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ABSTRACT

Censusing and Modeling the Dynamics of a Population of Eastern Hemlock (Tsuga
canadensis L.) Using Remote Sensing

W. Robert Lamar

A population of eastern hemlock (Tsuga canadensis L.) was censused from the ground
using traditional field methods and from the air using large scale, high-resolution, aerial
imagery in the early spring of 1997,1998 and 1999.  A manual crown survey map of the
population, prepared from aerial imagery, was compared to a traditional field census.
Over 60% of the individuals measured on the ground were not detected in the aerial
census.  Tree size, crown density and crown position all played roles in determining a
crown’s visibility from the air.  Nearly all large, upper canopy hemlocks were visible in
the aerial census.  An important minority of small, lower canopy hemlocks were also
visible in the aerial census. An automated spatial segmentation procedure was developed
to identify and measure individual population units, or blobs, within the forest
population.   A blob was defined as a distinct portion of crown segmented from its
neighbors on the basis of size, shape, and connectivity.  To ensure the comparability of
multi-year segmentation maps, an automated blob reconciliation procedure was also
developed to make certain that no hemlock pixels were assigned to different blobs in
different years.  Following spatial segmentation and reconciliation, a large majority of
hemlock blobs (~64–72%) were found to be closely associated with ground referenced,
manually delineated, individual hemlock crowns.  The remaining blobs consisted of
spatially distinct parts of a crown or closely clumped multiple crowns.  Matrix population
models were constructed from the ground-derived and aerial-derived population data.
Matrix analysis produced a number of useful population characteristics including overall
population growth rate (

�
), stable stage distributions, reproductive values, and sensitivity

values.  
�
’s calculated from the aerial and ground-derived matrices were compared using

randomization tests.  While providing a different perspective and description of a
population than traditional ground studies, demographic studies using remote sensing
provide some promising advantages.  The spatially explicit nature of the data permits
more biologically realistic modeling of the population and the investigation of potential
environmental influences on population dynamics.  Automated extraction of demographic
or megademographic data from remotely sensed images represents an important first step
toward scaling population analysis to the landscape and regional levels.
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CHAPTER 1 

General Introduction

The collection of basic demographic data for assessing population dynamics is of

immediate importance regarding species conservation (Lande 1988).  Given the alarming

rise in the number of threatened species, conservation biologists face an increasing

challenge to gather this basic demographic information (Schemske et al. 1994).  One of

the problems facing conservationists is the large investment in time and money that the

typical demographic study demands (Silvertown et al. 1996).  Consequently, the numbers

of demographic studies conducted are few in comparison to the scientific needs of the

conservation community.  The demographic studies that are completed typically are

characterized by small sample sizes and sampling areas.

Remote sensing provides ecologists with a powerful tool to rapidly obtain spatially

explicit data on the vegetation of a large area.  At community, landscape, and regional

scales, many studies have used imagery from space-based sensors to describe the

structure and dynamics of vegetation (Tucker et al. 1985, Ustin et al. 1986, Congalton et

al. 1993).  Investigations at the level of the plant population have been far more limited

(McGraw et al. 1998).   At present, high spatial resolution imagery provided by aircraft-

based photographic systems appears to provide data at a scale most feasible for the study

of vegetation at the population level (Gougeon 1995b, Niemann 1995), although recently

launched space-based platforms (i.e. IKONOS and QuickBird) are approaching the

resolution required to discern individuals (Kramer 2002).
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The lack of quantitative descriptions of plant populations from both the aerial and ground

perspective reflects both the scarcity of population-level investigations that have been

conducted using remote sensing and the shortage of accurate and appropriate ground

data; a problem that for many remote sensing applications has resulted in the lack of its

acceptance in many areas of study (Congalton 1991).  A fundamental step towards the

increased use of air and space-based sensors to collect demographic data on tree

populations is the understanding of the similarities and differences of population censuses

conducted from both the aerial and ground perspective.

Given the potential size of remotely sensed data sets and the extensive time requirements

of ground referenced, manually delineated crown segmentation methods, there exists a

basic need to develop an automated segmentation procedure to delineate the individual

components of a population.   For different forested imagery, the interaction between

forest canopy and incident sunlight can result in a variety of different attributes to assist

in the separation of individual tree crowns.  Local minima reflectance values, due to

shadows between individual crowns (Gougeon 1995b), local maxima reflectance values

representing the tops of upper canopy trees (Pinz 1991), crown size (Lahav-Ginott et al.

2001) and crown shape characteristics (Pollock 1998) have all been used to segment

individual tree crowns.  Often a multi-step procedure utilizing more than one crown

attribute has proven most effective (Pinz 1991, Gougeon 1995b, Brandtberg and Walter

1998, Pollock 1998).
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Repeated measurements of the same features over time allow for the investigation of the

vegetation dynamics of an area. “Post-classification comparison” change detection

techniques have been used to investigate the dynamics of wetlands (Jenson et al. 1995),

large-scale deforestation (Malingreau and Tucker 1988) and  forest succession (Hall et al.

1991).

Tree population dynamics can be investigated through repeated measurements of

individuals within a population over time (Usher 1972, Hartshorn 1975, Enright and

Ogden 1979, Martinez-Ramos 1989).  The challenge to an ecologist is how to adapt the

traditional methods of description and classification to be compatible with the nature of

remotely sensed data (Graetz 1990).  The basic unit traditionally used to describe

populations has been the individual.  Yet, the modular, as opposed to unitary,

construction of most plants has long been recognized (Harper 1976).   Using this modular

approach the fundamental unit of a tree population may be regarded as any repeating unit

of construction such as a tree branch or branches (Huenneke and Marks 1987, McGraw

1989).

 Matrix population models have become the framework of choice in plant demographic

studies due, in part, to the number of informative statistics provided by matrix analysis

(Silvertown et al. 1996).  Matrix models have been used to investigate the conservation of

rare and threatened species (Menges 1990, Allphin and Harper 1997, Kaye et al. 2001),

the control of invasive species (Golubov et al. 1999, Parker 2000), evolutionary change

(Baptista et al. 1998) and species persistence in rapidly changing environments (Silvia et
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al. 1991).  In constructing the matrix model, matrix elements usually describe the

transition probability of individuals between life stages.  Matrix models have also been

constructed to describe the transition probabilities of plant parts (Huenneke and Marks

1987, McGraw 1989), pixels (Hall et al. 1991), and spatial units (Guàrdia et al. 2000).

This dissertation represents the first attempt to use remotely sensed imagery to describe

and model the dynamics of a plant population.  In the first study, a population of eastern

hemlock (Tsuga �canadensis L.) was censused on the ground using traditional field

methods and from low elevation aerial photography.   Sampling from the aerial imagery

was completed by spectrally segmenting the evergreen vegetation from other ground

covers and then manually delineating ground referenced, individual hemlock crowns on

the binary image.  The potential value of remote sensing in the construction of population

databases for analysis of the structure and dynamics of plant populations is evaluated by

comparing and contrasting these two data sets.

In the second study, a new automated spatial segmentation procedure is introduced using

crown shape and size characteristics to divide the hemlock population into individual

population units or blobs. This procedure was performed independently on spectrally

segmented, binary images produced from low elevation color aerial photography.

To investigate population change over time, tree blobs need to be unique and comparable

at different census periods.  Due to hemlock shape changes between years, not all

segmentation lines produced by spatial segmentation were identical; parcels of hemlock
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pixels were sometimes assigned to different blobs for different years preventing the

meaningful comparison of data sets. An automated reconciliation procedure was

developed to consider all such “cross identified” pixels and to re-assign them to ensure

that the same pixels are assigned to the same unique blobs for comparable time periods.

Reconciliation was performed on two sets of image data, 1997/1998 and 1998/1999

image pairs.

The results of the automated segmentation and reconciliation procedures were compared

to ground referenced, manual segmentation methods performed on the same population.

The intent of our work was to develop a set of automated procedures to extract from same

scene, multi-temporal, remotely sensed imagery a series of population data sets that can

be used in the monitoring and modeling of population dynamics.

In the third study, two matrix population models of the hemlock population are

constructed.  Parameters for one of these models were estimated from demographic data

collected on the ground using traditional field methods.  Parameters for the other model

were estimated from demographic data extracted from low elevation aerial imagery.  The

results of analysis using these aerial and ground-derived matrices were compared. The

ability of matrix models constructed from both perspectives to detect and quantify

population change and assist in the understanding of the causes of change was evaluated.

The benefits of incorporating demographic data extracted from remotely sensed imagery

into future population investigations is discussed.



6

References

Allphin, L., and K. T. Harper. (1997), Demography and life history characteristics of the

rare kechina daisy (Erigeron kechinensis, Asteraceae). American Midland

Naturalist 138:109-120.

Baptista, W. B., W. J. Plat, and R. C. Macchiavelli. (1998), Demography of a shade-

tolerant tree (Fagus grandifolia) in a hurricane-disturbed forest. Ecology 79:38-

53.

Brandtberg, T., and F. Walter. (1998), An algorithm for delineation of individual tree

crowns in high spatial resolution aerial images using curved edge segments at

multiple scales. in D. A. Hill and D. G. Leckie, editors. International Forum:

Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry.

pp. 41-54 Natural Resources Canada, Victoria, British Columbia.

Congalton, R. G. (1991), A review of assessing the accuracy of classifications of

remotely sensed data. Remote Sensing of Environment 37:35-46.

Congalton, R. G., K. Green, and J. Teply. (1993), Mapping old growth forests on

National Forest and park lands in the Pacific Northwest from remotely sensed

data. Photogrammetric Engineering and Remote Sensing 59:529-535.

Enright, N., and J. Ogden. (1979), Applications of transition matrix models in forest

dynamics; Araucaria in Papua New Guinea and Nothofagus  in New Zealand.

Australian Journal of Ecology 4:3-23.

Golubov, J., M. D. Mandujano, M. Franco, C. Montana, L. E. Eguiarte, and J. Lopez-

Portilla. (1999), Demography of the invasive woody perennial Prosopis

glandulosa (Honey mesquite). Journal of Ecology 87:955-962.



7

Gougeon, F. A. (1995), A crown-following approach to the automatic delineation of

individual tree crowns in high spatial resolution aerial images. Canadian Journal

of Remote Sensing 21:274-284.

Graetz, R. D. (1990), Remote sensing of terrestrial ecosystem structure: an ecologist's

pragmatic view, in Remote sensing of biosphere functioning. Edited by R. J.

Hobbs and H. A. Mooney. Springer-Verlag, New York pp. 7-30.

Guàrdia, R., José Raventós, and Hal Caswell. (2000), Spatial growth and population

dynamics of a perennial tussock grass (Achnatherum calamagrostis) in a badland

area. Journal of Ecology 88:950-963.

Hall, F. G., D. B. Botkin, D. E. Strebel, K. D. Woods, and S. J. Goetz. (1991), Large-

scale patterns of forest succession as determined by remote sensing. Ecology

72:628-640.

Harper, J. L. (1976), The concept of population in modular organisms, in Theoretical

Ecology. Principles and Applications. Edited by R. M. May. Blackwell Scientific

Publications, Oxford pp. 53-77.

Hartshorn, G. S. (1975), A matrix model of tree population dynamics, in Tropical

Ecological Systems. Edited by F. B. Golley and E. Medina. Springer-Verlag, New

York pp. 41-51.

Huenneke, L. F., and P. L. Marks. (1987), Stem-dynamics of the shrub Alnus incanta ssp.

rugosa: transition matrix models. Ecology 68:1234-1242.

Jenson, J. R., K. Rutchey, M. S. Kock, and S. Narumalani. (1995), Inland wetland change

detection in the Everglades Water Conservation Area 2A using a time series of



8

normalized remotely sensed data. Photogrammetric Engineering and Remote

Sensing 61:199-209.

Kaye, T. N., K. L. Pendergrass, K. Finley, and J. B. Kauffman. (2001), The effect of fire

on the population viability of an endangered prairie plant. Ecological Applications

11:1366-1380.

Kramer, H. J. (2002), Observation of the Earth and its Environment - Survey of

Missions and Sensors, 4th edition. Springer Verlag.

Lahav-Ginott, S., R. Kadmon, and M. Gersani. (2001), Evaluating the viability of Acacia

populations in the Negev Desert: a remote sensing approach. Biological

Conservation 98:127-137.

Lande, R. (1988), Genetics and demography in biological conservation. Science

241:1455-1460.

Malingreau, J. P., and C. J. Tucker. (1988), Large-scale deforestation in the southeastern

Amazon Basin of Brazil. Ambio 17:49-55.

Martinez-Ramos, M., Elena Alvarez-Buylla, and Jose Sarukhan. (1989), Tree

demography and gap dynamics in a tropical rain forest. Ecology 70:555-558.

McGraw, J. B. (1989), Effects of age and size on life histories and population growth of

Rhododendron maximum shoots. American Journal of Botany 76:113-123.

McGraw, J. B., T. A. Warner, T. Key, and W. Lamar. (1998), Advances in high

resolution remote sensing for forest ecological studies. Trends in Ecology and

Evolution 13:300-301.

Menges, E. S. (1990), Population viability analysis for an endangered plant. Conservation

Biology 4:52-62.



9

Niemann, K. O. (1995), Remote sensing of forest stand age using airborne spectrometer

data. Photogrammetric Engineering and Remote Sensing 61:1119-1127.

Parker, I. M. (2000), Invasion dynamics of Cytisus scoparius.  A matrix model approach.

Ecological Applications 10:726-743.

Pinz, A. J. (1991), A computer vision system for the recognition of trees in aerial

photographs. in T. Tilden, editor. Multisource Data Integration in Remote

Sensing. pp. 111-124 NASA Conference.

Pollock, R. (1998), Individual tree recognition based on a synthetic tree crown image

model. in D. G. Leckie and D. A. Hill, editors. International Forum: Automated

Interpretation of High Spatial Resolution Digital Imagery for Forestry. pp. 25-34

Natural Resources Canada,  Canadian Forest Service, Victoria, British Columbia.

Schemske, D. W., B. C. Husband, M. H. Ruckelshaus, C. Goodwillie, I. M. Parker, and J.

G. Bishop. (1994), Evaluating approaches to the conservation of rare and

endangered plants. Ecology 75:584-606.

Silvertown, J., M. Franco, and E. Menges. (1996), Interpretation of elasticity matrices as

an aid to the management of plant populations for conservation. Conservation

Biology 10:591-597.

Silvia, J. F., J. Raventos, H. Caswell, and M. C. Trevisan. (1991), Population responses to

fire in a tropical savanna grass. Journal of Ecology 79:345-355.

Tucker, C. J., J. R. G. Townsend, and T. E. Goff. (1985), African land-cover

classification using satellite data. Science 227:369-375.



10

Usher, M. B. (1972), Developments in the Leslie matrix model, in Mathematical Models

in Ecology. Edited by J. N. R. Jeffers. Blackwell Scientific Publications, Oxford

pp. 29-60.

