(handles.tapn,'visible','on'); 
set(handles.taptext,'visible','on'); 
gdata.type = 4; 

 
% -------------------------------------------------------------------- 
function varargout = m2o_Callback(h, eventdata, handles, varargin) 
global gdata; 
set(handles.cover,'visible','on'); 
set(handles.tprofile,'visible','on'); 
set(handles.profile,'visible','on'); 
set(handles.bedges,'visible','on'); 
set(handles.text12,'visible','on'); 
set(handles.customtaps,'visible','on'); 
set(handles.attnt,'visible','on'); 
set(handles.atten,'visible','on'); 
set(handles.pfr,'enable','on'); 
gdata.type = 6; 

 
% -------------------------------------------------------------------- 
function varargout = gccc_Callback(h, eventdata, handles, varargin) 
global g; 
global gdata; 
global imptype; 
      
fid = fopen('filter.c','w'); 
time = clock; 
% Come to here.......... 
 
type = imptype ;    % 1. DBUR, 2. DBNUR, 3. SBNUR 

 
% Double Buffer + UNROLLED LOOPS............................................................................................ 
if (type==1) 
 
fprintf(fid,'%s \n',['// PIC 18F452 CODE FOR FIR FILTER GENERATION']); 
fprintf(fid,'%s \n',['// Date: ' Date ' , Time (Hr:Min:Sec)-> ' num2str(time(4)) ':' num2str(time(5)) ':' 
num2str(time(6))]); 
fprintf(fid,'%s \n',['// FIR Filter Type: ']); 
fprintf(fid,'\n \n'); 
fprintf(fid,'%s \n',['#include <18f452.h>']); 
fprintf(fid,'%s \n',['#use delay(clock = 40000000)']); 
fprintf(fid,'%s \n',['#fuses H4,PUT,NOWDT']); 
fprintf(fid,'\n \n'); 
fprintf(fid,'%s \n', ['const int filter_length = ' num2str(length(g)) ';']); 
 
fprintf(fid,'%s', ['const int taps[filter_length] = {']); 
for n=1:1:length(g) 
                   fprintf(fid,'%i',g(n)); 
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      if n<length(g) 
          fprintf(fid,','); 
      end 
end 
fprintf(fid,'%s \n',['};']); 
 
 
fprintf(fid,'\n \n');  
 
fprintf(fid,'%s \n',['// PIC 18F452 Register 
MAP................................................................................................................................................................. //']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['// ACCUMULATOR ADDRESS ']); 
fprintf(fid,'%s \n',['#byte    WREG = 0xFE8      // Register Stores the Carry Bit      ']); 
fprintf(fid,'%s \n',['#byte    PRODL =0xff3      // Product Low Byte       ']); 
fprintf(fid,'%s \n',['#byte    PRODH =0xff4       // Product High Byte       ']); 
fprintf(fid,'%s \n',['#byte   ADRESL = 0xfc3   // Low Byte for ADC Sample        ']); 
fprintf(fid,'%s \n',['#byte   ADRESH = 0xfc4  // High Byte for ADC Sample                      ']);  
fprintf(fid,'%s \n',['#byte   STATUS = 0xfd8                 // Status Register        ']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['// DC CONTROL REGISTERS ']); 
fprintf(fid,'%s \n',['#byte   ADCON0 = 0xfc2    // ADC Control Register (High)                      ']); 
fprintf(fid,'%s \n',['#byte   ADCON1 = 0xfc1    // ADC Control Register (Low)                      ']); 
fprintf(fid,'%s \n',['#byte   ADRESL = 0xfc3     // Low Byte for ADC Sample               ']); 
fprintf(fid,'%s \n',['#byte   ADRESH = 0xfc4      // High Byte for ADC Sample                                ']);  
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['// DIGITAL IO PORT ADDRESSES                                                    ']); 
fprintf(fid,'%s \n',['#byte   PORTA = 0xf80           // Port A Address        ']); 
fprintf(fid,'%s \n',['#byte   PORTB = 0xf81         // Port B Address        ']); 
fprintf(fid,'%s \n',['#byte   PORTC = 0xf82         // Port C Address           ']); 
fprintf(fid,'%s \n',['#byte   PORTD = 0xf83         // Port D Address        ']); 
fprintf(fid,'%s \n',['#byte   PORTE = 0xf84         // Port E Address        ']); 
fprintf(fid,'%s \n',['#byte    LATA = 0xf89           // Set Driection for PORTA                      ']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['//  INDIRECT ADDRESSING ']); 
fprintf(fid,'%s \n',['#byte   FSR0H = 0xfeA         // Hardware File Pointer0 (High)         ']); 
fprintf(fid,'%s \n',['#byte   FSR0L = 0xfe9         // Hardware File Pointer0 (Low)                      ']); 
fprintf(fid,'%s \n',['#byte   FSR1H = 0xfe2           // Hardware File Pointer1 (High)                      ']);  
fprintf(fid,'%s \n',['#byte   FSR1L = 0xfe1           // Hardware File Pointer1 (Low)                      ']); 
fprintf(fid,'%s \n',['#byte   FSR2H = 0xfda         // Hardware File Pointer2 (High)                      ']); 
fprintf(fid,'%s \n',['#byte   FSR2L = 0xfd9         // Hardware File Pointer2 (Low)                      ']); 
fprintf(fid,'%s \n',['#byte   INDF0 = 0xfef         // Read Data Pointed by FSR0            ']); 
fprintf(fid,'%s \n',['#byte   INDF1 = 0xfe7         // Read Data Pointed by FSR1           ']); 
fprintf(fid,'%s \n',['#byte   INDF2 = 0xfdf           // Read Data Pointed by FSR2          ']);                                             
fprintf(fid,'%s \n',['#byte   PLUSW0 = 0xfeb         // Add Pointed data to WREG       ']); 
fprintf(fid,'%s \n',['#byte   PLUSW1 = 0xfe3         // Add Pointed data to WREG       ']); 
fprintf(fid,'%s \n',['#byte   PLUSW2 = 0xfdb         // Add Pointed data to WREG       ']); 
fprintf(fid,'%s \n',['#byte   PREINC0 = 0xfec         // Pre-increment pointer0          ']); 
fprintf(fid,'%s \n',['#byte   PREINC1 = 0xfe4         // Pre-increment pointer1        ']); 
fprintf(fid,'%s \n',['#byte   PREINC2 = 0xfdc         // Pre-increment pointer2        ']); 
fprintf(fid,'%s \n',['#byte   POSTINC0 = 0xfee        // Post-Incerement Pointer0       ']); 
fprintf(fid,'%s \n',['#byte   POSTDEC0 = 0xfed        // Post-Decrement Pointer0       ']); 
fprintf(fid,'%s \n',['#byte   POSTINC1 = 0xfe6        // Post-Increment Pointer1                       ']);              
fprintf(fid,'%s \n',['#byte   POSTDEC1 = 0xfe5        // Post-Decrement Pointer1                      ']); 
fprintf(fid,'%s \n',['#byte   POSTINC2 = 0xfde        // Post-Increment Pointer2       ']);  
fprintf(fid,'%s \n',['#byte   POSTDEC2 = 0xfdd        // Post-Decrement Pointer2                  ']);           
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['// TIMER REGISTERS ']); 
fprintf(fid,'%s \n',['#byte PR2 = 0xfcb  ']); 
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fprintf(fid,'%s \n',['#byte TMR2 = 0xfcc  ']); 
fprintf(fid,'%s \n',['#byte T2CON = 0xfca  ']); 
 
fprintf(fid,'\n \n');  
 
fprintf(fid,'%s \n',['//  GLOBAL VARIABLES         ']); 
fprintf(fid,'%s \n',['int buf0[filter_length] = {0};  // Store ADC Values     ']); 
fprintf(fid,'%s \n',['int buf1[filter_length] = {0};  // Store ADC Values      ']); 
fprintf(fid,'%s \n',['int coef[filter_length] = {0};  // Store offset Coefficients       ']); 
fprintf(fid,'%s \n',['int output_most = 0;       // Most Significant Byte of Output     ']); 
fprintf(fid,'%s \n',['int output_middle = 0;        // Middle Significant Byte of Output .     ']); 
fprintf(fid,'%s \n',['int output_least = 0;         // Least Significant Byte of Output '     ]); 
fprintf(fid,'%s \n',['int Xn_high_256=0;              // Most Significant Byte of Xn Summation * 255       ']); 
fprintf(fid,'%s \n',['int Xn_mid_256=0;              // Mid Significant Byte of Xn Summation * 255    ']); 
fprintf(fid,'%s \n',['int Xn_low_256=0;               // Least Significant Byte of Xn Summation * 255    ']); 
fprintf(fid,'%s \n',['int Xn_high_128=0;              // Most Significant Byte of Xn Summation * 128    ']); 
fprintf(fid,'%s \n',['int Xn_mid_128=0;              // Mid Significant Byte of Xn Summation * 128    ']); 
fprintf(fid,'%s \n',['int Xn_low_128=0;              // Least Significant Byte of Xn Summation * 128    ']); 
fprintf(fid,'%s \n',['int EOB, MAC_count;              // Counters for MAC and END of Buffer.     ']); 
fprintf(fid,'%s \n',['int n,c, tptr0, tptr1;          // Temporary Variabes      ']); 
fprintf(fid,'\n \n');  
fprintf(fid,'%s \n',['// GLOBAL PROTOTYPES        ']); 
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void);       ']); 
fprintf(fid,'%s \n',['void initialize_pointers(void);']); 
fprintf(fid,'\n \n'); 
fprintf(fid,'%s \n',['// INTERRUPT SERVICE ROUTINE'        ]); 
fprintf(fid,'%s \n',['#INT_TIMER2           ']); 
fprintf(fid,'%s \n',['isr() {'           ]); 
fprintf(fid,'%s \n',['   T2CON = 0x06; // Restart Timer'        ]); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',[' FSR0L = tptr0;          ']); 
fprintf(fid,'%s \n',[' FSR1L = tptr1;'          ]); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['    if (EOB == 0) {          ']); 
fprintf(fid,'%s \n',['  FSR0L = &buf0[0];         ']); 
fprintf(fid,'%s \n',['  FSR1L = &buf1[0];'         ]); 
fprintf(fid,'%s \n',['  FSR2L = &coef[0];'         ]); 
fprintf(fid,'%s \n',['  EOB   = filter_length;'         ]); 
fprintf(fid,'%s \n',[' }'           ]); 
fprintf(fid,'%s \n',[''            ]); 
fprintf(fid,'%s \n',['  // Subtract The oldest Xn Value from Total'       ]); 
fprintf(fid,'%s \n',['          #asm'           ]); 
fprintf(fid,'%s \n',['                    movf     INDF0,W'        ]); 
fprintf(fid,'%s \n',['                 subwf       Xn_mid_256,F'        ]); 
fprintf(fid,'%s \n',['                 clrf        WREG'        ]); 
fprintf(fid,'%s \n',['                 subwfb   Xn_high_256,F'        ]); 
fprintf(fid,'%s \n',['          #endasm'           ]); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['  // Get the latest ADC value;'         ]); 
fprintf(fid,'%s \n',['      WREG = ADRESH;'        ]); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['  // Restart ADC;         ']); 
fprintf(fid,'%s \n',['         bit_set(ADCON0,2);'       ]); 
fprintf(fid,'%s \n',[''           ]); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['  // Add Latest ADC value to Y1(n)'       ]); 
fprintf(fid,'%s \n',['         #asm']); 
fprintf(fid,'%s \n',['                 movwf    INDF0']); 
fprintf(fid,'%s \n',['                 movwf      POSTINC1        ']); 
fprintf(fid,'%s \n',['                 addwf      Xn_mid_256,F       ']); 
fprintf(fid,'%s \n',['                 clrf       WREG'         ]); 
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fprintf(fid,'%s \n',['               addwfc     Xn_high_256,F      ']); 
fprintf(fid,'%s \n',['         #endasm       ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['  // Prepare for MAC Cycles      ']); 
fprintf(fid,'%s \n',['         FSR2L = &coef[0];'      ]); 
fprintf(fid,'%s \n',['         FSR0L = FSR0L+filter_length;'     ]); 
fprintf(fid,'%s \n',['         EOB = EOB - 1;'      ]); 
fprintf(fid,'%s \n',['         MAC_count = filter_length;'     ]); 
fprintf(fid,'%s \n',['          ']); 
fprintf(fid,'%s \n',['  //  Begin MAC Cycle repeat till done then computer Output'  ]); 
fprintf(fid,'%s \n',['         #asm'       ]); 
fprintf(fid,'%s \n',['             clrf      output_least'    ]); 
fprintf(fid,'%s \n',['             clrf      output_middle'     ]); 
fprintf(fid,'%s \n',['             clrf      output_most'     ]); 
for n=1:1:length(g) 
fprintf(fid,'%s \n',['// MAC CYCLE NUMBER: ', num2str(n) ' ----------------------------//  ']); 
fprintf(fid,'%s \n',['             movf      POSTDEC0,W'     ]); 
fprintf(fid,'%s \n',['             mulwf     POSTINC2'     ]); 
fprintf(fid,'%s \n',['             movf      PRODL,W'     ]); 
fprintf(fid,'%s \n',['             addwf     output_least'     ]); 
fprintf(fid,'%s \n',['             movf      PRODH,W'     ]); 
fprintf(fid,'%s \n',['             addwfc    output_middle'     ]); 
fprintf(fid,'%s \n',['             clrf      WREG'      ]); 
fprintf(fid,'%s \n',['             addwfc    output_most'     ]); 
end 
 
