WestVirginiaUniversity
THE RESEARCH REPOSITORY @ WVU

Graduate Theses, Dissertations, and Problem Reports

2004

PIC 18F452 implementation of digital filters

Vikram A. Bose-Mullick
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation

Bose-Mullick, Vikram A., "PIC 18F452 implementation of digital filters" (2004). Graduate Theses,
Dissertations, and Problem Reports. 1418.
https://researchrepository.wvu.edu/etd/1418

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1418?utm_source=researchrepository.wvu.edu%2Fetd%2F1418&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

PIC 18F452 IMPLEMENTATION OF DIGITAL FILTERS

Vikram A Bose-Mullick

Thesis Submitted to
the college of Engineering

at West Virginia University
in partial fulfillment of the requirements
for the degree of

Master of Science
in
Electrical Engineering

Powsiri Klinkhachorn, Ph.D., Committee Chairperson
Roy Nutter, Ph.D.
Robert McConnell, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2004

Keywords: Microchip PIC, 18F452, FIR filter, LMS, Adaptive Filter,

Noise Cancellation, Echo Cancellation, Filter Design

Copyright 2004 Vikram A Bose-Mullick

ABSTRACT

PIC 18£452 implementation of digital filters

Vikram A Bose-Mullick

This research hopes to explore the computational limits of the PIC18f452
chip by encompassing the designing and implementation of two types of filters
for the PIC 18F452 microcontroller. The main purpose of this research is to
implement a floating-point least mean square (LMS) error adaptive filter and
its secondary goal is a fixed-point implementation of finite impulse response
(FIR) filter. FIR filters are specified via a graphical user interface (GUI) and
upon demand, optimized C-language code is generated for the popular CCS
PIC C-Compiler. In is the intent of this research to learn whether FIR filters
can be made computationally viable on the PIC18 chips, can they run stably
with reliable and repeatable performance? What is the minimum execution
time possible at the processing limits of the chip? And how is filter
attenuation affected when taps are scaled down from floating-point to fixed
point? For the floating point LMS filter it desired to explore the relationship
between sampling-rate and filter order and to develop a hardware optimized
floating point library for general use. The minimum execution time for the
LMS filter achieved during this research is 26.7 ps per order. The FIR filter
code generation software developed during this study allows graphical
specification, inspection of response curves. It ultimately presents three
options for automatic code generation — program-space efficient code (uses
minimum code space), data-memory efficient code (uses minimum RAM) and
speed-efficient code (optimized for quickest execution), thereby allowing up to
a 75th order FIR filter with the best execution time of 800ns per MAC
cycle achieved at the bit-depth of 8-bit samples and 8-bit taps. The filter
tap conversion from floating-point format to 8-bit fixed point reduced
the attenuation by an average of 28%. In general, both filters gave a

strong performance with consistent, reliable and repeatable results.

DEDICATION

Both small and large, to everyone that made a difference. Above all, I

dedicate my work to my kind and loving family.

ACKNOWLEDGEMENT

I wish to express my deepest possible thanks to Dr Powsiri
Klinkhachorn my advisor and dear friend, for his excellent guidance and
boundless friendship. Even though I’ve never received an ‘A’ from him, I
have no regrets because I have learned more in his classes than all my

‘A’s put together.

A special thanks to Dr. Roy Nutter for bringing microprocessors into
my depth of field through his innovative lectures, inspiring chats and for
showing us the value of journals and periodicals. They contained the very

first sparks that led to my intense love of the subject.

I express my deep appreciation for to Dr. McConnell from whom I
learned the fundamentals for analog and digital without which nothing is

possible.

Thank you gentleman for your generosity of spirit, for your infinite
kindness you’re your constant support and finally for making the time to

serve in my committee.
A special thanks to my friend Tal Gottesman for filling in and picking
up the slack during during zillions of hours that were spent putting this

document together.

Finally my thanks to Braxton Lewis and my boss Dr. McCawley for all

their constant help and support.

v

TABLE OF CONTENTS

B T ii
Dedication ivviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i e iii
Acknowledgements ..ooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i e iv
Table of CONtENTS. . iiiiiiiiiiiiiiiiiiiii i i e ees \4
List of Figutes..ciiiiiiiiiiiiiiiiiiiiiiiiiiiii it viii
List of Tables . iviii i e xii
List of Symbols / Nomenclaturecocvviiiiiiiiiiiiiiiiiiiinn.. xiii
CHAPTER 1: INTRODUCTIONciitiiiiiiiiiiiiiiiiiiiiiiicicnaeeas 1

1.1 Personal MoOtivVation . 1

1.2 Signal Processing using the PIC 18F452. ..., 2

1.3 Digital Filters Vs Analog Filters ... 3

1.4 PIC 18 Microcontroller Family. ..o, 3

1.5 Detailed Research Objectives and Contributions............. 4

1.6 OrganiZation . 6
CHAPTER 2: LITERATURE SURVEY ...ccciiiiiiiiiiiiiiiiiiinn, 7

2.1 Classification of Filtering Methods ... 7

2.2 Digital FIlters ciccicicc s 7

2.3 Non-Recursive Type Digital Filters .., 8

2.4 Switching type digital filters .., 9

2.5 Adaptive FIlEers . seeseessnes 9

2.6 Least Mean Squared Error (LMS) ., 10

2.8 Implementation of a digital filter ... 12

CHAPTER 3: IMPLEMENTATION DETAILS

3.1 Finite Impulse Response (FIR) .., 14
3.2 Implementation Background ..., 15
3.3 FIR Filter Implementation ... 17
3.3.1 User specificatioN . 17
3.3.2 Filter Tap GeNneration .. 20
3.3.3 Coefficient Scaling ... 22
3.3.4 Code eNeratioN e 23
3.3.5 Buffering Data .., 24
3.3.6 Sampling: Analog to Digital Conversion ... 35
3.3.7 Filter Calculations ..., 39
3.3.8 Implementation for Shortest Execution Time 41
3.3.9 Implementation for Efficient RAM utilization......51
3.3.10 Implementation for Min Program Memory........ 53
3.4 Implementation of the floating-point LMS filter 54
3.5 The compilers floating point SYStEM .ccvueurcrrerrcrrerrerrerennne 54
3.6 Floating-Point Word lengths ..., 55
3.6.1 Algorithm developed for FP multiplication.............. 57
3.6.2 Calling FP Addition function in C-language........... 62
3.6.3 Algorithm developed for floating-point addition........ 62
3.6.4 Converting integer to floating-point format............ 64
3.7 Implementation of a 4™ order LMS algorithmcccouurvvuuenn. 65
3.7.1 Sampling noise and reference for LMS filter.......... 66
3.7.2 Program Outline for 4™ order LMS filter .omrrverernnnn. 68
3.8 Hardware Test CirCultu e 73
3.9 Detailed Schematic of the Power Supply .. 74
3.10 Detailed Schematic: Smoothing Filtef ... 75
3.11 Detailed Schematic: Signal Conditioning Board.............. 76
3.12 Detailed Schematic: Signal Processing Board 77
3.13 Photograph of PIC18F452 based Filter .ccvcvcvcivcrncnnce. 78

.....................

vi

CHAPTER 4: RESULTS FROM REAL-TIMEcccuuueee.

4.1 FIR FILTER: Data Acquisition Setupinincenenn. 79
4.2 FIR FILTER: Real-Time Testing Results ... 80
4.3 LMS FILTER: Test Scenario T, 86
CHAPTER 5: AnaLySis & CONCLUSIONSccoiiiiviinnen.
5.1 FIR filter performance SUMMETY . 92
5.2 LMS filter performance SUMMATLY .ocieicinicinennieeneneieninennes 94
5.3 Conclusions and future WorkK ... 95

A USERS MANUAL FOR FIR FILTER DESIGN...........c......

.99
..99

B MATLAB CODE FOR FIR FILTER DESIGN SOFTWARE..109

C CODE FOR 4™ ORDER FLOATING POINT LMS..............
D CODE FOR SWITCHED CAP CLOCK SOURCE................
E C-CODE FOR LDC ON PORT C...oovviviiiiiiiiiiiiiiiiiceniaens

130
143

.145

148

vil

LIST OF FIGURES

Figure 1.5.1 Topology for Real-Time LMS Circuit Testing...................... 4
Figure 2.1.1 Classification of Signal filtering methods...................oo.. 7
Figure 2.3.1 The transversal topology of the FIR filter..................oooi. 8
Figure 2.6.1 LMS filter Topolo@ycocooiiiiiiiiiiiiiiii, 11
Figure 2.7.1 Standard Implementation of LMS Filter.....................o.... 12
Figure 2.8.1 Standard Implementation of Digital Filter......................... 13
Figure 2.8.2 Digital Signal Processing overview..........ocooviiviiiiniin.. 13
Figure 3.1.1 FIR filter block Diagram...........coooiiiiiiii . 15
Figure 3.3.2 FIR filter creation Stagescoviiuiiiiiiiiiiiiiiiiiiiiiiienennn. 17
Figure 3.3.2 Digital Signal Processing overview........ccocoviiiiiiiiiinniinnen.. 18
Figure3.3.3 Frequency/phase review curves & code generation 19
Figure 3.3.4 Section of C-Code generated...........ooooiiviiiiiiiii. 19
Figure 3.3.5 Intended LPF parameters.......coccviiiiiiiiiiiiiiiiiininn. 20
Figure 3.3.6 Skeleton code needed for Filterooocoi. 20
Figure 3.3.7 Frequency and phase response plot...........oooiiiii. 21
Figure 3.3.8 Frequency and phase response plot.......ocoeviiiiiiiiin... 21
Figure 3.3.9 Eight-Bit scaled coefficientscoooiiiiiiiiii. 22

Figure 3.3.10 Circular buffer: Used to store ADC values for FIR filter. 25
Figure 3.3.11 Algorithm developed to load circular buffer.................... 26
Figure 3.3.12 Step 1: Data element O is loaded and pointer decrements 26
Figure 3.3.13 Step 2: Data element 1 is loaded and pointer decrements 27
Figure 3.3.14 Step 3: Data element 3 is loaded and EOB is reached...... 27
Figure 3.3.15 Step 4: Element 4 is loaded and ptr is pre-decremented .. 27
Figure 3.3.16 Element 4 is unloaded from buffer and BOB is reached .. 28

Figure 3.3.17 Pointer is relocated to EOB and 3 is pulled 28
Figure 3.3.18 Data element 1 is pulled..........cooii, 29
Figure 3.3.19 Algorithm used to pull data from the circular buffer....... 29

viii

Figure 3.3.20 Topology of the Double Circular Buffers........................ 30

Figure 3.3.21 Data Element 1 is loaded to both buffers........................ 30
Figure 3.3.22 Data Elements 1-5 are loaded to buffer........................... 31
Figure 3.3.23 Buffer Data Ready to be unloaded....................cn 32
Figure 3.3.24 Pointer FSR1 is relocated to same location as FSRO 32
Figure 3.3.25 FSR1 pre-increments and unloads data element 5............ 33
Figure 3.3.26 Algorithm for loading the adjacent circular buffers......... 34
Figure 3.3.27 Assembly routine written to load the buffers................... 34
Figure 3.3.28 Algorithm used to unload from adjacent circular buffers. 35
Figure 3.3.29 Description of the ADCONO Register..........cooovviiiiinin. 37
Figure 3.3.30 Description of the ADCONT Register..........coooviiiiininnn. 37
Figure 3.3.31 Reading Only ADRESH will scale down to 8-bit............. 38
Figure 3.3.32 RAM used by the FIR filtering scheme...............oooeinn. 42
Figure 3.3.33 Description of the TICON Register.......ccooveviiiiiniiinn... 43
Figure 3.3.34 Word space dedicated to storing MAC result................... 45
Figure 3.3.36 Multiply by 256 algorithmooooi, 46
Figure 3.3.37 Multiply by 128: Single Right shift of each byte 46
Figure 3.3.38 Buffer setup for storing ADC samplesoooiiiin. 47
Figure 3.3.39 Buffer setup for storing Coefficients............cooveviiiiiinnn. 47
Figure 3.3.40 24-Bit Result store for MAC operation.........cccoveieinenn.n. 47
Figure 3.3.41 Multiply-Accumulate Algorithmo. 48
Figure 3.3.42 Initialization Routine for Fastest Execution.................... 49
Figure 4.3.43 Fastest Execution Implementation for PIC 18f452.......... 50
Figure 4.3.44 RAM efficient Implementation for PIC 18f452................ 51
Figure 4.3.45 RAM Efficient Implementation for PIC 18f452............... 52
Figure 4.3.46 Minimum Program Size Implementation.................ooene. 53
Figure 3.6.1 Assigned Word Length for Floating Point Format............. 55
Figure 3.6.2 Memory footprint of floating point numbers..................... 57
Figure 3.6.3 Developed Algorithm for Multiplicationcocoeeiennie. 58
Figure 3.6.4 Multiplication Step 1: C*#" = A *" XOR B ¥#" 59

Figure 3.6.5 Multiplication Step 2: C<FracL: FracH> = AfcHxBfract 59

X

Figure 3.6.6 Multiplication Step 3: AR BracH 60

Figure 3.6.7 Multiplication Step 4: AFmct BReal 60
Figure 3.6.8 Multiplication Step 5: AR BReal 61
Figure 3.6.9 C-Code for floating point multiplication................c.ceenen. 61
Figure 3.6.10 C-Code for floating point addition.............ocoeviiinininnn. 62
Figure 3.6.11 Developed Algorithm for Addition.............oooooiiiin. 63
Figure 3.6.12 Developed Algorithm for Multiplication...................o.o... 64
Figure 3.7.1 Fourth Order LMS Filtercooooioiiiiiii, 65
Figure 3.7.2 Sampling for LMS ..., 66
Figure 3.7.3 Configuring ADC for Sampling Two Channels.................. 67
Figure 3.7.4 Initialization Routine for LMSoo, 68
Figure 3.7.5 Four element ADC sample bvffer for LMS........................ 69
Figure 3.7.6 Arangements of Structs in Memorycoooviiiiiiiiiinn.. 70
Figure 3.7.8 Level 2 Flow Diagram for LMSc. 71
Figure 3.7.9 Level 3 Flow Diagram for LMS 72
Figure 3.8.1 Block Overview of Circuitooooiiiiiiiiiiiiii. 73
Figure 3.8.2 Power Supply Board.........oooiiiii 74
Figure 3.8.3 Smoothing Filter for R-2R Ladder................oo. 75
Figure 3.8.4 Signal Conditioning Block............o.oo. 76
Figure 3.8.4 Block Overview of Circuitcoooiviiiiiiiiiiiiiiii, 77
Figure 3.8.5 Photograph of Test Board................ooo . 78
Figure 4.4.1 Basic setup for low-cost data acquisitionc.coeeuenenn. 79
Figure 4.2.1 Response Curves of Intended Filter.............ooooo. 80
Figure 4.2.2 Test Signal: Constant Power Sweep [200Hz-4000Hz]......... 81
Figure 4.2.3 Filter Performance on PIC18F452 Chipoiinn. 81
Figure 4.2.5 Measured BSF Frequency and Amplitude Response........... 83
Figure 4.2.6 MBF 1 Filter Specifications for Band Pass filter 84
Figure 4.2.7 Frequency and Amplitude response from PIC18F452 84
Figure 4.2.8 MBF 2 Filter Specifications for Band Pass filter 85
Figure 4.2.9 Frequency and Amplitude response from PIC18F452 85

Figure 4.3.1 Sampling Source A at P1 and P2 ... 86

Figure 4.3.2 Source B is added to the scene........oooooiiiiiiii, 86
Figure 4.3.3 Approximation of Signal at p2oii. 87
Figure 4.3.4 Time domain graph of signal at p2.........c.coooiiiiiiin.. 38
Figure 4.3.5 Frequency domain graph of signal at p2...............on. 88
Figure 4.3.6 Real-time test topologyocovuviiiiiiiiiiiiiiiiii, 89
Figure 4.3.6 Signal p2 (top) and Reference pl sampled by ADC 89
Figure 4.3.7 Signal Recovered by the PIC chop (source B: 340 Hz) 90

Figure 4.3.8 Signal Recovered in frequency domain (source B: 340 Hz) 91

Figure 5.1 Comparison of exec speed for different implementations..... 94

x1

LIST OF TABLES

Table 3.2.1 Multiplication Speeds published by Manufacturer.......... 16
Table 3.6.1 Floating point algorithms developed for LMS...... 56
Table 5.1 LMS Sampling Rate vs Filter Taps..................ooo0000.95

xii

LIST OF NOMENCLATURE

1. MCU L Microcontroller Unit.
2.DSP Digital Signal Processor.
3.ADC Analog to Digital Converter.
4. DAC. Digital to Analog Converter.
5. PWM . Pulse Width Modulation.
6. LMS Lo Least Mean Squared.
T.oFIR Finite Impulse Response.
8. TIR o Infinite Impulse Response.
9. ALU i Arithmetic Logic Unit.
10, MIPS ... Millions of Instructions per Second.
T1. MAC. . Multiply and Accumulate.
12, SMD i Surface Mount Technology.
13. RAM......Random Access Memory/Read Write Memory.
14. EEPROM.Electrically Erasable Programmable Read Only Memory.
15, FFT. ... ii e Fast Fourder Transform.,
16. GUIL............ooooooiiiiiveciii oo venn. Graphical User Interface.
17. ISR Interrupt Service Routine.
18. EOB......c i e End of Buffer.
19.BOB........ooo e Beginning of Buffer.

20, FSR......oooiiic e File Select Register

Xiii

CHAPTER 1: INTRODUCTION

1.1 Personal Motivation

My fascination with single chip microcontrollers began with my
undergraduate days and has remained consistent ever since. In a world
where minimalism is the catchword, they fit the role perfectly, being a
cost effective way to elegantly solve complicated problems, thereby
making so many aspects of electronics and software accessible to
engineers and students as well. During my undergraduate and graduate
years I participated in projects involving electronics and circuit design
and always enjoyed finding new opportunities for microcontroller based
solutions. With circuits getting more and more complex, filters must be
installed to control noise and dealing with filters meant having to look
for the right capacitors and the right resistors, op amps and repeating the
same tedium all over again, especially if it was determined that a new set
of filtering specifications were required. The alternative to a true digital-
filter is to use a switched capacitor filter but those are usually not as
clean as analog filters and require a clock signal that adds switching
noise; with an additional circuit component drawing power, occupying

space and incurring an explicit monetary cost.

It is here that the Finite Impulse Response (FIR) filters step
in, being an attractive alternative to using analog filters and switched
capacitor digital filters. I learned about them in theory and conducted a
couple of Matlab simulations before realizing that these are ideal for use
with microcontroller projects. They impose no additional monetary cost
upon the circuit; can be easily reconfigured by changing code, without
any lag in performance with time. The challenge is to do a very efficient
implementation for the PIC 18 architecture so it becomes possible for

the filter to function as a supplementary application, thereby, providing

an intuitive graphical interface that will allow anyone to easily generate
these filters using a simple point and click system. However, not all noise

problems can be solved by using FIR filters.

Sometimes due to the nature of the noise, especially if it is correlated,
it is impossible for an ordinary (fixed-band) filter to remove it, because
both the signal and noise occupy the same frequency range. For instance,
if the echo of the signal was the source of noise, then the echo could not
be removed simply by suppressing its frequencies, because the echo and
the source have a strong correlation. In cases like these, adaptive filters
are used to reduce noise. The least mean squared (LMS) error is a
commonly used adaptive noise cancellation algorithm that is ideal for
this purpose because it is a good compromise between computational

complexity and performance.

1.2 Signal Processing using the PIC 18F452 Microcontroller

Microcontrollers such as PIC chips which run at speeds up to 10
MIPS (million instructions per second) are useful for gaining valuable
practical experience with low bandwidth signal processing ideas. What
makes them so convenient is the wealth of built in hardware, which can
sample signals, perform ADC conversions and contain multiple timers
for accurate timing. Moreover, there are a number of low cost compilers
making the package available under $6.00 per chip [4] and as low as §175
for a C-Compiler and an in-circuit programmer for $75 [2]

making it

b

feasible cost-wise as well.

1.3 Digital Filters Vs Analog Filters

Digital filters have several advantages and disadvantages over their
analog counterparts. The main advantage of digital filters is that they
occupy no physical space as they are implemented completely in software
and operate by applying a mathematical algorithm designed to produce
the filtering effect. Since digital filters need no physical components i.e.,
capacitors and resistors, their performance does not degrade with age or
respond to ambient environmental conditions. Another major advantage
is that some digital filter (FIR filters) can have a unique property called
linear phase response, which 1is critical in many communications
applications. Analog filters presently, have a much greater dynamic range
however, than digital filters because they are not limited by factors like

sampling rate and computation speed [5].

1.4 PIC 18 Microcontroller Family

Microchip Technologies manufactures a popular line of micro
controllers known as Peripheral Interface Controller or PIC chips. The
PIC 18F452, released in May 2002, is currently one of their fastest chips
[3]. At the core of this chip is an 8-bit RISC based ALU that can process
10 MIPS at 40 MHz. Its design is based on Harvard architecture,
allowing it to have separate data and program memories. Its memory is
divided into 32 KB of flash based program memory and 1.5 KB of
volatile data memory (RAM) as well as 256 Bytes of EEPROM. PIC
chips have a RISC based instruction set consisting of a small yet seminal
set of instructions, most of which are single cycle, thereby making them
fast executing and easy to program. Other valuable devices such as
analog to digital converters, pulse width modulation, multiple timers,
I/O Ports are all integrated within the same chip that also contain

hardware support for several popular serial communication protocols

such as I’C, SPI and UART. Running at 40 MHz, it takes the 18F452 chip
100ns to multiply two bytes and compute a 16-bit result. The other noted
feature that makes this chip viable for signal processing applications is
that, it contains multiple hardware pointers that allow very fast access to

data stored within the chips’ RAM.

1.5 Detailed Research Objectives and Contributions

The main focus of this research will be to test and validate the PIC
chips’ ability to implement a real-time floating-point LMS based
Adaptive filter, which is a very useful way to deal with noise that is too
closely related to the signal for conventional band compensating filters

to handle.

1. A suitable general-purpose, adaptive noise cancellation circuit will be
designed, that is both cost effective and customizable to serve several
different applications. The circuit will be tested using test signals
generated by a PC sound card as shown in Figure 1.5.1. This will allow
the modeling of different types of noise and to test various signal to
noise ratios. The circuit will process the signals in real-time and the
results will be measured using a data acquisition system. Analysis of the
recorded data should reveal the effective noise reduction versus noise

reductions predicted via simulations.

Sigpnal + Noie
Feal tirne
LMSE o Lata
Circuit Acquisition
Corelared W omse

Figure 1.5.1 Topology for Real-Time LMS Circuit Testing

2. During the course of this research, software will be developed to
benefit the users of the popular CCS PIC Compiler. The software will
include a modular library for PIC 18XXX with optimized floating-point
math support. Although the compiler is inherently capable of handling
floating-point data, it performs common floating-point operations such
as addition, subtraction, and multiplication at an alarmingly slow rate
rendering it unpractical for real-time applications. Therefore, another
aim of this research will be to develop a modular library that will provide

a faster alternative to the compilers built in floating-point system.

3. The secondary focus of this research will be to test and validate the
PIC chips’ ability to implement a real-time fixed-point FIR filter, which
is a very practical idea, because it can be seamlessly used in countless
applications where noise and the signal of interest occupy separate

frequency bands.

4. A Graphical User Interface (GUI) will be developed that allow
users to design various types of FIR filters, such as Low-Pass, High-Pass,
Band Pass, Notch or any combination of the above, in short, multi-band
filters. The user may design the filter by taking a point and click
approach to specifying band-edges, attenuations, sampling rate etc. and
the software will show users the respective frequency and phase response
graphs. Once the user is satisfied with the filter they have designed, the
software will present them with several realization options, thereby
allowing them to decide whether they want the filter optimized for
execution speed, or conservative RAM usage or conservative program-
memory usage. Ultimately, optimized C language source code is
generated that is ready to be compiled for either PIC 18F452 chip or the
smaller PIC 18F252 chip or easily adapted for the remaining chips in the
PIC 18FXXX family by a moderately experienced programmer. Finally,
the GUI will generate a diagram of the test circuit needed to install the

filter code.

5. Each type of FIR filter created by the software will be evaluated
independently by applying a constant-power frequency sweep generated
by a filter test program. The real-time output of the filter will be
recorded by a data acquisition system and its performance will be

analyzed though PC based data analysis tools such as FFT.

1.6 Organization

Chapter two will cover a literature review and theoretical background
of existing techniques for digital filter implementation for both LMS and
FIR filters. Chapter three will constitute the implementation details for
both the filters. Chapter four will present results and analysis and
chapter five will contain recommendation for future work. An appendix
is provided that contains all codes written during this exploration and a

user’s manual for the filter design of the GUI.

CHAPTER 2: LITERATURE SURVEY

2.1 Classification of Filtering Methods

The earliest filters were analog filters. In recent years, digital filters
have gained popularity due to the lowering cost of microprocessors and
the increased level of convenience and flexibility offered by digital
filters. Advances in technology allowed them to function at a faster
speed and now they are rapidly approaching the large dynamic range of
analog filters [5]. A broad classification of Digital filters is presented in

Figure 2.1.1.

DIGITAL FILTERS

T
! ' !

ADAPTIVE NON-RECURSIVE SWITCHING
LMS, RLS, etc FIR Filters Switched-Cap
Others Others

Figure 2.1.1 Classification of Signal filtering methods

2.2 Digital Filters

A digital filter is a discrete-time linear system that operates on an
input sequence, modifies it, and produces the output sequence. The
input sequence is usually obtained by digitizing a signal, thereby
converting it into discrete time, with the output sequence being
transformed back into an analog signal through an appropriate digital to

analog process. The steadily reducing cost of portable computation is

thereby making a direct contribution to the rise of popularity of digital

filters.

2.3 Non-Recursive Type Digital Filters

The most commonly used Non-Recursive filter is the FIR filter. The
weights of this type of digital filters are constant and are computed at
design time. Since the weights remain constant, the stability of FIR
filters can be guaranteed. However, they can have several topologies —
the transversal topology as shown in Figure 2.3.1 being the most

common type and the one used for this research [9].

x(n)

V(1)

Figure 2.3.1 The transversal topology of the FIR filter

The transversal FIR filter is characterized by the following equation.