Ustin, S. L., J. B. Adams, C. D. Elvidge, M. Rejmanek, B. N. Rock, M. O. Smith, R. W.

Thomas, and R. A. Woodward. (1986), Thematic mapper studies of semiarid

shrub communities. Bioscience 36:446-456.



11

CHAPTER 2 

A comparison of a population census of eastern hemlock (Tsuga canadensis L.) on

the ground and using aerial photography.1

1This chapter formatted according to author’s instructions for submission to Canadian

Journal of Remote Sensing.
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Abstract

A population of eastern hemlock (Tsuga canadensis L.) was censused from the ground

using traditional field methods and from the air using large scale, high-resolution, aerial

photography.  A spectral classification procedure combined with the manual delineation

of individual tree crowns was used to extract census data from the aerial imagery.  A

comparison of the different censusing methods found that over 60% of the individuals

measured on the ground were not detected in the aerial census.  Tree size, crown density

and crown position all played roles in determining a crown’s visibility from the air.  Both

the aerial and ground census described a population whose size distribution was skewed

with the smaller size classes having the greatest representation.  The size measurements

of hemlocks visible from the air positively correlated with the ground-based size

measurements of the same individuals.   Nearly all large, upper canopy hemlocks were

visible in the aerial census.  An important minority of small, lower canopy hemlocks

were also visible in the aerial census.   Although providing different information than

traditional ground methods, population censusing using remotely sensed imagery has the

potential to provide valuable information about the structure and dynamics of tree

populations at scales unobtainable from more conventional methods.
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 Introduction

Remote sensing provides ecologists with a powerful tool to rapidly obtain spatially

explicit data on the vegetation of a large area. At community, landscape, and regional

scales, many studies have used imagery from space-based sensors to describe the

structure and dynamics of vegetation (Tucker et al. 1985, Ustin et al. 1986, Congalton et

al. 1993).  At a more detailed scale, investigations of the structure and dynamics of plant

populations have been far more limited (McGraw et al. 1998).

Understanding the factors that determine population structure and dynamics remains a

central issue in ecology, with important consequences for the conservation of rare and

threatened species (Menges 1990, Allphin and Harper 1997, Kaye et al. 2001), the

control of invasive species (Golubov et al. 1999, Parker 2000), evolutionary analysis

(Baptista et al. 1998) and species persistence in rapidly changing environments (Silvia et

al. 1991).  The value of basic demographic data for assessing species survival is of

immediate importance (Lande 1988).   Given the alarming rise in the number of

threatened species, conservation biologists face an increasing challenge to gather this

basic demographic information (Schemske et al. 1994).

To a large extent, the lack of remote sensing studies at a population level can be

attributed to the relatively coarse spatial resolution of the commonly used space-based

sensors that provide information about patterns at scales that are not easily amenable to

population studies.    For example, Landsat-TM, with its instantaneous field of view of 30

X 30m, precludes the extraction of information about the basic unit of many demographic
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studies, the individual.  At present, high spatial resolution imagery provided by aircraft-

based photographic systems appears to be more feasible than space-based sensors when

attempting to obtain information about individuals within a tree population (Gougeon

1995b), although recently launched platforms (i.e. IKONOS and QuickBird) are

beginning to approach the resolution required to discern individuals (Kramer 2002).

It has long been recognized that the data provided by remote sensors differs from the data

collected in traditional field studies.  Even using large scale, high resolution aerial

imagery, visual crown detection by trained photointerpreters can differ considerably from

ground censused data (Leckie and Gougeon 1998).  One difference is that not all

segments of a population may be detected from aerial imagery.  Small individuals, and

individuals located underneath the upper canopy of larger individuals, may be hidden

from aerial view even in scattered populations growing in open environments (Lahav-

Ginott et al. 2001, Landenberger and McGraw 2003).  Population censusing is even more

problematic in closed forest environments, sometimes leading to the measurement of only

the well-defined and thus, more easily distinguished, individual tree crowns within the

forest (Herwitz 1998).

The challenge to an ecologist is how to adapt the traditional methods of description and

classification to be compatible with the nature of remotely sensed data (Graetz 1990).  At

a population level, a fundamental step toward such an adaptation is understanding the

similarities and differences presented by censusing a population from the air and on the

ground.  The lack of quantitative descriptions of plant populations from both perspectives
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exemplifies the lack of accurate and appropriate ground referenced data for many remote

sensing applications; a problem which has resulted in the lack of its acceptance in many

areas of study (Congalton 1991).

The effectiveness of the spectral classification of plant species from remotely sensed

imagery depends on the spectral distinctiveness of the species under investigation

(Gougeon 1995a).  For spectrally distinctive populations, gray-level thresholding can be

sufficient for successful classification (Lahav-Ginott et al. 2001).   In more diverse

environments, species classification can be assisted by phenological differences between

different species (Key et al. 2001).  Supervised classification using a maximum

likelihood classification algorithm is the most common method of spectral classification

of remotely sensed images (Richards 1993).  The development and application of

representative and distinctive spectral signatures for the classes under investigation is

critical for accurate classification (Gougeon 1995a).  To take advantage of multitemporal

images over the same scene, the development of an effective data fusion method may

improve classification accuracy compared to standard techniques applied to single-date

images (Brezzone et al. 1999).

In this investigation, we census a population of eastern hemlock (Tsuga �canadensis L.)

on the ground using traditional field methods and from low elevation aerial photography

by spectrally segmenting evergreen vegetation from other ground covers and then

manually delineating the boundaries between individual hemlock crowns  and between

hemlock and other evergreen vegetation.  By comparing and contrasting these two census
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methods we evaluate the potential value of remote sensing for population description and

the investigation of population dynamics.

Study Site

A 3 ha (100 m X 300 m) study site was located in the Limberlost-Whiteoak Canyon area

of Shenandoah National Park ( 38o 34’ N,  78o 22’ W).  This site is located in an upper

elevation (951 m) mixed hardwood/hemlock forest. Eastern hemlock, a major component

of this forest, is a large, slow-growing tree that is extremely shade tolerant.  Small

hemlock may be suppressed beneath an upper canopy of hemlock or hardwoods for

hundreds of years and remain in good condition (Godman and Lancaster 1990).  Like all

hemlocks within Shenandoah, the Limberlost-White Oak Canyon population has been

adversely impacted in recent years by the presence of the hemlock woolly adelgid

(Adelges tsugae) whose occurrence was first reported in the park in 1988.  This adelgid,

which is believed to inject a toxic saliva into the hemlocks while feeding (Souto 1996),

currently infests  populations in many Northeastern and Mid-Atlantic states.   Unlike

hemlocks in other park locations, most trees within the study site had only suffered mild

to moderate defoliation at the time of aerial sampling.

Methods

Ground Censusing

Hemlock trees within the study site were censused in the spring of 1997, 1998, and 1999.

All hemlock trees, with a diameter at breast height (dbh, breast height = 1.3 m) �  5.0 cm,

were tagged, measured (dbh), classified according to crown density class (� 10%, 11-
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50%, >50%), classified according to crown position (dominant/codominant, intermediate

or suppressed) and located on an X-Y grid map.   Crown density was defined as the

amount of foliage that blocks light visibility through the crown (Miller et al. 1992).  The

crown diameters of all hemlock trees (dbh � 5.0 cm) within a 1.48 ha sub-plot of the study

site were measured.  Crown diameter was defined as the average horizontal distance

between the widest points of the crown and its perpendicular axis and was measured on

the ground by sighting a vertical line to the ground from branch tip to branch tip.

Aerial Censusing – Image Collection, Pre-processing and Crown Segmentation

Large scale (1:3,000) color aerial photographs of the study site were collected on March

27, 1997, April 13, 1998, and March 31,1999 using a calibrated Leica/Wild Heerbrugg

RC-30 mapping camera with a 303.860 mm focal-length lens.  The photography was

acquired before the emergence of new foliage for the deciduous forest component.  The

color photographs were scanned at 600 dpi using a Agfa Dual Scan scanner to produce

high resolution (~13 cm/pixel) digital images (Figure 2.1).

Geometric registration of the three images was performed using image to image

registration with one image (1998) designated as the master image and the other two

images (1997 and 1999) as slave images.  Within all three multitemporal images, shared

primary branch bifurcation points (BBP’s) were identified as control points (Herwitz

1998).   These points, located at the junction of primary tree branches and the central

bole, maintain the same position over time relative to this primary bole due to the apical

growth of the leading shoots of trees.  Special emphasis was placed on achieving a good

distribution of control points throughout the images. A total of 34 shared BBP’s were
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located on the 1998-99 image pair and utilized as control points.  Twenty-three shared

BBP’s were found and utilized on the 1997-98 image pair.  After identification of control

points, co-registration was performed using second order mapping polynomials and cubic

convolution resampling (Research Systems 2000).

Due to differences in atmospheric conditions, sun illumination angles, and other

environmental factors, the three multitemporal images exhibited different brightness

values for similar locations.  In order to minimize these differences between images a

histogram matching procedure (Richards 1993) was applied to match the histograms of

the 1997 and 1998 images to the 1999 histogram (Research Systems 2000).

The manual delineation of irregular tree crowns on large scale imagery is not an error-

free task.  Measurements of isolated tree crowns using spectral segmentation procedures

have been found to produce more accurate estimates of size than manual delineation

(Lahav-Ginott et al. 2001).   Hence, prior to the manual delineation of boundaries

between individual hemlock crowns and between hemlock and other evergreen

vegetation, a supervised classification procedure was used to spectrally segment the

evergreen vegetation from the other ground cover classes.

The effectiveness of spectral classification methods is dependent on the accurate and

representative characterization and application of the class signatures. The timing of the

aerial sampling was planned to simplify the separation of deciduous and evergreen

vegetation.  All efforts to spectrally segment hemlock from the other evergreen
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vegetation within the plot proved unsuccessful due to the coarse spectral resolution of the

imagery and the resultant overlapping spectral signatures of hemlock and the other three

evergreen species present - mountain laurel (Kalmia latifolia), red spruce (Picea rubens),

and white pine (Pinus strobus).

Two methods of spectral classification were evaluated, a local independent method and a

global fusion method.  In the first method, local class signatures were developed for and

applied independently to each of the three multitemporal images.  Four ground cover

classes were established: Evergreen Vegetation, White Ground Cover and Branches,

Brown Ground Cover and Branches, and Deep Shadows.  Three band signatures for each

of these four cover classes were developed.  Due to illumination differences within the

images, numerous training fields, located in different regions of the image, were chosen

to develop the local class statistics for each ground cover class.

The second method of classification, a global fusion approach, was applied to assess the

possible advantages of utilizing the multitemporal data sets over the same scene (Jeon

and Landgrebe 1999).   As with the previous method, local class statistics were developed

for each ground cover class in each multitemporal image.  Global class decisions were

then reached by applying the local class statistics developed for all the multitemporal

images to each image and then summarizing class decisions by cover class.  For example,

the global Evergreen Vegetation spectral class derived from the 1998 image was the sum

of local Evergreen Vegetation class decisions derived from signatures developed from all

three multitemporal images and applied to the 1998 image.   Classification of all images
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was completed using a maximum likelihood classification algorithm (Research Systems

2000).

We assessed the accuracy of spectral classification using independent and fused class

decisions by calculating standard “pixel-based” measures of classification accuracy

(user’s accuracy, producers accuracy, and overall accuracy).  Ground reference data for

this assessment was collected from three randomly placed transect lines located in the

upper, middle, and lower thirds of the study site. The ground reference maps were

prepared in the field by manually identifying hemlock pixels on the scene image.  The

gathering of ground reference data to assess the accuracy of remotely sensed

classifications is never completely accurate (Congalton 1991, Lillesand 1994).  The small

size of each map pixel (~13 cm2), the vertical nature of hemlock crowns, and the different

viewing perspectives of the sensor from the air and the human on the ground, all present

a significant challenge to the preparation of accurate ground reference maps.  Therefore,

considerable time was spent on field collection to ensure that the ground reference data

was as accurate as possible.

Following spectral segmentation, the manual delineation of boundaries between

individual hemlock crowns and between hemlock crowns and other types of evergreen

vegetation was completed, aided by the use of multiple years of aerial images and

multiple images from different viewing angles each year.  The considerable intertwining

of branches between adjacent crowns due to the flexible branch architecture of hemlock

presented another challenge to precise delineation.  A ground-referenced hemlock crown
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survey map was prepared in the spring of 1998 from the 1998 image.  All comparisons of

ground and aerial censuses in this study were thus made with respect to the 1998 dataset.

Other data collected during the course of this investigation will be utilized in future

efforts to develop an automated crown segmentation procedure.

Studies have shown a significant statistical relationship between ground measurements of

tree size and aerial measurements of tree size (Minor 1951, Aldred and Sayn-

Wittgenstein 1972, Hagan 1986).  These studies have often been performed in plantation

settings where individual crowns are, typically, more widely and evenly spaced than the

crowns of less managed forests.  A clumped distribution of trees presents the potential for

increased aerial measurement errors due to the shading of a portion of the crown by

adjacent neighbors.  The Pearson product-moment correlation was used to investigate the

relationship between the two ground measurements of size (dbh and crown diameter) and

the aerial measure of size (crown area).

Many of the smallest patches of Evergreen Vegetation within the aerial imagery were

separated at such a distance from any identified hemlock crown that they could not be

linked with certainty to any one crown.  These smallest patches represent isolated

hemlock branches separated from the main crown by shadows or other ground covers,

crowns belonging to hemlocks with a dbh < 5cm, or branches of Kalmia latifolia, whose

canopies, because of internal shading, tend to be dissected into small, discontinuous

patches.  Because of the uncertain identity and relative insignificance of these smallest

patches, a crown threshold size was established.  Only crowns larger than this threshold
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were considered for further comparison and description.  This crown threshold size was

selected as the smallest crown size predicted from the minimum ground-based size

measurement (dbh) of hemlock and the least squares regression of dbh and crown area.

The size distributions of the hemlock population censused on the ground and from aerial

imagery were described.  The crown position structure of the population, as sampled

from the ground, was also described.  Comparisons were made between the portion of the

population hidden from the air and the portion of the population visible from the air.  The

size structure, crown density structure and crown position structure for both the hidden

and visible portions of the population were described.

Results

Registration using second order mapping polynomials and cubic convolution resampling

resulted in a root mean square (RMS) error of 2.8 pixels (~36 cm) for the 1998-99 image

pair and a RMS error of 2.6 pixels (~34 cm) for the 1997-98 image pair.

The spectral segmentation of the Evergreen Vegetation using the global fusion

classification method resulted in higher overall and user’s accuracies than classification

using the local independent method (Table 2.1).   In general, class decisions using only

local, independently applied signatures tended to result in a higher level of commission

errors (classifying non-Evergreen Vegetation pixels as Evergreen Vegetation).

