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ABSTRACT

From Graph Coloring to Receptor Clustering

Ye Chen

This dissertation focuses on two topics, hued coloring in graph theory and receptor clustering

analysis in computational biology.

1. Hued colorings for planar graphs, graphs of higher genus and K4-minor free

graphs

For integers k, r > 0, a (k, r)-coloring of a graph G is a proper coloring of the vertices of G with

k colors such that every vertex v of degree d(v) is adjacent to vertices with at least min{d(v), r}
different colors. The r-hued chromatic number, denoted by χr(G), is the smallest integer k for

which a graph G has a (k, r)-coloring. A list assignment L of G is a function that assigns to every

vertex v of G a set L(v) of positive integers. For a given list assignment L of G, an (L, r)-coloring

of G is a proper coloring c of the vertices such that every vertex v of degree d(v) is adjacent to

vertices with at least min{d(v), r} different colors and c(v) ∈ L(v). The r-hued choice number of

G, χL,r(G), is the least integer k such that every list assignment L with |L(v)| = k, ∀ v ∈ V (G),

permits an (L, r)-coloring. It is known that for any graph G, χr(G) ≤ χL,r(G). Using Euler

distributions, we proved the following results, where (ii) and (iii) are best possible.

(i) If G is planar, then χL,2(G) ≤ 6. Moreover, χL,2(G) ≤ 5 when ∆(G) ≤ 4.

(ii) If G is planar, then χ2(G) ≤ 5.

(iii) If G is a graph with genus g(G) ≥ 1, then χL,2(G) ≤ 1
2(7 +

√
1 + 48g(G)).

Let K(r) = r + 3 if 2 ≤ r ≤ 3, and K(r) = b3r/2c + 1 if r ≥ 4. We proved that if G is a

K4-minor free graph, then

(i) χr(G) ≤ K(r), and the bound can be attained;

(ii) χL,r(G) ≤ K(r) + 1. This extends a previous result in [Discrete Math. 269 (2003)

303-309].

2. Quantitative description and impact of VEGF receptor clustering

Cell membrane-bound receptors control signal initiation in many important cellular signaling

pathways. Microscopic imaging and modern labeling techniques reveal that certain receptor

types tend to co-localize in clusters, ranging from a few to hundreds of members. Here, we

further develop a method of defining receptor clusters in the membrane based on their mutual

distance, and apply it to a set of transmission microscopy (TEM) images of vascular endothelial

growth factor (VEGF) receptors. We clarify the difference between the observed distributions

and random placement. Moreover, we outline a model of clustering based on the hypothesis of

pre-existing domains that have a high affinity for receptors. The observed results are consistent



with the combination of two distributions, one corresponding to the placement of clusters, and

the other to that of random placement of individual receptors within the clusters. Further,

we use the preexisting domain model to calculate the probability distribution of cluster sizes.

By comparing to the experimental result, we estimate the likely area and attractiveness of the

clustering domains.

Furthermore, as VEGF signaling is involved in the process of blood vessel development and main-

tenance, it is of our interest to investigate the impact of VEGF receptors (VEGFR) clustering.

VEGF signaling is initiated by binding of the bivalent VEGF ligand to the membrane-bound

receptors (VEGFR), which in turn stimulates receptor dimerization. To address these questions,

we have formulated the simplest possible model. We have postulated the existence of a single

high affinity region in the cell membrane, which acts as a transient trap for receptors. We have

defined an ODE model by introducing high- and low-density receptor variables and introduce

the corresponding reactions from a realistic model of VEGF signal initiation. Finally, we use

the model to investigate the relation between the degree of VEGFR concentration, ligand avail-

ability, and signaling. In conclusion, our simulation results provide a deeper understanding of

the role of receptor clustering in cell signaling.



Acknowledgements

First and foremost, I am most indebted to my co-advisors, Dr. Hong-Jian Lai and Dr. Adam

Halasz, for their continued encouragement and support over these last few years. It is a pleasure

to work under their supervision. Without them, this dissertation could not have come about.

I would like to take this opportunity to thank Dr. Suohai Fan at Jinan University (Guangzhou)

who brought me to the research field of combinatorics and graph theory.

I would also like to thank my other committee members: Dr. John Goldwasser, Dr. Guodong

Guo, Dr. Jerzy Wojciechowski, and Dr. Cun-Quan Zhang, for their help during my studies.

And finally, I would like to thank the Department of Mathematics and Eberly College of Arts

and Sciences at West Virginia University for providing me with an excellent study environment

and financial support during my study as a graduate student.

iii



DEDICATION

To

my mother Caidi Li , my father Zanqiang Chen,

and

my husband Xiangming Wu , my sweet son Terrance Wu

iv



Contents

1 Introduction 1

1.1 Notations and terminologies on r-hued coloring . . . . . . . . . . . . . . . . . . . 1

1.2 Backgrounds of receptor clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 2-hued Coloring for Planar Graphs and Graphs of Higher Genus 6

2.1 Priliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 2-hued coloring for planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 2-hued coloring for graphs of higher genus . . . . . . . . . . . . . . . . . . . . . . 11

3 r-hued Coloring of K4-minor Free Graphs 16

3.1 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 The quantitative description of VEGF receptor localization based on hierar-

chical clustering 24

4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Quantitative description and impact of VEGF receptor localization 35

5.1 From microscopic details to global behavior . . . . . . . . . . . . . . . . . . . . . 35

5.2 ODE model and steady states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



Chapter 1

Introduction

1.1 Notations and terminologies on r-hued coloring

Graphs in this paper are simple and finite. For undefined terminologies and notations see [7]

and [47]. Thus for a graph G, ∆(G), δ(G) and χ(G) denote the maximum degree, minimum

degree and chromatic number of G respectively. For v ∈ V (G), let NG(v) denote the set of

vertices adjacent to v in G, and dG(v) = |NG(v)|. Vertices in NG(v) are neighbor of v. For an

integer g ≥ 0, let Sg be the orientable surface obtained from the sphere by adding g handles,

and let Ng be the non-orientable surface obtained from the sphere by adding g Möbius strips

(cross-caps). Given an embedding of G on a closed surface, the genus g(G) of a graph G is the

minimum number g such that G can be embedded on the surface Sg or Ng.

Let G be a graph, k > 0 be an integer, k̄ ={1, 2, · · · , k}, and c : V (G) 7→ k̄ be a map. For

S ⊆ V (G), define c(S) = {c(u)|u ∈ S}. For integers k > 0 and r > 0, a (k,r)-coloring of a graph

G is a map c : V (G) 7→ k̄ satisfying both the following.

(C1) c(u) 6= c(v), for every edge uv ∈ E(G);

(C2) |c(NG(v))| ≥ min{dG(v), r}, for every v ∈ V (G).

For a fixed integer r > 0, the r-hued chromatic number of G, denoted by χr(G), is the smallest

k such that G has a (k, r)-coloring. The concept was first introduced in [30] and [26], where

χ2(G) is called the 2-hued chromatic number of G. Later in [25], a referee suggested the name

of conditional chromatic number of G. Recently, we received several comments on the name

of conditional coloring, suggesting that does not reveal the nature of the coloring. Therefore,

we decided to use the name r-hued chromatic number to reflect the use of many colors near a

vertex.

By the definition of χr(G), it follows immediately that χ(G) = χ1(G), and so r-hued coloring

is a generalization of the classical graph coloring. Let G2 be the graph defined as the following,

V (G2) = V (G), E(G2) = {uv|dG(u, v) ≤ 2}, then χ∆(G)(G) = χ(G2). For any integers i > j >
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0, any (k, i)-coloring of G is also a (k, j)-coloring of G, and so

χ(G) ≤ χ2(G) ≤ · · · ≤ χr−1(G) ≤ χr(G) ≤ · · · ≤ χ∆(G)(G) = χ∆(G)+1(G) = · · · (1.1)

.

A list assignment L of G is a function that assigns to every vertex v of G a set L(v) of positive

integers. An L-coloring is a proper coloring c such that c(v) ∈ L(v), for every v ∈ V (G). Such

coloring is also called list coloring. G is said to be k-choosable if, for every list assignment L

with |L(v)| = k, for all v ∈ V (G), there exists an L-coloring of G. The list chromatic number

ch(G) of G, is the least integer k such that G is k-choosable.

There is also a similar generalization for the list coloring. For a given list assignment L of

G and a given positive integer r, an r-hued L-coloring c of G is an L-coloring of G such that

|c(NG(v))| ≥ min{dG(v), r}, for every vertex v ∈ V (G). We call such coloring an (L, r)-coloring.

The r-hued list chromatic number of G, chr(G), is the least integer k such that G admits an

(L, r)-coloring, for any list assignment L with |L(v)| = k, for every vertex v ∈ V (G). Similarly,

ch(G) = ch1(G) and ch∆(G)(G) = ch(G2). As for any integers i > j > 0, any (L, i)-coloring of

G is also an (L, j)-coloring of G, it follows

ch(G) ≤ χL, 2(G) ≤ · · · ≤ chr−1(G) ≤ chr(G) ≤ · · · ≤ ch∆(G)(G) = ch∆(G)+1(G) = · · · (1.2)

For any positive integers k and r, let L(v) = k̄, for every vertex v of a graph G. Then every

(k, r)-coloring of G is also an (L, r)-coloring of G, and so

χr(G) ≤ chr(G). (1.3)

Some recent results are published for the case r = 2. In [26], an analogue of Brooks Theorem

for χ2 is proved. Akbari et al. [1] proved that χL, 2(G) ≤ ∆(G) + 1 if G has no component

isomorphic to C5 and if ∆(G) ≥ 3. Later in [12], Esperet disproved a conjecture χL, 2(G) =

max{ch(G), χ2(G)} made in [1]. In [2], Alishahi obtained that χ2(G) ≤ χ(G) + 14.06 ln k + 1,

for any k-regular graph.

The research for general r is also of interest. In [25], it is shown that for r ≥ 2, χr(G) ≤
∆(G) + r2 − r + 1 if ∆(G) ≤ r. A Moore graph is a regular graph with diameter d and girth

2d+ 1. Ding et al. [10] proved that χr(G) ≤ (∆(G))2 + 1, where equality holds if and only if G

is a Moore graph. This is also improved in [28] as χr(G) ≤ r(∆(G)) + 1.

The r-hued coloring for graphs G embedded on surfaces is of particular interest. The famous

Four Color Theorem [4, 5, 39] and the Heawood formula [20] provide complete answers to the

case when r = 1. Heawood [20] proved that if G is a connected graph with a 2-cell embedding

on Sg(G), then χ(G) ≤ 1
2(7 +

√
1 + 48g(G)). The main results of 2-hued coloring for planar

Graphs and graphs of higher genus are given below.
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Theorem 1.1.1. If G is a planar graph, then the following hold.

(i) If ∆(G) ≤ 4, then χL,2(G) ≤ 5;

(ii) χL,2(G) ≤ 6;

(iii) χ2(G) ≤ 5.

Theorem 1.1.2. If G is a graph with genus g(G) ≥ 1, then χL,2(G) ≤ 1
2(7 +

√
1 + 48g(G)).

A graph G has a graph H as minor if H can be obtained from a subgraph of G by contracting

edges, and G is called H-minor free if G does not have H as a minor. A graph G is called a

series-parallel graph if each minimal component can be obtained from K2 by iteratively using

the following two operations: replace an edge with a path of length 2 and duplicate an edge. A

graph G is K4-minor free if and only if each block of G is a series-parallel graph. Wegner [46]

conjectured that if G is a planar graph, then

χ∆(G) =

{
∆(G) + 5, if 4 ≤ ∆(G) ≤ 7;

b3∆(G)/2c+ 1, if ∆(G) ≥ 8.

Define

K(r) =

{
r + 3, if 2 ≤ r ≤ 3;

b3r/2c+ 1, if r ≥ 4.

Lih et. al. proved the following towards Wegner’s conjecture.

Theorem 1.1.3. (K-W. Lih, W.-F. Wang and X. Zhu [22]) Let G be a K4-minor free graph.

Then

χ∆(G) ≤ K(∆(G)).

Here, we will extend Theorem 1.1.3 as the following.

Theorem 1.1.4. Let G be a K4-minor free graph with ∆ = ∆(G), and r ≥ 2 be an integer.

Then

(i) χr(G) ≤ K(r).

(ii) χL,r(G) ≤ K(r) + 1.

Examples given in [22] show that Theorem 1.1.4 (i) is best possible when r = ∆.

1.2 Backgrounds of receptor clustering

The receptors discussed here are membrane-bound proteins. They are kept in the membrane

by electrostatic forces but can diffuse along its surface in two dimensions. The membrane has a

number of features, including elements of the cytoskeleton (aka membrane skeleton), lipid rafts

(special types of lipids that form aggregates are insoluble in certain detergents), caveloae (cave-

like indentations formed by a lipid called caveolin) and protein agglomerations. These features

3



form a “landscape” that generally inhibits the free movement or normal diffusion of membrane

proteins. Instead, receptors perform anomalous diffusion characterized by a variable effective

diffusion constant.

The vast majority of our current knowledge regarding the movement and localization of

membrane proteins comes from innovative labeling and imaging techniques [38,48] that emerged

in the past couple of decades. In general, the proteins or lipids of interest are not distinguishable

from the rest of the cell; therefore, imaging hinges on the ability to label these biomolecules with

a tag that is clearly identifiable in the microscopic image. Important techniques used currently

rely on fluorescent labels or metallic beads.