N-1
y(n) = 2 h(k)*x(n—k) (2.)
k=0
Where,
x(n): discrete time elements of the sampled signal

y(n): is the computed output of the FIR filter

h(k): are the coefficients of the filter also knows as filter-taps

Linear convolution of the filter coefficient with the sampled
signal produces the filtering effect. Since multiplication and addition
are the only mathematical operations involved with the FIR filter, this
process is ideally suited for use within the PIC 18F452 microcontroller.
The clear advantage of using FIR filters is the radical alteration in its
frequency compensation, which can be achieved by simply providing the
system with a new set of filter coefficients. Another interesting property
of FIR filters is that, they are the only type of filter that can have a true
linear phase response. Since this research deals exclusively with the
implementation aspects of FIR filters, it is assumed that the coefficients
of the filter have already been computed. For more theoretical details

regarding obtaining filter coefficients refer to [7].

2.4 Switching type digital filters

The switched capacitor filter is a common type of switching filter.
Switching type digital filters are a convenient alternative to using high
order analog filters. They are packaged for convenient use and typically
require a clock signal and power to operate. Most are strictly low-pass
filters; others can be programmed by additional resistors, to be used as
band pass and notch filters. However, this convenience comes at the
expense of additional monetary cost and components and having to deal

with the inescapable incurrence of switching noise [1].

2.5 Adaptive Filters

One of the most successful adaptive algorithms is the LMS filter
developed by Widrow [14]. LMS, sometimes known as LMSE is excellent
for dealing with correlated noise where noise and the signal are too much
alike to be filtered using ordinary band-compensating filters such as low-

pass, band-pass etc. Such filters are commonly referred to as adaptive

filters and they are used in applications such as, echo-cancellation over
communication lines, noise-cancellation, Electro-cardiogram (ECG) in

pregnant mothers, suppressing machine noises in mines and countless

other applications.
2.6 Least Mean Squared Error (LMS)

The LMS filter is based on the steepest decent algorithm where the

weight vector is updated from sample to sample as follows:

(2.2)

where,
Wk: Is the weight vector

V,: Is the true gradient vector

H: Rate of convergence also referred to as learning rate

The LMS algorithm is a practical method of obtaining estimates
of the filter weights Wk in real time. The Widrow-Hopf LMS

algorithm for updating weights from sample to sample is given by:

Weia =W, +2ue X, (2.3)

where,

ek =y, ~W!X, (2.4)

ek: Is the error term

X,: Is the correlated noise vector
LMS algorithm above does not require prior knowledge of the signal

statistics, but instead uses instantaneous estimates to tune the filter. The

weights obtained by the LMS algorithm only estimates, but these

10

estimates improve gradually with time as the weights are adjusted and the
filter adapts itself to the characteristics of the signals. Eventually, the

weights converge. The condition for convergence is,

1
O<puy<—— (2.5)
A max

where,

Amasx: 1s the maximum Eigen value of covariance matrix.

The main objective in adaptive noise cancellation is to produce an
optimum estimate of the correlated noise in the contaminated signal.
This is done by the simultaneous sampling of two signals — one being
the signal of interest to be filtered and the other being the source of
correlated noise, referred to as the reference. The adaptive filter in
Figure 2.6.1 uses the reference to predict the degree of contamination in

the signal of interest by the process of correlation.

Desired Signal y y
. S Contanunated signal Error (Approaches Deswed Sigral)
- . _b
Noise
A
Reference > Adaptive| | |
Noise Filter Preciction (Approaches Noise)

Error is used to adapt filter coefficients

Figure 2.6.1 LMS filter Topology

The adaptive filter attempts to predict the amplitude and phase of
the noise present in the contaminated signal by correlating the reference
with the contaminated signal. The prediction of the adaptive filter

constantly approaches the actual noise present in the contaminated

11

signal. With the error signal continuously being used to tune the filter, it
gradually approaches the desired signal. Figure 2.7.1 shows a flow
diagram for the LMS filter algorithm.

Initialize
Wy (i)’xk—i

A

Sample Xy and Yy

A

A

Estimate Noise

N-1
n, = Z w, (D)x,

|

Compute Error

€ =V — 1y

A

Update Weights
W @) =W, () +2uex, —

Figure 2.7.1 Standard Implementation of LMS Filter

2.8 Implementation of a digital filter

Digital filters are a natural choice for circuits that are interfaced to or
controlled by a microcontroller. Part of the microcontroller’s computing
power may be dedicated to filtering the sampled input signals. Figure

2.8.1 is a block diagram for typical digital filter implementation.

12

Analog to Digital
Conversion

!

Unfiltered Anti-Aliasing
Signal Filter
Smoothing Digital to Analog
Filter Conversion

Microcontroller
(Digital filter)

Figure 2.8.1 Standard Implementation of Digital Filter

The Anti-Aliasing filter is a low-pass filter designed with a cutoff

that is at least half the sampling rate of the analog to digital converter

(ADC). This is used to prevent sampling of frequencies above Nyquist

rate [6]. A smoothing filter is another low-pass filter that is used to

reduce the harmonic distortion resulting from the quantization process.

An illustration of the described process is presented in Figure 2.8.2.

DAC ——»
Filtered

—P ADC [— Processor [g
Unfiltered Sampled Di_gnaHy
Analog Digitized Filtered
Signal Signal Signal
gj\/\\\'\/f t

Analog
Signal

e e P

Figure 2.8.2 Digital Signal Processing overview

13

CHAPTER 3: IMPLEMENTATION DETAILS

Implementation details for the fixed-point FIR filter are discussed
first followed by the implementation details for the more complicated

floating-point LMS filter.

3.1 Finite Impulse Response (FIR)

Development of a FIR filter generally involves two distinct phases.
The first one is the design phase and the other is the realization phase.
The design phase involves specifying filter characteristics such as band-
edges, frequency-response and phase-response etc. and finally derives the
filter coefficients for the intended filter. There are several ways to obtain
filter coefficients. For this research the Matlab filter design toolbox was
used to generate them. In FIR filters, the same hardware can be used to
realize many different types of filters. It can be seamlessly reconfigured
from a low-pass to band-pass to notch or a combination of all of them
by simply supplying a new set of coefficients. The implementation
discussed in this study is optimized for the PIC 18F452 instruction set
although it is flexible enough to be easily adapted to other inexpensive

microcontrollers with similar hardware.

The software developed for building FIR filters includes a program
that allows users to visually specify the filter parameters. Once the filter
has been finalized, optimized code will be automatically generated for
the PIC 18F452 processor. Since the filter is wusually used as a
supplementary application, it must be designed to co-exist with a main
application. The proposed implementation uses only a fraction of the
microcontrollers’ total computational capacity and the remaining cycles
are reserved for the main application. Additionally, the implementation

scheme is easy to reconfigure without making changes in hardware.

14

The second phase is the realization phase. This involves the selection
of an appropriate platform upon which the filter will be implemented. In
this case the platform desired is the PIC 18F452 chip. Real-time
implementation involves three distinct processes — firstly the analog-to-
digital conversion of a signal; followed by mathematical processing by
the filtering algorithm; and finally, if needed the obtained results have to
be transformed back into an electrical signal using a suitable digital-to-
analog conversion technique. All three processes mentioned above must
be performed within a proper time constraint or the result becomes
invalid. For instance, if we are sampling a signal at 4000Hz then our
worst-case time is 1/4000Hz or 250us. All filter computations must be
completed within the time window of 250us. The block diagram of the

FIR filter is presented in Figure 3.1.1.

Y

ADC

FIR i DAC i
Coptional

Figure 3.1.1 FIR filter block Diagram

3.2 Implementation Background

Three different implementation strategies are provided to the user as
options, each with its advantages and drawbacks. They are minimum
RAM implementation, minimum program memory implementation and
minimum execution time implementation. Each will be discussed in

detail in the following sections.
Implementation aims to take advantage of the PIC chip’s hardware

architecture and instruction sets. The PIC 18F452 chip has certain

features in its hardware that makes it a good choice for filtering

15

applications. The following restrictions were used while implementing

the FIR filter algorithm in order to maximize the filter throughout.

1. Multiplication operations are restricted to unsigned integer data only.
The Table 3.2.1 is a summary of manufacturer published multiplication-
performance for the PIC 18F452 chip [10]. Table 3.2.1 outlines the speed
gain from wusing the hardware multiplier and by favoring unsigned-
multiplication operations instead of signed multiplication operations.
Timey is the time needed performing hardware multiplication and Timeg

is the time needed to perform software multiplication.

Table 3.2.1 Multiplication speeds for PIC18452

ROUTINE METHOD Time,/Timeg Speedup
8x8 Unsigned | Hardware/Software 100ns/6.9us 6900%
8x8 Signed Hardware/Software 600ns/9.1us 1500%
16x16 Unsigned | Hardware/Software 2.4us/24us 1000%
16x16 Signed | Hardware/Software 3.61s/25.4 s 1400%

2. The analog to digital converter is used with 8-bit resolution. Even
though the built in ADC on the PIC chip is capable of sampling up to
10-bit resolution, the PIC memory and ALU are both 8-bit wide. It is
therefore most efficient in handling 8-bit data. Hence, all filter

coefficients and ADC data will be restricted to 8-bit resolution.

3. All memory references are made using indirect addressing. The PIC
18F452 chip contains three hardware pointers. FSRO, FSR1, FSR2, each
being 12 Bits and capable of covering the entire RAM size for the PIC 18
family (up to 4096 bytes for PIC18f2515). By shortening the range of
these pointers to 8-bits we can gain efficiency at the expense of smaller

memory coverage. The pointer space will be restricted to 8-bits to cover

16

256 bytes of RAM or a single bank of RAM. This means that all our
buffers and other dynamically allocated areas of RAM have to be

confined to 256 bytes of memory.

3.3 FIR Filter Implementation

FIR filter implementation scheme on the PIC 18F452 chip can be

categorized using the following major steps shown in Figure 3.3.1.

User Specification

I
Filter Tap Generation

I
Coefficient Scaling

MATLAB

Code Generation

Sampling}Buffering

Filter Processing
PIC 18F452 |

Output Scaling

Analog Output

Figure 3.3.2 FIR filter creation stages

3.3.1 User specification
The very first logical step to making a filter is to specify filter

parameters such as band edges, attenuations and ripples. To this end, the

following interface was developed to allow a user to specify the type and

17

exact parameters of the filter to be designed. Figure 3.3.2 is a snapshot

of the developed filter making software.

Low Pass Pass Band Ripple (dB). | 2
High Pass Stop Band Attenuation [dB]: I a0

Band Pass
Band Stop
Match
Custam 4000

200 1000

Flaot FIR Responce |

Figure 3.3.2 Digital Signal Processing overview

By making use of the menus the user can select from the range of
filters that can be generated for real-time implementation. The available
options are low-pass, high-pass, band-pass, band-stop, notch and custom.
Once the type of filter is decided, the user can specify parameters such
as band edges and attenuations by filling in the appropriate boxes.
Before the user is allowed to generate code, the frequency and phase
response for the desired filter circuit must be reviewed. The software
automatically calculates the exact filter order required to achieve filtering
requirements. The filter coefficients are calculated using the Remez
exchange [8] method for optimal tap generation for low-pass and high-
pass configurations. Figure 3.3.3 shows the frequency and phase res-
ponse curves as well as the different code generation options available to

the user. If satisfied the user may generate the desired filter.

18

Low Pazs

Paze Band Ripple [dB]: I 2
Stop Band Attenuation [dB]: I A

High Pass
Band Pass sHr= b
File Edt View Insert Tools Window Help
Band St ~ a
and Step DEE& NAA A/ BT
Motch
0
Custam C . I : : ! : : :
20w [om & ;
= H
2 i
Flat FIR Responce = 1
5 :
" Fastest Execution 149 cycles, 34 Bytes of Ram g H
" Fast Execution 175 cycles, 34 Bytes of Flam Pr E
© Best Memory 334cpcles, 21 Bytes of Ram Progr -1DDD SDID 1DIDD 15|DD QDIDD 25IDD 3DIDD 35|DD 4000

Generate CCS C-Code Frequency (Hz)

MNumber of Taps Needed: 13, Type: 1

Phase (degrees)

il 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Figure3.3.3 Frequency/phase review curves & code generation options

Once a satisfactory design is achieved the user is given three options

for code generation. Finally C-language code, as shown in Figure 3.3.4,

is generated that is ready to be compiled or edited.

#hyte
#hyte
#hyte
#hvte
fhyte
#hyte

finclude ©15f£f452.h>
#use delayiclock = 40000000)
#ifuses H4,PUT,NOUDT

const int filter length = 13;
const int taps[filter length] = {Z0,35,58,83,106,121,127,121,106,53,55,35,20};

A/ PIC 18F4E2 Rediotel MAP. et insassansassanssatarsansnssansnsnassnnnnns

A5 ACCUMULATOR ADDRESS

WREG = OxFES F4 Register Stores the Carry Bit
PRODL =0xff3 A4 Product Low Byite

PRODH =0xff4d S Product High Byvte

ADRESL = Oxfed A4 Low Byte for ADC Sample
ADEESH = Oxfc4d A4 High Byte for ADC Sample
SITATUS = OxfdsS A4 Status Register

Figure 3.3.4 Section of C-Code generated

19

3.3.2 Filter Tap Generation

The Matlab filter design toolbox [13] was used to generate filter

coefficients. This toolbox contains a set of functions that allow users to

conveniently make and test different types of filters. If for example, a

low-pass filter was desired with the characteristics given in Figure 3.3.5

and Figure 3.3.6 is the skeleton Matlab-code needed to generate it.

Sampling Frequency of 8000Hz
Pass band frequency of 500Hz
Stop Band frequency of 1000Hz
Pass band ripple of .05 dB

Stop band ripple of 55 dB

0dB

55dB

500 Hz 1000 Hz

Figure 3.3.5 Intended LPF parameters

1 function lpf_teatc()

2

3 %FIR low pass filter Jpecifications

'l

5| - Pa=zs = 500;: % Pasa band Creguency: 400 Hz

Gl = Stop = LOO00; % Stop bond £requency: 1000 Hz

7 Fa = BODOO; % Sampling freguency: S000 Hz

£} Bp = .05; % Pas= hand cipple: 0.05 dB

al - Ra = 55: % Scop band gain: =55 4B

10

11| = £f = [0 Pass Stop Faf2]/Fa*2: % Parameter Specification Vector
12| - m=[lL 1 0 0]: % Profile Wector (filcer shape)
13[=| devs = [(lO*(Bp/20)-1) /(10 (Rps/20)+1) 10*(-Ra/20)]:

14| - w o= [l 1l]¥max (devs). /deva:

15 % Coefficient Escimation

16[= n = remezord|[Pass Stop],.[l1 0),devs,F=);: ocder = max(3,.n):

17| - b = remez (order+l,£,n,w}: diap(['Taps needed: ' puniscrin)]):
18| - a = 1:

19

20 % Plot Fregquency atd Phase grapha

2= [H,UH,8] = fregeib,s, nax (2048 nex tpows { 5%¥nax {(l=ength{b) , lengthia))) . Fa):
22| - freqeplot (H, W, 5] ;

Figure 3.3.6 Skeleton code needed for Filter

20

v

The skeleton code presented in Figure 3.3.6 upon execution will
produce the graphs for both phase response and frequency response in

Figure 3.3.7.

Magnitude [dE)

s00 1000 1500 2000 2500 3000 3500 4000
Freguency (Hz)

o . . . : . . .
= : : : : : : :
o ! ! ! ! ! ' !
s, -S00f------ Mo e ottt R A 7]
[ak)]] 1
= ! ! : ! . ' !
& -1000|------ R beosoes S REEERRE bemeee RREEREE SECRLE .
o 1 1 1 1 1 1 1
P [[]
o ! ! ! ! ! ' !
-1500 H H H H H i H
1] S00 1000 1500 2000 2500 3000 3500 4000

Freguency (Hz)

Figure 3.3.7 Frequency and phase response plot

The filter tap coefficients generated by Matlab are as plotted next:

0.2

0.1r .

Tap Weight

0.05 .

_DD5 L L L L
] 10 20 30 40 a0

Tap Mumber

Figure 3.3.8 Frequency and phase response plot

21

3.3.3 Coefficient Scaling

The tap coefficients computed by Matlab are computed in floating
point format ranging from [-1.0,1.0]. Before they can be used in the PIC
chip they need to be converted into 8-bit fixed-point format and made

unsigned. The following scaling function apply the to achieve this:

scaled _tap, = ceiling ﬂoatmg_tap L_*127++128 3.)
max(floating _tap)

Each tap coefficient provided by Matlab is first normalized to the
range [-1.00,1.00], then multiplied by 127 and rounded to the higher
integer. Finally 128 is added to each tap to make it positive. After the
scaling function is applied, the [-1.00,1.00] range becomes [0,255], shown

in Figure 3.3.9 and now unsigned integers.

260

240 1

220+ .

200 .

180 .

Tap Weight

160 - .

140 .

120 .

1DD 1 1 1 1
0 10 20 30 40 a0

Tap Mumber

Figure 3.3.9 Eight-Bit scaled coefficients

22

3.3.4 Code generation

Once the filter parameters are established and all decisions involving
implementation details are complete, compiler ready C-language source
code for the CCS PIC C is generated based on a set of three different
templates. Each template is a specialized implementation scheme

optimized to produce a different flavor.

1. Minimum Ram: The c-code generated using this template makes

minimal demand on RAM.

2. Minimum Program Size: This template minimizes the program size.

3. Minimum Execution Time: This template produces code that achieves

higher execution speed.

If the PIC chip is dedicated to performing signal filtering only then
either implementation scheme is suitable. However if the FIR filter is
used as a supplementary application that runs along side a primary
application then it competes for the same recourses as the main
application. Thus it may be useful for the user to use the parametric
optimizations. To facilitate the selection of which type of optimization is
suitable the user interface provides exact values for RAM, program
memory and execution time with each option. The optimizations in RAM,
execution speed and program size were all derived using a combination
different buffering techniques, loop wunrolling, and inline assembly
language routines for the real-time components. Each is discussed in

detail in the following sections.

23

3.3.5 Buffering Data

Once Matlab has generated the filter coefficients, they need to be
accommodated within the PIC memory. Additionally, the constant stream
of data from the PIC ADC must be accommodated in memory with the
exact chronological sequence in which it was sampled. The buffering

scheme for tap coefficients is discussed first.

The tap coefficients are stored in the PIC in the form of a look-up
table in its program memory. Before filtering begins, the entire table is
copied to the RAM and marked with a hardware pointer. Managing
coefficients is not complicated because the number of taps is finite and

the list is static (needs to be initialized only once).

Buffering the ADC data is a far more interesting problem. There are
several complications that have to be dealt with. The finite impulse
response filter is quite simply the linear convolution between a constant
set of filter taps and a discrete time capture of a signal. For example, say,
the desired filter has 30 tap coefficients then we would need to capture
and store not only a latest sample of the signal, but the previous 29
samples as well. To achieve this, two different buffering schemes were
explored. The first one used a traditional one-dimensional circular buffer
[11]. This technique uses less memory but lengthens the cycle of
computations. The second technique used two adjacent one-dimensional
circular buffers [12]. This technique uses more RAM than the first, but
allows the speed of the filter to approach its shortest possible
computation time on the PIC 18F452 chip (using 8-bit taps and 8-bit
data).

1. Circular buffer implementation on PIC 18F452: A circular buffer is

a memory allocation scheme where memory is reused (reclaimed) when

an index is incremented to a multiple of the buffer size. The modulo

24

nature of a circular buffer maintains data in a queue form (chronological
order) at all times without overrunning its allocated memory or the need
for re-ordering. The elegance of this type of memory allocation is that
the very same pointer that is used to queue data is efficiently used to
dequeue it and due to its modulo nature, the dequeueing pointer
automatically terminates at the point of insertion of the next sample. On
a PIC chip, the buffer that was used is illustrated in Figure 3.3.10. Oldest
sample is written over the newest sample and File Select Register (FSR)
is the hardware pointer used to load and unload data. The illustrated
circular buffer holds four elements — EOB marks end-of-buffer, BOB
marks beginning-of-buffer, the numeric values in the figure are RAM

locations and the sample buffer occupies memory locations from 0x41 to

0x44.

EOB BOB
0x38 | 0x39 | O0x40 | Ox41 | Ox42 | Ox43 | Ox44 | Ox44 | Ox45

t FSR

Figure 3.3.10 Circular buffer: Used to store ADC values for FIR filter

While loading the buffer the pointer FSR could be at any location
within the buffer, so before the sample is stored, it is crucial to first
check if the pointer has reached EOB. If it is the very first sample then
the received data is placed at the BOB or location Ox44 and the pointer is
post-decremented to location 0Ox43. In PIC18 assembly, the hardware
pointer FSR can load data and post-decrement in a single cycle by using
the POSTDEC register. There is no post-increment feature to the
hardware pointer system; hence, the BOB is at a higher memory location
than the EOB. When the FSR pointer has been reached, the EOB is
simply reset to BOB. Based on this concept, the newest data sample

automatically replaces the oldest data sample.

25

Illustrated in Figure 3.3.11 is a flowchart showing the process of

loading the circular buffer as well as the assembly code written to

achieve it.

RECEIVED DATA

F5R = EOR?

Hao
b 3
IHNSERT D& T IHNSERT D& T
b 3 b 3
RESET PCOINTEE. RESET PCOINTEE.
FSE.=BOE FSE.=BOE

ASSEMELY EOUTINE FOR
PIC18F542 DATA EMQUEUE

#Fasm
mowT
cpfseq
bra
mory T
mon T T
bra
MED:
EMD:
#andasm

ECE, D
FSROL

MNEQ)

DATA, INDFD
BOE,FSROL
EMD

mowff n, POSTDECO

Figure 3.3.11 Algorithm developed to load circular buffer

If the ADC was capturing a ramp in the form of digital data ranging

from O to 6 then the buffer would load in the following way: The first

data point ‘0’ will be stored at the BOB and the pointer is decremented

as illustrated in Figure 3.3.12. The next sampled data point ‘1’ is stored

the pointer is

in the location pointed by data pointer FSR and
decremented as shown in Figure 3.3.13.
EOB BOB
0x38 | O0x39 | Ox40 | Ox41 | ox42 | ox43 | oxaa | ox44 i ox45
0

FSR :
‘\\

*

I
|
/

/
7’

Figure 3.3.12 Step 1: Data element 0 is loaded and pointer decrements

26

EOB BOB
0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45

Figure 3.3.13 Step 2: Data element 1 is loaded and pointer decrements

By the time ‘3’ is sampled the buffer is full and EOB is reached as
shown by the illustration. ‘3’ is stored at EOB and the pointer is reset to

the BOB. Now notice the pointer is at the oldest element as shown in

Figure 3.3.14.

0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45

Figure 3.3.14 Step 3: Data element 3 is loaded and EOB is reached

When ‘4’ is captured it replaces the oldest element in the buffer and

the pointer FSR is incremented as normal as shown in Figure 3.3.15.

EOB BOB
0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45

Figure 3.3.15 Step 4: Element 4 is loaded and pointer is pre-decremented

27

In order to pull data from the buffer, the pointer FSR would simply
travel in the opposite direction and data will be obtained in the exact
opposite order to which it had entered. Before each the pointer is
advanced it must first check for the BOB or it will travel beyond the
buffer. If BOB is reached the pointer is relocated to EOB. In order to
extract data the pre-increment function of the pointer is used so data is
pulled and pointer is advanced in a single-cycle. To illustrate the process
the pointer is pre-incremented to 0x44 and ‘4’ is pulled as illustrated in

Figure 3.3.16.

EOB BOB
0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45 4
3 2 1 4
®
'\ tFSR
\\ P 4

pa—

Figure 3.3.16 Element 4 is unloaded from buffer and BOB is reached

Note the pointer FSR is at the beginning-of-buffer so it is first
relocated to the EOB and then the data pulled is ‘3’ as illustrated in

Figure 3.3.17.

EOB BOB
0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45 3
3 2 1 4

-

Figure 3.3.17 Pointer is relocated to EOB and 3 is pulled

Pointer is pre-incremented to 0x42 and ‘2’ is pulled followed by ‘1’

and after four iterations the pointer FSR has automatically terminated at

28

the entry point where the next incoming data sample is to be placed as

shown in Figure 3.3.18.

EOB BOB
0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45 1
3 2 1 4

b % « :
\\ // \\ //
i i FSR

Figure 3.3.18 Data element 1 is pulled

Data went into the buffer in the order {1,2,3,4} and came back out

{4,3,2,1}. The formal algorithm and assembly code is in Figure 3.3.19.

ASSEMBLY ROUTINE FOR
c tene PIC18r452 DATA DEQUEUE

DONE? l 1
#asm
END
movf BOB.W
R cpfseq FSRCL
bra NEQ
1 0 movff EOB, FSROL
movit INDFO, OUT
bra END
NEQ:
RESET POINTER PREINCREMNT Movif n.PREINCC
TO EOB POINTER. END-
\/ #endasm

EEMOVEDATA

Figure 3.3.19 Algorithm used to pull data from the circular buffer

2. Double circular buffer implementation on PIC 18F452: In the
second buffering technique two adjacent circular buffers are used in such
a way that the second one begins exactly where the first one ends. Every

time a fresh sample is made, it is placed in both buffers in place of the

29

oldest sample respectively. Each buffer will have it’s own pointer and

both buffers will contain the exact data at any given time. [8]

This buffering scheme has a very useful advantage over the previous
one because the unloading pointer does no longer need to check for the
end of buffer (EOB). Figure 3.3.20 of the buffering scheme might exp-

lain the process more clearly.

Buffer 0 Buffer 1
EOB BOB | EOB BOB

0x37 0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45

:FSRO :FSRl
Figure 3.3.20 Topology of the Double Circular Buffers

Once again the same data is being stored in the buffer, each data
element is stored in the same respective place in both buffers. If the first
sample element is ‘1’ then both buffers will store the data and post-

decrement in the same manner as if each was an independent buffer.