Confusion in discriminating Evergreen Vegetation from Brown Ground Cover and

Branches contributed to these errors.  The additional class statistics used by the global

fusion method appears to have provided a more representative description of the spectral
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variability within the Evergreen Vegetation class.  Due to the higher overall accuracy of

the global fusion method, the manual delineation of hemlock crowns and all further

analysis was performed only on images spectrally segmented using this method.

A positive correlation was found between the measure of hemlock size from the aerial

image (crown area) and the two measures of size on the ground, dbh (r = 0.7762, N=584,

P> 0.0001) and crown diameter (r = 0.7577, N=310, P< 0.0001).

The regression of crown area on dbh resulted in a regression equation of:

Crown area (in pixels) = 46.7124+ 31.6562(dbh) Equation 2.1

Substituting the minimum dbh sampling size of 5 cm into this regression equation, a

threshold crown size of 205 pixels (diameter ~ 2.1 m) was established. On aerial images,

contiguous hemlock patches below this size, many of which could not be accurately

traced to any single hemlock crown, were considered noise and eliminated from further

consideration.

The ground reference data showed that a large majority of the spectrally classified

Evergreen Vegetation in the aerial image was hemlock (Table 2.2).   Of this hemlock

cover, 97.02% could be traced to a specific hemlock crown.  The remaining 2.98% of the

hemlock ground cover could not be traced back to any one individual crown but, rather,
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belonged to small, clumped hemlock trees whose interspersing branches made crown

segmentation impossible despite field efforts.

Within the study site, 1,401 hemlock individuals (dbh �  5 cm) were censused on the

ground in 1998.  The size distribution of this population (Figure 2.2) is consistent with

the known life history of hemlock, a slow growing, and shade tolerant species with a

lengthy suppressed sapling stage.  Seventy-five percent of the hemlocks sampled in the

study site were located in the forest lower canopy (Figure 2.3).

A total of 547 hemlock crowns were manually delineated in the aerial censusing.  Like

the same population censused from the ground, the size distribution of the aerially

censused hemlocks was skewed with smaller sized individuals making up the majority of

the population (Figure 2.4).  Many hemlocks censused on the ground were not visible

from the air; ~61% percent of the hemlock individuals sampled on the ground were

hidden in the aerial image.  Most of these hidden hemlock trees were members of the

smallest size classes and located under an upper canopy of dense and/or large hardwood

branches, hemlock crowns, and shadows (Figure 2.5).    In contrast, most larger hemlocks

trees (279 of 294 individuals with a dbh > 25 cm) were visible from the air.

Although size was an important factor in determining a tree’s visibility from the air, other

crown characteristics played roles as well.  Trees with sparse crowns were less likely to

be detected from the air than trees with more dense crowns (Figure 2.6).  Of the larger

hemlocks (dbh >25 cm) hidden in the aerial censusing, over 45% had a crown density of
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10% and over 80% of these trees had a crown density of 

	
50%.  In contrast, only 4 of

547 hemlocks visible in the aerial image had a crown density of 
	
10%.  Of these four

individuals, three had lost a large portion of their crowns as a result of a severe ice storm

the previous winter.

A tree’s crown position in the forest canopy was a factor in determining its visibility from

the air (Figure 2.7).   Nearly all (253 of 255) individuals classified as having a dominant

or co-dominant crown were visible from the air.  Most (87%) of the trees with

intermediate crowns were also detected in the air imagery.  Less than 20% of the

hemlocks with suppressed crowns, however, were detected in the air census.  Due to the

large overall number of suppressed hemlocks in the population, however, these

suppressed, yet, visible hemlocks within the forest understory (207 individuals)

comprised a significant minority (37.8%) of the total air census.
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Table 2.1. Assessing the spectral classification accuracy of the Evergreen Vegetation
class using the global fusion and single independent classification methods, 1998
image.

Global Fusion (%) Single Independent (%)

User’s Accuracy (Evergreen) 90.1 79.4

Producer’s Accuracy (Evergreen) 87.9 89.7

Overall Accuracy (Evergreen) 92.3 88.1

Table 2.2. Composition of Evergreen Vegetation class (from the global fusion
classification method) as determined by ground referencing.

Species Ground Cover Area (% of Total)

Pinus strobus 0.26%

Picea rubens 0.28%

Kalmia latifolia 1.62%

Kalmia/Tsuga Mix 0.90%

Tsuga canadensis 96.94%
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Figure 2. 1. Section of study site from March, 1997 image.
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Figure 2.2.  Size distribution of hemlock population – ground census.
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Figure 2.3  Hemlock crown position – ground census.
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Figure 2.4  Size distribution of hemlock population – aerial census.
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Figure 2.5.  Size comparison of hidden            and visible           layers of the hemlock
population – aerial census.
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Figure 2.6. Crown density comparison of hidden            and visible             layers of
hemlock population – aerial census.
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Figure 2.7. Crown position comparison of hidden                and visible
layers of hemlock population – aerial census.
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Discussion

A census of a hemlock population from the air and on the ground has revealed important

similarities and differences between the two approaches.  An important relationship was

found between the measures of individual tree size on the ground (dbh and crown

diameter) and the measure of individual tree size from the aerial image (crown area).  The

distributions of both populations were skewed, with the smaller size classes having the

largest number of individuals.

The most obvious difference in the population data obtained from remote sensing is the

absence of a large portion of the total population as censused from the ground.   In our

study, over 60% of the hemlock population censused on the ground was hidden in the

aerial census.  Most of these hidden hemlocks were small, suppressed individuals located

underneath the upper canopy crowns and in shadows cast by adjacent neighbors.  In the

1998 imagery, shadows comprised 9.67% of the aerial image within the study site.

The hemlock trees within the study site that were visible in aerial censusing represent

several important components of the population.  Nearly all large upper canopy hemlock

trees were visible in the aerial imagery.   Maximum carbon gain, the result of

photosynthesis,  is often dominated by this upper canopy layer (Chapin et al. 2002).

These large adult trees, also, have been shown to have a disproportionately high influence

on the future dynamics of a population (Hartshorn 1975, Enright and Ogden 1979).   In

addition, large individuals have disproportionately large crown areas as shown in the

relationship found between dbh and crown area.  Although less than 40% of the hemlock

individuals were identified in the aerial image, these individuals, according to the
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predicted relationship between dbh and crown area, account for over 65% of the total

hemlock crown area within the study plot.

Large hemlock trees were not the only visible segment of the population from the air.

Nearly 40% of the aerially censused population was comprised of trees from the forest’s

lower canopy.  The visibility of these smaller individuals is attributed to their location

within the forest: in canopy gaps or under a sparsely branched hardwood canopy.

Hemlocks located within a gap or higher light environment have been found to have an

increased rate of growth while the gap persists (Hibbs 1982).  The alternating periods of

growth and suppression due to small but repeated disturbances in the forest upper canopy

may be utilized by hemlock to reach the upper canopy level (Oliver and Stephens 1977).

We would expect the small visible trees in our study site to have a better chance of

contributing to future population growth than trees of similar size hidden from aerial

censusing.

 In addition to the challenge of ground referencing aerial features, the manual

segmentation of hemlock crown boundaries in this study proved an extremely time

consuming procedure.  A primary appeal of censusing tree populations by remote sensing

is the potential to quickly collect huge spatially explicit population data sets covering

wide geographical areas.   The size of such a potential data set suggests the need to

develop an automated procedure to delineate individual tree crowns on the aerial

imagery.  Such an automated procedure would greatly expedite the time required to

extract meaningful information from such a potentially large data set (Gougeon 1995b).
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Censusing a population using remote sensing produces different results than censusing

the same population from the ground.  The challenge for population ecologists is to

determine if this data, though different, can be useful in providing further insights

regarding the description of a population and its dynamics.  We believe that remote

sensing in this study has provided valuable information about the size and structure of

several important components of the hemlock population.   In the future, repeated

censusing of the same individuals over time and following the fates of these individuals

as well as the appearance or “birth” of new individuals could provide important insights

into the dynamics of this population.
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CHAPTER 3 

Multitemporal censusing of a population of eastern hemlock (Tsuga canadensis L.)

from remotely sensed imagery using an automated segmentation and reconciliation

procedure. 1

1This chapter formatted according to author’s instructions for submission to Remote

Sensing of Environment.
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Abstract

Large scale (1:3,000) color aerial images of a population of eastern hemlock (Tsuga

canadensis L.) were collected in the early spring of 1997,1998 and 1999.   An automated

spatial segmentation procedure was developed to identify and measure individual

population units, or blobs, within the forest population.   A blob was defined as a distinct

portion of crown segmented from its neighbors on the basis of size, shape, and

connectivity.  To ensure the comparability of multi-year segmentation maps, an

automated blob reconciliation procedure was also developed to make certain that no

hemlock pixels were assigned to different blobs in different years.   The automated

segmentation and reconciliation procedures were applied to a population of naturally

occurring hemlock.   Following spatial segmentation, a large majority of hemlock blobs

(~64–71%) were found to be closely associated with ground referenced, manually

delineated, individual hemlock crowns.  The remaining blobs consisted of spatially

distinct parts of a crown or closely clumped multiple crowns.  Similar overall

classification accuracies (~64-72%) were found following the reconciliation of

multitemporal image pairs.  The development of these spatially explicit, multitemporal

population data sets should prove useful to further investigations of the dynamics of  and

environmental influence on plant populations.
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Introduction

Remote sensing provides ecologists with a powerful tool to rapidly obtain spatially

explicit data on the vegetation of a large area.   Repeated measurements of the same

features over time allow for the investigation of the vegetation dynamics of an area.

“Post-classification comparison” change detection techniques have been used to

investigate the dynamics of wetlands (Jenson et al. 1995), large-scale deforestation

(Malingreau and Tucker 1988) and  forest succession (Hall et al. 1991).  At present, high

spatial resolution imagery provided by aircraft-based photographic systems appears to

provide data at a scale most feasible for study of vegetation change at the population

level (Gougeon 1995b, Niemann 1995), although recently launched space-based

platforms (i.e. IKONOS and QuickBird) are approaching the resolution required to

discern individuals (Kramer 2002).

Tree population dynamics can be investigated through repeated measurements of

individuals within a population over time (Usher 1972, Hartshorn 1975, Enright and

Ogden 1979, Martinez-Ramos 1989).  Given the potential size of remotely sensed data

sets and the extensive time requirements of ground referenced, manually delineated

crown segmentation methods, there exists a basic need to develop an automated

segmentation procedure to delineate the individual components of a population.

The use of remotely sensed imagery to describe and classify plant populations has

numerous challenges.  There have been a number of efforts to develop an automated

procedure to segment individual crowns within a tree population.   For different forested
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imagery, the interaction between forest canopy and incident sunlight can result in a

variety of different attributes to assist in the separation of individual tree crowns.  Local

minima reflectance values, due to shadows between individual crowns (Gougeon 1995b),

local maxima reflectance values representing the tops of upper canopy trees (Pinz 1991),

crown size (Lahav-Ginott et al. 2001) and crown shape characteristics (Pollock 1998)

have all been used to segment individual tree crowns.  Often a multi-step procedure

utilizing more than one crown attribute has proven most effective (Pinz 1991, Gougeon

1995b, Brandtberg and Walter 1998, Pollock 1998).

The spectral and spatial characteristics of the available imagery dictate the canopy

attributes that can be used for segmentation.  These characteristics vary considerably

depending on site, sensor type, image scale, and timing of image collection.  Previously,

we showed that the phenological differences between hemlock (Tsuga canadensis L.) and

the neighboring deciduous trees within our study site assisted in the effective spectral

segmentation of the evergreen and deciduous ground covers (Lamar and McGraw

submitted).  The leaf-off nature of the imagery also allowed us to census a significant

portion of the lower canopy segment of the population (Lamar and McGraw submitted).

The presence of both sunlit and shaded hemlock crowns within the image, however,

resulted in no consistent, recognizable radiometric patterns being present within

individual crowns (i.e. local spectral maxima).

While there has been some success in segmenting individual trees from the air, given the

resolution and angular mobility limitations of remote sensing instruments, census data



45

collected from the air will differ from traditional sampling methods into the foreseeable

future.   The challenge to ecologists is how to adapt the traditional methods of description

and classification to be compatible with the nature of remotely sensed data (Graetz 1990).

The basic unit traditionally used to describe populations has been the individual.

Although this description has many positives, it also presents some difficulties.  The

clonal nature of many plants blurs the definition of an individual between the whole plant

genet and the clonally produced yet potentially independent ramet.  Even in non-clonal

species, the extensive and complex graft union formed between the roots of different

individuals in a number of forest tree species and the subsequent role of these grafts in

the translocation of resources suggests a reduced role for individualism with regard to

intra–specific competition (Bormann and Graham 1959).   Graham (1959) lists 19 genera

and 56 species of forest trees in which natural root grafting has been observed, including

eastern hemlock.  Still other trees spread from their base after boles are cut or broken,

resulting in multiple crown stems from one genetic individual.

The modular, as opposed to unitary, construction of most plants has long been recognized

(Harper 1976).   Using this modular approach the fundamental unit of a tree population

may be regarded as any repeating unit of construction such as a tree branch or branches

(Huenneke and Marks 1987, McGraw 1989).   For this investigation we describe a natural

population of hemlock as viewed from above as a population of blobs.  A blob is defined

as a distinct portion of crown canopy segmented from its neighbors on the basis of size,

shape, and connectivity.   A hemlock blob classified from aerial imagery shares many

similarities with an individual tree censused on the ground.  Like an individual, the fate
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of a blob can be followed over time; both blobs and individuals can be born, grow,

regress, or die over time.  In the case of blobs, “birth” is not the product of recent

germination as is the case with individuals.  Rather, a “birth” into aerial view is typically

the emergence of a previously suppressed individual(s) into the canopy as the result of a

canopy disturbance.  Importantly, from an ecological perspective, both blobs and

individuals can influence their surrounding environments and compete for resources with

their neighbors.

In this paper, we present a new automated methodology to extract a population data set of

hemlock blobs from remotely sensed, imagery collected in 1997, 1998, and 1999.  Our

segmentation procedures relied on global and local shape and size features to spatially

distinguish blobs.

To investigate population change over time, tree blobs need to be unique and comparable

at different census periods.  Following spatial segmentation, which was independently

applied to each temporal image, not all segmentation lines were identical on different

images due to hemlock changes between years. Hemlock pixels assigned to different

blobs in different years prevent meaningful comparison of data sets.   An automated blob

reconciliation procedure was developed to consider all such “cross identified” pixels and

to re-assign them to the same unique blobs for comparable time periods.  Reconciliation

was performed on pairs of hemlock image data from 1997-98 and 1998-99.
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We compared the results from the automated segmentation and reconciliation procedures

to a ground referenced, manual crown survey map completed on the same population.