Our research is motivated by the following hypothesis. The growth of new blood vessels from

preexisting vessels, is switched on or off by the dynamic balance among numerous angiogenic

stimulators and inhibitors (the ’angiogenesis switch’ hypothesis) [6, 19]. Among the various

growth factors, vascular endothelial growth factor (VEGF) and its receptors (VEGFR) have

received much attention, because of their fundamental role in tumorigenesis and other patholo-

gies [6, 23, 32]. Initially identified as a vascular permeability factor that increased leakiness of

blood vessels [42], the role of VEGF in regulating angiogenesis was discovered later [14,36].

Signaling by VEGFR is initiated by binding of the ligand dimer to the extracellular domain

of the receptor, which stimulates receptor homo- and hetero-dimerization [29, 40, 44]. Receptor

dimerization is followed by protein kinase activation, trans-autophosphorylation, recruitment of

signaling molecules, and activation of distinct pathways. Due to its bivalence, VEGF binding

may precede and induce the dimerization of its receptors, by the binding of a second receptor

to the free binding site of the ligand (see Figure 1.1 for the explicit process). Ligand-induced

or -enhanced receptor dimerization is a feature present in several other receptor-ligand families

including EGF and immune receptors.

Mathematical models of VEGF binding [16] generally represent the cell membrane as a

single, homogeneous entity, equivalent to a ”well-mixed compartment” whose state is sufficiently

characterized by a single concentration value for each of the substances of interest. This is

justified if there are no significant inhomogeneities and all molecules can diffuse and mix freely

over the entire membrane surface, as in the classic Singer-Nicholson fluid mosaic model [43].

However, our understanding of the cell membrane has evolved significantly since 1972. The

current picture [45] is more structured, with microdomains of lipids and proteins [17, 27, 41].

Modern microscopy techniques [38, 48] provide direct evidence of the effect of these structures

on membrane receptor localization and movement [3,31,34], revealing receptor clusters in static

images, and intervals of confinement in small areas separated by jumps or ”hops” in single

particle tracking.

Spatial organization in the membrane can potentially have a major impact on signaling path-

ways that rely on interaction between membrane-bound molecules. Receptor dimerization, either

4
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Figure 1.1: The dimerization and ligand binding reactions form a network of 7 reactions in the VEGF signal initiation model

of [16]. Receptors (R) may bind one of the two poles of a VEGF ligand (V ), and may form a direct bond with another

receptor. In the ligand-induced dimerization (LID) sequence, receptors can not form a direct bond outside a pre-existing

complex; signal initiation progresses through reactions (7, 6, 5). In the dynamic pre-dimerization (DPD) sequence, receptors

may dimerize before binding ligand (adding reactions 1 and 2).

through (ligand-dependent or independent) direct receptor-receptor binding, or by crosslinking

through ligand[s], requires the collision of two membrane-bound receptors, and is thus influenced

by the mobility and possible confinement of receptors. In turn, receptor dimerization is a neces-

sary step in signal initiation, and therefore the mobility and spatial organization of membrane

receptors must be part of the quantitative understanding of many cell signaling pathways.
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Chapter 2

2-hued Coloring for Planar Graphs

and Graphs of Higher Genus

2.1 Priliminaries

A plane graph is a planar graph that is embedded in the plane. Let G be a connected plane

graph, and let F be a face of G. Then the boundary of F is the boundary of the open set in the

usual topological sense, and it contains the vertices and edges that are incident with F . The

degree of F is the number of edges incident with F . We call the face with degree k a k-face.

For a given edge e = v1v2 of G, let d1, d2 denote the degrees of the two endpoints v1 and

v2 of e, and d∗1, d
∗
2 denote the degrees of the two faces adjacent at e, respectively. The edge

contribution of e is defined to be Φ(e) = 1
d1

+ 1
d2

+ 1
d∗1

+ 1
d∗2
− 1. The next result is known as a

Lebesgue’s formulae.

Lemma 2.1.1. (Page 55 in [33]) Let G be a plane graph, then
∑

e∈E(G) Φ(e) = 2.

Throughout this paper, for an edge e of a plane graph G, we shall represent the edge config-

uration of e as the 4-tuple (x1, x2, x3, x4) such that x1 ≤ x2 ≤ x3 ≤ x4, where {x1, x2, x3, x4} =

{d1, d2, d
∗
1, d
∗
2} as multisets. For convenience, we use (x1, x2, x3, S) with S being a set of integers,

to mean that in this configuration, x4 can be any integer in S. If S is given by an interval (such

in Lemma 2.1.2), then S is the set of the integers inside the interval.

Lemma 2.1.2. Let G be a plane graph with δ(G) ≥ 3. Then there must be an edge with its

configuration falling into one of the following categories.

(i) (3, 3, 3, [3,∞));

(ii) (3, 3, 4, [4, 11]);

(iii) (3, 3, 5, [5, 7]);

(iv) (3, 4, 4, [4, 5]);

6



Proof. We may assume that G is connected. By Lemma 2.1.1,
∑

e∈E(G) Φ(e) = 2 > 0, and so

G has an edge e with Φ(e) > 0. We denote the configuration of e by (x1, x2, x3, x4). Then∑4
i=1

1
xi
> 1.

Since δ(G) ≥ 3, we have xi ≥ 3, for each i ∈ {1, 2, 3, 4}. As x1 ≤ x2 ≤ x3 ≤ x4, 4 · 1
x1
> 1,

and so x1 < 4. This implies that x1 = 3. Thus
∑4

i=2
1
xi
> 1− 1

3 = 2
3 . As 3 · 1

5 <
2
3 , thus x2 < 5,

it follows that x2 = 3 or x2 = 4.

If x2 = 3, then 1
x3

+ 1
x4
> 1

3 , hence x3 < 6. It is routine to verify that if x3 = 3, then x4 can

be any number no less than 3; if x3 = 4, then 4 ≤ x4 ≤ 11; and if x3 = 5, then 5 ≤ x4 ≤ 7.

If x2 = 4, then 1
x3

+ 1
x4
> 5

12 , and so x3 < 5. Hence x3 = 4 and x4 ≤ 5. This completes the

proof of the lemma.

By Lemma 2.1.2, the following properties on the local structure of a plane graph can be

obtained.

Lemma 2.1.3. Let G be a plane graph with δ(G) ≥ 3. Then there must be an edge e = v1v2

which meets at least one of the following conditions.

(i) d(v1) ≤ 4 and e lies in the boundary of a 3-face;

(ii) d(v1) = 3 and e lies in the boundary of a 4-face;

(iii) d(v1) = d(v2) = 3 and e is the common boundary of a 5-face and another l-face where

5 ≤ l ≤ 7;

(iv) d(v1) = 5, 5 ≤ d(v2) ≤ 7 and e is the common boundary of two 3-faces.

Proof. By Lemma 2.1.2, G has an edge e = v1v2 satisfying the conclusion of Lemma 2.1.2. The

conclusions of this lemma will follow by analyzing the four cases listed in Lemma 2.1.2.

Lemma 2.1.4. Let G be a smallest counterexample to Theorem 1.1.1. Then G must be connected

and δ(G) ≥ 3.

Proof. We argue by contradiction and assume that

G is a counterexample with |V (G)| minimized. (2.1)

Then for some list assignment {L(v) : v ∈ V (G)}, G has no (L, 2)-coloring. Furthermore, for

one such list assignment L and any v ∈ V (G), |L(v)| = 5 if (i) does not hold for G; |L(v)| = 6

if (ii) does not hold for G; L(v) = {1, 2, 3, 4, 5} if (iii) does not hold for G. By (2.1), G must be

connected with |V (G)| ≥ 6.

If δ(G) = 1, then let v be a vertex of degree 1 in G and w be the only neighbor of v.

Denote G′ = G − v. By (2.1), G′ has an (L, 2)-coloring c. Extending c by coloring v with

c(v) ∈ L(v)\c({w,w′}), where w′ is another neighbor of w. Then c can be extended to an

(L, 2)-coloring for G, contrary to (2.1).

7



Now suppose that δ(G) ≥ 2 and v is a vertex of degree 2. Denote the neighbors of v as

x, y. Let x′, y′ be neighbors of x, y in G − v, respectively. By (2.1), G′ = G − v + xy has an

(L, 2)-coloring c with c(x) 6= c(y). Extending c by coloring v with c(v) ∈ L(v)\c({x, y}∪{x′, y′}).
Then the extended c is an (L, 2)-coloring of G, contrary to (2.1). So we must have δ(G) ≥ 3.

2.2 2-hued coloring for planar graphs

Arguing by contradiction, we assume that

G is a counterexample to Theorem 1.1.1 with |V (G)| minimized. (2.2)

Then for some list assignment {L(v) : v ∈ V (G)}, G has no (L, 2)-coloring. Equivalently, we

may assume that for every v ∈ V (G),

|L(v)| = 5, if (i) does not hold for G; (2.3)

|L(v)| = 6, if (ii) does not hold for G ; (2.4)

L(v) = 5̄, if (iii) does not hold for G. (2.5)

By Lemma 2.1.4, G must be connected with δ(G) ≥ 3. In the arguments below, we start with

a plane graph G′ with |V (G′)| < |V (G)|. Then by (2.2), G′ has an (L, 2)-coloring c. To obtain

a contradiction, we extend the (L, 2)-coloring c on G′ to one on G. In the following arguments,

for all unmentioned vertices w in G′, c(w) will not be changed in the extension. Throughout

this section, let e = v1v2 denote an edge satisfying one of (i)-(iv) in Lemma 2.1.3. By Lemma

2.1.3, one of the following four cases must occur.

Case 1 d(v1) ≤ 4 and e lies in the boundary of a 3-face.

Let G′ = G − v1. By (2.2), G′ has an (L, 2)-coloring c. Extending c by coloring v1 with

c(v1) ∈ L(v1)\c(N(v1)). As δ(G′) ≥ 2, v1 has a pair of adjacent vertices in the 3-face, and so

the neighborhood of every vertex has at least 2 different colors. Hence c is an (L, 2)-coloring of

G, contrary to (2.2).

Case 2 d(v1) = 3 and e lies in the boundary of a 4-face.

Let F1 = v1v2x1x2 denote the boundary of this 4-face. Let G′ = G− v1 + x2v2. By (2.2), G′

has an (L, 2)-coloring c. Extending c by coloring v1 with c(v1) ∈ L(v1)\c(N(v1) ∪ {x1}). As c

is an (L, 2)-coloring of G′, c(x2) 6= c(v2). The choice of c(v1) makes c satisfying both (C1) and
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(C2). And so c is an (L, 2)-coloring of G, contrary to (2.2).

Case 3 d(v1) = d(v2) = 3 and e is the common boundary of a 5-face and an l-face where

5 ≤ l ≤ 7.

Let F1 denote the 5-face, and F2 the l-face. For i = 1, 2, let xi be the neighbor of vi on the

boundary of F1, yi be the neighbor of vi on the boundary of F2. Thus N(v1) = {x1, y1, v2} and

N(v2) = {x2, y2, v1}. Let G′ = G − v1 − v2. By (2.2), G′ has an (L, 2)-coloring c. Extending

c by coloring v1 with c(v1) from L(v1)\c({x1, y1, x2}) and c(v2) from L(v2)\c({x2, y2, x1, v1})
respectively. As c is an (L, 2)-coloring of G′, and by the choice of c(v1) and c(v2), the extended

c satisfies both (C1) and (C2), and so c is an (L, 2)-coloring of G, contrary to (2.2).

Case 4 d(v1) = 5, 5 ≤ d(v2) ≤ 7 and e is the common boundary of two 3-faces. (This case is

not applicable for Theorem 1.1.1(i).)

Suppose that Theorem 1.1.1(ii) does not hold. By (2.4), |L(v)| = 6, for all v ∈ V (G). Let

G′ = G− v1. By (2.2), G′ has an (L, 2)-coloring c. Since d(v1) = 5 in G, L(v1)\c(NG(v1)) 6= ∅.
Extending c by coloring v1 with c(v1) ∈ L(v1)\c(N(v1)). Since e lies in a 3-face, NG(v1) contains

an edge, and so |c(N(v1))| ≥ 2. By the definition of c(v1) and by the assumption that c is an

(L, 2)-coloring of G′, the extended c is an (L, 2)-coloring of G, contrary to (2.2).

Suppose that Theorem 1.1.1(iii) does not hold. By (2.5), L(v) = 5̄, for all v ∈ V (G). Denote

the two faces as F1 = v1v2w1 and F2 = v1v2w2, respectively. Two subcases are discussed below.

Subcase 4.1 w1w2 /∈ E(G).

We obtain G′ from G − v1 by identifying w1 with w2 (denoting the new vertex by w). Let

L(w) = 5̄. As w1 and w2 are in the same face of G − v1, G′ is again planar. By (2.2), G′

has an (L, 2)-coloring c, which can also be viewed as an (L, 2)-coloring of G − v1 with w1, w2

receiving the same color. Since w1 and w2 are identified in G′, |c(NG(v1))| ≤ dG(v1) − 1 = 4,

and so L(v1)\c(N(v1)) 6= ∅. Extending c by coloring v1 with c(v1) ∈ L(v1)\c(N(v1)). By the

definition of c(v1) and by the assumption that c is an (L, 2)-coloring of G− v1, the extended c

is an (L, 2)-coloring of G, contrary to (2.2).

Subcase 4.2 w1w2 ∈ E(G).

For a plane graph G with a cycle C, let Ext[C] (resp. Int[C]) be the subgraph obtained

from G by deleting all vertices inside (resp. outside) the cycle C. If V (Ext[C])− V (C) 6= ∅ and

V (Int[C])− V (C) 6= ∅, then C is called a separating cycle of G.

Note that the two faces F1 and F2 must be contained in one of the 3-cycles, v1w1w2 or v2w1w2.
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Figure 2.1: Graph for Subcase 4.2.

