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ABSTRACT 

Evaluation of Exhaust After-Treatment Device Effectiveness in Reducing Regulated and 
Unregulated Emissions from Natural Gas Fueled Heavy Duty Transit Bus 

 
 

Arvind Thiruvengadam Padmavathy 

The promulgation of the public transit fleet rule by the California Air Resources Board 
(CARB) in 2000, has given transit fleet operators the option of choosing the alternative fuel path 
in order to reduce their fleet average NOx and PM emissions. Natural gas being an abundant 
domestic fuel, has found its way as an economically and technologically feasible alternative fuel 
option. Many studies have shown the clean burning nature of natural gas with lower NOx and 
near zero Particulate Matter (PM) emissions from heavy duty natural gas vehicles. Though 
natural gas fueled vehicles emit lower NOx and PM than their diesel counterparts, the emissions 
of carbon monoxide (CO) and total hydrocarbons (THC) are higher. This necessitates the use of 
a suitable exhaust after-treatment device to attain complete emission benefits. 

The objective of the study was to measure regulated and unregulated emissions from 
CNG fueled heavy-duty transit bus with and without the after-treatment device present. The 
study conducted in Riverside, California utilized two CNG fueled transit buses one from 
Riverside Transit Authority (RTA) and the other from Los Angeles County Metro Transit 
Authority (LACMTA). The study required the complete chemical speciation of exhaust from the 
RTA bus with and without the after-treatment device so as to evaluate the effectiveness of the 
after-treatment device in reducing both regulated and unregulated emissions. The buses were 
retrofitted with an oxidation catalytic converter manufactured by Engine Control Systems (ECS). 
The buses were tested on a heavy duty chassis dynamometer part of the West Virginia University 
Transportable Heavy Duty Vehicle Emissions Testing Laboratory (WVTHDVETL). The transit 
buses were exercised over a double length Orange County Transit Authority (OCTA) cycle to 
characterize its emission levels. The analysis of the unregulated sample, which included Poly 
Aromatic Hydrocarbons (PAH), aldehydes, Volatile Organic Compounds (VOC), metals and 
elemental/organic carbon was done by Desert Research Institute (DRI). 
The results of the regulated emissions showed a 99% reduction in CO and 62% reduction in THC 
with the after-treatment device present. The unregulated speciation results showed 96% 
reduction in carbonyl compounds with formaldehyde being the major contributor, 46% reduction 
in PAH compounds, 60% reduction in nitro-PAH compounds and 93% reduction in VOC. There 
was an overall 27% increase in metal content in exhaust with the after-treatment device present. 
There was no effect on the organic carbon concentration with the after-treatment device present. 
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CHAPTER 1 - INTRODUCTION 

1.1 Introduction 

Amidst stringent emission regulations in the US, diesel engines have gained popularity as 

the preferred power plant for heavy duty on and off road applications. This is due to the fact that 

diesel engines which operate on the diesel thermodynamic cycle, have high torque output and 

operate with greater fuel economy compared to its gasoline powered counterparts. Diesel engines 

are built robust in order to withstand the high in cylinder temperature and pressure, this aspect 

makes them long-lasting with minimal maintenance. Diesel engines serve as a boon to the truck 

industry and public transportation segment because of its reliability and economy involved in 

operating these engines. 

Some of the hurdles the diesel engine industry would face are the constant rise in crude 

oil price per barrel, and the upcoming 2010 emission regulations which would necessitate the use 

of after-treatment devices, to meet the emission norms. These factors would definitely increase 

the costs associated with operating diesel engines. Though these setbacks would not prove 

detrimental to the burgeoning growth of the diesel engine industry as whole, it necessitates 

certain segments of the transportation industry to look into alternative fuel technologies to get 

that cost advantage.  

Of the current alternative fuel options available natural gas seems to be the most feasible 

and easily obtained resources. Natural gas engines have proven to be excellent replacement for 

diesel engines in meeting 2010 emissions, with the added cost advantage the transportation 

industry is looking for. The TIAX report aimed at assessing the comparative cost involved in 

2010 heavy duty diesel and natural gas engine, shows that certain segments of the transportation 

industry which include transit agencies, refuse truck agencies and short haul fleet owners find 

natural gas engines to be equally economical in their operating cost. And moreover future 

predictions in this report shift the cost advantage balance towards natural gas engines [1].  A 

study conducted by research group INFORM Inc. have found that between 2002 and 2005 the 

number of natural gas powered trucks operating in the refuse truck industry has doubled [2]. The 

study also points that majority of the natural gas initiative exists in the state of California. 

From an emissions stand point on-road diesel engine exhaust has been identified as the 

greatest contributor towards Particulate Matter (PM) and oxides of nitrogen (NOx) concentration 
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in the atmosphere. With the existence of a trade-off curve between NOx and PM formation, 

diesel engine manufacturers today face the biggest challenge of reducing both these constituents 

regulated by the Environmental Protection Agency (EPA). Modern diesel engines have been 

designed to control Carbon Monoxide (CO) and Total Hydrocarbon (THC) emissions very 

effectively. CNG fueled vehicles on the other hand tend to emit lesser amount of NOx and PM 

than diesel engines.  A study conducted by California Air Resources Board (CARB) shows that 

PM emissions from CNG fueled vehicles are equivalent to those from diesel engines equipped 

with diesel particulate filters (DPF) [3].  However the study also shows that CNG vehicles 

emissions of THC and CO are an order of magnitude greater than emissions from diesel engine 

with oxidation catalyst present. Studies have also shown that though CNG vehicles PM 

emissions on a mass basis might be very low, the higher number concentrations of ultrafine 

nanoparticles found in the exhaust would definitely pose a health hazard, as nanoparticles have 

the greatest penetration into the human lung. Studies from various agencies have shown clearly 

that use of CNG fueled vehicles without some form of after-treatment device is not a cleaner 

alternative from diesel engines. 

 The EPA has identified list of Toxic Air Contaminants (TAC) which are carcinogenic 

and mutagenic in nature. Though these emissions form the unregulated emissions category, the 

hazardous nature of these constituents to humans makes it necessary to quantify TAC levels in 

vehicle exhaust. The TAC list includes various Poly Aromatic Hydrocarbon chains (PAH), 

Volatile Organic Compounds (VOC) and various aldehydes compounds. These contaminants are 

basically the result of organic fuel combustion, and these quantities are present in significant 

quantities in CNG vehicles emissions too. This necessitates the use of after-treatment devices 

with CNG fueled vehicles. 

 

1.2 Objective 

The global objective of the study this thesis is based upon was measuring the regulated 

and unregulated emissions from CNG fueled heavy-duty transit buses with and without the after-

treatment device present. The study, conducted in Riverside, California, utilized two CNG fueled 

transit buses with one from Riverside Transit Authority (RTA) and the other from Los Angeles 

County Metro Transit Authority (LACMTA). The study required the complete chemical 

speciation of exhaust from the RTA bus with and without the after-treatment device so as to 
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evaluate the effectiveness of the after-treatment device in reducing both regulated and 

unregulated emissions. The buses were retrofitted with an oxidation catalytic converter 

manufactured by Engine Control Systems (ECS). The buses were tested on a heavy duty chassis 

dynamometer part of the West Virginia University Transportable Laboratory. The transit buses 

were driven over a double length Orange County Transit Authority (OCTA) cycle to evaluate its 

emission levels. Table 1.1 lists the exhaust species measured. 

Table 1.1 Regulated and Unregulated Emissions Sampled 

Regulated Emissions Unregulated Emissions 
Carbon monoxide (CO) Polyaromatic hydrocarbon (PAH) 

Oxides of nitrogen (NOx) Volatile organic compounds (VOC) 
Total hydrocarbons (THC) Carbonyl compounds 

Non-methane hydrocarbons (NMHC) Metals 
Total particulate matter (TPM) Elemental/Organic carbon (EC/OC) 

 Carbon dioxide(CO2) 
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CHAPTER 2 - LITERATURE REVIEW 
2.1 Introduction 

Rising fuel costs and upcoming stringent emission norms are forcing operators of heavy 

duty diesel engines to look into the alternative fuel strategy.  Public transit agencies find the need 

to adopt this strategy as a cost cutting measures for meeting emission norms. The state of 

California constituted the public transit bus fleet rule in February 2000. The ordinance, which 

was directed towards the California transit fleet operators, required the operators to choose 

between diesel fueled vehicles and alternate fuel vehicles for their fleet expansion [4]. The rule 

required the operators to procure or lease 85% of buses through model year 2015 to be fueled 

with alternate fuels [4]. Alternate fuels include CNG, Propane (LPG), ethanol, and even hybrid 

electric buses. 

Natural gas is one of the most feasible alternate fuel options available to us. Natural gas 

is a clean burning fuel producing no soot from its combustion. This fact makes it an excellent 

choice to meet the Particulate Matter (PM) emission norms. Existing diesel engines could be 

fueled using natural gas with minimal modifications, although durability and performance would 

be of primary concern. Though natural gas seems to be a greener alternative to diesel, emissions 

from natural gas vehicles are also of concern, especially without the presence of suitable after-

treatment devices. This chapter would discuss the various studies that have been carried out with 

Natural Gas Vehicle (NGV) emissions in comparison to current diesel engines with after-

treatment device. The chapter will also discuss the engine technology that power current NGVs. 

The EPA and the CARB have identified several organic carbon compounds and metals 

that are part of diesel engine exhaust and that are harmful to humans. These compounds are 

basically carcinogenic and mutagenic in nature. This chapter will also discuss the effects and 

levels of emissions of these compounds from CNG fueled vehicles. Finally this chapter deals 

with levels of ultrafine nano particles emitted from the NGVs. 

 

2.2 Natural Gas Fuel 

 Natural gas was formed due to the decay of organic matter buried deep in the soil for 

thousands of years. Natural gas is the most abundantly available fossil fuel after coal. The annual 

report prepared by the Energy Information Administration, shows that the current natural gas 
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reserves worldwide total to 6000 trillion cubic feet and this number has been steadily increasing 

since 1980 [5]. The report shows that the US share of the world natural gas reserve stands at 

3.3%. 

  The major constituent of natural gas is methane. It also contains varying quantities of 

non-methane hydrocarbons, water vapor, hydrogen sulphide and other gases. Natural gas would 

typically contain 80 to 99% methane with trace quantities of higher hydrocarbons [5]. The 

composition of natural gas varies in accordance to the geography of the gas well. Natural gas that 

are transported to delivery stations are governed by fuel specifications which limit the quantity of 

higher hydrocarbons in it. Natural gas properties are also specified through the Wobbe index [5]. 

Wobbe index is the ratio of higher heating value to the square root of specific gravity of the fuel. 

W= Higher heating Value / fuel ofGravity  Sp.  “MJ”             Equation 2.1 

The current natural gas specifications that are to be adhered in the state of California are 

shown below in Table 2.1 [6].  

Table 2.1 California CNG fuel specification 
Specification Value Test Method 

Hydrocarbons (Expressed as mole percentage) 
Methane 88.0 % (min.) ASTM D 1945-81 
Ethane 6.0% (max.) ASTM D 1945-81 

C3 and Higher HC 3.0% (max.) ASTM D 1945-81 
C6 and Higher HC 0.2% (max.) ASTM D 1945-81 

Other Species (Expressed as mole percent unless otherwise indicated) 
Hydrogen 0.1% (max.) ASTM  D 2650-88 

Carbon Monoxide 0.1% (max.) ASTM D  2650-88 
Oxygen 1.0% (max.) ASTM D  1945-81 

Inert Gases   
Sum of CO2 and 

N2 1.5-4.5% (range) ASTM D  1945-81 
Water -  

Particulate matter -  
Odorant -  
Sulfur 16ppm by vol. (max) Title 17 CCR Section 94112 

 

Natural gas has excellent anti-knock properties. This is due to the fact that its major 

component is methane which in turn is highly knock resistant. The scale of anti-knock property 

of natural gas far exceeds that of any liquid fuel, and for this reason the anti-knock property of 

natural gas is specified in terms of Methane Number (MN) rather than the Motor Octane Number 

(MON). Highly knock resistant methane has MN of 100 and hydrogen which has very high 
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capability to auto ignite, is assigned MN of 0. A study by Callahan et al. has derived a linear 

relationship between MON and MN [7,8].  

    MON = 84.9 + 0.37 (MN)   Equation 2.1 

 

2.3 Natural Gas Engine Technology 

Natural gas can be used as a fuel in compressed ignition engines provided there is some 

kind of ignition source. The high antiknock property of natural gas due to the presence of high 

quantity of methane makes it an unsuitable fuel for compressed ignition technology. The auto 

ignition temperature of diesel fuel is around 250-300oC and that of natural gas is around 600oC, 

hence an additional ignition source is required to initiate combustion while using natural gas with 

compressed ignition engines. 

The current technological options available for natural gas fueled engines are: 

1. Spark Ignited Natural Gas Engines (SING) 

2. Direct Injection Natural Gas Engines (DING) 

3. Dual Fuel Natural Gas Engines (DFNG) 

Of these current technologies SING engines are based on the Otto cycle and DING and DFNG 

are based on the diesel cycle [9]. 

 

2.3.1 Spark Ignited Natural Gas Engines (SING) 

These engines basically follow the Otto cycle and the source of ignition is the spark plug. 

The engines generally operate under stoichiometric air fuel ratios. Since natural gas has high 

octane number spark ignited engines with high compression ratios can be used. This increases 

the thermal efficiency of an Otto cycle engine. One of the main advantages of these types of 

engine is that the combustion is clean without any soot. Modern heavy duty natural gas engines 

operate under lean burn conditions with excess of air present in the combustion chamber; this 

increases performance and reduces hydrocarbon emissions. Cummins-Westport successfully 

developed a heavy duty 8.9L lean burn spark ignited engine, which satisfied the 0.2g/bhp-hr 

NOx emission limits [10]. John Deere developed a 8.1L, 280hp spark ignited engine and 

successfully installed it on a Washington Metropolitan Area Transit Authority (WMATA) bus 

and tested the engine deterioration factor. The engine acquired 14500 miles during a 6 month 
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period and operated with an average fuel economy of 2.35 miles/gallon. The vehicles was tested 

using WVU’s THDVETL and yielded higher fuel economy [11]. 

 

2.3.2 Direct/Dual Fuel Injection Natural Gas Engine (DING/DFNG) 

Both the DING and the DFNG engines are based on the diesel cycle. DING engine uses 

direct injection of natural gas into the cylinder and using a source of ignition such as diesel pilot 

injection or the glow plug. The DFNG engines induct a premixed charge of air and natural gas 

with diesel fuel injected late into the compression cycle [9]. Most direct injection natural gas 

engines use glow plugs as source of ignition. Glow plugs in a diesel engine serve only during 

cold start and the circuitry is disconnected once the engine warms up. Incase of direct injection 

natural gas engines, the glow plug circuitry is enabled throughout the engine operation duration. 