Study Area

Our study area is located in the Limberlost-Whiteoak Canyon area of Shenandoah

National Park ( 38o 34’ N  78o 22’ W).  This site is located in an upper elevation (951 m)

mixed hardwood/hemlock forest.  Hemlock is a long-lived, shade tolerant, evergreen tree

found in many low disturbance eastern United States (US) forests.  Established

populations usually include a large bank of “saplings”, small individuals that may be

suppressed beneath a canopy of hemlock or hardwoods for hundreds of years and remain

in good condition (Godman and Lancaster 1990).    Like all hemlocks within

Shenandoah, the Limberlost-White Oak Canyon population has been adversely impacted

in recent years by the presence of the Hemlock Woolly Adelgid (Adelges tsugae) whose

occurrence was first reported in the park in 1988.  This adelgid, believed to inject a toxic

saliva into the hemlocks while feeding (Souto 1996), currently infests  hemlocks in many

eastern US states.   Unlike hemlocks in other park locations, most trees within the study

site had only suffered mild to moderate defoliation at the time of aerial sampling.  Within

the study area, a 3 ha (100 m X 300 m) study plot and an adjoining 0.5 ha (50 m X100 m)

training plot were located.  All parameter estimates used in the spatial segmentation and

reconciliation procedures were developed using data from the training plot and then

applied to the study plot for final analysis.
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Methods

Image Collection, Pre-processing, and Ground Data Collection

Large scale (1:3,000) color aerial photographs of the study area were collected on March

27, 1997, April 13, 1998, and March 31,1999 using a calibrated Leica/Wild Heerbrugg

RC-30 mapping camera with a 303.860 mm focal-length lens.  The photography was

acquired before the emergence of new foliage for the deciduous forest component.  The

color photographs were scanned at 600 dpi using an Agfa Dual Scan scanner to produce

high resolution (~13 cm/pixel) digital images.  To facilitate comparisons between multi-

temporal images, image to image geometric registration was performed.  Shared primary

branch bifurcation points were identified throughout the image segment as control points

and images were co-registered using second order mapping polynomials and cubic

convolution resampling (Lamar and McGraw submitted).

The diameter at breast height (dbh, breast height = 1.3 m) of all hemlock trees (dbh 
  5.0

cm) within the study and training plots was measured in the spring of 1998 using

traditional field methods.

Manual Crown Segmentation

Manual delineation of irregularly shaped tree crowns on large-scale imagery is not an

error-free task.  Measurements of isolated tree crowns using spectral segmentation

procedures have been found to produce more accurate estimates of size than manual

delineation (Lahav-Ginott et al. 2001).  For this reason, initial map preparation involved

spectrally separating the evergreen vegetation of the study site from other ground covers.

Spectral segmentation used a maximum likelihood classification algorithm and a global,
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fused class decision making process that applied the summarized decisions of local class

statistics derived from all three years of radiometrically normalized imagery to each

year’s image (Lamar and McGraw submitted).

The boundaries between individual hemlock crowns and the boundaries between hemlock

crowns and other types of evergreen vegetation were manually delineated in the field

from these spectrally segmented vegetation maps.  Manual delineation was aided by the

use of multiple years of aerial imagery and multiple images from different viewing angles

each year.  Considerable intertwining of branches between adjacent crowns due to the

flexible branch architecture of hemlock added to the challenge of precise delineation.

The manual crown survey map was produced in the spring of 1998 from the 1998 image.

All comparisons of the automated aerial censuses in this study were thus made with

respect to this 1998 manual crown survey map.  A full description of the hemlock

population within the study area based both on ground collected and ground referenced,

aerial collected data has been previously described (Lamar and McGraw submitted).

Automated Spatial Segmentation

Our automated spatial segmentation procedure was applied independently to each of the

multi-temporal spectrally segmented vegetation maps of the study site.  The objective of

this procedure was to divide the hemlock component of the aerial imagery into distinct

population units or blobs based on shape and size.  Spatial segmentation was a five-step

process including shadow thresholding, Euclidean Distance Map (EDM) construction,

EDM manipulations, watershed segmentation, and minimum blob joining.
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Shadow Thresholding

Shadows can both assist and hinder crown segmentation efforts.  On one hand, the inter-

crown shadows, by providing a distinct edge around the perimeter of an individual tree

crown, can greatly assist efforts to delineate that crown from its adjacent neighbors

(Gougeon 1995b).  Conversely, shadows can hide valuable information about the true

nature of a crown’s shape and size (Brandtberg and Walter 1998, Pollock 1998, Lamar

and McGraw submitted).  A single tree, when intercepted by intra-crown shadows, can be

mistaken for several separate trees by an automated segmentation procedure.

To investigate the nature of the shading within the study area, all inter and intra-crown

shadows within the training plot were identified and mapped during preparation of the

manual crown survey map.  The size differences between inter- and intra-crown shadows

were examined using a Wilcoxon rank sum test.  To distinguish inter- and intra-crown

shadows, an optimal threshold shadow size was determined through a systematic trial of a

range of shadow sizes to identify when overall accuracy was maximized for the smoothed

EDM/watershed segmentation step.  All shadows below this threshold were filled in as

hemlock prior to final EDM/watershed segmentation of the study plot.  These shadows

were then added back to the image prior to further segmentation, reconciliation, and

analysis.

For multitemporal comparisons, the presence of shadows presents another challenge.  At

the pixel level, the transition between hemlock and other non-shadow ground covers from

one sampling time to another is considered an actual change.  The transition between

hemlock and shadow, however, represents an unknown.  The shadow could be masking a
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hemlock pixel in which case no actual change has occurred, or the shadow could be

masking an actual change between hemlock and another ground cover.   Due to the level

of uncertainty for these transitions, all pixels within each image pair exhibiting this

transition were eliminated as hemlock prior to spatial segmentation.  This had the effect

of adding 1997 and 1998 shadows to both images within the 1997-98 image pair.

Likewise, 1998 and 1999 shadows were added to both images of the 1998-99 image pair.

Studies have shown a significant statistical relationship between ground and aerial

measurements of tree size (Minor 1951, Aldred and Sayn-Wittgenstein 1972, Hagan

1986, Lamar and McGraw submitted).  Ground and aerial size measurements of

hemlocks from single time-period images have been found to be positively correlated

(Lamar and McGraw submitted).  The addition of another year of shadows to each image

within an image pair, however, could potentially increase the masking of the aerial crown

measurements.  The Pearson product-moment correlation was used to investigate the

relationship between ground measurements of size (dbh) and aerial measures of size

(crown area) for the 1998 hemlock crowns within the 1997-98 and 1998-99 image pairs.

EDM Construction and Manipulation

EDMs were constructed by assigning a brightness value to each hemlock pixel in the

spectrally classified binary image corresponding to the pixel’s Euclidean distance from

its nearest boundary (see Russ (1995) for further description of this procedure).   Local

maxima on the EDM represent the center or peak of a hemlock clump; local minima

represent edge pixels (Figure 3.1).  Effective spatial division of an EDM using the

watershed segmentation method depends on the orderly relation of gray scale pixel
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values.  Typically, this pixel pattern is the result of EDM construction from convex or

mostly convex shapes.  Less convex shapes and local boundary irregularities lead to a

surplus of local maxima and oversegmentation.

To minimize oversegmentation, a series of EDM manipulations was performed prior to

watershed segmentation (Figure 3.2).  The first action was a 7 X 7 smoothing filter

passed three times over the gray-scale EDM.   Only hemlock pixels were considered for

change in smoothing operations.  The smoothing filter produced a wide band of minima

or near minima values near the edges of the hemlock crowns.  The presence of this flat

band of pixels with similar values (Figure 3.2b) presented difficulties for watershed

segmentation, which is a local process based on identifying minimum values from a 3 X

3 moving window.  To eliminate these flat bands while preserving the orderly smoothing

of brightness values, all the values of the EDM were elevated by a constant amount,

except pixels belonging to the lowest five brightness values, which were reassigned

elevations according to their distance from adjacent, elevated hemlock pixels in the

image (Figure 3.2c).

Watershed Segmentation

Beucher (1979) introduced the idea that by viewing the intensity of any gray-scale image

as elevation and simulating runoff, it is possible to decompose an image into watershed

regions.  In our study, watershed analysis was performed on a Macintosh computer using

a customized version of the public domain NIH Image program (Rasband and Roervik

1999) and based on the algorithm described by Russ (1995).  Watershed segmentation is

essentially a dilution with the added logical restraint that no new pixels may be turned on
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if it causes a connection to form between previously separated features (Figure 3.3).

Starting with the local maxima, the binary hemlock map is “grown” back to its original

boundaries except for the lines of separation between blobs.

Minimum Blob Joining

Even with EDM manipulations, the watershed method produced excessive hemlock

segmentation due to the presence of large, irregular crown branches and intra-crown

shadows.   To improve the overall classification accuracy, a minimum blob joining

procedure was applied following watershed segmentation.  This procedure identified an

optimal minimum blob size and joined each blob below this size with its contiguous

neighbor with whom it shared the largest common boundary.  The optimal minimum blob

joining size was determined from the training data, through a systematic trial of different

blob sizes to identify a minimum threshold where overall accuracy was maximized.

The manual crown survey found that many of the smallest evergreen blobs within the

aerial imagery were separated at such a distance from all identified hemlock crowns that

they could not be linked with certainty to any one crown.  These smallest blobs

represented isolated hemlock branches cut off from the main crown by shadows or other

ground covers, crowns belonging to hemlocks with a dbh < 5 cm, or branches of

mountain laurel (Kalmia latifolia) whose canopies, because of internal shading, tended to

be dissected into small, discontinuous patches.  Because of the uncertain identity and

relative insignificance of these smallest blobs, a blob threshold size was developed.  Only

blobs above this threshold were considered for further comparison and description.  The

blob threshold was selected based on the smallest crown size predicted from the
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minimum, ground-based dbh measurement and the least squares regression of crown size

and dbh.
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Figure 3.1. Hemlock clump following Euclidean distance mapping, a) 3-D view with
arrows pointing to false maxima, b) 2-D view.

a)

b)
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Figure 3.2. Effects of EDM manipulations, a) original, b) smoothing, c) elevation.

a)

b )

c )
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Figure 3.3. 3X3 moving window in watershed segmentation considers fate of the
central pixel based on a table of the 256 possible configurations of its 8 neighbors. In
examples, a) pixel turned “off” to prevent connection between currently separated
features b) pixel turned “on” due to previous diagonal connection between hemlock
feature.  Light squares represent non-hemlock cover.  Darker squares represent
hemlock cover.

? ?

a) b)

? ?
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Automated Crown Reconciliation

Because of variations in viewing geometry, as well as real changes in hemlock shape, not

all segmentation lines were identical in the different images and some hemlock pixels

were assigned to different blobs in different years.  This condition makes no biological

sense, since hemlock branches cannot switch trees, and it complicates the censusing of

unique blobs over time.  An automated procedure, which we term blob reconciliation,

was developed to reconcile patches of these cross-identified pixels, termed parcels, into

the same blob for each image of an image pair.  The reconciliation of these parcels

considered the strength of the connection between each parcel and the parcel’s

neighboring blobs on both images of an image-pair.

Prior to reconciliation, both, parcels to be reconciled and pixels not requiring

reconciliation were identified.  As part of this identification process, images at time t and

t+1 of an image pair were overlaid (Figure 3.4a).  Hemlock pixels from the overlaid map

were classified according to their classification history as 1) joint-year pixels, identified

as hemlock at both t and t+1 or 2) single-year pixels, identified as hemlock at either, but

not both, t or t+1 (Figure 3.4b).  No crown reconciliation was necessary for pixels

classified into the same unique blobs at both time periods.  These pixels, the large

majority of all pixels within all image pairs (68.6 -78.6%), were added unaltered to base

maps t and t+1 (Figure 3.4c).  The remaining pixels, to be considered for reconciliation,

were grouped into spatially distinct parcels.

These parcels were considered for reconciliation as part of a five- step automated

procedure (Figure 3.5).  At each step, reconciled parcels were added to the growing base



59

map.  Reconciliation decisions were based on the relationship between a parcel’s greatest

relative connection with a neighboring blob, termed connectivity, and a threshold

connectivity value (� ) that was obtained from a systematic analysis of the training data.

If the parcel’s greatest connectivity < � , then the parcel, deemed lacking any significant

connection with neighboring blobs, was assigned as a new and unique blob on base maps

t and t+1.  If the parcel’s greatest connectivity �  � , then the parcel was added to its

greatest common neighboring blob on base map t and t+1 (Figure 3.4d).   If the parcel’s

greatest connectivity = 0, the result of the parcel having different greatest common

neighboring blobs at t and t+1 and neither of these different blobs being found within the

boundary scanning area at the other census time, then no decision regarding the parcel

was made at that reconciliation step. The parcel was, instead, deferred to a later step,

where, additional information and a growing base map may assist reconciliation efforts.

The connectivity between parcel and neighboring blob was a primary factor used for

reconciliation.  The nature of this connectivity varied at different reconciliation steps as

other factors, such as a parcel’s classification history or the size of the boundary scanning

area, were considered (Table 3.1).  The input of this additional information improved the

correspondence between reconciled blob map and manual crown survey map.

A parcel for the first step of reconciliation, termed a dual parcel, was defined as a

contiguous patch of joint-year pixels and (if present) any contiguous patches of single-

year pixels for which the joint patch was the greatest common neighboring patch

(GCNP) as measured by the size of their contiguous boundary.  A dual parcel thus,
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consisted of both joint-year and single-year pixels.  Parcels, deferred in this initial step of

reconciliation, were redefined in the second step of reconciliation, as contiguous patches

of only single-year pixels and termed single parcels.  For non-reconciled parcels from

step one that were dominated by single-year pixels, the separate consideration of these

single parcels often resulted in the identification of unique blobs that corresponded to

individual hemlock crowns on the manual crown map; crowns that either were “born” or

died between census periods.

Most parcels were reconciled and added to the base maps during the initial two

reconciliation steps.  Due to viewing geometry issues or real changes in hemlock shapes

between images, some parcels remained non-reconciled.  These parcels had different

greatest common neighboring blobs at time t and t+1 both of which had “moved” a large

enough distance from the corresponding time period to be outside the boundary scanning

area at the other census time.  To give further consideration to the reconciliation of these

parcels, the size of the moving window, in which the boundary size was measured, was

increased.  The larger boundary scanning area of later reconciliation steps permitted the

reconciliation of parcels that may have belonged to the same tree on the ground but, due

to geometric distortions, were slightly off-set on the image pairs.

For reconciliation steps where the considered parcel was defined as a dual parcel,

connectivity, termed dual connectivity, was measured between each parcel and the

parcel’s greatest common neighboring blob at time t and t+1 (Figure 3.6). Calculations of

dual connectivity considered the strength of this parcel-blob connection from the
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perspective of both years of an image pair.  For example, the connectivity of a parcel and

its great common neighboring blob at time t considers the connection between parcel and

blob on the time t map and, also the connection between the same two features on the

time t+1 map.  Dual connectivity was measured on time t map as:

Dual connectivity
CB CB

P Pt
t t t t

t t
( )

( , ) ( , )( )�� ����� �1

1

2 Equation 3.1

where CB t,t+1  = Common boundary size of parcel and its greatest common neighboring

blob from time t on time t+1 image, CB t,t  = Common boundary size of parcel and its

greatest common neighboring blob from time t on time t image, Pt = Size of parcel on

time t image  and Pt+1 = Size of parcel on time t+1 image.