 
 
fprintf(fid,'%s \n',['         COMPUTE_OUTPUT:'      ]); 
fprintf(fid,'%s \n',['             bcf                STATUS, 0'     ]); 
fprintf(fid,'%s \n',['             incf      FSR0L'      ]); 
fprintf(fid,'%s \n',['             rrcf      Xn_high_256,W      ']); 
fprintf(fid,'%s \n',['             movwf     Xn_high_128      ']); 
fprintf(fid,'%s \n',['             rrcf      Xn_mid_256,W      ']); 
fprintf(fid,'%s \n',['             movwf     Xn_mid_128      ']); 
fprintf(fid,'%s \n',['             rrcf      Xn_low_256,W      ']); 
fprintf(fid,'%s \n',['             movwf     Xn_low_128      ']); 
fprintf(fid,'%s \n',['             subwf     output_least,F      ']); 
fprintf(fid,'%s \n',['             movf      Xn_mid_128,W'       ]); 
fprintf(fid,'%s \n',['             subwfb    output_middle,F'     ]); 
fprintf(fid,'%s \n',['             movf      Xn_high_128,W'     ]); 
fprintf(fid,'%s \n',['             subwfb    output_most,F'     ]); 
fprintf(fid,'%s \n',['                   ']); 
fprintf(fid,'%s \n',['         #endasm         ']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['  tptr0 = FSR0L;']); 
fprintf(fid,'%s \n',['  tptr1 = FSR1L;']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',[' // Scale output...........']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['  #asm']); 
fprintf(fid,'%s \n',['       rrcf  output_most,F']); 
fprintf(fid,'%s \n',['       rrcf  output_middle,F']); 
fprintf(fid,'%s \n',['      rrcf output_most,F']); 
fprintf(fid,'%s \n',['      rrcf output_middle,F ']); 
fprintf(fid,'%s \n',[' #endasm']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['            PORTD = output_middle; ']); 
fprintf(fid,'%s \n',['      } // End Interrupt']); 
fprintf(fid,'\n \n'); 
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fprintf(fid,'%s \n',['void main() {        ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   set_tris_d(0);     ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   // Setup ADC in interrupt mode   ']); 
fprintf(fid,'%s \n',['         setup_adc_ports(ALL_ANALOG);    ']); 
fprintf(fid,'%s \n',['                           setup_adc(ADC_CLOCK_DIV_64);   ']); 
fprintf(fid,'%s \n',['                 set_adc_channel(0);    ‘]); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   // Setup Timer0 in interrupt Mode   ']); 
fprintf(fid,'%s \n',['          T2CON = 0x06;     ']); 
fprintf(fid,'%s \n',['    PR2 = 76;    ']); 
fprintf(fid,'%s \n',['          enable_interrupts(INT_TIMER2);                    ']); 
fprintf(fid,'%s \n',['          enable_interrupts(GLOBAL);    ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   // FIR filter Code     ']); 
fprintf(fid,'%s \n',['         offset_and_buffer_tap_coefficients();   ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   // Initialize Pointers     ']); 
fprintf(fid,'%s \n',['          tptr0 = &buf0[0];     ']); 
fprintf(fid,'%s \n',['    tptr1 = &buf1[0];    ']); 
fprintf(fid,'%s \n',['    FSR2L = &coef[0];    ']); 
fprintf(fid,'%s \n',['    EOB = filter_length;   ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   // Start ADC.     ']); 
fprintf(fid,'%s \n',['           bit_set(ADCON0,2);    ']); 
fprintf(fid,'%s \n',['                            set_rtcc(65517);     ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   //  Main Loop     ']); 
fprintf(fid,'%s \n',['    while(1)  {    ']); 
fprintf(fid,'%s \n',['   // Main Application     ']); 
fprintf(fid,'%s \n',['    }     ']); 
fprintf(fid,'%s \n',['}         ']); 
 
 
fprintf(fid,'\n \n \n'); 
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void)  {            ' ]); 
fprintf(fid,'%s \n',['     int n;                                                  ' ]); 
fprintf(fid,'%s \n',['     for (n=0; n<filter_length; n++) {                      ' ]); 
fprintf(fid,'%s \n',['                      coef[n] = taps[n]+0x80;                ' ]); 
fprintf(fid,'%s \n',['     }                                                       ' ]); 
fprintf(fid,'%s \n',['}                                                            ' ]); 
 
end 
 
% DOUBLE BUFFERED: Non UNROLLED LOOPS.................................................... 
 
if (type == 2) 
 
fprintf(fid,'%s \n',['// PIC 18F452 CODE FOR FIR FILTER GENERATION']); 
fprintf(fid,'%s \n',['// Date: ' Date ' , Time (Hr:Min:Sec)-> ' num2str(time(4)) ':' num2str(time(5)) ':' 
num2str(time(6))]); 
fprintf(fid,'%s \n',['// FIR Filter Type: ']); 
fprintf(fid,'\n \n'); 
fprintf(fid,'%s \n',['#include <18f452.h>']); 
fprintf(fid,'%s \n',['#use delay(clock = 40000000)']); 
fprintf(fid,'%s \n',['#fuses H4,PUT,NOWDT']); 
fprintf(fid,'\n \n'); 
fprintf(fid,'%s \n', ['const int filter_length = ' num2str(length(g)) ';']); 
 
fprintf(fid,'%s', ['const int taps[filter_length] = {']); 
for n=1:1:length(g) 
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                   fprintf(fid,'%i',g(n)); 
      if n<length(g) 
          fprintf(fid,','); 
      end 
end 
fprintf(fid,'%s \n',['};']); 
 
 
fprintf(fid,'\n \n');  
 