This requires a more durable glow plug design to serve this process. Westport undertook a 

project to develop a glow plug for this purpose. Westport successfully designed and implemented 

a catalyst coated glow plug which would reduce the ignition delay and also satisfy durability 

standards of the automotive industry [12]. The combustion in these types of engines is usually 

not complete, hence higher PM, hydrocarbons and CO emissions would be seen. 

 

2.4 Exhaust Constituents – Formation and Effects   

Combustion of fossil fuels is one of the main causes of air pollution. Automobile exhaust 

is one of the main concerns of urban air pollution today. Theoretically a stoichiometric 

combustion of a hydrocarbon fuel would yield only carbon dioxide, water vapor and some oxides 

of nitrogen.  But in reality internal engines combustion process, under high temperature and 

pressure is a complex mechanism. The products of internal combustion include Carbon 

Monoxide (CO), unburned Total Hydrocarbons (THC), Oxides of Nitrogen (NOx) which include 

NO2, NO and other oxides of nitrogen, Particulate Matter (PM), Carbon Dioxide, water vapor. 

All these byproducts of combustion are detrimental to the environment. The adverse effects of 

these constituents have forced environmental agencies to regulate the levels of emissions from 

internal engine combustion source. The fact that the combustion itself is a complex mechanism, 

necessitates us to understand the kinetics involved in the formation of these exhaust constituents, 

so as to better regulate their emissions from internal combustion engines. The EPA has 
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formulated regulations to regulate the emissions from internal combustion engines. The EPA 

regulated constituents are CO, NOx, PM, and THC. Although these are the only regulated 

exhaust constituents, internal combustion of hydrocarbons yield many hazardous air pollutants, 

for which regulations have not  come into effect. These pollutants include aldehyde compounds, 

Poly Aromatic Hydrocarbons (PAH), Volatile Organic Compounds (VOC), metals, and ultrafine 

nanoparticles. 

 

2.4.1 Carbon Monoxide (CO) 

2.4.1.1 Carbon Monoxide Formation 

Carbon Monoxide is usually formed as result of incomplete combustion of a fuel rich 

mixtures. The presence of lesser amount of air with reference to the amount of fuel present 

inhibits the formation of CO2 from CO [9]. CO emissions are low from diesel engines as they 

predominantly operate at lean air to fuel ratios. On the other hand CO emissions from spark 

ignited engines are significant as they operate close to stoichiometric air fuel ratios [13]. 

However in diesel engine technology with the absence of sufficient in cylinder charge motion or 

turbo charging, fuel rich zones may be created within the cylinder resulting in localized 

incomplete combustion resulting in increased CO concentrations. Natural gas fueled engines 

would emit higher concentrations of CO due to the fact it is more prone to incomplete 

combustion. However lean-burn natural gas engines would counter the CO emissions with their 

controlled lean air-fuel ratios.  

 

2.4.1.2 Environmental Effects Of Carbon Monoxide 

Carbon monoxide, a colorless, tasteless and odorless gas, is an extremely poisonous gas 

to animal life. CO has the ability to diffuse quickly into the blood from the lungs and bind with 

the hemoglobin present in the blood to form Carboxy-Hemoglobin (COHb). This reversible 

compound is an oxygen inhibitor and prevents the blood from carrying oxygen to the tissues 

[14]. Although only direct and continuous exposure of CO to humans would prove fatal, it is 

important to note the effect of ambient levels of CO exposure to animal life. Studies have shown 

that ambient levels of CO could also interfere with tissue respiration and cause hypoxia 
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(inadequacy of oxygen to tissues). Studies have also proved that CO affects the functioning of 

the heart and various actions performed by the brain [14]. 

2.4.2  Total Hydrocarbons (THC) 

2.4.2.1 Total Hydrocarbons (THC) Formation 

Hydrocarbon emissions from internal combustion engines are basically the result of 

incomplete combustion. Hydrocarbon emissions consist of many different hydrocarbon 

compounds usually the result of pyrolitic reactions undergone by the unburned fuel at high 

temperature and pressure. All the different hydrocarbon species together are quantified as Total 

Hydrocarbon emissions (THC). The entry of lubrication oil into the combustion chamber is also 

a significant source of hydrocarbon emissions, especially in diesel engines. The hydrocarbon 

emission depends on various factors, such as injection pressure, injection timing, engine load, 

air-fuel ratio, engine design and fuel type. 

One of the primary factors that govern THC emission is the fuel-air ratio of the 

combustion cycle. Rich fuel mixture yields high levels of THC emission due to the lack of 

oxygen to burn the excess fuel. In spark ignited engines, which normally operate close to 

stoichiometric ratios, the main mechanism of THC formation is the deposition of fuel spray on 

the walls of the combustion chamber and subsequently being exhausted out into the atmosphere 

during the exhaust cycle of the engine [13]. In the case of diesel engines, the air fuel ratio varies 

within the cylinder hence regions of rich mixture might be created within the cylinder and these 

regions might act as the source of THC emission. In both diesel and spark ignited engines THC 

emission is dominant during cold start of the engine. It is estimated that about 70% of tailpipe 

hydrocarbon emissions is during the cold start phase of engine operation [15].  

The air motion within the cylinder plays a very important role in the mixing process of 

fuel and air and thereby affects THC emissions. Better fuel air mixing provides better control 

over the combustion process and lesser THC emissions. Turbocharging of diesel engines has 

proved to be an excellent solution for controlling hydrocarbon emissions. Turbocharging not 

only increases the amount of air inducted into the engine per suction stroke but it also creates 

better in cylinder mixing of fuel and air. The injector design is another important factor 

governing THC emissions from direct injection spark ignited and diesel engines. Higher 

injection pressure causes better fuel atomization hence better combustion. Higher fuel 
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atomization also decreases the ignition delay of the fuel and decreases THC emissions during 

light engine loads. Better control of fuel accumulation in the sac volume of the injector also 

reduces THC emissions [16]. 

 

2.4.2.2 Environmental Effect Of THC 

Hydrocarbon emissions into the atmosphere aid in the formation of smog. Smog is a 

result of reaction between hydrocarbon compounds and oxides of nitrogen in the presence of 

sunlight. Smog is an adverse environmental effect, which affects both plant and animal life. 

Smog consists of ozone, and this ground level ozone affects the functionality of the lungs. The 

ability of smog to block sunlight affects plant life. A study carried out by Geiger [17] elucidates 

the adverse effect of diesel exhaust in the photo oxidation smog formation process. The study 

points to the fact that diesel exhaust consists of both oxides of nitrogen, and unburned 

hydrocarbons (in particular formaldehyde) react immediately in the presence of sunlight to form 

ozone.  

 

2.4.3 Particulate Matter (PM) 

2.4.3.1 Particulate Matter (PM) Formation 

Particulate matter emissions from internal combustion engines are solid phase emission 

constituents. PM along with NOx is the most strictly regulated emission constituents from diesel 

engines. The fact that PM formation is inversely proportional to NOx formation makes the 

regulations even more stringent. PM basically consists of solid carbon with some amounts of 

semi volatile hydrocarbons and sulfates adsorbed on to its surface. The actual mechanism of 

formation of particulate matter is not clear. The nature of PM and quantity of PM measured 

would greatly vary with sampling method. For uniformity of measurement, regulations have 

prescribed the method of sampling PM so as to try and quantify every form of PM. Formation 

and nature of PM would vary with engine load, fuel injection, type of fuel, sampling method. 

Considering the engine factors that affect PM formation, fuel injection, engine load and fuel type 

are major factors affecting PM formation. Soot, which is the carbonaceous part of PM is formed 

in the fuel rich region of the fuel spray. It is believed that combustion in the fuel rich region of 

the fuel spray freezes and the carbon atoms fuse together to form soot. These soot particles 
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increases in size as unburned hydrocarbons get adsorbed onto the carbon [18]. Soot formation is 

a characteristic of liquid fuel jets. Use of very high fuel injection pressure reduces the size of fuel 

droplets which in turn reduces the amount of soot produced. This is due to the better combustion 

of highly atomized fuel spray and subsequent reduction in size of carbonaceous soot particles. 

Studies have shown the use of ultra high pressure injectors in reducing soot content [19]. 

Lubrication oil consumption has proved to be an important source of PM formation. As diesel 

engines operate over a long lifespan the gap between piston and cylinder widens, and causes the 

entry of lube oil into the combustion chamber. Lube oil predominantly made of heavier 

hydrocarbons, undergoes incomplete combustion and forms the non volatile part of PM. Studies 

have shown the effect of lube oil viscosity and engine load on the consumption of lube oil and 

the subsequent effect on PM. Lower viscosity oil and light loads contribute most towards PM 

emissions from lube oil [20]. Study by Bruce, et al. [21] aimed at calculating the contribution of 

lube oil to the total PM emissions from a 1993 Cummins diesel engine. Their results showed a 

4% average contribution of lube oil to the total PM emissions.  

 

2.4.3.1.1 Ultrafine Nanoparticles 

In an effort to reduce the mass of PM emitted, modern diesel engine manufacturers have 

adapted engine control strategies and after-treatment devices that has resulted in formation of 

ultrafine nanoparticles [22]. Ultrafine nanoparticles are classified as those which are below 

100nm in their aerodynamic diameter. Existing regulations quantify PM gravimetrically in the 

size range of PM10 (PM less than 10 microns in size), which are coarse mode particles and PM2.5 

(PM less 2.5 microns in size), which are fine mode particles. Ultrafine nanoparticles are further 

classified as nucleation mode and accumulation mode particles. Nucleation mode particles are 

those which are less than 30nm in size, and accumulation mode particles are those between 50 

and 300nm in size [24]. Particulate matter size distribution usually follows a log normal bimodal 

distribution, with the first peak in the nucleation mode and the second peak at the accumulation 

mode. Though the formation of nanoparticles is not clear, the general view point is that 

accumulation mode particles are made of carbonaceous material, and nucleation mode particles 

are volatile in nature. Studies involving Scanning Electron Microscope (SEM) analysis have 

substantiated these claims [25]. The fact that accumulation mode particles are made entirely of 

carbon, could be used to concluded that their formation is usually in the fuel rich region of the 
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injector spray jet. However the formation of nucleation mode particles is an unpredictable event. 

The formation is strongly dependent on atmospheric dilution conditions. Volatile nanoparticles 

are formed as result of rapid cooling of engine exhaust on mixing with atmospheric air. The 

hydrocarbons present in the exhaust, undergo nucleation and form nanoparticles [26]. These 

nanoparticles coalesce with each other and form longer chains of agglomerates. The figure 2.1 

[23] shows the mass and particle size distribution of diesel exhaust with the respiratory 

deposition regions. 

 

 
Figure 2.1 Diesel particle size and mass distribution, with respiratory deposition curve [23] 

 

The above figure shows the high number concentrations and minimal mass contribution 

of nanoparticles. The presence of after-treatment device such as a Diesel Particulate Filter (DPF) 

increases the concentration of nanoparticles from tailpipe emissions of vehicles. This is due to 

the fact that unburned hydrocarbons nucleate more in the absence of carbonaceous particles [26]. 

In the presence of carbon particles, unburned hydrocarbons are adsorbed by it and the process of 

nucleation is inhibited by the lack of gaseous hydrocarbons in the exhaust. However with the 

presence of a DPF, the carbon particles are trapped leaving behind only the gaseous 

hydrocarbons in the exhaust. And when this exhaust cools upon atmospheric dilution, favorable 
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saturation ratios are attained and volatile nanoparticles are formed [26]. The use of gaseous fuels 

such as natural gas would not produce any soot, however due to the increased hydrocarbon 

emissions; there would be increased nucleation mode nanoparticles. A similar phenomenon is 

seen with spark ignited engines, which operate at stoichiometric air-fuel ratios. The particle size 

distribution tends to peak, in the nucleation region, and shifting towards accumulation with 

higher engine loads [27]. 

 

2.4.3.2 Environmental Effect Of PM 

Particulate matter poses a huge health hazard because of its ability to penetrate into the 

human airway. And concerns are growing over particles of smaller in size which have the 

greatest penetration ability into the lungs. The branches of the human airway act as natural 

impactors filtering out particles inhaled according to their size. Of these the smallest 

nanoparticles could penetrate all the way into the gas diffusion region of the lungs. This aspect 

has found to create many lung associated disorders. Diesel engine PM emissions are broadly 

classified under PM2.5 category. A study conducted by the Helsinki metropolitan area, Finland on 

the health effects of transit bus PM2.5 emissions reveals that; in a year there are around 3 to 18 

cases of cardiopulmonary and lung associated mortalities [28]. The nature and property of PM is 

an important factor that has to be considered in order to better understand the health effects. 

Volatility of PM is an issue which is being widely addressed in the medical field. This is because 

of the fact that these volatile PM (nano size range) could travel into the alveolar region of the 

lungs, and the volatile property of these particle take part in the gas exchange process in the 

lungs. Volatile and semi volatile PM can cause lung inflammation, cancer and gene mutations 

[29]. Exhaust particle inhalation has found to cause respiratory diseases [30]. PM from vehicle 

exhaust also contain fine metals, whose source could be traced to fuel additives, lube oil 

additives and engine wear parts. Most of these metals are very toxic to humans. Exhaust of diesel 

and gasoline engines contain metals such as lead, zinc, copper, nickel and cadmium [31]. These 

metals can trigger DNA damage, and affects cell permeability by creating hydroxyl compounds 

[29]. These metals could also be as a result of degradation of the catalytic after-treatment devices 

which often contain heavy metals as reducers.  
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2.4.4 Oxides Of Nitrogen (NOx) 

2.4.4.1 NOx Formation 

Air contains 78% nitrogen, and combustion of fossil fuels in air would result in the 

formation of oxides of nitrogen (NOx). Although theoretically a stoichiometric combustion of air 

and fuel in an internal combustion engine should result only in the emission of un-oxidized 

nitrogen, practically that it is not the case. The high pressure and temperatures in the combustion 

chamber, results in the oxidation of nitrogen with the oxygen present inside the combustion 

chamber. This chemical reaction is further aggravated in diesel engines which operate at very 

lean conditions, and the excess air present, initiates further NOx formation. The emission of 

nitric oxide (NO) and nitrogen dioxide (NO2) are collectively known as NOx. The ratio of 

NO2/NO is very small. On an average NO2 is 10 to 20% of the total NOx [13]. The reactions 

involving the formation of NOx are known as the Zeldovic mechanism.  