Dual connectivity measured on time t+1 map was calculated as:

Dual connectivity CB CB
P P

t t t t t

t t

( ) , ,( )��� ��� ���� ����1 1 1 1

1

2 Equation 3.2

where CB t+1,t+1  = Common boundary size of parcel and its greatest common

neighboring blob from time t+1 on time t+1 image and CB t+1,t  = Common boundary

size of parcel and its greatest common neighboring blob from time t+1 on time t image.



62

The patch’s maximum connectivity was expressed as the larger value of Equations 3.1

and 3.2.  The neighboring blob responsible for this maximum connectivity was termed

the patch’s greatest common neighboring blob.

For reconciliation steps where the considered parcels were defined as single parcels, a

different measure of connectivity, termed single connectivity,  was used.  Since these

parcels were comprised solely of pixels found only at one time of an image pair, single

connectivity between these parcels and their greatest common neighboring blobs was

measured based only on parcel size and common boundary size at that time.   Single

connectivity was calculated as:

Single connectivity CB
Pt

t t

t
( )

,�
2 Equation 3.3

where CB t,t  = Common boundary size of parcel and greatest common neighboring blob

at time t on time t image and Pt = Size of parcel at time t.

In calculating all types of connectivity, the common boundary size between a parcel and

its greatest common neighboring blob was measured as the sum of all pixels belonging to

the considered parcel found within a moving window centered on the edge pixels of the

neighboring blob.

Some small hemlock parcels were found to be irreconcilable after the five-step

reconciliation procedure and eliminated from further analysis.  These parcels were
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identified with different blobs for both image pairs; neither blob having a corresponding

blob on the other image pair that was located within the maximum boundary scanning

area of the reconciliation procedure.   Less than1% of hemlock pixels for each image

within both image pairs were irreconcilable.

The automated blob reconciliation procedure was used to reconcile segmented hemlock

blobs in each image of the 1997-98 and 1998-99 image pairs.
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Figure 3.4.  Reconciliation process. a) non-reconciled blobs from both time periods,
b) overlaid pixels classified as joint-year (green), single-year – 1997 only (red), or
single-year – 1998 only (blue), c) patches of pixels combined into parcels (black) and
subject to reconciliation, d) reconciled blobs from both time periods.

a)

b)

c)

d)

1997 1998
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Figure 3.5. Reconciliation decision making.  Solid lines represent actions of dual-
year parcels. Dashed lines represent actions of the single parcels.
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Table 3.1.  Automated reconciliation procedure.     1,     2,     5 were estimated from
training data and represent a threshold connectivity value that resulted in the
highest measure of overall accuracy.     3 and     4  were calculated from     1 and     2
respectively, both sharing the same type of connectivity equation and parcel type.     3
and     4 reflect the added boundary scanning areas of these two measures:     3 =    1*0.51 and     4  =     2  * 0.36.

Step Parcel Type Scan Area

Threshold Connectivity

Value Connectivity Equation

1
Dual-year + Single-

year GCNP
5X5 ! 1 Dual (Equations 1 and 2)

2 Single-year 3X3 ! 2 Single (Equation 3)

3 Dual-year + Single-

year GCNP

7X7 ! 3 Dual (Equations 1 and 2)

4 Single-year > 25

pixels

5X5 ! 4 Single (Equation 3)

5 Dual-year 5X5 ! 5 Single (Equation 3)
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Figure 3.6. Reconciliation procedure considers a parcel (black) that has been
segmented into different crown blobs for 1997 and 1998.  The difference in blob
assignment between image years is due to the change in size and shape of blob B in
1998 due to an ice storm.  Measurements (in pixels) of parcel size and common
boundary sizes for both years are shown.  Dual connectivity (using Equations #1
and #2) is calculated as 13 * 105 with blob A and 8.5 * 105 with blob B.  Since the
parcel’s greatest connectivity (13 * 105 with blob A) " """  # ### 1, the joint parcel was
assigned to blob A on both 1997 and 1998 maps (see Figure 3.4d).

Common Boundary(1998,1998) = 55 
     Parcel Size(1988) = 492
           Common Boundary(1997,1998) = 40

      Common Boundary(1997,1997) = 79
    Parcel Size(1997) = 465
Common Boundary(1998,1997) = 23

1997
1998

A
A

B
B
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 Accuracy Assessment - Automated Segmentation and Reconciliation

Unlike pixel-based accuracy assessments that have achieved at least some level of

standardization over time (Congalton 1991), the accuracy assessments of object-based

segmentation efforts have been quite limited and varied.   The type of assessment

performed is often dependent on the objectives of the study and the type of ground

referenced data available for comparison.  One type of assessment, which we term whole

plot accuracy, compares the total number of manually delineated crowns with the total

number of automatically delineated blobs within a designated area.  Whole-plot

assessments are often used when the only available description of the study area may be a

measure or estimate of tree density.  While useful for some stand level descriptions and

monitoring activities, whole-plot assessments generally provide a poor measure of “true”

accuracy due to the canceling actions of individual tree errors of omission and

commission.

Methodologies assessing the 1:1 correspondence of “individuals” (in our case, automated

blobs and manually delineated crowns) provide a much more useful measure of accuracy

for demographic studies (Leckie and Gougeon 1998).  Unlike pixel-based accuracy

assessments, object-based assessments face added difficulties, having to make

comparisons between features that lack uniform size and positional equivalency on

comparison images.  Given these differences, one must initially define when a crown and

a blob have achieved 1:1 correspondence.  In this study, we defined 1:1 correspondence

as occurring when the overlap area between a manually delineated crown and an

automated blob includes $  50% of both features’ total size.
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Using this definition, several different assessments can be made of the blob-crown

relationship (Figure 3.7).  One assessment, termed aerial accuracy, measures the

percentage of automated blobs that achieve 1:1 correspondence with manually delineated

crowns such that:

Aerial accuracy
# of 1:1 blobs corresponding to single crown

Total # blobs obtained from automated segmentation
%          Equation 3.4

 Another assessment, termed field accuracy, considers accuracy from the crown’s

perspective, measuring the percentage of manually delineated crowns that achieve 1:1

correspondence with automated blobs such that:

Field accuracy
# of  crowns corresponding to single blob

Total #  crowns obtained from manual segmentation
& 1 1:

           Equation 3.5

An assessment of the crown-blob relationship using either aerial or field accuracy alone

can be misleading as errors of over-aggregation and over-dissection result in different

blob: crown and crown: blob correspondences.  For example, three manually delineated

crowns aggregated into one blob results in one 3:1 crown: blob correspondence from the

air perspective but three 0:1 crown: blob correspondences from the ground perspective.

To more fully understand the relationship between manually delineated crowns and

automated blobs it is necessary to describe this relationship from both perspectives.  This

accuracy assessment, which we term overall accuracy, describes the percentage of both

manually delineated crowns and automated blobs that have 1:1 correspondence such that:
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Overall accuracy
#  of 1:1 corresponding blobs +  #  of 1:1 corresponding  crowns 

Total blobs + Total crowns 
'

Equation 3.6

In this study, segmentation parameters (threshold shadow size, minimum blob joining

size) and reconciliation parameters (( 1, ( 2, ( 5) were estimated by selecting values that

maximized overall accuracy in the training data.  Overall accuracy is also calculated to

describe the accuracy of the segmentation and reconciliation procedures for the 1997-98

and 1998-99 image pairs in comparison to the 1998 manual crown survey map.
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Figure 3.7. Accuracy assessment using 1:1 correspondence. a) overlays manual
crowns on automated blobs, arrows point to blobs which contain ) )))  50% of overlaid
crown, Aerial accuracy = (1) 1:1 Corresponding Blob/ 3 Total Blobs = 33%.   b)
overlays automated blobs on manual crowns, arrows point to crowns which contain) )))  50% of overlaid blob, Field accuracy = (1) 1:1 corresponding crown/3Total
crowns = 33%.  Total accuracy = (2) 1:1 corresponding blobs and crowns/ 6 Total
blobs and crowns = 33%.   Interestingly and, perhaps misleadingly, whole plot
accuracy for this example is 100% (3 crowns/3 blobs)..

Manual Crowns

Automated Blobs

1:1 0:1 2:1
Correspondence (Crowns:Blobs)

Automated Blobs

Manual Crowns

Correspondence (Blobs:Crowns)
2:1 0:1 1:1

(a)

(b)
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Results

A good correlation (r = 0.759) was found between measurements of 1998 hemlock size in

the air (crown area) on both 1997/98 and 1998/99 image pairs and on the ground (dbh)

despite the elimination of all pixels exhibiting hemlock-shadow transitions within each

image pair map.  This correlation was similar to the correlation (r = 0.776) found between

the same two size measures on the 1998 imagery without shadows added (Lamar and

McGraw submitted).

The regression of crown area on dbh produced a regression equation of:

 Crown Area (in pixels) = 37.6585 + 28.0415 dbh Equation 3.7

Substituting the minimum ground sampling size (dbh) of 5 cm into the regression

equation, resulted in a blob threshold size of 178 pixels (diameter ~ 2 m).  Contiguous

hemlock patches below this size, many of which could not be accurately traced to any

single hemlock crown, were considered noise and eliminated from further consideration.

The size of intra- and inter-size shadows, as identified in the training plot, differed

significantly.  Intra-crown shadows were found to be significantly smaller than inter-

crown shadows for 1998 hemlocks on both the 1997/1998 and 1998/1999 image pairs

(Wilcoxon Rank Sum test, p > 0.0001 for both pairs).  The results of a systematic trial of

threshold shadow sizes showed overall classification accuracy to initially improve as the

threshold shadow size was increased (Figure 3.8).  This increased accuracy was a result

of the closing of intra-crown shadows and, consequently, a decrease in the over
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dissection of manual crowns.  The continued increase of threshold shadow size

eventually resulted in the closure of inter-crown shadows.  With these closures, overall

classification accuracy began to decline as manual crown over-aggregation increased.

Optimal threshold shadow size was the size that minimized both types of segmentation

problems resulting in the highest overall classification accuracy for hemlocks within the

training plot.  This optimal size was found to be 40 pixels (diameter = 90 cm) for

1997/1998 data and 55 pixels (diameter ~ 1 m) for 1998/1999 data.

The development of a minimum blob joining size also required the balancing of

segmentation errors for both automated blobs and manually delineated crowns (Figure

3.9).  As minimum blob size increased, the number of 0: 1 blob: crown correspondence

errors decreased while the number of 0:1 crown: blob correspondence errors increased.

A minimum blob size of 350 pixels (diameter = 2.68 m) achieved the highest overall

accuracy measurements for 1998 hemlocks of both image pairs within the training plot.

All hemlock blobs smaller than this minimum size were joined to their contiguous

neighbor with whom they shared the largest common boundary.

Assessing the accuracy of the automated segmentation procedure in comparison to the

1998 manual crown survey map, we found automated blobs and manually delineated

crowns had 71.2% 1:1 correspondence in the 1998-97 image pair and 64.3% 1:1

correspondence in the 1998-99 image pair (Tables 3.1 and 3. 2).
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Threshold connectivities (* 1, * 2, * 5) in the reconciliation procedure were estimated from

the training plot data (Table 3.3).

Assessing the accuracy of the automated reconciliation procedure in comparison to the

1998 manual crown survey map showed manually delineated crowns and automated

blobs had 71.8% 1:1 correspondence for the 1998-97 image pair and 63.3% 1:1

correspondence for the 1998-99 image pair (Tables 3.4 and 3.5).
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Figure 3.8.  Effect of varying threshold shadow size on overall accuracy, training
plot, 1998 data from 1998/1997 image pair and 1998/99 image
pair

50

52

54

56

58

60

62

64

66

10 20 40 55 60 70 125

Maximum Shadow Size

%
 

O
v

e
ra

ll
 

A
c

c
u

ra
c

y



76

Figure 3.9. Effect of varying minimum blob size on 0:1 correspondences for
automated blobs and manual delineated crowns, 1998
hemlocks (1998-99 image pair).
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Table 3.2. Accuracy assessment – automated blob segmentation procedure (1998
data for 1997/1998 image pair)

Correspondence

4:1 3:1 2:1 1:1 0:1

Aerial Accuracy (Crowns: Blob) 1 6 51 371 89

Ground Accuracy (Blobs: Crown) 0 3 57 372 93

Overall Accuracy  = 743/1043 = 71.2%
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Table 3.3. Accuracy assessment – automated blob segmentation procedure (1998
data for 1998/1999 image pair)

Correspondence

4:1 3:1 2:1 1:1 0:1

Aerial Accuracy (Crowns: Blob) 2 11 56 342 113

Ground Accuracy (Blobs: Crown) 0 6 72 328 123

Overall Accuracy  = 670/1053 = 64.3%

Table 3.4. Threshold connectivity values (+ +++ ) for reconciliation procedure. + +++  values
shown equal  + +++  x 105.

1997/1998 1998/1999,
1 5 5,
2 375 375,
5 10 10
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Table 3.5. Accuracy assessment – automated blob reconciliation procedure (1998
data for 1997/1998 image pair)

Correspondence

4:1 3:1 2:1 1:1 0:1

Aerial Accuracy (Crowns: Blob) 0 11 49 359  79

Ground Accuracy (Blobs: Crown) 0  6 43 370 99

Overall Accuracy  = 729/1016 = 71.8%

Table 3.6. Accuracy assessment – automated blob reconciliation procedure (1998
data for 1998/1999 image pair)

Correspondence

4:1 3:1 2:1 1:1 0:1

Aerial Accuracy (Crown: Blob) 1  8 52 340  123

Ground Accuracy (Blob: Crown) 0  9 68 327  111

Overall Accuracy  = 667/1040 = 63.6%
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Discussion

The segmentation of a remotely sensed tree population into individual crowns presents a

considerable challenge.  While the results of this study compare favorably with other

studies completed in mature natural forest stands (Leckie and Gougeon 1998),

approximately 1/3 of the hemlock blobs, segmented in the automated procedures, and

hemlock crowns, from the manual crown survey map, did not achieve 1:1

correspondence.  Numerous problems confront the spatial segmentation of individual

crowns.  Forked branches or crowns dissected by hardwood branches and shadows cause

a spatial separation between crown segments that often leads to the over-dissection of an

individual crown into multiple blobs.  Conversely the lack of spatial separation between

neighboring tree crowns can lead to the over-aggregation of several individual crowns as

one blob.  The architecture of hemlock branching, particularly the branching of

individuals in the lower canopy can accentuate these segmentation problems; with the

wide, spreading, and quite flexible hemlock branches often becoming intertwined with

neighboring crowns.  Interestingly, despite the segmentation difficulties illustrated by our

correspondence assessment, whole plot accuracy levels were quite high for both the

segmentation procedure (98.7 – 99.1%) and reconciliation procedure (96.1 – 98.3%) for

both 1997-98 and 1998-99 image pairs.  These high accuracy figures seem to highlight

both the value of the automated procedures for some types of monitoring situations and

the need to clearly describe how the accuracy of any segmentation procedure was

assessed.

