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ABSTRACT 

Using lidar to approximate keystone structure and evaluate management practices in potential 

habitats of the endangered Karner blue butterfly (Lycaeides melissa samuelis) 

 

Brandyn Balch 

 

 Keystone structure is the spatial structure required by a given species, at a scale that is 

determined by that species’ needs and mobility. The endangered Karner blue butterfly 

(Lycaeides melissa samuelis, hereafter KBB) has a keystone structure that incorporates trees 

and bushes to provide the mixture of sun and shade required to fulfil its life functions. Airborne 

light detection and ranging (lidar) is a potentially invaluable tool for characterizing keystone 

structures. However, lidar has yet to be utilized to evaluate structural suitability of KBB habitats. 

Therefore, I investigated the use of lidar for characterizing critical attributes of KBB habitat 

structure, and its use in the evaluation of management practices. Structural diversity was 

summarized from lidar using two approaches: one that attempted to test the canopy cover 

criteria used in the field-based Glacial Lake Albany habitat mapping (hereafter GLA 

heterogeneity), and a second based on the texture of the lidar -derived canopy cover imagery. 

These lidar-derived measures were calculated at five scales, using kernels (moving windows) 

with areas of 0.05 ha to 19.2 ha. The lidar heterogeneity measures derived at 0.9 ha or less 

were highly correlated with density of field observations of KBB presence, with the highest 

correlation at 0.2 ha. Larger kernels were poorly correlated with KBB presence. Notably, the 0.9 

ha scale corresponds to more than 75% of KBB mobility range observations, as reported in a 

previous field study. GLA heterogeneity was also found to be consistently more correlated with 

KBB observations than the texture measure. The criteria used to establish the four GLA 

heterogeneity classes appear to be useful, based on rank correlation relationships with the 

classes that were combined or evaluated individually. The 0.2 ha kernel GLA heterogeneity was 

used to evaluate the effects of prescribed burning on structural suitability, and was found to be 

significantly correlated with burn intensity.  
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1. Introduction 

1.1 Driving question  

 This thesis is driven by the overarching question: can lidar be used to characterize 

critical attributes of Karner blue butterfly (Lycaeides melissa samuelis), hereafter KBB, habitat 

structure and aid in the evaluation of management practices?  

1.2 Approach  

 To address the driving question, I first focused on using lidar to detect the most 

appropriate scale at which to characterize shade heterogeneity for the KBB, hereafter referred 

to as its keystone structure— defined by Tews et al. (2004) as the spatial structure required by a 

given species, at a scale that is determined by that species’ needs and mobility . I then explored 

how a spatially continuous structural suitability coverage can inform the effectiveness of 

prescribed burning in maintaining KBB’s keystone structure.  

 All approaches to describing heterogeneity are implicitly scale-dependent (McGarigal, 

2015; Ferro and Warner, 2002). In their review of 85 publications on structural heterogeneity 

from 1960 to 2003, Tews et al. (2004) note an overarching commonality: habitat suitability of a 

species is affected by structural heterogeneity at specific spatial scales, which vary by their 

needs and mobility. They define this as a species’ “keystone structure,” (p. 86). McGarigal 

(2015) reiterates this, explaining that habitat heterogeneity requirements vary by organism, and 

likely have characteristic spatial scales dependent upon its ability to obtain resources.  

2. Background 

2.1 The Karner blue butterfly  

 The KBB is an endangered species native to the Midwest and Northeastern United 

States. It thrives in oak savanna and pine barren habitats, an early-successional ecological 

stage that requires regular disturbance events, such as fires, to maintain a unique canopy 

structure. Over the past century, KBB’s habitat has been steadily degraded or destroyed by 

human development and fire suppression policies (Kilgore, 1989; Nowacki, 2008; Gifford et al., 

2010). Therefore efforts to restore viable KBB populations prioritize the protection of critical 

habitat requirements and the ecological processes that sustain them (Bried et al., 2014).  

 The primary objective of habitat monitoring for the KBB is to focus on a set of 

environmental indicators that represent KBB’s most critical requirements. One such indicator 

that accounts for a significant amount of management expenditure is vegetation structure, with 
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particular emphasis on the shade heterogeneity that results from variations in canopy cover 

(Bried et al., 2014; Grundel et al. 1998). 

2.2 The Albany Pine Bush Preserve  

 The study site for this project the Albany Pine Bush Preserve, which is home to a 

globally rare inland pitch pine-scrub oak barren ecological community (Edinger et al. 2014) in 

the capital region of upstate New York (Figure 1). It is one of the last remaining examples of this 

early-successional community type (Albany Pine Bush Commission, 2017), and is one of 

several KBB metapopulation recovery areas designated in the Glacial Lake Albany Federal 

Recovery Unit (Bried et al., 2014). The preserve’s relatively small size (~1300 hectares), and 

proximity to dense urban centers (Albany and Schenectady) make it a prime example of the 

wildland-urban interface that is vulnerable to development pressure and habitat fragmentation.   