Buffer 0 Buffer 1
EOB BOB | EOB BOB
0x37 0x38 0x39 0x40 0x41 0x42 0x43 Ox44 Ox44 0x45
1 1
: . : .
FSRO FSR1 |
< <=

Figure 3.3.21 Data Element 1 is loaded to both buffers

Since both pointers move in tandem, only one needs to be checked
for EOB and although this technique takes a little more time to load, it

saves a lot more time during the unload. Since FIR filtering involves only

30

a single load and N number of unloads (N being the number of
coefficients), over all this technique produces a tremendous savings in

computation time for each FIR output calculation.

After ‘1’ the next data sample is ‘2’ then ‘3’ then ‘4’ followed by ‘5’

and the buffer will fill in the manner illustrated in Figure 3.3.22.

Buffer () Buffer 1
EOB BOB EOB BOB
0x37 0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45
2 1 2 1
t . t .
FSRO FSR1
R K
Bufter) Bufter 1
EOB BOB EOB BOB
0x37 0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45
3 2 1 3 2 1
: . : .
FSRO FSR1 |
. o
Buffer () Buffer 1
EOB BOB EOB BOB

0x37 0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45

Bufter () Bufter 1
EOB BOB | EOB BOB

0x37 0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45

4 3 2 3 4 3 2 3

Figure 3.3.22 Data Elements 1-5 are loaded to buffer

31

Unloading data from the buffer involves a slightly different technique
than what is used for a single buffer. Since the FIR filtering algorithm
involves a convolution operation, after every fresh sample is stored the
filter needs to unload each data point in reverse chronological order to
perform computation. Since the size of the buffer is known, say N, there
is no need to test of end-of-buffer or beginning-of-buffer while
pulling the data because pointer FSR1 can now simply cross over from
its own buffer into the adjacent one and always find the chronologically
correct sample, sitting beyond the barrier of the adjoining buffer. To
illustrate the point say we wanted to pull data from the current buffer.

The last data sample stored was ‘5’ as shown in Figure 3.3.23.

Buffer () Buffer 1
EOB BOB | EOB BOB

0x37 0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45

4 3 2 S) 4 3 2 o)

: FSRO : FSR1

Figure 3.3.23 Buffer Data Ready to be unloaded

Data can be pulled in ascending order or descending order depending
on which of the two pointers are used. For FIR filter calculations the
order of the sample is not important because the coefficients are
symmetric. If descending order were desired we would first relocate

FSR1 to the same location as FSRO as shown in Figure 3.3.24.

Buffer () Buffer 1
EOB BOB | EOB BOB

0x37 0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45

4 3 2 3) 4 3 2 S

FSRO : :FSR

Figure 3.3.24 Pointer FSR1 is relocated to same location as FSRO

32

All that remains now is to pre-increment the pointer and pull the
respective data sample from each location the pointer passes till it

returns to the position it started (location 0x44).

The first data sample to be removed is ‘5’ as the pointer FSR1 pre-
increments from location 0x40 to Ox41, both operation in one cycle as

shown in Figure 3.3.25.

Buffer () Buffer 1
EOB BOB | EOB BOB

0x37 0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45

4 3 2 3) 4 3 2 S

FSROi ® _fFSRl

\

\
\-//

Figure 3.3.25 FSR1 pre-increments and unloads data element 5

Notice that data samples °5°,’4°,°3” and ’2’ are in chronological order
across both buffers. Since the buffer size is a constant, 4, then four blind
pre-increment operations will unload the buffer and the pointer will
automatically be returned to the point of insertion of the next sample.
Using this method neither EOB nor BOB needs to be checked while
unloading the buffer.

33

The Figure 3.3.26 shows the flow-chart describing the algorithm for

loading the adjacent circular buffers

and Figure 3.3.27 shows the

assembly language code written to implemented it.

SAMPLED DATA

FSR1 = EOB?

True False
INSERT DATA INSERT DATA
IN BUFFER1 IN BUFFER1

&
FSRO = BOB POSTDEC FSRO
A A

INSERT DATA INSERT DATA

IN BUFFER1 IN BUFFER2
&
FSR1 = BOB POSTDEC FSR1

Figure 3.3.26 Algorithm for loading the adjacent circular buffers

S assembly code to load data dnto adjecent circular buffers

#asm

Moy
cpf=eq
bra

moy T
mow T
mow
mow T
bra

mow T
moy T

MEG:

EMD:

#endasm

EOB,w
FSROL
MEQ

DATA, INDFO
DATA, INDFL
BOBO, FSROL
BOEL, FSRIL
end

DATA, POSTDECQO
DATA, POSTDECL

A Check for End of Buffer

A4 1T end of buffer dis not reached goto MWEQ:
A oelse

A4 move data into last pointed location

A4 move data into Tlast pointed location

A4 Reset FSRO to Begining of buffero

A4 Reset FSR1 to Begining of bufferl

A4 Load data to Buffer0 and post-decrement
A4 Load data to Bufferl and post-decrement

Figure 3.3.27 Assembly routine written to load the buffers

34

The flowchart outlines the algorithm for pulling data from the buffers

is shown in Figure 3.3.28:

FSR1 = FSRO

v \
PRE-INCREMENT FSR1
&

Pull data

A 4

PRE-INCREMENT FSR1 >

&
Pull data

A 4

REPEAT as many times as
the buffer size

4

Figure 3.3.28 Algorithm used to unload from adjacent circular buffers
3.3.6 Sampling: Analog to Digital Conversion on 18F452

The most convenient option for analog to digital conversion is by
using the integrated ADC module. The built in analog to digital
converter uses a successive approximation algorithm and is capable of
converting an analog voltage into a proportional 10-bit number. The
ADC is capable of a maximum sampling rate of 52KHz for 10Bit
conversions. For 8-Bit conversions, the maximum sampling rate is

62.5KHz at same temperature and impendence [10].

35

The value sampled by the ADC is stored in the register pair
ADRESH/ADRESL. Each is 8 bits, ADRESH contains the high-byte and
ADRESL holds the low-byte. In order to configure the ADC module the
ADC control register pair ADCONO and ADCON1 must be set with

appropriate values.

The analog-to-digital converter module has eight input channels for
the PIC 18F452. Each input is a separate channel multiplexed with a
common converter. This allows sampling of several different sources in
any specified order. Since there is only one analog-to-digital converter
simultaneous sampling is not possible using the internal ADC module.
The minimum wait time between the sampling of any two channels is
called acquisition time. The acquisition time is a function of the
ambient temperature and the source impedance. The maximum
recommended source impedance or input impedance for analog sources is
2.5K. For the FIR filter only one channel is needed but for the adaptive

filter two channels must be sampled nearly simultaneously.

The first task to setting up the ADC is to setup the control register pair
ADCONO and ADCONI1. Both registers are eight bits wide and allow
unrestricted read/write operations. The ADCONO register controls ADC
clock options, channel selection, and the bit GO/DONE in the ADCONO
register can be polled in order to check if analog to digital conversion is
complete. The ADCONI1 register controls the remaining clock options,
shared with ADCONO and selects which pins are configured as digital and
which are analog. In order to setup the internal ADC both registers must be

loaded with the appropriate values.

36

Configuring ADCONO involves setting five bits on the register. The
following is the contents of the ADCONO Register shown in Figure 3.3.29.

BIT7 BIT6 BITS BIT4 BIT3 BIT2 BITO
ADCS1 ADCS0 CHS2 CHS1 CHSO GO - ADON
ADC Clock Speed ADC Channel Selection Start Sampling Power On

Figure 3.3.29 Description of the ADCONO Register

The ADC clock is derived from the main external oscillator. The PIC
chip can run up to 40Mhz but the ADC clock cannot exceed 625KHz.
Therefore the PIC must use a clock divide to scale the 40MHz external
frequency to 625KHz, a factor of 64. Hence the ADCS1 and ADCSO are
1, 0 to make the clock divider equal to 64. The channel for FIR filter is
channel-0 hence the CHS2, CHS1, CHSO are 0,0,0 and ADON is 1.

ADCONO0O =<10000101> or 0x85

The ADCONI1, shown in Figure 3.3.30, is set in a similar manner as
ADCONO and it contains:

BIT7 BIT6 BITS BIT4 BIT3 BIT2 BIT1 BITO
ADFM ADCS2 - - PCFG3 PCFG2 PCFG1 ADON
N J = _/ — -
Y ~ —~
Result Justification Clock conversion PORT configuration

Figure 3.3.30 Description of the ADCON1 Register

The ADC stores a 10-bit result in two 8-bit registers. The ADFM bit

selects if the result is left justified or right justified. Since the FIR filter

37

is going to use 8-bit samples instead of 10-bit samples, ADFM will be set
to 0 to make the result left justified. A simple way to get a fast 8-bit
approximation of the 10-bit sample is to only read the ADRESH register

as illustrated in Figure 3.3.31.

ADRESH

Figure 3.3.31 Reading Only ADRESH will scale down to 8-bit

The ADCS2 bit is set to 1 to make the clock divide equal to 64 as
discussed before. Bits <PCFG3, PCFG2, PCFG1, PCFGO0> are set to
1,1,1,0 respectively. This allows pins A0 to be analog while all other pins
are made digital. Since technically only a single analog pin is required to
make a FIR filter. If more analog pins are needed then this register needs

to be changed. The ADCONI1 register is loaded with the following:

ADCON1=<01001110> or 0x4E

Vipp and Vg are used as voltage references with this configuration.

The FIR filters performance depends not only on sampling signals
accurately but also on a chips ability to maintain a constant sampling
rate. To this end, one of the PIC chips three hardware timers; timerl is
dedicated to performing analog to digital conversion at a periodic rate.
This is a 16-bit timer that derives its timing from the external clock
source and interrupts the PIC chip when it overflows. Once the timer is
engaged it counts from 0 till 65535 at the what ever speed it been

clocked and at the end of its count generates an interrupt.

38

In order to make a constant sampling rate the timer is not allowed to
start from O but instead made to start from some offset value from which
it will pass 65535 at a predictable interval since the clock speed to the

timer is known. This offset value is calculated using the following way:

external _ osc
timerl _ offset = 65535 — — (32)

4* prescaler * sampling _ rate

In this case, the external oscillator (external-osc) is 40 MHz and the

user determines the sampling rate in the design stage.

The interrupt service routine for timerl will also perform all the
calculations required of the filter and before exiting the Interrupt Service

Routine (ISR) the result of the filter is generated.

3.3.7 Filter Calculations

Three different strategies are used to perform the necessary filter

calculations.

1. Optimized for maximum Speed
2. Optimized to use minimal Ram

3. Optimized to generate smallest program size.

All three strategies make use of the same general idea but are
different in the way the data is buffered and computation is performed.
In general the realization of FIR filters is obtained by the direct

computation of the Equation 3.3 [12].

v, = ﬁ:)c[n—N+1]*[KM1 +128]—ix[n—N+l]*128 (3.3)

0 0

39

The equation presented above is a variation of the classical FIR filter

equation that is presented in most books:

N

y, =2 x[n-N+10*k, , (3.4)

0

In both Equations 3.3 and 3.4, the term), is the output of the filter
and is computed by the linear convolution of the coefficient matrix Ky
and the discrete sample vector X,. Both equations perform exactly the

same computation and produce the same results however Equation 3.3 is
far more PIC18F452 architecture-friendly because the signed
multiplication operation in Equation 3.4 has been removed. This will
allow PIC to maximize the use of the unsigned hardware-multiplier in the

PIC hardware.

The only difference between Equation 3.4 and Equation 3.3 is that in
Equation 3.3 the tap co-efficient vector K., which contains signed
numbers ranging from —128 to +128 are made unsigned by adding to

them the integer 128. In order to balance the result from the offset
coefficients it becomes necessary to subtract 128*% X, from), To

illustrate this point, consider the following analogy. If we wanted to
calculate the A, which is a product between 8-Bit signed integer B and 8-

Bit unsigned integer C, it will be given by:
A=B*C (3.5)

The above computation will require a signed multiplication however if

we modified the above equation in the following manner:

E = B*(C+128) — B*128 (3.6)

40

then we ultimately achieve the very same result as .4 and avoid the signed

multiplication altogether.

A=E (3.7)

3.3.8 Implementation for Shortest Execution Time

As stated before, three different implementations are possible using the
filter design system. The first has the shortest possible execution time and
possibly the most attractive implementation of all. The short execution time
is achieved at the expense of higher RAM usage, since two adjacent circular
buffers are used to store ADC samples instead of one. This doubles RAM
use and also produces a much larger program, because to fully make use of
the double buffer, the main multiply-accumulate loop is unrolled allowing
for program to approach its theoretical minimal computation time, given

the data word length constraints that is used by the program [12].

The implementation is split into two routines. The first one is the
initialization Routine and the second is the Computation Routine. The
initialization routine runs just once when the program begins and it
serves only to initialize the buffers and other variables that are required
for FIR filter calculations. The computation routine performs all
calculation mandated by the filter and runs inside the interrupt service
routine of timerl. With the confinement of all filter calculations inside
the ISR, we achieve a degree of isolation making it possible for any main
application to use the filter and not interfere with its operation or

timing.

Memory Usage: The PIC 18F452 chip contains 1536 bytes of RAM

and two addressing modes. There is direct-addressing and indirect-

addressing. Indirect-addressing uses three pointers — FSRO, FSR1, FSR2

41

and each pointer is 12-Bit wide, with a 4-Bit select bank and 8-Bit select
location within a bank. All memory use for the FIR filter is restricted to
a single bank, thereby limiting the available memory for ADC samples
and filter coefficients to a total of 256 Bytes. The obvious advantage of
limiting all pointers use to a single bank is the speed that is gained
because the pointers can be used faster if the bank does not need to be
set before every call. Three buffers are used — a static buffer for tap
coefficients that is loaded and initialized at start up and two identical
adjacent circular buffers for the incoming ADC samples. All three
buffers are of the same size and each buffer is given its own hardware

pointer. Consider Figure 3.3.32 showing memory footprint

Bank 1: (256 Bytes)))
Tap Coefficient Buffer “q— Filter coefficients
= generated by Matlab
FSRO
ADC Dynamic Buffer 0 < #» Sampled data from
FsR1” / Analog to digital
converters
ADC Dynamic Buffer 1 <
FSF\’Zk
Additional Filter
Variables (30 Bytes)
Rank 2 (256 Rvtes): Free
350) Free memory: Not used by
Ran 56 Rvtes): Free FIR filter Program.
Rank 6 (256 Rvtes): Free

Figure 3.3.32 RAM used by the FIR filtering scheme

The buffers for the tap coefficients and ADC values can be of
variable size, since the number of FIR filter coefficients is not fixed. The
total memory allocated to the buffers cannot exceed 226 bytes. No buffer
can be larger than 75 elements. Hence this design does not allow for FIR

filters larger than 75 taps. The MATLAB user interface will generate a

42

warning if the user specifies a filter that generates more than 75
coefficients and the user is prompted to either accommodate fewer taps

or select a different implementation strategy.

Filter Processing: (Initialization Routine)

If the filter is to produce an output, then an output port needs to be
assigned, the first step of the initialization routine being the setup of an
I/0O port. Analog to digital converter is set to 8-Bit mode by simply left-

shifting the results and reading the ADRESH register (See 3.3.6).

The timerl interrupt must be set to sample at the user specified
sampling rate. All filter processing is conducted in the timer interrupt.
There are three registers associated with Timerl. These are T1CON,
TMR1H, and TMR2L. The first is the control register the other two are
offset registers that are used to initialize the timer. Timerl can be setup

as an 8-bit as well as 16-bit as shown in Figure 3.3.33.

BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BITO
RD16 = T1CKPS1 T1CKPSO T10SCN T1SYNC TMR1CS TMR1ON
- N —)
16/8 mode Timerl Input Pre-scale Bits ~ Oscillator ~ External Edge On/Off
select input bit Clock Sync Select

Figure 3.3.33 Description of the TICON Register

In order to setup the timer bit RD16 = 1, TICKPSX is calculated in
Matlab and set based on user specified sampling rate. TIOSCEN,
TISYNC are not used, TMRICS = 0 to specify internal clock and
TMR1ON is 1 to power on the timer.

The timer offset is calculated using equation discussed in section

3.3.6. The 16-Bit offset is loaded into register pair TMR1L, TMR1H. All

43

the registers are automatically loaded by code generated by the MATLAB

program based on the sampling frequency selected by the user.

Before the timer is engaged the initialization routine loads the
coefficients into the coefficient buffers and both the ADC buffers are set
up, thereby initializing the pointers. Pointer FSRO is used to load the co-
efficient buffer and pointers FSR1, FSR2 are used to address the ADC
buffers. ADC buffering method is discussed in detail in section 3.3.5.

Once all the buffers are initialized the timerl is started.

Filter Processing: (Computation Routine)

The computation routine involves the real-time implementation of the

FIR filtering algorithm given in Equation 3.8.

N N
v, =2 x[n=N+1]*[K, , +128]- > x[n— N +1]*128 (3.8)
0 0
— A J
N "

Multiply & Accumulate(Y;) Accumulate (£X)

In order to compute filter output Yn or Equation 3.8 is broken into

three different Equations 3.9, 3.10 and 3.11.

v =i.X[I’l—N+l]*[KN_l+128] (3.9

\O J \ J
Y Y

Sample vector Tap Coefficients

N
D x =) xn-N+1]*128 (3.10)
0 v
Y
Sample Sum
Y, =Y~ >x (3.11)

44

Equation 3.9 is implemented using a fixed-point multiply-accumulate
operation block. The MAC block is repeated for N times till y, is

computed. A 24-Bit register comprised of three 8-bit registers is assigned

to hold the MAC result shown in Figure 3.3.34.

— Y

Stores High Stores Middle Stores Low
Byte of Y, Byte of Y, Byte of Y,

Figure 3.3.34 Word space dedicated to storing MAC result

Equation 3.10 computes the sample-sum of all the samples held in the
ADC buffers. Xx is given a 106-Bit unsigned variable comprising to

register pair 2x"°% and Tx"" shown in Figure 3.3.35. It is calculated
with minimal computational effort by simply subtracting from the total,
the oldest ADC sample and adding the newest one every time a new
sample is made. Thus a running total of all the samples in the buffer is
constantly maintained without having to add up every value in the buffer

each time a new sample is added to it.

HIGH LOW
S Hie S °

—

Stores Middle Stores Low
Byte of 2x Byte of 2x

Figure 3.3.35 Word space dedicated to storing Sample Sum

2x has to be multiplied by 128 and subtracted from Y, to obtain final
output Yn. An efficient way to multiply by 128 is to copy the sum into

another 24-bit variable i.e. moving Zx"°V to 255Zx™™ and Zx"'°" to

45

2552x"°" and clearing the 255%x"?Y will do an implicit multiply by 255
as shown in Figure 3.3.36.

Sk HIGH Sk LOW 00

—

2555 MO | 2555 MP | 2553 LOW

N\ N N J
~ ~ ~
Stores high Stores Middle Stores Low
Byte of Byte of Byte of
1282x 1282x 1282x

Figure 3.3.36 Multiply by 256 algorithm

Once moved a single right-shift with carry on all three registers

produces the required multiply by 128 shown in Figure 3.3.37.

Right Shift each by I place to multiply by 128

*————»> &— > &— >

2553 H1CH | 2553 MIP 00

Figure 3.3.37 Multiply by 128: Single Right shift of each byte

The MAC block for computing Y, uses three buffers that are located
in RAM. The Buffers shown here are 4 elements long but can extend up
to 75 elements depending on filter requirements. All buffers are
dynamically scaled depending on filter requirements. A double buffering
scheme is used for storing ADC samples and a single static buffer is used
to store filter tap coefficients. FSRO, FSR1 and FSR2 pointers dedicated
to each buffer as shown in Figure 3.3.38 and Figure 3.3.39.

46

Tap Coefficients

Figure 3.3.38 Buffer setup for storing ADC samples

EOB BOB
0x60 | Ox61 | O0x62 | Ox63 | Ox64 | Ox65
0 0 0 0
FSR2 :

Figure 3.3.39 Buffer setup for storing Coefficients

ADC Buffer 1 ADC Buffer ()
EOB BOB | EOB BOB
0x37 0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x44 0x45
0 0 0 0 0 0 0 0
FSR1 t t FSRO

The MAC cycle accumulator occupies three bytes of memory to store

a 24-bit number as shown in Figure 3.3.40.

Stores High Stores Middle Stores Low
Byte of Y, Byte of Y, Byte of Y,

Figure 3.3.40 24-Bit Result store for MAC operation

47

Given the above constraints of 8-bit unsigned coefficients, 8-bit ADC
samples and 24-Bit accumulator the quickest possible MAC on the PIC
18F452 is shown in Figure 3.3.41.

Begin MAC

A

Move FSRO to Accumulator(W) 1 cycle
+ } 100 ns
Post-decrement FSR0O

A
Multiply FSR2 } 1 cycle
+ 100 ns

Post-Increment FSR2

A
Move Low Byte of Product to } 1 cycle
Accumulator (W). 100 ns

A
Add (W) to MAC-%W } I cycle
100 ns

A
Move High Byte of Product to } 1 cycle
Accumulator (W). 100 ns

!
Add (W) and Carry to MACM'P } 1 cycle
100 ns

A
Clear (W) Register } 1 cycle
100 ns

A
Add (W) and Carry to MACH'®H } 1 cycle
100 ns

A 4

End MAC

Figure 3.3.41 Multiply-Accumulate Algorithm

48

The entire MAC cycle lasts 800ns and the assembly code generated for

it is as follows:

movf POSTDECO,W
mulwf POSTINC2
movf PRODL,W
addwf ontput_least
movf PRODH,W
addwfc output_middle
clrf WREG

addwfc output most

/] Move element pointed by FSRO to (W)
/] Multiply FSR2 and Post-increment
// Move Product Low-byte to (W)
/] Add (W) to the MAC-"
// Move Product High-Byte to (W)
/] Add carry + (W) + MAC"?P
// Clear (W)
/] Add carry + (W) + MAC""

In order to complete the implementation of Equation 3.10 the pointer

FSR2 is first moved to the same location as FSR1 then the MAC block is

repeated as many times as the filter order. This way there is no need to

check for end-of-buffer or the beginning-of-buffer and final MAC block

terminates with the pointer automatically returned to the exact point of

insertion of the next incoming sample. Figure 3.3.42 is a flow diagram

for the initialization routine for a 4-tap FIR filter.

v Enable Global
Set up output Port Interrupt vector
\ 4 A4
Setup Timer 1 Start ADC
\ 4 A4
Buffer Taps Start Timerl
\ 4 A\ 4
Initialize Pointers End

Figure 3.3.42 Initialization Routine for Fastest Execution

49

Figure 3.3.43 is a flow diagram for the computation routine the fastest

execution time version of a 4 tap FIR filter.

Seain SR BUFFERL BUFFERO COEFFICIENTS

. T T .
Restar 1 fhi A FSRL FSRO FSR2
Backup Pointers
FSRI = EOB? Reset Pointers
2x = 2x — INDFO [* N 1-Bit Shift Right
2552x to divide by 2
v Clear MAC
W = ADC Value o Registers .
5 v Output = MAC
PO G MAC) Registers - 25555
to both Buffers &
A 4
A 4 MAC A
Restart ADC > Scale Output
A 4
A 4 MAC A
X=2x+W Send to DAC
A 4
A 4 MAC) A
Restart ADC Restore Pointers
A 4
v 2555 HIGH = 53 HIGH v
Set FSR2 to End ISR
beginning of Tap v
buffer 25553 MID = 53 LOW
v A 4
FSRO = FSRI | 2555 W=0x00 [

Figure 4.3.43 Fastest Execution Implementation for PIC 18452

50

3.3.9 Implementation for Efficient RAM utilization

The use of two circular buffers for storing ADC values is at times not
acceptable due to its extensive RAM overhead. Since the FIR filter is
typically used as a supplementary application, it must therefore share the
available RAM with a main application. It is for this reason a less

memory greedy implementation scheme is developed.

This scheme uses most of the same ideas as the previous method. The
coefficients are stored in memory in the same manner as before but the
MAC cycle is computed differently because since there is only one buffer
and both the end-of-buffer and beginning-of-buffer needs to be checked.
The details of the circular buffer are presented in Section 3.3.5. Figure
3.3.44 is a flow diagram for the initialization routine for a 4 tap FIR

filter.

v Enable Global
Int t i
Set up output Port nierrupt vector
\ 4 A\ 4
Setup Timer 1 Start ADC
\ 4 A\ 4
Buffer Taps Start Timerl
\ 4 A 4
Initialize Pointers End

Figure 4.3.44 RAM efficient Implementation for PIC 18f452

51

Figure 3.3.45 is a flow diagram for the computation routine the fastest execution time
version of a 4 tap FIR filter.

Restart Timerl Begin ISR

A 4

Backup pointers

A 4

LOW _
Store ADC 2332 = 0x00
2x = 2x — INDF("I Sample to INDF0 v
" 5555 MID— ylOw
A 4
FSRI = BOB v
FSR0O = EOB? 25553 HIGH = 53 HIGH
Y
N A\ 4
T 1-Bit Shift Right
_ S 2553 to divide by 2
A\ 4
Insert Sample to Pull Data & Pre- v
Buffer and post "| Increment FSRO
decrement pointer Output = MAC
v Registers - 2552k
¥ Perform MAC, by
Clear Registers post-increment v
used to store FSRI
result from MAC Scale Output
A\ 4
A\ 4
Set FSRI o . Send to DAC
beginning of Tap B ‘ v
buffer Restore Pointers
A 4

End ISR

Move FSRO to
EOB

Figure 4.3.45 RAM Efficient Implementation for PIC 18f452

52

3.3.10 Implementation for Minimum Program Memory Use

The implementation strategy is exactly like the first one where
maximum execution speed was attained. In order to reduce program size,
the main loop for the MAC cycle is not unrolled. Instead three more
instructions are added into the MAC cycle. The computation cycle is

shown in Figure 3.3.46.