Previous post-classification change detection studies have encountered problems due to

the compounding of classification errors for the multitemporal imagery (Pilon et al.
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1988).  While pixel based errors in this study may be subject to similar error

compounding, its impact is lessened by the high overall accuracy (>92%) of spectral

classification (Lamar and McGraw submitted).  The accuracy of multitemporal object-

based classification can also be negatively affected by the compounding of segmentation

errors from both multitemporal images into each multitemporal image.   The challenge

for reconciliation is to determine which contradictory segmentation lines within

multitemporal image pairs should be included to maximize overall classification

accuracy.  We adopted a best-fit approach towards this challenge by measuring the dual

connectivity of reconcilable parcels from the perspective of both multitemporal images.

Reconciliation accuracy also benefits by considering a parcel’s spectral classification

history in reconciliation steps 2 and 4.  This allows the connectivity of single parcels,

contiguous patches of pixels classified as hemlock in only one year of an image pair, to

be considered independently and uniquely.  The result is that overall classification

accuracy for both image pairs following reconciliation is only slightly different than

accuracy prior to reconciliation (<1.0%).

Spatial resolution advances in space-based, remote sensing devices will result in future

sub-continental and continental scale data sets that can be “mined” for demographic

information on trees, shrubs, and other plants of interest.  Therefore, explicit

considerations of the relationship between “individuals” (i.e. blobs), as seen from above,

and true individuals in the global population of a species will become important.  In this

study, we presented both an automated methodology for extracting a population data set

from remotely sensing imagery and a description of the relationship between blobs
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viewed from the air and individual trees.   The future availability of huge, spatially

explicit, remotely sensed, population data sets should assist investigations within a

number of diverse areas of study such as rare plant conservation, intraspecific plant

interactions, and the effects of spatial and temporal environmental variability including

global climate change effects on plant dynamics.
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CHAPTER 4 

A comparison of population models for eastern hemlock (Tsuga canadensis L.)

derived from ground and remotely sensed data. 1

1This chapter formatted according to author’s instructions for submission to Ecology.
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Abstract

Matrix population models for a population of eastern hemlock (Tsuga canadensis L.)

were constructed from population data collected on the ground using traditional field

methods and analogous data extracted from low elevation aerial imagery.   This aerial

derived data was retrieved using spectral and spatial segmentation and reconciliation

procedures.  Fertility estimates for the aerial derived matrix model made use of the

spatially explicit nature of remotely sensed data to estimate fertility as a function of both

parental size and distance between perspective parent and newborn.  Matrix analysis

produced a number of useful population characteristics including overall population

growth rate (- ), stable stage distributions, reproductive values, and sensitivity values.  - ’s
calculated from the aerial and ground-derived matrices were compared using

randomization tests.  While - ’s of the matrices derived from ground censusing in 1997-

98 and 1998-99 showed no significant change, - ’s from the matrices derived from aerial

imagery for this same time period showed a significant increase.  Other data measured

from the aerial imagery and on the ground seemed to support this population status

change, the result of a damaging February 1998 ice storm.    While providing a different

perspective and description of a population than traditional ground studies, demographic

studies using remote sensing provide some promising advantages.  The spatially explicit

nature of the data permits more biologically realistic modeling of the population and the

investigation of potential environmental influences on population dynamics.  Automated

extraction of demographic or megademographic data from remotely sensed images

represents an important first step toward scaling population analysis to the landscape and

regional levels.
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Introduction

The collection of basic demographic data for assessing species survival is of immediate

importance regarding species conservation (Lande 1988).   Given the alarming rise in the

number of threatened species, conservation biologists face an increasing challenge to

gather this basic demographic information (Schemske et al. 1994).  One of the problems

facing conservationists is the large investment in time and money that the typical

demographic study demands (Silvertown et al. 1996).  Consequently, the numbers of

demographic studies conducted are few in comparison to the scientific needs of the

conservation community.  The demographic studies that are completed typically are

characterized by small sample sizes and sampling areas.

Among the many environmental challenges currently facing ecologists, the invasion of

exotic pest species can result in potentially devastating ecological consequences (Kareiva

1996).  The impact of these invasions can often vary widely both spatially and

temporally.  The ability to predict patterns and severity of future invasions is of critical

importance to resource management efforts (Souto 1996).

In recent years spatially explicit population models have become increasingly important

in the study of population dynamics in heterogeneous environments (Shugart and Smith

1992, Busing 1995, Dunning et al. 1995, Pacala et al. 1996).  Because interactions among

plants are localized, population dynamics are inherently spatial (Pacala 1989).  One of the

chief disadvantages of such models is the difficulty of obtaining spatially explicit

population data in the field (Dunning et al. 1995).
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Remote sensing allows ecologists to collect large amounts of spatially explicit

information over a large geographic area in a short amount of time. At present, high

spatial resolution imagery provided by aircraft-based photographic systems appears to

provide data at a scale most feasible for the collection of population level demographic

data (Gougeon 1995b, Niemann 1995, Lamar and McGraw submitted) although recently

launched space-based platforms (i.e. IKONOS and QuickBird) are approaching the

resolution required to discern individuals (Kramer 2002).

The challenge to an ecologist is how to adapt the traditional methods of description and

classification to be compatible with the nature of remotely sensed data (Graetz 1990).

The basic unit traditionally used to describe populations has been the individual.  Yet, the

modular, as opposed to unitary, construction of most plants has long been recognized

(Harper 1976).   Using this modular approach the fundamental unit of a tree population

may be regarded as any repeating unit of construction such as a tree branch or branches

(Huenneke and Marks 1987, McGraw 1989) or tree blob (Chapter 3).  In this last

example, a tree blob, as characterized from aerial imagery, is defined as a distinct portion

of crown canopy segmented from its neighbors on the basis of size, shape, and

connectivity.  Using automated segmentation and reconciliation procedures, a population

of eastern hemlock (Tsuga canadensis L.) blobs has been previously described and

censused over a 3 year period (Chapter 3).  This spatially explicit, multitemporal data set

provides a different perspective with which to investigate population dynamics and

influences.
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 Matrix population models have become the framework of choice in plant demographic

studies due, in part, to the number of informative statistics provided by matrix analysis

(Silvertown et al. 1996).  Matrix models have been used to investigate the conservation of

rare and threatened species (Menges 1990, Allphin and Harper 1997, Kaye et al. 2001),

the control of invasive species (Golubov et al. 1999, Parker 2000), evolutionary change

(Baptista et al. 1998) and species persistence in rapidly changing environments (Silvia et

al. 1991).  In constructing the matrix model, matrix elements usually describe the

transition probability of individuals between life stages.  Matrix models have also been

constructed to describe the transition probabilities of plant parts (Huenneke and Marks

1987, McGraw 1989), pixels (Hall et al. 1991), and spatial units (Guàrdia et al. 2000).

In this paper, we constructed two matrix population models for a population of hemlock.

Parameters for one of these models were estimated from demographic data collected on

the ground using traditional field methods.  Parameters for the other model were

estimated from demographic data extracted from low elevation aerial imagery.  The

results of these aerial and ground-derived matrices were compared.  The ability of matrix

models constructed from both perspectives to detect and quantify population change and

assist in the understanding of the causes of change was evaluated.  The benefits of

incorporating demographic data extracted from remotely sensed imagery into future

population investigations was discussed.
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Study Area

Our study area is located in the Limberlost-Whiteoak Canyon area of Shenandoah

National Park  (38o 34’ N  78o 22’ W).  This site is located in an upper elevation (951 m)

mixed hardwood/hemlock forest.   Hemlock is a long-lived, shade-tolerant, evergreen tree

found in many low disturbance eastern United States (US) forests.  Established

populations usually include a large bank of “saplings”, small individuals that may be

suppressed beneath a canopy of hemlock or hardwoods for hundreds of years and remain

in good condition (Godman and Lancaster 1990).  Following a disturbance in the upper

canopy layer of the forest, these hemlock saplings experience rapid increases in height

and lateral branch growth (Hibbs 1982).  Hemlock ring widths show evidence of many

release and suppression events and it is likely that multiple disturbance episodes are often

needed for the trees to grow into the upper canopy (Oliver and Stephens 1977).  Hemlock

seed ripening and dispersal coincides with the cones changing to a deep brown color in

the fall.  Seeds require a chilling period prior to germination.  Spring germination is

seldom delayed because of seed dormancy (Godman and Lancaster 1990).

Like all hemlocks within Shenandoah National Park, the Limberlost-White Oak Canyon

population has been adversely impacted in recent years by the presence of the Hemlock

Woolly Adelgid (Adelges tsugae) whose occurrence was first reported in the park in

1988.  This adelgid, which is believed to inject a toxic saliva into the hemlocks while

feeding (Souto 1996), currently infests  hemlocks in many Eastern US states.   Unlike

hemlocks in other park locations, most trees within the study site had only suffered mild

to moderate defoliation at the time of aerial sampling.
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Within the study area, a 3 ha (100 m X 300 m) study plot and an adjoining 0.5 ha (50 m

X100 m) training plot were located.  All parameter estimates used in the spatial

segmentation and reconciliation procedures were developed using data from the training

plot and then applied to the study plot for final analysis.

Methods

Data Set Development - Ground

Hemlock trees within the study site were censused in the early spring of 1997, 1998, and

1999.  All hemlock trees (n=1438) with a diameter at breast height (dbh) .  5.0 cm within

the site were tagged, dbh measured, classified according to crown density class (/ 10%,

11-50%, >50%), classified according to crown position (dominant/co dominant,

intermediate or suppressed) and located on an X-Y grid map.   Crown density was

defined as the percentage of foliage that blocks visibility through the crown (Miller et al.

1992).

Within the study site, four 20 X 20 m sub-plots were randomly established and all smaller

hemlocks (dbh < 5.0 cm) were tagged.  The dbh of all hemlocks in the sub-plots was

measured.  Trees too small to have a central bole at breast height (1.3 m) were measured

by height from ground to the topmost branch of its crown.  All measurements of hemlock

< 5 cm were taken in April of 1997,1998 and 1999.  The number of new recruits within

the four random plots were counted in 1998 and 1999 and used in the estimation of

ground fertility probabilities.
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Data Set Development - Remote Sensing

Large scale (1:3,000) color aerial photographs of the study area were collected on March

27, 1997, April 13, 1998, and March 31,1999 using a calibrated Leica/Wild Heerbrugg

RC-30 mapping camera with a 303.860 mm focal-length lens. The photography was

acquired before the emergence of new foliage for the deciduous forest component.  The

color photographs were scanned at 600 dpi using an Agfa Dual Scan scanner to produce

high resolution (~13 cm/pixel) digital images. With shared primary branch bifurcation

points identified throughout the image segment as control points, images were co-

registered using second order mapping polynomials and cubic convolution resampling

(Lamar and McGraw submitted).

The evergreen vegetation of the study site was spectrally segmented from other ground

covers.  Spectral segmentation was completed using a maximum likelihood classification

algorithm and a global, fused class decision making process.  This process summarized

the decisions of local class statistics derived from all three years of radiometrically

normalized imagery over the same scene and applied this summary to each year’s image

(Lamar and McGraw submitted).  Due to the relatively coarse spectral resolution of our

sensor and the overlapping spectral signatures of the four evergreen components in our

study site (hemlock – Tsuga canadensis, mountain laurel - Kalmia latifolia, red spruce -

Picea rubens, and white pine - Pinus strobus) we were unsuccessful in spectrally

differentiating between evergreen species.  A 1998 crown survey, performed by manually

delineating individual hemlock crowns on the ground assisted by multiple years of aerial

imagery and multiple images from different viewing angles each year, showed that ~

97% of the evergreen component in the study site was hemlock (Lamar and McGraw
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submitted).  Based on this finding, we will hereafter inclusively refer to the evergreen

component as the hemlock component.  The assumptions of this broad labeling will be

discussed later.

For multitemporal image comparisons, the presence of crown shadows presents a

challenge.  The occurrence of shadows over an area masks the true nature of the ground

cover.  For example, if a particular area is classified as hemlock at time t and shadow at

time t+1, the shadows could be masking hemlock in which case no actual change has

occurred, or the shadow could be masking an actual change between hemlock and

another ground cover.   Because of the classification uncertainty of areas exhibiting

shadow/hemlock transitions between time periods, we chose to eliminate these areas from

consideration prior to further image processing and comparison.  This action resulted in

any pixel that had been classified as shadow at any time in a multitemporal same scene

dataset being re-classified as shadow at all times.  While the compounding of shadows

amplified the masking of information about the true nature of the ground cover,

comparing only two images at a time minimized this effect.  Thus, 1997 and 1998

shadows were added to both images within the 1997/1998 image pair and 1998 and 1999

shadows were added to both images of the 1998/1999 image pair.

These binary image pairs were then independently routed through a multi-step spatial

segmentation procedure that included Euclidian distance map (EDM) construction, EDM

manipulations, watershed segmentation, and minimum blob joining (Chapter 3).  This

procedure divided the hemlock component of the images into individual population units
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or blobs based on size and shape.  Due to the different shapes of hemlock between years,

not all segmentation lines were identical for the multitemporal images.  Some hemlock

pixels were assigned to different blobs in different years.   Not only does this condition

make no biological sense, since hemlock branches cannot switch trees, it also prohibits

the following of unique blobs over time.  An automated procedure was developed to

reconcile these cross-identified pixels into the same blob for both time periods.  Blob

reconciliation was based on the connectivity between parcels of pixels considered for

reconciliation and their neighbors.  A full description of both the spatial segmentation and

blob reconciliation procedures can be found in Chapter 3.  Processing our aerial imagery

through these procedures resulted in the production of two paired data sets, maps of

spatially explicit hemlock blobs from 1997 and 1998 and from 1998 and 1999.