2.3 Structural requirements of KBB habitat 

 Wild lupine (Lupinus perennis), the only known food source for larvae of the KBB, grows 

most abundantly in open-canopy barrens and savanna. Nectaring by adult butterflies occurs 

primarily in such areas, where direct sunlight is available. However, females prefer moderately 

shaded lupine under 30-60% canopy cover for oviposition, as shade and habitat structure play a 

major role in lupine “quality,” affecting larval growth rate (Grundel et al. 1998).  The canopy 

structure of oak savanna and barrens habitats typifies KBB shade heterogeneity requirements 

(Grundel et al. 1998).  

 Because shade is a direct function of canopy cover, it is frequently used as a proxy 

measure of shade (Grundel et al., 1998; Bried et al., 2014). As such, it is generally 

recommended that conservation planning for KBB habitat incorporate canopy heterogeneity and 

subsequent shade availability. Knutson et al. (1999) elaborates that the KBB is not known to 

travel particularly long distances during their short life span. In their study of KBB movement 

patterns and population dynamics, more than 75% of movements were less than 100 m. This 

indicates that horizontally heterogeneous canopy should be available within a threshold 

adjacent area of at least 1 ha to sustain healthy KBB populations, which may reflect KBB’s 

keystone structure. Providing a healthy mix of open grassland and forest also enables 

connectivity of KBB metapopulations, as dense forest can act as a barrier to  their movement 

(Bried et al., 2014). 

 The Albany Pine Bush Preserve Commission utilizes transect field methods to measure 

vertical canopy cover and derive heterogeneity. Measurements are obtained using a periscope 

densitometer at one-meter increments along transects that vary in length and number, by the 
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size and shape of the management unit in which they were sampled. After completing each 

transect, the number of points with canopy coverage is divided by the total number of points 

sampled, resulting in a canopy cover percentage for that area. Shade heterogeneity is then 

derived from these transects by interpolation to distinct habitat patches, as outlined in Table 1, 

using criteria that were qualitatively derived from previously published literature (Bried et al., 

2014). Differentiating good from very good heterogeneity for the KBB habitat requires that 

vertical structural distribution is also taken into account, which requires the presence of both 

shrubs and trees. Rankings of poor and fair are seen as low potential suitability, while rankings 

of good and very good are seen as high potential suitability (Bried et al., 2014). This approach 

to defining heterogeneity is hereafter referred to as the Glacial Lake Albany (GLA) 

heterogeneity.    

2.4 Potential of lidar 

 An ongoing challenge in remote sensing for conservation is how to util ize spatially 

continuous environmental data at scales that are optimal for the objectives at hand. Typically 

this is accomplished in one of two ways: by simplifying the data into classes, an approach 

known as the patch matrix model, or by leaving the data unclassified to allow for gradational 

boundaries rather than explicit ones, known as the gradient model. The simplicity of the patch 

matrix model has proven useful in studies that pertain to relatively homogenous landscape 

elements, and for characterizing landscape-scale relationships between patterns and 

processes. It also has the advantage of utilizing statistical approaches that are widely accepted 

and understood (McGarigal et al., 2009; Turner, 2005). However, many landscape ecologists 

tout the superior strength of the gradient model, as it embraces the nuances of soft transitions 

that tend to manifest in the landscape (Cushman et al., 2010; McGarigal et al., 2009; Seto et al., 

2004). 

 Lidar interpreted via the patch matrix and gradient models potentially captures critical 

aspects of habitat structure. However, only recently have surface metrics been developed that 

are applicable to heterogeneity measurements of gradational data (Cushman et al., 2010; 

McGarigal et al., 2009). One example is how structural heterogeneity might manifest as image 

texture. Texture can be described in several different ways (e.g. tonal variation or distribution at 

the pixel level, interrelationships between groupings of similar pixels, etc.) (Ferro and Warner, 

2002). For example, a 2010 study by Gomez et al. used image texture analysis to study canopy 

heterogeneity as it pertains to habitat suitability for different coffee plant species, but only after 

the imagery was generalized to the geographic extents of tree crowns.  
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 McGarigal et al. (2009) drew from concepts in the field of surface metrology to describe 

and evaluate several surface metrics that may relate to different aspects of landscape patterns. 

They found that metrics pertaining to first-order surface roughness (e.g. average roughness, 

root mean square roughness, and ten-point height) were most analogous to patch matrix 

approaches that quantify landscape diversity. 

 As previously stated, shade and subsequent shade heterogeneity are a direct function of 

canopy cover. There is no single broadly accepted method for estimating canopy cover from 

lidar data. However, the most straightforward methods utilize return ratios to calculate directly 

from lidar point clouds (Posilero et al., 2016). Ratio modeling involves counting the number of 

returns (or, in some cases, finding the sum of the intensities) reflected from the canopy and 

dividing this number by the total number of returns (or sum of intensities) in a given geographic 

extent (e.g. a pixel size of 5 meters). Hopkinson and Chasmer (2009) compared four canopy 

ratio models: first return, all return, return intensity, and return intensity modified by Beer’s law. 