Without loss of generality, assume that C = v1w1w2 that contains both Fi with i = 1, 2, see

Figure 2.1. Since both dG(vi) ≥ 5 with i = 1, 2, C must be a separating cycle of G, and so each

of Ext[C] and Int[C] has fewer vertices than G.

By (2.2), each of Ext[C] and Int[C] has an (L, 2)-coloring, denoted as c1 and c2, respectively.

SinceG[v1, w1, w2] ∼= K3, we may assume that c1(v1) = c2(v1), c1(w1) = c2(w1), c1(w2) = c2(w2).

Since V (G) = V (Ext[C]) ∪ V (Int[C]) and V (Ext[C]) ∩ V (Int[C]) = {v1, w1, w2}, and since

c1 and c2 agree on {v1, w1, w2}, one can construct an (L, 2)-coloring c of G by combining c1 and

c2:

c(v) =

{
c1(v), if z ∈ V (Ext[C]);

c2(v), if z ∈ V (Inc[C]).

As c1 and c2 are (L, 2)-colorings of Ext[C] and Int[C], respectively, and as G[v1, w1, w2] ∼= K3,

c is an (L, 2)-coloring for G, contrary to (2.2). This completes the proof of Theorem 1.1.

As shown in [26], C5 is planar with χ2(C5) = 5. It follows by (1.3) that Theorem 1.1.1(i)

and (iii) are best possible. We conjecture that C5 is the only connected planar graph G with

χ2(G) = 5.

When r > 2, the r-hued chromatic number χr(G) of a planar graph G may be larger

than 5. For example, the wheel W6 with six vertices has χ3(W6) = 6, because any pair of

vertices of degree 3 that are not adjacent are adjacent to a common vertex of degree 3, and the

unique vertex of degree 5 is adjacent to all other vertices. In fact Lai et al. [25] showed that

χr(T ) = min{r,∆(T )}+ 1 if T is a tree with |V (T )| ≥ 3. Hence χ5(T ) > 5 if ∆(T ) ≥ 5.
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2.3 2-hued coloring for graphs of higher genus

An embedding of a graph G on an orientable surface (resp. non-orientable surface) Σ is minimal

if G cannot be embedded on any orientable (resp. non-orientable) surface Σ′ where g(Σ′) < g(Σ).

A graph G is said to have orientable (resp. non-orientable) genus g if G is minimally embedded

on a surface with orientable (resp. non-orientable) genus g. An embedding of a graph is said

to be 2-cell if every face of the embedding is homomorphic to an open unit disk. The Euler

characteristic of a graph G is defined as follows.

Φ(G) =

{
2− 2g, if G has the orientable genus g;

2− g, if G has the non-orientable genus g.
(2.6)

If G is a connected graph with a 2-cell embedding on a closed surface, then Euler formula

indicates that

|V (G)| − |E(G)|+ |F (G)| = Φ(G).

The following results are needed in our proofs.

Theorem 2.3.1. ( [49]) If a connected graph G is minimally embedded on an orientable surface,

then the embedding is 2-cell.

Theorem 2.3.2. ( [35]) If G is a connected graph, which is not a tree, then G has a minimal

non-orientable embedding which is 2-cell.

Throughout this section, we assume that G is 2-cell embedded on a closed surface. Recall the

edge contribution of an edge e is Φ(e) = 1
d1

+ 1
d2

+ 1
d∗1

+ 1
d∗2
−1. For convenience, let Φ′(e) = −Φ(e).

Lemma 2.3.3 below follows from Theorems 2.3.1, 2.3.2, with a similar argument in Chapter

4 of [33], where the case g = 0 is considered.

Lemma 2.3.3. If a connected graph G is minimally embedded on a closed surface then∑
e∈E(G)

Φ(e) = Φ(G).

Proof of Theorem 1.1.2. Let g(G) denote the genus of G and h(G) = 1
2(7 +

√
1 + 48g(G)).

By contradiction, we assume that

G is a counterexample to Theorem 1.1.2 with |V (G)| minimized. (2.7)

Then g(G) ≥ 1, χL, 2(G) > h(G), and G has an assignment {L(v) : v ∈ V (G)} with |L(v)| =

h(G), ∀ v ∈ V (G), such that G has no (L, 2)-coloring. By (2.7), G must be connected. We

establish each of the following claims. The first claim is an observation following immediately

from the definition of (L, 2)-colorings.
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Claim 1. |V (G)| ≥ h(G) + 1.

Claim 2. δ(G) ≥ h(G)− 2.

We prove δ(G) ≥ 3 first. Let v be a vertex with dG(v) = δ(G). If dG(v) = 1, let NG(v) = {w},
w′ ∈ NG(w) − {v} and G′ = G − v. By (2.7), χL, 2(G′) ≤ h(G′). By the definition of genus,

g(G′) ≤ g(G), and so χL, 2(G′) ≤ h(G′) ≤ h(G). Thus any (L, 2)-coloring c of G′ can be

extended to an (L, 2)-coloring of G by coloring v with c(v) ∈ L(v)\c({w,w′}), contrary to (2.7).

If dG(v) = 2, denote NG(v) = {x, y}, and let x′ (resp. y′) be a neighbor of x (resp. y) other

than v. Let G′ = G− v + xy. As G is 2-cell embedded on a surface with x and y on the same

face of G − v, by the dentition of genus, g(G′) ≤ g(G). Hence χL, 2(G′) ≤ h(G′) ≤ h(G). By

(2.7), G′ has an (L, 2)-coloring c. As g(G) ≥ 1, h(G) > 5. Hence we can extend c by coloring v

with c(v) ∈ L(v)\c({x, y, x′, y′}). As c is an (L, 2)-coloring of G′ and by the choice of c(v), c is

an (L, 2)-coloring of G, contrary to (2.7).

Hence δ(G) ≥ 3. We argue by contradiction to prove Claim 2. Assume that G has a vertex

v with dG(v) ≤ h(G)− 3. As δ(G) ≥ 3, ∃x, y ∈ NG(v) with x 6= y. Let G′ = G− v + xy. With

the same argument above, g(G′) ≤ g(G). Hence χL, 2(G′) ≤ h(G′) ≤ h(G). By (2.7), G′ has an

(L, 2)-coloring c. Let x′, y′ be a neighbor of x, y in G− v, respectively. Extending c by coloring

v with c(v) ∈ L(v)\c(N(v)∪{x′, y′}). Since x, y are adjacent in G′, c(x) 6= c(y). Since δ(G) ≥ 3,

δ(G′) ≥ 2, and so the extended c violates (2.7). This proves Claim 2.

Claim 3. Let e = v1v2 be an edge in G. Then either d1 ≥ h(G) or d2 ≥ h(G).

We assume otherwise that di = dG(vi) ≤ h(G) − 1, i = 1, 2. Denote G′ = G − v1 − v2.

By (2.7), G′ has an (L, 2)-coloring c. Denote N1 = NG(v1)\{v2}, N2 = NG(v2)\{v1}. Then

max{|N1|, |N2|} ≤ h(G) − 2. If min{|c(N1)|, |c(N2)|} ≥ 2, then extend c by coloring v1 with

c(v1) ∈ L(v1)\c(N1) and v2 with c(v2) ∈ L(v2)\c({N2∪v1}). As c is an (L, 2)-coloring of G′ and

by the choices of c(v1) and c(v2), c is an (L, 2)-coloring of G, contrary to (2.7).

Thus we assume that |c(N2)| = 1. Then pick v′1 ∈ NG(v1) − {v2}. Extending c by coloring

v1 with c(v1) ∈ L(v1)\c(N1 ∪ N2) and v2 with c(v2) ∈ L(v2)\c({N2 ∪ {v1, v
′
1}}). As c is an

(L, 2)-coloring of G′ and by the choices of c(v1) and c(v2), c is an (L, 2)-coloring of G, contrary

to (2.7). This proves Claim 3.

Claim 4. Let e = v1v2 be an edge in G. If 3 ∈ {d∗1, d∗2}, then di ≥ h(G), i = 1, 2.

If not, we assume that d1 ≤ h(G) − 1. Let G′ = G − v1. Then g(G′) ≤ g(G), and so by (2.7),

G′ has an (L, 2)-coloring c. Extending c by coloring v1 with c(v1) ∈ L(v1)\c(N(v1)). As c is an

(L, 2)-coloring of G′ and by the choices of c(v1), c is an (L, 2)-coloring of G, contrary to (2.7).

This proves Claim 4.

12



Claim 5. Let e = v1v2 be an edge in G. If 4 ∈ {d∗1, d∗2}, then di ≥ h(G)− 1, i = 1, 2.

If otherwise, we may assume that d∗1 = 4 and d1 ≤ h(G) − 2. Denote F = v1v2uwv1 as the

4-face. Let G′ = G − v1 + wv2. Then by our assumption, G′ has an (L, 2)-coloring c, and so

c(w) 6= c(v2). Extending c by letting c(v1) ∈ L(v1)\c(N(v1)∪ {u}), contrary to the choice of G.

This proves Claim 5.

For notational convenience, we shall denote h(G) and g(G) by h and g respectively through-

out the rest of the proof.

Claim 6. Let e = v1v2 be an edge in G. Each of the following holds:

(i) If 3 ∈ {d∗1, d∗2}, then

Φ′(e) ≥ h− 6

3h
.

(ii) If 3 /∈ {d∗1, d∗2}, 4 ∈ {d∗1, d∗2}, then

Φ′(e) ≥ h2 − 5h+ 2

2h(h− 1)
.

(iii) If d∗1, d
∗
2 ≥ 5, then

Φ′(e) ≥ 3h2 − 16h+ 10

5h(h− 2)
.

By Claim 2, δ(G) ≥ 3. Thus di ≥ 3, d∗i ≥ 3, i = 1, 2. If 3 ∈ {d∗1, d∗2}, then by Claim 4, di ≥ h,

i = 1, 2. Thus Φ′(e) = 1− 1
d1
− 1

d2
− 1

d∗1
− 1

d∗2
≥ 1− 1

h −
1
h −

1
3 −

1
3 = h−6

3h .

If 3 /∈ {d∗1, d∗2} and 4 ∈ {d∗1, d∗2}, then by Claim 5, di ≥ h−1, i = 1, 2. By Claim 3, at least one

of the di’s must be at least h, and so Φ′(e) = 1− 1
d1
− 1
d2
− 1
d∗1
− 1
d∗2
≥ 1− 1

h−1−
1
h−

1
4−

1
4 = h2−5h+2

2h(h−1) .

If d∗1, d
∗
2 ≥ 5, then by Claim 2, δ(G) ≥ h − 2. By Claim 3, at least one of the di’s must be

at least h(G), and so Φ′(e) = 1− 1
d1
− 1

d2
− 1

d∗1
− 1

d∗2
≥ 1− 1

h−2 −
1
h −

1
5 −

1
5 = 3h2−16h+10

5h(h−2) . This

proves Claim 6.

Since
h− 6

3h
<
h2 − 5h+ 2

2h(h− 1)
<

3h2 − 16h+ 10

5h(h− 2)
. (2.8)

The following claim follows from Claim 6 and (2.8).

Claim 7. For each e ∈ E(G),

Φ′(e) ≥ h− 6

3h
.

Claim 8. |E(G)| ≥ 1
2(h+ 3)(h− 2).

If δ(G) ≥ h, by Claim 1, we have |V (G)| ≥ h + 1, so |E(G)| ≥ 1
2(h + 1)h > 1

2(h + 3)(h − 2).

If δ(G) < h, let v be a vertex of G such that d(v) = δ(G). Let u be any neighbor of v,
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by Claim 3, d(u) ≥ h. Thus there exists at least δ(G) vertices of degree at least h, and so

|E(G)| ≥ 1
2((h + 1)δ(G) + δ(G)(h − δ(G))). By Claim 2, δ ≥ h − 2. When δ(G) = h − 1, we

have that |E(G)| ≥ 1
2(h + 2)(h − 1) > 1

2(h + 3)(h − 2). When δ(G) = h − 2, we have that

|E(G)| ≥ 1
2(h+ 3)(h− 2). This proves Claim 8.

By Claim 2, δ(G) ≥ h− 2 ≥ 5. So G is not a tree. By Theorem 2.3.1 and Theorem 2.3.2, G

has a 2-cell embedding. By Lemma 2.3.3, Φ(G) =
∑

e∈E(G) Φ(e). Since we let Φ(e) = −Φ′(e),

we have −Φ(G) =
∑

e∈E(G) Φ′(e). Now the rest of the proof is divided into 3 cases.

Case 1. δ(G) ≥ h.

By Claim 1, we have |V (G)| ≥ h+ 1, so |E(G)| ≥ 1
2(h+ 1)h.

−Φ(G) =
∑

e∈E(G)

Φ′(e) ≥ 1

2
h(h+ 1) · h− 6

3h
=

1

24
(2h)(2h− 10)− 1

=
1

24
(7 +

√
1 + 48g)(

√
1 + 48g − 3)− 1 =

1

24
(48g − 20 + 4

√
1 + 48g)− 1

= 2g − 2 +
1

6

√
1 + 48g +

1

6
> 2g − 2.

Case 2. δ(G) = h− 1.

Let v be the vertex with d(v) = h− 1. By Claim 4, every edge e incident to v can not lie in

a 3-face, otherwise we can deduce that d(v) ≥ h. By Claim 6 and (2.8), Φ′(e) ≥ h2−5h+2
2h(h−1) holds

for every edge e incident to v.