 

NNONO +⎯→←+ 2     Equation 2.2 

ONOON +⎯→←+ 2      Equation 2.3 

 

The reactions given by the Zeldovic mechanism is the main source of NOx formation and 

it is highly dependent on temperature, flame speed and residence time of exhaust gas in the 

combustion chamber. The NOx forming reactions have very high rate constants; hence NOx 

production is increased with greater residence time of gases within the combustion chamber. 

During the exhaust stroke, temperatures drop and the NOx formation freezes. The bulk of the 

NOx is formed during the diffusion burn phase of the combustion process. This phase is 

characterized by very lean local air-fuel ratio and high in cylinder temperatures [32]. NOx 

production rate follows a trade-off curve between itself and PM formation rate. Any steps taken 

to reduce NOx from the combustion point of view would result in the increase in PM production 

and vice versa. Turbo charging of diesel engines increases the amount of air intake into the 

engine and subsequently increases the nitrogen content as well as peak combustion temperatures, 

and paving the way for increased NOx production. Figure 2.2 [32] explains the rate of NOx 

formation with respect to heat release, injection pressure and in cylinder temperature. The figure 

shows the decrease in equivalence ratio with the progress of combustion and subsequent increase 
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in NOx formation. The higher the injection pressure lower the ignition delay, hence faster the 

combustion, and subsequently lower NOx emissions [32]. 

 
Figure 2.2 Factors affecting NOx formation [32] 

 

One of the upcoming strategies to combat NOx formation is Exhaust Gas Recirculation 

(EGR) which lowers combustion temperature and thereby decreases NOx formation. Advancing 

the injection increases the residence time of gases within the cylinder and results in increased 

NOx production. NO2 formation is usually a result of oxidation of NO. However NO2 quickly 

converts back to NO in the absence of flame quenching. If flame quenching occurs the formation 

NO2 freezes. The period of the combustion cycle in which nitrogen dioxide is formed can be 

traced to a period towards end of the combustion process to the beginning of the expansion 

stroke when cooling of exhaust begins. This mechanism would agree with NO/NO2 ratios in the 

exhaust. NOx production from natural gas engines operating at stoichiometric ratios would be 

very less than diesel engines, however operating natural gas vehicles, in the diesel cycle with 

lean burn configurations would result in equal or even higher levels of NOx than diesel vehicles.  
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2.4.4.2 Environmental Effects of NOx 

NOx is responsible for the formation of ground level ozone. NOx reacts with 

hydrocarbon compounds in the presence of sunlight to form ozone. NOx is involved in the 

formation of smog, which has many adverse environmental effects on plants and animals. NOx 

reacts with atmospheric water to form acid rain. The increase acidity of water is detrimental to 

plant life. Acid rain is very corrosive in nature and destroys the aesthetic appearance of many 

buildings.  

 

2.4.5 Unregulated Emissions 

CARB and EPA have identified a list of 244 Hazardous Air Pollutants (HAPs) or Toxic 

Air Contaminants (TACs). All these pollutants are extremely harmful for humans. Many of these 

HAP compounds are byproducts of internal combustion of hydrocarbons. They are direct result 

of pyrolitic reactions within the combustion chamber of an internal combustion engine. These 

pollutants can be classified as Polyaromatic Hydrocarbons (PAHs), Nitro-Polyaromatic 

Hydrocarbons (nPAH), Volatile Organic Compounds (VOCs), carbonyls, metals and ions. 

Regulations to control emissions of these compounds from internal combustion engines have not 

been put in place. This might be due to the fact that the chemistry of formation of these 

compounds is unknown. However catalytic after-treatment deices have found to reduce the 

concentrations of these harmful pollutants from vehicle exhaust. Carbon dioxide is another 

unregulated emission. Carbon dioxide is an inevitable product of hydrocarbon combustion. In 

fact the level of carbon dioxide would indirectly represent the efficiency of combustion. 

Although carbon dioxide is major green house gas and participates in global warming, 

regulations are not in place to regulate CO2. Methane is another hydrocarbon which is not 

regulated. This is due to the fact that methane is non-reactive and not harmful. However methane 

is a major greenhouse gas and natural gas engines are major emitters of unburned methane. 

 

2.4.5.1 Polyaromatic Hydrocarbons/NitroPolyaromatic Hydrocarbons (PAH/nPAH) 

Polyaromatic hydrocarbons are those which contain aromatic or benzene ring in them. 

Aromatics are present in diesel fuels and hence combustion of diesel fuel would yield unburned 

aromatic hydrocarbons. PAH compounds also arise as a result of lubrication oil combustion. 
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PAH compounds are Semi Volatile Organic Compounds (SVOC), they can be either quantified 

as gas phase or particle bound SVOC. Sampling of PAH compounds would include both particle 

phase and gas phase compounds. Benzene is one of the basic PAH compounds emitted from 

diesel engines. There are 93 different PAH compounds and 29 different nPAH compounds that 

are to be analyzed from vehicle exhaust. PAH generally occur in different phases. PAH 

compounds could be particle bound, semi volatile phase PAH and gas phase PAH. PAH 

compounds are found to be extremely carcinogenic in nature [33], and hence it is necessary to 

quantify the emission levels of these compounds from heavy duty vehicle exhaust. nPAH 

compounds are extremely toxic compounds whose formation in the engine is not clear. The 

general viewpoint is that nPAH compounds form with exhaust reacting with atmospheric 

nitrogen [9]. 

 

2.4.5.2 Carbonyls 

Carbonyls are compounds in which a carbon-oxygen double bond is present. Aldehydes 

are formed due to partial oxidation of alcohols or heavier hydrocarbons. Emissions of aldehyde 

would correlate with the extent of incomplete combustion of engine. Aldehyde emissions 

increase in low NOx and low PM mode. This could be due to the fact that in the presence of PM 

aldehydes tend to adhere to them and subsequently concentration decreases while sampling into 

media [34]. This could be the reason for higher aldehyde emissions in natural gas vehicles. 

Formaldehyde, acetone, acetaldehyde and acrolein are the major aldehyde compounds seen in 

diesel and natural gas vehicle exhaust [35]. 

Aldehydes have found to induce cancer and tumor in exposure studies with rats [29]. 

They have also identified aldehyde compounds to produce allergic reactions in human exposure 

studies. Though the carcinogenic effects of aldehyde compounds have not been clearly 

established, the fact that aldehydes are also responsible for ozone formation reactions in 

atmosphere makes them a TAC. 

 

2.4.5.3 Volatile Organic Compounds (VOCs) 

Volatile Organic Compounds are those categories of hydrocarbons that remain in gas 

phase in atmospheric conditions. They are basically a more detailed classification of THC 
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compounds. They can be classified as alkanes, olefins, alkynes and aromatics. They can further 

be subdivided into their respective groups based upon the number of carbon atoms. There are 

about 73 different VOC compounds identified in diesel exhaust, which are TACs. 

VOCs are extremely harmful to plants and animals. They are carcinogenic and mutagenic 

in nature [29]. Compounds such as benzene are extremely carcinogenic and it is the widely found 

aromatic compound in diesel exhaust. VOCs react with NOx in the presence of sunlight to form 

ground level ozone. 

 

2.4.5.4 Carbon-dioxide (CO2) 

CO2 is an inevitable product of hydrocarbon fuel combustion. The cleaner the 

combustion more the CO2 produced. Current regulations do not regulate the quantity of CO2 

produced by internal combustion engines. The only method of reducing CO2 would be the use of 

fuel containing lesser number of carbon atoms, such as methane (CH4) or no carbon atoms such 

as hydrogen (H2). Carbon dioxide is major green house gas responsible for the global warming 

phenomenon. Though CO2 emission control devices such as CO2 scrubbers have come into effect 

in large scale thermal power plants, it’s yet to gain importance in the automobile industry. CO2 

measurements in emission testing are merely used as data quality indicator and to compare actual 

and theoretical fuel consumption values. 

 

2.4.5.5 Organic/Elemental Carbon(EC/OC) and Metal emissions 

Elemental carbon is primarily the soot residue of combustion and organic carbon is that 

which has hydrocarbons attached to it. The emission of elemental carbon is usually greatest from 

diesel engines. And gaseous fuels like natural gas would emit more of organic carbon. However 

after-treatment device also play an important role in EC/OC emissions as DPF’s reduce EC and 

subsequently the levels of OC appears to be high. Emissions of metals are predominantly a 

source of engine wear and lubrication oil. Metals emissions also are increased due to wear of 

after-treatment device which contain metals as catalyst. Metals such as iron, copper and zinc are 

widely seen in exhaust of internal combustion engines. Elements like phosphorous are used as 

anti-wear agents in lube oil, and they are also quite often found in vehicle exhaust. Sulfur is a 
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common element found in vehicle exhaust, which is often detrimental to the functioning of after-

treatment devices 

 

2.5 Urban Bus Emission Regulations 

The heavy duty truck and bus emissions have undergone continuous periodic changes, so 

as to keep up with engine technology and increasing vehicle population. Table 2.2 and Table 2.3 

summarize the changes in the emission regulations from 1988 to 1998 [9]. It can be seen that 

California regulations are more stringent than federal emission regulations. Looking at the 

regulations we see that the bus emissions regulations for NOx and PM is more stringent than 

other on road heavy duty engines. This is due to the fact that buses operate in populated regions 

and within city limits were the impact on human population is more. 

Table 2.2 EPA Heavy Duty Diesel Engines Emission Standard in g/bhp-hr 

Heavy-Duty Truck Engines 
Year HC CO NOx PM 
1988 1.3 15.5 10.7 0.6 
1990 1.3 15.5 6.0 0.6 
1991 1.3 15.5 5.0 0.25 
1994 1.3 15.5 5.0 0.1 
1998 1.3 15.5 4.0 0.1 

Heavy Duty Urban Bus Engines 
Year HC CO NOx PM 
1991 1.3 15.5 5.0 0.25 
1993 1.3 15.5 5.0 0.1 
1994 1.3 15.5 5.0 0.07 
1996 1.3 15.5 5.0 0.05 
1998 1.3 15.5 4.0 0.05 

 

Table 2.3California Heavy Duty Diesel Engines Emission Standard in g/bhp-hr 

Heavy-Duty Truck Engines 
Year       NMHC HC CO NOx PM 
1987 - 1.3 15.5 6.0 0.6 
1991 1.2 1.3 15.5 5.0 0.25 
1994 1.2 1.3 15.5 5.0 0.1 

Heavy-Duty Urban Bus Engines 
Year      NMHC HC CO NOx PM 
1991 1.2 1.3 15.5 5.0 0.1 
1994 1.2 1.3 15.5 5.0 0.07 
1996 1.2 1.3 15.5 4.0 0.05 
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The US EPA gain reviewed the regulations in 1997 and formulated new regulations for 

2004 later model year heavy-duty engines. The regulations required a NOx plus Non-Methane 

Hydrocarbon (NMHC) limit of 2.4 g/bhp-hr or 2.5g/bhp-hr NOx and a 0.5 g/bhp-hr NMHC. All 

other standards remained the same. The EPA further tightened regulations for 2007 model year 

engines with 0.01g/bhp-hr PM, 0.2g/bhp-hr NOx and 0.14g/bhp-hr NMHC. 

Air Resource Board (ARB) in 2000 adopted the public transit bus fleet which aimed at 

regulating emissions of transit fleet agencies. The regulations targeted the transit fleet operators 

and the engine manufacturers for reducing emissions from urban buses. Pertaining to the transit 

agencies, transit agencies were required to acquire buses which ply on alternative fuels and 

hybrid technology to reduce their fleet average emissions and engine manufacturers were 

regulated to manufacture engines complying with stringent emissions norms. Transit agencies 

were given the choice of choosing between an alternate fuel path and diesel path [4]. The 

alternate fuel path requires 85% of buses purchased through model year 2015 to be fueled by 

alternative methods. Alternative fuels include, propane, LPG, Natural Gas, and hybrid vehicles. 

The diesel path would require advance engine technology to reduce emissions to very low value. 

Some key aspects of the transit bus fleet regulations are: 

1. To maintain a minimum fleet average NOx value of 4.8g/bhp-hr in both alternative 

fuel path and diesel path. 

2. Regulations require the reduction of PM values by 85% from all urban buses by 

retrofitting them with ARB-certified particulate traps. 

3. 15ppm diesel fuel sulfur content requirement is enforced. 

4. Large transit agencies are required to participate in zero-emissions bus demonstration 

project. 

5. Transit agencies in both alternate fuel and diesel path are required to make 15% of all 

new purchases as zero emission buses. 

 

2.6 Emission Comparison Studies- Diesel and Natural Gas Vehicles 

This section would review various studies that have illustrated the emission comparisons 

between diesel fueled and natural gas fueled heavy duty vehicles. The studies reviewed in this 
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section would also deal with the effect of after-treatment device on regulated and unregulated 

emissions from both diesel and natural gas fueled vehicles. 

2.6.1 CARB Transit Bus Study 

CARB conducted a study in 2001, which aimed at collecting emissions from two late 

model heavy-duty transit buses in three different configurations. The study aimed at assessing 

the effects of various driving cycle on regulated emissions, assessing the TAC levels from diesel 

and CNG buses, and to quantify the levels of ultrafine nanoparticle emissions from the two 

buses. The CNG buses were powered by a 2000 DDC Series 50G engine, and the diesel buses 

were powered by a 1998 DDC Series 50 engine. The diesel bus was tested with an Oxidation 

Catalyst (OC) and with a Johnson Matthey manufactured Continuously Regenerating 

Technology (CRT) diesel particulate filter. The CNG bus was certified to operate without an 

oxidation catalyst (OC) [3]. The buses were driven over 5 different driving cycles, which were: 

1) Idle operation 

2) 55 mph steady state (SS) 

3) Urban Dynamometer Driving Schedule (UDDS) 

4) Central Business District (CBD) 

5) New York City Bus Cycle (NYBC) 

Regulated emissions were collected through all the driving cycles to evaluate the 

differences in emission levels over the different driving cycles. Some cycles were driven over 

multiple lengths to get sufficient PM mass loading [3]. The first phase of the study examined the 

effect of 5 different driving cycles on regulated emissions from CNG without after-treatment 

device and Diesel bus in 3 different after-treatment configurations. The second phase involved 

unregulated emissions sampling on 55mph steady state and CBD cycle from CNG bus with and 

without OC and diesel bus with OC and with DPF. Particle sizing was performed in this phase 

with the help of Scanning Mobility Particle Sizer (SMPS). 

The results of the study showed consistent lower NOx emissions from CNG vehicles in 

comparison to the diesel fuel vehicles of different configurations. Figure 2.3 shows the distance 

specific NOx emissions over the different driving cycles and different vehicle configurations. 

The figure reveals a CNG re-test data which has consistent increase in NOx emissions from the 

original CNG test results. The author’s clarification regarding this behavior is that, prior to the 

retest of the CNG vehicle the vehicles engine control unit (ECU) software was upgraded and 
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new oxygen sensor was fitted to the vehicle as a maintenance procedure. This might have 

operated the engine at leaner fuel-air mixture than before [3]. 