They compared all four ratio models to ground-based canopy cover measurements across 

several forest ecozones, and found that intensity-based ratios were the least sensitive to 

changes in canopy type and resulted in more stable measurements, but all ratio approaches 

were reasonably accurate. 

 Smith et al. (2009) compared landscape-scale lidar estimates of canopy cover to plot-

based field measurements and found them to be correlated ( r² = 0.78). This demonstrates that 

lidar facilitates the collection of reasonably accurate canopy data at fine resolutions over broad 

geographic extents, where manual plot and transect methods are limited in their scope. 

Zellweger et al. (2014) evaluated the utility of lidar data in a landscape-scale habitat suitability 

model of hazel grouse, an avian species that is heavily affected by forest structural 

characteristics, and concluded that lidar is highly effective in quantifying species-habitat 

relationships at this scale.  

 The spatially continuous nature of lidar products facilitates the generation of grid -format 

heterogeneity outputs, which may highlight geographic patterns and areas of potentially suitable 

habitat that had previously been overlooked. Estimates of heterogeneity derived in this fashion 

may also more accurately reflect the effects of disturbances, allowing for a more nuanced and 

unbiased study of the relationships between canopy patterns, management activities, and 

ecological function (e.g. KBB density).   
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3. Study I: Deriving shade heterogeneity from lidar to 

approximate the Karner blue butterfly’s keystone structure  

3.1 Aims 

 Study I seeks to determine KBB’s keystone structure using lidar-derived heterogeneity 

products. In addressing this aim, the following questions are investigated:  

1. Which model(s) and scale(s) of spatially continuous heterogeneity coverages 

successfully characterize critical attributes of KBB habitat structure (e.g. its keystone 

structure)?  

2. Are the lidar-derived GLA heterogeneity ranking criteria correlated with KBB 

observations?  

3. Do the observed relationships support the proposition by Tews et al. (2004) that 

keystone structure is a function of a species’ mobility range? 

3.2 Methods 

3.2.1 Field data: 2007 - 2009 transects of KBB observations 

 In this study three years of KBB observation data were used: 2007 – 2009. By including 

multiple years, the effective sample size was greatly increased (n = 105). Minimal structural 

disturbance during these three years was assumed because all data were collected in 

management units that were not burned during this time period. The data were acquired in the 

form of transects that vary in length from 13.3 m to 256 m several times throughout the year 

(exact number of visits varied by transect) by Albany Pine Bush Preserve staff.   

 The exact location of observations along each transect were not recorded, thus the 

areas of observation along the transects reflect the inherent resolution of the data. “During a 

survey, observers walked slowly along each transect and searched for butterfl ies directly on the 

transect line and on either side of the line [at a maximum distance of 4 m].” (Campbell, 2018). 

Because observations were limited to a maximum distance of 4 m from each transect, a buffer 

of 4 m was generated to create polygon features (Figure 1). The sum of KBB observations per 

polygon was then normalized by the number of surveys in which KBB observations were 

recorded, and polygon area. Because KBB is a rare species, it was assumed that it had not 

completely fulfilled its niche within the landscape. Therefore differences in density were 

considered only for transect surveys where the butterfly was observed; transects without KBB 

observations were ignored.   
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3.2.2 Lidar analyses 

 Lidar data were acquired in late April, 2008 over 1168 km² in the capital region of 

upstate New York, including over the Albany Pine Bush Preserve. The data were acquired by 

The Sanborn Map Company, Inc. on behalf of the New York State Department of Environmental 

Conservation. The point density is approximately 1.7 points m⁻², and comprises first and last 

returns along with the associated intensity value for each (NYSDEC, 2008). This point density is 

not sufficient to resolve many individual small bushes. However, while studying the relationships 

between point density and forest metric estimation, Jakubowski (2013) found that root mean 

square error of canopy cover estimation plateaus at a threshold of roughly 1 point m⁻². 1.7 

points m⁻² was therefore accepted as sufficient for this purpose.  

 In order to derive continuous canopy cover and estimate GLA heterogeneity rankings, 

percent canopy cover from shrubs and trees was calculated in addition to total canopy cover 

from the lidar data. Shrubs were differentiated using a height threshold of 2 m, and ground 

points were differentiated by a height threshold of 0.5 m. Toolbox for Lidar Data Filtering and 

Forest Studies (TIFFS) (Chapman et al., 2010) was used to produce canopy cover estimates on 

a 5 m grid using the all returns ratio approach, for two reasons: (1) it is the most straightforward 

method available, and (2) the lidar data were found to have unreliable return number 

information, making methods that require that information unfeasible.  