−Φ(G) =
∑

e∈E(G)

Φ′(e) ≥ |E(G)| · h− 6

3h
+ (h− 1)(

h2 − 5h+ 2

2h(h− 1)
− h− 6

3h
)

≥ 1

2
(h+ 3)(h− 2) · h− 6

3h
+ (h− 1)(

h2 − 5h+ 2

2h(h− 1)
− h− 6

3h
) =

1

6
(h2 − 4h− 13) +

5

h

=
1

24
(2h)(2h− 8)− 13

6
+

5

h
=

1

24
(7 +

√
1 + 48g)(

√
1 + 48g − 1)− 13

6
+

5

h

=
1

24
(48g − 6 + 6

√
1 + 48g)− 13

6
+

5

h
= 2g − 2 +

1

12
(3
√

1 + 48g − 5) +
5

h
> 2g − 2.

Case 3. δ(G) = h− 2.

Let v be the vertex with d(v) = h− 2. By Claim 4 and Claim 5, every edge e incident to v

can lie in neither a 3-face nor a 4-face. By Claim 6(iii), Φ′(e) ≥ 3h2−16h+10
5h(h−2) holds for every edge

e incident to v.
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−Φ(G) =
∑

e∈E(G)

Φ′(e) ≥ |E(G)| · h− 6

3h
+ (h− 2)(

3h2 − 16h+ 10

5h(h− 2)
− h− 6

3h
)

≥ 1

2
(h+ 3)(h− 2) · h− 6

3h
+ (h− 2)(

3h2 − 16h+ 10

5h(h− 2)
− h− 6

3h
) =

1

30
(5h2 − 17h− 76) +

4

h

=
1

120
(2h)(10h− 34)− 76

30
+

4

h
=

1

120
(7 +

√
1 + 48g)(5

√
1 + 48g + 1)− 76

30
+

4

h

=
1

120
(240g + 12 + 36

√
1 + 48g)− 76

30
+

4

h
= 2g − 2 +

1

30
(9
√

1 + 48g − 13) +
4

h
> 2g − 2.

Thus in each case we have −Φ(G) > 2g − 2, contrary to (2.6). This completes the proof of

Theorem 1.1.2.

The corollary below follows immediately from Theorem 1.1.2 and (1.3).

Corollary 2.3.4. If G is a graph with genus g(G) ≥ 1, then χ2(G) ≤ 1
2(7 +

√
1 + 48g(G)).

Note that a well-known result by P. Franklin [15], G. Ringel [37] and J.W.T. Youngs [49]

(see also Theorem 8-8 [47]) states that, for g(G) ≥ 1, χ(G) ≤ 1
2(7 +

√
1 + 48g(G)) is indeed

best possible, except for Klein bottle. By formula (1) and (3), χ(G) ≤ χ2(G) ≤ χL, 2(G). So

Theorem 1.1.2 and Corollary 2.3.4 is also best possible.
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Chapter 3

r-hued Coloring of K4-minor Free

Graphs

3.1 Proof of the main result

Define SG(u) = {x : dG(x) ≥ 3 with ux ∈ E(G) or there exists a 2-vertex w with uw,wx ∈
E(G)}. Let DG(u) = |SG(u)|. See Figure 3.1 for the case of DG(u) = 2. It is well known [11]

that every K4-minor free graph contains a vertex of degree at most two. Lih et. al. [22] proved

the following lemma.

Lemma 3.1.1. (K-W. Lih, W.-F. Wang and X. Zhu [22]) Let G be a K4-minor free graph.

Then one of the following conditions holds:

(i) δ(G) ≤ 1;

(ii) There exists two adjacent 2-vertices;

(iii) There exists a vertex u with dG(u) ≥ 3 such that DG(u) ≤ 2.

We will use Lemma 3.1.1 to prove our result. Before that, we introduce some notations.

Figure 3.1: SG(u) = {x, y}
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Let G be a graph with the vertex set V , V ′ ⊆ V be a vertex subset and G[V ′] be the induced

subgraph of G on V ′. A mapping c : V ′ → ∪v∈V ′L(v) is a partial coloring if c is a proper (L, r)-

coloring of G[V ′]. Let c be a partial coloring of G on V ′. For the uncolored vertex v ∈ V − V ′,
let {c(v)} = ∅. For every vertex v ∈ V ′, define c[v] as follows.

c[v] =

{
{c(v)}, if |c(NG(v))| ≥ r;
{c(v)} ∪ c(NG(v)), otherwise.

(3.1)

Thus, when a partial coloring c is given, c[v] consists of the set of colors that can not be used

for uncolored neighbors of v. By (3.1), |c[v]| ≤ r.

Proof of Theorem 1.1.4. As it is shown in [8] that χ2(G) ≤ 5 and χL,2(G) ≤ 6 if G is a

planar graph, Theorem 1.1.4 holds for r = 2. In the following, we assume that r ≥ 3.

We argue by contradiction to prove Theorem 1.1.4. Assume that

G is a counterexample to Theorem 1.1.4 with |V (G)| minimized. (3.2)

Then for some list assignment {L(v) : v ∈ V (G)}, G has no (L, r)-coloring. We may assume

that for every v ∈ V (G), L(v) = {1, 2, · · · ,K(r)} if G is a counterexample of Theorem 1.1.4 (i),

and that |L(v)| = K(r) + 1 if G is a counterexample of Theorem 1.1.4 (ii). As r ≥ 3 implies

K(r) ≥ 6, we may assume |V (G)| ≥ 7. By (3.2), G must be connected.

In the following proof, we will obtain a K4-minor free graph H by making local modifications

of G such that |V (H)| < |V (G)|. By (3.2), H has an (L, r)-coloring c. To obtain a contradiction,

we shall extend and modify c to an (L, r)-coloring of G.

Claim 3.1.1. δ(G) = 2.

If G has a vertex x of degree 1, then let H = G − x. As H is a K4-minor free graph with

|V (H)| < |V (G)|, it follows by (3.2) that H has an (L, r)-coloring c. Let NG(x) = {u}. By (3.1)

and the definition of K(r), |c[u]| ≤ r < K(r), and so the number of colors that cannot be used

for the uncolored neighbor x of the vertex u in G is less than K(r). Therefore, we can extend c

to an (L, r)-coloring of G by defining c(x) ∈ L(x)− c[u], contrary to (3.2). 2

Claim 3.1.2. Any two 2-vertices of G are not adjacent.

If G has two adjacent 2-vertices x and y, then denote NG(x) = {u, y} and NG(y) = {v, x}.
Let H = G−x+uy. As H is K4-minor with |V (H)| < |V (G)|, by (3.2), H has an (L, r)-coloring

c. For such a coloring c, it follows that c[y] = {c(y), c(v)}.

c[u] ∩ c[y] =


{c(u)}, if c[u] = {c(u)};
{c(u), c(y)}, if c[u] = {c(u)} ∪ c(NH(u)) and NH(u) ∩NH(y) = ∅.;
{c(u), c(y), c(w)}, if c[u] = {c(u)} ∪ c(NH(u)) and NH(u) ∩NH(y) = {w}.
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Therefore, |c[u] ∪ c[y]| = |c[u]| + |c[y]| − |c[u] ∩ c[y]| ≤ r + 3 − 1 < K(r), and so the number of

colors that cannot be used for the uncolored neighbor x of the vertices u, y in G is less than

K(r). Thus, we can extend c to an (L, r)-coloring of G by defining c(x) ∈ L(x) − c[u] ∪ c[y],

contrary to (3.2). 2

By Lemma 3.1.1, Claim 3.1.1 and Claim 3.1.2, G has a vertex u with dG(u) ≥ 3 such that

DG(u) ≤ 2. In the rest of the proof, we always assume that u is such a vertex. For x ∈ SG(u),

define

MG(u, x) = {w : w ∈ NG(u) ∩NG(x), dG(w) = 2} and mG(x) = |MG(u, x)|. (3.3)

Without loss of generality, we may assume mG(x) ≥ 1, and we have the following claim.

Claim 3.1.3. DG(u) = 2.

By the definition of DG(u), Claim 3.1.1 and Claim 3.1.2, DG(u) ≥ 1. Assume that DG(u) = 1

and SG(u) = {x}. Then all the neighbors of u are either x or some neighbors of x. Since

mG(x) ≥ 1, pick w ∈MG(u, x) and define H = G−w. As H is a also K4-minor free graph with

|V (H)| < |V (G)|, by (3.2), H has an (L, r)-coloring. Since dG(u) ≥ 3, we have mG(x) ≥ 2, and

so c(u) 6= c(x). It follows that |c(u) ∪ c[x]| ≤ 1 + r < K(r), and so the number of colors that

cannot be used for w ∈ MG(u, x) is less than K(r). Therefore, as c(u) 6= c(x), we can extend c

to an (L, r)-coloring of G by defining c(w) ∈ L(w)− c[u] ∪ c[x], contrary to (3.2). 2

Claim 3.1.4. Let w ∈ MG(u, x) and c be an (L, r)-coloring of G − w with c(u) 6= c(x). Then

max{dG(u), dG(x)} ≤ r.

We argue by contradiction and assume that max{dG(u), dG(x)} = dG(u) > r. Since w ∈
MG(u, x), then dG−w(u) ≥ r. Hence by (3.1), for any (L, r)-coloring c of G − w, |c[u]| = 1.

As |c[u] ∪ c[x]| ≤ |c[u]| + |c[x]| ≤ r + 1 < K(r), the number of colors that cannot be used for

the uncolored w in G is less than K(r). Therefore, by c(u) 6= c(x), c can be extended to an

(L, r)-coloring of G by choosing c(w) ∈ L(w)− c[u] ∪ c[x], contrary to (3.2). 2

By Claim 3.1.3, DG(u) = 2. Let SG(u) = {x, y}. Then by the definition of SG(u), it follows

that (see Figure 3.1)

NG(u) ⊆ NG(x) ∪NG(y) ∪ {x, y}.

Without loss of generality, we assume that mG(x) ≥ mG(y). Since dG(u) ≥ 3, we have mG(x) ≥
1. Pick w ∈MG(u, x) and define

H = G− w.

Then H is a also K4-minor free graph with |V (H)| < |V (G)|. By (3.2), H has an (L, r)-coloring.

Case 1. xu ∈ E(G).
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As xu ∈ E(H), c(u) 6= c(x). By Claim 3.1.4, we have max{dG(u), dG(x)} ≤ r. Since x is

adjacent to u, we have |c[u]∪c[x]| ≤ dG(u)+dG(x)−mG(x)−1. By mG(x)+mG(y) ≥ dG(u)−2

and by mG(x) ≥ mG(y), we conclude that mG(x) ≥ d(dG(u)− 2)/2e = ddG(u)/2e − 1. Hence

|c[u] ∪ c[x]| ≤ dG(u) + dG(x)−mG(x)− 1

≤ dG(u) + dG(x)− ddG(u)/2e

≤ bdG(u)/2c+ dG(x)

≤ b3r/2c

≤ K(r)− 1.

It follows that the number of colors cannot be used for the uncolored neighbor w of the

vertices u, x in G is less than K(r). Therefore, as c(u) 6= c(x), c can be extended to an (L, r)-

coloring of G by choosing c(w) ∈ L(w)− c[u] ∪ c[x], contrary to (3.2). This proves Case 1.

Case 2. xu /∈ E(G), yu /∈ E(G).

Since xu, yu /∈ E(G) and mG(x) ≥ mG(y), we conclude that mG(x) ≥ ddG(u)/2e ≥ 2.

By dG(u) ≥ 3 and mG(x) ≥ mG(y), there exists a 2-vertex w′ with w′x,w′u ∈ E(H), and so

c(u) 6= c(x). By Claim 3.1.4, we have max{dG(u), dG(x)} ≤ r. Since x is not adjacent to u, we

have |c[u] ∪ c[x]| ≤ dG(u) + dG(x)−mG(x) + 1. Hence

|c[u] ∪ c[x]| ≤ dG(u) + dG(x)−mG(x) + 1

≤ dG(u) + dG(x)− ddG(u)/2e+ 1

≤ bdG(u)/2c+ dG(x) + 1

≤ b3r/2c+ 1

≤

{
K(3)− 1 if r = 3,

K(r) if r ≥ 4.

If |c[u] ∪ c[x]| < K(r) (the case when r = 3 is included), or if |c[u] ∪ c[x]| = K(r) and

|L(w)| = K(r) + 1, then the number of colors that cannot be used for the uncolored neighbor

w of the vertices u, x in G is less than |L(w)|. Therefore, as c(u) 6= c(x), we can extend c to an

(L, r)-coloring of G by defining c(w) ∈ L(w)− c[u] ∪ c[x], contrary to (3.2).

Therefore, we assume that r ≥ 4 and |c[u] ∪ c[x]| = K(r). Since |c[u] ∪ c[x]| = |c(NH(u) ∪
NH(x) ∪ {u, x})| = K(r) and NH(u) ∪NH(x) ∪ {u, x} has exactly K(r) vertices, each vertex in

NH(u)∪NH(x)∪{u, x} is colored differently by c. As r ≥ 4, dH(u)+2 ≤ (r−1)+2 ≤ K(r)−2,

and so there are at least two choices to color u properly in H (as an (L, r)-coloring). By

changing the color of u and preserving the colors of other vertices, we obtain a new coloring
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(also denoted by c) satisfying |c[u]∪ c[x]| < K(r). Therefore, as c(u) 6= c(x), we can extend c to

an (L, r)-coloring of G by defining c(w) ∈ L(w)−c[u]∪c[x], contrary to (3.2). This proves case 2.

Case 3. xu /∈ E(G), yu ∈ E(G).

If mG(x) = mG(y), we may interchange x and y, and it falls under Case 1. Hence we may

assume that mG(x) > mG(y).