Same as Figure4.3.20

FSRI = EOB? Reset Pointers
S = S — INDF0 g——R RN .| 1-Bit Shift Right
. 2552k to divide by 2

A\ 4

W = ADC Value Clear. MAC :

Registers

A\ 4

Post-decrement W A RSL;;I; ::S__A;?5C;\:x

to both Buffers MAC 2
A
A\ 4 A
Restart ADC Scale Output
All MACs Done?

A\ 4 A
x=2+W Y Send to DAC
= HIG‘H HIGH :

Restart ADC 2552 =2 Restore Pointers
< MI‘D LOW =
Set FSR2 to 2552 7= 2x End ISR
beginning of Tap l
buffer
2553 "% = 0x00

Figure 4.3.46 Minimum Program Size Implementation

53

3.4 Implementation of the floating-point LMS filter

Unlike the FIR filters that have predetermined coefficients,
implemented as constant data, the coefficients of the Least-Mean Square
(LMS) filter are adaptive and continuously change as a response to input.
Due to this reason, several complications must be dealt with while
designing and implementing them in hardware. Since the coefficients or
filter weights change with input, they may grow so large they overflow

the word-space assigned to them during design time.

Stability of the LMS filter is not as easily guaranteed as it is for FIR
filters. The constantly adapting coefficients are controlled by a fixed
value called the learning-rate. Determining an optimal value for the
learning rate requires experience gained from simulations and as the
order of the adaptive filter increases, thus choice for an appropriate
learning rate becomes even less intuitive. Rigorous simulations were

conducted before attempting to perform real-time implementation.

The choice of the floating-point system was used to perform the
implementation because the floating-point system provides both
convenience and degree of immunity against both roll-off errors as well

as allowing for wider latitude in the selection of learning-rate.

3.5 The compilers floating point system

The compilers built in math abilities were evaluated to perform the
necessary filter computations but later found to be inadequate because
they were extremely slow. The lack of speed is attributed to several
factors. Firstly, the compiler used generic routines that are designed to
work on the entire PIC family rather than applying hardware specific

optimizations for the PIC18452 chip. Secondly the generic algorithms are

54

optimized to be compact and not for speed. This decision is certainly
well warranted as floating point algorithms written for chips that do not
contain floating point hardware can use a lot of code and the lower

members in the PIC family have modest sized program memories.

In order to realize the LMS filter on the PIC 18 chip it became
necessary to first develop a set of floating-point routines that are
optimized for the hardware at hand. New math routines were optimized
for speed and designed to perform floating-point calculations much
faster than the compilers generic algorithms. A standard fixed-point
realization might have been more efficient however in the long run a
highly optimized floating point library is far more useful as it is a

reusable resource and easily applied to many other projects in the future.

3.6 Floating-Point Word lengths

The word lengths used to define the stored values were selected from
information gathered from simulations. Figure 3.6.1 shows the word
lengths that were assigned to the floating-point format numbers were

used in the implementation of the LMS filter.

1bit 8bits 8bits 8bits
SIGN | FRACL m FRACH | REAL

Figure 3.6.1 Assigned Word Length for Floating Point Format

The allocated word space is 1-bit for sign, 16-Bits for the fractional
part of the number and 8-bits for the real part of the number. This
allowed for the possible range of /255.000000 to —255.000000] with the
smallest possible magnitude of 0.000075. This was determined to be
sufficient resolution to be able to handle the computation requirements

of the LMS filter. The next step was to develop functions that would

55

conveniently perform type conversions from the standard IEEE floating
point to this modified floating point. Additionally other functions were
developed to perform hardware-optimized operations such as signed
multiplication and signed addition and a high-speed re-scaling algorithm

was added to convert a number between [0 255] to [-0.5 0.5].

The following ideas were wused to accelerate floating-point
mathematics using the PIC hardware. Parameter passing was found to be
the first obvious over-head because each math operation required the
passing of variables into temporary ones that were then used to compute
results. The computed result needed to be passed to the output variable.
It takes 2 cycles to move a single byte from one register to another and
considering large numbers occupy up to 4 bytes a total of 24 cycles were
spent simply in the parameter passing. This overhead is easily avoided if
hardware pointers are used to directly reference data. Since The PIC chip
has 3 hardware pointers, 2 are used to reference the two input
parameters and the last one is used to reference the output parameter.
This allows efficient movement of data through memory and since the
pointers auto increment or decrement, additional cycles are not lost to

pointer overhead.

Table 3.6.1: Function list developed for floating point math on PIC

FUNCTION DESCRIPTION TIME@40Mhz
void fixIeee(* float, *mfloat) IEEE float -> modified float Worst case (40us)
void fix8x16(float, *mfloat) modified float -> IEEE float Worst case(40us)

void add(void) adds 2 modified signed floats 5us
void mul(void) multiply 2 modified signed floats 3 us
255/integet -> mfloat Normalize [0 255] -> [0.00 0.99] 400ns

56

3.6.1 Algorithm developed for floating point multiplication

The multiplication algorithm operates on two floating-point variables

each stored in RAM in the format described Figure 3.6.2.

Number A Number B
Sign FracL FracH Real Sign FracL FracH Real

0x37 0x38 0x39 0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47

0 0 0 0 0 0 0 0

FSRI FSRO

Number C (Result)
Sign FracL FracH Real

0x60 0x61 0x62 0x63 0x64 0x65

0 0 0 0

FSR2 :

Figure 3.6.2 Memory footprint of floating point numbers

Numbers A, B and C are stored in RAM and each is given 4 bytes of
memory. FraclL and FracH make up the fractional portion given 16-bits of
storage the real part or the integer part is given 8-Bits of storage each. In
order to save time from parameter passing, pointers FSR0O, FSR7 and
FSR2 are wused to manipulate the floating-point variables. The
multiplication algorithm is designed to take advantage of both the
hardware-multiplier to compute the products of integer and fractional
portions and PIC78 memory addressing features that provide single cycle

pointer operation and advance.

57

The formal algorithm for multiplication is described next. The three

numbers are setup in memory as shows in Figure 3.6.2.

Begin Multiplication

A\ 4

C‘Sign =4 sign XOR Bsign

A 4

C<FracL:FracH> = Af ract *BF racl

A\ 4

<PRODL:PRODH> = 4R¢als plract
Cfrac = Cfrac + PRODL
Creal = Creal + PRODH + Carrv

A 4

<PRODL:PRODH>= B
Cfrac = Cfrac + PRODL
Creal = Creal + PRODH + Carrv

Real AF racH

A\ 4

<PRODL: PRODH>= B
Creal = Creal + PRODL + Carry

Real 4. AReal

A 4

END Multiplication

Figure 3.6.3 Developed Algorithm for Multiplication

The step-by-step illustration of the above algorithm is presented next
along with the assembly code that was written to implement it. The
purpose of such a detailed presentation is to clarify pointer use in the

PIC18F452 chip and to show the functionality of the algorithm.
Step 1 shown in Figure 3.6.4, the numbers to be multiplied are stored

in RAM and each is given it’s own dedicated pointer as shown below.

The first step is to determine the sign of the computed product.

58

Evaluating the XOR of the signs of the two numbers being multiplied

results in the sign of C.

Number A Number B Number C
SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL
2 2 23 2% 2 2% 27 2 29 30 31 32 3 34
? FSRO ? FSR1 ? FSR2
movf POSTINCO,W // PostIne FSRO, Load Sign A into WREG
xorwk POSTINCIL, W // PostInc FSE1, XOR with Sign B
movwk POSTINC2 /f PostIne FSR2, Move result to Sign C
SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL
21 2 23 2% 2 2 27 28 29 30 31 7] 3 34

f FSRO f FSR1 f FSR2

Figure 3.6.4 Multiplication Step 1: C¥#" = A **" XOR B *'*"

Step 2 shown in Figure 3.6.5, the fractional portion of the result C is

evaluated next by computing the product: C<FracL: FracH> =

AfracH*B fracH)
movt PREINCO,W /f Prelnc FSRO, Move AFracH to WREG
mlwE PREINC1 [Prelnc FSR1, Multiply WREG with BFracH
movit PRODL, POSTINC2 // Post Ine FSE2, Mowve Product Low to Ciracl.
mo vt PRODH, INDF2 {/ Wove Product High to CiracH
SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL
2 2 23 2% 25 2 27 28 29 30 31 32 33 34

? FSRO ? FSR1 ? FSR2

Figure 3.6.5 Multiplication Step 2: C<FracL: FracH> = AT+ pfracH

59

Step 3 shown in Figure 3.6.6, The real part of result C is evaluated
next by computing the product of A“*B"*" and adding the low-byte of
the product to Cfrac and adding the high-byte of the product to Creal with

the carry from the previous addition.

movt PEEINCO,W i/ Prelne FSEO, Move AFracH to WEEG
1ol f FOSTINC] /7 Post Inc FSEL, Multiply WIREG with BReal.
movit PRODL WEREEG /f Move Product Low to WREG
acldwit POSTINCZ,F /f PostInc FSE2, Add with W store in CfracH
movir PRODH WEREG /f Move Product high to WEEG
addw e POSTDEC2F /f Fost Dec FSRE2, add (WHCarry+CiracL)
SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL
21 22 23 24 25 26 27 28 29 30 3L 32 33 34

? FSRO ? FSR1 ? FSR2

Figure 3.6.6 Multiplication Step 3: AReebx BrracH

Step 4 shown in Figure 3.6.7, The real part of result C is evaluated
next by computing the product of A" “"*B** and adding the low-byte of
the product to Cfrac and adding the high-byte of the product to Creal with

the carry from the previous addition.

cleck FSEOLF J/ DecFSRO, Point to AReal
movt POSTINCOD, W // Post Inc FSEO, Move AReal To WEREG
mlw INDF1 /# Multiply BiracH with WREG
movit PRODL,WEFEG /f Movwe Product Low to WREG
acldwk POSTINC2F J/ PostInc FSE2, add WREG to CReal
movif PRODH WEEG /# Move Product High to WREG
addw ke INDF2LF S Add (carrytWEREG+HC fracH)->CF eacH
SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL
21 22 23 24 25 26 27 28 29 30 31 32 33 34

? FSRO ? FSR1 ? FSR2

Figure 3.6.7 Multiplication Step 4: AFrctx pResl

60

Step 5 shown in Figure 3.6.8, The real part of number 4 and the real
part of number B are multiplied next and the low byte of the result is

added to the real part of number C. This concludes the multiplication

operation.
movir INDFO,WEREG S Mdawve Afracl to WREES
ulwE NIF1 S Dultiply WERES with BfracL
movk PIRODL, W 4 Move Product low to WREG
acldw ke INIDFE2F A Add with Carry with CFracl
SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL
21 22 23 24 25 26 27 28 29 30 31 32 33 34

? FSRO ? FSR1 ? FSR2

Figure 3.6.8 Multiplication Step 5: AR¢** BRe!

There are no conditions to be checked in the algorithm hence the
two-stage pipeline of the PIC chip is constantly maintained. All
instructions are single cycle (100ns) with the exception of the register-to-
register move instruction (movff), which is two-cycle (200ns). The total
time used by this algorithm is 3us. An additional advantage is that this
algorithm always takes the same amount of time to execute. The
compilers worst case floating point multiplication algorithm is 45us

according to their published manual [3].

The use of the multiplication algorithm in C-language is demonstrated
next. No condition checking is available to determine and warn users
about over and underflows in the interest of efficiency. Figure 3.6.9 is

the C-code needed to use the multiply function.

ptr = g&: fixOwle(0.05,prre): S Convert 0. 0% y mocdlfec
ptr £b: fix8xl6(-3.0, ptr): /' convert -3.0 to modifiad

Salb hapdwarse poinbtéepr Lo Laph i oubput parametars.
FSROL = £a.sign; F3R1L = &b.=ign: F5REL = gLc.3ign:

mul ()2

Figure 3.6.9 C-Code for floating point multiplication

61

3.6.2 Calling The Floating-Point Add in C

The algorithm developed for performing floating-point addition was
implemented along the same lines as the multiplication algorithm. Both
operate on the same type of data format and both use hardware pointers

to reference data.

ptr = &£a; fix8x16(0.05,ptr)
= gb; fixS=x16(-3.0, ptr):

FSROL = &a.sign:; FSR1L = &b.s3ign; F3RZL = &c.=2ign

Figure 3.6.10 C-Code for floating point addition

3.6.3 Algorithm developed for floating-point addition

The floating-point addition algorithm was developed keeping in mind
the fact that nether of the input parameters are corrupted during the
addition process. To clarify the point assumes that two numbers A and B
are being added to calculate C. After the addition is completed neither A
or B will change in value. The algorithm would have been slightly shorter
if this constraint were removed, however we would loose the ability to
perform MAC operations where parameters are added to themselves. The

detailed algorithm is illustrated in Figure 3.6.11.

62

Humber & Humbet B Humbet C

‘ 3 FracL FracH Real H 3 FracL FracH Real ‘ ‘ 3 FracL FracH Real

L0 B
. , 1 0
Trprat pavarmieters had differert signs.
Compae alpats Both ot pasarmeters have the same sizn.
(e 4 g YD B
AReal=‘BReal H ARealq:‘BReal | ‘ AReal‘;BReal ‘ ‘ <
‘ (el Rl 4 pRedl |
0518“‘ Bien CSi%n‘ Blien
| || !
‘ CFra.cH cm+AFra.cH+ BFra:H ‘ >
2 ‘24_ # ::4) % fligfﬂasnﬁtm
| %4 B2 g2 || c¥a p o p |

L wing B hit
CFrac[. Carry + AFra.cL + BFra.cL ‘ cluaks.

A

Cotmplete
Cotpare highbyte of Bactional pats. Conpare kv byte of Bactional pats,
i / ey e—
| e ‘AS@\ \cSian‘ A | | eom | | ‘AS@“ |cSian‘ a5 |
‘ o 1A24_BZ4 ‘ ‘ cm‘ 2 . A ‘ ‘ o ‘Az‘*-B?"* H o) p2é . A ‘

Complete

Figure 3.6.11 Developed Algorithm for Addition

63

3.6.4 Converting integer to floating-point format

A quick way to convert integer values to floating-point needs to be
implemented because data read in by the analog-to-digital ranging from

[0 255] needs to be converted to float range between [-0.5, 0.5].

(unsigned int) N —128

Nfloat = (float) 6

(3.12)

A division operation is out of the question because it’s
computationally prohibitive if performed in real time. Installing a look
up table was the first option however a more elegant approximation is

given in Figure 3.6.12.

Convert to Float

N

// Number is Negative
N =128-N

A 4

Nfloat.sign = Oxff

Nfloat.sign = 0

A 4

Nfloat.fracl = N

A

A 4

Nfloat.frach = N

A 4

Figure 3.6.12 Developed Algorithm for Multiplication

64

3.7 Implementation of a 4™ order real-time LMS algorithm

The topology of the LMS algorithm used is illustrated first. The filter
samples two channels where Y, is the signal that needs to be filtered and
X, 1s the reference. W,, W,, W, and W; are all weights or filter
coefficients of the LMS filter. These are initialized as 0 however as the
filter trains the weights converges to a solution value. The variable e is
called the error signal and it is both the output of the filter and the

feedback signal that trains the filter weights.

YV (Signal + Noize)
L 4

)

b

,
E » O

The error frams all the
X, { Reference Noise) elermenis ne the weight
Wi vector. As framimg
cormmerices the fotal
error i the sigrnal

e ™ \ decreases and the value

a

h J

A

A
/’/

of €, constantly

approcehas aotual
Sigral

N }

I'Ve

Figure 3.7.1 Fourth Order LMS Filter

The filter equations are to be implemented and computed in real-time
in the PIC 18F452 chip are presented next. The error signal e, is

evaluated by a dot product of the weight vector W, and the reference

signal vector X, and is calculated using the Equation 3.13.

ek — yk _ *[Xonewest,Xl’Xz’Xnoldest] (313)

SIS

65

After each iteration the filter weights or sometimes known as filter
coefficients must be updated using the feedback error value €, and

update values for each of the weights are calculated separately using the

following Equations 3.15a,b,c and d.

W, =W, +&%e, * X, (3.15a)
W,' =W, +e*e,* X, (b)
W, =W, +e%e,* X, ©)
W, =W, +e%e,* X, (d)

Where,
e.: Filter Output (used to train the filter weights)

Wn: Weight Vector also known as Filter Taps
e : Learning Rate (controls rate of descent)

n: Filter Order

All variables used in here are in the floating-point format and the
floating-point math algorithms described in the previous section are used

to handle the computational load of the filter.

3.7.1 Sampling noise and reference for LMS filter

Two channels of the PIC18F452 ADC are used to sample for the LMS
filter. The first channel samples the noise Yk and the second channel

samples the reference Xk. Shown in Figure 3.7.2.

Signal
g .]
[]

N] Reference Mic 2
Noise Mic 1 — LMS Filter

> Noise free signal

Figure 3.7.2 Sampling for LMS

66

The LMS filter doesn’t have to necessarily be used with audio as the

illustration above suggests. It can be used with any two signals that are

correlated. The Analog to digital converters are used with 8-bits of

precision and are configured exactly like the FIR filters except 2

channels are used for this filter instead of one. The sampling used to

implement a 4™ order LMS filter was 8000 Hz.

Configuring the ADC involved writing the appropriate registers as

shown in Figure 3.7.3.

ConfigureADC

A 4

A 4

ADCONO = 0x81

!

Wait Acaquisition Time

A 4

ADCONI = 0x85

A 4

Wait Conversion Time

A 4

ADCONO = 0x89

A 4

Wait Acaquisition Time

A 4

ADCONI = 0x8d

A 4

Wait Conversion Time

> Configure and
Sample Channel 0

Configure and
Sample Channel 1

!

Figure 3.7.3 Configuring ADC for Sampling Two Channels

67

3.7.2 Program Outline for 4™ order LMS filter

Like the FIR filter, the Implementation scheme for the LMS filter is
also presented as two routines. Firstly the initialization routine, where
the variables and buffers are initialized and all the hardware that plays a
part in LMS are initialized for use and secondly the computation routine
in which the LMS algorithm is computed. The computation routine, like
the FIR filter, runs entirely in the interrupt service routine of a timer, in

this case timer 2 was used.

The floating-point variables for W, , AW, , Y, , X, , H,, e, are all
declared as structures with four members, Sign, FracH, FracL, and Real.
Data collected in real-time by the ADC’s include one 8-bit sample value
for the signal and four buffered 8-bit sample values for reference. Both
signal and reference need to be converted into floating-point format
before they can be processed. A single 4-point circular buffer is used to
store four values of reference. Figure 3.7.4 presents the initialization

routine for the 4" order LMS algorithm.

A 4

Make PortD output

Initialize buffer

Y

Enable Global
Interrupt vector

A 4

Setup Timer 2 for
8000Hz Sampling Rate A

A 4

TempPtr = BOB

Initialize learning

A 4 A 4

Setup ADC rate & = 0.1 End

A

A 4

Initialize all weights to Initialize Hk and
0 AW to 0

A 4

Figure 3.7.4 Initialization Routine for LMS

68

Computation Routine for LMS: Buffering schemes

Most variables used in this filter are declared as global structs and are
not dynamically written or read. However, the reference signal sampled
by the ADC needs to be saved in chronological order for LMS
calculations. A four element circular buffer was used to store and
maintain the ADC samples of the reference signal as 8-bit unsigned bytes

per sample as shown in Figure 3.7.5.

Reference Sample Buffer
BOB EOB

0x60 0x61 0x62 0x63 0x64 0x65

0 0 0 0

FSR2 t

Figure 3.7.5 Four element ADC sample bvffer for LMS

The ADC samples have to be converted into floating-point format
and stored in the appropriate structs efficiently before the can be used
for LMS. To achieve this the structs are declared in chronological order
for storing reference samples in floating-point format and placed
sequentially in RAM and a single pointer is used to load all the structs
with data pulled from the circular sample buffer. Once all structs are
loaded they can be addressed as ordinary variables during computation
time. Essentially the structs are loaded dynamically and read statically as
if the were the union of four structs and a 16 byte array as shown in

Figure 3.7.6.

69

n3

~—"—

n0 nl n2
~ A ~ A ~ A
SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL SIGN FRACL FRACH REAL
21 22 23 24 25 26 27 30 31 32 33 34
f
FSRO

Figure 3.7.6 Arangements of Structs in Memory

Computation Routine for LMS: Level 1

The Implementation of LMS algorithm in the PIC18F452 chip follows

the following basic steps as shown in Figure 3.7.5. The level 1 flow

diagram shows an over view of the installation. The entire algorithm is

timing sensitive and there fore it runs in the ISR of timer 2.

Begin ISR

\ 4
Restart Timer2 » Set ADC Channel 1 > Convert Signal to float
A 4 Y \ 4
Set ADC Channel 0 Store in Noise Buffer Perform LMS
Computations
\ 4
Clear All LMS v v
Variables Convert Entire Noise
Buffer to floating point Convert error to
v and fill structs. Integer
Start ADC: Sample | |
Reference v v
Start ADC: Sample Send To DAC
Signal N
A 4
Figure 3.7.7 Level 1 Flow Diagram for LMS

70

Figures 3.7.8 show the contents of the ISR in detail and Figure 3.7.9

shows in expanded form the detailed computational section of the LMS

algorithm.
Restart Timer2 Begin ISR
v Convert 1
onvert error to
Set ADC Channel 0 Send To DAC < Integer
v v A

Clear all Hk and AW End ISR 5

and ey while waiting
for acquisition time. Perform L.MS
Computations

A 4 A
Wait 6us more
Convert to float
A 4 A
Start ADC conversion
Subtract Ox7f
= Ox7F~ Sampl i
L x7F - Sample
Wait till complete
Wait for Conversion
A 4 A
Set ADC channel 1
Start ADC conversion
A 4
Y

Save Ptr FSRO, FSR2

A 4

FSR2 = &n0.sign Pre-Increment N
Pointer and pull
data sample

All conversion done?

A 4

FSRI = tempPtr

Convert Sample to
floating-point and
post- increment
FSR2

A

FSRI = EOB?

> Sample — Ox7F

Store ADC post- FSRI = BOB > FSRI = EOB

increment FSR0O A 7'y

Store ADC » Pull Data sample

\ 4

Figure 3.7.8 Level 2 Flow Diagram for LMS

71

The detailed computational flow diagram of the LMS algorithm is

given in Figure 3.7.9.

Begin LMS

A 4

<
Hyo = Wo*Ny
H = W,;*N
H:i _ W;*N; ~ Compute Estimates
Hyz = W;3*N;
J
\ 4
<
Hyo = -Hyo
Hyi1 = -Hya .
\
Heyr = -Hyo Change Sign
Hys = -Hks)
\ 4
error =signal+ Hyg+ Subtract Estimated
Hy1+ Hyia+ Hys noise from signal
\ 4
err = error* & }ApplyLearningRate
A\ 4 N
AWO = W()*N()
Compute Weight
VARSI AR, e 5pdates ¢
AWZ = WQ*NQ
AWj = W3*N3 J
\ 4 N
Wy = Wyo*AW,
Wi= w,*AW, . Update Weights
W, = w,*AW,
Wi = w;*AW;)

A 4

End LMS

Figure 3.7.9 Level 3 Flow Diagram for LMS

72

3.8 Hardware Test Circuit

The same test circuit was used for both FIR and LMS filter. Figure

3.8.1 is a block diagram of the circuits that are used.

Left From PC

SIGNAL =
12V, 5V, -5V, Gnd Right From PC
12V Suppl > [——o
R CONDITIONING Common (PC)
[———o
I A 4 A 4
5V, Gnd PIC 18F452
POWER SUPPLY PROCESSING DAC OUT
SMOOTHING ¢
—
5V, -5V, Gnd Outto PC

Figure 3.8.1 Block Overview of Circuit

The power supply board was developed to provide the following

voltages from a unregulated 12V+ power supply. This board is labeled

optional because it was developed purely to make convenient voltage

supplies and references. The board provides the following voltages.

a. Regulated 5V / 1A (Power for PIC 18F452 and other IC’s)
b. Regulated 2.5V (Offset Voltage for Amplifiers)
c. =5V/100mA Unregulated (DC/DC)

73

3.9 Detailed Schematic of the Power Supply

The power supply board uses the TC1121 DC/DC converter to
generate the —5 supply. The 5V supply is regulated by the 7805 and the
2.5 Volt reference level is generated with a zener. All the voltages are

derived from a 12 V external supply.

| | .
[T
= r ra
M — <
= Ly
p—
5=
<} 5 @
ru =
EEE
S
[
r
| |
| =
=
2
| |
IIL
=
=
l—¢—||—ar
=
I~
=
. > =
a |w (e |~
T8 2§
o
ﬂ
= [+%
-
—
e
u—-g [
c [+ N
Fad [+
mlo& l\! o
r
A
m —
- =
o =
=
<
_l _ _l _
cy L rn w e
3 wn = < <
% < wn
)

Figure 3.8.2 Power Supply Board

74

3.10 Detailed Schematic: Smoothing Filter

The output signal from the R-2R filter must be buffered and
smoothed before it can be sent for data analysis. To that end the Maxim
291 switched capacitor filter is used. The filter is clocked with a small
PIC chip PIC 12F629. The firmware for the switch capacitor filter clock
signal is in Appendix D.

|1
1 =
=
=
WAL ==
T
- on
- <
L
-IL[O‘\I\]
o o o =
0 "o |
L= @™
T .
= 2 X
o) — = =
- TF
[N
<} & =
T £2942[0(0d = [=
0= [’
b o o 0
g
B R SRS
|:| Lo B I |
S oo O
o |ea fon
. X
)}
<
- |w | | —
o o 5 2
| I S - T
-
§ 9 &3 3
E_n.n.c E]
o
ol
lmu«am o
[
il
N . on
= <
=
c?
=
[~

Figure 3.8.3 Smoothing Filter for R-2R Ladder

75

3.11 Detailed Schematic: Signal Conditioning Board

The signal conditioning board contains amplifiers to scale two signals
from the line out of the PC sound card or external microphones to the 0
to 5 volt range so they can be sampled by the analog two digital

converters as shown in Figure 3.8.4.

r r . >
3 | = 3
) o) w
3 .
(=) =
c 2 c
o o
Fa Fa
- 1) — —
— - o ()
= w e -
=, .y o
T L. —r
—_ St E.I
= -
e ¥

Al

[Weuw) JHgu
g veu) Jgy

Figure 3.8.4 Signal Conditioning Block

76

3.12 Detailed Schematic: Signal Processing Board

The signal processing board is built around the PIC18F452 chip. It

contains the bare minimum circuitry that is required by the filter. The

DAC uses a R-2R ladder to generate an output for convenience.