 
Figure 2.3 NOx emissions results from CARB 2001 study [3]. 

 
CARB PM results from the study shown in Figure 2.4 cleary illustrate the effect of CRT 

on reducing soot. The levels of PM from the CRT in most cases were less than PM emissions 

from CNG vehicle operating without an after-treatment device. The only exception in this trend 

was seen in the NYBC, which emitted the highest PM loading from all test configurations with 

CNG emissions being the least. A similar trend was seen in hydrocarbon emissions results shown 

in Figure 2.5, with CRT THC levels were below detectable limits in most cases. Methane was 

found to be the major hydrocarbon constituent from CNG vehicles hence hydrocarbon emission 

values for CNG vehicles are presented as Non-Methane Hydrocarbon (NMHC) [36]. 



 23

 
Figure 2.4 Uncorrected PM emissions results from CARB 2001 study [3]. 

 
 
 

 
Figure 2.5 THC/NMHC emissions results from CARB 2001 study [3]. 

 
The CO emissions from CRT and OC equipped diesel vehicles were lesser than the CNG 

vehicles. CO from CRT equipped vehicles was close to detection limits. Figure 2.6 shows the 

CO emissions from the CARB study. 
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Figure 2.6 CO emissions results from CARB 2001 study [3].  

 
Figure 2.7 shows CARB’s data of elemental/organic carbon (EC/OC) and metals 

emissions form the diesel and CNG vehicles. Elemental carbon was found to be the highest from 

the Organic Carbon equipped diesel vehicles, in the absence of particulate trap. The 

concentration of both elemental carbon and organic carbon decreased with the presence of DPF. 

The oxidation catalyst did not affect the organic carbon fraction. The results also indicated the 

higher concentration of organic carbon from CNG vehicles. The results also indicated the 

decrease in organic carbon concentration from OC equipped CNG vehicles. The results have 

revealed a consistent increase in metal content with the presence of OC in both diesel and CNG 

fueled vehicles [36]. The study has not interpreted this result; however it could be due to the 

shedding of metallic elements from wear of the oxidation catalyst. 
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Figure 2.7 EC/OC and Metals emissions results from CARB 2001 study [36]. 
 

From CARB’s results, the highest total aldehyde concentration was seen in CNG vehicle 

without OC configuration. Formaldehyde and acetaldehyde were seen as the major constituent in 

the aldehydes emissions of CNG vehicle. There was about 90% reduction in aldehyde 

concentrations with OC. The least aldehyde concentrations were seen from diesel vehicle with 

DPF present. Figure 2.8 shows carbonyl emissions from CARB study. The VOC speciation 

results showed benzene as the major constituent, and its concentration from diesel vehicle with 

OC and CNG vehicle without the catalyst were of the same order of magnitude. The PAH 

speciation showed volatile and semi-volatile PAH dominant in CNG vehicles and diesel vehicle 

with DPF. The OC reduced PAH concentration by half [36]. 
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Figure 2.8 Carbonyl emissions results from CARB 2001 study [36]. 

 
CARB results on particle sizing showed that emissions of ultrafine nanoparticles from 

CNG vehicle were lower by an order of magnitude than diesel vehicles. However the nature of 

ultrafine nanoparticles from CNG vehicles was generally nucleation mode particles. The results 

also showed concentrations of nanoparticles from diesel vehicles equipped with CRT trap was of 

the same order of magnitude from that emitted by CNG vehicles [37]. 

 

2.6.2 Southwest Research Institute (SWRI) School Bus Study 

This research was conducted by SWRI in collaboration with International Truck and 

Engine Corporation. The study was conducted on school buses meeting the 1998 diesel engine 

emission norms. This study focused extensively on sampling and quantifying unregulated 

emissions from diesel and CNG fueled school buses. Two buses (Diesel fuel bus and CNG 

fueled bus) were tested in three different configurations. The diesel bus was operated on a 

conventional diesel (CD) mode, and low emitting diesel (LED) mode with a Catalyzed Diesel 

Particulate Filter (CDPF) fitted to it, and the CNG fueled vehicle was certified to operate without 

and after-treatment device. The diesel engine tested was a model year 2001 enigne manufactured 

by International and CNG engine was a model year 2000 engine manufactured by John Deere. 

Both the engines were similar in their power rating and engine capacity. The buses were tested 

on chassis dynamometer and driven over a City Suburban Heavy Vehicle Cycle (CSHVC).  
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Figure 2.9 shows the regulated emissions results obtained by SWRI. The results also 

include sulfates and soluble organic fraction (SOF) emissions. The results of the study showed 

the greatest emission benefit in terms of CO, THC, PM and NOx was obtained from diesel 

vehicle equipped with CDPF [38].  

 

 
Figure 2.9 Regulated emissions results from SWRI school bus study [38]. 

 

 

The unregulated emissions results of this study showed no traces of 21 of the 41 TACs 

listed by CARB as sources from diesel exhaust [38]. SWRI had setup their sampling and analysis 

system to sample and detect even extremely low concentrations of TACs. Figure 2.10 shows the 

emissions of the remaining 20 of the 41 TACs. Statistical analysis of the TAC data by SWRI 

showed that for many compounds the levels of emissions between CNG vehicle and CDPF 

equipped diesel vehicles were statistically the same. CNG vehicles emissions were extremely 

high for formaldehyde, acetaldehyde, acrolein, methyl ethyl ketone, Phosphorous and 

propionaldehyde when compared to LED configuration diesel vehicle. The total PAH emissions 

from LED and CNG vehicles were lesser than CD vehicle by over 2 orders of magnitude. 
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Figure 2.10 TAC emissions results from SWRI school bus study [38]. 

 

Finally a caner potency test was also carried out by SWRI and international. The test 

identifies TACs responsible for cancer a gives weightage according to the threat level associated 

with it. Formaldehyde and 1, 3 Butadiene were given the highest weightage of more than 95% 

and subsequently CNG vehicles without any after-treatment device came out to be the most 

cancer potent vehicle. However it is to be noted that an oxidation catalyst efficiently reduces 

formaldehyde and 1,3 butadiene to ambient concentrations. 

 

2.6.3 VTT Processes Transit Bus Study  

VTT processes a research organization based in Finland carried out emission 

performance testing of both diesel and CNG vehicles. The study utilized three diesel buses and 

four natural gas buses. The vehicles tested were fitted with engines of model year 2002 through 

2004. The diesel buses were Euro 3 complaint models. The vehicles tested included vehicles 

configurations with no after-treatment device, with an oxidation catalyst, and with CRT. The 
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study was conducted on a chassis dynamometer over a European Braunschweig cycle and the 

OCTA cycle [39].  

The main objectives of this study were to evaluate the performance of clean diesel fuel, 

diesel after-treatment devices, and the performance of CNG vehicles. The study also wanted to 

substantiate or refute certain claims made in previous studies about natural gas engines emission 

performance with respect to aldehyde emissions and particulate number concentrations. For this 

purpose VTT tested buses which were of the latest engine model and excellent conditions [39]. 

VTT results showed Lean Burn (LB) CNG vehicles CO emissions were of the same order 

of magnitude of that of diesel with after-treatment device. However the CO emissions from Lean 

Mixture (LM) CNG vehicle with three way catalyst was twice that of diesel and CNG vehicle 

with OC. Further CO emissions from Stoichiometric Mixture (SM) CNG vehicles was twice the 

CO emissions from diesel vehicle with no after-treatment device. The results also showed that 

OC reduced CO emissions by about 85% [39]. Figure 2.11 shows VTT results of CO emissions 

from various configuration vehicles. 

 
Figure 2.11 CO emission results from VTT study [39]. 
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The results for THC obtained VTT showed the usual trend of CNG vehicles producing 

higher THC emissions than diesel vehicles. The results showed OC reduced THC emissions by 

75% and CRT reduced THC emissions by 90%. The THC emission results showed that CNG 

vehicles produced more than 98% methane as HC emissions and the catalyst was not very 

effective in reducing methane. Figure 2.12 shows the Methane/NMHC split results from 

Braunschweig cycle [39]. 

 
Figure 2.12 CH4/NMHC emissions results from VTT study [39]. 

 
The NOx emissions from VTT study showed the usual results of CNG vehicles 

producing lesser NOx than diesel vehicles, with the exception of LB CNG vehicle whose NOx 

emissions where equivalent to diesel vehicles NOx output. VTT presented results of NO2 

fraction of NOx from one of the driving cycles, and the NO2 fraction of NOx from CRT 

equipped vehicles was about 6 times that of baseline diesel vehicle [39]. This is due to the fact 

that NO is oxidized to NO2 by catalytic oxidation reactions to enable oxidation of carbon in the 

trap. Increased NO2 was also seen from OC equipped vehicles due to similar reason. Figure 2.13 

shows NOx results over two different driving cycles. 
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Figure 2.13 NOx emissions result from VTT study [39]. 

 

 
Figure 2.14 PM emissions results from VTT study [39]. 

 

VTT PM emissions results shown in Figure 2.14 reveals the usual trend of very low PM 

emissions from CNG vehicles. Diesel vehicle with CRT produced PM emissions close to CNG 

vehicles [39]. 
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VTT also conducted particle sizing study using Electrostatic Low Pressure Impactor 

(ELPI). However their results do not establish a clear particle size distribution even for baseline 

diesel vehicle. The results show that an accumulation mode is seen from baseline diesel vehicle 

around 100nm. But the results also show the occurrence of the same peak with the CRT present 

and very marginal difference in size distribution. Study conducted by Ayala. et al. [37] clearly 

show the formation of nucleation mode peak downstream of DPF due to condensation of 

hydrocarbon in the absence of soot. One possible interpretation to this data could be that smaller 

particles were lost due to diffusion in the upper stages of the electrostatic impactor. However 

VTT results show a decrease in total particle concentration by one order of magnitude between 

baseline diesel and diesel with OC. Further it also shows that total particle concentration between 

diesel vehicle with OC and LB CNG vehicle with OC of the same order of magnitude [39]. 

VTT performed exhaust gas hydrocarbon speciation of 12 compounds. The results 

revealed presence of 1,3 Butadiene only from baseline diesel vehicle. OC reduced VOC 

concentration by 50% [39]. Formaldehyde results of VTT contradict SWRI school bus study 

results by showing the highest formaldehyde emissions were from baseline diesel rather than 

CNG vehicle. Figure 2.15 shows the aldehyde emissions over Braunschweig cycle. FA 

represents formaldehyde and AA represents acetaldehyde. 

 
Figure 2.15 Aldehyde emissions from VTT study [37]. 

Results showed highest PAH levels from diesel with and without OC and lowest from 

CNG with OC. Most of the PAH emissions from CNG vehicles were found to be engine oil 

derived. CRT was very effective in reducing PAH emissions [39]. 
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2.6.4 WVU-BP Truck and Bus Study 

This study was conducted in the spring of 2001 and focused extensively on the 

characterization of organic compounds from the exhaust of trucks and buses. This study was 

industry-government collaborative testing of vehicle fleets from southern California. The study 

was aimed at assessing the levels of toxic organic compound emissions from vehicles running on 

different fuels and retro fitted with different after-treatment devices. Though the entire project 

consisted of testing about 150 vehicles from six different fleets only a subset of the vehicles were 

used to characterize the unregulated emissions. This study proves as an excellent basis to 

understand the comparative emission profiles from different technology vehicles. The analysis of 

the unregulated species was carried out by Desert Research Institute, Reno, Nevada. The chosen 

vehicles were part of a school bus fleet, transit bus and a grocery truck fleet. The unregulated 

speciation included unregulated gravimetric PM, VOC, carbonyl compound and PAH [40]. 

As the work in this thesis is based only on CNG transit bus, the review of this literature 

will be limited only to the results of the transit buses. The diesel vehicles were equipped with 

CRT and tested in two configurations with and without the CRT on two different fuels. The two 

CNG vehicles were not equipped with any after-treatment device [40]. The results of VOC 

speciation show that the CNG fueled transit bus emissions are greater than diesel vehicle of all 

fuels and configurations by one order of magnitude. This is due to the stoichiometric operation of 

the CNG transit buses. 

 
Figure 2.16 Transit Bus VOC Speciation Results from WVU-BP Study [40]. 
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The results also show the higher concentrations of lower carbon number hydrocarbons in 

the exhaust of CNG vehicles than the diesel fueled vehicles [40]. WVU’s presentation of the data 

in the form of tunnel back ground, ambient background and test uncorrected helps us better 

understand the interference of the background levels of species to the test value. 

The results of the carbonyl compounds speciation show that emissions from CNG 

vehicles are one order of magnitude higher than diesel vehicles and moreover the presence of 

CRT in diesel vehicles has reduced carbonyl compounds below ambient levels [40]. This could 

be due to the trapping of carbonaceous compounds onto which aldehydes were adsorbed. 

Formaldehyde and acetaldehyde was the major contributor to emissions from all vehicles. 

 
Figure 2.17 Transit Bus Carbonyl Compounds Speciation Results from WVU-BP Study 

[40]. 
 

The results of the semi volatile PAH analysis shown in figure, figure, figure reveals that 

emissions from baseline configuration diesel buses were an order of magnitude greater than 

baseline CNG vehicles [40]. This is due to the fact that unlike diesel fuel CNG does not contain 

aromatic fractions in it. Most of the aromatic compounds emissions from CNG vehicle are due to 

lubrication oil combustion. The results of the PAH emissions show that the CRT DPF reduces 

PAH emissions by over 90% and levels found with the DPF were lesser than levels from CNG 

vehicles [40]. A similar trend is also seen in emissions of nitro-PAH compounds [40]. These 

compounds are believed to be formed in ambient air as a result of reaction between ambient 

nitrogen oxides and PAH compounds from automobile exhaust [40]. 
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Figure 2.18 Transit Bus Semi Volatile 2 Ring PAH Compounds Speciation Results from 

WVU-BP Study [40]. 
 

 
Figure 2.19 Transit Bus Semi Volatile 3 Ring PAH Compounds Speciation Results from 

WVU-BP Study [40]. 
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Figure 2.20 Transit Bus Semi Volatile 4 Ring PAH Compounds Speciation Results from 

WVU-BP Study [40]. 
 