Case 3.1 dG(u) is odd.

Since dG(u) is odd, mG(x) +mG(y) = dG(u)− 1 is even, and so mG(x) ≥ mG(y) + 2 ≥ 2.

Case 3.1.1. mG(x) ≥ mG(y) + 4.

Since mG(x) ≥ mG(y) + 4 ≥ 4, MH(u, x) 6= ∅, and so c(u) 6= c(x). By Claim 3.1.4, we have

max{dG(u), dG(x)} ≤ r. Hence,

|c[u] ∪ c[x]| ≤ dG(u) + dG(x)−mG(x) + 1

≤ dG(u) + dG(x)− (dG(u) + 3)/2 + 1

= bdG(u)/2c+ dG(x)

≤ b3r/2c

≤ K(r)− 1.

It follows that the number of colors that cannot be used for the uncolored neighbor w of the

vertices u, x in G is less than K(r). Therefore, as c(u) 6= c(x), we can extend c to an (L, r)-

coloring of G by defining c(w) ∈ L(w)− c[u] ∪ c[x], contrary to (3.2).

Case 3.1.2. mG(x) = mG(y) + 2.

If mG(x) = mG(y) + 2 ≥ 2, then MH(u, x) 6= ∅, and so c(u) 6= c(x). By Claim 3.1.4, we have

max{dG(u), dG(x)} ≤ r. If dG(u) < r, then

|c[u] ∪ c[x]| ≤ dG(u) + dG(x)−mG(x) + 1

≤ dG(u) + dG(x)− (dG(u) + 1)/2 + 1

= (dG(u) + 1)/2 + dG(x)

≤ br/2c+ dG(x)

≤ b3r/2c

≤ K(r)− 1.

Thus the number of colors that cannot be used for the uncolored neighbor w of the vertices u, x

in G is less than K(r). Therefore, as c(u) 6= c(x), we can extend c to an (L, r)-coloring of G by

defining c(w) ∈ L(w)− c[u] ∪ c[x], contrary to (3.2).
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So we assume that dG(u) = r. If xy ∈ E(G), then

|c[u] ∪ c[x]| ≤ dG(u) + dG(x)− 1− (mG(x)− 1)

≤ dG(u) + dG(x)− (dG(u) + 1)/2

= (dG(u)− 1)/2 + dG(x)

≤ br/2c+ dG(x)

≤ b3r/2c

≤ K(r)− 1.

It follows that the number of colors that cannot be used for the uncolored neighbor w of the

vertices u, x in G is less than K(r). Therefore, as c(u) 6= c(x), we can extend c to an (L, r)-

coloring of G by defining c(w) ∈ L(w)− c[u] ∪ c[x], contrary to (3.2).

Thus we assume that dG(u) = r and xy /∈ E(G). In this case,

|c[u] ∪ c[x]| ≤ dG(u) + dG(x)− (mG(x)− 1)

≤ dG(u) + dG(x)− (dG(u) + 1)/2 + 1

= (dG(u)− 1)/2 + dG(x) + 1

≤ br/2c+ dG(x) + 1

≤ b3r/2c+ 1

≤

{
K(3)− 1 if r = 3,

K(r) if r ≥ 4.

If |c[u] ∪ c[x]| < K(r) (the case when r = 3 is included), or if |c[u] ∪ c[x]| = K(r) and

|L(w)| = K(r) + 1, then the number of colors that cannot be used for the uncolored neighbor

w of the vertices u, x in G is less than |L(w)|. Therefore, as c(u) 6= c(x), we can extend c to an

(L, r)-coloring of G by defining c(w) ∈ L(w)− c[u] ∪ c[x], contrary to (3.2).

Therefore, we assume that r ≥ 4 and |c[u] ∪ c[x]| = K(r). Since dG(u) = dG(x) = r ≥ 4 is

odd, we have dG(u) = r ≥ 5. As mG(x) = mG(y) + 2 and dG(u) ≥ 5, MG(u, y) 6= ∅, and so we

may choose some w′ ∈ MG(u, y). Now let H ′ = G − w − w′ + xy (see Figure 3.2). Then H ′ is

also a K4-minor free graph with |V (H ′)| < |V (G)|. By (3.2), H ′ has a (L, r)-coloring c in which

c(u) 6= c(x). So we can extend c to V (G − w) by letting c(w′) = c(x). Then as c(x) ∈ c[u] in

H = G − w, the extended coloring c is an (L, r)-coloring of G − w in which c(u) 6= c(x) and

|c[u]∪ c[x]| < K(r), and so the number of colors that cannot be used for the uncolored neighbor

w of the vertices u, x in G is less than K(r). Therefore, as c(u) 6= c(x), c can be further extended

to an (L, r)-coloring of G by defining c(w) ∈ L(w)− c[x] ∪ c[u], contrary to (3.2).

Case 3.2 dG(u) is even.

If dG(u) is even, then mG(x) +mG(y) = dG(u)− 1 is odd and mG(x) ≥ mG(y) + 1.
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Figure 3.2: H ′ = G− w − w′ + xy

If mG(x) ≥ mG(y) + 3 ≥ 3, then mH(x) ≥ 2, and so c(u) 6= c(x). By Claim 3.1.4, we have

max{dG(u), dG(x)} ≤ r. Hence |c[u] ∪ c[x]| ≤ dG(u) + dG(x) −mG(x) + 1 ≤ dG(x) + dG(u)/2.

Then

|c[u] ∪ c[x]| ≤

{
r + br/2c, if dG(u) < r;

3r/2, if dG(u) = r.

Since dG(u) is even, when dG(u) = r, 3r/2 = b3r/2c, and so |c[u] ∪ c[x]| ≤ b3r/2c ≤ K(r) − 1.

Then the number of colors that cannot be used for the uncolored neighbor w of the vertices u, x

in G is less than K(r). Therefore, as c(u) 6= c(x), we can extend c to an (L, r)-coloring of G by

defining c(w) ∈ L(w)− c[u] ∪ c[x], contrary to (3.2).

Assume that mG(x) = mG(y) + 1. Since dG(u) ≥ 4, mG(y) = dG(u)/2 − 1 ≥ 1. Choose

w′ ∈MG(u, y) and let H ′′ = G−w′. Then H ′′ is a K4-minor free graph with |V (H ′′)| < |V (G)|.
As uy ∈ E(G), c(u) 6= c(y). By Claim 3.1.4, we have max{dG(u), dG(y)} ≤ r. Hence

|c[u] ∪ c[y]| ≤ dG(u) + dG(y)−mG(y)− 1

≤ dG(u) + dG(y)− dG(u)/2

= dG(u)/2 + dG(y)

≤ b3r/2c

≤ K(r)− 1.

Thus the number of colors that cannot be used for the uncolored neighbor w′ of the vertices u, y

in G is less than K(r). Therefore, as c(u) 6= c(y), we can extend c to an (L, r)-coloring of G by

defining c(w′) ∈ L(w′)− c[u] ∪ c[y], contrary to (3.2).

Since in all cases, a contradiction is obtained, this establishes the theorem and completes

the proof. 2
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3.2 Remark

Motivated by Wegner’ conjecture and the result in this paper, it is natural to seek, for each

integer r ≥ 1, the smallest integers f1(r) and f2(r) such that for any planar graph G, χr(G) ≤
f1(r) and χL,r(G) ≤ f2(r). By the Four Color Theorem ( [4,5,39]) and by the results in [8], we

believe that the following holds.

Conjecture 3.2.1. Let G be a planar graph. Then we have χr(G) ≤ f1(r), where

f1(r) =


r + 3, if 1 ≤ r ≤ 2

r + 5, if 3 ≤ r ≤ 7;

b3r/2c+ 1, if r ≥ 8.
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Chapter 4

The quantitative description of

VEGF receptor localization based on

hierarchical clustering

4.1 Methods

Experimental details

We study TEM (transmission electron microscopy) images or PAE-KDR cells, porcine aortic

endothelial cells that artificially express VEGFR-2 (KDR) receptors. The receptors are labelled

with 10 nm diameter gold particles [50]. Here, each labelled receptor is represented by a dark

spot. The locations of the spots are used to determine the location of receptors with high

precision. Sources of uncertainty include the size of the probe and that of the molecule. The

images should be interpreted as “snapshots” of the position of the receptors, at the moment

when the cell was prepared for imaging.

Sources of position uncertainty include the size of the probe and that of the molecule. Since

the diameter of the probe is approximately 10 nm, inter-receptor separations smaller than this

size can not be resolved and the two receptors are recorded as a single particle. This is a likely

explanation of the exclusion distances observed on the nearest neighbor distance plots in Figures

4.6 and 4.7.

The coordinates of the receptors are obtained by identifying the centers of the respective

dark spots on the micrographs. Currently this is done using a program called ImageJ, which

provides various tools to enhance and map the image files. The procedure is semi-automatic

in the sense that a good fraction of the cooridnates are obtained by manually correcting the

positions obtained by the program [13, 50]. The positions are then downloaded into a text
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Figure 4.1: Transmission electron microscopy (TEM) images of nano-gold labelled VEGF recep-

tors on the membrane of PAE-KDR cells. The images shown are details of the ones to their left.

The gold particles appear as dark spots, whose cordinates are extracted in a semi-automatic

procedure. The last image shows the clusters obtained by our program.

file. All subsequent analysis was performed through automated algorithms implemented by the

authors.

Traditional measures of clustering

The spatial distribution of receptors, as seen in microscopic images, is generally not random,

and apears so to a casual observer. However, a rational definition of clusters, leading to an

identification similar to the one shown in Figure 4.2 is not obvious. Clustering, defined as the

accumulation of receptors in a small fraction of the available area, has a likely impact on signal-

ing, therefore quantitative measures are a crucial ingredient to predictive mathematical models

of cell signaling. The traditional methods used in the field are often focused on establishing the

fact of clustering, by comparison with analytically known distributions that would correspond

to a random placement.

A widespread approach to cluster analysis relies on the mutual (Euclidean) distance between

pairs of points. The nearest-neighbor distance (NDD) is obtained by selecting, for each point

in a distribution, the point from the rest of the set that is the closest. The nearest-neighbor

distance gives a measure of the local density of points. If points are distributed uniformly, then

the average nearest-neighbor distance should be close to the radius of the area available to each

point. The actual distribution can be derived analytically for a random configuration.

Hierarchic clustering

The method of distance based hierarchic clustering has been applied in various contexts [21].

Our starting point is the work of Espinoza and coworkers [13], who initially adapted the method

to the analysis of nano-gold labelled membrane proteins.
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Figure 4.2: The fact that the dark spots are clustered is readily apparent to a casual observer.

However, a reliable, rational definition of clusters that properly conveys the subjective notion,

and can be compared with model predictions, requires careful mathematical construction. The

image on the right is the result of hierarchical clustering analysis applied to the TEM image on

the left.

Given a set of points P = {A,B, · · · } in a space endowed with a measure of distance d(, ),

we may group the points into distance based clusters defined by a chosen scale L ≥ 0 as follows.

i. Two points (A,B) are in the same cluster if their distance is less than L,

d(A,B) ≤ L ⇒ A ∼L B . (4.1)

ii. The relation A ∼L B is extended by transitivity, i.e., two points are in the same cluster if

there is a third point which is in the same cluster with each of them:

(A ∼L B & A ∼L C) ⇒ B ∼L C . (4.2)

The relation A ∼L B defined above is also symmetric, and is therefore an equivalence relation

on the set of points P. Clusters are uniquely defined as the equivalence classes induced by ∼L.

Cluster number versus length scale

The scale L is crucial to the definition of the clusters. If we compare the clusters induced by

two different scales L1 < L2, on the same set of points, we easily find that two points that are

in the same cluster with respect to the shorter scale are always in the same cluster with respect

to the longer scale,

(L1 ≤ L2) ⇒ ((∀)A,B ∈ P, A ∼L1 B ⇒ A ∼L2 B ) . (4.3)
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Figure 4.3: The dependence of the number of clusters NC on the length scale L (for Ntotal points

distributed randomly in a square of area Atotal) appears to follow a universal function as shown

in Eq. 4.4. The curves shown are from Ntotal = {1000, 5000, 10000} points randomly placed in

a unit square.

In other words, each cluster induced by L1 is a subset of a cluster induced by L2, and as the

length parameter is increased, the clusters grow in size and their number decreases.

One way to characterize the distribution of particles is to analyze the dependence of the

number of clusters on the lengh parameter, NC(L). We have established that NC(L) is a

decreasing function for any given set of points. As L → 0, each point in P is its own cluster,

and as L increases beyond the largest point to point distance, the entire set P forms a single

cluster. 1

We found through numerical simulations that the curve for randomly distributed points in

an area can be obtained as a scaled version of a universal function, as shown in Figure 4.3. The

scaling law is as follows:

NC(L) = Ntotal · φ

(
L√

Atotal/Ntotal

)
. (4.4)

The knowledge of this universal function is useful in comparing our experimentally derived

distributions with corresponding random sets of points.

High affinity domains and cluster sizes

Assuming that we have identified the clusters in a set of images, we can use the distribution of

cluster sizes to test our hypotheses regarding the mechanism behind clustering. Below we outline

1The analysis presented here differs from that in [13], which focused on clusters of two or more particles. The

curve obtained there would approach 0, respectively 1 at small and large values of L, with at least one maximum

in between.
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a predictive model for cluster distributions based on the hypothesis of pre-existing high affinity

microdomains. These are small areas in the cell membrane that are atractive to receptors, in

the sense that rceceptors spend a relatively high fraction of theri time in these regions. Such

attractive areas could be, for example, lipid rafts, protein islands, or regions immediately adja-

cent to elements of the cytoskeleton. We do not attempt to discuss here the specific mechanism

behind the attractiveness of thse domains.