T»*'i* Regulsted +5 W

ic:mr

ATC Chanhe]l B =

Figure 3.8.4 Block Overview of Circuit

u 1 |
LoD LI ,
= - POE-T1060 s, Register Select
ADC Charnel o 3lpay oy RC1T105] " Enable
% pageang peascop - (T . E?
2 pazeanz roz-gor HE 2
—E Rade TaCK] RC4r5D] 2 —
— T Raseand ROS-s00 o2
I ppgime B peeoTH |23 zex
L I T — e
v L LI Wi I_é
8 pEocoRE RDI PSR (22 s j
2 ppa RTE-FEFe oL CLAVYY 7 g”K
28 pESAFGH RD3-PSRT B P L5
33 pBEAPGD RD4-PSPd L CELYY = 1K
48 | pEr FGT RTS-FoFS [2 p— ' 11K
']D:W—-J-:—usmfum RTE-PSFE z; Aia==rall
|__I_._I—J_ 0SC2.CLKO RDPAPSP? P 1K
AMCLRAPP REB-RD 2
RE1-HR [11K
" pezoCg 2 :
WSS LSS ;HK
T T I
g
: " v |_.
FGC GO +5u MELR TO OUTFUT BUFFER

3.13 Photograph of PIC18F452 based Filter

This photograph of the test device, shown in Figure 3.8.5, was built

to validate the filters designed and built during this project.

Figure 3.8.5 Photograph of Test Board

78

CHAPTER 4: RESULTS FROM REAL-TIME

All data acquisition was performed using a PC based audio processing
program called Wavlab™ Pro by Steinberg [14]. The program used the
PC microphone input for data acquisition and contained a powerful set
of wvisualization and analysis functions. This technique for data
acquisition proved to be both elegant and efficient. The same software
was used to generate various frequency sweeps that were used as input
data to the PIC chip. LMS filters were also tested using the same

apparatus.

4.1 FIR FILTER: Data Acquisition Setup

The apparatus setup for FIR filter testing is illustrated in Figure 4.1.1.
In order to test the circuit with controlled waveforms, they were
generated on a PC and send to the processing board via the line out of
the sound card. The PIC board sampled the signals on the line out and
after applying the processing LMS, send the DAC output back to the PC
sound card, where it is sampled and stored as a wave file. This file is

analyzed in WavLab™ [14] and results are presented.

PIC Board

u From PC Sound Card

To PC Sound Card

A

P

Figure 4.4.1 Basic setup for low-cost data acquisition

79

4.2 FIR FILTER: Real-Time Testing Results

Several filter configurations were tested to validate and verify the
operation of the FIR filter in the PIC chip. Matlab was used to generate

filter coefficients (Taps) that were then transferred to the PIC chip.

LOW PASS FILTER: Testing and Analysis

The first test was a basic low pass filter with the following
parameters. The filter illustrated in Figure 4.2.1 was generated with the
PIC filter design software developed for MATLAB during the course of
this research. The low-pass filter in Figure 4.2.1 was made with the

desired attenuation of 50dB in the stop-band [0.6K-1K] with a 1KHz

cutoff.
50
o 0
hoA
[}
S 50
‘E
[=))
$ -100 ‘
|
150 !
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)
0 \ \ \ \ \ \ \ \
| | | | | | | |
= | | | | | | | |
| | | | | | | |
$ 500 F-----"Sx------ [l [t - [t == j—— === =1
D | | | | | ! [
) | |) | |
Py | [) | | | | |
@ -1000 ------ [——————— -————— -————— = I————— — I——— === —
< | | | | | | | |
o | | | | | | | [
| | | | | | | |
-1500 1 1 1 1 1 1 1 l
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

Figure 4.2.1 Response Curves of Intended Filter

The sampling frequency is 8000Hz allowing the sampling of up to
4000Hz. Once the PIC was loaded with the firmware it was then tested
using the test-signal shown in Figure 4.2.2. The test-signal is a constant-
power frequency sweep 10 seconds long from [200 Hz to 4000 Hz]. The

sweep has constant amplitude in time domain and the frequency steadily

80

increase from 200Hz up to 4000Hz. Since the filter is designed to begin
attenuation at 600Hz and reach 50dB at 1000Hz, the analysis of the test
signal after running through the PIC filter should show how well the
filter worked. Since this is a constant-power sweep the amplitude of the

sweep attenuates with increasing frequency in as the FFT chart.

Figure 4.2.2 Test Signal: Constant Power Sweep [200Hz-4000Hz]

The frequency response of the output from the filter captured by a

data acquisition system is shown in the Figure 4.2.3.

O mz

5650 = 20 Ha

Figure 4.2.3 Filter Performance on PIC18F452 Chip

81

The fast Fourier transform (FFT) of the DAC output shown in Figure
4.2.4 verifies the performance of the filter. The sweep does indeed begin
attenuation from 600Hz as desired and is almost entirely decimated at
1Kz. In the time domain graph (also Figure 4.2.4) the amplitude of the
sweep does indeed show attenuation in the high frequency side of the
sweep. Notice the small attenuation in the low-frequency side of the
sweep. This attenuation is not the result of the filtering in the PIC. This
attenuation is due to a DC blocking capacitor in the PC sound card.
Sound cards by design cannot sample DC and this is one of the

drawbacks of not using an expensive PC based data acquisition systems.

BAND STOP FILTER: Testing and Analysis

The second filter generated by the filter design software was a band
pass filter with the characteristics illustrated in Figure 4.2.4. Once a
attenuation of 50dB is desired in the stop-band [600Hz-1800Hz]. The

sampling frequency remains 8000Hz.

o
Z
()
°
2
e
=)
©
= |
:
|
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)
0 T T T T T T T]
I I | I I I I |
I I I I I I |
m | | | | | | | [
$ -1000 -~ --- To---oT Ao R P - Temee- e - ~
[+ I I I I I I |
% I I I I | I I |
= I I I I I I I [
) I I I I I I |
n -2000F------ o= 4 - === o= - == - =D - - - === —
o I I I I I I |
i I I I I I I I |
I I I I I I I |
I I I I I I I 1
_3000 1 1 1 1 1 1 1 l
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

Figure 4.2.4 BSF Filter Specifications for Band Pass filter

82

The FFT of the sampled data from the PIC chip illustrated in Figure
4.2.5 shows attenuation in the desired band [600Hz — 1800Hz].

Figure 4.2.5 Measured BSF Frequency and Amplitude Response

83

MULTI-BAND FILTER 1 (FIR): Testing and Analysis

The second filter that was implemented was a band stop filter. In
Figure 4.2.6 a more complex multi-band FIR filter is shown. The filter
has two stop-bands at [600Hz — 1800Hz] and [2700Hz-4000Hz]. Figure
4.2.7 shows the FFT of the PIC filter performance. Both stops bands

have been attenuated as intended.

50

o

Magnitude (dB)
=

o (%))

o o

-
4
o

|

|

1
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

-500

-1000

Phase (degrees)

-1500

|
|
1 1
500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

-2000
0

Figure 4.2.6 MBF 1 Filter Specifications for Band Pass filter

Figure 4.2.7 Frequency and Amplitude response from PIC18F452

84

MULTI-BAND FILTER 2 (FIR): Testing and Analysis

Figure 4.2.8 is a filter with three pass-bands; Figure 4.2.9 shows the
performance of the PIC chip. The figure shows that all three bands have

been compensates as specified in Figure 4.2.8.

20
—~ 0
o
o
o -20
e}
2
s -40
[=)]
]
= .60
-80
1500 2000 2500
Frequency (Hz)
0
A
o -200
D | |
2 | |
~ | | |
8 -400 ! ‘ w
< | 1 | | T [|
= | | | | | | |
o | | | | | | |
| | | | | | |
_600 1 1 1 1 1 1 1 l
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

Figure 4.2.8 MBF 2 Filter Specifications for Band Pass filter

Figure 4.2.9 Frequency and Amplitude response from PIC18F452

85

4.3 LMS FILTER: Test Scenario 1

In order to test the real-time adaptive filter a signal and noise vectors
are carefully prepared. The LMS adaptive filter essentially applies the
phenomenon of destructive interference to perform noise cancellation.
Two waves can be successfully cancelled by destructive interference if
they are both correlated in phase and amplitude. To illustrate the point
made in the previous statement consider the scenario presented in Figure
4.3.1, the source A produces a signal that is sampled at two points in
space, pl and p2. Even though at both points the signal is very similar
however they cannot be directly subtracted because by the time the signal
is sampled at p2 it is different in both phase as well as amplitude and

cannot be simply destroyed by simple subtracting p1.

®] Pl pz
Source A T

Sampler

Figure 4.3.1 Sampling Source A at P1 and P2

To make the problem even more interesting a second source is added

to the scenario presented in Figure 4.3.1 where a source B is introduced:

o |
Source B
L
i P2

o] PI Source B
Source A T 1 LMS

—>

Figure 4.3.2 Source B is added to the scene

86

Figure 4.3.2 shows that p2 will sample not only the signal from
source B but also signal from Source A. The LMS adaptive filter has the
ability to intelligently subtract Source A from source B by predicting the
degree of contamination from Source A in the sample of source B and
recursively improving its’ predictions until source A has been
successfully eliminated from the sample made at p2. The test scenario
uses two monotonic sin waves one for source A (220Hz) and another for
Source B (340Hz). To simulate the effects of Source A traveling through
space till sampling point p2 source A is given a phase-shift of 375us
(micro seconds) and a gain added to source B and the sum is normalized

to approximate the signal sampled at p2. See Figure 4.3.3.

Source B (340Hz)

357us R ;
delay Gain

Gain [*

Signal

<} atp2

Source A (220Hz)

Figure 4.3.3 Approximation of Signal at p2

The signal used at p2 for the simulation was compiled in Matlab and a
time domain graph is presented in Figure 4.3.4. This waveform is the

superposition of source A and source B sampled at point p2.

87

a 10ms= 20ms= F0ms

100 —

50—

50 -

-100 —

Figure 4.3.4 Time domain graph of signal at p2

Figure 4.3.5 shows the frequency domain representation of the signal
sampled at p2. The two spikes are the two monotonic signatures of

source A (220Hz) and source B (340Hz).

FE0 mz 20 Ha

Figure 4.3.5 Frequency domain graph of signal at p2

88

The real-time test topology is presented in Figure 4.3.6. The signal

sampled at point pl is approximated as source A (220Hz) with a gain.

A

j 357us N ;
delay Gain

Source B (340Hz)

Gain

< Signal
at p2

Source A (220Hz)

N||

Gain Signal PIC 18F452 R)
g || LMS Chip ecovere
at pl Signal

Figure 4.3.6 Real-time test topology

The signal sampled at point p2 and the signal at pl (reference) going

into the PIC chip are shown next in Figure 4.3.6 in time domain.

Az5T0ms Az EE0ms Az 530ms 4z300ms Az310mz
1 R L b b -l = a sl
100 —

50 —

50—

-100 —
100 —

50 —

50—

-100 —

Figure 4.3.6 Signal p2 (top) and Reference pl sampled by ADC

89

The signal pl and reference p2 are sampled by the PIC 18F452. The
algorithm implemented in the PIC chip is a fourth order floating-point
LMS with a sampling frequency of 8000Hz and learning rate of 0.1. Both
signal and reference are simultaneously presented to the PIC chip as
shown in Figure 4.3.5, the hardware setup for the experiment is the same
as Figure 4.4.1. The output of the chip or the recovered signal is

recorded and graphed in Figure 4.3.7 in time domain.

| Smz | 10m= | 15m= 20mz=
- - - P — - - [

-100 =

Figure 4.3.7 Signal Recovered by the PIC chop (source B: 340 Hz)

Figure 4.3.7 show that the LMS algorithm running in the PIC chip
was indeed able to recover the Source B and the experiment was
successful however, the lack of smoothness in the recovered signal
suggests high-frequency noise. The smoothing-filter was given a cutoff
of 4000Hz however shifting that cutoff to a lower value will improve the
signal to noise ratio. The frequency domain graph of the recovered signal

is presented next in Figure 4.3.8.

90

13 ms
25 ma

F5 md
45 mz
5T mz
BT ms

T ms 20 Ha

Figure 4.3.8 Signal Recovered in frequency domain (source B: 340 Hz)

91

CHAPTER 5: ANALYSIS & CONCLUSIONS

Despite the hardware limitations of the PIC chip, both the FIR and
LMS filters gave a strong performance with consistent, measurable and

repeatable results.

5.1 FIR filter performance summery

The FIR filter attenuation requested in the filter presented in Section
4.2 is 50dB in Matlab. Although the PIC chip faithfully reproduces the
frequency response designed by Matlab, the attenuation of 50dB could

not be achieved. The best attenuation possible was 36dB.

The difference of 14dB is attributed to the combined effect produced
from two main factors. Firstly, the coefficients generated by Matlab are
in double precision floating-point format, which were re-scaled into 8-bit
fixed-point format numbers. This rescaling process is the major factor
that contributes to the observed precision gap. The other factor is that
the samples of the signal are made at 8-bit precision. In Matlab the test
were made with the signal data sampled at 16 bits. The low bit depth in

the sampled signal is also a factor that affects precision.
The best computation speed achieved is the theoretical minimum of
800ns per MAC cycle by selecting the fastest execution-speed option.

Equation 5.2 calculates the number of CPU cycles required to implement

a FIR filter of a specified sized.

Num _cycles(taps) = 8* taps + 45 (5.2

92

By using the smallest program size option, two additional instructions
are added to the MAC loop thus increasing the size of the MAC cycle to

1000ns. The Total cycles can is calculated using Equation 5.2.

Num _cycles(taps) =10* taps + 45 (5.2)
By using the smallest RAM size option, the size of each MAC loop is

extended further to 22 cycles per MAC. Thus the total number of cycles
used by the PIC chip is calculated using Equation 5.3.

Num _cycles(taps) = 22* taps + 45 (5.3

Equation 5.4 determines RAM usage for a given filter order for

fastest-execution speed option.

Ram _needed (taps) = 2*taps +8 (5.4)

Equation 5.5 determines RAM usage for a given filter-order in the

minimum RAM implementation case:

Ram _needed (taps) = taps + 8 (5.5)

The execution speeds from all three available implementation models

are plotted and shown in Figure 5.1.

93

Execution Speed

CPU Cycles
=
o
o
o

50 60 70 80 90
Filter Order (TAPS)

Figure 5.1 Comparison of execution speed for different
implementations

5.2 LMS filter performance summary

One of the intentions of this research was to obtain a reasonable
approximation of how many orders can be achieved on the PIC 18F452
chip given it’s many limitations. Using the floating-point library and best

speed achieved for the adaptive filter is 267 cycles per tap.

At 10 million instructions per second (MIPS), achievable with a
10MHz external crystal oscillator, the PIC chip can execute 267 cycles in
26.7 us. Equation 5.6 estimates the highest achievable order for a
specified sampling rate and Equation 5.7 estimates the max sampling

frequency for the specified number of taps.

94

ext osc
Max LMSOrder(samplin req) = floor = 5.6
- (sampling _ freq) = /i {4*Sampling_freq*267} 6

ext _osc
4* LMSOrder> 267

Max _LMS _Sampling _ freq = (5.7)

Table 5.1 shows the relationship between Sampling frequency and the
maximum filter order achievable using the implementation strategy
developed during this research. The number of Taps cannot exceed 375

because the PIC will run out of RAM.

Table 5.1: LMS Sampling Rate vs. Taps

Sampling Freq (Hz) Taps
100 375

200 187

400 94

800 47
1600 23
3200 12
6400 6
12800 3
25600 1

External Clock 40000000

5.3 Conclusions and future work

The following conclusions were draws regarding the various filter

implementations that were explored during the course of this research.
1. The PIC 18F452 chip is an excellent candidate for fixed-point FIR

filter implementation. At 800ns per MAC cycle, there is no obvious

disadvantage to diverting part of the PIC CPU cycles.

95

2. No more than a fourth, order LMS filter is possible using the floating

point system using the PIC 18 family. Higher orders are possible at
lower sampling rates, however the lack of the normalization operation
in the floating-point variables makes it prone to loss of precision
from roll-off errors. The newer chips in the same class and price
bracket, such as the dsPIC family, contains specific hardware such as
a 40 bit barrel shifter, 16-bit signed multiplier and 16 bit ALU with
speeds up to 30-40MIPS. These chips overcome many of the hardware
limitations of the PIC 18 family, making them highly suited for
building practical applications of adaptive filters, neural networks etc
without having to resort to using the cost prohibitive DSP boards.
Future work can include developing programming tools and software

libraries for this new family of chips.

. In the LMS filter developed during this research is not used in any
particular applications. It was merely evaluated and tested on
simulated data and meant as to be a resource that can be applied to a
specific application. There is scope for finding a suitable application
for this filter such as adaptive noise cancellation headphones,

standing wave decimation, line echo cancellations etc.

96

BIBLIOGRAPHY

[1] Ananda Mohan P.V, Ramachandran V., Swamy M.N.S, Switch capacitor filters: Theorm,
Analysis and Design, Prentice-Hall PTR, June 1995.

[2] CCS compilers, www.ccsinfo.com/picc.shtml, 2004

[3] CCS Compilers, C Compiler Reference Mannal, Custom Computer Services Incorporated,
Brookfield W1, 2003.

[4] Digikey, www.digikey.com, 2003

[5] Emmanuel C. Ifeachor, Barrie W. Jervis. Digital Signal Processing: A practical Approach,
Addison-Wesley Publishing Company, 1993.

(6] Hall V. Douglas, Microprocessors and Interfacing programming and hardware, Glencoe McGraw-Hill,
New York, New York, 1997.

[7] Hamming, R. W. Digital Filters third edition, Dover Publications, INC. Minneola, New York,
1989.

[8] Karam L. J, McCellah, J.H., Design of optimal digital filters with arbitrary magnitude and phase
responses. IEEE International Symposium on Circuit and Systems. Circuits and Systems

connecting the World, 1996.

(9] Lathi B. P. Signal Processing and Linear Systems, Berkeley Cambridge Press, Carmichael,
California, 1998.

[10] Microchip, PICT8FXX2 Data Sheet: High Performance, Enbanced F1ASH Microcontrollers with
10-Bit A/ D, 2002.

[11] Predko Mike, Programming and customizing PlCmicro® Microcontrollers, McGraw-Hill, New
York, New York, 2002.

97

[12] Ramu Anantha B. K. “Implementation of FIR and IIR Digital Filters Using PIC18
Microcontrollers”’, Microchip Application Note: AN853, Appendix A, 2002.

[13] The Math works, Filter Design Toolbox 2 for designing and analyzing advanced
floating-point and fixed-point filter. www.mathworks.com/products/filterdesign, 2003.

[14] Widrow B. and Winter R. Neural nets for adaptive filtering and adaptive pattern recognition. IEEE
Computer, 1998.

98

APPENDIX A

USERS MANUAL FOR FILTER DESIGN SOFTWARE

PIC 18F452: FILTER DESIGN SOFTWARE

Low Pass
High Paz=
Band Pass
Band Stop

Cugtom

99

INTRODUCTION

The PIC18F452: FILTER DESIGN SOFTWARE was built on the
Matlab environment and will only operate on MATLAB Version 6.1.0.450
(R12.1) and up. Filter Design Toolbox Version 2.1 must also be installed
within the MATLAB environment.

In order to begin the filter design system a path must be set to the
directory in which the source files are held. There are two ways of

setting the path to the correct directory.

Method1l: The path can be set directly by entering it on the provided

space on the main tool bar or by clicking on the J button.

| Currert Direu:tu:ury:| ﬂ J

Method2: An alternate way to set the directory path is to use the

command line option in the main window of Matlab.

= SMATIAD

File Edit Wwiew wweb ‘Window Help

O = ¥ ? | Current Directory: | C:WMATLABSR wark

== path c:\matlabéplywark
»=

Once the path has been set the filter design system can be launched

by typing in ‘fildes’ at the command prompt.

To get started, select "MATLAR Help™ from the Help menu.

= fildes

100

The filter design system main window offers the following functions,
low-pass filter design, high-pass filter design, band-pass filter design,

band-stop filter design and custom filter design.

PIC 18F452: FILTER DESIGN SOFTWARE

Low Pass

High Pazs
Band Pazz
Band Stop

Cuztom

LOW PASS FILTER DESIGN

o Lo Pazs)))
Clicking on the button in the main window and enables

the low-pass filter design interface where the parameters for the intended

low-pass FIR filter can be entered.

I—/—o Enter Attenuations values

Low Pass : : for Pass Band Ripple and

———— Pass Band Ripple (dB} 2 Stov Band Attenuations.
High Pass Stop Band Attenuation [dB): A0

Band Pass —o Enter Sampling Rate for
FIR filter
Band Stop
Cuztam

\4
[4000

® [Enter Band edges for low
| pass filter.

| 200 | 1000 -
\/

Plat FIR Rezponce

101

Once the desired band-edges and attenuations have been entered, by

. Flat FIR Fesponce
pressing the button the

simulated filter response is plotted to the screen.

Fldura o, | M=1E3)

File Edit Wiew Insert Tools window Help

DEEHS RAAs BPD

Magnitude (dB)

S500 1000 1500 2000 2500 3000 3500 4000
Freguency (Hz)

500 1000 1500 2000 2500 3000 3500 4000

Frequency [Hz)

The frequency response and the phase response curves are graphed
for user inspection. Additionally new options appear in the main window

of the LPF design interface.

Flaot FIR Responce ‘

" Fastest Execution 143 cpcles, 34 Bytes BaM uzed
" Small Frogram 175 cycles, 34 Bytes BaM uzed
" Best Memary 334 cycles, 21 Bytes BAM Used

Generate CCS C-Code ‘

Mumber of Taps Meeded: 13, Type: 1

102

The new items that appear in the

interface

present

three

implementation options. Each option lists the bytes of RAM used by the

program on the PIC Chip as well as the number of cycles used by the

program. Running at 40,000,000 each cycle lasts 100ns. Finally the

Generate CCS C-Code

c-language file that can be installed into the PIC chip.

Generate CCS C-Code

filker. ¢ written to directon

HIGH PASS FILTER DESIGN

button will generate the

The high-pass FIR filter is designed in the same way as the low-pass

filter by selecting the ‘High Pass’ button on the main menu.

PIC 18F452: FILTER DESIGN SOFTWARE

Low Pass

High Pazz °

Band Pazs Click on ThlS

button to design

High-Pass

Band St a g

" filter.
Cuztom

The rest of the design follows exactly the same set of steps as the

low pass filter design.

103

BAND PASS FILTER DESIGN

Designing the band-pass filter starts as the previous ones by clicking

on the band-pass button in the main window.

PIC 18F452: FILTER DESIGN SOFTWARE

Enter Attenuations values

S N
High Pass Stop Band Attenuation (dB]: 40
Enter Sampling Rate for
Band Pass FIR filter
Band Stop
Custom
Enter Band edges for low

I 4000 pass filter.
f2o0 [0 [1000 |15004

Mumber of Taps:l a0

Flot FIR Responce |

S

The Desired Filter order
needs to be entered here

Unlike the LPF and the HPF the optimal number of coefficients are

not automatically determined for the FIR band-pass filter configuration.

As the Filter order is increased the quality of the filter improves as well.

100
[Ty
=
- a
=1
=
‘=, -100
TS
= ; ; ; ; ; ; ;
_200 i i i i i i i
u} 500 1000 1500 2000 2500 3000 3500 4000
Fregquency (Hz
O : q :y(II=
o
=
=, a
fah}
=
S -500
fad
_
oo H H H I H H H
u} 500 1000 1500 2000 2500 3000 3500 4000

Freauency (Hzl

104

BAND STOP FILTER DESIGN

Band stop filter is design follows the same set of steps as the Band
pass filter. If the filter order is under estimated then the filter response
curves indicate the deficiency. Say the user specifies a band stop filter

with the given specifications. Notice that only 13 orders are allowed to

obtain a 40db drop in the stop band.

Enter Attenuations values

Fasz Band Ripple [dB]: I 2 for Pass Band Ripple and
/—. Ston Band Attenuations.
Stop Band Attenuation [dB]: I a0

——® Sampling Frequency

AN
I 4000
| 200 | BO0 | 1000 | 1500 Only 13 taps are allowed

Humber of Taps:l 17 € forthe ir:z}flefr?tentation of
. e filter

By plotting the frequency and phase curves it is possible to check

whether 13 filter taps are enough to attain 40db in the stop band.

5':' IF T T

Magnitude (dB)

o A T R R R B
1] 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

105

The graph reveals that a 13-tap filter is not sufficient to attain the

desired attenuations. The order must be revised to a higher value, say 40

taps, and the filter curves are plotted again.

Magnitude (dB)

1 s00 1000

Frequency (Hz)

3000 3500 4000

The updated response curve reveals that 40db drop has been achieved

and the code can now be generated in the same manner as before.

CUSTOM FILTER DESIGN

This is probably the most flexible aspect of FIR filter design because

it allows the development of complex filters, which can compensate

several different bands at once. The specification of Custom filters is a

slightly different than the previous filters. In order to design them the

custom button must be selected first in the main window.

Loy Pazs

High Pazz

Band Pazz

Band Stop

Cusgtam

Press Custom to begin
Design

106

The custom filter design interface is different from the basic filter
design interface. In order to create a custom filter four boxes must be
filled with the appropriate information. The filter profile, the

frequency profile, the band attenuations and the desired filter order.

PIC 18F452: FILTER DESIGN SOFTWARE

e Fiter Profile e Filter Profile Box
o TEEs | [0011001100]
: ———eo
High Pass Frequency Profile
| [0 100 200 300 400 K00 700 800 900 4000] &
Eand P
Anerass Band Atteruations °
Band Stop | (401 401 40]) Attenuation Profile
e Degired Filker Order
Cugtarn IT o

Desired Filter Order

Flot FIR Responce

Filter Profile

Filter profile determines the band edges of the filter. A stop-band is

designated by [0,0] and a pass-band is designated by [1,1].