 Impervious surfaces, such as roads, buildings, and parking lots, are generally 

considered unsuitable habitat. Therefore such areas were masked in the canopy cover 

products. The mask was developed by applying a maximum likelihood classification of 

impervious surfaces using high resolution four-band visible and near-infrared orthographic 

imagery (NYS-OCS, 2011). The imagery was collected in April, 2011, by the New York State 

Division of Homeland Security and Emergency Services—Office of Cyber Security at a pixel 

resolution of 6 in. A building footprint shapefile was also obtained from Microsoft and 

incorporated into the mask. The building footprint map was created through a deep neural 

network algorithm performed on nation-wide aerial imagery, and is available on GitHub as a free 

download (Open Data Commons Open Database, 2018).  

3.2.3 Generating heterogeneity models at various test scales 

 To create spatially continuous outputs of heterogeneity, rasters were generated at 

various scales in which each pixel represents a summary measure of its surrounding 

environment. Five test scales were generated for each of two models: a gradient model based 

on first-order image texture, and a patch matrix model based on the definition of GLA 
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heterogeneity by Bried et al. (2014).  Knutson et al. (1999) describe a benchmark of 100 meters 

within which more than 75% of all KBB travel was observed. A 0.9 ha moving kernel, with 

values designed to approximate a circular region, and adjusted to allow for a single center pixel 

(Figure 2), was generated based on this finding. The kernel was then bracketed by scales on 

either side, each one approximately 5x the area of the last, for a total of five test scales: 0.05 

ha., 0.2 ha., 0.9 ha., 4 ha., and 19.2 ha (Table 2).  

 Focal standard deviation was used for the gradient model to provide a preliminary 

overview of canopy variation, followed by categorical raster grids of GLA heterogeneity rankings 

(Table 1). To generate GLA heterogeneity, a binary layer was generated, identifying areas with 

> 30% canopy cover. The focal mean operator in IMAGINE was then used to calculate the 

proportion of a specified kernel with canopy cover greater than 30%. These proportions were 

then reclassified as: (1) poor; (2) fair; and (3) good, based on Table 1. To address the final 

stipulation in a ranking of very good, several more layers of binaries were created from 

aforementioned shrub and tree cover lidar products:   

 Layer 2: > 5% Shrub Canopy.   

 Layer 3: > 5% Tree Canopy.  

 Layers 2 and 3 were then multiplied, resulting in a fourth binary (layer 4) to identify areas 

with shrub and tree contributions > 5%. This was combined with the good areas in the first 

raster to separate out very good. This resulted in a final output of four classes: (1) poor; (2) fair; 

(3) good; and (4) very good. This analysis was repeated using each of the five kernels to 

produce GLA heterogeneity products at each of the five scales.  

3.2.4 Evaluating model and scale performance 

 The lidar-derived GLA heterogeneity and texture values at each scale were summarized 

by finding the mean per field transect of KBB observations. Because GLA heterogeneity is a 

nominal measure, the rankings were converted to an index on a scale of 1 - 4 (Table 3). Scatter 

plots were generated to compare the mean GLA and focal standard deviation values to each 

polygon’s corresponding KBB density. The data failed parametric tests, so a non -parametric 

Spearman correlation analysis was conducted for each plot, and r values were compared. In 

order to evaluate the association of KBB mobility trends with heterogeneity and texture, r values 

were plotted against scale diameter. The graph was then overlaid onto KBB mobility 

observations performed by Knutson et al. (1999) (n = 1499), to facilitate comparison.  

 The best-performing GLA scale was then analyzed to evaluate whether the qualitatively-

derived ranking criteria are associated with the density of KBB field observations, or whether a 
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smaller number of classes would be appropriate. The spearman analysis was repeated to 

explore the relationship between average KBB density and average GLA rank with: (1) poor/fair 

combined; (2) good/very good combined; and (3) poor/fair and good/very good combined 

(representing an aggregation to low potential and high potential habitats). Spearman analyses 

were also run on the relationship between KBB density and each individual rank by percentage 

of coverage in each transect, as well as percent coverages of poor/fair habitat combined and 

good/very good habitat combined.  

3.3 Results & Discussion  

3.3.1 Lidar analysis 

 As expected, there is notably more tree cover than shrub cover in the Albany Pine Bush 

Preserve and surrounding region (Figure 3). Shrub cover is concentrated along corridors, 

roadsides, and forest edges (Figure 3 (e) and (f)), while tree cover is concentrated in clusters of 

varying density throughout the study area (Figure 3 (c) and (d)). The general pattern of tree 

cover is typical of an oak savanna, with sparse clusters of tree cover surrounded by grassland 

and/or low shrub land. 