We assume that the image we observe (e.g. the left picture in 4.2) is a small, representative

fraction (patch) of the entire cell membrane, so that cell = Q · onepatch with Q � 1. We also

assume that the pre-existing high affinity domains (that eventually hold the receptors clusters)

are of approximately equal size. We divide a cell into B regions of this size. We call these

regions ’boxes’ as we are going to discuss the experiments of throwing particles into these boxes.

Let the number of boxes in high (respectively low) receptor density domain of a patch be Bh

(respectively Bl). Let the total number of particles in high (respectively low) density domains

of a patch be Rh (Rl resp.). Denote the average number of particles per (any) box as λ = R
B ,

where R = Rh +Rl and B = Bh +Bl.

The area of the cell (and the patch of interest) is thus divided between a high (receptor)

density and a low density sector. We denote by f the area fraction occupied by the high density

sector. If the area of the cell is A, then the area of high density domains will be Ah = fA,

and the rest, Al = (1 − f)A coresponds to the low density region. In terms of actual domains

or ’boxes’, the number of boxes in the high (respectively low) density region is Bh = f(B)

(Bl = (1 − f)(B) resp.). The attractiveness of the high density domains is α. The ratio of

the number of receptors in the high- and low-density domains is α times higher than that of

the respective areas: Rh
Rl

= αBh
Bl

. Therefore, Rh = R αf
1+αf and Rl = R 1

1+αf (see [9] for further

discussion).

In general, if we did not distinguish between high and low density boxes (and assuming

Q � k, i.e. the membrane has much more patches than the size of a cluster), the probability

that one box has exactly k particles is given by a Poisson distribution, fk = e−λ · λk/k! where

λ = R/B is the average number of particles per box. Consequently, the probability for one

particle to be found in a box that has k particles (including itself) is

gk ≡ fk−1 = e−λ · λk−1

(k − 1)!
. (4.5)

In the two-sector case, the probability that one particle falls into the high density region is

Rh/R, the prob that it falls in the low density region is Rl/R, that is

ph ≡
Rh
R

=
αf

1 + α · f
, pl ≡

Rl
R

=
1

1 + α · f
. (4.6)
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Figure 4.4: Detail of the cluster map shown in Figure 4.2. Disks of radius L = 48.9 nm (70

pixels) are drawn around each point. Disks corresponding to the same cluster have the same

color.

Apply (4.5) to each sector, with λh and λl defined as

λh =
Rh
Bh

=
αλ

1 + α · f
, λl =

Rl
Bl

=
λ

(1 + α · f) · (1− f)
(4.7)

to finally obtain

g
(h)
k = ph · e−λh ·

λk−1
h

(k − 1)!
; g

(l)
k = pl · e−λl ·

λk−1
l

(k − 1)!
. (4.8)

The probability that a particle is in any box with k particles total, is gk = g
(h)
k +g

(l)
k . Substituting

(4.6), (4.7) and (4.8) into gk, we have a model prediction for the distribution of particles by cluster

size, in terms of the parameters α, f , R and B. For a given image or set of images the total

number of particles is known (R = 2485 total for the 19 images discussed here). We will use

this to estimate α, f and B by a least square fit to the observed cluster size distributions.

4.2 Results and discussion

Cluster number distributions

We constructed clusters for values of the distance parameter ranging from 0.698 nm (1 pixel) to

a few hundred, in order to obtain the full NC(L) dependence. We can visualise the distribution

of clusters for various length scales. A higher resolution detail of the cluster map shown in

Figure 4.2 is shown in Figure 4.4. We draw a disk of radius approximately equal to the length

scale (48.89 nm in this case) around each point. The colors are used to indicate the different

clusters.

The dependence of the number of clusters on the length scale is plotted in Figure 4.5, for a

single image as well as for the entire set analyzed. Comparison with the random distribution

(blue lines) shows clear and consistent deviations. Both the individual image and the cumulative
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Figure 4.5: Number of clusters as a function of the length parameter (red lines) in a single TEM

image (left), and a set of 15 images (right), compared to the average number of clusters expected

from a random distribution with the same number points in the same area (blue lines).

plot exhibit a sharp initial decrease, followed by a significantly slower variation. The initial fast

decrease corresponds to the fact that particles are much closer to their neighbors than the average

distance. In an ideal clustered scenario, where the intr-cluster separation between particles is

smaller than the shortest distance between clusters, the number of clusters would decrease

until the largest intra-cluster distance, and one would then obseve a plateau until L becomes

comparable to the inter-cluster distance. While we do not observe a perfect scale separation,

both the single image and the cumulative curves exhibit a clear change in behavior around 27.93

nm (40 pixels), and a shoulder that extends to approximately 48.89 nm (70 pixels).

Nearest neighbor distance distributions

We also constructed nearest-neighbor and next nearest neighbor distance distributions for all the

images. Similarly to the cluster analysis results, the NND distributions (Fig. 4.6) obtained from

our set of TEM imagesshow consistent deviations from the random prediction. A significant

fraction of the distribution (larger in the nearest-neighbor case) is well approximated by the

theoretical distribution corresponding to a smaller inter-particle distance, with a correction for

a minimal separation. A smaller fraction of the distances is outside this high density mode.

The next nearest neighbor distributions (Fig. 4.7) may be more relevant to clustering, since

VEGF receptors may form dimers, and thus the nearest neighbor of a receptor may be its dimer

partner. They exhibit the same features as the nearest neighbor distributions; the majority of

the distance distribution falls in a high density mode that is well approximated by the dashed

curve. Compared to Figure 4.6, a larger fraction of the distances in Fig. 4.7 falls outside the

high density mode, possibly forming a second mode that corresponds to inter-cluster distances.
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Figure 4.6: Nearest-neighbor distance distributions obtained from a single TEM image (left),

and from a set of 15 similar images (right). Solid blue lines indicate the theoretical distributions

corresponding to the same number of receptors distributed randomly in the same area.
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Figure 4.7: Next nearest-neighbor distance distributions corresponding to Figure 4.6
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Extracting a “natural” cluster size parameter

The comparisons we made with random distributions are compelling evidence of a behavior

that is not consistent with pure random placement. The likelihood of observing our results

in a random distribution are astronomically small. However, the ultimate goal of our cluster

analysis is to characterize the distribution of receptors in a way that allows for quantitative

comparisons between diverse cells, receptors and experimental settings, as well as a mechanistic

understanding of the drivers of the observed behavior.

Similarly to previous work on hierarchical, distance based clustering, the first objective is

to derive a natural length scale. If the particles are grouped into naturally defined clusters (in

the sense of a clear scale separation between intra- and inter-cluster distances), this “natural”

length scale can be interpreted either as the typical, or the largest intra-cluster distance between

a particle and its nearest neighbor. The second definition seems more practical since this would

result in correctly separating the particles into clusters. A precise mathematical definition would

be the point on the NC(L) curve with the lowest slope, which falls approximately at 48.89 nm

(70 pixels).

Toward a quantitative model of clustering

Another approach to understanding the observed distributions is to attempt to reconstruct

them based on a hypothesis regarding the mechanism of clustering. The dashed lines in Figures

4.5,4.6, and 4.7 have been obtained using a rudimentary “model”, as follows. We first scaled the

theoretical (random) distributions to correspond to a higher particle density Deff . We then added

a correction to take into account a minimal separation of points, by setting the corresponding

pdf. p(x) to zero for x ≤ Dexclusion in the case of neareast neighbor distance distributions, and

by shifting the entire cluster size distribution by the exclusion distance Dexclusion. Finally, the

curves were scaled vertically to match the integral of the high density mode (NND) , respectively

the total number of points (clustering).

The high density model described above only explains the first mode of the observed cluster

number distributions and of the nearest neighbor distance plots. The rest of the distribution

is somewhat similar to a lower density random distribution, that may reflect the inter-cluster

spacing. One future line of investigaton would be to attempt to reproduce both modes, based

on a model of randomly distributed clusters, consisting of particles randomly distributed at q

high density. The typical size of a cluster could be inferred from the distribution of the number

of particles in a cluster, which was not discussed here due to time constraints.
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Figure 4.8: Distribution of particles by cluster size, in each of the 19 images we analyzed. Each

color represents the distribution of one image. We excluded one very large cluster (a cluster

contains 160 receptors) from the analysis.

Parameter estimation from cluster size distributions

We analyzed a group of 19 images of cells prepared under similar conditions. The number

of observed labels varied from as low as a few tens to approximately 500. The individual

distributions of particles by cluster size (grouped in intervals for larger clusters) are shown in

Figure 4.8.

We compared the model predictions for the cluster size distributions gk with the experimental

data using a least square distance between the model and experimental cluster size distributions,

as shown in Figure 4.9. In the results shown, the fit was performed using a simulated annealing

(Metropolis-Hastings) algorithm that quickly identified a range of good fits. The best fit shown

in the figures corresponds to B = 354 ’boxes’ per image, an area fraction of f = 21% and

attractiveness of α = 24 for the high affinity domains.In this optimization run, we limited

f < 0.25 and B > 200. B corresponds to the typical size of a single attractive domain and should

therefore be comparable to the typical area occupied by a cluster. Fits of similar optimality can

be obtained with significantly different parameter sets, for example α = 4, f = 31%, and B = 65

obtained without imposing the limitations mentioned above. Therefore this result should not

be interpreted as a measurement of these quantitites, but rather as a proof of the principle that

the observed clsuter size distributions are consistent with the high density domain hypothesis.
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Figure 4.9: Comparison between the probability mass function gk with the parameters α = 24,

f = 0.21, B = 354 to the experimental data. The experimental data is the aggregate of 19

images, with one very large size cluster (a cluster contains 160 receptors) omitted.
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Chapter 5

Quantitative description and impact

of VEGF receptor localization

5.1 From microscopic details to global behavior

Our model building program relies on a sequence of models, with three different levels of detail.

Abstractions and/or average behaviors obtained from one level serve as inputs to the next,

higher level. We use the idea of high affinity patches as a working hypothesis.

1. At the microscopic level, we investigate the localization, motion and interactions of in-

dividual receptors. As discussed in previous chapter, clusters are not consistent with a random

distribution. The identification of clusters can be done by a hierarchic clustering algorithm.

The observed receptor trajectories exhibit anomalous diffusion. We model this with random

walks in the presence of various geometries of semi-permeable barriers. Comparisons of simulated

and experimental step size distributions also support the high density patch hypothesis. In

summary, the microscopic data combined with a Brownian motion model can provide estimations

of the individual and combined size, as well as the attractiveness of the high density patches.

In addition, direct measurements based on SPT can provide exit and entrance rates as well as

dimerization and dissociation rates for molecular species of interest.

2. The information on the size and properties of high affinity patches is used at the intermedi-

ate, mesoscopic level, to simulate the reactions and interchange of receptors and receptor-ligand

complexes. At this level, each high density patch is abstracted into a single, well mixed com-

partment. Since receptors tend to diffuse quickly through the non-attractive region until they

are [re]trapped by an attractive patch, the entire non-attractive region is represented as a single

compartment. The mesoscopic model is an abstraction of the microscopic models, where spatial

degrees of freedom have been discretized. Mobility information is encapsulated in the particle

exchange rates between domains, the capacity of the corresponding compartments, as well as
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Figure 5.1: (a,b) Attractive microdomains occupy a small fraction of the cell membrane, and their measurements may be

extracted from experimental images. (c) Although the receptors can move through the non-attractive regions, they tend to

remain in the smaller clusters. (d) In the mesoscopic approach each microdomain, as well as the rest of the membrane (the

“normal” region), are represented as well-mixed compartments that may exchange particles.

the effective dimerization rates with the compartments. In terms of implementation, this lev-

el requires the composition of a spatial network of domains, defined by an oriented, weighted

adjacency graph, and a chemical reaction network.

3. The third, highest level of abstraction is obtained by (1) merging all attractive patches

into a single one and (2) making the continuum approximation. The resulting ODE system is

discussed in the remainder of this paper.

5.2 ODE model and steady states

Consistent with the emerging experimental picture, we make two assumptions. First, we assume

that a fraction f ≤ 1 of the membrane is covered by domains that have a physical affinity

for receptors. As receptors diffuse throughout the membrane, the probability of crossing the

boundary of such an attractive domain is asymmetric - all else being equal, inbound crossing

is α ≥ 1 times more likely than outbound. We will consider the aggregate of the high affinity

patches as a single high density domain, and refer to the rest as the low density domain or sector.

Second, we will set the mobility of receptor dimers lower than that of monomers. These two

ingredients result in the preferential accumulation of receptors in the high density patches. We

investigate the effect of this accumulation (clustering) on dimerization and signal initiation. We

are especially interested in establishing whether there is a postive feed-back between dimerization

and receptor clustering.

Reactions and Equations

We follow the mathematical modeling framework of MacGabhann, Popel and coworkers [16]

to describe free (R) and ligand-bound (VR) receptors, receptor dimers (RR), and three ligand-

bound dimer complexes (VRR, RVR, ∆); the ligand is considered constant. Their structure and
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Figure 5.2: Reactions in the two-compartment model. Each horizontal sheet contains the reactions in one of the domains;

transport reactions are ”vertical”. Here we omitted the added monomer receptors in reactions C1x and C2x, as well as the

added VEGF (V ) in reactions C3x and C7x.

reactions among them are illustrated in Figure 1.1. For simplification, we assume that there

is a region in the membrane with high affinity for VEGF receptors, and describe the rest as

a second,“normal” or low affinity one. Each of the six species is presented in both domains;

similary, each of the 7 reactions has a copy in each domain, see Figure 5.2. Assuming the free

VEGF concentration is kept constant at V0, we have a 12-dimensional state vector,

X = ([R1], [R2], [RR1], [RR2], [VR1], [VR2], [VRR1], [VRR2], [RVR1], [RVR2], [∆1], [∆2])T .