2.6.5 WVU-WMATA Study 

This study was conducted by National Renewable Energy Laboratory (NREL) in 

conjunction with WVU for evaluating emissions from transit bus operating in the Washington 

Metropolitan Area Transit Authority (WMATA). The study was aimed at assessing the 

emissions from natural gas transit buses and improving emissions from comparable diesel engine 

buses by suitable after-treatment device. 12 WMATA buses were tested using WVU’s heavy 

duty vehicle emission testing transportable laboratory. The test buses were of lean burn CNG 

buses with oxidation catalyst and diesel buses fueled by ultra low sulfur diesel and equipped with 

catalyzed particulate trap. Some buses also operated with EGR. CNG buses were powered by 

either a 2004 mode year John Deere engine or a 2001 model year Cummins Westport, Inc (CWI) 

C Gas Plus engines. Diesel buses were powered by Detroit Diesel Corporation (DDC) Series 50 

engines. The buses were tested on a WMATA custom driving cycle, which represents the driving 

pattern of the WMATA buses [41]. 

WMATA results showed NOx emissions from CWI CNG vehicles operating under lean 

burn conditions equivalent to diesel vehicles. However NOx emissions from John Deere CNG 

vehicles were about 50% lower than emissions from vehicles of other configuration. This could 

have been due to the John Deere vehicles operating at a richer mixture than CWI CNG vehicles. 
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PM emissions from CNG and Catalyzed Particulate Trap quipped diesel vehicles were close to 

detection limit. Since all vehicles were equipped with some sort of catalytic after-treatment 

system, the CO and THC emissions were very low and close to detection limits [41]. Methane 

emissions for the WMATA study were characterized separately by WVU and NREL. WVU 

method involved calculating the methane fraction using a Gas Chromatograph (GC) and the 

standard THC FID analyzer. Methane concentration is obtained by subtraction of NMHC 

(obtained as ratio from GC analysis) from FID THC value. NREL method involved the complete 

speciation of exhaust for all hydrocarbon species and quantifying methane concentration. The 

results showed a very good correlation between both methods [41]. Figure 2.16 shows the 

methane values obtained by the two different methods. 

 

 

 

 
Figure 2.21 CH4 emissions comparison between WVU and NREL method from WMATA 

study [41]. 
 

The WMATA study conducted very limited unregulated speciation work. The project had 

involved only the speciation of carbonyl compounds. However the report states the attempt made 
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to quantify BTEX compounds and 1,3 Butadiene. Due to sensitivity issues with the GC the 

numbers were not reported. The results of formaldehyde emissions show that the levels of 

emission for John Deere engines quipped CNG vehicles and diesel buses as nearly same. 

However the CWI CNG vehicles showed increased levels of formaldehyde emissions. Oxidation 

catalyst had seemed to reduce formaldehyde concentrations to ambient levels in most vehicles. 

Figure 2.17 shows formaldehyde emission results from the WMATA study. The CWI CNG 

vehicles were the highest emitters of acetaldehyde. Acetaldehyde concentrations for all other 

vehicle configurations were close or below detection limit [41]. Figure 2.18 shows the 

acetaldehyde emissions from WMATA study. Figure 2.19 shows acetone levels in the exhaust. 

The oxidation catalyst had reduced acetone levels to background levels. 

 
Figure 2.22 Formaldehyde emissions results from WMATA study [41]. 

 
Figure 2.23 Acetaldehyde emissions results from WMATA study [41]. 
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Figure 2.24 Acetone emission results from WMATA study [41]. 

 
2.7 Exhaust After-Treatment 

2.7.1 Summary of Exhaust After-Treatment Systems 

Heavy duty diesel engine manufacturers have reached new levels in fine tuning and 

controlling in cylinder combustion in an effort to reduce engine out emissions. Advent of 

intelligent Engine Control Units (ECU) has greatly transformed the performances of heavy duty 

diesel engines. With emission regulations becoming extremely stringent engine manufacturers 

realize the need for exhaust gas after-treatment systems to meet the norms. One of the 

predominant concern of diesel engines emission is PM and NOx, and with the trade off curve 

between them it becomes an even bigger challenge to simultaneously reduce both of them. 

Current heavy duty diesel engines make use of Diesel Particulate Filter (DPF) or catalyzed 

version of DPF known as the Continuously Regenerative Trap (CRT) to counter PM emissions. 

While NOx is being either controlled through Exhaust Gas Recirculation (EGR) or through 

Selective Catalytic Reduction (SCR) systems.  

With the advent of heavy duty natural gas engines increased CO and hydrocarbon 

emissions are seen. To counter this engine manufacturers use Oxidation Catalyst (OC) to treat 

the exhaust gas.  As CNG vehicles use only OC as their after-treatment device, this section will 

deal with OC technologies, efficiencies and limitations. 
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2.7.2 Oxidation Catalyst (OC) 

The main purpose of oxidation catalyst is to oxidize CO and HC to carbon-dioxide and 

water in the presence of certain noble metal catalyst. OC after-treatment device consists of a 

monolithic substrate which supports a wash coat, which in turn supports the catalytic material. 

The conversion efficiency of a catalytic after-treatment system depends on four factors: 

• Light-Off temperatures 

• Catalyst window 

• Space velocity 

• Noble metal loading 

In general the conversion efficiency of catalytic after-treatment system increases with increasing 

temperatures and starts to decrease after further increase in temperature. Light-off temperature is 

defined as the temperature at which 50% conversion efficiency is reached. And catalyst window 

is the temperature range within which the conversion efficiency is at least 50%.  Catalyst 

specifications are usually specified in terms of space velocity and noble metal loading. Space 

velocity is defined as the ratio between volumetric exhaust flow rate to the total volume of the 

catalyst. 

VrVSV /=  (hr -1) 

Where 

V= Volumetric flow rate of exhaust at STP (m3/hr) 

Vr = Volume of catalyst (m3) 

Space velocity is an important parameter of catalyst specification. Catalyst used in automobile 

applications use noble metals as the catalyst. And these noble metals belong to the platinum 

group metals. Widely used platinum group metals are Platinum (Pt), Palladium (Pd) and 

Rhodium (Rh). Normally metal loading are specified in units of grams per volume of catalyst 

substrate. This is an important parameter which governs the conversion efficiency and cost of the 

OC system [9]. Based upon the species OC oxidizes they are classified as: 

• Two way catalyst: Those which oxidize CO and HC only. 

• Three way catalyst: Those which oxidize CO, HC and NOx. 
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Three way catalysts (TWC) usually require strict control over the air-fuel ratio. For this 

purpose an exhaust gas oxygen sensor is used in closed loop with the fuel metering device to 

maintain stoichiometric air fuel ratio for good conversion efficiencies. These types of after-

treatment devices are usually found in gasoline engine vehicles. Diesel engines usually contain 

two way catalysts due to their very lean fuel-air mixture. Oxidation catalysts do not oxidize PM 

but they do oxides the soluble organic fraction (SOF) of the PM. The percentage conversion of 

particulate bound SOF is usually 50 to 60% [42]. Study by Johnson and kittelson showed that 

gas diffusion reaction of hydrocarbon with catalyst usually dominates more than PM bound 

hydrocarbon reaction with the catalyst. The results also showed increased conversion efficiency 

for heavier hydrocarbon than lighter ones especially with carbon number between 20 and 24 

[43]. Platinum is the preferred choice of noble metal for diesel engines as they are able to operate 

under low light-off temperatures and more resistant to fuel sulfur and lube oil additives. On the 

other hand Palladium and other non-precious metal catalyst which have higher light-off 

temperatures and prefer a hotter exhaust would be suitable for CNG applications. Moreover Pd is 

less resistant to sulfur and lube oil additives in exhaust [44]. 

The performance of catalytic after-treatment system usually degenerates with aging. This 

can be due to various factors which hinder the catalytic action by either decreasing the surface 

area of the reaction or deactivating the noble metal catalyst. Reduction in surface area could be 

due to clogging of catalyst pores with soot or structural degradation of the substrate. Although 

this type of deactivation mainly arises through long use of the catalyst another factor which is 

detrimental to the functioning of the catalyst are substances which poison the catalyst coating. 

Sulfur is known to be a substance which poisons catalyst coating. Source of sulfur in exhaust is 

from the fuel and lubricating oil which in turn forms sulfur dioxide (SO2). Sulfur dioxide is 

catalytically oxidized to SO3 which combines with water to form sulfuric acid. This phenomenon 

not only increases undesirable sulfate content in the exhaust it also increases the light-off 

temperature of the catalyst thereby decreasing conversion efficiencies [45]. In addition to sulfur 

phosphorous and zinc can deactivate catalytic after-treatment device. Phosphorous along with 

zinc is added as an anti-wear and anti-oxidant in the lube oil. At low loads when oil consumption 

is high, phosphorous and zinc are present in exhaust. These compounds would deposit on 

catalyst wall hindering with gas diffusion processes [45]. 
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One of the main challenges in designing oxidation catalyst for CNG vehicles would be to 

regulate methane and formaldehyde. Although methane is found to be not phototoxic it is found 

to be a greenhouse gas. Hence it is desirable to regulate the high quantities of methane in exhaust 

of CNG vehicles. The reason that methane conversion efficiency is less in an oxidation catalyst 

is that the light of temperatures of methane is greater than 500oC as shown in Figure 2.25. If an 

engine exhaust must reach this temperature the engines thermal efficiency must be very low, 

which again is not a favorable engine design factor.  

 
Figure 2.25 Methane Conversion Efficiency Vs Catalyst Temperature [45]. 

 

 Gluck et al. formulated a Pd/Rh based catalyst specifically for stoichiometric natural gas 

engines. This catalyst formulation was able to bring down light-off temperatures to 375oC at an 

equivalence ratio of 0.98 and methane conversion efficiency of up to 90% was reached. The 

study also showed that Pd based catalyst maintained a good conversion efficiency over a wider 

equivalence ratio window [46]. 
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CHAPTER 3 - EXPERIMENTAL SETUP 

This section details the construction and working of the heavy duty chassis dynamometer 

lab. It also provides descriptions of the various instruments and sampling devices part of the lab. 

 

3.1 Equipment and Procedures 

The study of the chemical speciation of Riverside urban transit bus was carried out using 

WVU’s Heavy Duty transportable chassis dynamometer lab. The lab was stationed at Riverside, 

California where the testing was conducted. THDVETL was built by WVU and is operational 

since 1993. This laboratory has the unique capability of traveling on road to any place in the 

country to perform chassis dynamometer emissions testing. The lab is credited with many 

successful emission testing projects carried throughout the country. 

The essential components of the HDVETTL are the chassis dynamometer, the instrument 

trailer integrated with a full fledged primary dilution tunnel, a separate clean primary dilution 

tunnel for ultra low emission vehicles, control systems, analyzers and special sampling train 

housed within the instrument trailer. The design specifications and working of all components of 

the chassis lab conforms to the procedures stated in CFR 40 Part 86 Subpart N. A more detailed 

description of the laboratory functioning will follow. 

 

3.2 Chassis Dynamometer 

The chassis dynamometer consists of free spinning rollers, vehicle loading devices, 

frame, and jacks integrated into a semi-trailer. The dynamometer components were designed for 

a maximum rotational speed of 560rpm, which translates to a vehicle speed of 55miles/hour with 

an added safety margin [47]. The various parts of the dynamometer are: 

• Rollers: The dynamometer consists of 4 free spinning rollers. The vehicle’s wheels 

once mounted on the dynamometer would rest on these rollers. The rollers are 12.6 

inches in diameter. Four rollers support single or forward rear axle assembly. The rear 

pair of rollers can be adjusted to three different positions to accommodate tandem 

spacing of 4 to 5 feet. Each roller pair houses a 2.4 inch diameter shaft connected by 

flexible coupling to maintain same speed on each tire [47]. 
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• Wheel Adapters: The power from the wheels is transferred using wheel adapters. This 

form of power absorption was preferred over power absorption from rollers because 

of the fact that in the absence of large size rollers, the increased slippage and heat 

generation between rollers and tires would bring about in accuracies in test data. The 

adapter consisted of wheel rims of 1.8feet diameter and 0.5 inches thick aluminum 

faceplates attached to a Spicer 1810 series coupled assembly. The wheel rim is bolted 

to the aluminum faceplate for power transfer to the power transfer shafts [47]. 

• Power Transfer Shafts: The coupled assemblies drive a short shaft of 24 inches in 

length through a pillow block on either side of the dynamometer. The splined shaft 

with a companion flange drives a 16,665 lb-ft Lebow torque and speed sensor, which 

provides instantaneous torque and speed measurement of the wheel to the computer. 

The transducer is connected to another shaft through a companion flange. This shaft 

passes into a right angle speed increasing drive to the flywheel assembly. The speed 

increasing drive consists of a differential to maintain the same speed of a second 

output shaft which emerges from the far side of the drive. This shaft drives another 

short shaft through a universal joint to transfer power to the eddy current dyno power 

absorbers [47]. 

• Flywheel Assembly: The flywheel system is to simulate the inertia of the vehicle. 

Hence the flywheel system is designed to simulate different inertias for different 

vehicle weights. This is achieved by provisions to engage and disengage various 

flywheel combinations based on the required test weights. There are eight flywheels 

on either side of the dynamometer. The flywheels rest on bearings on the shaft and 

are designed to simulate a maximum load of 66,000 lb [47]. 

• Power Absorbers: The power absorbers are a pair of eddy current dynamometers used 

to simulate the road and wind resistance. The dynamometers are air cooled Mustang 

model CC300 capable of absorbing 1000hp peak power. The dynamometer case is 

fitted with a torque arm to which a force transducer is fitted to measure the absorbing 

torque. The test procedures require an accurate control of speed and torque. Speed is 

controlled by the driver and torque is controlled transiently by the control computer. 

The vehicle inertia is controlled through the flywheel assemblies rotational speed, and 

the torque load equivalent to the actual wind and road resistance experienced by the 
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vehicle is applied through the power absorbers via a Dyne-Systems Dyn-Loc IV 

controller. These controllers work on a closed loop Proportional Integral Differential 

(PID) principle. The control computer transiently transmits the calculated set points to 

the controller, and the controller calculates the error involved in the signal through the 

PID principle and continuously updates and sends the required direct current to the 

eddy dyno to apply the necessary load torque. The set point is calculated by the 

control computer using the following road-load equation: 

VVACgMCP darr *)***
2
1**( 2ρ+=  

Where 
Pr   = Road-Load power 
Cr  = Coefficient of rolling resistance 
M  = Vehicle gravitational mass 

aρ =  Air density 
A  = Frontal area of vehicle 
Cd = Coeffecient of drag 
V  = Vehicle speed 
 

 
Figure 3.1 Load simulation components of chassis dynamometer [35]. 



 46

 
Figure 3.2 Dynamometer support structures and power transfer shafts [35]. 

 

• Motor: The motor was added to the chassis lab dynamometer to overcome frictional 

losses in various rotating elements. The coast down test performed would calculate 

the frictional losses incurred in the system and might use the motors as an aid to 

overcome frictions in dynamometer parts. The motor is a 20hp motor with a 

maximum torque of 59 lb-ft. The motor is directly coupled to the eddy current dyno 

and is controlled by a speed encoder connected to it. 