fprintf(fid,'%s \n',['// PIC 18F452 Register 
MAP................................................................................................................................................................ //']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['// ACCUMULATOR ADDRESS ']); 
fprintf(fid,'%s \n',['#byte    WREG = 0xFE8      // Register Stores the Carry Bit      ']); 
fprintf(fid,'%s \n',['#byte    PRODL =0xff3      // Product Low Byte           ']); 
fprintf(fid,'%s \n',['#byte    PRODH =0xff4       // Product High Byte       ']); 
fprintf(fid,'%s \n',['#byte   ADRESL = 0xfc3   // Low Byte for ADC Sample        ']); 
fprintf(fid,'%s \n',['#byte   ADRESH = 0xfc4  // High Byte for ADC Sample       ']);  
fprintf(fid,'%s \n',['#byte   STATUS = 0xfd8          // Status Register        ']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['// DC CONTROL REGISTERS           ']); 
fprintf(fid,'%s \n',['#byte   ADCON0 = 0xfc2    // ADC Control Register (High)                   ']); 
fprintf(fid,'%s \n',['#byte   ADCON1 = 0xfc1    // ADC Control Register (Low)               ']); 
fprintf(fid,'%s \n',['#byte   ADRESL = 0xfc3     // Low Byte for ADC Sample               ']); 
fprintf(fid,'%s \n',['#byte   ADRESH = 0xfc4      // High Byte for ADC Sample                                ']);  
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['// DIGITAL IO PORT ADDRESSES                                                         ']); 
fprintf(fid,'%s \n',['#byte   PORTA = 0xf80           // Port A Address        ']); 
fprintf(fid,'%s \n',['#byte   PORTB = 0xf81         // Port B Address        ']); 
fprintf(fid,'%s \n',['#byte   PORTC = 0xf82         // Port C Address                       ']); 
fprintf(fid,'%s \n',['#byte   PORTD = 0xf83         // Port D Address        ']); 
fprintf(fid,'%s \n',['#byte   PORTE = 0xf84         // Port E Address        ']); 
fprintf(fid,'%s \n',['#byte    LATA = 0xf89           // Set Driection for PORTA       ']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['//  INDIRECT ADDRESSING ']); 
fprintf(fid,'%s \n',['#byte   FSR0H = 0xfeA         // Hardware File Pointer0 (High)         ']); 
fprintf(fid,'%s \n',['#byte   FSR0L = 0xfe9         // Hardware File Pointer0 (Low)          ']); 
fprintf(fid,'%s \n',['#byte   FSR1H = 0xfe2           // Hardware File Pointer1 (High)           ']);  
fprintf(fid,'%s \n',['#byte   FSR1L = 0xfe1           // Hardware File Pointer1 (Low)           ']); 
fprintf(fid,'%s \n',['#byte   FSR2H = 0xfda         // Hardware File Pointer2 (High)                      ']);  
fprintf(fid,'%s \n',['#byte   FSR2L = 0xfd9         // Hardware File Pointer2 (Low)               ']); 
fprintf(fid,'%s \n',['#byte   INDF0 = 0xfef         // Read Data Pointed by FSR0            ']); 
fprintf(fid,'%s \n',['#byte   INDF1 = 0xfe7         // Read Data Pointed by FSR1           ']); 
fprintf(fid,'%s \n',['#byte   INDF2 = 0xfdf           // Read Data Pointed by FSR2          ']);                                             
fprintf(fid,'%s \n',['#byte   PLUSW0 = 0xfeb         // Add Pointed data to WREG       ']); 
fprintf(fid,'%s \n',['#byte   PLUSW1 = 0xfe3         // Add Pointed data to WREG       ']); 
fprintf(fid,'%s \n',['#byte   PLUSW2 = 0xfdb         // Add Pointed data to WREG       ']); 
fprintf(fid,'%s \n',['#byte   PREINC0 = 0xfec         // Pre-increment pointer0        ']); 
fprintf(fid,'%s \n',['#byte   PREINC1 = 0xfe4         // Pre-increment pointer1        ']); 
fprintf(fid,'%s \n',['#byte   PREINC2 = 0xfdc         // Pre-increment pointer2        ']); 
fprintf(fid,'%s \n',['#byte   POSTINC0 = 0xfee        // Post-Incerement Pointer0       ']); 
fprintf(fid,'%s \n',['#byte   POSTDEC0 = 0xfed        // Post-Decrement Pointer0       ']); 
fprintf(fid,'%s \n',['#byte   POSTINC1 = 0xfe6        // Post-Increment Pointer1         ']);              
fprintf(fid,'%s \n',['#byte   POSTDEC1 = 0xfe5        // Post-Decrement Pointer1        ']); 
fprintf(fid,'%s \n',['#byte   POSTINC2 = 0xfde        // Post-Increment Pointer2       ']);  
fprintf(fid,'%s \n',['#byte   POSTDEC2 = 0xfdd        // Post-Decrement Pointer2                 ']);           
fprintf(fid,'%s \n',['             ']); 
fprintf(fid,'%s \n',['                            ']); 
fprintf(fid,'%s \n',['// TIMER REGISTERS            ']); 
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fprintf(fid,'%s \n',['#byte PR2 = 0xfcb         ']); 
fprintf(fid,'%s \n',['#byte TMR2 = 0xfcc         ']); 
fprintf(fid,'%s \n',['#byte T2CON = 0xfca         ']); 
fprintf(fid,'\n \n');  
fprintf(fid,'%s \n',['//  GLOBAL VARIABLES         ]); 
fprintf(fid,'%s \n',['int buf0[filter_length] = {0};  // Store ADC Values    ']); 
fprintf(fid,'%s \n',['int buf1[filter_length] = {0};  // Store ADC Values     ']); 
fprintf(fid,'%s \n',['int coef[filter_length] = {0};  // Store offset Coefficients     ']); 
fprintf(fid,'%s \n',['int output_most = 0;       // Most Significant Byte of Output    ']); 
fprintf(fid,'%s \n',['int output_middle = 0;        // Middle Significant Byte of Output     ']); 
fprintf(fid,'%s \n',['int output_least = 0;         // Least Significant Byte of Output     ']); 
fprintf(fid,'%s \n',['int Xn_high_256=0;              // Most Significant Byte of Xn Summation * 255   ']); 
fprintf(fid,'%s \n',['int Xn_mid_256=0;              // Mid Significant Byte of Xn Summation * 255   ']); 
fprintf(fid,'%s \n',['int Xn_low_256=0;               // Least Significant Byte of Xn Summation * 255   ']); 
fprintf(fid,'%s \n',['int Xn_high_128=0;              // Most Significant Byte of Xn Summation * 128   ']); 
fprintf(fid,'%s \n',['int Xn_mid_128=0;              // Mid Significant Byte of Xn Summation * 128   ']); 
fprintf(fid,'%s \n',['int Xn_low_128=0;              // Least Significant Byte of Xn Summation * 128   ']); 
fprintf(fid,'%s \n',['int EOB, MAC_count;              // Counters for MAC and END of Buffer.   ']); 
fprintf(fid,'%s \n',['int n,c, tptr0, tptr1;          // Temporary Variabes     ']); 
fprintf(fid,'\n \n');  
fprintf(fid,'%s \n',['// GLOBAL PROTOTYPES       ']); 
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void);     ']); 
fprintf(fid,'%s \n',['void initialize_pointers(void);       ']); 
fprintf(fid,'\n \n'); 
fprintf(fid,'%s \n',['// INTERRUPT SERVICE ROUTINE      ']); 
fprintf(fid,'%s \n',['#INT_TIMER2         ']); 
fprintf(fid,'%s \n',['isr() {         ']); 
fprintf(fid,'%s \n',['   T2CON = 0x06; // Restart Timer      ']); 
fprintf(fid,'%s \n',['          ']); 
fprintf(fid,'%s \n',['          ']); 
fprintf(fid,'%s \n',[' FSR0L = tptr0;        ']); 
fprintf(fid,'%s \n',[' FSR1L = tptr1;        ']); 
fprintf(fid,'%s \n',['          ']); 
fprintf(fid,'%s \n',['   if (EOB == 0) {        ']); 
fprintf(fid,'%s \n',['           FSR0L = &buf0[0];    ']); 
fprintf(fid,'%s \n',['           FSR1L = &buf1[0];    ']); 
fprintf(fid,'%s \n',['           FSR2L = &coef[0];     ']); 
fprintf(fid,'%s \n',['           EOB   = filter_length;    ']); 
fprintf(fid,'%s \n',[' }         ']); 
fprintf(fid,'%s \n',['          ']); 
fprintf(fid,'%s \n',['  // Subtract The oldest Xn Value from Total     ']); 
fprintf(fid,'%s \n',['          #asm         ']); 
fprintf(fid,'%s \n',['                     movf     INDF0,W      ']); 
fprintf(fid,'%s \n',['                 subwf       Xn_mid_256,F      ']); 
fprintf(fid,'%s \n',['                 clrf        WREG       ']); 
fprintf(fid,'%s \n',['                 subwfb       Xn_high_256,F      ']); 
fprintf(fid,'%s \n',['          #endasm         ']); 
fprintf(fid,'%s \n',['          ']); 
fprintf(fid,'%s \n',['  // Get the latest ADC value;       ']); 
fprintf(fid,'%s \n',['      WREG = ADRESH;        ']); 
fprintf(fid,'%s \n',['          ']); 
fprintf(fid,'%s \n',['  // Restart ADC;        ']); 
fprintf(fid,'%s \n',['         bit_set(ADCON0,2);      ']); 
fprintf(fid,'%s \n',['          ']); 
fprintf(fid,'%s \n',['          ']); 
fprintf(fid,'%s \n',['  // Add Latest ADC value to Y1(n)      ']); 
fprintf(fid,'%s \n',['         #asm        ']); 
fprintf(fid,'%s \n',['                 movwf    INDF0       ']); 
fprintf(fid,'%s \n',['                 movwf       POSTINC1      ']); 
fprintf(fid,'%s \n',['                 addwf        Xn_mid_256,F      ']); 
fprintf(fid,'%s \n',['                 clrf      WREG       ']); 
fprintf(fid,'%s \n',['                 addwfc     Xn_high_256,F  ']); 
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fprintf(fid,'%s \n',['         #endasm       ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['  // Prepare for MAC Cycles      ']); 
fprintf(fid,'%s \n',['         FSR2L = &coef[0];      ']); 
fprintf(fid,'%s \n',['         FSR0L = FSR0L+filter_length;     ']); 
fprintf(fid,'%s \n',['         EOB = EOB - 1;      ']); 
fprintf(fid,'%s \n',['         MAC_count = filter_length;     ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['  //  Begin MAC Cycle repeat till done then computer Output  ']); 
fprintf(fid,'%s \n',['         #asm       ']); 
fprintf(fid,'%s \n',['             clrf     output_least     ']); 
fprintf(fid,'%s \n',['             clrf      output_middle     ']); 
fprintf(fid,'%s \n',['             clrf      output_most     ']); 
fprintf(fid,'%s \n',['         MAC:       ']); 
fprintf(fid,'%s \n',['             movf      POSTDEC0,W     ']); 
fprintf(fid,'%s \n',['             mulwf     POSTINC2     ']); 
fprintf(fid,'%s \n',['             movf      PRODL,W     ']); 
fprintf(fid,'%s \n',['             addwf     output_least     ']); 
fprintf(fid,'%s \n',['             movf      PRODH,W     ']); 
fprintf(fid,'%s \n',['             addwfc    output_middle     ']); 
fprintf(fid,'%s \n',['             clrf      WREG      ']); 
fprintf(fid,'%s \n',['             addwfc    output_most     ']); 
fprintf(fid,'%s \n',['             decfsz    MAC_count     ']); 
fprintf(fid,'%s \n',['             bra       MAC      ']); 
fprintf(fid,'%s \n',['         COMPUTE_OUTPUT:      ']); 
fprintf(fid,'%s \n',['             bcf  STATUS, 0     ']); 
fprintf(fid,'%s \n',['             incf      FSR0L      ']); 
fprintf(fid,'%s \n',['             rrcf      Xn_high_256,W      ']); 
fprintf(fid,'%s \n',['             movwf     Xn_high_128                    ']); 
fprintf(fid,'%s \n',['             rrcf      Xn_mid_256,W                      ']); 
fprintf(fid,'%s \n',['             movwf     Xn_mid_128                    ']);  
fprintf(fid,'%s \n',['             rrcf      Xn_low_256,W                    ']); 
fprintf(fid,'%s \n',['             movwf     Xn_low_128                    ']); 
fprintf(fid,'%s \n',['             subwf     output_least,F                    ']); 
fprintf(fid,'%s \n',['             movf      Xn_mid_128,W     ']); 
fprintf(fid,'%s \n',['             subwfb    output_middle,F     ']); 
fprintf(fid,'%s \n',['             movf      Xn_high_128,W     ']); 
fprintf(fid,'%s \n',['             subwfb    output_most,F     ']); 
fprintf(fid,'%s \n',['                   ']); 
fprintf(fid,'%s \n',['         #endasm         ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['  tptr0 = FSR0L;      ']); 
fprintf(fid,'%s \n',['  tptr1 = FSR1L;      ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',[' // Scale output...........      ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['  #asm        ']); 
fprintf(fid,'%s \n',['       rrcf  output_most,F      ']); 
fprintf(fid,'%s \n',['       rrcf  output_middle,F     ']); 
fprintf(fid,'%s \n',['  rrcf output_most,F      ']); 
fprintf(fid,'%s \n',['      rrcf output_middle,F     ']); 
fprintf(fid,'%s \n',[' #endasm        ']); 
fprintf(fid,'%s \n',['']); 
fprintf(fid,'%s \n',['            PORTD = output_middle;      ']); 
fprintf(fid,'%s \n',['      } // End Interrupt       ']); 
 
fprintf(fid,'\n \n'); 
 
fprintf(fid,'%s \n',['void main() {        ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',[' set_tris_d(0);       ']); 
fprintf(fid,'%s \n',['         ']); 
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fprintf(fid,'%s \n',['   // Setup ADC in interrupt mode   ']); 
fprintf(fid,'%s \n',['         setup_adc_ports(ALL_ANALOG);   ']); 
fprintf(fid,'%s \n',['                        setup_adc(ADC_CLOCK_DIV_64);   ']); 
fprintf(fid,'%s \n',['         set_adc_channel(0);    ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   // Setup Timer0 in interrupt Mode   ']); 
fprintf(fid,'%s \n',['          T2CON = 0x06;     ']); 
fprintf(fid,'%s \n',['    PR2 = 76;    ']); 
fprintf(fid,'%s \n',['          enable_interrupts(INT_TIMER2);     ']); 
fprintf(fid,'%s \n',['          enable_interrupts(GLOBAL);    ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   // FIR filter Code     ']); 
fprintf(fid,'%s \n',['         offset_and_buffer_tap_coefficients();   ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   // Initialize Pointers     ']); 
fprintf(fid,'%s \n',['          tptr0 = &buf0[0];     ']); 
fprintf(fid,'%s \n',['    tptr1 = &buf1[0];    ']); 
fprintf(fid,'%s \n',['    FSR2L = &coef[0];    ']); 
fprintf(fid,'%s \n',['    EOB = filter_length;   ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   // Start ADC.     ']); 
fprintf(fid,'%s \n',['           bit_set(ADCON0,2);    ']); 
fprintf(fid,'%s \n',['                set_rtcc(65517);     ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['   //  Main Loop     ']); 
fprintf(fid,'%s \n',['    while(1)  {    ']); 
fprintf(fid,'%s \n',['   // Main Application     ']); 
fprintf(fid,'%s \n',['   }      ']); 
fprintf(fid,'%s \n',['}         ']); 
fprintf(fid,'\n \n \n'); 
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void)  {            ' ]); 
fprintf(fid,'%s \n',['     int n;                                                  ' ]); 
fprintf(fid,'%s \n',['     for (n=0; n<filter_length; n++) {                      ' ]); 
fprintf(fid,'%s \n',['                      coef[n] = taps[n]+0x80;                ' ]); 
fprintf(fid,'%s \n',['     }                                                       ' ]); 
fprintf(fid,'%s \n',['}                                                            ' ]); 
end 

 
 