3.3.2 Heterogeneity model and scale performance  

 Figure 4 shows that for the larger the kernel size used, the more generalized the 

representation of the landscape. Furthermore, the larger kernel sizes resulted in increasing 

dominance of high texture values. The most significant p-values for correlation with KBB field 

densities were associated with kernel sizes at or below 0.9 ha. The 0.2 ha kernel size yielded 

the highest r value (0.59), indicating that the strongest relationship between KBB density and 

first-order canopy variation exists at this scale, notably lower than the approximately 1 ha 

reported threshold by Knutson et al (1999).  

 The GLA heterogeneity maps (Figure 5) show generally similar trends to those of the 

texture maps. As the kernel size increases, the patches become larger, resulting overall in a 

more homogenous map. The most significant p-values were associated with kernel sizes at or 

below the 0.9 ha scale, and the 0.2 ha kernel size yielded the highest r value (0.69), indicating 

the strongest relationship between KBB density and GLA heterogeneity. 

 The scatter plots of lidar-derived measures versus field observed KBB densities for the 

0.2 ha scale of both models (Figure 6) show a general increase in kernel standard deviation and 

average GLA rank. The increasing spread of KBB densities at higher standard deviation and 

GLA rank is consistent with the assumption that the KBB does not entirely fill its potential 

habitat. Furthermore, this spread could be a consequence of the model not considering lupine 
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presence. The higher r value for the GLA model suggests that it is a more effective measure of 

habitat suitability than standard deviation.  

 These observations are underscored by a comparison of the KBB densities overlaid onto 

maps of both models at the 0.2 ha scale (Figure 7). Generally, though not always, transects with 

lower KBB densities tend to be located in areas with lower standard deviation values and lower 

GLA rankings, while higher KBB densities tend to be associated with higher standard deviation 

values and higher GLA rankings. However, although the spatial patterns appear similar between 

the two models, comparing them in a more spatially heterogeneous area (Figure 8) highlights 

some differences. In many isolated pockets of poor and fair GLA rankings, standard deviation 

calculations infill with higher values, thus minimizing or missing these areas completely.  

 The standard deviation coverage is a simple first-order texture analysis that does not 

explicitly require both trees and shrubs. Nevertheless, the texture approach holds promise as a 

simplified alternative to the GLA heterogeneity metric. Incorporating vertical structure  through 

separate consideration of tree and shrub cover might further strengthen this model.   

3.3.3 Performance of the GLA ranking 

 Figure 9 graphs field observations of KBB density verses average GLA rank for various 

combinations of the GLA classes. Combining the good and very good ranks to produce a 

classification with just three classes slightly strengthened the relationship between modeled 

GLA heterogeneity and observed KBB densities. However, combining poor and fair (producing 

three classes) or combining poor and fair as well as combining good and very good (producing 

two classes) slightly weakened the relationship.  

  Table 4 summarizes the regression relationship between the average proportion within 

the transects of each rank (poor, fair, good and very good) and KBB density, as well as 

combinations of the classes (poor and fair combined, and good and very good combined).  The 

strongest negative correlation was with the proportion of poor ( r = -0.69); the strongest positive 

correlation with very good (r = 0.59).  Correlations of KBB density with the proportion of each 

rank were significant at the α = 0.005 level, except the good class, which was not significant ( r = 

0.18, p-value = 0.065).  The proportion of the combined poor and fair classes, and the combined 

good and very good, produced intermediate r-values.  

 These results indicate that the GLA ranking scale uses criteria that are strongly related 

to KBB densities, and therefore are a suitable tool for characterizing the butterfly’s structural 

relationships.  The result are, however, ambiguous regarding the value of differentiating good 

from very good.  The fact that combining good and very good in the average GLA rank for the 
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transects improved the correlation with KBB density from r = 0.59 (Figure 6) to 0.72 (Figure 9) 

suggests that the classes should not be separated.  On the other hand, results from table 4 

suggest that the very good class is a useful differentiation, as shown by the fact that proportion 

of the very good habitat in a transect was significantly correlated with KBB density, wheareas 

the proportion of good was not significantly correlated with KBB density, and that combining 

good and very good slightly weakened the relationship compared to very good on its own.  

 It is perhaps not surprising that the results are ambiguous with respect to the benefit of 

differentiating the good and very good habitat.  In the absence of location information for the 

KBB observations within each transect, aggregate measures such as average GLA 

heterogeneity or proportion of a single GLA class in a transect are likely to be weakened by 

considerable noise. Therefore, in summary, I assume that the generally significant correlations, 

and in particular, the strong positive correlation of the proportion of very good habitat with KBB 

density is evidence that the GLA heterogeneity classes are useful.  Furthermore, the vertical 

structure criteria used for separating the very good class from good appear to be useful and 

appropriate. 

3.3.4 Keystone structure and KBB mobility  

 Figure 10 plots the r values of both models against kernel diameter. To enable 

comparison, KBB travel distances observed by Knutson et al. (1999) have also been included, 

represented by the bars. Each bar has been labeled with the total proportion of KBB 

observations at or below that distance range.  