(5.1)

In addition to the 28 (irreversible) reactions that represent molecular transformations, we de-

scribe the transfer of every molecular species between domains as a separate reaction, bringing

the total to 40 (irreversible) reactions. It is convenient to group pairs of opposing reactions

into single reversible reactions [24], leaving us with 20 reversible reactions, as illustrated in Fig-

ure 5.2. The arrows represent the conventional direction for the corresponding fluxes. The 20

reactions with reaction rates assuming mass-action are denoted as follows (where x = 1, 2):

C1x : Rx + Rx
b−⇀↽−
d
RRx C2x : VRx + Rx

b−⇀↽−
d
VRRx; C3x : RRx + V0

2a−⇀↽−
c

VRRx;

C4x : VRRx
ai−⇀↽−
ci

∆x; C5x : RVRx
bi−⇀↽−
di

∆x; C6x : VRx + Rx
as−⇀↽−
c

RVRx;

C7x : Rx + V0
a−⇀↽−
c
VRx;

D1 : R1
k1−⇀↽−
k2

R2; D2 : RR1

βk1−−⇀↽−−
βk2

RR2; D3 : VR1
k1−⇀↽−
k2

VR2;

D4 : VRR1

βk1−−⇀↽−−
βk2

VRR2; D5 : RVR1

βk1−−⇀↽−−
βk2

RVR2; D6 : ∆1

βk1−−⇀↽−−
βk2

∆2.

(5.2)
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Figure 5.3: Schematic and notations for the high- and low-density areas on the cell surface. We assume that a fraction

of the membrane (area A1) has a higher affinity for VEGF receptors than the rest of the membrane. This translates into

asymmetric rate ’constants’ for the Φin, and Φout fluxes.

The corresponding stoichiometry matrix is

Γ =



−2 0 −1 0 0 0 0 0 0 0 −1 0 −1 0 −1 0 0 0 0 0

0 −2 0 −1 0 0 0 0 0 0 0 −1 0 −1 1 0 0 0 0 0

1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 −1 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 1 0 0 0

0 0 1 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 1 0 1 0 −1 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1



.

Effective concentrations: We will use effective concentrations to describe the amounts of

each species found in the two domains; [Sx]eff is defined as the ratio of the amount (number of

mols) of substance S in domain x (x = 1, 2), divided by the total area of the cell membrane

Acell. We will refer to the usual concentrations as physical, [Sx]phys. Generally, the meaning

of the concentrations and rate constants is similar to the standard approach in [16], with some

important differences as discussed below.

Consider first the exchange reactions (D1 . . .D6 in eq.(5.2) ), exemplified by reaction D1 :

R1 −⇀↽− R2. Let the fraction of the area that has high affinity to VEGF receptors be f . The size

of the high (VEGF) density area is A1 = f ·Acell, and the remaining area is A2 = (1− f) ·Acell

(see Figure 5.3). Let us derive the flux of unbound receptors R between A1 and A2, represented

by the reaction R1 −⇀↽− R2. Let [R1]phys and [R2]phys be the physical concentrations of R in A1

and A2, respectively, defined as the amount (in fmol) of R in A1 (respectively A2), divided by

the area A1 (resp. A2). The effective concentrations, denoted as [R1]eff ([R2]eff resp.), are the
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amounts of R in A1 (A2 resp.), but divided by the total area Acell. Therefore,

[R1]phys =
[R1]eff

f
and [R2]phys =

[R2]eff

(1− f)
, (5.3)

with units of fmol/cm2 for all concentrations.

We assume that the flux of receptors, Φout (amount of substance per unit time and boundary

length, in fmol/(cm · s) in our case), from A1 to A2 is proportional to the physical concentration,

Φout = γout[R1]phys; similarly, the receptor flux into A1 is Φin = γin[R2]phys. The factors γin

and γout reflect the physical permeability of the boundary and have units of cm/s. We define

the attractiveness, α ≡ γin/γout, to reflect the asymmetry of the permeabilities; so we have

Φin = γin[R2]phys = αγout[R2]phys, and α ≥ 1 means that a receptor or a dimer is more easily

transferred into the high concentration area A1 than into A2. Consequently, the exchange fluxes

between the two domains will balance when the ratio of the respective physical concentrations

is α, i.e. Φin = Φout ⇔ αγout[R2]phys = γout[R1]phys ⇔ α[R2]phys = [R1]phys.

Consider the net rate of change of concentrations [R1]phys and [R2]phys, due to the exchange

of receptor monomers between the two compartments, we have(
d[R1]phys

dt

)
Φ

=
(Φin − Φout) · L0

A1
;

(
d[R2]phys

dt

)
Φ

=
(Φout − Φin) · L0

A2
, (5.4)

where L0 is the length of the boundary between A1 and A2. Substitute A1, A2, Φ1 and Φ2 into

(5.4): (
d[R1]phys

dt

)
Φ

= (α[R2]phys − [R1]phys)
L0γout

fAcell(
d[R2]phys

dt

)
Φ

= ([R1]phys − α[R2]phys)
L0γout

(1− f)Acell
.

Defining a common time constant δ ≡ Acell/(L0γout), we have(
d[R1]phys

dt

)
Φ

= (α[R2]phys − [R1]phys)
1

fδ(
d[R2]phys

dt

)
Φ

= ([R1]phys − α[R2]phys)
1

(1− f)δ
.

Finally, substituting the effective concentrations from (5.3) yields(
d[R1]eff

dt

)
Φ

=
α

δ(1− f)
[R2]eff − 1

δf
[R1]eff ,(

d[R2]eff

dt

)
Φ

= − α

δ(1− f)
[R2]eff +

1

δf
[R1]eff .

The above result implies the identity d[R1]eff

dt + d[R2]eff

dt = 0, which reflects particle number con-

servation. This is the main advantage of using effective concentrations.
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We follow the same line of reasoning for the other transfer reactions. The exit rate constants

also reflect the generic mobility of particles; in a more detailed simulation, one could relate them

to the diffusion constants and the permeability of the membranes. Here we will assume that

exit rate constants are the same as above for ligand-bound monomer species V Rx. For dimer

species, RRx, V RRx, RV Rx and ∆x, we will use reduced exit rate constants, proportional to

γin and γout, and denote the coefficient as β. In summary, the six exchange fluxes are

φ1 = k1[R1]eff − k2[R2]eff , φ2 = β(k1[RR1]eff − k2[RR2]eff),

φ3 = k1[VR1]eff − k2[VR2]eff , φ4 = β(k1[VRR1]eff − k2[VRR2]eff),

φ5 = β(k1[RVR1]eff − k2[RVR2]eff), φ6 = β(k1[∆1]eff − k2[∆2]eff),

where k1 = 1
δf and k2 = α

δ(1−f) .

Next, we consider the rates of chemical reactions, molecular transformations that take place

within each area. As an example, consider a reaction in the high density area. For C21 :

VR1 + R1
b−⇀↽−
d
VRR1, we have

d[R1]phys

dt
=

[dVR1]phys

dt
= −b[R1]phys[VR1]phys + d[VRR1]phys,

d[VRR1]phys

dt
= b[R1]phys[VR1]phys − d[VRR1]phys. (5.5)

Substituting [R1]phys = [R1]eff/f , [VR1]phys = [VR1]eff/f and [RVR1]phys = [RVR1]eff/f , we

have

d[VRR1]eff

dt
= −d[R1]eff

dt
= −d[VR1]eff

dt
=
b

f
[R1]eff [VR1]eff − d[VRR1]eff , (5.6)

therefore the flux for reaction r21 is

φ21 =
b

f
[R1]eff [VR1]eff − d[VRR1]eff .

The only difference between the above rate law and the one in terms of physical concentrations

(5.5), is that the dimerization rate constant is scaled by the relative size of the domain, b→ b/f .

This reflects the effect of clustering on dimerization; if the same number of reacting molecules

are forced into a smaller space, their collision rate and implicitly, the absolute dimerization rate,

will increase. Similar considerations give the following for the 14 reversible reactions:

φ11 = 2b
f [R1]eff2 − d1[RR1]eff , φ12 = 2b

1−f [R2]eff2 − d[RR2]eff

φ21 = b
f [R1]eff [VR1]eff − d[VRR1]eff , φ22 = b

1−f [R2]eff [VR2]eff − d2[VRR2]eff

φ31 = 2aV0[RR1]eff − c[VRR1]eff , φ32 = 2aV0[RR2]eff − c[VRR2]eff

φ41 = ai[VRR1]eff − 2ci[∆1]eff , φ42 = ai[VRR2]eff − 2ci[∆2]eff

φ51 = bi[RVR1]eff − di[∆1]eff , φ52 = bi[RVR2]eff − di[∆2]eff

φ61 = as
f [R1]eff [VR1]eff − c[RVR1]eff , φ62 = as

1−f [R2]eff [VR2]eff − c[RVR2]eff

φ71 = aV0[R1]eff − c[VR1]eff , φ72 = aV0[R2]eff − c[VR2]eff .

(5.7)
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We denote by Φ(X) = (φ11, φ12, φ21, · · · , φ71, φ72, φ1, · · · , φ6)T , then the system of differen-

tial equation assuming mass-action is

dX

dt
= Γ · Φ(X). (5.8)

Parameter values

Receptor Diffusivity and Boundaries: For the diffusivity of VEGFR, we used the exit

rate of γout = 8.23 · 10−6 cm/s based on the expression given in [16]. The cells are assumed

to have a surface area of 1000µm2 [16]; assuming a spherical shape, the radius of a cell works

out to approximately rcell = 8.9 µm, and the length of the high density area boundary is

L0 = 2π

√
r2
cell −

(
rcell − 1000f

2π·rcell

)2
µm, where f ≡ A1/Acell is the relative fraction of the HD

area. The L0 and γout can be readily substituted into the definition δ = Acell/(L0γout). The

graph of δ as a function of f is shown in Figure 5.4. We can see that δ decreases faster in the

beginning as f is increasing from 0 to 0.5.
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Figure 5.4: Graph of δ as a function in f (0 ≤ f ≤ 0.5).

Following [16], we assume that there are 40,000 receptor monomers on one cell membrane,

corresponding to Rtotal ≈ 6.6 fmol · cm−2.

Reaction Rates: We use the model of [16], with base units as follows: volume concentration

(of VEGF only, V0), in nM; all surface concentrations in fmol/cm2; time in s. Except for

VEGF, whose concentration is not a variable, all molecular species in the model are surface

bound. Consequently, the units of mass-action rate constants are s−1 for unimolecular reactions,

(nM · s)−1 for reactions involving VEGF, and cm2/(fmol · s) for on-surface dimerizations. The

rate constants are summarized in the table below.
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Reaction Direction Notation Value Unit Reaction Direction Notation Value Unit

Rx + Rx −⇀↽− RRx → b 0.1 cm2/(fmol · s) R1 −⇀↽− R2 → k1 0.0277 s−1

← d 0.01 s−1 ← k2 0.0154 s−1

VRx + Rx −⇀↽− VRRx → b 0.1 cm2/(fmol · s) RR1 −⇀↽− RR2 → βk1 0.01385 s−1

← d 0.01 s−1 ← βk2 0.0077 s−1

RRx + V0 −⇀↽− VRRx → 2a 0.0044 (nM · s)−1 VR1 −⇀↽− VR2 → k1 0.0277 s−1

← c 0.026 s−1 ← k2 0.0154 s−1

VRRx −⇀↽− ∆x → ai 0.949 s−1 VRR1 −⇀↽− VRR2 → βk1 0.01385 s−1

← ci 0.026 s−1 ← βk2 0.0077 s−1

RVRx −⇀↽− ∆x → bi 0.446 s−1 RVR1 −⇀↽− RVR2 → βk1 0.01385 s−1

← di 0.02 s−1 ← βk2 0.0077 s−1

VRx + Rx −⇀↽− RVRx → as 0.21 cm2/(fmol · s) ∆1 −⇀↽− ∆2 → βk1 0.01385 s−1

← c 0.026 s−1 ← βk2 0.0077 s−1

Rx + V0 −⇀↽− VRx → a 0.0044 (nM · s)−1 NOTE: the values for k1 and k2 given here correspond to

← c 0.026 s−1 f = 0.1, α = 5, β = 0.5.