% SINGLE BUFFERD: Non UNROLLED LOOPS...................................................... 
if (type==3) 
 
fprintf(fid,'%s \n',['// PIC 18F452 CODE FOR FIR FILTER GENERATION   ']); 
fprintf(fid,'%s \n',['// Date: ' Date ' , Time (Hr:Min:Sec)-> ' num2str(time(4)) ':' num2str(time(5)) ':' 
num2str(time(6))         ]); 
fprintf(fid,'%s \n',['// FIR Filter Type:        ']); 
fprintf(fid,'\n \n'); 
fprintf(fid,'%s \n',['#include <18f452.h>       ']); 
fprintf(fid,'%s \n',['#use delay(clock = 40000000)      ']); 
fprintf(fid,'%s \n',['#fuses H4,PUT,NOWDT       ']); 
fprintf(fid,'\n \n'); 
fprintf(fid,'%s \n', ['const int filter_length = ' num2str(length(g)) ';    ']); 
fprintf(fid,'%s', ['const int taps[filter_length] = {      ']); 
for n=1:1:length(g) 
                   fprintf(fid,'%i',g(n)); 
      if n<length(g) 
          fprintf(fid,','); 
      end 
end 
fprintf(fid,'%s \n',['};         ']); 
fprintf(fid,'%s \n',['// PIC 18F452 Register MAP...................................................................................// ']); 
fprintf(fid,'%s \n',['         ']); 
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fprintf(fid,'%s \n',['// ACCUMULATOR ADDRESS                      ']); 
fprintf(fid,'%s \n',['#byte    WREG = 0xFE8      // Register Stores the Carry Bit                 ']); 
fprintf(fid,'%s \n',['#byte    PRODL =0xff3      // Product Low Byte          ']); 
fprintf(fid,'%s \n',['#byte    PRODH =0xff4       // Product High Byte                  ']); 
fprintf(fid,'%s \n',['#byte   ADRESL = 0xfc3   // Low Byte for ADC Sample    ']); 
fprintf(fid,'%s \n',['#byte   ADRESH = 0xfc4  // High Byte for ADC Sample                  ']);  
fprintf(fid,'%s \n',['#byte   STATUS = 0xfd8          // Status Register                   ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['// DC CONTROL REGISTERS       ']); 
fprintf(fid,'%s \n',['#byte   ADCON0 = 0xfc2     // ADC Control Register (High)              ']); 
fprintf(fid,'%s \n',['#byte   ADCON1 = 0xfc1     // ADC Control Register (Low)  ']); 
fprintf(fid,'%s \n',['#byte   ADRESL = 0xfc3                 // Low Byte for ADC Sample      ']); 
fprintf(fid,'%s \n',['#byte   ADRESH = 0xfc4  // High Byte for ADC Sample                             ']);  
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['// DIGITAL IO PORT ADDRESSES                                                ']); 
fprintf(fid,'%s \n',['#byte   PORTA = 0xf80           // Port A Address    ']); 
fprintf(fid,'%s \n',['#byte   PORTB = 0xf81         // Port B Address    ']); 
fprintf(fid,'%s \n',['#byte   PORTC = 0xf82         // Port C Address           ']); 
fprintf(fid,'%s \n',['#byte   PORTD = 0xf83         // Port D Address    ']); 
fprintf(fid,'%s \n',['#byte   PORTE = 0xf84         // Port E Address    ']); 
fprintf(fid,'%s \n',['#byte    LATA = 0xf89           // Set Driection for PORTA                  ']); 
fprintf(fid,'%s \n' [‘         ']); 
fprintf(fid,'%s \n',['          ']); 
fprintf(fid,'%s \n',['//  INDIRECT ADDRESSING       ']); 
fprintf(fid,'%s \n',['#byte   FSR0H = 0xfeA         // Hardware File Pointer0 (High)     ']); 
fprintf(fid,'%s \n',['#byte   FSR0L = 0xfe9         // Hardware File Pointer0 (Low)   ']); 
fprintf(fid,'%s \n',['#byte   FSR1H = 0xfe2           // Hardware File Pointer1 (High)   ']);  
fprintf(fid,'%s \n',['#byte   FSR1L = 0xfe1           // Hardware File Pointer1 (Low)       ']); 
fprintf(fid,'%s \n',['#byte   FSR2H = 0xfda         // Hardware File Pointer2 (High)           ']); 
fprintf(fid,'%s \n',['#byte   FSR2L = 0xfd9         // Hardware File Pointer2 (Low)           ']); 
fprintf(fid,'%s \n',['#byte   INDF0 = 0xfef         // Read Data Pointed by FSR0        ']); 
fprintf(fid,'%s \n',['#byte   INDF1 = 0xfe7         // Read Data Pointed by FSR1       ']); 
fprintf(fid,'%s \n',['#byte   INDF2 = 0xfdf           // Read Data Pointed by FSR2      ']);                                             
fprintf(fid,'%s \n',['#byte   PLUSW0 = 0xfeb         // Add Pointed data to WREG   ']); 
fprintf(fid,'%s \n',['#byte   PLUSW1 = 0xfe3         // Add Pointed data to WREG   ']); 
fprintf(fid,'%s \n',['#byte   PLUSW2 = 0xfdb         // Add Pointed data to WREG   ']); 
fprintf(fid,'%s \n',['#byte   PREINC0 = 0xfec         // Pre-increment pointer0    ']); 
fprintf(fid,'%s \n',['#byte   PREINC1 = 0xfe4         // Pre-increment pointer1    ']); 
fprintf(fid,'%s \n',['#byte   PREINC2 = 0xfdc         // Pre-increment pointer2    ']); 
fprintf(fid,'%s \n',['#byte   POSTINC0 = 0xfee        // Post-Incerement Pointer0   ‘]); 
fprintf(fid,'%s \n',['#byte   POSTDEC0 = 0xfed        // Post-Decrement Pointer0   ']); 
fprintf(fid,'%s \n',['#byte   POSTINC1 = 0xfe6        // Post-Increment Pointer1         ']);              
fprintf(fid,'%s \n',['#byte   POSTDEC1 = 0xfe5        // Post-Decrement Pointer1   ']); 
fprintf(fid,'%s \n',['#byte   POSTINC2 = 0xfde        // Post-Increment Pointer2   ']);  
fprintf(fid,'%s \n',['#byte   POSTDEC2 = 0xfdd        // Post-Decrement Pointer2             ']);           
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['         ']); 
fprintf(fid,'%s \n',['// TIMER REGISTERS        ']); 
fprintf(fid,'%s \n',['#byte PR2 = 0xfcb        ']); 
fprintf(fid,'%s \n',['#byte TMR2 = 0xfcc        ']); 
fprintf(fid,'%s \n',['#byte T2CON = 0xfca         ']); 
fprintf(fid,'\n \n');  
fprintf(fid,'%s \n', ['int buf[filter_length] = {0};  // Store ADC Values ....................\\  ']); 
fprintf(fid,'%s \n', ['int coef[filter_length] = {0};  // Store offset Coefficients ...........\\  ']); 
fprintf(fid,'%s \n', ['int output_most = 0;     // Most Significant Byte of Output .............\\  ']); 
fprintf(fid,'%s \n', ['int output_middle = 0;   // Middle Significant Byte of Output ...........\\  ']); 
fprintf(fid,'%s \n', ['int output_least = 0;    // Least Significant Byte of Output ............\\  ']); 
fprintf(fid,'%s \n', ['int Xn_high_256=0;    // Most Significant Byte of Xn Summation * 255.....\\ ']); 
fprintf(fid,'%s \n', ['int Xn_mid_256=0;     // Mid Significant Byte of Xn Summation * 255......\\ ']); 
fprintf(fid,'%s \n', ['int Xn_low_256=0;     // Least Significant Byte of Xn Summation * 255....\\ ']); 
fprintf(fid,'%s \n', ['int Xn_high_128=0;    // Most Significant Byte of Xn Summation * 128.....\\ ']); 
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fprintf(fid,'%s \n', ['int Xn_mid_128=0;     // Mid Significant Byte of Xn Summation * 128......\\ ']); 
fprintf(fid,'%s \n', ['int Xn_low_128=0;     // Least Significant Byte of Xn Summation * 128....\\ ']); 
fprintf(fid,'\n \n');  
fprintf(fid,'%s \n\n', [' // General Globals       ']); 
fprintf(fid,'%s \n\n', ['int b,EOB,BOB,x,tptr, out, mac_count;     ']); 
fprintf(fid,'%s \n\n', [' // FIR Filter Prototypes      ']); 
fprintf(fid,'%s \n\n', ['void offset_and_buffer_tap_coefficients(void);    ']); 
fprintf(fid,'\n \n');  
fprintf(fid,'%s \n', ['#INT_TIMER2       ']); 
fprintf(fid,'%s \n', ['void t2_isr() {        ']); 
fprintf(fid,'%s \n', ['  T2CON = 0x06;        // Restart Timer   ']); 
fprintf(fid,'%s \n', ['  ADCON0 = 0x8d;               // Start ADC Conversion  ']); 
fprintf(fid,'%s \n', ['  while(bit_test(ADCON0,2));    // Wait for Conversion to Complete ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['  b = ADRESH;                   // Read ADC Value  ']); 
fprintf(fid,'%s \n', ['']); 
fprintf(fid,'%s \n', ['  FSR0L = tptr;      ']); 
fprintf(fid,'%s \n', ['  // Subtract the oldest ADC value in buffer from total  ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['  #asm       ']); 
fprintf(fid,'%s \n', ['      movf     INDF0,W    ']); 
fprintf(fid,'%s \n', ['           subwf    Xn_mid_256,F    ']); 
fprintf(fid,'%s \n', ['           clrf     WREG     ']); 
fprintf(fid,'%s \n', ['           subwfb  Xn_high_256,F    ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['   // Add the latest ADC value to the buffer  ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['    movf EOB,0       // Move to W Register  ']); 
fprintf(fid,'%s \n', ['    cpfseq  FSR0L       // Check if ptr is at EOB  ']); 
fprintf(fid,'%s \n', ['    bra        neq     ']); 
fprintf(fid,'%s \n', ['    movff   b,INDF0     // ptr has reached EOB: insert value ']); 
fprintf(fid,'%s \n', ['    movff    BOB,FSR0L  // Reset pointer to begining of Buffer']); 
fprintf(fid,'%s \n', ['    bra       end']); 
fprintf(fid,'%s \n', ['           neq:       ']); 
fprintf(fid,'%s \n', ['    movff   b,POSTDEC0  // Put data in Buffer and advance ptr']); 
fprintf(fid,'%s \n', ['           end:       ']); 
fprintf(fid,'%s \n', ['']); 
fprintf(fid,'%s \n', ['   // Add the latest value to ADC to total    ']); 
fprintf(fid,'%s \n', ['          ']); 
fprintf(fid,'%s \n', ['        movf    b,0      ']); 
fprintf(fid,'%s \n', ['        addwf   Xn_mid_256,F     ']); 
fprintf(fid,'%s \n', ['        clrf    WREG      ']); 
fprintf(fid,'%s \n', ['        addwfc  Xn_high_256,F     ']); 
fprintf(fid,'%s \n', ['          ']); 
fprintf(fid,'%s \n', ['    #endasm       ']); 
fprintf(fid,'%s \n', ['          ']); 
fprintf(fid,'%s \n', ['          ']); 
fprintf(fid,'%s \n', ['       // Prepare for MAC cycles.    ']); 
fprintf(fid,'%s \n', ['    // Set pointer to begining of coeff buffer.  ']); 
fprintf(fid,'%s \n', ['          ']); 
fprintf(fid,'%s \n', ['    FSR1L = &coef[0];     ']); 
fprintf(fid,'%s \n', ['    mac_count = filter_length;    ']); 
fprintf(fid,'%s \n', ['    output_least = 0;     ']); 
fprintf(fid,'%s \n', ['    output_middle = 0;     ']); 
fprintf(fid,'%s \n', ['    output_most = 0;     ']); 
fprintf(fid,'%s \n', ['']); 
fprintf(fid,'%s \n', ['       #asm       ']); 
fprintf(fid,'%s \n', ['']); 
fprintf(fid,'%s \n', ['    // (1) Unload data from Buffer: Newest First.  ']); 
fprintf(fid,'%s \n', ['          ']); 
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fprintf(fid,'%s \n', [' mac:         ']); 
fprintf(fid,'%s \n', ['  movf    BOB,0  // Move to W Register  ']); 
fprintf(fid,'%s \n', ['  cpfseq  FSR0L  // Check if ptr is at BOB  ']); 
fprintf(fid,'%s \n', ['  bra        aneq      ']); 
fprintf(fid,'%s \n', ['  movff   EOB,FSR0L   // Pointer is at BOB.. Warp Pointer to EOB ']); 
fprintf(fid,'%s \n', ['  movff   INDF0,out  // Extract Data    ']); 
fprintf(fid,'%s \n', ['  bra        aend      ']); 
fprintf(fid,'%s \n', ['  aneq:       ']); 
fprintf(fid,'%s \n', ['  movff   PREINC0,out // Extract Data from Buffer   ']); 
fprintf(fid,'%s \n', ['  aend:       ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['  // (2) Perform MAC cycle.     ']); 
fprintf(fid,'%s \n', ['  movf      out,W      ']); 
fprintf(fid,'%s \n', ['  mulwf     POSTINC1     ']); 
fprintf(fid,'%s \n', ['  movf      PRODL,W     ']); 
fprintf(fid,'%s \n', ['  addwf     output_least     ']); 
fprintf(fid,'%s \n', ['  movf     PRODH,W      ']); 
fprintf(fid,'%s \n', ['  addwfc    output_middle     ']); 
fprintf(fid,'%s \n', ['  clrf     WREG      ']); 
fprintf(fid,'%s \n', ['  addwfc     output_most     ']); 
fprintf(fid,'%s \n', ['  decfsz      mac_count     ']); 
fprintf(fid,'%s \n', ['  bra       mac      ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['  // (3) Compute output.     ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['  bcf  STATUS,0']); 
fprintf(fid,'%s \n', ['      rrcf      Xn_high_256,W     ']); 
fprintf(fid,'%s \n', ['       movwf      Xn_high_128     ']); 
fprintf(fid,'%s \n', ['       rrcf      Xn_mid_256,W     ']); 
fprintf(fid,'%s \n', ['       movwf      Xn_mid_128     ']); 
fprintf(fid,'%s \n', ['       rrcf       Xn_low_256,W     ']); 
fprintf(fid,'%s \n', ['       movwf     Xn_low_128     ']); 
fprintf(fid,'%s \n', ['       subwf       output_least,F     ']); 
fprintf(fid,'%s \n', ['      movf        Xn_mid_128,W     ']); 
fprintf(fid,'%s \n', ['       subwfb     output_middle,F     ']); 
fprintf(fid,'%s \n', ['      movf        Xn_high_128,W     ']); 
fprintf(fid,'%s \n', ['      subwfb     output_most,F     ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['  #endasm       ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['  tptr = FSR0L;      ']); 
fprintf(fid,'%s \n', ['         ‘]); 
fprintf(fid,'%s \n', ['  // Scale output...........     ']); 
fprintf(fid,'%s \n', ['']); 
fprintf(fid,'%s \n', ['  #asm       ']); 
fprintf(fid,'%s \n', ['  bcf   STATUS,0     ']); 
fprintf(fid,'%s \n', ['  rrcf           output_most,F     ']); 
fprintf(fid,'%s \n', ['  rrcf   output_middle,F     ']); 
fprintf(fid,'%s \n', ['  rrcf   output_most,F      ']); 
fprintf(fid,'%s \n', ['  #endasm       ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['  PORTD = output_middle;     ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['  }       ']); 
fprintf(fid,'\n \n');  
fprintf(fid,'%s \n', [' void main() {       ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['       set_tris_d(0);       ']); 
fprintf(fid,'%s \n', ['        x = 0;        ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['        T2CON = 0x06;       ']); 
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fprintf(fid,'%s \n', ['     PR2 = 76;       ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', [' // Setup ADC for conversion      ']); 
fprintf(fid,'%s \n', ['    ADCON0 = 0x85;   // Start ADC:     ']); 
fprintf(fid,'%s \n', ['    ADCON1 = 0x02;   // Right Justified Result, All Analog   ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['       enable_interrupts(INT_TIMER2);     ']); 
fprintf(fid,'%s \n', ['    enable_interrupts(GLOBAL);     ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', [' // Setup ADC Channel 1      ']); 
fprintf(fid,'%s \n', ['     ADCON0 = 0x89;                // Set ADC Channel 1   ']); 
fprintf(fid,'%s \n', ['     delay_us(10);       ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', [' // FIR Filter Initializations      ']); 
fprintf(fid,'%s \n', ['      offset_and_buffer_tap_coefficients();    ']); 
fprintf(fid,'%s \n', [         '']); 
fprintf(fid,'%s \n', [' // Buffer Stuff       ']); 
fprintf(fid,'%s \n', ['     EOB = &buf[0];      ']); 
fprintf(fid,'%s \n', ['     BOB = &buf[filter_length-1];    ']); 
fprintf(fid,'%s \n', ['     tptr = BOB;      ']); 
fprintf(fid,'%s \n', ['']); 
fprintf(fid,'%s \n', ['   while(1) {        ']); 
fprintf(fid,'%s \n', ['   }        ']); 
fprintf(fid,'%s \n', ['         ']); 
fprintf(fid,'%s \n', ['}                        ']); 
fprintf(fid,'\n \n \n'); 
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void)  {                    ' ]); 
fprintf(fid,'%s \n',['     int n;                                                                ' ]); 
fprintf(fid,'%s \n',['     for (n=0; n<filter_length; n++) {                                   ' ]); 
fprintf(fid,'%s \n',['                      coef[n] = taps[n]+0x80;                              ' ]); 
fprintf(fid,'%s \n',['     }                                                                     ' ]); 
fprintf(fid,'%s \n',['}                                                                          ' ]); 
end 
set(handles.messages, 'String', 'filter.c written to directory'); 
fclose(fid); 
 