 

3.3 Full Flow Clean Primary Dilution Tunnel 

An addition to the transportable laboratory is the clean primary dilution tunnel. This is a 

stand alone tunnel built exclusively to test CNG vehicles and ultra low emission vehicles. The 

need for a separate tunnel arose due to the fact that testing of CNG and ultra low emission 

vehicles in the same tunnel used for testing diesel vehicles would bring about an error in the final 

background corrected emission values because of increased tunnel background concentration. 

Higher tunnel background emission concentrations are seen in the conventional primary dilution 

tunnel because of high concentration of soot deposited on the tunnel walls while testing diesel 

vehicles. These deposited soot particles absorb chemical species from exhaust and also shed 

them when sufficient high temperatures are reached during testing. Since emission levels from 
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CNG and ultra low emission vehicles are very close to atmospheric background concentrations, 

an error in emission measurements may occur while using the conventional primary dilution 

tunnel to test these vehicles. 

The clean tunnel was designed as per regulations stated in CFR 40 Part 86 Subpart N. 

The dilution air was High Efficiency Particulate (HEPA) filtered air at ambient conditions 

inducted through a HEPA filter manifold connected to the inlet section of the tunnel. The outlet 

section of the tunnel was connected to a blower through a Critical Flow Venturi Constant 

Volume Sampler (CFV-CVS). The tunnel is 18 inches in inner diameter and the size was chosen 

as per CFR 40 regulations with reference to tunnel diameter in relation to particulate sampling 

from single dilution method. Since the tunnel was designed to be used with any of the 

transportable labs, it was built as five small sections [48]. 

• Section 1: This is the inlet section of the tunnel which is connected to the HEPA filter 

manifold. This section was designed as necking section which changes from 20 

inches inner diameter on the inlet side to 24 inches inner diameter on the outlet side 

of this section. A flange on the outlet side would connect to section 2 [48]. 

• Section 2: This is the inlet section for the raw exhaust and the dilution air from 

section 1. Raw exhaust enters into section 2 through a stainless steel tube through the 

top. The section is built such that a 24 in flanged section connects to an 18 in section 

via ribs. This change in diameter creates an opening for overflow of the dilution air. 

This provision is made so that changes in dilution air flow do not affect tunnel flows 

[48]. 

 
Figure 3.3 Section 1 and section 2 of the clean tunnel [48]. 



 48

• Section 3: This is the mixing section for raw exhaust and the dilution air. This section 

is connected to section 2 via flange with a mixing orifice in-between the flanges. The 

orifice would create the necessary turbulence required for mixing. The raw exhaust 

inlet is positioned such that it is very close to the mixing orifice. The mixing section 

is wrapped around with insulating material to avoid steep temperature gradients 

radially and thereby reducing thermophoretic losses Mixing section consists of two 

7ft long sections connected by flanges to satisfy the 10-diameter rule of CFR 40 [48]. 

• Section 4: The sampling zone is 15 ft 6 in downstream of the mixing orifice so that it 

is at a minimum distance of 10 times the inner diameter of the mixing zone from the 

orifice (10-diameter rule). The unregulated sampling plane was located 3ft further 

downstream of the regulated sampling plane. There are 8 sampling ports each for 

regulated and unregulated with radially positioned flanges to attach the different 

sampling probes. The probe flanges were bolted and fitted with gaskets to prevent any 

leak [48]. 

 

 
Figure 3.4 Sampling section of clean tunnel [48]. 

 

• Section 5: The outlet section of the tunnel is connected to the CFV-CVS blower via 

flexible tubing. 
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3.4 Critical Flow Venturi-Constant Volume Sampler (CFV-CVS) 

The volumetric flow rate through the dilution tunnel is maintained constant by using a 

critical flow venturi at the outlet of the tunnel. The blower unit draws the tunnel flow through the 

CFV at choked flow conditions which creates a constant flow rate through it. The flow rate of the 

CFV is dependent on its throat diameter and governed by the following equation: 
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      Equation 3.1 

Where temperature and pressure are at standard conditions. 

The transportable lab’s CFV system has flow rate capabilities of 1000, 1500, 2000, 2500 

and 3000 scfm. The variations in flow rate are achieved by changing the throat diameter of the 

CFV by inserting various venturis which achieve this purpose. The decision on the tunnel flow 

rate is based upon the test vehicle configuration, expected emission levels and analyzer ranges 

and also temperature of exhaust. For a given exhaust flow rate a higher the tunnel flow rate 

means more the dilution air, consequently lesser concentrations of emission constituents in the 

tunnel and cooler tunnel flows.  

Theoretically the flow through the CFV should be constant, but a variation in the 

temperature of the dilute mixture creates fluctuations in the flow rate. In order to measure the 

actual flow rate through the venturi a pressure transducer and a resistance temperature device 

measure the pressure and temperature at venturi inlet. With this flow rate is calculated using the 

following equation: 

 

( )KT
KpaPK
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)( =      Equation 3.2 

 

Where the calibration coefficient Kv is obtained by calibrating the CFV against a sub-sonic 

venturi that was traceable to National Bureau of Standards. 
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3.5 Secondary Dilution Tunnel for Particulate Matter Sampling 

The secondary dilution tunnel is used to sample PM from the main tunnel for collecting 

them on filters for gravimetric measurement of PM. The tunnel has the capability of double 

diluting the sample to maintain the filter face temperature below 125oF as prescribed in CFR40. 

A filter housing containing a pair of 70mm Teflon coated glass fiber filters is connected 

downstream of the secondary dilution tunnel for collection of TPM. The secondary dilution 

tunnel can operate without double dilution incase of a cooler exhaust and extremely less PM 

content as from DPF equipped diesel fuel vehicles. 

The secondary dilution tunnel is 3.0 in diameter and 30 in long to provide sufficient 

residence time for sampled exhaust and dilution air to mix. The dilute sample from the main 

tunnel is sampled through a 0.5in diameter probe located at the sampling plane. The sample and 

dilution air are drawn into the secondary dilution tunnel with the help of Gast rotary vane pumps. 

The total flow and the flow of dilution air are controlled through electronic mass flow 

controllers. The total secondary tunnel flow mass flow controller operates in a proportional 

sampling mode, whereby it varies its flow rate proportional to primary tunnel flow variations. 

The mass flow controllers are calibrated using a laminar flow element. The total flow ranges 

from 0-6 scfm and secondary dilution air ranges from 0-3 scfm. 

 

3.6 Particle Sizing 

3.6.1 Ejector Mini-Dilution Setup 

The study employed an ejector mini-dilution tunnel for particle sizing along with a 

Scanning Mobility Particle Sizer (SMPS) and a Condensation Particle Counter (CPC) to 

determine particle size distribution. The mini dilution setup utilizes an Air Vac Engineering 

manufactured series TD110H ejector pump to dilute the raw exhaust. The ejector pump inlet is 

fitted with a critical flow orifice to admit raw exhaust of known constant volumetric flow rate. 

HEPA filtered dry compressed air is used as the dilution air and the subsequent vacuum induced 

by the flow of compressed air through the ejector pump creates enough vacuum to pull raw 

exhaust through the inlet of the ejector pump at critical flow conditions. The mixing induced in 

this type of system is extremely turbulent due to high flow velocities of raw exhaust and dilution 

air. The fact that various combinations of inlet flow orifice and compressed air pressure would 
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yield a wide range of dilution ratios makes this system versatile for looking into the effect of 

dilution ratio on the particle size distribution.  The system can also reach very high dilution ratios 

of up to 1000, which is very close to atmospheric dilution conditions. However studies carried 

out by Kittelson and Khalek [26] predict that the event of nucleation would be suppressed in this 

type of dilution system as the residence time for particles are very less. However as every issue 

related to particle size measurement has been subject of ambiguity, so is the issue of sample 

dilution. A study undertaken by Jussy Lyyranen et al. [49] has cited that by use of an ejector 

dilution sampling system a noticeable nucleation trend is seen. And they attribute this trend to 

the fast mixing and cooling of raw exhaust.  

 
   Figure 3.5 Ejector dilution sampling setup 

Figure 3.5 shows the sampling setup for the particle sizing test undertaken in this study. 

Raw exhaust was transferred through a heated line maintained at 375oF into the inlet of the 

ejector dilutor. The temperature setting of the heated line is kept such that the unburned 

hydrocarbon compounds do not condense in the transfer tube itself. The dilution ratio is 

calculated by the following equation: 

( )
FlowRateRawExhaust

rFlowRateDilutionAiFlowRateRawExhaustDR +
=  Equation 3.3 

 

Raw exhaust flow rate is denoted by the flow rate of the critical flow orifice and dilution air flow 

rate is obtained as the flow rate corresponding to the compressed air pressure (obtained from the 

chart supplied by the manufacturers of the ejector pump). 
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3.6.2 Scanning Mobitily Particle Sizer (SMPS) 

The SMPS system is used to measure the particle size distribution of an aerosol stream. 

The SMPS consists of an Electrostatic Classifier (EC) and Condensation Particle Counter (CPC) 

which work together as one unit. The EC serves as segregation unit of the SMPS and the CPC 

functions as the counting unit. The study used a TSI model 3080 Electrostatic Classifier and a 

TSI model 3025A Condensation Particle Counter. The following section would elucidate the 

principle and working of the EC and CPC. 

 

 
Figure 3.6 SMPS setup with EC TSI model 3080 and CPC TSI model 3025A [50] 

          
3.6.2.1 Electrostatic Classifier 

The working of the electrostatic classifier is based upon the electrical mobility property 

of the aerosol. Aerosol particles in general have some charge associated with them. And when 

these aerosol particles are subjected to an electric field while moving through an air stream, the 

drag force experienced by the particles would be that of the electric field. This tends the particles 

to reach a constant velocity known as the terminal settling velocity. The ratio of the velocity to 

the force is defined as the mobility of an aerosol and if this force happens to be an electric force 

the mobility is denoted as the electric mobility of an aerosol. Theoretically aerosol particles are 

considered to be spherical in nature, in real world aerosol particles specially combustion derived 

particles appear in complex geometrical shapes. Hence aerosol particles are either denoted by 

Stokes diameter or by Aerodynamic diameter. Stokes diameter is defined as the diameter of a 

Electrostatic Classifier 

Condensation Particle Counter 
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spherical particle with same density and terminal settling velocity of that of the aerosol particle. 

On the other hand Aerodynamic diameter is defined as the diameter of particle with density of 

1g/cm3 and the same terminal settling velocity of the aerosol. 

ppspa DD ρ=     Equation 3.4 
Where 

Dpa= Aerodynamic diameter in micrometer 

Dps= Stokes diameter in micrometer 

pρ = Particle density in g/cm3
 

The electrostatic classifier classifies particles based on its electrical mobility diameter 

which is basically the Stokes diameter of the particle [50]. The EC utilizes a Differential 

Mobility Analyzer (DMA) for the purpose of particle size classification. Poly disperse flow is 

defined as the aerosol stream for which the particle size distribution is to be characterized and 

mono disperse flow is defined as the size classified single diameter aerosol stream. The poly 

disperse flow enters the EC inlet through an impactor fitted at the inlet. The impactor filters out a 

certain aerodynamic diameter particles based on inertial impaction theory. The purpose of the 

impactor is to remove large particles which might carry multiple charges with it. Various size of 

orifice can be fitted prior to the impactor for using the classifier at different flow ranges. The 

aerosol flow enters the neutralizer which is Kr-85 Bipolar charger [50]. The bipolar charger 

consists of high concentration of ions and the frequent collision between aerosol particles and 

ions brings the aerosol charges to equilibrium. The aerosols from this point on would carry a 

bipolar charge distribution or would be known as singly charged particles. The singly charged 

particles enter the DMA where an electric field is applied based on the electric mobility of the 

particles. The DMA consists of two concentric cylinders with a central rod maintained at 

negative voltage and the outer cylinder grounded. This creates an electric field in the annular 

region. Poly disperse flow from the neutralizer and sheath air flow enters from the top of the 

DMA. The positively charged particles are attracted towards the negatively charged central rod 

and get precipitated along the length of the rod depending on their electrical mobility. Higher 

mobility particles get deposited at the top of the rod and less mobile particles get deposited 

towards the end of the rod. Particles which are not sufficiently attracted towards the rod exit the 

DMA as the mono disperse single size particles. The classifier voltage is changed to classify 
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particles from 2nm to 1000nm depending on the DMA model. The study utilized the TSI model 

3081 Long DMA which has a size range of 10nm to 1000nm. The TSI model 3085 Nano DMA 

has a size range of 2nm to 150nm. The mono disperse flow exiting the classifier is transported to 

the CPC for determining the concentration of the aerosol stream. Figure 3.7 shows the 

construction of the electrostatic classifier with the DMA. The EC can be used in two modes 

namely the analog mode and the panel mode. The panel mode is chosen when the EC is used an 

SMPS unit and analog mode is chosen when the EC is used as a stand alone size classification 

instrument for other purposes [50]. 

 

 
Figure 3.7 Schematic of Electrostatic Classifier with the DMA [50]  

           
 

3.6.2.2 Condensation Particle Counter (CPC) 

The CPC is an instrument to count the number of particles in a mono disperse aerosol 

stream. The CPC uses a process of heterogeneous growth of particles with alcohol vapor for the 

optical detector to count the particles. For this the CPC contains a heated Butanol saturated wick 

through which the aerosol stream passes [51]. This region is called the saturator as the region 

DMA 
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within the wick is saturated with butanol vapor. The aerosol stream along with the butanol vapor 

travel with the air stream into a cooling condenser. The huge temperature differences causes 

condensation of alcohol vapor onto the particles due to which the particle size increases. The 

detection size limit of the CPC is specified in terms of the saturation ratio which is further 

dependent on the Kelvin diameter. It is defined as the droplet size of condensed vapor at a 

critical saturation ratio during which the particle neither evaporates nor continues to grow. In 

other words it is also the minimum diameter at which vapor condensation starts to take place at a 

given saturation ratio. The higher the saturation ratio in the condenser lesser is the Kelvin 

diameter. The particles typically grow to a size of 2 to 3 micrometer for optical detection [51]. 

The particles move through a light source thereby scattering it onto photo detectors which in turn 

produces electrical impulses proportional to the number of particles. The inlet flow rate of the 

CPC is 0.3lpm however it can also be operated at high flow modes at a flow rate of 1.5lpm in 

conjunction with the Long DMA. The CPC has a maximum particle concentration limit of 

999X104 particles/cm3 that it can count [51]. 

 

 
Figure 3.8 Schematic of construction and flow pattern of CPC [51] 
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The data acquisition system is the Aerosol Instrument Manager (AIM) software provided 

by TSI. The AIM software is responsible for the hardware control and data acquisition of the EC, 

CPC and the SMPS unit. 