Steady States

To solve for the closed form steady-state of the differential equation system (5.8), we use the

method introduced in [18]. The steady states of this system are sets of concentration values

{[R1], [R2], [RR1], [RR2], [VR1], [VR2], [VRR1], [VRR2], [RVR1], [RVR2], [∆1], [∆2]} for which the

expression on the right-hand side of (5.8) is identically zero. Define an expanded vector XE that

consists of the original variables of X plus the binomials [R1]2, [R2]2, [R1] · [VR1] and [R2] · [VR2]

as

XE ≡ ([R1], [R2], [RR1], [RR2][VR1], [VR2], [VRR1], [VRR2], [RVR1], [RVR2],

[∆1], [∆2], [R1]2, [R2]2, [R1] · [VR1], [R2] · [VR2]
)T

. (5.9)

As the rate law vector Φ(X) = (φ11, φ12, φ21, · · · , φ71, φ72, φ1, · · · , φ6)T is a linear combination

of XE , it can be interpreted as a linear expression: Φ(X) = AE ·XE . So we have

dX

dt
= Γ · Φ(X) = Γ ·AE ·XE = ĀE ·XE ,

where ĀE = Γ · AE (the 12 × 16 dimensional expanded system matrix ĀE is too large to

reproduce within normal text). We substitute X1 ≡ [R1]2, X2 ≡ [R2]2, Y1 ≡ [R1] · [VR1]

and Y2 ≡ [R2] · [VR2] into XE , and denote the new vector as X̄E . Then all elements in X̄E

are linear variables, and the steady state problem is equivalent to that for a linear system
dX
dt = Γ · Φ(X) = ĀE · X̄E , find the set of X̄E such that

dX

dt
= 0 ⇔ ĀE · X̄E = 0. (5.10)

By Theorem 1 in [18], ĀE has the same rank as the original system, i.e. rank(ĀE) =

rank(Γ) = 11. For the linear equation system ĀE · X̄E = 0, as rank(ĀE) = 11, and there are

16 variables in X̄E , we can solve 11 variables (dependent variables) as a function of the other 5
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(free variables). To achieve that, we first discard a row of ĀE , whose loss would not reduce the

rank of ĀE . In this case, we select row 1.

Next, we select the 11 dependent variables. The set of dependent variables has to be deter-

mined carefully to make the method given in [18] work. We select X̄D = ([RR1], [RR2], [VR1],

[VR2], [VRR1], [VRR2], [RVR1], [RVR2], [∆1], [∆2],Y2)T as the set of dependent variables, and

X̄F = ([R1], [R2],X1, X2, Y1)T as the set of free variables. We use Cramer’s Rule to solve for X̄D

in terms of X̄F . Denote the solution as

yi = ai1[R1] + ai2[R2] + ai3X1 + ai4X2 + ai5Y1,

where i = 1, 2, · · · , 11, yi ∈ XD and aij are algebraic combinations of reaction rate constants.

Substitute the bilinears X1 = [R1]2, X2 = [R2]2, Y1 = [R1][VR1] and Y2 = [R2][VR2] back to

X̄D and X̄F , then the solution can be rewritten as

yi = ai1[R1] + ai2[R2] + ai3[R1]2 + ai4[R2]2 + ai5[R1][VR1], (5.11)

where i = 1, 2, · · · , 11. We carefully select two solutions

[VR1] = a31[R1] + a32[R2] + a33[R1]2 + a34[R2]2 + a35[R1][VR1] (5.12)

[VR2] = a41[R1] + a42[R2] + a43[R1]2 + a44[R2]2 + a45[R1][VR1]. (5.13)

It is easy to solve (5.12) for [VR1]. Denote the solution as [VR1] = ϕ1([R1], [R2]). We then

substitute the solution of [VR1] to (5.13) and let [VR2] = ϕ2([R1], [R2]). As

y2 = [R2][VR2] = a11,1[R1] + a11,2[R2] + a11,3[R1]2 + a11,4[R2]2 + a11,5[R1][VR1], (5.14)

we substitute [VR1] = ϕ1([R1], [R2]) and [VR2] = ϕ2([R1], [R2]) into (5.14), and this will reduce

the variables of (5.14) to [R1] and [R2]. The resulting identity is a cubic function that only has

[R1] and [R2] as variables. By Cardano’s method, we solve the cubic function symbolically for

[R2], and denote the only positive real root by [R2] = ψ([R1]). Substituting [R2] = ψ([R1]) to

[VR1] solution, we then have

[VR1] = ϕ1([R1], [R2]) = ϕ1([R1], ψ([R1])).

As [R2] and [VR1] are expressed as algebraic functions with variable [R1], all the variables in

XF = {[R1], [R2], [R1]2, [R2]2, [R1][VR1]} can be represented as an explicit function of [R1], and

consequently all the solutions of (5.11) can be rewritten as functions of [R1]. We expressed all

12 variables as functions of [R1]. With the conservation law

Rtotal = [R1] + [R2] + 2[RR1] + 2[RR2] + [VR1] + [VR2] + 2[VRR1] + 2[VRR2]

+2[RVR1] + 2[RVR2] + 2[∆1] + 2[∆2] , (5.15)
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we can solve the equation for [R1] numerically for any given value of Rtotal. For all parameter

values used in this paper, the dependence on [R] was consistent with a single real root, leading

us to the conclusion that the system had a unique steady state. This does not exclude the

possibility of multiple steady states for other parameter sets.

5.3 Results and discussion

We obtained steady states for the differential equations (5.8) by numerically solving the steady

state equations as outlined above, for various values of the relative size of the high density area

(f = 5% . . . 30%), the attractiveness parameter (α = 1 . . . 10), and for VEGF concentrations

ranging from 0.01 nM to 5 nM. We considered three situations for the relative mobility of

dimers β = 0.5, 0.25, 0 (note that the β = 0.5 case corresponds to equivalent monomer and

dimer mobilities).

We first performed calculations using the full model of [16]. The equilibrium values for the

total number of receptors and signaling complexes in the two domains, as a function of the

three parameters (α, f , V0), are shown in Figures 5.5 and 5.6. Not surprisingly, increasing

the attractiveness parameter α, relative size f of the HD area results in an increasing fraction

of receptors and signaling complexes in the high density area. Increasing the concentration of

VEGF leads to overall increased singaling but no significant shifts between the domains.

In Figure 5.5, the total amount of signaling complexes increases only weakly as a function of

the attractiveness parameter α. This set calculations was performed including both the ligand-

induced dimerization as well as the pre-dimerization (DPD) mechanism of the Mac Gabhann-

Popel model. The DPD rate constant b = 0.1 results in a high degree of dimerization (more

than 90% dimers), even in the absence of ligand or a high affinity domain.

We were especially interested in the effect of dimerization on the preferential accumulation

of receptors. While the results in Fig. 5.5 and 5.6 indicate that the accumulation effect is

stronger when dimers are not allowed to cross domain boundaries, the ligand dose response

curves (rightmost panels) show only a marginal effect due to the presence of ligand.

The explanation for the weakness of these effects is the presence of ligand-independent dimer-

ization (or pre-dimerization) in the Mac Gabhann-Popel model, as well as the high value of the

on-surface VEGF-receptor binding constant aS . The effect of dimerization on clustering is re-

vealed when pre-dimerization is turned off (by setting b = 0.0001 in the rate laws) and the

on-surface ligand binding rate as is reduced. These results are shown in Fig. 5.7 and 5.8. The

signal is clearly increased as the affinity of the HD domain increases. There is an optimum in

the size of the HD area (middle panel, Fig. 5.7). The effect on the signal persists when dimers

are allowed to move. While the dependence of localization on attractiveness and domain size are

similar to the previous set, the depedendence on V0 is dramatically different in Fig. 5.8, showing

44



0 5 10
0

0.5

1

1.5

2

α

Ef
fe

ct
iv

e 
co

nc
en

tra
tio

n 
[fm

ol
 / 

cm
2 ]

0.1 0.2 0.3
0

0.5

1

1.5

2

Signaling complexes, DPD included

f

Ef
fe

ct
iv

e 
co

nc
en

tra
tio

n 
[fm

ol
 / 

cm
2 ]

0 2 4
0

0.5

1

1.5

2

2.5

3

V0 [nM]

Ef
fe

ct
iv

e 
co

nc
en

tra
tio

n 
[fm

ol
 / 

cm
2 ]

Figure 5.5: Signaling complexes (RV R and ∆) in the high-affinity (red) and normal (blue) domains, as well as total signal

(black) as a function of the attractiveness factor α, the relative size of the HD domain f , and the concentration of VEGF

ligand V0. The values for the fixed parameters were α = 5, f = 0.1, V0 = 0.1 nM. Solid lines correspond to the case

when dimers are not allowed to cross domain boundaries, and dashed lines correspond to fully mobile dimers. The total

signal (black lines) depends weakly on the affinity and size of the attractive domain due to the combined effects of the

relatively high (V0 = 0.1 nM) VEGF concentration value used in the calculations, as well as due to the presence of strong

ligand-independent dimerization (DPD) in the model.
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Figure 5.6: Total number of receptors in the high-affinity (red) and normal (blue) domains, in the same set of calculations

as in Figure 5.5. The affinity and size of the HD domain strongly influence clustering (represented by the accumulation

of receptors in the HD domain), however, the effect of VEGF is marginal, because the model includes ligand-independent

dimerization (DPD).
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Figure 5.7: Signaling complexes (RV R and ∆) in the high-affinity (red) and normal (blue) domains, as well as total signal

(black) as a function of the attractiveness factor α, the relative size of the HD domain f , and the concentration of VEGF

ligand V0. The values for the fixed parameters were α = 5, f = 0.1, V0 = 0.1 nM. Solid lines correspond to the case when

dimers are not allowed to cross domain boundaries, and dashed lines correspond to fully mobile dimers. This calculation

used significantly reduced on-surface dimeriztion rates, namely as = 0.0021 and b = 0.0001 (essentially eliminating DPD).

By contrast with Figure 5.5, the affinity of the HD domain strongly enhances the signal, as dimers are formed at a higher

rate in the HD domain.
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Figure 5.8: Total number of receptors in the high-affinity (red) and normal (blue) domains, in the same set of calculations

as in Figure 5.7. By contrast with Figure 5.6, the presence of VEGF strongly promotes the accumulation of receptors in

the HD domain. Dimers are formed at a higher rate in the HD domain, and become trapped, causing the HD domain to

act as a receptor sink.
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a significant increase in the number of receptors in the HD area as V0 is increased. This effect is

completely absent when dimers are allowed to move at the same rate as monomers and is very

significantly weakened at the intermediate mobility value we used (those results not shown).

In summary, our simple model shows a positive feedback between dimerization / signaling

and receptor clustering. Accumulation of receptors in a high affinity patch enhances dimerization

and signaling. On the other hand, increased dimerization, in the presence of ligand, inceased

the accumulatin of receptors in the high affinity patch. The latter effect also requires a dramatic

reduction in the mobility of dimers. Finally, we should point out that the empirically obtained

model parameters lead to dimerization rates that are so high that the effects we described

here would be marginal; however, the empirically determined parameters are what one would

observe as a result of affinity-induced clustering. In other words, in the presence of high density

domains, significanly lower dimerization rate constants may be sufficient to achieve the observed

signaling.

47



Bibliography

[1] S. Akbari, M. Ghanbari & S. Jahanbekam (2009): On the list dynamic coloring of graphs.

Discrete Appl. Math. 157, pp. 3005–3007.

[2] M. Alishahi (2011): On the dynamic coloring of graphs. Discrete Appl. Math. 159, pp.

152–156.

[3] N. L. Andrews, K. A. Lidke, J. R. Pfeiffer, A. R. Burns & B. S. Wilson (2008): Actin

restricts FCeRI diffusion and facilitates antigen-induced receptor immobilization. Nat Cell

Biol 10, pp. 955–963, doi:10.1038/ncb1755.

[4] K. Appel & W. Haken (1977): Every plane map is four colorable, Part 1, Reducibility.

Illinois J. Math. 21, pp. 429–490.

[5] K. Appel, W. Haken & J. Kock (1977): Every plane map is four colorable, Part 2, Re-

ducibility. Illinois J. Math. 21, pp. 491–567.

[6] D. A. Birk, J. Barbato, L. Mureebe & R. A. Chaer (2010): Current insights on the bi-

ology and clinical aspects of VEGF regulation. Vasc Endovascular Surg 42, pp. 517–530,

doi:10.1177/1538574408322755.

[7] J. A. Bondy & U. S. R. Murty (2008): Graph Theory.

[8] Y. Chen, S.-H. Fan, H.-J. Lai, H.-M. Song & L. Sun (2012): On dynamic coloring for planar

graphs and graphs of higher genus. Discrete Appl. Math. 160, pp. 1064–1071.

[9] Ye Chen, Christopher Short, Adam M. Halasz & Jeremy S. Edwards (2013): The impact

of high density receptor clusters on VEGF signaling. Electronic Proceedings in Theoretical

Computer Science (125), pp. 37–52, doi:10.4204/EPTCS.125.3.

[10] C. Ding, S. Fan & H.-J. Lai (2008): Upper bound on conditional chromatic number of

graphs. J. of Jinan University 29, pp. 7–14.

[11] R. J. Duffin (1965): Topology of series-parallel networks. J. Math. Anal. Appl. 10, pp.

303–318.

48



[12] L. Esperet (2010): Dynamic list coloring of bipartite graphs. Discrete Appl. Math. 158, pp.

1963–1965.

[13] Flor A Espinoza, Janet M Oliver & Bridget S Wilson (2011): Using Hierarchical Clustering

and Dendrograms to Quantify the Clustering of Membrane Proteins. Bull. Math. Biol. 74(1),

pp. 190–211.

[14] N. Ferrara, K. J. Hilla, H. P. Gerber & W. Novotny (2004): Discovery and development

of bevazicumab, an anti-VEGF antibody for treating cancer. Net Rev Drug Discov 3, pp.

391–400, doi:10.1038/nrd1381.

[15] P. Franklin (1934): A six colour problem. J. Math. Phys. 13, pp. 363–369.

[16] F. Mac Gabhann & A. S. Popel (2007): Dimerization of VEGF receptors and implications

for signal transduction: A computational study. Biophysical Chemistry 128, pp. 125–139,

doi:10.1016/j.bpc.2007.03.010.

[17] A. M. Gallegos, S. M. Storey, A. B. Kier, F. Shroeder & J. M. Ball (2006): Structure and

cholesterol dynamics of caveloae/raft and nonraft plasma membrane domains. Biochemistry

45, pp. 12100–12116, doi:10.1021/bi0602720.
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