% -------------------------------------------------------------------- 
function varargout = pfr_Callback(h, eventdata, handles, varargin) 
   global han; 
   global gdata; 
   global g; 
   hand = 0; 
    
   % Read Sampling Rate: 
   sf = str2num(get(handles.sf,'string')); 
   sf = 2*sf; 
   set(handles.gccc,'enable','on'); 
  
   % Low Pass Filter........................................................................... 
   if (gdata.type == 1) 
        pbc = str2num(get(handles.pbco,'string')); 
        pba = str2num(get(handles.pba,'string')); 
        sbc = str2num(get(handles.sbc,'string')); 
        sba = str2num(get(handles.sba,'string')); 
   
        % Generate Filter:  
        Pass = pbc; 
        Stop = sbc; 
        Fs = sf; 
        Rp = pba; 
        Rs = sba; 
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        f = [0 Pass Stop Fs/2]/Fs*2; 
        m = [1  1  0  0]; 
        devs = [(10^(Rp/20)-1)/(10^(Rp/20)+1) 10^(-Rs/20)]; 
        w = [1 1]*max(devs)./devs; 
        n = remezord([Pass Stop],[1 0],devs,Fs); order = max(3,n); 
        b = remez(order+1,f,m,w); disp(['Taps needed: ',num2str(n)]); 
        a = 1; 
    
        % scaled taps    
        for n=1:1:length(b) 
             g(n) = round(b(n)/max(b)*127); 
        end 
    
        msg = ['Number of Taps Needed: ',num2str(length(g))]; 
        set(handles.messages,'string', [msg, ', Type: ', num2str(gdata.type)]); 
    
        figure; 
        [H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs);     
    
    
        if ishandle(han) 
                  delete (han); 
        end 
    
        han = freqzplot(H,W,S);    
         
        end 
     
     
     
    % High Pass Filter........................................................................... 
    if (gdata.type == 2)  
 
        pbc = str2num(get(handles.pbco,'string')); 
        pba = str2num(get(handles.pba,'string')); 
        sbc = str2num(get(handles.sbc,'string')); 
        sba = str2num(get(handles.sba,'string'));     
             
                
        Pass = sbc; 
        Stop = pbc; 
        Fs = sf; 
        Rp = pba; 
        Rs = sba; 
 
        f = [0 Stop Pass Fs/2]/Fs*2; 
        m = [0  0  1  1]; 
        devs = [(10^(Rp/20)-1)/(10^(Rp/20)+1) 10^(-Rs/20)]; 
        w = [1 1]*max(devs)./devs; 
        n = remezord([Pass Stop],[1 0],devs,Fs); order = max(3,n); 
         
        if isodd(order) 
            order = order+1; 
        end 
         
        b = remez(order,f,m,w); disp(['Taps needed: ',num2str(n)]); 
        a = 1; 
          
         
        % scale taps    
        for n=1:1:length(b) 
             g(n) = round(b(n)/max(b)*127); 
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        end 
         
        msg = ['Number of Taps Needed: ',num2str(length(g))]; 
        set(handles.messages,'string', [msg, ', Type: ', num2str(gdata.type)]); 
         
        figure; 
        figure; 
        [H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs); 
         
         if ishandle(han) 
             delete (han); 
         end 
    
         han = freqzplot(H,W,S);    
          
    end 
    
     
     
   % band pass filter.....................................................................    
    if (gdata.type == 3)  
        num_of_taps = str2num(get(handles.tapn,'string')); 
                  a = str2num(get(handles.bpa,'string')); 
                  b = str2num(get(handles.bpb,'string')); 
                  c = str2num(get(handles.bpc,'string')); 
                  d = str2num(get(handles.bpd,'string')); 
                pba = str2num(get(handles.pba,'string')); 
                sba = str2num(get(handles.sba,'string'));    
                  
      % Code to Generate Filter 
         Rp = pba; 
         Rs = sba; 
         Fs = sf; 
 
     f = [0 a b c d Fs/2]/Fs*2; 
     m = [0 0 1 1 0 0]; 
    devs = [(10^(Rp/20)-1)/(10^(Rp/20)+1) 10^(-Rs/20) (10^(Rp/20)-1)/(10^(Rp/20)+1)]; 
     w = [Rs Rp Rs]*max(devs)./devs; 
 
     n = num_of_taps; 
     order = n; 
      
     if isodd(order) 
            order = order+1; 
     end 
      
     b = remez(order,f,m,w);  
     a = 1; 
      
     % scaled taps    
     g = round(b/max(b)*127); 
 
      
     for n=1:1:order 
             g(n) = round(b(n)/max(b)*127); 
     end 
 
     msg = ['Number of Taps Needed: ',num2str(length(g))]; 
     set(handles.messages,'string', [msg, ', Type: ', num2str(gdata.type)]); 
  
     figure; 
     figure; 
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     [H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs); 
         
     if ishandle(han) 
                  delete (han); 
     end 
     han = freqzplot(H,W,S);  
     end 
       
 % band stop filter.....................................................................      
     
    if (gdata.type == 4) 
             num_of_taps = str2num(get(handles.tapn,'string')); 
                  a = str2num(get(handles.bpa,'string')); 
                  b = str2num(get(handles.bpb,'string')); 
                  c = str2num(get(handles.bpc,'string')); 
                  d = str2num(get(handles.bpd,'string')); 
                pba = str2num(get(handles.pba,'string')); 
                sba = str2num(get(handles.sba,'string'));    
                  
      % Code to Generate Filter 
      % bpf..................................................................... 
 