Filter Prafile
[Doi11001100

107

Frequency Profile

The frequency profile is simply the corner frequencies for each band

edge and is supplied to the program in the appropriate box.

A

200 300 700 800

0 100 400 600 900 4000 Hz

[0 100 200300 400 600 F00 200 300 4000]

Band Attenuation Profile

Attenuation for each stop-band must be provided as well as the pass

band ripple for every pass-band.

A

1dB 1dB

\/

40 dB 40 dB 40 dB Hz

Band Attenuationz

[401 401 40]

Desired Filter Order
This box is filled with the number of coefficients desired by the

designer. As before it is important to check the response curve to make

sure the specified attenuations are being correctly met.

108

Plotting the frequency response button shows the curves and after

increasing the filter order from 50 to 70 the target attenuations are met.

L : : : : : : :

— -2':' ------- Ll i Ll Fm======- Fe=====-= 'i- -------- Tem===——— Te=====-- Te=m==-- —
o ! ! ! : ! ! !
E 1 ; 1
o Al - . T *
E 1 1 1 1 1
= BOMH----- LSS 3 U Y U O R O A I O I 4 O O o
= : : : : : :
E _BD ________ Lecceeee o :. ______________ Looodooo I S PSR B JI. ______ —

100 i i i i i i i

0 500 1000 1500 0 2000 2500 3000 3500 4000
Fregquency (Hz)

400 ! ! ! ! ! ! !
@200
@
= 0
[k}
p
= =200 . ; !

400 | | | | i | |

0 SO0 1000 1500 2000 2500 2000 3500 4000

Frequency (Hz)

Filter code can be generated as before after selecting an appropriate

implementation strategy desired by the user.

Plot FIR Responce ‘

&+ Fastest Execution 521 cycles, 152 Bytes BaM uzed
" Small Program 765 cycles, 152 Bytes RAM uzed
" Best Memamy 1632 cycles, B0 Bytes BAM Used

Generate CCS C-Code i

Mumber of Taps Needed: 72, Type: B

109

APPENDIX B

MATILAB CODE FOR FILTER DESIGN SOFTWARE

110

function varargout = fildes(varargin)

% FILDES Application M-file for fildes.fig

% FIG = FILDES launch fildes GUI.

% FILDES('callback_name', ...) invoke the named callback.
% Last Modified by GUIDE v2.0 11-Apr-2004 21:33:20

global gdata;
global handles;

if nargin==0 % LAUNCH GUI
fig = openfig(mfilename,'reuse’);

% Use system color scheme for figure:
set(fig,'Color',get(0,'defaultUicontrolBackgroundColor"));

% Generate a structure of handles to pass to callbacks, and store it.
handles = guihandles(fig);
guidata(fig, handles);
if nargout >0
varargout{1} = fig;
end

% INVOKE NAMED SUBFUNCTION OR CALLBACK
elseif ischar(varargin{1})

try
if (nargout)
[varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard
else
feval(varargin{:}); % FEVAL switchyard
end
catch
disp(lasterr);
end
end

%
function varargout = FIRpush(h, eventdata, handles, varargin)
set(handles.Ims,'enable’,'off");

%
function varargout = LMSpush(h, eventdata, handles, varargin)
set(handles.fir,'enable’,'off");

%
function varargout = Ipf_Callback(h, eventdata, handles, varargin)
global gdata;

set(handles.cover,'visible','off");
custom_off;

axes(handles.box);
x=ones(1,30);

y=1:-1/25:0;

z=zeros(1,30);

plot([x y z]);
set(handles.box,'xlim',[1 90]);
set(handles.box,'ylim',[0 1.5]);
set(handles.box,'color',[0.6 0.6 0.6]);
set(handles.pfr,'enable’,'on’);
set(handles.bpa,'visible','off");
set(handles.bpb,'visible','off");
set(handles.bpc,'visible','off");

111

set(handles.bpd, 'visible','off");
set(handles.pbco, visible','on");
set(handles.shc,'visible','on");
set(handles.tapn,'visible','off");
set(handles.taptext,'visible','off");
gdata.type = 1;

%

function varargout = hpf_Callback(h, eventdata, handles, varargin)
global gdata;

set(handles.cover,'visible','off");

custom_off;

axes(handles.box);
x=ones(1,37);

y=0:1/25:1;

z=zeros(1,30);

plot([z y x]);
set(handles.box,'xlim',[1 90]);
set(handles.box,'ylim',[0 1.5]);
set(handles.box,'color',[0.6 0.6 0.6]);
set(handles.pfr,'enable’,'on");
set(handles.bpa,'visible','off");
set(handles.bpb,'visible','off");
set(handles.bpc,'visible','off");
set(handles.bpd, 'visible','off");
set(handles.pbco, 'visible','on");
set(handles.shc,'visible','on");
set(handles.tapn,'visible','off");
set(handles.taptext,'visible','off");
gdata.type = 2;

%

function varargout = bpf_Callback(h, eventdata, handles, varargin)
global gdata;

set(handles.cover,'visible','off");

custom_off;

axes(handles.box);

z = zeros(1,15);

x = ones(1,20);

r=0:1/15:1;

f=1:-1/15:0;

plot([z r x f z]);
set(handles.box,'xlim',[1 80]);
set(handles.box,'ylim',[0 1.5]);
set(handles.box,'color',[0.6 0.6 0.6]);
set(handles.pbco, visible','of f");
set(handles.shc,'visible','off");
set(handles.bpa,'visible','on’);
set(handles.bpb,'visible','on’);
set(handles.bpc,'visible','on");
set(handles.bpd,'visible','on’);
set(handles.pfr,'enable’,'on");
set(handles.tapn,'visible','on’);
set(handles.taptext,'visible','on");
gdata.type = 3;

%

function varargout = bsf_Callback(h, eventdata, handles, varargin)
global gdata;

set(handles.cover,'visible','off");

custom_off;

axes(handles.box);

112

z = zeros(1,15);

x = ones(1,20);

r=0:1/15:1;

f=1:-1/15:0;

plot([x f z r x]);
set(handles.box,'xlim',[1 80]);
set(handles.box,'ylim',[0 1.5]);
set(handles.box,'color',[0.6 0.6 0.6]);
set(handles.pbco, visible','off");
set(handles.sbc,'visible','off");
set(handles.bpa,'visible','on");
set(handles.bpb,'visible','on");
set(handles.bpc,'visible','on");
set(handles.bpd,'visible','on");
set(handles.pfr,'enable’,'on’);
set(handles.tapn,'visible','on’);
set(handles.taptext,'visible','on’);
gdata.type = 4;

%
function varargout = m2o_Callback(h, eventdata, handles, varargin)
global gdata;

set(handles.cover,'visible','on’);

set(handles.tprofile,'visible','on’);

set(handles.profile,'visible','on");

set(handles.bedges,'visible','on");

set(handles.text12,'visible','on");
set(handles.customtaps,'visible','on’);

set(handles.attnt,'visible','on");

set(handles.atten,'visible','on");

set(handles.pfr,'enable’,'on’);

gdata.type = 6;

%
function varargout = gccc_Callback(h, eventdata, handles, varargin)
global g;

global gdata;

global imptype;

fid = fopen(filter.c','w");
time = clock;
% Come to here..........

type = imptype ; % 1. DBUR, 2. DBNUR, 3. SBNUR

% Double Buffer + UNROLLED LOOPS..........cccctiiiiieiiti ettt sne e
if (type==1)

fprintf(fid,'%s \n',['// PIC 18F452 CODE FOR FIR FILTER GENERATION');

fprintf(fid,'%s \n',['// Date: ' Date ', Time (Hr:Min:Sec)-> ' num2str(time(4)) "' num2str(time(5)) "'
numa2str(time(6))1);

fprintf(fid,'%s \n",['// FIR Filter Type: 'T);

fprintf(fid,"\n \n");

fprintf(fid,'%s \n',['#include <18f452.h>");

fprintf(fid,"%s \n',['#use delay(clock = 40000000)]);

fprintf(fid,'%s \n',['#fuses H4,PUT,NOWDT));

fprintf(fid,"\n \n");

fprintf(fid,'%s \n', ['const int filter_length = ' num2str(length(g)) ";');

fprintf(fid,'%s', ['const int taps|[filter_length] = {']);

for n=1:1:length(g)
fprintf(fid, %i',g(n));

113

if n<length(g)
fprintf(fid,",");
end
end
fprintf(fid,'%s \n',['};']);

fprintf(fid,"\n \n");

fprintf(fid,'%s \n',['// PIC 18F452 Register

fprintf(fid,'%s \n",["]);

fprintf(fid, %s \n',[// ACCUMULATOR ADDRESS);

fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',["]);

WREG = OxFE8
PRODL =0xff3
PRODH =0xff4
ADRESL = 0xfc3
ADRESH = 0xfc4
STATUS = 0xfd8

/I Register Stores the Carry Bit
// Product Low Byte

// Product High Byte

// Low Byte for ADC Sample
// High Byte for ADC Sample
/I Status Register

fprintf(fid, %s \n',[/ DC CONTROL REGISTERS ']):;

fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',["]);
fprintf(fid,'%s \n',["]);

ADCONO = 0xfc2
ADCONL1 = 0xfcl
ADRESL = 0xfc3
ADRESH = 0xfc4

/I ADC Control Register (High)
/I ADC Control Register (Low)
/l Low Byte for ADC Sample
/I High Byte for ADC Sample

fprintf(fid,'%s \n',['// DIGITAL 10 PORT ADDRESSES

fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',["]);

fprintf(fid,'%s \n',["]);

PORTA = 0xf80
PORTB = 0xf81
PORTC = 0xf82
PORTD = 0xf83
PORTE = 0xf84
LATA = 0xf89

/I Port A Address
/I Port B Address
/I Port C Address
/I Port D Address
/l Port E Address
/I Set Driection for PORTA

fprintf(fid,'%s \n',['// INDIRECT ADDRESSING ');

fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',['#byte

FSROH = OxfeA
FSROL = Oxfe9
FSR1H = Oxfe2
FSR1L = Oxfel
FSR2H = Oxfda
FSR2L = 0xfd9
INDFO = Oxfef
INDF1 = Oxfe7
INDF2 = 0xfdf
PLUSWO = Oxfeb
PLUSW1 = 0xfe3
PLUSW?2 = 0xfdb
PREINCO = Oxfec
PREINC1 = Oxfe4
PREINC2 = Oxfdc

// Hardware File Pointer0 (High)
/l Hardware File Pointer0 (Low)
// Hardware File Pointerl (High)
// Hardware File Pointerl (Low)
// Hardware File Pointer2 (High)
/I Hardware File Pointer2 (Low)
/I Read Data Pointed by FSRO

/I Read Data Pointed by FSR1
// Read Data Pointed by FSR2

/I Add Pointed data to WREG

/I Add Pointed data to WREG

/I Add Pointed data to WREG

/I Pre-increment pointer0

// Pre-increment pointerl

/I Pre-increment pointer2

I/ Post-Incerement PointerQ
/I Post-Decrement PointerO
/I Post-Increment Pointerl
/] Post-Decrement Pointerl
/I Post-Increment Pointer2
/I Post-Decrement Pointer2

fprintf(fid,'%s \n',[#byte POSTINCO = Oxfee

fprintf(fid,'%s \n',['#byte POSTDECO = Oxfed
fprintf(fid,'%s \n',['#byte POSTINC1 = Oxfe6
fprintf(fid,'%s \n',['#byte POSTDEC1 = Oxfe5
fprintf(fid,'%s \n',['#byte POSTINC2 = Oxfde
fprintf(fid,'%s \n',['#byte POSTDEC2 = Oxfdd
fprintf(fid,'%s \n',["]);

fprintf(fid,'%s \n',["]);

fprintf(fid,'%s \n',['// TIMER REGISTERS ');

fprintf(fid,'%s \n',['#byte PR2 = Oxfcb 17);

D:
D:

D:
D;
D
D:

114

fprintf(fid,'%s \n',[#byte TMR2 = Oxfcc ']);

fprintf(fid,'%s \n',['#byte T2CON = Oxfca ');

fprintf(fid,"\n \n");

fprintf(fid,'%s \n',['// GLOBAL VARIABLES

fprintf(fid,'%s \n',['int bufO[filter_length] = {0};
fprintf(fid,'%s \n',['int bufl[filter_length] = {0};
fprintf(fid,'%s \n',['int coef[filter_length] = {0};

fprintf(fid,'%s \n',['int output_most = 0;
fprintf(fid,'%s \n',['int output_middle = 0;
fprintf(fid,'%s \n',['int output_least = O;
fprintf(fid,'%s \n',['int Xn_high_256=0;
fprintf(fid,'%s \n',['int Xn_mid_256=0;
fprintf(fid,"%s \n',['int Xn_low_256=0;
fprintf(fid,'%s \n',['int Xn_high_128=0;
fprintf(fid,'%s \n',['int Xn_mid_128=0;
fprintf(fid,'%s \n',['int Xn_low_128=0;
fprintf(fid,'%s \n',['int EOB, MAC_count;
fprintf(fid,'%s \n',['int n,c, tptr0, tptrl;

// Store ADC Values
// Store ADC Values
/I Store offset Coefficients
/I Most Significant Byte of Output
/I Middle Significant Byte of Output .
/I Least Significant Byte of Output '
/I Most Significant Byte of Xn Summation * 255
// Mid Significant Byte of Xn Summation * 255
/I Least Significant Byte of Xn Summation * 255
/I Most Significant Byte of Xn Summation * 128
// Mid Significant Byte of Xn Summation * 128
/I Least Significant Byte of Xn Summation * 128
/I Counters for MAC and END of Buffer.
[/l Temporary Variabes

fprintf(fid,\n \n");

fprintf(fid,'%s \n',['// GLOBAL PROTOTYPES
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void);
fprintf(fid,'%s \n',['void initialize_pointers(void);]);
fprintf(fid,"\n \n");

fprintf(fid,'%s \n',['// INTERRUPT SERVICE ROUTINE'
fprintf(fid,'%s \n',[#INT_TIMER2

fprintf(fid,'%s \n",['isr() {'

fprintf(fid,"%s \n',[" T2CON = 0x06; // Restart Timer'
fprintf(fid,'%s \n',["]);

fprintf(fid,'%s \n',["]);

fprintf(fid,"%s \n',[’ FSROL = tptr0;

fprintf(fid,'%s \n',[' FSRIL = tptrl;'

fprintf(fid,'%s \n',["]);

fprintf(fid,'%s \n',[' if (EOB ==0) {

fprintf(fid,'%s \n',[FSROL = &buf0[0];
fprintf(fid,'%s \n',[FSR1L = &buf1[0];'
fprintf(fid,"%s \n',[" FSR2L = &coef[0];'
fprintf(fid,'%s \n',[* EOB =filter_length;'
fprintf(fid,"%s \n',[’ Y

fprintf(fid,'%s \n',["

fprintf(fid,'%s \n',[' // Subtract The oldest Xn Value from Total'
fprintf(fid,'%s \n',[" #asm'

fprintf(fid,'%s \n',[' movf INDFO,W'
fprintf(fid,'%s \n',[' subwf Xn_mid_256,F
fprintf(fid,'%s \n',[* clrf WREG'
fprintf(fid,"%s \n',[" subwfb Xn_high_256,F'

fprintf(fid,'%s \n',[" #endasm'

fprintf(fid,'%s \n',["]);

fprintf(fid,'%s \n',[' /I Get the latest ADC value;'
fprintf(fid,'%s \n',[' WREG = ADRESH;'
fprintf(fid,'%s \n',["]);

fprintf(fid,'%s \n',[" /I Restart ADC;

fprintf(fid,'%s \n',[" bit_set(ADCONO,2);'
fprintf(fid,"%s \n',["

fprintf(fid,"%s \n',["]);

fprintf(fid,"%s \n',[’ /l Add Latest ADC value to Y1(n)'
fprintf(fid,'%s \n',[' #asm']);

fprintf(fid,'%s \n',[' movwf INDFQ');
fprintf(fid,'%s \n',[' movwf POSTINC1
fprintf(fid,'%s \n',[' addwf Xn_mid_256,F
fprintf(fid,'%s \n',[* clrf WREG'

1)5
D:
D

115

fprintf(fid,'%s \n',[!
fprintf(fid,'%s \n',['

addwfc Xn_high 256,F D
#endasm D;

fprintf(fid,"%s \n',[D;
fprintf(fid,'%s \n',[! /I Prepare for MAC Cycles D
fprintf(fid,"%s \n',[" FSR2L = &coef[0];' D;

fprintf(fid,'%s \n',[" FSROL = FSROL +filter_length;' D;

fprintf(fid,"%s \n',[’ EOB =EOB -1} D;

fprintf(fid,"%s \n',[" MAC_count = filter_length;’ D:

fprintf(fid,'%s \n',[’ i)E
fprintf(fid,'%s \n',[' /I Begin MAC Cycle repeat till done then computer Output’ D;

fprintf(fid,'%s \n',[#asm' D;

fprintf(fid,'%s \n',[' clrf output_least' D

fprintf(fid,'%s \n',[* clrf output_middle' D;

fprintf(fid,'%s \n',[" clrf output_most' D;

for n=1:1:length(g)

fprintf(fid,'%s \n',['// MAC CYCLE NUMBER: ', num2str(n) ' 1l ;
fprintf(fid,'%s \n',[' movf POSTDECO,W' D;

fprintf(fid,'%s \n',[' mulwf POSTINC2' D;

fprintf(fid,'%s \n',[' movf PRODL W' D;

fprintf(fid,'%s \n',[' addwf output_least' D

fprintf(fid,"%s \n',[" movf PRODH,W' D;

fprintf(fid,'%s \n',[" addwfc output_middle' D;

fprintf(fid,"%s \n',[" clrf WREG' D;

fprintf(fid,"%s \n',[" addwfc output_most' D;

end

fprintf(fid,"%s \n',[! COMPUTE_OUTPUT:' D;

fprintf(fid,'%s \n',[* bcf STATUS, 0 D;

fprintf(fid,'%s \n',[! incf FSROL' D;

fprintf(fid,"%s \n',[" rrcf Xn_high_256,W n;
fprintf(fid,'%s \n',[' movwf Xn_high_128 i)E
fprintf(fid,'%s \n',[' rrcf Xn_mid_256,W i)E
fprintf(fid,'%s \n',[movwf Xn_mid_128 s
fprintf(fid,'%s \n',[' rrcf Xn_low_256,W D;
fprintf(fid,'%s \n',[movwf Xn_low_128 s
fprintf(fid,"%s \n',[* subwf output_least,F D;
fprintf(fid,"%s \n',[" movf Xn_mid_128,W' D;
fprintf(fid,"%s \n',[’ subwfb output_middle,F' D;

fprintf(fid,"%s \n',[’ movf Xn_high_128 W' D;

fprintf(fid,'%s \n',[' subwfb output_most,F' D;

fprintf(fid,'%s \n',[! N;
fprintf(fid,'%s \n',[' #endasm H)B

fprintf(fid,'%s \n",["]);

fprintf(fid,"%s \n',["
fprintf(fid,"%s \n',["
fprintf(fid,"%s \n',["]);
fprintf(fid,'%s \n',["
fprintf(fid,'%s \n',["]);
fprintf(fid,'%s \n',["
fprintf(fid,'%s \n',[
fprintf(fid,'%s \n',[
fprintf(fid,'%s \n',["
fprintf(fid,'%s \n',["
fprintf(fid,'%s \n',[’
fprintf(fid,"%s \n',["]);
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',['
fprintf(fid,"\n \n");

tptr0 = FSROL;']);
tptrl = FSR1L;]);

// Scale output........... n;

#asm']);
rrcf output_most,F17);
rrcf output_middle,F17);
rrcf output_most,F17);
rrcf output_middle,F
#endasm']);

PORTD = output_middle; ');
} /1 End Interrupt);

i)E

forintf(fid, %s \n',['void main() { i)}

forintf(fid, %s \n',[1
forintf(fid, %s \n',[set_tris_d(0): i)}
fprintf(fid, %s \n',[1
fprintf(fid,"%s \n',[" I/l Setup ADC in interrupt mode D;
foprintf(fid, %s \n',[setup_adc_ports(ALL_ANALOG); i)}
forintf(fid,'%s \n',[setup_adc(ADC_CLOCK_DIV_64););
fprintf(fid,'%s \n',[set_adc_channel(0); ‘1
forintf(fid, %s \n',[)}
fprintf(fid,'%s \n',[' /I Setup TimerO0 in interrupt Mode N;
fprintf(fid, %s \n',[T2CON = 0x06; 1
fprintf(fid, %s \n',[PR2 = 76; 1
forintf(fid,'%s \n',[! enable_interrupts(INT_TIMER?2);)
foprintf(fid,'%s \n',[" enable_interrupts(GLOBALY); 1
fprintf(fid, %s \n',[;
fprintf(fid,'%s \n',[’ /I FIR filter Code D;
fprintf(fid, %s \n',[offset_and_buffer_tap_coefficients();)5
forintf(fid, %s \n',[1
fprintf(fid,"%s \n',[/I Initialize Pointers D
fprintf(fid, %s \n',[tptr0 = &bufo[0]; 1
fprintf(fid,'%s \n',[tptrl = &buf1[0]; ;
forintf(fid, %s \n',[FSR2L = &coef[0]; i)}
fprintf(fid, %s \n',[EOB = filter_length; 1
fprintf(fid, %s \n',[;
fprintf(fid,'%s \n',[’ /I Start ADC. i)E
fprintf(fid,'%s \n',[bit_set(ADCONO,2); ;
fprintf(fid,'%s \n",[set_rtcc(65517);)2
fprintf(fid, %s \n',[1
fprintf(fid, %s \n',[/I Main Loop i)
fprintf(fid, %s \n',[! while(1) { D
fprintf(fid,"%s \n',[’ /I Main Application ;
fprintf(fid, %s \n',[} 1
fprintf(fid, %s \n',['} ;

fprintf(fid,"\n \n \n");

fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void) { D
fprintf(fid,'%s \n',[' intn; I
fprintf(fid,'%s \n',[' for (n=0; n<filter_length; n++) {)5
fprintf(fid,'%s \n',[! coef[n] = taps[n]+0x80;)5
fprintf(fid, %s \n',[} s
fprintf(fid,%s \n",['})k
end

% DOUBLE BUFFERED: Non UNROLLED LOOPS.........c.cccciviiiiiiiiinie

if (type ==2)

fprintf(fid,'%s \n",['// PIC 18F452 CODE FOR FIR FILTER GENERATION');

fprintf(fid,'%s \n',['// Date: ' Date ', Time (Hr:Min:Sec)-> ' num2str(time(4)) ":' num2str(time(5)) "'
num2str(time(6))]);

fprintf(fid,"%s \n",['// FIR Filter Type: 'T);

fprintf(fid,\n \n");

fprintf(fid,'%s \n',['#include <18f452.h>'");

fprintf(fid,'%s \n',['#use delay(clock = 40000000)7);

fprintf(fid,'%s \n',['#fuses H4,PUT,NOWDT));

fprintf(fid,"\n \n");

fprintf(fid,'%s \n', ['const int filter_length = ' num2str(length(g)) ';');

fprintf(fid, %s', ['const int taps[filter_length] = {']);
for n=1:1:length(g)

117

fprintf(fid,'%i',g(n));
if n<length(g)
fprintf(fid,",");
end
end
fprintf(fid,'%s \n',['};']);

fprintf(fid,"\n \n");
fprintf(fid,'%s \n',['// PIC 18F452 Register

fprintf(fid,'%s \n',["]);

fprintf(fid,'%s \n',['// ACCUMULATOR ADDRESS);

fprintf(fid,'%s \n',[#byte WREG = OxFE8 // Register Stores the Carry Bit
fprintf(fid,'%s \n',['#byte PRODL =0xff3 // Product Low Byte
fprintf(fid,'%s \n',['#byte PRODH =0xff4 // Product High Byte
fprintf(fid,'%s \n',[#byte ADRESL = 0xfc3 // Low Byte for ADC Sample
fprintf(fid,'%s \n',[#byte ADRESH = Oxfc4 /I High Byte for ADC Sample
fprintf(fid,'%s \n',[#byte STATUS = 0xfd8 /I Status Register
fprintf(fid,'%s \n',["]);

fprintf(fid,'%s \n',['// DC CONTROL REGISTERS

fprintf(fid,"%s \n',['#byte ADCONO = 0xfc2 // ADC Control Register (High)
fprintf(fid,'%s \n',['#byte ADCONL1 = 0xfcl // ADC Control Register (Low)
fprintf(fid,'%s \n',[#byte ADRESL = 0xfc3 // Low Byte for ADC Sample
fprintf(fid,'%s \n',[#byte ADRESH = 0xfc4 /I High Byte for ADC Sample
fprintf(fid,'%s \n',["]);

fprintf(fid,'%s \n',["]);

fprintf(fid,'%s \n',['// DIGITAL 10 PORT ADDRESSES

fprintf(fid,'%s \n',['#byte PORTA = 0xf80 // Port A Address
fprintf(fid,'%s \n',[#byte PORTB = 0xf81 // Port B Address
fprintf(fid,'%s \n',['#byte PORTC = 0xf82 // Port C Address

fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',["]);
fprintf(fid,'%s \n',["]);

PORTD = 0xf83
PORTE = 0xf84
LATA = 0xf89

/I Port D Address
/l Port E Address
/I Set Driection for PORTA

fprintf(fid,'%s \n',[// INDIRECT ADDRESSING);

fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte

FSROH = OxfeA
FSROL = 0xfe9
FSR1H = Oxfe2
FSR1L = Oxfel
FSR2H = Oxfda
FSR2L = 0xfd9
INDFO = Oxfef
INDF1 = Oxfe7
INDF2 = 0xfdf

// Hardware File Pointer0 (High)
// Hardware File Pointer0 (Low)
// Hardware File Pointerl (High)
/I Hardware File Pointerl (Low)
// Hardware File Pointer2 (High)
/I Hardware File Pointer2 (Low)
/I Read Data Pointed by FSRO
/I Read Data Pointed by FSR1
// Read Data Pointed by FSR2