Matrix Model

A stage (size) structured matrix population model (Lefkovitch 1965) was used to describe

the population dynamics of our hemlock population based on both ground and aerial data

sets.  This model projects the size and structure of a population from time t to time t+1 as:

  n An( ) ( )t t0211  Equation 4.1

where n is a vector whose entries represent the number of population units (individuals

for the ground data and blobs for the aerial data) within each size class and A is the

projection matrix whose elements aij  are transition probabilities; the number of population

units in size class i at time t+1 for each unit in size class j at time t.  An analysis of the

matrix A provides a number of useful population characteristics.   The dominant
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eigenvalue (3 ) of A projects the long-term population growth rate, assuming transition

probabilities remain constant over time.  The right eigenvector (w) and left eigenvector

(v) corresponding to 3  describe the stable size distribution and size-specific reproductive

values of the population respectively.  The sensitivity of 3  to changes in aij  is  based on

these eigenvectors (Caswell 2001) as:

  

4 5 4
/ aij

i j687:9<;v w
w v, Equation 4.2

Elasticity, or proportional sensitivity values for transition elements was calculated from

Caswell (2001) as:

e ij
ij

ij

a

a
=?>@ A @A Equation 4.3

Life Cycle Comparisons

The hemlock population modeled using ground and aerial data can be represented as life

cycle graphs (Figure 4.1).  Several of the differences between collecting ground and

aerial data sets are illustrated by the life cycle graphs.  The most obvious difference is the

inability of remote sensing to detect all segments of the population.  This cryptic layer of

our hemlock population has been quantitatively described previously (Lamar and

McGraw submitted).  Nearly 90% of the small hemlocks (dbh 5-15 cm) were not detected

on the aerial imagery.  In addition to size, crown density and crown position in the

canopy also influenced detection; hemlock with sparse and/or suppressed crowns were

more likely to remain undetected from the air.   Another difference between the two life

cycle graphs is the greater number of potential transitions between stage classes in the
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aerial censused population in comparison to the ground censused population.  These

additional transitions are partly due to the different hemlock characteristics being

sampled by the two methods.  On the ground, the dbh of hemlock trees was measured;

from the aerial imagery, the visible canopy area of hemlock blobs was measured.  Size

regression is rarely detected from dbh measurements.  Growth in dbh is slow and gradual

so that the only potential fates of surviving trees are to remain in the same class or grow

to the next larger class.  In contrast, changes in visible canopy area can potentially be

much more dynamic.  Crown regression, due to a number of environmental influences, is

a common and readily detected characteristic.  Although “true” growth of canopy area is

relatively gradual, visible canopy area growth, from an aerial perspective, can be rapid

due to the demise of neighboring crowns and the opening of nearby gaps in the forest

canopy.
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Figure 4.1. Life cycle of a) individuals censused from ground and b) blobs censused
from aerial imagery.

.
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Parameter Estimates – Ground

From the ground data, hemlock individuals were divided into five size classes 1) < 5.0

cm dbh 2) 5.0 – 15.0 cm dbh 3) 15.1-25.0 cm dbh 4) 25.1-45.0 cm dbh 5) >45.0 cm dbh.

To establish size classes for all individuals B  5.0 cm, we used an algorithm developed by

Moloney (1986), that minimized both sampling and distribution errors for the three years

of data collection.

Estimates of matrix elements representing growth, regression and stasis were obtained

using a maximum likelihood estimate of observed transition frequencies (Caswell 2001)

from time t to time t+1 such that

a
m

m
ij

ij

iji

s
C D EF 1

1 Equation 4.4

with s being number of size classes in the population state vector n and class s+1

corresponding to individuals of a particular class j that died in the year between censuses.

mij is the number of observed transitions from size class j to fate i from one census to the

next.  Due to the smaller sampling area of size class 1, only one estimate of this class’

stasis and growth transitions was calculated by summing observed transitions from all

three years of population data.  This one estimate was used for both 1997-98 and 1998-99

ground-based matrix models.

Estimating mean fertility for individuals is challenging for any plant species that

produces copious quantities of seed (too many to count), each of which has a very low

(difficult to estimate) probability of germinating and surviving to the subsequent census.

Therefore indirect estimates are typically used to calculate individual fertility
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probabilities.  To do this, an estimate of total number of new recruits per year (M) was

obtained by averaging the number of new recruits found in 4 randomly established 20 X

20 m plots in 1998 and 1999.  Fertility probabilities were then estimated for all adults

(dbh G  10 cm) present in the population the previous year as a function of tree size.  Both

linear (Clark et al. 1998) and exponential (Ribbens 1994) recruitment patterns with size

have been described for hemlock.  Pinero et al. (1984) suggested that an exponential

increase in fertility with size is the most common pattern found in tree species.  We thus

estimated fertility probability f of each adult individual k in the population as

fk
k

k
k

 =  
dbh

dbh
M

2

2
HJI Equation 4.5

Class fertilities F were calculated from Equation 4.5 as

F
f i

i

k
k

i

K
L

( )

N
Equation 4.6

where N is the total number of individuals in size class i.

Fertility estimates represented the average number of new recruits (time t+1) per adult of

that size class (i) in the population (time t).  The timing of sampling (early spring) meant

that “new” seedlings had actually survived nearly a year since germination the previous

spring.  New recruits, thus, reflected both a germination and survival (from birth to the

next census) component.

Typically, individuals of a long-lived, low disturbance species such as hemlock

experience very little change between census periods.  This lack of change can result in
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1) having all individuals in size class j at time t survive to time t+1 (in which case

aij
i

M
 =  1.0) or 2) having no individuals from size class j grow into a larger class

between census periods (aij = 0 where i = j+1).  This last condition is not a consideration

for individuals being in the largest size class at time t.  Both conditions are the result of

the limited nature of our sampling and are not expected to persist over time.  Including

any of these resulting transition probabilities within our matrix, should either condition

occur, distorts our projection of population characteristics.  Thus, alternative, and more

biologically realistic, transitions were substituted into the matrix.

For any size class that showed no mortality over time we substituted an alternative

transition probability into the matrix which calculated an average survival of both that

size class (where mortality = 0) and the next smaller size class so that

if =  1.0 then,  (adj) =    +  2a a a aij
i

i i j j ij
i

i j
iN N NPON

Q QRQSTU
V
W X

2

5

2

5

1
2

5

( ) ( ) Equation 4.7

This alternative stasis transition replaced the original stasis transition for the formerly

“immortal” size class.

For any size class that showed no growth over time, excluding the largest size class, we

calculated the average growth rate of all individuals within the size class, and, based on

this rate, projected the average number of individuals per year expected to grow into the

next larger size class N
^

ij  (where i = j+1) within a five year period.  Adjusted estimates of
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growth a i jij (adj) where  =  +1 and stasis a (adj) where  =  ij i j  elements for size classes

1…S were calculated as:

For all  =  0, 

a (adj) = N and  a (adj) =  a  -  a (adj)

( = +1, < )a

N

ij i j j s

ij i j ij i j j ij i j ij i j ij i j( )

^

( ) ( ) ( ) ( )Y Z Y Z Y[Y\Y Z]^_a`b c
1 1 1

Equation 4.8

where N j = number of individuals in size class j at time t.

Parameter Estimates – Remote Sensing

In order to make comparisons between models produced from traditional ground data and

remote sensing data, we attempted to devise corresponding individual and blob size

classes as follows.  The population of hemlock blobs delineated from aerial imagery was

divided into size classes corresponding to the four largest size classes developed for the

same population censused on the ground.  Class boundaries were determined based on the

relationship between dbh measured on the ground and visible canopy area measured from

aerial images in the 1998 crown survey.  This relationship produced a regression

equation:

Visible crown area (in pixels) = 37.6585 +28.0415 (dbh) p <  0.0001 Equation 4.9

Substituting the size class boundaries of the ground data into the regression equation,

produced blob size classes (in pixels) of:  1) 178 – 458 2) 459 – 739 3) 740-1300 4)

1300+.  Blobs < 178 pixels presented a challenge.  The 1998 manually delineated crown
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survey of the study site found a number of the smallest patches of hemlock visible from

the air to be separated at such a distance from all identified hemlock crowns that they

could not be linked with certainty to any one crown (Lamar and McGraw submitted).

These smallest patches represented isolated hemlock branches cut off from the main

crown by shadows or other ground covers or crowns belonging to hemlocks with a dbh <

5 cm.  Because of the uncertain identity and relative insignificance of these smallest

patches, all blobs < 178 pixels were considered “noise” and eliminated from further

comparison and description. The elimination of these smallest blobs highlights the

difficulty of accurately sampling the smallest elements within our hemlock population

using remote sensing.

Fertility probability, besides being a function of parental size, is also expected to be a

function of the distance from the seed source to the new recruit (Harper 1977).    While

individual-based simulation models have incorporated a distance function into estimates

of recruitment (Ribbens 1994), most matrix projection models do not include such

biological realism.  The spatially explicit nature of our aerial data set permitted us to

model fertility probabilities as a function of both blob size and distance of adult blobs

from each new recruit.  Unlike our ground data, the presence of “newborn” blobs within

the aerial data sets is not the product of recent germination, but rather usually due to the

emergence of new hemlocks into the canopy as a result of local disturbances.  Only adult

blobs present on the previous year’s imagery were considered as possible parents.  Adult

blobs, as predicted by our regression equation, were defined as all blobs d  318 pixels,

blobs corresponding to trees d 10 cm dbh.  Because most hemlock seed dispersal is within
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tree height (Godman and Lancaster 1990), fertility probabilities were estimated only for

adult blobs (k) within 30 m of each newly emerged blob.  As in equation 4.5, we assume

fertility follows an exponential pattern with size such that

F kertility probability  Crown Areak
2e Equation 4.10

 To model our distance function we rely heavily on the assumptions of Ribbens (1994)

who predicted recruitment would follow a Poisson  distribution where the mean of the

Poisson distribution is determined from the distance between the new recruit and

potential parent.  Our distance function was

Fertility probability Dmfhge 3

Equation 4.11

where D is a constant that determines the steepness of decline of fertility probability as

distance from new recruit increases and m is the mean distance (in meters) between all

pixels of the potential parent and the new recruit.  Ribbens (1994) , using a Metropolis

algorithm, calculated a hemlock-specific maximum likelihood value for D of 44.720410

*10-5, a value which produced a best fit of field observed and predicted spatial

distributions for new recruits.  In our model we assumed the same value for D.  The

relative fertility probability f of each potential hemlock parent blob k with regard to each

new recruit l was calculated as the product of the size and distance function such that:
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 Class fertilities Fi are then calculated as

Fi kli
kl

i =  f N
o

/ Equation 4.13

where Ni is the total number of blobs in size class i.

Statistical Comparison

A randomization, or permutation, test was used to assess variation found in p  for the

1997-98 and 1998-99 matrices derived from both ground and aerial-based sampling

(Caswell 2001).  A test statistic qsrtr= -  t t +1 was used to conduct a two-tailed test of the

null hypothesis that time had no effect.  Data on all individuals from both matrices was

randomly resampled without replacement to produce a permutated data set maintaining

the original sample sizes for both times.  The test statistic u ( )i  was calculated from this ith

data set and the process repeated for a sample of 3000 random permutations. The

probability, given our H0, that v  w  v obs was calculated

P Hobs o

i
obsxyx xzx{|~} ������#{ }( ) 1

3000 1
 Equation 4.14

Results

Matrix population models of the hemlock population were constructed for 1997-98 and

1998-99 using both aerial (Table 4.1) and ground  (Table 4.2) censused data sets.
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Visual inspection of the two types of matrices showed clear differences owing to the

contrasting data sources.  The matrices derived from ground based data looked as

expected for a long lived, low disturbance tree species: low rates of mortality, no

regression into smaller size classes, and little growth to larger size classes (Hartshorn

1975, Enright and Ogden 1979, Platt et al. 1988).   The matrices derived from the aerial

imagery presented a different picture.   These matrices exhibited much more “movement”

among size classes.  Some of these changes, as illustrated in the life cycle figures, were

due to the more dynamic nature of the aerial measurements (visible canopy area of blobs)

vs. ground measurements (dbh measurements of trees).  These changes would tend to

have a real impact on the population’s future.  Other movements between matrix

elements, however, were pseudo-transitions caused by uncorrected distortion differences

between images.  Distortions are inherent in the process of collecting low elevation,

aerial imagery and it is unrealistic to expect to eliminate all the resultant errors.  Our goal

with geometric corrections was to minimize these errors so that the pseudo-transitions do

not mask the detection of actual change between images.  Image to image registration of

image pairs using second order mapping polynomials along with cubic convolution

resampling resulted in a deviation between images, as described by root mean square

(RMS) error, of 2.8 pixels (~36 cm) for the 1998/1999 image pair and 2.6 pixels (~34

cm) for the 1997/1998 image pair (Lamar and McGraw submitted).

The reconciliation procedure ensured that no pixel is identified with different hemlock

blobs in different years, however, because of uncorrected distortion differences it was

still possible that the same hemlock crown portion on the ground, when viewed from the
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air, could share no overlapping pixels on multitemportal imagery.  In that case, the

automated reconciliation could, for example, assign the crown portion as viewed from

time t to Blob A and the same crown portion as viewed from time t+1 to Blob B.  The

result would be a pair of pseudo-transitions, a reduction in size for Blob A and an

increase in size for Blob B over time and a possible change of size classes.  While a

significant number of the same type of pseudo-transitions (for example, individuals

“growing” from size class 2 to 3) would greatly impact the population projections, given

a large enough sample and the expected complementary distribution of individuals on

both sides of the size boundaries, we anticipated that these pseudo-transitions should

balance themselves out (Figure 4.2).  Thus, in the previous example, the number of

individuals pseudo-growing from size class 2 to 3 should be balanced by the number of

individuals pseudo-regressing from size class 3 to 2.  The negligible effects of these

balanced pseudo -transitions on the overall population growth rate is shown in Table 4.3.

We thus could reasonably assume that significant differences between matrix projections

derived from aerial imagery were due to real changes in the visible canopy area of blobs.

Another distinctive characteristic of matrices derived from aerial imagery was the

merging of two population attributes into one transition element.  For example, in Table

1, the transitions involving the movement of blobs from the larger classes into size class 1

(a1j, where j>1), a transition that often is associated exclusively with fertility, consisted of

both a fertility component and a regression component.  Similarly, transition a24, typically

a transition describing regression, was comprised of both a regression and fertility

component.  This 2-component transition is often seen in demographic models of plant
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parts (McGraw and Antonovics 1983, McGraw 1989), but less frequently in models of

long-lived genets.

Population characteristics (� , stable size distribution, reproductive values, and

elasticities) calculated from the aerial and ground derived matrices are summarized in

Tables 4.4 and 4.5.  Several of these characteristics showed comparable patterns for both

aerial and ground-derived matrices.  Reproductive values calculated from both type of

matrices grew with increasing size classes.  Both blobs and individuals belonging to the

largest size classes are expected to contribute the most to future population growth.  The

actual reproductive values associated with the ground censused individuals were much

larger than the values linked to aerial censused blobs, reflecting the different definitions

of “newborn” individuals and “newborn” blobs in this study.

Elasticity values also showed similar patterns for both ground and aerial-derived

matrices.  For long-lived trees species the importance of adult survival is critical and

well-documented (Silvertown et al. 1996).  It is thus not surprising that the largest

elasticity values for both types of matrices were associated with transitions where adults

(blobs and individuals) remained in the same size class (i.e. survived) over time.

 The two methods of gathering data for the population projection matrices resulted in

different responses of �  over time. No significant increase in �  was found between 1997-

98 and 1998-99 when using ground-derived matrices, however, the aerial-derived

matrices for these same time periods, showed that for the 1997-98 data, the population
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was projected to decline at a rate of ~ 1 % per year, while the 1998-99 data resulted in a

projected long-term increase in population size of ~ 6% per year, a significant increase (p

< 0.001).