         Rp = pba; 
         Rs = sba; 
         Fs = sf; 
          
        if isodd(num_of_taps) 
            num_of_taps = num_of_taps+2; 
        end 
 
        f = [0 a b c d Fs/2]/Fs*2; 
        m = [1 1 0 0 1 1]; 
        devs = [(10^(Rp/20)-1)/(10^(Rp/20)+1) 10^(-Rs/20) (10^(Rp/20)-1)/(10^(Rp/20)+1)]; 
        w = [Rs Rp Rs]*max(devs)./devs; 
 
        n = num_of_taps; 
        order = num_of_taps; 
      
        if isodd(order) 
            order = order+1; 
        end 
      
        b = remez(order,f,m,w);  
        a = 1; 
              
        figure; 
        figure; 
        [H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs); 
   
        % scale taps    
        g = round(b/max(b)*127); 
          
        msg = ['Number of Taps Needed: ',num2str(length(g))]; 
        set(handles.messages,'string', [msg, ', Type: ', num2str(gdata.type)]); 
   
        if ishandle(han) 
          delete (han); 
        end 
    
        han = freqzplot(H,W,S);           
        end 
     



 

 129

     % Custom Filter 
     
    if (gdata.type == 6) 
                         
             num_of_taps = str2num(get(handles.customtaps,'string')); 
                   edges = str2num(get(handles.bedges,'string')); 
                 profile = str2num(get(handles.profile,'string')); 
                    attn = str2num(get(handles.atten,'string')); 
                      Fs = sf;                      
                      f = edges; 
                      m = profile; 
                      f = f/Fs*2; 
                      w = attn; 
                      n = num_of_taps; 
                      order = num_of_taps; 
                
                    if isodd(order) 
                         order = order+1; 
                    end                      
                      
                    b = remez(order+1,f,m,w);  
                    a = 1; 
      
              
                    figure; 
                    figure; 
                   [H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs); 
                                          
                    
                   g = round(b/max(b)*127); 
  
                   msg = ['Number of Taps Needed: ',num2str(length(g))]; 
                   set(handles.messages,'string', [msg, ', Type: ', num2str(gdata.type)]); 
                  
                   if ishandle(han) 
                          delete (han); 
                   end 
    
                   han = freqzplot(H,W,S);           
       
                               
              end 
  
    set(handles.ra,'visible','on'); 
    set(handles.rb,'visible','on'); 
    set(handles.rc,'visible','on'); 
     
    tra = ['Fastest Execution ', num2str(8*length(g)+45), ' cycles, ', num2str(length(g)*2+8), ' Bytes RAM used'  ]; 
    trb = ['Small Program ', num2str(10*length(g)+45), ' cycles, ', num2str(length(g)*2+8), ' Bytes RAM used ']; 
    trc = ['Best Memory ', num2str(22*length(g)+48), ' cycles, ',num2str(length(g)+8), ' Bytes RAM Used ']; 
  
    set(handles.ra,'string',tra); 
    set(handles.rb,'string',trb); 
    set(handles.rc,'string',trc); 
  
function y = isodd(x) 
     
    g = x - floor(x); 
    if (g > 0) 
            y = 1; 
        else 
            y = 0; 
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    end 
  
function custom_off() 
 
global handles; 
 
set(handles.cover,'visible','off'); 
set(handles.tprofile,'visible','off'); 
set(handles.profile,'visible','off'); 
set(handles.bedges,'visible','off'); 
set(handles.text12,'visible','off'); 
set(handles.customtaps,'visible','off'); 
set(handles.attnt,'visible','off'); 
set(handles.atten,'visible','off'); 
 
% -------------------------------------------------------------------- 
function varargout = ra_Callback(h, eventdata, handles, varargin) 
global imptype; 
set(handles.rb, 'value', 0);  
set(handles.rc, 'value', 0);  
imptype = 1; 
 
% -------------------------------------------------------------------- 
function varargout = rb_Callback(h, eventdata, handles, varargin) 
global imptype; 
set(handles.ra, 'value', 0);  
set(handles.rc, 'value', 0);  
imptype = 2; 
 
% -------------------------------------------------------------------- 
function varargout = rc_Callback(h, eventdata, handles, varargin) 
global imptype; 
set(handles.ra, 'value', 0);  
set(handles.rb, 'value', 0);  
imptype = 3; 
 
func t ion  va ra rgout  =  sba_Ca l lback (h ,  even tda t a ,hand les ,va ra rg in )  
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APPENDIX C 

           CODE FOR 4t h  ORDER Floating-Point LMS Filter 
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#inc lude  <18f452 .h> 
#use  de l ay (c lock  = 40000000)  
#fuses  H4 ,PUT,NOWDT 
#inc lude  < lms l ib .h> 
#inc lude  < lms l ib . c> 
#inc lude  <c lcd . c> 
 
//  Globa l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \\  
 
cons t  in t  f i l t e r_ l eng th  = 4 ;  
in t  buf [ f i l t e r_ l eng th ]  =  {0} ;  //  S tore  ADC Va lues  . . . . . . . . . . . . . . . . . . . . \\  
in t  s i gna l ,no i se ,EOB,BOB, tp t r ,buf_count ;  
in t  ou t , i , ou t s ;  
 
//  LMS va r i ab l e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \\  
   sp l i t_ f loa t  fou t ,  * fp t r ;  
   sp l i t   w0 ,w1 ,w2 ,w3 ;  
   sp l i t   n0 ,n1 ,n2 ,n3 ;  
   sp l i t   e s0 , e s1 , e s2 , e s3 ;  
   sp l i t   up0 ,up1 ,up2 ,up3 ;  
   sp l i t   s ,  e t a ,  e r r ,  e r ro r ,  *  p t r ;  

 
#INT_TIMER2 
vo id  t2_ i s r ( )  {  
  T2CON = 0x06 ;         //  Res t a r t  T imer  
        //  Sample  channe l  0  fo r  no i se  
  ADCON0 = 0x81 ;                  //  Se t  ADC Channe l  0  
  e s0 . r ea l  =  0 ;  e s0 . f r ach  = 0 ;  e s0 . f r ac l  =  0 ;  e s0 . s i gn  = 0 ;  
  e s1 . r ea l  =  0 ;  e s1 . f r ach  = 0 ;  e s1 . f r ac l  =  0 ;  e s1 . s i gn  = 0 ;  
  e s2 . r ea l  =  0 ;  e s2 . f r ach  = 0 ;  e s2 . f r ac l  =  0 ;  e s2 . s i gn  = 0 ;  
  e s3 . r ea l  =  0 ;  e s3 . f r ach  = 0 ;  e s3 . f r ac l  =  0 ;  e s3 . s i gn  = 0 ;  
  up0 . rea l  =  0 ;  up0 . f r ach  = 0 ;  up0 . f r ac l  =  0 ;  up0 . s i gn  = 0 ;  
  up1 . rea l  =  0 ;  up1 . f r ach  = 0 ;  up1 . f r ac l  =  0 ;  up1 . s i gn  = 0 ;  
  up2 . rea l  =  0 ;  up2 . f r ach  = 0 ;  up2 . f r ac l  =  0 ;  up2 . s i gn  = 0 ;  
  up3 . rea l  =  0 ;  up3 . f r ach  = 0 ;  up3 . f r ac l  =  0 ;  up3 . s i gn  = 0 ;  
  e r r . r ea l  =  0 ;  e r r . f r ach  = 0 ;  e r r . f r ac l  =  0 ;  e r r . s i gn  = 0 ;  
     

de l ay_us (6 ) ;  
  ADCON0 = 0x85 ;                  //  S t a r t  ADC Convers ion  
  wh i l e (b i t_ te s t (ADCON0,2 ) ) ;  
  no i s e  =  ADRESH;                 //  Read  ADC Va lue  

ADCON0 = 0x89 ;                 //  Se t  ADC Channe l  1  
     

//  Buf fe r  No i se  Va lues  and  conver t  to  f loa t s  
  buf_count  =  f i l t e r_ l eng th ;  
  FSR1L = tp t r ;  
  FSR2L = &n0 . s ign ;  

 
  #asm 
      //  Add  the  l a t e s t  ADC va lue  to  the  buf fe r  
   movf  EOB,0            //  Move  to  W Reg i s t e r  
             cp fseq  FSR1L           //  Check  i f  p t r  i s  a t  EOB 
   b ra  neq  
   movf f  no i se , INDF1      //p t r  has  r eached  EOB:  in se r t  va lue  
   movf f  BOB,FSR1L        //Rese t  po in te r  to  beg in ing  o f  Buf fe r  
   b r a       end  
  neq :  
   movf f   no i se ,POSTDEC1 //Put  da ta  in  Buf fe r  and  advance  p t r  
  end :  
   //  Un load  ADC Va lue  f rom Buf fe r  and  poppu la t e  n0 . .nN 
  un l :  
   movf      BOB,0       //  Move  to  W Reg i s t e r  
   cp fseq    FSR1L      //  Check  i f  p t r  i s  a t  BOB 
   b r a       aneq  



 

 133

  movf f  EOB,FSR1L     //  Po in te r  i s  a t  BOB. .  Warp  Po in te r  to  EOB 
  movf f    INDF1 ,ou t       //  Ext rac t  Data  
  b r a       a end  
  aneq :  
  movf f     PREINC1,out      //  Ext r ac t  Da ta  f rom Buf fe r  
  a end :  
 
 //  S to re  popped  va lue  in to  n0  
  mov lw    0x80  
  cp fs l t     ou t              //  Sk ip  nex t  in s t  i f  ( f )  <  (W)  
  b r a        n0pos  
  mov lw    0x7f  
  b s f         STATUS,0  
  subfwb    ou t ,W         //  W-f -B  ->  W 
  c l r f        INDF2 
  inc f        POSTINC2 
  movf f      WREG,POSTINC2 
  movf f      WREG,POSTINC2 
  c l r f        POSTINC2 
  b ra     dne  
 n0pos :  
  mov lw     0x7f  
  subwf       ou t ,W   //  f  -  W ->  W 
  c l r f          POSTINC2 
  movf f       WREG,POSTINC2 
  movf f       WREG,POSTINC2 
  c l r f          POSTINC2 
  dne :  
     dec f sz       buf_count  
     b r a            un l  
 #endasm 
 
            tp t r  =  FSR1L ;  
  //  Sample  Channe l  1  fo r  S igna l  
 
  ADCON0 = 0x8d ;                 //  S t a r t  ADC Convers ion  
  wh i l e (b i t_ te s t (ADCON0,2 ) ) ;  
  s i gna l  =  ADRESH;            //  Read  ADC Va lue  
 
                   i f  ( s i gna l>=127)  {  
       s i gna l  =  s igna l -127 ;  
       s . f r ach  = s igna l ;  
                     s . f r ac l  =  s igna l ;  
                 s . r ea l  =  0 ;  
       s . s i gn  =  0 ;  
     }  
    e l s e  {  
       s i gna l  =  128- s igna l ;  
       s . f r ach  = s igna l ;  
                 s . f r ac l  =  s igna l ;  
       s . r ea l  =  0 ;  
       s . s i gn  =  1 ;  
       }  
 
 
 
      //  Ca l cu l a t e  e s t ima te  us ing . . . . . .  // '  e sN = wN *  nN; '  
 
  FSR0L = &w0. s i gn ;  FSR1L = &n0 . s ign ;  FSR2L = &es0 . s i gn ;   mu l ( ) ;  
  FSR0L = &w1. s i gn ;  FSR1L = &n1 . s ign ;  FSR2L = &es1 . s i gn ;   mu l ( ) ;  
  FSR0L = &w2. s i gn ;  FSR1L = &n2 . s ign ;  FSR2L = &es2 . s i gn ;   mu l ( ) ;  
  FSR0L = &w3. s i gn ;  FSR1L = &n3 . s ign ;  FSR2L = &es3 . s i gn ;   mu l ( ) ;  
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   //  Change  S ign  o f  Est imates . . . . . . // ' e s0  =  -e s0 ; '  
    e s0 . s i gn  ^= 1 ;  
    e s1 . s i gn  ^= 1 ;  
    e s2 . s i gn  ^= 1 ;  
    e s3 . s i gn  ^= 1 ;  
 
 
  //  Ca l cu l a t e  Er ror . . . . . . . . . . . . . . . // '  e r ro r  =  s  +  e s0 . . e sN; '  
  FSR0L = &s . s i gn ;    FSR1L = &es0 . s i gn ;  FSR2L = &er ro r . s i gn ;   add ( ) ;  
  FSR0L = &er ror . s i gn ;  FSR1L = &es1 . s i gn ;  FSR2L = &er ror . s i gn ;   add ( ) ;  
  FSR0L = &er ror . s i gn ;  FSR1L = &es2 . s i gn ;  FSR2L = &er ror . s i gn ;   add ( ) ;  
  FSR0L = &er ror . s i gn ;  FSR1L = &es3 . s i gn ;  FSR2L = &er ror . s i gn ;   add ( ) ;  
 
 //  Modu la te  Er ror  us ing  l ea rn ing  cons tan t . . . . . . . // '  e r r  =  e r ror*e t a ; '  
  FSR0L = &er ror . s i gn ;  FSR1L = &eta . s i gn ;  FSR2L = &er r . s i gn ;   mu l ( ) ;  
 