 Both models show similar trends, with the GLA heterogeneity almost always higher than 

the standard deviation measure (Figure 9). The r values increased from the 0.05 ha scale (25 m 

diameter) to a peak at 0.2 ha (45 m diameter), then followed a sigmoid curve decrease to near-

zero r values at 19.2 ha (495 m diameter). Peak performance occurred within the range of 50% 

of all observed KBB travel, and the only significant p-values occurred within the range 90% 

observed KBB travel. Thus the KBB’s keystone structure appears to be captured by the kernel 

scale of 0.2 ha (45 m diameter), and its relationship to KBB mobility appears to be supported.  

 These results highlight a scale that is notably lower than the approximately 1 ha 

benchmark underscored by Knutson et al. (1999). However, while the benchmark represents 

the diameter within which more than 75% of KBB were observed to travel, most individuals did 

not approach that limit. Therefore, in hindsight, a strong relationship between KBB densities and 

a smaller geographic extent of 0.2 ha is a logical outcome.  
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3.3.4 Key findings of Study I 

 The lidar derived products were significantly related to KBB densities, particularly at 

smaller kernel sizes, suggesting that they do successfully characterize critical attributes of KBB 

habitat structure. The strongest association, and thus apparently the most appropriate scale at 

which to quantify heterogeneity for KBB, is 0.2 ha. While these findings are limited to this 

particular case study, the results are consistent with the notion that keystone structure is a 

function of a given species’ mobility. Therefore, I infer that spatially continuous representations 

of structural diversity are most meaningfully calculated at scales that approximate the keystone 

structure of the species in question. GLA heterogeneity resulted in stronger associations than 

the simple texture measure, perhaps due to the explicit consideration of trees and shrubs in the 

GLA measure. However, while the relevance of GLA heterogeneity is generally supported. 

 These findings have potential implications in KBB habitat monitoring. For example, the 

strongest correlation between GLA heterogeneity and KBB density is at a diameter notably 

smaller than any of the patch sizes evaluated in Bried et al. (2014). This suggests that 

conservation planners should carefully consider the scale at which they are monitoring structural 

aspects of KBB habitat. Furthermore, the use of remote sensing to characterize KBB habitat 

structure in future studies has the potential to reduce physical labor and increase objectivity.  

4. Study II: Evaluating prescribed burning as a management 

practice in the Albany Pine Bush 

4.1 The role of fire in maintaining keystone structure  

 Fire has historically played a major role in maintaining North American landscape 

heterogeneity. Native Americans recognized and maintained pyrogenic (e.g. fire -dependent) 

communities with deliberate (e.g. prescribed) burning. This resulted in a pre-settlement 

patchwork mosaic of open-canopy pine and oak woodlands, savannahs, and closed-canopy 

forests, which supported diverse communities of organisms (Nowacki et al., 2008).  The Albany 

Pine Bush Preserve Commission uses prescribed burning as one of its primary management 

techniques to create and maintain suitable habitat for the KBB, and reestablish the 

heterogeneous ecological patchwork that was commonplace at the time of natural and Native 

American burn regimes (Albany Pine Bush Commission, 2017). However, the 2010 recovery 

plan indicated that of the approximately 105 ha of abundant wild lupine within the preserve, 

most sites have poor shade heterogeneity (Gifford & O’Brien, 2010), making heterogeneity a 

priority for improvement. The development of methods that utilize lidar -derived heterogeneity 
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products could potentially aid in this endeavor by providing detailed insight into the spatial 

distribution of KBB-suitable shade heterogeneity that can be used to target management action 

and improve functional metapopulation dynamics. 

4.2 The benefit of a spatially continuous GLA coverage  

 The spatially continuous nature of GLA heterogeneity derived from lidar allows for a 

more detailed evaluation of management practices than is possible from field data. The lidar 

data facilitates an evaluation of the extent to which that score is realized—for example, the 

proportion of very good heterogeneity in each management unit, without the need to interpolate.  

The lidar approach also provides valuable insight for designing future prescriptions at the 

management unit and landscape scales. Sites or units that have suitable structure, but no or 

little larval or adult food resources, are places to target for restoration.   

4.3 Aims 

 This aspect of the study seeks to determine whether a spatially continuous coverage of 

GLA heterogeneity, at a scale related to the KBB’s keystone structure, can be used to evaluate 

prescribed burning as a management practice in the Albany Pine Bush. This is accomplished by 

evaluating the relationship(s) between proportion of very good GLA heterogeneity per 

management unit and the associated burn history.  

4.4 Methods 

 Albany Pine Bush Preserve management units and associated fire history information, 

including burn years, burn frequency, and relative burn severity, were obtained  from the Albany 

Pine Bush Preserve Commission. Relative burn severity was qualitatively evaluated as low, 

medium, or high, based on a post-fire field assessment of average crown scorch, bark scorch, 

crown consumption, and percent killed. All burn data were recorded as an average value at the 

management unit scale.  