A similar pattern of decrease from 1997 to 1998 and increase from 1998 to 1999 was

found in other descriptions of the hemlock canopy collected in the air and on the ground

during this time frame; a pattern attributed to a severe February, 1998 ice storm.  The

total number of hemlock pixels classified in the 1997-98 aerial image pair decreased

1.85%; the total number of hemlock pixels classified in the 1998-99 image pair increased

2.38% (Figure 4.3).  Between the 1997 and 1998 censuses, ground measurements of

crown density found a net of 137 hemlock crowns dropping at least one density class

including 13 crowns belonging to dominant, upper canopy trees (Figure 4.4).  In contrast,

from the 1998 to 1999 census, a net of 18 hemlock crowns increased to a higher density

class.



111

Table 4.1. Hemlock population matrices derived from aerial data sets.

Stage at time t

1 2 3 4

1997-98

1
0.4861

0.1667
(0.0201)

0.0765
(0.0515) *

0.1287
(0.1149) *

2
0.1543 0.6113 0.2349

0.0498
(0.0429) *

3
0.0722 0.1824 0.6908 0.1606

4
0.0080 0.0172 0.0688 0.8207

1998-99

1
0.5016 0.1772

0.0744
(0.0692) *

0.1485
(0.1149) *

2
0.2309 0.5455 0.1557

0.0440
(0.0296) *

3
0.1420 0.2957 0.7385 0.2243

S
ta

ge
 a

t t
im

e 
t+

1

4
0.0088 0.0159 0.1192 0.7770�  Fertility probabilities included in  (  ) if >10% of total transition probability.
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Table 4.2. Hemlock population matrices derived from ground data sets.

�  Elements are adjusted estimates calculated using Equations 4.7 (a55) and 4.8 (a54

and a44).

Stage at time t

1 2 3 4 5

1997-98

1 0.9030 0.816 0.6047 1.9349 6.5361

2 0.0038 0.9652 0 0 0

3 0 0.0035 0.9785 0 0

4 0 0 0.0036 0.9632 0

5 0 0 0 0.0105 0.9907

1998-99

1 0.9030 0.0835 0.6113 1.9435 6.5760

2 0.0038 0.9795 0 0 0

3 0 0.0012 0.9891 0 0

4 0 0 0.0072 0.9880 * 0

S
ta

ge
 a

t t
im

e 
t+

1

5 0 0 0 0.0065 * 0.9973 *
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Figure 4.2. Blob size distribution.  Note the relative balance between numbers of
blobs on either side of category boundaries.
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Table 4.3. Effect on � ���  of balanced growth and regression transitions between
adjacent size classes,  1998-99 aerial derived matrix.

# of balanced transitions (in comparison to actual matrix)

Class Boundary -40 Original +40

� ��� 1--2 1.0640 1.0604 1.0579

2--3 1.0640 1.0604 1.0586

3--4 1.0489 1.0604 1.0646

An example of a pair of balancing transitions is growth from class 2 -> 3 and regression

from class 3 -> 2.
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Table 4.4. Population characteristics predicted from aerial derived matrices.

AERIAL

1997-98 1998-99� ���
0.9896*** 1.0604***

1 2 3 4 1 2 3 4Stable Stage

Distribution 0.1950 0.3051 0.3266 0.1733 0.1756 0.2200 0.4129 0.1915

Reproductive

Values

1.0000 1.8581 2.5837 3.7679 1.000 1.3415 1.6281 2.0207

1 0.0424 0.0228 0.0112 0.0100 0.0543 0.0240 0.0189 0.0175

2 0.0250 0.1550 0.0638 0.0072 0.0335 0.0992 0.0532 0.0070

Elasticities 3 0.0163 0.0643 0.2608 0.0322 0.0250 0.0653 0.3060 0.0431

4 0.0026 0.0089 0.0378 0.2398 0.0019 0.0043 0.0613 0.1853

*** P < 0.001
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Table 4.5. Population characteristics predicted from ground derived matrices.

GROUND

97-98 98-99� ���
0.9946 1.0025

1 2 3 4 5 1 2 3 4 5Stable Stage

Distribution 0.8552 0.1106 0.0240 0.0027 0.0076 0.8350 0.1384 0.0125 0.0063 0.0079

Reproductive

Values

1.00 24.1 179.8 636.8 1715.5 1.00 26.2 429.5 706.7 1266.0

1 0.0344 0.0004 0.0006 0.0002 0.0022 0.0311 0.0005 0.0003 0.0005 0.0021

2 0.0035 0.1146 0 0 0 0.0034 0.1463 0 0 0

Elasticities 3 0 0.0031 0.1882 0 0 0 0.0029 0.2185 0 0

4 0 0 0.0024 0.0749 0 0 0 0.0026 0.1803 0

5 0 0 0 0.0022 0.5733 0 0 0 0.0021 0.4093

No significant difference between � ’s, P = 0.194.
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Figure 4.3. Comparison of total hemlock pixels classified from the aerial imagery,
1997-98 and 1998-99 image pairs.
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Figure 4.4 Hemlock canopy density changes between 1997-98 and 1998-99, ground
data.
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Discussion

In some respects, censusing plant populations by remote sensing can be viewed as a

broad-brush approach to demography.   Numerically, a large part of the hemlock

population was invisible from the aerial imagery.  Most of these hidden trees were small,

understory and/or sparsely-foliated individuals (Lamar and McGraw submitted).  By

establishing a threshold blob size for the visible segment of the population, additional,

mostly small trees were eliminated from demographic analysis.

One of the reasons hemlock was selected for this study was that it is spectrally distinctive

in the hardwood forest context.  However, the inability of our spectral segmentation

procedure to distinguish hemlock from other evergreen species meant that our

“population” was not exclusively hemlock, but actually included one adult white pine,

one adult red spruce, and several clumps of mountain laurel.  The impact of this lack of

spectral separability was lessened in our study site with ~97% of the evergreen

component being hemlock.  Future investigations in more diverse communities will,

however, require improved spectral segmentation of species.  The coarse spectral

resolution of the sensor contributed to our inability to distinguish hemlock.  Current and

forthcoming sensors with increased spectral resolution combined with radiometric

enhancement techniques offer much promise for future spectral segmentation at a species

level (May et al. 2003).

Despite the broad-brush approach, aerial demographic sampling can provide important

information about a population.  The visible segment of the hemlock population was

comprised of two components important to future population dynamics: large upper
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canopy hemlock trees and smaller hemlock located in canopy gaps or under lightly

branched overstory trees (Lamar and McGraw submitted).  Large adult trees have been

shown to have a disproportionately high influence on the future dynamics of a population

(Hartshorn 1975, Enright and Ogden 1979).  Small hemlocks located within a gap or

higher light environment experience an increased rate of growth while the gap persists

(Hibbs 1982).  The alternating periods of growth and suppression due to small but

repeated disturbances in the forest upper canopy are often needed by hemlock to reach

the upper canopy level (Oliver and Stephens 1977).  Therefore, the small visible trees in

the study site may have a better chance of contributing to future population growth than

trees of similar size hidden from aerial censusing.

The different perspective provided by aerial sampling has both advantages and

disadvantages.  The division of our aerial censused population into blobs rather than true

individual crowns loses the advantage of population units with genetic identity that

accompanies the traditional censusing techniques.  Yet, blobs and individuals share many

other characteristics; the advantages of one sampling perspective over another is not so

distinct.  Indeed, the majority of blobs show a 1:1 correspondence with actual tree crowns

(Chapter 3).  Importantly from an ecological perspective, both blobs and individuals can

influence their surrounding environments and compete for resources with their neighbors.

The cost-effectiveness of sampling large numbers of spatially explicit blobs over large

geographic areas is a distinct advantage of aerial sampling, with this advantage becoming

greater the larger the censused population.
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The calculation of fertility probabilities is another example of the different perspective

provided by remote sensing.  The spatially explicit nature of the data permitted the

addition of a distance function when calculating individual fertility, adding an element of

biological realism not found in non-spatial models.  On the other hand, the necessity of

defining “newborns” as newly visible blobs within the forest canopy meant the

“newborn” might be decades old and the actual parents may be no longer surviving at the

time of the parental census, leading to inherent statistical error in calculating fertilities.

Until remote sensing instruments can detect individuals with the same resolution and

angular mobility as the human eye (probably a physical impossibility), the census data

extracted from these instruments will differ in several respects.  The important question

is: Does the perspective from the air yield benefits in terms of detecting population

change and identifying the causes of this change?  This particular study, which is the first

to attempt to answer this question in the context of demographic modeling, suggests the

answer is yes.  �  derived from ground data showed no significant change between the

1997-98 and 1998-99 matrices and, indeed, we would not expect ground measurements

of dbh to detect sub-lethal crown disturbance events, in this case a February 1998 ice

storm.   �  derived from aerial imagery did, however, show a significant increase.  Other

data from the air (total hemlock pixels) and ground (crown density class) supported that

this was a real change in population status.

Although the pattern of crown density class measurements showed distinct changes

between 1997-98 and 1998-99, supporting the findings of the aerial-derived matrices, a
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direct comparison of individual crown density on the ground and a blob’s visible canopy

area from the air must be made cautiously.   Not only should simply the different

perspective of the two measurements be expected to cause variability, but the ground

measurements also fail to consider the effects of crown damage to neighboring non-

hemlock components of the forest and the resulting canopy openings.  A National Park

Service (NPS) survey following the 1998 ice storm showed 11.3% of the live trees

sampled in upper elevation plots suffered crown damage (Cass 1999).  Oaks (Quercus

sp.) and Red Maple (Acer rubrum) were the most severely damaged species.  The

numerous canopy openings that formed within the study site following the ice storm

provided a indirect positive impact on the lower canopy level hemlocks.  This benefit

helped to balance the direct negative impact of the storm on hemlock and explains why,

although a net of137 hemlocks (~10% of the population) dropped at least one density

class between the 1997 and 1998 censuses, total hemlock pixels measured from the air

only dropped 1.85% and �  derived from the aerial imagery remained very close to 1.0.

The direct negative impacts of the storm on hemlock were apparently balanced by the

indirect positive impacts caused by the many canopy openings.

The response of hemlock following this disturbance event from 1998-99 is more

pronounced in the aerial imagery (both total hemlock pixels and � ) than crown density

comparisons.  While the net of 18 hemlocks increasing one density class from 1998-99 is

certainly a reversal from the 1997-98 data, it is quite possible that the broad boundaries of

the density classes failed to detect many additional small increases in crown density.
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Continued improvements in the spectral and spatial resolution of future remote sensing

devices should allow ecologists to collect even more detailed population data over larger

regional and even sub-continental scales.   The cost effectiveness of remote sensing

should increase our ability to provide basic demographic information on species of

conservation concern.  In addition, the ability to follow 100,000’s of spatially explicit

individual population units over time within a regional landscape provides many new

opportunities for demographic study.  For example, by structuring the remotely sensed

population by both size and the density of local neighborhoods, the effect of density

dependence within a population can be investigated.  Overlaying the population

information with other layers of spatially explicit environmental data such as soil maps,

elevation maps, and surface water maps within a GIS framework allows the investigation

of the influence of both local and regional environmental variables on population

dynamics.  The marriage of remote sensing techniques, GIS analysis and demographic

ecological studies promises to answer many fundamental ecological questions, heretofore

intractable, regarding the factors that determine population structure and dynamics.
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CHAPTER 5 

General Conclusion

Until remote sensing instruments can detect individuals with the same resolution and

angular mobility as the human eye (probably a physical impossibility), the census data

extracted from these instruments will differ in several respects from traditional field

sampling.  The important question is: Does the perspective from the air yield benefits in

terms of describing a population, detecting population change and identifying the causes

of this change?  This dissertation, which is the first to attempt to answer this question in

the context of demographic censusing and modeling, suggests the answer is yes.

In the first study, a census of a hemlock population from an aerial-derived manual crown

survey and from traditional ground sampling revealed important similarities and

differences between the two perspectives.  The most obvious difference in the population

data obtained from remote sensing is the absence of a large portion of the total

population.   In our study, over 60% of the hemlock population censused on the ground

was hidden in the aerial census.  Most of these hidden hemlocks were small, suppressed

individuals located underneath the upper canopy crowns and in shadows cast by adjacent

neighbors. Crown density and crown position also influenced a crown’s visibility from

the air.

The visible hemlock trees from aerial censusing represented several important

components of the population.  Nearly all large upper canopy hemlock trees were seen in

the aerial imagery.   These large adult trees have been shown to have a disproportionately
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high influence on the future dynamics of a population (Hartshorn 1975, Enright and

Ogden 1979).

Large hemlock trees were not the only visible segment of the population from the air.

Nearly 40% of the aerially viewed population was comprised of trees within the forest’s

lower canopy.  The visibility of these smaller individuals was attributed to their location

within the forest: in canopy gaps or under a sparsely branched hardwood canopy.  One

would  expect that the small visible trees in our study site would have a better chance of

contributing to future population growth than trees of similar size hidden from aerial

censusing.

In the second study, a new automated methodology was presented to extract unique and

comparable population data sets from remotely sensed, multitemporal imagery.  The

spectral and spatial characteristics of the available imagery dictate the canopy attributes

that can be used for segmentation.  These characteristics vary considerably depending on

site, sensor type, image scale, and timing of image collection.   Our segmentation and

reconciliation procedures relied on global and local spatial features such as shape, size,

and connectivity between hemlock clumps to divide the multi-temporal binary hemlock

maps into unique individual population blobs that could be followed over time.

In the third study, matrix population models were constructed from databases derived

from the ground and aerial censusing of the hemlock population.  Important population

characteristics produced by matrix analysis were compared.  The overall population
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growth rate (� ) derived from ground data showed no significant change between the

1997-98 and 1998-99 matrices and, indeed, one would not expect ground measurements

of dbh to detect sub-lethal crown disturbance events, in this case a February 1998 ice

storm.   �  derived from aerial imagery did, however, show a significant increase.  Other

data from the air (total hemlock pixels) and ground (crown density class) supported the

idea that this was a real change in the status of the population.

Continued improvements in the spectral and spatial resolution of future remote sensing

devices should allow ecologists to collect even more detailed population data over larger

regional and even sub-continental scales.   The cost effectiveness of remote sensing

should increase our ability to provide basic demographic information on species of

conservation concern.  In addition, the ability to follow 100,000’s of spatially explicit

individual population units over time within a regional landscape provides many new

opportunities for demographic study.  For example, by structuring the remotely sensed

population by both size and the density of local neighborhoods, the effect of density

dependence within a population can be investigated.  Overlaying the population

information with other layers of spatially explicit environmental data such as soil maps,

elevation maps, and surface water maps within a GIS framework allows the investigation

of the influence of both local and regional environmental variables on population

dynamics. The marriage of remote sensing techniques, GIS analysis and demographic

ecological studies promises to answer many fundamental ecological questions, heretofore

intractable, regarding the factors that determine population structure and dynamics.
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