            //  Ca l cu l a t e  We igh t  Upda te s . . . . . . . // '  up0  =  e r r  *  n0 . .nN; '  
  FSR0L = &er r . s i gn ;  FSR1L = &n0 . s ign ;  FSR2L = &up0 . s i gn ;   mu l ( ) ;  
  FSR0L = &er r . s i gn ;  FSR1L = &n1 . s ign ;  FSR2L = &up1 . s i gn ;   mu l ( ) ;  
  FSR0L = &er r . s i gn ;  FSR1L = &n2 . s ign ;  FSR2L = &up2 . s i gn ;   mu l ( ) ;  
  FSR0L = &er r . s i gn ;  FSR1L = &n3 . s ign ;  FSR2L = &up3 . s i gn ;   mu l ( ) ;  
 
 
   //  App ly  upda te s  to  we igh t s . . . . . . . // '  wN = wN + upN; '  
   FSR0L = &w0. s i gn ;  FSR1L = &up0 . s i gn ;  FSR2L = &w0. s i gn ;   add ( ) ;  
  FSR0L = &w1. s i gn ;  FSR1L = &up1 . s i gn ;  FSR2L = &w1. s i gn ;   add ( ) ;  
  FSR0L = &w2. s i gn ;  FSR1L = &up2 . s i gn ;  FSR2L = &w2. s i gn ;   add ( ) ;  
  FSR0L = &w3. s i gn ;  FSR1L = &up3 . s i gn ;  FSR2L = &w3. s i gn ;   add ( ) ;  
 
 //  Change  S ign  o f  Es t imates . . . . . . // ' e s0  =  -e s0 ; '  
 
  i f ( e r ror . f r ach  > 80 )  e r ror . f r ach  = 80 ;  

 
    i f ( e r ror . s i gn )  
        ou t s  =  127  -  e r ro r . f r ach ;  
    e l s e  
        ou t s  =  e r ro r . f r ach  + 127 ;  

 
     PORTD = out s ;  

}  
 
 
 

vo id  ma in ( )  {  
 
          //  Se tup  Por t s  and  Per iphera l s  
 
       s e t_ t r i s_d (0 ) ;  
            l cd_ in i t ( ) ;  
 
  //  Se t  s amp l ing  r a t e  o f  8000  Hz  
 
              T2CON = 0x06 ;  
        PR2 =  76 ;  
 
  //  Se tup  ADC for  conver s ion  
 
      ADCON0 = 0x85 ;    //  S t a r t  ADC:  
      ADCON1 = 0x02 ;    //  R igh t  Jus t i f i ed  Resu l t ,  A l l  Ana log  
 
  //  Enab le  T imer  in te r rup t s  fo r  s ampl ing .  
 
              enab le_ in te r rup t s ( INT_TIMER2) ;  
              enab le_ in te r rup t s (GLOBAL) ;  
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  //  In i t i a l i ze  LMS var i ab l e s  
 
     p t r  =  &w0;  f i x8x16 (0 .0 ,p t r ) ;  
   p t r  =  &w1;  f i x8x16 (0 .0 ,p t r ) ;  
    p t r  =  &w2;  f i x8x16 (0 .0 ,p t r ) ;  
   p t r  =  &w3;  f i x8x16 (0 .0 ,p t r ) ;  
 
    p t r  =  &es0 ;  f i x8x16 (0 .0 ,p t r ) ;  
    p t r  =  &es1 ;  f i x8x16 (0 .0 ,p t r ) ;  
   p t r  =  &es2 ;  f i x8x16 (0 .0 ,p t r ) ;  
   p t r  =  &es3 ;  f i x8x16 (0 .0 ,p t r ) ;  
 
    p t r  =  &up0 ;  f i x8x16 (0 .0 ,p t r ) ;  
     p t r  =  &up1 ;  f i x8x16 (0 .0 ,p t r ) ;  
   p t r  =  &up2 ;  f i x8x16 (0 .0 ,p t r ) ;  
    p t r  =  &up3 ;  f i x8x16 (0 .0 ,p t r ) ;   
 
    p t r  =  &er r ;  f i x8x16 (0 .0 ,p t r ) ;  
     p t r  =  &eta ;  f i x8x16 (0 .1 ,p t r ) ;  
    p t r  =  &er ror ;  f i x8x16 (0 .0 ,p t r ) ;  
 
 //  In i t i a l i ze  buf fe r  po in te r s  fo r  LMS 
 
          EOB = &buf [0 ] ;  
   BOB = &buf [ f i l t e r_ l eng th -1 ] ;  
   tp t r  =  BOB;   
 
    wh i l e (1 )  {  
 
      }  
 
}  
 
 

 

 

Fi leName:  lms l ib .h  

 

 

//  ACCUMULATOR ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   //  
#byte     WREG = 0xFE8     //  Reg i s t e r  S to res  the  Car ry  B i t   //  
#byte     PRODL =0xf f3      //  Product  Low Byte         //   
#byte     PRODH =0xf f4       //  Product  H igh  Byte    //  
#byte    ADRESL = 0xfc3      //  Low Byte  fo r  ADC Sample     //   
#byte    ADRESH = 0xfc4       //  High  Byte  fo r  ADC Sample    //   
#byte    STATUS = 0xfd8      //  S t a tus  Reg i s t e r     //  
 
//  ADC CONTROL REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   //  
#byte    ADCON0 = 0xfc2      //  ADC Cont ro l  Reg i s t e r  (H igh )             //  
#byte    ADCON1 = 0xfc1      //  ADC Cont ro l  Reg i s t e r  (Low)   //  
#byte    ADRESL = 0xfc3      //  Low Byte  fo r  ADC Sample     //   
#byte    ADRESH = 0xfc4       //  High  Byte  fo r  ADC Sample                      //  
#byte   INTCON  = 0xf f2      //  In te r rup t  cont ro l  r eg i s t e r      //  
#byte   INTCON2 = 0xf f1      //  In te r rup t  cont ro l  r eg i s t e r     //  
#byte   INTCON3 = 0xf f0      //  In te r rup t  cont ro l  r eg i s t e r      //  
 
//  DIGITAL IO PORT ADDRESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   //  
#byte    PORTA = 0xf80      //  Por t  A  Addres s         //  
#byte    PORTB = 0xf81       //  Por t  B  Addres s         //  
#byte    PORTC = 0xf82      //  Por t  C  Addres s         //  
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#byte    PORTD = 0xf83      //  Por t  D Addres s       //  
#byte    PORTE = 0xf84      //  Por t  E  Addres s          //  
#byte     LATA = 0xf89        //  Se t  Dr iec t ion  fo r  PORTA    //  
#byte     LATB = 0xf8a       //  Se t  Dr iec t ion  fo r  PORTB      //   
#byte     LATC = 0xf8b       //  Se t  Dr iec t ion  fo r  PORTC      //  
#byte     LATD = 0xf8c        //  Se t  Dr iec t ion  fo r  PORTD    //  
#byte     LATE = 0xf8d        //  Se t  Dr iec t ion  fo r  PORTE    //  
 
 
//   INDIRECT ADDRESSING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   //  
#byte   FSR0H = 0xfeA      //  Hardware  F i l e  Po in te r0  (H igh )       //    
#byte   FSR0L = 0xfe9       //  Hardware  F i l e  Po in te r0  (Low)       //   
#byte   FSR1H = 0xfe2       //  Hardware  F i l e  Po in te r1  (High )       //  
#byte    FSR1L = 0xfe1        //  Hardware  F i l e  Po in te r1  (Low)      //  
#byte    FSR2H = 0xfda       //  Hardware  F i l e  Po in te r2  (High )       //  
#byte  FSR2L = 0xfd9       //  Hardware  F i l e  Po in te r2  (Low)       //  
#byte    INDF0 = 0xfe f       //  Read  Data  Po in ted  by  FSR0       //   
#byte    INDF1 = 0xfe7       //  Read  Data  Po in ted  by  FSR1      //   
#byte    INDF2 = 0xfdf        //  Read  Data  Po in ted  by  FSR2      //                                    
#by te    PLUSW0 = 0xfeb     //  Add  Po in ted  da t a  to  WREG      //  
#by te    PLUSW1 = 0xfe3     //  Add  Po in ted  da ta  to  WREG    //  
#by te    PLUSW2 = 0xfdb     //  Add  Po in ted  da t a  to  WREG    //  
#byte    PREINC0 = 0xfec    //  Pre - inc rement  po in te r0       //  
#byte    PREINC1 = 0xfe4    //  Pre - inc rement  po in te r1          //   
#byte    PREINC2 = 0xfdc      //  Pre - inc rement  po in te r2                //  
#byte    POSTINC0 = 0xfee     //  Pos t - Incerement  Po in te r0     //  
#byte    POSTDEC0 = 0xfed     //  Pos t -Decrement  Po in te r0     //  
#byte    POSTINC1 = 0xfe6     //  Pos t - Increment  Po in te r1                       //  
#byte    POSTDEC1 = 0xfe5     //  Pos t -Decrement  Po in te r1     //  
#byte    POSTINC2 = 0xfde     //  Pos t - Increment  Po in te r2     //  
#byte    POSTDEC2 = 0xfdd     //  Pos t -Decrement  Po in te r2                        //  
 
//   INTERRUPT REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    //  
#byte    INTCON = 0xf f2      //  In te r rup t  Reg i s t e r0               //  
#byte    INTCON2 = 0xf f1      //  In te r rup t  Reg i s t e r2         //  
#byte    INTCON3 = 0xf f0      //  In te r rup t  Reg i s t e r3                             //  
 
//   STACK ADDRESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     //  
#byte    STKPTR = 0xf fc      //   S t ack  Po in te r      //  
#byte      TOSU = 0xf f f      //   Top  o f  S tack          //  
#byte      TOSH = 0xf fe       //   Top  o f  S t ack  High         //  
#byte      TOSL = 0xf fd       //   Top  o f  S t ack  Low       //  
 
//   EEPROM ADDRESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   //  
#byte     EEADR = 0xfA9      //  EEPROM Reg i s t e r                //  
#byte    EEDATA = 0xfa8       //  EEPROM Reg i s t e r                              //  
#byte    EECON2 = 0xfa7      //  EEPROM Reg i s t e r               //  
#byte    EECON1 = 0xfa6       //  EEPROM Reg i s t e r                               //  
 
//   TIMER REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    //  
#byte  PR2 = 0xfcb  
#byte  TMR2 = 0xfcc  
#byte  T2CON = 0xfca  
 
 

Fi leName:  lms l ib .c  

t ypedef  s t ruc t  g type  {   
                        in t  s i gn ;  
   in t  f r ac l ;  
   in t  f r ach ;  
   in t  r ea l ;  
       }  sp l i t ;   
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typedef  un ion  f t ype  {  f loa t  op ;           
               s t ruc t  {  in t  exp ;          
          in t  mana ;         
          in t  manb ;         
            in t  manc ;  }  s ;  }  sp l i t_ f loa t ;  
 
 
 
vo id  in t2 f loa t ( in t  adc )  {  
 
 #asm  
     mov lw    0x7f  
     subwf    adc ,W 
     b t f s c    WREG,7  
     b r a      ng  
     c l r f     POSTINC0 
     movwf    POSTINC0 
     movwf    INDF0 
     b r a      over  
   ng :     
     neg f     WREG 
     c l r f     INDF0 
     inc f     POSTINC0 
     movwf    POSTINC0 
     movwf    INDF0     
        over :    
 #endasm 
}  

 
 
vo id  f i x Ieee ( sp l i t_ f loa t  *  fp t r ,  sp l i t  *  p t r )  {  
 
in t  s i gn , r ea l , f r ach , f r ac l , expo ;  
 
  s i gn  =  p t r ->s ign ;  
  r ea l  =  p t r ->rea l ;  
 f r ach  =  p t r ->frach ;  
 f r ac l  =  p t r ->f rac l ;  
  expo  = 0x86 ;  
  