 The 0.2-ha GLA heterogeneity model created in Study I was used to summarize the 

proportion of very good rank coverage per management unit. A series of box plots was then 

created to investigate relationships between proportion of very good rank coverage per 

management unit and several critical characteristics of burn history. Statistical differences 

between bivariate medians were evaluated using the Wilcoxin test, and between multivariate 

medians using the Kruskal Wallace test.  
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4.5 Results & Discussion 

 Percent of very good rank coverage per management unit ranged widely from 0% - 50% 

(Figure 11). Many of the higher percentages occur at the preserve’s center, southwestern, and 

mid-northwestern portions. The far southeast and far northwest portions of the preserve were 

generally less suitable. This distribution is a reflection of development pressure (and fire 

suppression) at the fringes of the preserve, where its flanks are more heavily urbanized by the 

cities of Schenectady and Albany, as well as the management history within the core of the 

preserve that focused on restoring/maintaining remnant high quality pitch pine-scrub oak 

barrens and Kbb habitat.  

 Figure 12 provides an overview of the relationships between proportion of very good 

heterogeneity and prescribed burn history characteristics. Figure 12 (a) compares plots never 

burned during the period of preserve fire recording (1991 – 2008) to plots that have been 

burned. While the Wilcoxon analysis did not yield a statistically significant difference in the 

medians, the box plots indicate that burned sites show a greater range, and slightly higher 

proportions of very good heterogeneity. The lack of statistical significance is probably due to 

confounding variables that remain unaccounted for in this simplistic approach, such as total 

number of burns, burn intensity, and time elapsed since the last burn.  

 Figure 12 (b) details the relationship between proportion of very good heterogeneity and 

total number of burns. The categories of four and six burns have only one example each, and 

therefore can be disregarded. Overall a higher proportion of very good heterogeneity is 

associated with a greater number of up to three burns, and a statistically significant Kruskal-

Wallis analysis at 95% confidence underscores that there is a difference between the medians.  

 Differences in burn severity may also have an impact on forest structure and suitability. 

Figure 12 (c) and (d) explore the association between proportion of very good suitability, and 

severity of last burn and average burn severity (averaged over all fires), respectively. The box 

plots indicate that greater proportions of very good heterogeneity tend to coincide with higher 

intensity burns. Statistically significant Kruskal-Wallis p-values show that the medians are 

indeed statistically different for each intensity rating. However, it is noteworthy that the medium 

average severity has lower proportions of very good heterogeneity than the low-medium 

average severity.  

 Finally, Figure 12 (e) summarizes the potential relationship between very good 

heterogeneity and years since last burn. The box plots suggest a peak in suitability three years 

after a burn. The Kruskal-Wallis test indicates a lack of statistical significance, which is perhaps 
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not surprising given the variation within the graph between individual numbers of years. 

Nevertheless, the overall pattern is notable. 

 An examination of the burn intensity maps compared to the average very good rank 

coverage underscores the associations between these variables (Figure 13). Higher proportions 

of suitability ranking tend to coincide with higher intensity burns, particularly near the center of 

the preserve. 

 While results of these comparisons were generally only marginally significant, it is 

important to note that this investigation did not account for confounding variables. For example, 

Figure 12 (e) shows a peak in suitability after a threshold of three years following a burn. This 

could introduce noise into consideration of other variables, such as intensity and number of 

burns, since any single unit could have been burned any number of years ago. A followup study 

might examine the relationships between these variables to create a customized burn index. 

Nevertheless, the results support the notion that a spatially continuous representation of GLA 

heterogeneity is indeed capable of picking up on differences that result from various 

characteristics of fire history.  

4.5.1 Key findings  

 Spatially continuous coverages show differences in heterogeneity within management 

units, enabling objective evaluations into the effectiveness of management practices at high 

levels of detail. GLA heterogeneity appears to be strongly related to burn intensity. While most 

results were not statistically significant, the box plots suggest that this may be due to 

confounding variables.  

 These findings have noteworthy implications in KBB habitat management. For example, 

the importance of high-intensity fires in maintaining structural suitability is underscored. 

Furthermore, results suggest that repeated, ongoing burns are necessary to maintain structural 

suitability. Past the threshold of three years since last burn, conditions steadily deteriorate. 

Therefore I speculate that high intensity burns conducted at three-year intervals would be ideal 

in maintaining structural suitability for the KBB.   