/I Add Pointed data to WREG
/I Add Pointed data to WREG
/I Add Pointed data to WREG
/I Pre-increment pointer0
/I Pre-increment pointerl
/I Pre-increment pointer2
/I Post-Incerement Pointer0
/I Post-Decrement PointerO
/I Post-Increment Pointerl
/I Post-Decrement Pointerl
/I Post-Increment Pointer2
/I Post-Decrement Pointer2

fprintf(fid,'%s \n',['#byte PLUSWO = Oxfeb
fprintf(fid,'%s \n',[#byte PLUSW1 = Oxfe3
fprintf(fid,'%s \n',['#byte PLUSW?2 = 0xfdb
fprintf(fid,'%s \n',[#byte PREINCO = Oxfec
fprintf(fid,'%s \n',[#byte PREINC1 = Oxfe4
fprintf(fid,'%s \n',[#byte PREINC2 = Oxfdc
fprintf(fid,'%s \n',['#byte POSTINCO = Oxfee
fprintf(fid,'%s \n',['#byte POSTDECO = Oxfed
fprintf(fid,'%s \n',['#byte POSTINC1 = Oxfe6
fprintf(fid,'%s \n',['#byte POSTDEC1 = Oxfe5
fprintf(fid,'%s \n',[#byte POSTINC2 = Oxfde
fprintf(fid,'%s \n',['#byte POSTDEC2 = Oxfdd
fprintf(fid,'%s \n',[

fprintf(fid,'%s \n',['

fprintf(fid,'%s \n',['// TIMER REGISTERS

D
D:

)5
)5

118

fprintf(fid,'%s \n',['#byte PR2 = Oxfcb
fprintf(fid,'%s \n',[#byte TMR2 = Oxfcc
fprintf(fid,'%s \n',['#byte T2CON = Oxfca
fprintf(fid,"\n \n");

fprintf(fid,'%s \n',['// GLOBAL VARIABLES
fprintf(fid,'%s \n',['int bufO[filter_length] = {0};
fprintf(fid,'%s \n',['int bufl[filter_length] = {0};
fprintf(fid,'%s \n',['int coef[filter_length] = {0};
fprintf(fid,'%s \n',['int output_most = 0;
fprintf(fid,'%s \n',['int output_middle = 0;
fprintf(fid,'%s \n',['int output_least = 0;
fprintf(fid,'%s \n',['int Xn_high_256=0;
fprintf(fid,'%s \n',['int Xn_mid_256=0;
fprintf(fid,'%s \n',['int Xn_low_256=0;
fprintf(fid,'%s \n',['int Xn_high_128=0;
fprintf(fid,'%s \n',['int Xn_mid_128=0;
fprintf(fid,'%s \n',['int Xn_low_128=0;
fprintf(fid,'%s \n',['int EOB, MAC_count;
fprintf(fid,'%s \n',['int n,c, tptr0, tptrl;
fprintf(fid,"\n \n");

fprintf(fid,'%s \n',['// GLOBAL PROTOTYPES

/I Store ADC Values
/I Store ADC Values
/I Store offset Coefficients
/I Most Significant Byte of Output

/I Middle Significant Byte of Output
/I Least Significant Byte of Output

// Most Significant Byte of Xn Summation * 255
// Mid Significant Byte of Xn Summation * 255
/I Least Significant Byte of Xn Summation * 255
// Most Significant Byte of Xn Summation * 128
// Mid Significant Byte of Xn Summation * 128
/I Least Significant Byte of Xn Summation * 128

/I Counters for MAC and END of Buffer.
/l Temporary Variabes

fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void);

fprintf(fid,'%s \n',['void initialize_pointers(void);

fprintf(fid,"\n \n");

fprintf(fid,'%s \n',['// INTERRUPT SERVICE ROUTINE

fprintf(fid,'%s \n',[#INT_TIMER2
fprintf(fid,'%s \n',['isr() {

fprintf(fid,'%s \n',[
fprintf(fid,'%s \n',["
fprintf(fid,"%s \n',["
fprintf(fid,"%s \n',[’
fprintf(fid,"%s \n',[’
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',[
fprintf(fid,'%s \n',[
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',["
fprintf(fid,'%s \n',[" }
fprintf(fid,'%s \n',[’
fprintf(fid,"%s \n',[’
fprintf(fid,'%s \n',['

FSROL = tptr0;
FSRI1L = tptrl;

if (EOB == 0) {

#asm

T2CON = 0x06; // Restart Timer

FSROL = &buf0[0];
FSR1L = &bufl[0];
FSR2L = &coef[0];
EOB =filter_length;

/I Subtract The oldest Xn Value from Total

fprintf(fid,'%s \n',[' movf INDFO,W
fprintf(fid,'%s \n',[' subwf Xn_mid_256,F
fprintf(fid,'%s \n',[' clrf WREG

subwfb
#endasm

fprintf(fid,'%s \n',[*
fprintf(fid,'%s \n',[*
fprintf(fid,'%s \n',[’
fprintf(fid,"%s \n',["
fprintf(fid,'%s \n',[’
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',[!
fprintf(fid,'%s \n',[!
fprintf(fid,"%s \n',["
fprintf(fid,'%s \n',["
fprintf(fid,"%s \n',[’

/I Restart ADC;

Xn_high_256,F

/I Get the latest ADC valueg;
WREG = ADRESH,;

bit_set(ADCONO,2);

// Add Latest ADC value to Y1(n)

fprintf(fid,"%s \n',[’ #asm

fprintf(fid,'%s \n',[' movwf INDFO
fprintf(fid,'%s \n',[! movwf POSTINC1
fprintf(fid,'%s \n',[' addwf Xn_mid_256,F
fprintf(fid,'%s \n',[' clrf WREG

fprintf(fid,'%s \n',[* addwfc

Xn_high_256,F);

119

fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',[’
fprintf(fid,"%s \n',[
fprintf(fid,'%s \n',['
fprintf(fid,"%s \n',["
fprintf(fid,'%s \n',["
fprintf(fid,"%s \n',["
fprintf(fid,'%s \n',[’
fprintf(fid,"%s \n',['
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',["
fprintf(fid,"%s \n',["
fprintf(fid,"%s \n',[’
fprintf(fid,"%s \n',[’
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',["
fprintf(fid,"%s \n',[
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',["
fprintf(fid,'%s \n',["
fprintf(fid,"%s \n',["
fprintf(fid,"%s \n',["
fprintf(fid,'%s \n',[’
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',[*
fprintf(fid,'%s \n',[*
fprintf(fid,"%s \n',["
fprintf(fid,'%s \n',[!
fprintf(fid,'%s \n',["
fprintf(fid,'%s \n',[!
fprintf(fid,'%s \n',[
fprintf(fid,'%s \n',[
fprintf(fid,'%s \n',[
fprintf(fid,"%s \n',["
fprintf(fid,'%s \n',[*
fprintf(fid,"%s \n',['
fprintf(fid,'%s \n',[’
fprintf(fid,'%s \n',[’
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',[
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',["
fprintf(fid,"%s \n',["
fprintf(fid,'%s \n',[’
fprintf(fid,"%s \n',[’
fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',["
fprintf(fid,'%s \n',[

fprintf(fid,'%s \n",["]);

fprintf(fid,'%s \n',["
fprintf(fid,'%s \n',["

fprintf(fid,"\n \n");

#endasm

/I Prepare for MAC Cycles

FSR2L = &coef[0];

FSROL = FSROL+filter_length;
EOB =EOB - 1;

MAC_count = filter_length;

/I Begin MAC Cycle repeat till done then computer Output

#asm
clrf output_least
clrf output_middle
clrf output_most
MAC:
movf POSTDECO,W
mulwf POSTINC2
movf PRODL,W
addwf output_least
movf PRODH,W
addwfc output_middle
clrf WREG

addwfc output_most
decfsz MAC_count

bra MAC
COMPUTE_OUTPUT:
bcf STATUS, 0
incf FSROL
rrcf Xn_high_256,W
movwf Xn_high_128
rrcf Xn_mid_256,W
movwf Xn_mid_128
rrcf Xn_low_256,W
movwf Xn_low_128
subwf output_least,F
movf Xn_mid_128,W
subwfb output_middle,F
movf Xn_high_128,W

subwfhb output_most,F
#endasm

tptr0 = FSROL;
tptrl = FSR1L,;

I Scale output...........

#asm

rrcf output_most,F
rrcf output_middle,F
rrcf output_most,F
rrcf output_middle,F

#endasm

PORTD = output_middle;
} // End Interrupt

fprintf(fid,'%s \n',['void main() {

fprintf(fid,'%s \n',['
fprintf(fid,'%s \n',['
fprintf(fid,"%s \n',["

set_tris_d(0);

120

fprintf(fid,'%s \n',[’ /I Setup ADC in interrupt mode

fprintf(fid,'%s \n',[’ setup_adc_ports(ALL_ANALOG);
fprintf(fid,'%s \n',[' setup_adc(ADC_CLOCK_DIV_64);
fprintf(fid,'%s \n',[" set_adc_channel(0);

fprintf(fid,"%s \n',["

fprintf(fid,'%s \n',[" [/ Setup TimerO0 in interrupt Mode
fprintf(fid,"%s \n',[’ T2CON = 0x06;

fprintf(fid,'%s \n',[’ PR2 = 76;

fprintf(fid,"%s \n',[' enable_interrupts(INT_TIMER?2);
fprintf(fid,'%s \n',[' enable_interrupts(GLOBAL);
fprintf(fid,'%s \n',['

fprintf(fid,'%s \n',[/I FIR filter Code

fprintf(fid,'%s \n',[" offset_and_buffer_tap_coefficients();
fprintf(fid,"%s \n',["

fprintf(fid,"%s \n',[’ /I Initialize Pointers

fprintf(fid,"%s \n',[" tptr0 = &buf0[0];

fprintf(fid,'%s \n',[’ tptrl = &bufl[0];
fprintf(fid,'%s \n',[’ FSR2L = &coef[0];
fprintf(fid,'%s \n',[EOB = filter_length;
fprintf(fid,'%s \n',['

fprintf(fid,'%s \n',[" /I Start ADC.

fprintf(fid,"%s \n',[" bit_set(ADCONO,2);
fprintf(fid,"%s \n',[" set_rtcc(65517);

fprintf(fid,'%s \n',[’

fprintf(fid,'%s \n',[’ /I Main Loop

fprintf(fid,'%s \n',[' while(1) {
fprintf(fid,'%s \n',[/I Main Application

fprintf(fid,'%s \n',[}

fprintf(fid,"%s \n',['}

fprintf(fid,"\n \n \n");

fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void) {
fprintf(fid,'%s \n',[' intn;

fprintf(fid,'%s \n',[' for (n=0; n<filter_length; n++) {
fprintf(fid,'%s \n',[! coef[n] = taps[n]+0x80;
fprintf(fid,'%s \n',[' }

fprintf(fid,'%s \n',['}

end

% SINGLE BUFFERD: Non UNROLLED LOOPS..........cccccoiiiiiriiccseesrnene
if (type==3)

fprintf(fid,'%s \n',['// PIC 18F452 CODE FOR FIR FILTER GENERATION
fprintf(fid,'%s \n',['// Date: ' Date ', Time (Hr:Min:Sec)-> ' num2str(time(4)) ":' num2str(time(5)) "'
num2str(time(6))
fprintf(fid,'%s \n',['// FIR Filter Type:
fprintf(fid,\n \n");
fprintf(fid,'%s \n',[*#include <18f452.h>
fprintf(fid,'%s \n',['#use delay(clock = 40000000)
fprintf(fid,'%s \n',['#fuses H4,PUT,NOWDT
fprintf(fid,"\n \n");
fprintf(fid,'%s \n', ['const int filter_length = ' num2str(length(g)) ;
fprintf(fid,'%s', ['const int taps[filter_length] = {
for n=1:1:length(g)
fprintf(fid,'%i',g(n));
if n<length(g)
fprintf(fid,",");

end
end
fprintf(fid,'%s \n',['};
fprintf(fid,'%s \n',['// PIC 18F452 ReQISter IMAP........cv ittt s
fprintf(fid,"%s \n',["

i)2

i)E

1
D
)5

)5
)5

)5
1)5
1)5

121

fprintf(fid,"%s \n',['// ACCUMULATOR ADDRESS

fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[’

WREG = OxFE8
PRODL =0xff3
PRODH =0xff4
ADRESL = 0xfc3
ADRESH = 0xfc4
STATUS = 0xfd8

I/ Register Stores the Carry Bit
// Product Low Byte

// Product High Byte

// Low Byte for ADC Sample
// High Byte for ADC Sample
/I Status Register

fprintf(fid,'%s \n',['// DC CONTROL REGISTERS

fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,"%s \n',["
fprintf(fid,'%s \n',[’

ADCONOQO = 0xfc2
ADCONL = Oxfcl
ADRESL = 0xfc3
ADRESH = 0xfc4

/I ADC Control Register (High)
/I ADC Control Register (Low)
/I Low Byte for ADC Sample
/I High Byte for ADC Sample

fprintf(fid,"%s \n',[// DIGITAL 10 PORT ADDRESSES

fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,"%s \n' [*

fprintf(fid,'%s \n',[’

PORTA = 0xf80
PORTB = 0xf81
PORTC = 0xf82
PORTD = 0xf83
PORTE = 0xf84
LATA = 0xf89

// Port A Address
/I Port B Address
/I Port C Address
/[Port D Address
/I Port E Address
/I Set Driection for PORTA

fprintf(fid,'%s \n',['// INDIRECT ADDRESSING

fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',['#byte
fprintf(fid,'%s \n',[#byte
fprintf(fid,'%s \n',["

fprintf(fid,"%s \n',[’

FSROH = OxfeA
FSROL = 0xfe9
FSR1H = 0xfe2
FSR1L = Oxfel
FSR2H = Oxfda
FSR2L = 0xfd9
INDFO = Oxfef
INDF1 = Oxfe7
INDF2 = Oxfdf
PLUSWO = 0xfeb
PLUSW1 = 0xfe3
PLUSW?2 = 0xfdb
PREINCO = Oxfec
PREINC1 = 0xfe4
PREINC2 = Oxfdc

POSTINCO = Oxfee
POSTDECO = Oxfed
POSTINC1 = 0xfe6
POSTDEC1 = Oxfe5
POSTINC2 = Oxfde
POSTDEC?2 = 0xfdd

// Hardware File Pointer0 (High)
/I Hardware File Pointer0 (Low)
Il Hardware File Pointerl (High)
// Hardware File Pointerl (Low)
/l Hardware File Pointer2 (High)
// Hardware File Pointer2 (Low)
// Read Data Pointed by FSRO
// Read Data Pointed by FSR1
// Read Data Pointed by FSR2
/I Add Pointed data to WREG
/I Add Pointed data to WREG
/I Add Pointed data to WREG
[Pre-increment pointerQ
[/ Pre-increment pointerl
[/ Pre-increment pointer2
I/ Post-Incerement Pointer0
// Post-Decrement Pointer0
// Post-Increment Pointerl
// Post-Decrement Pointerl
I/ Post-Increment Pointer2
/I Post-Decrement Pointer2

fprintf(fid,'%s \n',[// TIMER REGISTERS
fprintf(fid,'%s \n',['#byte PR2 = Oxfcb
fprintf(fid,'%s \n',[#byte TMR2 = Oxfcc
fprintf(fid,'%s \n',[#byte T2CON = Oxfca
fprintf(fid,"\n \n");

fprintf(fid,'%s \n', ['int bufffilter_length] = {0};
fprintf(fid,'%s \n', ['int coef[filter_length] = {0};
fprintf(fid,'%s \n', ['int output_most = 0; // Most Significant Byte of Output \\
fprintf(fid,'%s \n', ['int output_middle = 0; // Middle Significant Byte of Output
fprintf(fid,'%s \n', ['int output_least = 0; // Least Significant Byte of Output \\
fprintf(fid,'%s \n', ['int Xn_high_256=0;
fprintf(fid,'%s \n', ['int Xn_mid_256=0;
fprintf(fid,'%s \n', ['int Xn_low_256=0;
fprintf(fid,'%s \n', ['int Xn_high_128=0;

/I Store ADC Values
/I Store offset Coefficients

/l Most Significant Byte of Xn Summation * 255
/I Mid Significant Byte of Xn Summation * 255
/I Least Significant Byte of Xn Summation * 255....\\
/I Most Significant Byte of Xn Summation * 128

122

fprintf(fid,'%s \n', ['int Xn_mid_128=0; // Mid Significant Byte of Xn Summation * 128......\\ i)E
fprintf(fid,'%s \n', ['int Xn_low_128=0; // Least Significant Byte of Xn Summation * 128....\\ N;
fprintf(fid,"\n \n");

fprintf(fid,'%s \n\n', [' // General Globals s
fprintf(fid,'%s \n\n', ['int b,EOB,BOB, X, tptr, out, mac_count; ;
fprintf(fid,'%s \n\n', [' // FIR Filter Prototypes ;
fprintf(fid,'%s \n\n', ['void offset_and_buffer_tap_coefficients(void); ;
fprintf(fid,"\n \n");

fprintf(fid,'%s \n', [#INT_TIMER2 i)E
fprintf(fid,'%s \n', ['void t2_isr() { i)E
fprintf(fid,'%s \n', [' T2CON = 0x06; /I Restart Timer D
fprintf(fid,'%s \n', [' ADCONO = 0x8d; // Start ADC Conversion D;
fprintf(fid,'%s \n', [' while(bit_test(tADCONO,2)); // Wait for Conversion to Complete ']);
fprintf(fid,'%s \n', [' D;
fprintf(fid,'%s \n', [' b = ADRESH; /l Read ADC Value ;
fprintf(fid,"%s \n', [']);

fprintf(fid,'%s \n', [' FSROL = tptr; i)E
fprintf(fid,'%s \n', [' /I Subtract the oldest ADC value in buffer from total N;
fprintf(fid,'%s \n', [D;
fprintf(fid,'%s \n', [' #asm D;
fprintf(fid,'%s \n', [' movf INDFO,W N;
fprintf(fid,'%s \n', [' subwf Xn_mid_256,F D;
fprintf(fid,'%s \n', [' clrf WREG H)E
fprintf(fid,'%s \n', [' subwfb Xn_high_256,F D;
fprintf(fid,'%s \n', [' i)E
fprintf(fid,'%s \n', [' /I Add the latest ADC value to the buffer N;
fprintf(fid,'%s \n', [D;
fprintf(fid,'%s \n', [' movf EOB,0 // Move to W Register H)B
fprintf(fid,'%s \n', [' cpfseq FSROL // Check if ptr is at EOB N;
fprintf(fid,'%s \n', [' bra neq N;

fprintf(fid,'%s \n', ['
fprintf(fid,"%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ["1);
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,"%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,"%s \n', [']);
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', [']);
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['

neq:

end:

movff b,INDFO // ptr has reached EOB: insert value 17);
movff BOB,FSROL // Reset pointer to begining of Buffer']);
bra end);

1

movff b,POSTDECO // Put data in Buffer and advance ptr1);
D

/I Add the latest value to ADC to total 1)5
1

movf b,0 1
addwf Xn_mid_256,F D;
clrf WREG D
addwfc Xn_high 256,F D
1

#endasm 1
1

1

I/ Prepare for MAC cycles. n;

/I Set pointer to begining of coeff buffer. n;

1

FSR1L = &coef[0]; 1
mac_count = filter_length; D:
output_least = 0; 1
output_middle = 0; 1
output_most = 0; i)}

#asm ;

// (1) Unload data from Buffer: Newest First. D;
i)k

123

fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,"%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,"%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,"%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ["1);
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,"%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,"\n \n");
fprintf(fid,"%s \n', ['
fprintf(fid,"%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['
fprintf(fid,'%s \n', ['

mac:
movf BOB,0 // Move to W Register
cpfseq FSROL I/ Check if ptr is at BOB
bra aneq

movff EOB,FSROL // Pointer is at BOB.. Warp Pointer to EOB

movff INDFO,out // Extract Data

bra aend

aneq:

movff PREINCO,out // Extract Data from Buffer
aend:

I (2) Perform MAC cycle.
movf out,W

mulwf POSTINC1
movf PRODL,W
addwf output_least
movf PRODH,W
addwfc output_middle
clrf WREG
addwfc output_most
decfsz mac_count
bra mac

// (3) Compute output.

bcf STATUS,0);
rrcf Xn_high_256,W
movwf Xn_high_128
rrcf Xn_mid_256,W
movwf Xn_mid_128
rrcf Xn_low_256,W

movwf Xn_low_128
subwf output_least,F
movf Xn_mid_128W
subwfb output_middle,F
movf Xn_high_128,W
subwfb output_most,F

#endasm
tptr = FSROL;

I/ Scale output...........

#asm

bcf STATUS,0

rrcf output_most,F
rrcf output_middle,F
rrcf output_most,F
#endasm

PORTD = output_middle;
}

void main() {

set_tris_d(0);

Xx=0;

T2CON = 0x06;

124

fprintf(fid,"%s \n', [PR2 = 76; N:

fprintf(fid, %s \n', [')
fprintf(fid,%s \n", [// Setup ADC for conversion i)k
fprintf(fid,'%s \n', [' ADCONO = 0x85; // Start ADC: ;
fprintf(fid, %s \n", [' ADCON1 = 0x02; // Right Justified Result, All Analog ;
fprintf(fid,'%s \n', [i)
fprintf(fid, %s \n', [')
fprintf(fid,'%s \n', [enable_interrupts(INT_TIMER?2); D:
fprintf(fid, %s \n', [enable_interrupts(GLOBAL); D;
forintf(fid, %s \n', [')}
fprintf(fid,%s \n", [// Setup ADC Channel 1 i)2
fprintf(fid,'%s \n', [' ADCONO = 0x89; /I Set ADC Channel 1 D;
forintf(fid, %s \n', [delay_us(10); i)k
fprintf(fid, %s \n', [i)
fprintf(fid,'%s \n', [' /I FIR Filter Initializations ;
fprintf(fid, %s \n', [offset_and_buffer_tap_coefficients(); D;
fprintf(fid, %s \n', [s
fprintf(fid,'%s \n', [' /I Buffer Stuff i)E
forintf(fid, %s \n', [EOB = &buf[0]; i)}
fprintf(fid, %s \n', [BOB = &buf[filter_length-1]; 1
forintf(fid,'%s \n', [tptr = BOB; i)}
fprintf(fid,"%s \n', [']);
fprintf(fid,'%s \n', [while(1) { 1
fprintf(fid, %s \n', [' } 1
fprintf(fid, %s \n', [)
fprintf(fid, %s \n', ['} i)
fprintf(fid,"\n \n \n");
fprintf(fid,'%s \n',['void offset_and_buffer_tap_coefficients(void) { B
fprintf(fid,'%s \n",[' intn;)E
forintf(fid,'%s \n',[' for (n=0; n<filter_length; n++) {)k
fprintf(fid,'%s \n',[' coef[n] = taps[n]+0x80;)5
forintf(fid, %s \n',[} x
fprintf(fid,' %s \n",['} "I
end
set(handles.messages, 'String', 'filter.c written to directory");
fclose(fid);
%
function varargout = pfr_Callback(h, eventdata, handles, varargin)

global han;

global gdata;

global g;

hand = 0;

% Read Sampling Rate:

sf = str2num(get(handles.sf,'string"));
sf = 2*sf;
set(handles.gccc,'enable’,'on’);

% LOW Pass FIlter.........cccoiiieie e
if (gdata.type == 1)

pbc = str2num(get(handles.pbco, 'string"));

pba = str2num(get(handles.pba, 'string"));

sbc = str2num(get(handles.sbc,'string"));

sba = str2num(get(handles.sba,'string"));

% Generate Filter:
Pass = pbc;

Stop = shc;

Fs = sf;

Rp = pba;

Rs = sha;

125

f = [0 Pass Stop Fs/2]/Fs*2;

m=[11 0 0];

devs = [(107(Rp/20)-1)/(10"(Rp/20)+1) 10~(-Rs/20)];

w = [1 1]*max(devs)./devs;

n = remezord([Pass Stop],[1 0],devs,Fs); order = max(3,n);

b = remez(order+1,f,m,w); disp(['Taps needed: ',num2str(n)]);
a=1,;

% scaled taps
for n=1:1:length(b)

g(n) = round(b(n)/max(h)*127);
end

msg = ['Number of Taps Needed: ‘,num2str(length(g))];
set(handles.messages,'string’, [msg, ', Type: ', num2str(gdata.type)]);

figure;
[H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs);

if ishandle(han)
delete (han);
end

han = freqzplot(H,W,S);

end

% High Pass Filter.........ccooiiiiiiiiiiiieece e
if (gdata.type == 2)

pbc = str2num(get(handles.pbco, 'string’));
pba = str2num(get(handles.pba, 'string"));
sbc = str2num(get(handles.sbc,'string"));
sba = str2num(get(handles.sba,'string"));

Pass = shc;
Stop = pbc;
Fs = sf;

Rp = pba;
Rs = sha;

f = [0 Stop Pass Fs/2]/Fs*2;

m=[00 1 1];

devs = [(10"(Rp/20)-1)/(10"(Rp/20)+1) 10™(-Rs/20)];

w = [1 1]*max(devs)./devs;

n = remezord([Pass Stop],[1 0],devs,Fs); order = max(3,n);

if isodd(order)
order = order+1;
end

remez(order,f,m,w); disp(['Taps needed: ‘,num2str(n)]);

b
a=1,;

% scale taps
for n=1:1:length(b)
g(n) = round(b(n)/max(b)*127);

126

end

msg = ['Number of Taps Needed: ‘,num2str(length(g))];
set(handles.messages,'string’, [msg, ', Type: ', num2str(gdata.type)]);

figure;
figure;
[H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs);

if ishandle(han)
delete (han);
end

han = freqzplot(H,W,S);

end

% band pass filter.........ccocoiriieiic
if (gdata.type == 3)
num_of_taps = str2num(get(handles.tapn,'string"));
a = str2num(get(handles.bpa,'string’));
b = str2num(get(handles.bpb,'string"));
¢ = str2num(get(handles.bpc,'string"));
d = str2num(get(handles.bpd,'string"));
pba = str2num(get(handles.pba, 'string"));
sba = str2num(get(handles.sba, 'string"));