 

3.7 Gaseous Emission Sampling System 

The gaseous emission sampling system consists of heated probes, heated transfer lines, 

temperature control units, and gas analyzers built into the analytical trailer. The design of the 

gaseous emission sampling system is in accordance with CFR40 regulations. The heated probes 

are flooded probe type for supplying zero and span gases to the analyzer. The probes are fitted at 

the sampling plane according to the 10 diameter rule from the mixing region. The gaseous 

emissions are sampled from the tunnel through 4 separate heated lines for CO/CO2, NOx, THC, 

and aldehydes. The temperature of the heated lines and the probes are controlled by a 

temperature control module (TCM). Teflon heated lines are used for CO/CO2, NOx, aldehydes 

and stainless steel heated lines are used for THC samples. The flows through the heated lines are 

controlled by calibrated rotameter and magnahelic pressure regulators. The pumps within the 

analyzers draws sample from the tunnel. 

 

3.7.1 Regulated Emissions Sampling System 

The regulated emissions sampling system consists of gas sampling systems (probes, 

heated lines), gas conditioning system (heated filters, chiller system), gas metering system 

(rotameter, magnahelic pressure gauges), calibration systems, two CO analyzers one used as low 

CO analyzer and the other used as high CO analyzer, one CO2 analyzer, two NOx analyzer used 

for verification purposes and also perform NO/NO2 split measurement, and one THC analyzer. 

The principle and working of the different analyzers will be discussed in the following sections. 

 

3.7.1.1 CO/CO2 Analyzer 

The lab utilizes three Horiba model AIA-210 CO/CO2 infra red analyzers. Two analyzers 

are for high CO and low CO measurements and one analyzer for CO2 measurements. The high 

and low CO analyzers only differ in the range in which the analyzers operate. Low CO is used to 

measure low concentration of CO during the transient tests and high the CO analyzer measures 
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over a wider range of concentrations. Both CO and CO2 are drawn from the same probe and 

transferred through a heated line maintained at 240oF (115.5oC) to avoid water condensation as it 

would affect the analyzer measurements. The gas sample is passed through a chiller and dryer 

unit to further reduce water content and then passed through heated filters to prevent particulate 

matter from entering the analyzer. 

The CO/CO2 analyzer works on the Non-Dispersive Infra Red (NDIR) principle. The 

outlined principle of this system is the infra red wavelength absorption capability of CO and CO2 

gases. Two equal infra red energy beams are sent through two optical chambers. One chamber is 

filled with a reference gas and sealed and the other chamber consists of the continously flowing 

sample gas. The IR beam is interrupted by a chopper at a given frequency. As the beam passes 

through the gas filled chambers it gets absorbed by the flowing gases and the detector placed on 

the far end of the chamber reads the reduced intensity of the beam. The quantity of the IR beam 

absorbed would be proportional to the concentration of the flowing gas. The detector measures 

the intensity of radiation from the reference cell and the sample cell and converts the difference 

in radiation as change in capacitance which in turn is converted to sample concentration. 

 

 
Figure 3.9 Illustration of the NDIR principle of CO/CO2 analyzer [52]. 

 

The CO analyzer contains conditioning column containing ascarite which is used to 

remove CO2 from the sample and the analyzer would read only concentration of CO. 
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3.7.1.2 NOx Analyzer 

The lab utilizes two California Analytical Model 400 HCLD NOx analyzers. The primary 

purpose of two NOx analyzers is to verify the data between the two analyzers and also measure 

the NO/NOx split. The NOx sample is sampled from heated probe and transfer line maintained at 

240oF (115.5oC) to avoid water condensation as presence water would absorb water soluble NO2. 

The analyzer works on the principle of chemiluminescence measurement technology. The 

analyzer consists of an ozone generator, NO converter, reaction chamber, photo electric diode 

and signal processing electronics. Chemiluminescence reaction is that in which two compounds 

react to emit photons. In the NOx analyzer it is the reaction between ozone and NO that leads to 

the formation of highly excited state NO2 which returns to its ground state by emitting a photon. 

   2
*
23 ONOONO +⎯→⎯+     Equation 3.5 

   )(2
*
2 redlightphotonsNONO +⎯→⎯    Equation 3.6 

 The intensity of photons emitted is measured by the photodiode and the signals are 

processed into the concentration of the sample gas. 

 
Figure 3.10 Illustration of the chemiluminescence principle of NOx analyzer [53]. 

 

For the NOx (NO+NO2) measurement the analyzer employs a converter which converts 

all the NO2 in the sample to NO on a heated vitreous carbon bed before passing through the 

reaction chamber. This step is bypassed if the analyzer is on NO mode. 

 

REACTION CHAMBER
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3.7.1.3 Total Hydrocarbon (THC) Analyzer 

The lab utilizes a Beckman model 402 which works on the Flame Ionization Detector 

(FID) principle. The hydrocarbon sample is drawn fro heated probes and stainless steel transfer 

lines maintained at 375oF (190.5oC) to prevent condensation of hydrocarbons in the transfer 

tubes. 

The analyzer consists of a burner which is supplied with fuel (60% hydrogen and 40% 

helium) and air. The sample gas passes through the burning flame and undergoes a complex 

ionization process producing electrons and positive ions. These electrons are collected by an 

electrode, which causes a current to flow through the external circuit. The ionization current 

produced is proportional to the number of carbon atoms entering the burner which is a measure 

of the hydrocarbon content of the sample. 

 

 
Figure 3.11 Illustration of the FID principle of the THC analyzer [54]. 

 
3.7.2 Unregulated Emissions Sampling Systems 

The unregulated emissions sampling systems include sampling for carbonyls, Poly 

Aromatic Hydrocarbons (PAH), Volatile Organic Compounds (VOC), and Metals/EC/OC. The 

sampling devices for PAH and VOC and all unregulated media were supplied by DRI. The 

sampling systems for various species will be discussed in detail below. 
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3.7.2.1 Carbonyl Sampling 

The carbonyl sample is drawn from the tunnel through heated probes and a transfer line 

maintained at 240oF (115.5oC) to avoid water condensation. The transfer line is connected to a 

vacuum manifold. A vacuum of 10 in Hg is maintained through 3 rotary vane pumps. The flow 

in the aldehydes transfer line is controlled through a mass flow controller set to operate at 1lpm. 

The carbonyl sample is passed through a 2,4 Dinitrophenylhydrazine (DNPH) cartridge fitted to 

the transfer line. The carbonyl compounds undergo a derivatization reaction forming 2,4 

Dinitrohydrazones as shown in Figure 3.12 [55]. The hydrazones are then extracted from the 

cartridge using acetonitrile and analyzed through High Performance Liquid Chromatography 

(HPLC). 

 
Figure 3.12 Derivatization reaction in DNPH cartridge for carbonyl sampling [55]. 

 
3.7.2.2 Volatile Organic Compound (VOC) sampling 

The VOC sample was collected into a steel canister for laboratory analysis using a flow 

control system provided by DRI. The canister, which had a capacity of 6.0 L at atmospheric 

conditions, was pressurized to 20 psig in order to hold 12 L of sample. The system provided by 

DRI was built according to the EPA compendium method TO-15 for determination of toxic 

organic compounds in air. The system utilizes the pressurized sampling method developed in the 

standard. The steel canisters used to collect dilute exhaust were completely evacuated, and a 

vacuum of 10mm Hg was present inside the canister prior to the start of the test. The flow rate of 

the canister sampling system is adjusted manually, and verified with an electronic mass flow 

controller. The flow rate of the sampling is system is calculated by the following equation. 

TestTime
meSampleVoluowrateCanisterFl =  “cc/min”                Equation 3.7 

Where: 
SampleVolume = Total Sample volume to be collected (12000 cc) 
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Figure 3.13 shows the flow diagram of the EPA TO-15 method for VOC canister 

sampling. The pump in the sampling system draws the sample from the tunnel and pushes the 

sample into the canister through a check valve. Two pressure gauges monitor the back pressure 

before the check valve and the canister pressure. The system is designed to operate optimally 

within a maximum back pressure of 22 psi. A pair of T60A20 filters contained in a filter holder 

placed upstream of the pump prevents PM from entering the system. The system is initiated 

manually with the start of the test. After the completion of the test the valves on the canister are 

closed and leak checked before packaging the canister for shipping. 

 
 

 
Figure 3.13 EPA TO-15 method for pressurized VOC canister sampling system. 
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Figure 3.14 DRI pressurized VOC sampling system 

 

3.7.2.3 Polycyclic Aromatic Hydrocarbon (PAH/n-PAH) Sampling System 

Polycyclic Aromatic Hydrocarbons and nitro-PAH were sampled from the tunnel into 

PUF/XAD cartridges. DRI’s Fine Particulate/Semivolatile Organic Compounds (FPSVOC) 

sampling system was used for PAH collection. The tunnel sample is drawn at 113 lpm with the 

help of rotary vane pump. The sample is admitted into the sampler through a copper tube and 

into a manifold which contains the housing for the PUF/XAD cartridge. Figure 3.14 shows the 

schematic of the PUF/XAD cartridge housing. The housing holds the PUF/XAD cartridge and a 

70mm T60A20 filter used to capture the PM bound organic compounds. A dummy cartridge and 

filter is loaded prior to the start of test and flow is set using a flow rotameter connected at the 

inlet. A flow adjustment is performed with the help of adjustment knob on the sampler. After 

setting the flow rate the PUF/XAD cartridge and filter pertaining to the test are loaded and the 

sampler transfer tube connected to the tunnel. The pumps are initiated manually with the start of 

the test. 
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Figure 3.15 Schematic of DRI’s PUF/XAD cartridge housing [56]. 

 
 
3.7.2.4 Unregulated Emissions Speciation On Filter Media 

Gravimetric analysis of PM1, PM2.5 and PM10 require sample collection on T60A20 

filters. In addition unregulated emissions speciation of metals/ions and EC/OC are to be collected 

on Teflon filters and Pre-fired Quartz filters respectively. For this purpose WVU utilized 

cyclonic particle classifiers fitted with filter holders to sample particles of different size fractions. 

URG manufactured Teflon coated aluminum cyclones were used. PM10 cyclone operates at 

28.3lpm and PM1 and PM2.5 operate at 16.7lpm flow rate. Cyclones work on the principle of 

inertial separation of particles of different size fractions. A cyclone is usually specified by its 

flow rate and the cut-point diameter. The cut-point diameter denotes the size fraction of the PM 

that the cyclone would allow to pass through. Any particles larger than the specified size fraction 

would be filtered to the bottom of the cyclone. The working principle of the cyclone is based on 

the inertial properties of PM. A cyclone is designed in such a way that the air flow within it 

follows a vortex pattern before it exits out perpendicular to the direction of entry. The design is 

also in such a way that at specific flow rate only particles which fall within a certain diameter is 

able to exit out of the cyclone. The remaining heavier particles settle to the bottom of the cyclone 

and can be later removed. The efficiency of this segregation is dependent on the flow rate 
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through the cyclone. Hence it is necessary to keep the flow rate as close to cyclone specification 

for maximum efficiency. 

The study required to collect PM2.5 metals/ions and PM2.5 EC/OC sample collection. 

The inlet of every cyclone was attached to the individual probes fitted to the primary tunnel. The 

outlet of the cyclone was fitted with a URG manufactured filter holders that were compatible 

with the cyclones used. Downstream of the filter packs were connected to the vacuum manifold 

through dedicated MFCs for each sample train. The MFC’s flows were set according to the 

cyclones specification and sampling was initiated through the control computer. The MFC 

operation was monitored through the read back values obtained from them for data verification 

purposes. 

 

3.7.3 NMHC Bag Sampling 

Tedlar bags were used to collect bag samples of emissions after each test. One bag of 

dilute and one bag of dilution air samples were collected. The bags were then shipped to WVU 

for analysis of Non-Methane hydrocarbons using gas chromatography. 

 

3.8 Gas Bag Sampling 

Two large Tedlar bags are used to collect gaseous emissions during the test. These bags 

are later analyzed by passing the gases collected in the bags through the analyzers. This serves as 

data verification of the gas bench and is a required QA/QC procedure.  

 

3.9 Temperature Control Module (TCM) 

Dedicated temperature control modules were used to control the temperatures of the 

various probes and transfer lines as per CFR 40 regulations. The TCM functions as closed loop 

control system to maintain the various temperature set points. Omega model CNI-32 temperature 

controllers were used for this purpose. Individual temperature controllers were assigned set 

points and when the temperature feedback from the transfer line and probes fell below this set 

point value, the controllers send a signal to a solid state relay. The relay switches power to the 

respective heating unit to bring the temperature up to the set point and the controller disconnects 

the power through the relay once temperature set point has reached. J type thermocouples were 
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used to control the heated probes and both J and K type thermocouples were used to control the 

heated lines [47]. 

 

3.10 Instrumentation Control and Data Acquisition 

The program for the instrumentation control and data acquisition is run from the control 

computer. A second reduction computer which interfaces with the control computer is used to 

setup tests and also to review the results of the tests. A third computer is dedicated to the logging 

of ECU data and media tracking software. The control computer interacts with the Dyne Loc 

systems to control the dynamometer loading and also with the data acquisition board for 

continuous logging of data at 10Hz. The control computer also contains the programs necessary 

for the calibration of various instruments of the transportable laboratory. 

 

3.11 Emissions Species Collection Media 

The transportable laboratory is capable of housing different media for sampling different 

emissions species. Media such as filters for gravimetric analysis of PM1, PM2.5, PM10 are 

preconditioned and preweighed in WVU before being shipped out to the test site. The list of 

unregulated species and their corresponding sample media are shown in the table below. 

Table 3.1 List of species and sample media 

Species Media 
VOC Steel Canister (DRI) 

Methane/NMHC Tedlar Bags (WVU) 
PAH PUF/XAD (DRI) 

Aldehydes DNPH (DRI) 
PM2.5 Elemental Carbon/Organic Carbon 47mm Pre-Fired Quartz filter (DRI) 

PM2.5 Metals/Ions 47mm Teflon filter (DRI) 
Total PM 47mm T60A20 double filter (WVU) 

 

 

3.11.1 Media Conditioning and Weighing 

All gravimetric media used are conditioned and pre-weighed at WVU’s test facility in 

Morgantown before being shipped to the test site. The filters are placed in an environmental 

chamber maintained at 70oF and 50% relative humidity for at least 1 hour and not more than 80 

hours. The filters are then weighed according CFR 40 regulations and placed in sealed Petri 
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dishes and shipped to the test site. Prior to the weighing process three reference filters are kept in 

the environmental chamber. These reference filters must be weighed before weighing any test 

filters, so as to assess the stability conditions in the environmental chamber. 