5. Conclusion  

 This research has demonstrated that lidar can be used to characterize critical attributes 

of KBB habitat structure in ways that aid in the evaluation of habitat management practices. The 

lidar derived products were significantly related to KBB densities, particularly at smaller kernel 

sizes. The strongest association, and thus apparently the most appropriate scale at which to 
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quantify and monitor heterogeneity for KBB, is 0.2 ha. Key findings support the notion that 

spatially continuous representations of structural diversity are most correlated with field 

observations of KBB densities at scales that approximate its keystone structure, which is a 

function of its mobility and host plant availability. The relevance of qualitatively-derived GLA 

heterogeneity criteria is supported. GLA heterogeneity is also significantly related to burn 

intensity, and shows promising potential relationships to other aspects of fire history as well , 

including number of years since last fire. However, noteworthy limitations of this study include: 

(1) the presence or absence of lupine was not considered, which may have confounded some 

correlations and introduced noise to the data; and (2) the field transects of KBB observations 

were not spatially explicit within the transects. Therefore absence of statistical significance does 

not necessarily mean the structural properties themselves are insignificant.  

 The findings herein have several noteworthy implications in KBB habitat management. 

Products generated from lidar can be useful in evaluating management practices by finely 

quantifying differences in environmental variables across the landscape that may have 

previously been overlooked. Furthermore, the strong correlation between GLA heterogeneity 

measured at 0.2 ha and KBB densities suggests that it would benefit conservation planners to 

carefully consider the scale at which they characterize and manage KBB habitats. Finally, the 

importance of high intensity fires at regular intervals is supported.  

 Overall, in the interest of increasing reproducibility, reducing physical labor, and 

potentially reflecting the nuances of spatial variation in the landscape, structural diversity 

models should utilize lidar technology wherever possible, at scales that typify a species’ 

preferred mobility range. It is my hope that this method will be applied to future lidar acquisitions 

at the Albany Pine Bush and other critical KBB habitats.  
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7. Tables & Figures  

7.1 Tables 

Table 1: Shade heterogeneity ratings 

Shade 

Heterogeneity 

Proportion of transects with > 

30% shade density (%) 

Minimum 

shrubs (%) 

Minimum 

trees (%) 

Poor < 5.1 or > 80 0 0 

Fair 5.1 - 20 or 60.1 - 80 0 0 

Good 20.1 - 60 0 0 

Very good 20.1 - 60 5 5 

(Bried et al., 2014, p. 1388) 

Table 2: Kernel areas and diameters 

Square kernel area 

(ha) 

Rounded kernel 

area (ha) 
Kernel diameter (m) 

Kernel Diameter 

(pixels) 

0.06 0.05 25 5 

0.2 0.2 45 9 

1.1 0.9 105 21 

5.1 4 225 45 

24.5 19.2 495 99 

 

Table 3: Conversion of GLA heterogeneity rankings to indices 

Ranking Index 

Poor 1 

Fair 2 

Good 3 

Very good 4 
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Table 4: Correlation coefficients and p-values of percent coverage of individual and combined 

GLA ranks vs. average KBB densities 

Rank r p 

Poor -0.69 < 0.001 

Fair -0.3 0.002 

Good 0.18 0.065 

Very good 0.59 < 0.001 

Poor and fair combined -0.58 < 0.001 

Good and very good combined 0.58 < 0.001 
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7.2 Figures 

 

Figure 1: Albany Pine Bush Preserve and locations of KBB transects. 
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Figure 2: Diagram of a kernel application as used to generate test scales. The black grid represents the pixels. 

Dashed red lines indicate the square kernel, pixels outline in solid red are selected within the kernel to approximate a 

circle, as indicated. The value from the kernel is written to the pixel outline in green in the new image.  
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Figure 3: Canopy cover with trees and shrubs separated, and region highlighted to show detail.  
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Figure 4: Gradient model of kernel standard deviation at various scales, with Spearman coefficient relating each to 

KBB density.  
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Figure 5: Patch matrix model of kernel GLA heterogeneity at various scales, with Spearman coefficient relating each 

to KBB density. 
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Figure 6: Scatter plots of KBB densities vs. standard deviation and GLA rank per field transect with Spearman 

correlation. 
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Figure 7: Field-mapped average KBB densities overlaid onto (a) standard deviation and (b) GLA heterogeneity at 0.2 

ha. scale.  
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Figure 8: GLA heterogeneity and standard deviation side by side. 
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Figure 9: Scatter plots of average KBB density vs. average GLA rank, with good/very good combined into index 3 (top 

left), poor/fair combined into index 2 (top right), and poor/fair and good/very good combined into indices 2 and 3 

respectively (bottom).  
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Figure 10: Scale performance vs. scale diameter, overlaid onto observed KBB travel distances from Knutson et al. 

(1999). 

 

Figure 11: Percent very good GLA rank coverage per management unit. 
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Figure 12: Box plots summarizing the relationship between proportion of very good GLA rank and: (a) burn status; (b) 

total number of burns; (c) relative severity of last burn; (d) average relative burn severity; and (e) time since last burn. 

(f) Table of values summarizing the significance of the statistical test of differences between the means.
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Figure 13: (a) Percent very good GLA vs. (b) severity of last burn and (c) average burn intensity.  
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