          
 #asm 
     b s f      f r ac l , 0  
   ad j :  
     b t f s c    r ea l , 7  
     b r a      done  
     bc f      STATUS,0  
     r l c f      f r ac l  
     r l c f      f r ach  
     r l c f      r ea l  
               dec f     expo  
     b r a       ad j  
          done :  
 #endasm 
 
     fp t r ->s .mana  =  rea l ;  
     fp t r ->s .manb  = f r ach ;  
               fp t r ->s .manc  =  f r ac l ;  
               fp t r ->s . exp  =  expo ;  
 
    i f  ( s i gn )  {   
  fp t r ->s .mana  = fp t r ->s .mana  |  0x80 ;  
       }  
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          e l s e  
       {  
  fp t r ->s .mana  = fp t r ->s .mana  & 0x7f ;  
       }  
}  
 
vo id  f i x8x16( f loa t  num,  sp l i t  *  p t r )  {  
 
sp l i t_ f loa t  a ;  
in t  sh i f t ,  l e f t ;  
in t32  out ;  
 
 
a .op  =  num;  
    
p t r ->rea l  =  0 ;  
p t r ->s ign  =  0 ;  
p t r ->f rach  = 0 ;  
p t r ->f rac l  =  0 ;    
 
 
 
i f  ( a . s . exp  >= 0x7f )  {  
           sh i f t  =  a . s . exp  -  0x7f ;  
            l e f t  =  1 ;   
         }  
 e l s e  {  
    sh i f t  =  0x7f  -  a . s . exp ;  
     l e f t  =  0 ;  
 }  
 
 //  Get  S ign  and  Res tore  h igh  B i t .  
  
 p t r ->s ign  =  b i t_ te s t ( a . s .mana ,7 ) ;  
 a . s .mana  =  a . s .mana  |  0x80 ;  
 
 
 i f  ( l e f t )  {  
     p t r ->rea l  =  a . s .mana  >> (7  -  sh i f t ) ;   
   #asm 
       mov lw  0x02   
       addwf   sh i f t ,F  
    ad j :  
        dec f     sh i f t  
        bc f     STATUS,0  
        bz     f in  
        r l c f     a . s .manc  
        r l c f     a . s .manb  
        r l c f     a . s .mana  
                  bc f     STATUS,0  
        b r a      ad j  
     f in :  
   #endasm 
 
   p t r ->f rach  =  a . s .mana ;  
   p t r ->frac l  =  a . s .manb ;  
       }  
 
        e l s e  {         
        #asm 
   ad j a :  
     dec f   sh i f t  
               bc f   STATUS,0  
     bz   over  



 

 139

    
      r r c f   a . s .mana  
      r r c f   a . s .manb  
      r r c f   a . s .manc  
    
      bc f   STATUS,0  
      b r a   ad j a  
   over :       
         #endasm 
    
       p t r ->frach  =  a . s .mana ;  
       p t r ->frac l  =  a . s .manb ;  
                      
       }  
         
}  
 
 
      
vo id  add(vo id )  {  
 
 #asm 
    movf     INDF0,W 
    xo rwf    INDF1,W 
    bnz       d s  
 
                  s s :  
            movf  POSTINC0,W 
    andwf    POSTINC1,W 
            movwf   POSTINC2 
    movf     POSTINC0,W 
    addwf    POSTINC1,W 
           movwf    POSTINC2 
 
    movf      POSTINC0,W 
    addwfc   POSTINC1,W 
            movwf    POSTINC2 
 
    movf       INDF0,W 
    addwfc    INDF1,W 
    movwf     INDF2 
    b r a         done  
 
        d s :  
    mov lw    0x3  
     addwf     FSR0L ,F  
     addwf     FSR1L ,F  
 
     movf      INDF0,W 
     cp fseq    INDF1 
     b r a         rneq  
             b r a         r equ  
           
                 rneq :  
             cp fsg t     INDF1 
     b r a         ah  
  
                 bh :  
              mov lw    0x3  
      subwf     FSR0L 
              subwf     FSR1L 
  
      movf f     POSTINC1,POSTINC2 
               inc f        FSR0L 
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    movf      POSTINC0,W 
            subwf     POSTINC1,W 
            movwf    POSTINC2 
           
            movf      POSTINC0,W 
            subwfb   POSTINC1,W 
            movwf    POSTINC2 
 
            movf      INDF0,W 
            subwfb   INDF1,W 
            movwf    INDF2 
   b r a         done  
    
                   ah :  
            mov lw    0x3  
      subwf     FSR0L 
            subwf     FSR1L 
 
    movf f     POSTINC0,POSTINC2 
            inc f        FSR1L 
  
     movf      POSTINC1,W 
             subwf     POSTINC0,W 
            movwf    POSTINC2 
 
            movf      POSTINC1,W 
   subwfb   POSTINC0,W 
            movwf    POSTINC2 
 
             movf      INDF1,W 
            subwfb   INDF0,W 
            movwf    INDF2 
             b r a        done  
   
          r equ :  
            dec f       FSR0L 
            dec f       FSR1L 
             movf      INDF0,W 
            cp fseq    INDF1 
     b r a        fhneq  
             b r a        fhequ  
    
                  fhneq :  
     cp fsg t    INDF1 
     b r a        a fh  
    
          b fh :   
     mov lw   0x02  
             subwf     FSR0L 
             subwf     FSR1L 
 
      movf f     POSTINC1,POSTINC2 
              inc f        FSR0L 
 
     movf      POSTINC0,W 
     subwf     POSTINC1,W 
              movwf    POSTINC2 
   
             movf      POSTINC0,W 
             subwfb   POSTINC1,W 
             movwf    POSTINC2 
 
              c l r f          INDF2 
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    b r a      done  
 
         a fh :  
            mov lw    0x02  
           subwf    FSR0L 
          subwf    FSR1L 
 
    movf f    POSTINC0,POSTINC2 
          inc f        FSR1L 
  
    movf     POSTINC1,W 
            subwf    POSTINC0,W 
            movwf    POSTINC2 
 
            movf       POSTINC1,W 
    subwfb    POSTINC0,W 
            movwf    POSTINC2 
 
            c l r f      INDF2 
            b r a        done  
      
                  fhequ :  
    dec f      FSR0L  
            dec f      FSR1L 
            movf     INDF0,W 
           cp fseq   INDF1 
    b r a        f lneq  
            b r a        f l equ  
    
                  f lneq :  
    cp fsg t   INDF1 
    b r a        a f l  
 
         b f l :  
    dec f     FSR0L 
            dec f     FSR1L 
 
            movf f    POSTINC1,POSTINC2 
            inc f     FSR0L 
 
    movf     POSTINC0,W 
   subwf    POSTINC1,W 
            movwf    POSTINC2 
 
    c l r f       POSTINC2 
            c l r f       POSTINC2 
    b r a        done  
 
         a f l :  
            dec f     FSR0L 
            dec f     FSR1L 
 
    movf f    POSTINC0,POSTINC2 
            inc f       FSR1L 
  
    movf      POSTINC1,W 
            subwf     POSTINC0,W 
            movwf    POSTINC2 
    b r a         done  
    
         f l equ :  
            c l r f     POSTINC2 
            c l r f     POSTINC2 
            c l r f     POSTINC2 
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            c l r f     POSTINC2 
                   done :  
      #endasm 

}  
 
 
 
 
 

vo id  mu l (vo id )  {  
 
     #asm  
       movf     POSTINC0,W 
    xorwf      POSTINC1,W 
    movwf     POSTINC2 
 
    movf      PREINC0,W 
        mu lwf     PREINC1 
    movf f     PRODL,  POSTINC2 
    movf f     PRODH,  INDF2 
 
    movf      PREINC0,W 
    mu lwf     POSTINC1 
    movf f     PRODL,WREG 
    addwf     POSTINC2,F  
    movf f     PRODH,WREG 
    addwfc    POSTDEC2,F  
 
    dec f       FSR0L ,F  
    movf      POSTINC0,W 
    mu lwf     INDF1 
    movf f     PRODL,WREG 
   addwf     POSTINC2,F  
    movf f     PRODH,WREG 
    addwfc    INDF2,F  
        movf f     INDF0,WREG 
    mu lwf     INDF1 
    movf      PRODL,W 
        addwfc    INDF2,F  
      #endasm       
}  
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APPENDIX D 

           C-Code for the Clock Signal to the Switched Cap filter 
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// The fol lowing code generates a 50000Hz Clock signal of 55555 Hz  
// Allowing the Switched capasitor MAX 297 to have a cutoff of 
//1KHz. 
 
 
#include <12f629.h> 
#use delay(clock = 10000000) 
 
#fuses HS,PUT,NOWDT 
#define GP0 PIN_A0 
#define GP1 PIN_A1 
#define GP2 PIN_A2 
#define GP3 PIN_A3 
#define GP4 PIN_A4 
#define GP5 PIN_A5 
 
void main() { 
 
while(1) { 
            output_high(PIN_A2); 
            delay_us(9);  
            output_low(PIN_A2); 
            delay_us(9);  
} 
 
} 
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APPENDIX E 

           C-Code for the PORTC HD44780 LCD DEVICE 
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s t ruc t  l cd_p in_map  {                  //  Th i s  s t ruc ture  i s  over l ayed  
           boo lean  r s ;               //  on  to  an  I/O por t  to  ga in  
           boo lean  unused1 ;            //  acces s  to  the  LCD p ins .  
           boo lean  unused2 ;            //   
           boo lean  enab le ;              //   
           in t      da t a  :  4 ;               //   
        }  l cd ;  
 
#byte  l cd  =  0x f82                     //  Th i s  put s  the  en t i r e  s t ruc ture  
                                             //  on  to  por t  C  ( a t  addres s  7 )  
 
by te  CONST LCD_INIT_STRING[4 ]  =  {0x28 ,  0xc ,  1 ,  6} ;    
by te  CONST LCD_LINE_ADDRESSES[4 ]  =  {0x00 ,  0x40 ,  0x14 ,  0x54} ;  
 
 
//  Sends  a  s ing le  n ibb le  to  the  LCD.  
                             
vo id  l cd_send_n ibb le (  by t e  n  )  {  
      l cd .da t a  =  n ;  
      de l ay_cyc l e s (1 ) ;  
      l cd . enab le  =  1 ;  
      de l ay_us (2 ) ;  
      l cd . enab le  =  0 ;  
}  
 
//  Sends  a  who le  by te  to  the  LCD by  mak ing  use  o f  the  Send  n ibb le  func t ion  
//  The  f i r s t  pa ramete r  ‘ addres s ’  dec ided  whether  the  by te  i s  an  ins t ruc t ion  or  da t a  
 
vo id  l cd_send_by te (  by te  addres s ,  by t e  n  )  {  
      de l ay_ms(3 ) ;  
      l cd . r s  =  0 ;  
      de l ay_us (1 ) ;  
      l cd . r s  =  addres s ;  
      de l ay_cyc l e s (1 ) ;   
      l cd . enab le  =  0 ;  
      l cd_send_n ibb le (n  >> 4 ) ;  
      l cd_send_n ibb le (n  & 0xf ) ;  
}  
 
 
//  In i t i a l i ze s  the  LCD d i sp l ay . .   
 
vo id  l cd_ in i t ( )  {  
    by t e  i ;  
    s e t_ t r i s_c (0 ) ;  
    l cd . r s  =  0 ;  
    l cd . enab le  =  0 ;  
    de l ay_ms(15 ) ;  
    fo r ( i=1 ; i<=3 ;++i )  {  
       l cd_send_n ibb le (3 ) ;  
       de l ay_ms(5 ) ;  
    }  
    l cd_send_n ibb le (2 ) ;  
    fo r ( i=0 ; i<=3 ;++i )  
       l cd_send_byte (0 ,LCD_INIT_STRING[ i ] ) ;  
}  
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// Se t s  the  cur so r  on  the  s c reen  where  the  charac te r  i s  to  be  p r in ted .  
 
vo id  l cd_gotoxy (  by te  x ,  by t e  y )  {  
   by t e  addres s ;  
   addres s= lcd_ l ine_addres ses [ y ]+x ;  
   l cd_send_by te (0 ,0x80|addres s ) ;  
}  
 
 
vo id  l cd_putc (  by te  c )  {  
   sw i t ch  ( c )  {  
     ca se  ' \ f '    :  l cd_send_byte (0 ,1 ) ;  
                   de l ay_ms(2 ) ;  
                                           b r eak ;  
     ca se  ' \b '    :  l cd_send_byte (0 ,0x10) ;   b reak ;  
     de fau l t      :  l cd_send_byte (1 , c ) ;      b reak ;  
   }  
}  
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