% Code to Generate Filter
Rp = pba;
Rs = sha;
Fs = sf;

f=[0abcdFs/2]/Fs*2;

m=[001100];

devs = [(10~(Rp/20)-1)/(10~(Rp/20)+1) 10~(-Rs/20) (10~(Rp/20)-1)/(10"(Rp/20)+1)];
w = [Rs Rp Rs]*max(devs)./devs;

n = num_of_taps;
order = n;

if isodd(order)
order = order+1;
end

= remez(order,f,m,w);
= 1;

% scaled taps
g = round(b/max(b)*127);

for n=1:1:order
g(n) = round(b(n)/max(b)*127);
end

msg = ['Number of Taps Needed: ',num2str(length(g))];
set(handles.messages,'string’, [msg, ', Type: ', num2str(gdata.type)]);

figure;
figure;

127

[H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs);

if ishandle(han)

delete (han);
end
han = freqzplot(H,W,S);
end

% band Stop FIlter........cccoiiieee e

if (gdata.type == 4)
num_of_taps = str2num(get(handles.tapn,'string"));

a = str2num(get(handles.bpa,'string"));
b = str2num(get(handles.bpb,'string"));
¢ = str2num(get(handles.bpc,'string’));
d = str2num(get(handles.bpd,'string’));

pba = str2num(get(handles.pba, 'string"));

sba = str2num(get(handles.sba, 'string"));

% Code to Generate Filter

if isodd(num_of_taps)
num_of_taps = num_of_taps+2;
end

f=[0abcdFs/2]/Fs*2;

m=[110011];

devs = [(10"(Rp/20)-1)/(10"(Rp/20)+1) 10°(-Rs/20) (10°(Rp/20)-1)/(10"(Rp/20)+1)];
w = [Rs Rp Rs]*max(devs)./devs;

n = num_of _taps;
order = num_of_taps;

if isodd(order)
order = order+1;
end

= remez(order,f,m,w);
=]_’

figure;
figure;
[H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs);

% scale taps
g = round(b/max(b)*127);

msg = ['Number of Taps Needed: ‘,num2str(length(g))];
set(handles.messages,'string’, [msg, ', Type: ', num2str(gdata.type)]);

if ishandle(han)
delete (han);
end

han = freqzplot(H,W,S);
end

128

% Custom Filter
if (gdata.type == 6)

num_of_taps = str2num(get(handles.customtaps,'string'));
edges = str2num(get(handles.bedges, 'string"));
profile = str2num(get(handles.profile,'string’));

attn = str2num(get(handles.atten,'string"));

Fs = sf;

f = edges;

m = profile;

f = fIFs*2;

w = attn;

n = num_of_taps;

order = num_of_taps;

if isodd(order)
order = order+1;
end

remez(order+1,f,m,w);

b
a=1;

figure;
figure;
[H,W,S] = freqz(b,a,max(2048,nextpow2(5*max(length(b),length(a)))),Fs);

g = round(b/max(b)*127);

msg = ['Number of Taps Needed: ‘,num2str(length(g))];
set(handles.messages,'string’, [msg, ', Type: ', num2str(gdata.type)]);

if ishandle(han)
delete (han);
end

han = freqzplot(H,W,S);

end

set(handles.ra,'visible','on");
set(handles.rb,'visible','on");
set(handles.rc,'visible','on");

tra = ['Fastest Execution ', num2str(8*length(g)+45), ' cycles, ', num2str(length(g)*2+8), ' Bytes RAM used'];
trb = ['Small Program ', num2str(10*length(g)+45), ' cycles, ', num2str(length(g)*2+8), ' Bytes RAM used '];
trc = ['Best Memory ', num2str(22*length(g)+48), ' cycles, ',num2str(length(g)+8), ' Bytes RAM Used ';

set(handles.ra,'string',tra);
set(handles.rb,'string’,trb);
set(handles.rc,'string',trc);

function y = isodd(x)

g = x - floor(x);
if (g>0)
y=1
else
y=0;

129

end
function custom_off()
global handles;

set(handles.cover,'visible','off");
set(handles.tprofile,'visible','off");
set(handles.profile,'visible','off");
set(handles.bedges, 'visible','off");
set(handles.text12,'visible','off");
set(handles.customtaps,'visible','off");
set(handles.attnt,'visible','off");
set(handles.atten,'visible','off");

%
function varargout = ra_Callback(h, eventdata, handles, varargin)
global imptype;

set(handles.rb, ‘value', 0);

set(handles.rc, 'value', 0);

imptype = 1;

%
function varargout = rb_Callback(h, eventdata, handles, varargin)
global imptype;

set(handles.ra, 'value', 0);

set(handles.rc, 'value', 0);

imptype = 2;

%
function varargout = rc_Callback(h, eventdata, handles, varargin)
global imptype;

set(handles.ra, 'value', 0);

set(handles.rb, ‘value', 0);

imptype = 3;

function varargout = sba_Callback(h, eventdata,handles,varargin)

130

APPENDIX C
CODE FOR 4" ORDER Floating-Point LMS Filter

131

#include <18f452.h>

#use delay(clock = 40000000)
#fuses H4,PUT,NOWDT
#include <Imslib.h>
#include <lmslib.c>
#include <clcd.c>

[GO LS i \\

const int filter_length = 4;

int buf[filter_length] = {0}; // Store ADC Values
int signal,noise, EOB,BOB,tptr,buf_count;

int out,i,outs;

/] LMS Variable s oottt AN\
split_float fout, *fptr;
split wO,wl,w2,w3;
split n0,n1,n2,n3;
split esO,esl,es2,es3;
split upO,upl,up2,up3;
split s, eta, err, error, * ptr;

#INT_TIMER2
void t2_isr() {

T2CON = 0x06; // Restart Timer

// Sample channel 0 for noise

ADCONO = 0x81; // Set ADC Channel 0

esO.real = 0; esO.frach 0; esO.fracl = 0; esO.sign = 0

esl.real = 0; esl.frach 0; esl.fracl = 0; esl.sign = 0

es2.real = 0; es2.frach 0; es2.fracl = 0; es2.sign = 0;

0

es3.real = 0; es3.frach = 0; es3.fracl = 0; es3.sign =
up0.real = 0; upO.frach = 0; up0.fracl = 0; up0.sign = 0
upl.real = 0; upl.frach = 0; upl.fracl = 0; upl.sign = 0O;
0
0

up2.real = 0; up2.frach = 0; up2.fracl = 0; up2.sign =
up3.real = 0; up3.frach = 0; up3.fracl = 0; up3.sign =
err.real = 0; err.frach = 0; err.fracl = 0; err.sign = 0;

delay_us(6);

ADCONO = 0x85; // Start ADC Conversion
while(bit_test(ADCONO,2));

noise = ADRESH; // Read ADC Value
ADCONO = 0x89; // Set ADC Channel 1

// Buffer Noise Values and convert to floats
buf_count = filter_length;
FSR1L = tptr;
FSR2L = &n0.sign;

Hasm
// Add the latest ADC value to the buffer
movf EOB,0 // Move to W Register
cpfseq FSRIL // Check if ptr is at EOB
bra neq
movff noise,INDF1 //ptt has reached EOB: insert value
movff BOB,FSRIL //Reset pointer to begining of Buffer
bra end
neq:
movff noise,POSTDEC1 //Put data in Buffer and advance ptr
end:
// Unload ADC Value from Buffer and poppulate n0..aN
unl:
movf BOB,0 // Move to W Register
cpfseq FSRIL // Check if ptr is at BOB
bra aneq

132

aend:

movff EOB,FSR1L // Pointer is at BOB.. Warp Pointer to EOB

movff INDFI1, out // Extract Data
bra aend
aneq:

movff PREINCI1, out // Extract Data from Buffer

// Store popped value into n0

movlw 0x80

cpfslt out // Skip next inst if (f) < (W)
bra n0Opos

movlw 0x7f

bsf STATUS,0

subfwb out,W // W-f-B -> W

clef INDF2

incf POSTINC2

movff WREG,POSTINC2
movff WREG,POSTINC2

clrf POSTINC2
bra dne
n0Opos:
movlw 0x7f
subwf out,W /] f-W->W
clrf POSTINC2
movff WREG,POSTINC2
movff WREG,POSTINC2
clrf POSTINC2
dne:
decfsz buf_count
bra unl
Hendasm

tptr = FSRI1L;
// Sample Channel 1 for Signal

ADCONO = 0x8d; // Start ADC Conversion
while(bit_test(ADCONO,2));
signal = ADRESH; // Read ADC Value

if (signal>=127) {
signal = signal-127;
s.frach = signal;
s.fracl = signal;
s.real = 0;
s

.sign = 03

}

else {
signal = 128-signal;
s.frach = signal;
s.fracl = signal;
s.real = 0;
s.sign = 1;

}

1

// Calculate estimate using...... //" esN = wN * nN;

FSROL = &w0.sign; FSR1L = &n0.sign; FSR2L = &es0.sign; mul();
FSROL = &wl.sign; FSR1L = &nl.sign; FSR2L = &esl.sign; mul();
FSROL = &w2.sign; FSR1L = &n2.sign; FSR2L = &es2.sign; mul();

FSROL = &w3.sign; FSR1L = &n3.sign; FSR2L = &es3.sign; mul();

133

// Change Sign of Estimates...... //'esO0 = -es0;'

esO.sign ~= 1;
esl.sign *= 1;
es2.sign = 1;
es3.sign = 1;
// Calculate Error............... //" error = s + es0..esN;'

FSROL = &s.sign; FSRI1L = &es0.sign; FSR2L = &error.sign; add();
FSROL = &error.sign; FSR1L = &esl.sign; FSR2L = &error.sign; add();

FSROL = &error.sign; FSR1IL = &es2.sign; FSR2L = &error.sign; add();
FSROL = &error.sign; FSR1IL = &es3.sign; FSR2L = &error.sign; add();
// Modulate Error using learning constant....... //' err = error¥eta;'

FSROL = &error.sign; FSR1L = &eta.sign; FSR2L = &err.sign; mul();

// Calculate Weight Updates....... //"up0 = err * n0..aNj;'
FSROL = &err.sign; FSR1L = &n0.sign; FSR2L = &up0.sign; mul();
FSROL = &err.sign; FSR1L = &nl.sign; FSR2L = &upl.sign; mul();
FSROL = &err.sign; FSR1L = &n2.sign; FSR2L = &up2.sign; mul();
FSROL = &err.sign; FSR1L = &n3.sign; FSR2L = &up3.sign; mul();

// Apply updates to weights....... //'wN = wN + upN;'
FSROL = &w0.sign; FSR1L = &up0.sign; FSR2L

&w0.sign; add();

FSROL = &wl.sign; FSR1L = &upl.sign; FSR2L = &wl.sign; add();
FSROL = &w2.sign; FSR1L = &up2.sign; FSR2L = &w2.sign; add();
FSROL = &w3.sign; FSR1L = &up3.sign; FSR2L = &w3.sign; add();

// Change Sign of Estimates...... //'es0 = -es0;'
if(error.frach > 80) error.frach = 80;
if(error.sign)
outs = 127 - error.frach;
else

outs = error.frach + 127;

PORTD = outs;

void main() {
// Setup Ports and Peripherals

set_tris_d(0);
led_init();

// Set sampling rate of 8000 Hz

T2CON = 0x06;
PR2 = 76;

// Setup ADC for conversion

ADCONO 0x85; // Start ADC:
ADCON1 = 0x02; // Right Justified Result, All Analog

// Enable Timer interrupts for sampling.

enable_interrupts(INT_TIMER2);
enable_interrupts(GLOBAL);

134

// Initialize LMS variables

ptr = &wO0; fix8x16(0.0,ptr);
ptr = &wl; fix8x16(0.0,ptr);
ptr = &w2; fix8x16(0.0,ptr);
ptr = &w3; fix8x16(0.0,ptr);

ptr = &es0; fix8x16(0.0,ptr);
ptr = &esl; fix8x16(0.0,ptr);
ptr = &es2; fix8x16(0.0,ptr);
ptr = &es3; fix8x16(0.0,ptr);

ptr = &up0; fix8x16(0.0,ptr)
ptr = &upl; fix8x16(0.0,ptr);
ptr = &up2; fix8x16(0.0,ptr);
ptr = &up3; fix8x16(0.0,ptr)

>

>

ptr = &err; fix8x16(0.0,ptr);
ptr = η fix8x16(0.1,ptr);
ptr = &error; fix8x16(0.0,ptr);

// Initialize buffer pointers for LMS
EOB = &buf[0];
BOB = &buf|[filter_length-1];
tptr = BOB;

while(1) {

FileName: Imslib.h

// ACCUMULATOR ADDRESS

#byte WREG = 0xFES8 // Register Stores the Carry Bit
#byte PRODL =0xff3 // Product Low Byte

#byte PRODH =0xff4 // Product High Byte

#byte ADRESL = 0xfc3 // Low Byte for ADC Sample
#byte ADRESH = Oxfc4 // High Byte for ADC Sample
#byte STATUS = 0xfd8 // Status Register

// ADC CONTROL REGISTERS ..ottt
#byte ADCONO = 0Oxfc2 // ADC Control Register (High)
#byte ADCONI1 = Oxfcl // ADC Control Register (Low)
#byte ADRESL = 0xfc3 // Low Byte for ADC Sample
#byte ADRESH = Oxfc4 // High Byte for ADC Sample
#byte INTCON = 0xff2 // Interrupt control register
#byte INTCON2 = 0xffl // Interrupt control register
#byte INTCON3 = 0xff0 // Interrupt control register

// DIGITAL 10 PORT ADDRESSES
#byte PORTA = 0xf80 // Port A Address
#byte PORTB = 0xf81 // Port B Address
#byte PORTC = 0xf82 // Port C Address

135

#byte
#byte
#byte
#byte
#byte
#byte
#byte

// INDIRECT ADDRESSING

#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte
#byte

// INTERRUPT REGISTERS

#byte
#byte
#byte

// STACK ADDRESSES

#byte
#byte
#byte
#byte

// EEPROM ADDRESSES

#byte
#byte
#byte
#byte

// TIMER REGISTERS

PORTD = 0xf83
PORTE = 0xf84
LATA = 0xf89
LATB = 0xf8a
LATC = 0xf8b
LATD = 0xf8c
LATE = 0xf8d

FSROH = OxfeA
FSROL = 0xfe9
FSR1H = Oxfe2

// Port D Address

// Port E Address

// Set Driection for PORTA
// Set Driection for PORTB

// Set Driection for PORTC

// Set Driection for PORTD
// Set Driection for PORTE

// Hardware File Pointer0 (High)
// Hardware File Pointer0 (Low)
// Hardware File Pointerl (High)

FSR1L = Oxfel
FSR2H = Oxfda
FSR2L = 0xfd9
INDFO = Oxfef

// Hardware File Pointer]l (Low)
// Hardware File Pointer2 (High)
// Hardware File Pointer2 (Low)
// Read Data Pointed by FSRO
INDF1 = 0xfe7 // Read Data Pointed by FSR1
INDF2 = 0xfdf // Read Data Pointed by FSR2
PLUSWO = Oxfeb // Add Pointed data to WREG
PLUSW1 = 0xfe3 // Add Pointed data to WREG
PLUSW2 = 0xfdb // Add Pointed data to WREG
PREINCO = Oxfec // Pre-increment pointer0
PREINC1 = Oxfe4 // Pre-increment pointerl
PREINC2 = 0Oxfdc // Pre-increment pointer2
POSTINCO = Oxfee // Post-Incerement Pointer(
POSTDECO = Oxfed // Post-Decrement Pointer0
POSTINC1 = 0xfe6 // Post-Increment Pointerl
POSTDEC1 = 0xfe5 // Post-Decrement Pointerl
POSTINC2 = Oxfde // Post-Increment Pointer2
POSTDEC2 = 0xfdd // Post-Decrement Pointer2

INTCON = 0xff2
INTCON2 = 0xff1l
INTCON3

// Interrupt Register0
// Interrupt Register2
0xff0 // Interrupt Register3

STKPTR = Oxffc
TOSU = 0xfff
TOSH = 0Oxffe
TOSL = 0xffd

// Stack Pointer
// Top of Stack
// Top of Stack High
// Top of Stack Low

EEADR = 0xfA9
EEDATA = 0xfa8
EECON2 = 0xfa7
EECON1 = 0xfa6

// EEPROM Register
// EEPROM Register

// EEPROM Register
// EEPROM Register

#byte PR2 = Oxfcb
#byte TMR2 = Oxfcc
#byte T2CON = 0Oxfca

FileName: Ilmslib.c

//
//
//
//
//
//
//

typedef struct gtype {

int sign;
int fracl;
int frach;
int real;
b osplit;

136

typedef union ftype { float op;
struct { int exp;
int mana;
int manb;
int manc; } s; } split_float;

void int2float(int adc) {

Hasm
movlw 0x7f
subwf adc,W
btfsc WREG,7
bra ng
cltf POSTINCO
movwf POSTINCO
movwf INDFO
bra over

ng:
negf WREG
clrf INDFO
incf POSTINCO
movwf POSTINCO
movwf INDFO
over:
Hendasm

void fixIeee(split_float * fptr, split * ptr) {
int sign,real,frach,fracl,expo;

sign = ptr->sign;
real = ptr->real;
frach = ptr->frach;
fracl = ptr->fracl;

expo = 0x80;

Hasm

bsf fracl,0
adj:

btfsc real,7
bra done
bef STATUS,0
rlcf fracl
rlcf frach
rlcf real
decf expo
bra adj

done:

#endasm

fptr->s.mana = real;
fptr->s.manb = frach;
fptr->s.manc = fracl;
fptr->s.exp = expo;

if (sign) {

}

fptr->s.mana = fptr->s.mana | 0x80;

137

}

else

fptr->s.mana = fptr->s.mana & 0x7f;

void fix8x16(float num, split * ptr) {

split_float a;
int shift, left;

int32 out;

a.0p = num;

ptr->real = 0;
ptr->sign = 0;
ptr->frach = 0;
ptr->fracl = 0;

if (a.s.exp >= 0x7f) {

else {

}

shift = 0x7f - a.s.exp;

left = 0;

shift = a.s.exp - 0x7f;
left = 1;

}

// Get Sign and Restore high Bit.

ptr->sign = bit_test(a.s.mana,7);
a.s.mana = a.s.mana | 0x80;

if (left) {

}

ptr->real = a.s.mana >> (7 - shift);

#as

m

movlw 0x02
addwf shift,F

adj:
decf shift
bef STATUS,0
bz fin
rlcf a.s.manc
rlcf a.s.manb
rlcf a.s.mana
becf STATUS,0
bra adj

fin:

#endasm

ptr->frach = a.s.mana;
ptr->fracl = a.s.manb;

else {

Has

m

adja:
decf
bef
bz

shift
STATUS,0
over

138

rrcf a.s.mana
rrcf a.s.manb
rrcf a.s.manc

bef STATUS,0
bra adja
over:

#endasm

ptr->frach = a.s.mana;
ptr->fracl = a.s.manb;

}

{

movf
xorwf
bnz

movf
andwf
movwf
movf
addwf

movwf

movf
addwfc
movwf

movf
addwfc
movwf

bra

movlw
addwf
addwf

movf
cpfseq
bra
bra

q:
cpfsgt
bra

}
void add(void)
#asm
ss:
ds:
rne
bh:

movlw
subwf
subwf

movff
incf

INDFO0,W
INDF1,W
ds

POSTINCO,W
POSTINC1,W
POSTINC2
POSTINCO,W
POSTINC1,W
POSTINC?2

POSTINCO,W
POSTINC1,W
POSTINC2

INDF0,W
INDF1,W
INDF2
done

0x3
FSROL,F
FSR1L,F

INDFO,W
INDF1
rneq
requ

INDF1
ah

0x3
FSROL
FSR1L

POSTINC1,POSTINC2
FSROL

139

movf
subwf
movwf

movf
subwfb

movwf

movf
subwfb
movwf

bra

ah:
movlw
subwf
subwf

movff
incf

movf
subwf
movwf

movf
subwfb

movwf

movf
subwfb
movwf
bra

requ:
decf
decf
movf
cpfseq
bra
bra

thneq:

cpfsgt
bra

bfh:
movlw
subwf
subwf

movff
incf

movf
subwf
movwf

movf
subwfb

movwf

clef

POSTINCO,W
POSTINC1,W
POSTINC2

POSTINCO,W
POSTINC1,W
POSTINC2

INDFO,W
INDF1,W
INDF2
done

0x3
FSROL
FSR1L

POSTINCO,POSTINC2

FSR1L

POSTINC1,W
POSTINCO,W
POSTINC2

POSTINC1,W
POSTINCO,W
POSTINC2

INDF1,W
INDFO,W
INDF2
done

FSROL
FSR1L
INDFO,W
INDF1
thneq
fhequ

INDF1
afh

0x02
FSROL
FSR1L

POSTINC1,POSTINC2

FSROL

POSTINCO,W
POSTINC1,W

POSTINC2

POSTINCO,W

POSTINC1,W
POSTINC2

INDF2

140

bra

afh:
movlw
subwf
subwf

movff
incf

movf
subwf
movwf

movf
subwfb

movwf

clef
bra

thequ:
decf
decf
movf
cpfseq
bra
bra

flneq:

done

0x02
FSROL
FSR1L

POSTINCO,POSTINC2
FSR1L

POSTINC1,W
POSTINCO,W
POSTINC2

POSTINC1,W
POSTINCO,W
POSTINC2

INDF2

done

FSROL
FSR1L
INDFO,W
INDF1
flneq
flequ

cpfsgt INDF1

bra

bfl:
decf
decf

movff
incf

movf
subwf
movwf

clef
clrf
bra

afl:
decf
decf

movff
incf

movf
subwf
movwf

bra

flequ:

afl

FSROL
FSR1L

POSTINC1,POSTINC2

FSROL

POSTINCO,W
POSTINC1,W
POSTINC2

POSTINC2
POSTINC2
done

FSROL
FSR1L

POSTINCO,POSTINC2
FSR1L

POSTINC1,W
POSTINCO,W
POSTINC2
done

clrf POSTINC2
cltef POSTINC2
cltef POSTINC2

141

cltf POSTINC2
done:
#endasm

void mul(void) {

Hasm
movf POSTINCO,W
xorwf POSTINC1,W
movwf POSTINC2

movf PREINCO,W

mulwf PREINCI1

movff PRODL, POSTINC2
movff PRODH, INDF2

movf PREINCO,W
mulwf POSTINCI1
movff PRODL,WREG
addwf POSTINC2F
movff PRODH,WREG
addwfc POSTDEC2,F

decf FSROL,F

movf POSTINCO,W

mulwf INDF1

movff PRODL,WREG

addwf POSTINC2,F

movff PRODH,WREG

addwfc INDF2,F

movff INDFO,WREG

mulwf INDF1

movf PRODL,W

addwfc INDF2,F
#endasm

142

APPENDIX D
C-Code for the Clock Signal to the Switched Cap filter

143

// The following code generates a 50000Hz Clock signal of 55555 Hz
// Allowing the Switched capasitor MAX 297 to have a cutoff of

//1KHz.

#include <12£629.h>
#use delay(clock = 10000000)

#fuses HS,PUT,NOWDT
#define GP0O PIN_AO0
#define GP1 PIN_A1
#Hdefine GP2 PIN_A2
#define GP3 PIN_A3
#define GP4 PIN_A4
#define GP5 PIN_AS

void main() {

while(1) {
output_high(PIN_A2);
delay_us(9);
output_low(PIN_A2);
delay_us(9);

144

APPENDIX E
C-Code for the PORTC HD44780 LCD DEVICE

145

struct led_pin_map { // This structure is overlayed

boolean rs; // on to an I/O port to gain
boolean unusedl; // access to the LCD pins.
boolean unused?2; //
boolean enable; //
int data : 4; //
} led;
#byte led = 0xf82 // This puts the entire structure

// on to port C (at address 7)

byte CONST LCD_INIT_STRING([4] = {0x28, Oxc, 1, 6};
byte CONST LCD_LINE_ADDRESSES[4] = {0x00, 0x40, 0x14, 0x54};

// Sends a single nibble to the LCD.

void led_send_nibble(byte n) {
lIcd.data = n;
delay_cycles(1);
lcd.enable = 1;
delay_us(2);
lcd.enable = 0;

}

// Sends a whole byte to the LCD by making use of the Send nibble function
// The first parameter ‘address’ decided whether the byte is an instruction or data

void led_send_byte(byte address, byte n) {
delay_ms(3);
led.rs = 0;
delay_us(1);
lcd.rs = address;
delay_cycles(1);
lcd.enable = 0;
lcd_send_nibble(n >> 4);
led_send_nibble(n & 0xf);

// Initializes the LCD display..

void led_init() {

byte i;
set_tris_c(0);
led.rs = 0;

lcd.enable = 0;

delay_ms(15);

for(i=1;i<=3;++i) {
lcd_send_nibble(3);
delay_ms(5);

led_send_nibble(2);
for(i=0;i<=3;++1i)
led_send_byte(0,LCD_INIT_STRING]i]);

146

// Sets the cursor on the screen where the character is to be printed.

void led_gotoxy(byte x, byte y) {
byte address;
address=lcd_line_addresses|[y]+x;
lcd_send_byte(0,0x80 |address);

H

void led_putc(byte ¢) {
switch (¢) {
case '\f' :lcd_send_byte(0,1);
delay_ms(2);

break;
case '\b' :lcd_send_byte(0,0x10); break;
default : led_send_byte(1,c); break;

}
}

147

VITA

I was born in Lucknow, India and I spent most of my childhood in
New Delhi. I received my undergraduate in Electrical Engineering from
West Virginia University and continued on to finish my masters degree
from here as well. During my graduate years, I have held both GTA and
GRA positions and spend my time doing either research or teaching. My
research interests, inherited from my teacher Dr. Klinkhachorn, are
Neural Networks, Fuzzy Logic, Digital Filter design and implementation,

and embedded control.

148

	PIC 18F452 implementation of digital filters
	Recommended Citation

	Microsoft Word - may7_1135.doc

		2004-05-07T17:43:16-0400
	John H. Hagen
	I am approving this document