The filters were weighed using a Sartotius microbalance interfaced with a computer 

program which logs all test weight with the corresponding filter ID for future reference and data 

reduction. 

 

3.11.2 Media Labelling 

WVU uses a method of assigning unique identification numbers along with barcodes for 

each filter media. The barcodes are scanned and the characteristics of the filter media are 

entered. The bar coded stickers are pasted on the Petri dishes and the QA/QC sheet. The barcode 

stickers would have provisions for entering Test Number to identify used filters with the 

respective test runs. The media database would contain the pre-weight data of the filters. This 

study involved procuring certain media from DRI. And DRI used a similar system of media 

labeling through barcodes. 

For easy tracking of filters with their corresponding sample train, color coding was 

employed for each sample train. Colored stickers were placed on filter holders for each sample 

train, so that it is easy to load and unload filters for different sample trains into appropriate filter 

holders. 

 

3.11.3 Media Shipping and Tracking 

A media tracking application was developed to associate different media with their 

respective sample trains. Barcodes on the respective media were scanned and the appropriate 

sample trains were entered in the application along with the test numbers. The used media were 

placed back in the Petri dishes and placed in padded pouches before being shipped overnight to 

WVU test facility at Morgantown. The QA/QC sheets placed along with the filters would also 

aided in the tracking of media. Special media that were to be shipped to DRI were placed in 

coolers with cold packs and shipped overnight to DRI facility at Reno, Nevada. 
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CHAPTER 4 - EMISSION TEST PROCEDURE 

This chapter will discuss the steps involved in preparing the lab for emissions testing, 

which include calibration of instruments, system checks, and vehicle loading. The chapter would 

also deal with the method of calculation of distance specific emissions from raw lab data. 

 

4.1 Lab Setup Procedures 

The chassis dynamometer which is part of a flat bed trailer is lowered onto level ground 

with the help of the built in hydraulic jacks. The dynamometer surface is checked for flatness in 

order to prevent variation in vehicle loading due to inclination. The analytical trailer which 

houses the analyzer, control systems, dilution tunnel and data acquisition systems are placed 

close the dynamometer in order to reduce the length of exhaust transfer tube to the tunnel. The 

clean primary dilution tunnel used for this study was placed close to the trailer and 

dynamometer. The CFV-CVS blower unit was placed near the outlet section of the clean tunnel 

and connected via flexible air duct. The blower unit was powered by a Perkins diesel engine. The 

HEPA filter manifold is placed near the dilution air inlet section of the clean tunnel and 

connected via flexible air duct. 

The pre-test preparation of the analytical trailer includes preparation of the gas bench and 

dynamometer controls. The heated probes for sampling the various gas species are fitted to the 

sampling plane of the tunnel through the available flanged ports. The probes are fitted facing 

upstream of the clean tunnel. The heated transfer lines were routed into the analytical trailer and 

connected to its respective ports. The clean tunnel covered with insulating material to prevent 

cold spots in the tunnel and thereby reducing thermophoretic loss of PM. The tubing for 

sampling of the unregulated species was installed to its respective sampling ports. Raw exhaust 

was planned to be sampled and diluted through ejector dilutor for particle sizing study. A 3/4 

inch tubing was bent to form a J probe and fitted facing upstream at the raw exhaust inlet of the 

tunnel. The air compressor and zero air generators were powered prior to the trailer setup for 

storage of enough air for functioning of analyzers and air tools. The analyzers, heated lines and 

probes were all powered up for warm up and stabilization before further setup procedures were 

carried out. The laboratory utilizes a 100KW generator for power source if electrical power was 
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not available at the test location. Figure 4.1 shows the schematic of the sampling setup on the 

clean tunnel. 

 

 
Figure 4.1 Schematic of clean tunnel sampling setup 

 

4.2 Analyzer Setup and Calibration 

Prior to the start of calibration procedures of the analyzers, various analyzer check 

procedure are carried out as stated in CFR 40, Part 86, subpart D, N. These checks are performed 

in order to assess the efficiency, interferences and response of the gas analyzers. NDIR analyzers 

experience interference from water vapor as it exhibits the same property towards infra red light 

as CO and CO2. This test is performed by admitting span gases into the analyzer through a 

bubbling chamber and bypassing the bubbling chamber so as to asses the water vapor 

interference level. Water interference check denoted the efficiency of the chiller and dryer unit in 

removing water content from the gas sample. In a CO analyzer, a CO2 interference check is 

performed to asses the efficiency of the conditioning column in removing CO2 from the sample 

gas. Similarly CO2 and water vapor interferes with the Chemiluminescence detector (CLD) of 

the NOx analyzer. Analyzer optimization tests such as on oxygen interference check for FID 

flame optimization and NOx converter efficiency for optimum working of the NOx analyzer in 

the NOx mode is performed. In addition methane response test is performed on the FID analyzer 

to check for the response of the flame towards methane gas in exhaust. The procedures for 
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performing these steps are given in CFR 40, Part 86, subpart D, N. These procedures are carried 

out periodically to ensure proper working of the analyzers.  The following table lists the various 

preliminary checks on the analyzers. 

Table 4.1 Analyzer optimization checks  
Analyzer Principle Of Operation Checks Purpose 

CO2 Non-dispersive Infra Red 
(NDIR) Water Interference check 

Water Interference check  

Check efficiency of 
water removal unit 

CO Non-dispersive Infra Red 
(NDIR) CO2 interference check Check CO2 removal 

unit 
Quench check for CO2 
and water interference in 
reaction chamber 

Check interferences in 
detector NOx Chemiluminescence 

Detector (CLD) NOx converter efficiency 
check 

Check NO2 to NO 
converter 

Oxygen interference check 
for FID flame optimization 

Check burner 
sensitivity THC Flame Ionization Detector 

(FID) 
Methane response test Check response of 

FID to CH4 
 

Analyzer calibrations are performed as prescribed in CFR 40, Part 86, and subpart N. The 

analyzers are calibrated between zero and full scale gas concentration readings expected during 

the tests. The span gas concentrations had an accuracy of 1% traceable to NIST, and the zero air 

was generated using a zero air generator incorporated into the analytical trailer. A 10 point 

calibration is performed on each analyzer using a gas divider which mixes a measured amount of 

span and zero gas to give sample concentrations varying in percentages of 10 between 0% and 

100%. The analyzers are given a stabilization period at each calibration point before the data 

acquisition is initiated. The computer averages a 10 second reading at each point when data 

acquisition is initiated. Since the computer relates the concentration of calibration gases to ADC 

codes between 0 and 2000, a polynomial fit of the 10 point calibration is performed to convert 

ADC codes to engineering units. The span gases were chosen according to the level of emissions 

expected from a vehicle and also for greatest accuracy range. The decision is made from 

previous test experiences and vehicle configuration. If emission concentrations exceed the span 

gas value more than an allowable limit as stated in CFR 40 the analyzers are recalibrated with a 

higher span gas concentrations and tests repeated. The calibration files are always overwritten to 

avoid use of wrong calibration files. At the end of each test zero and span values of the analyzer 

are checked to estimate the analyzer drift. If the drift for THC analyzer was more than 3% and 
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for CO/CO2, NOx more than 2% the analyzers were recalibrated. The NOx converter efficiency 

is checked for 90% or more efficiency in conversion else maintenance is performed on the 

analyzer. 

 

4.3 Mass Flow Controller Calibration 

Mass flow controllers are used for flow regulation for different sampling trains. This 

study utilized 5 MFCs for unregulated sampling and one MFC for TPM flow regulation. The 5 

mass flow controllers used for the unregulated sample train were calibrated using Gilian flow 

standard device. A 10 point calibration was performed between fully closed and fully open 

conditions. The calibration curve was plotted and the slope and intercept of the curve was 

overwritten into the MFC calibration file. The TPM mass flow controller which was operated at 

a higher flow rate was calibrated using Laminar Flow Element (LFE) manufactured by Meriam 

Flow Measurement Devices. Meriam provides calibration coefficients and equations for each 

LFE which was obtained through calibration of LFE with NIST standard flow instruments. A 

five point calibration was performed. The flow rate was calculated using the following equation 
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Where 
B&C  : LFE Coefficients 
ΔP     : Pressure differential across LFE 
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The correction factor is calculated using the following equations: 
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The differential pressure is measured using a Heise pressure reader and the temperature 

was measured using a fluke temperature calibrator. The LFE flow is expressed as standard flow 

using appropriate conversion to standard conditions of 20oC and 101.1 KPa. 

 

4.4 CFV-CVS Calibration 

The CFV of the CVS system was calibrated using a subsonic flow meter and a flow 

restrictor as specified in CFR 40. The CFV calibration is performed once the lab is setup at the 

test site. The flow through the CFV is given by the following equation 
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Where 
Qs  : Venturi flow rate in cfm 
P    : Absolute inlet pressure in Kpa 
T    : Absolute inlet temperature in oK 
Kv : Calibration coefficient 
 
The calibration is system is leak checked and the blower is started with the flow restrictor 

in fully open conditions. Once flow is stabilized temperature and pressure at inlet are noted. 

Flow restrictor position is varied for eight readings in the critical flow range. The calibration 

coefficient is derived from the above equation knowing the flow rate and venturi inlet and 

temperature and pressure. Kv usually stays constant in the critical flow range and drops 

significantly with decrease in flow. The average of eight Kv readings and standard deviation is 

calculated. If the standard deviation exceeds 0.3% then recalibration is performed. 

 

4.5 CFV-CVS Verification Procedure 

WVU uses the method of Propane injection to verify the CFV-CVS operation and tunnel 

integrity. A propane injection kit is used to admit measured quantities of propane into the tunnel. 

The propane kit utilizes a critical flow orifice as a metering device, and the flow rate is 

calculated based on the inlet temperature and pressure reading obtained just prior to the orifice. 

The orifice is operated at critical flow conditions due to the high pressure inlet of gas and flow 

rate is not affected by any back pressure. Though the CFR prescribes a gravimetric method of 

calculating the amount of propane injected, WVU uses the propane injection kit manufactured by 
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Horiba for admitting know quantities of pure propane. The kit consists of a ruby orifice and the 

test gas is admitted into the CVS tunnel through a rosette for uniform mixing. A calibrated FID 

analyzer is used to measure the quantity of propane recovered from the tunnel. Percentage error 

is calculated between propane sample injected and propane recovered using FID analyzer value. 

The error should be within 2% else systematic trouble shooting is performed to asses the cause of 

loss of injected propane volume within the CVS system. Errors greater than 2% could be due to 

issues with CFV, leak in tunnel, THC analyzer calibration issues. The flow rate of propane 

through the kit is determined from the following equation. 
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   Equation 4.5 

Where 
q           : Flow rate in SCFM at 20oC and 101.1 Kpa  
A,B,C   :  Calibration coefficients supplied by Horiba 
P           : Absolute orifice inlet pressure in psi 
T           : Orifice inlet temperature in oF 
 
Volume flow rate through the CVS-CFV is given by the following equation. 

60*
t
VQ =      Equation 4.6 

Where 
V : Volume in SCFM as measured by the CFV. 
t  : Time interval in sec (300 sec) 
 

Calculated sample concentration is determined by the following equation 
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The system error is obtained from the following equation, where CFID is the measured 

concentration of the injected sample as read from the THC analyzer. 
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It is to be noted that propane injection is an end to end verifaction of the tunnel integrity, 

and the validity the check hold good only if the other individual sensory components, such as 
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temperature and pressure sensors, analyzer calibration have passed their respective verification 

procedures. 

 
4.6 Test Procedure 

As the first step in the test procedure the vehicle weight is measured and the respective 

flywheel setting is determined. For buses the equivalent inertia was calculated as the sum of the 

empty vehicle weight, half the passenger load, the driver and the equivalent weight of the non 

rotating wheel assemblies [46]. One set of rear wheels are removed and the dummy wheel rim is 

attached to connect the hub adapters for power transfer to the dynamometer components. The 

vehicle is backed on to the dynamometer and checked if the wheels are properly placed on the 

rollers. The vehicle is chained down on to the dynamometer bed for extra safety and the hub 

adapters are bolted to the dummy wheel rims attached to the vehicles. The necessary transfer line 

connections are made to route the exhaust from the vehicle into the dilution tunnel. Insulated 

flexible stainless steel transfer lines are used for this purpose. 

Once the vehicle is placed on the dynamometer, the ECU connections are made to 

retrieve ECU broadcast engine speed and torque. The vehicle is run at a constant speed for the 

differential oils to warm up, as the viscosity of cold differential oil could add to significant load 

on the vehicle. While the differential warm up procedure is being undertaken the gas bench in 

the analytical trailer is prepared for the tests. Pre-test QA/QC checks on transfer line, heated 

probes and analyzer zero and span are performed. The two tedlar bags used for collection of 

integrated vehicle emission and background samples are evacuated using the GAST rotary vane 

pumps. The vacuum gauge indicating bag pressure should read 25 inches Hg indicating complete 

bag evacuation. All media are loaded and filters for PM are placed in the holder and fitted to the 

secondary dilution tunnel. 

A coast-down operation of the vehicle is performed to evaluate the system loses in the 

dynamometer. The coast-down operation involves driving the vehicle to accelerate to 50mph and 

when initiated by the control computer letting the vehicle to coast to a stop with no external 

assistance such as braking or gear shifts. The computer performs a series of coast-down test to 

evaluate the frictional loses if any in the dynamometer system. The coast-down operation is 

performed based on SAE J1263 recommended practice of road load determination [57]. The 

coast-down program matches time taken in theoretical on road coast-down of a vehicle with the 



 74

time taken for coast-down of a similar vehicle on the dynamometer [58]. A lesser coast-down 

time on the dynamometer indicates less resistance from the dynamometer components and hence 

necessary power absorber braking is needed and a greater time on the dynamometer indicates 

more frictional resistance from the dynamometer components hence assistance from motor is 

needed to overcome the additional load due to friction of dynamometer components.  

With the completion of the coast-down tests the vehicle is ready for chassis dynamometer 

testing. Since this study utilized additional sampling system from DRI, the flow rates of the 

sampling system are checked and the respective media are loaded and the field data sheets are 

filled out. 

Once all the preliminary test procedures were completed the driver is provided with a 

monitor that displays the time and speed trace that vehicle needs to follow. With the initiation of 

the test sequence by the control computer the driver begins to drive the vehicle in accordance to 

the speed trace. Tests are repeated until repeatable data with COV of 5% or less is obtained for 

all emission constituents on three consecutive runs. Ambient temperature is monitored and if 

temperature exceeds 95oF testing is aborted. 

 

 
Figure 4.2 Test vehicle mounted on the chassis dynamometer 
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4.7 Test Cycle 

The test cycle that was used for this study was the Orange County Transit Authority 

(OCTA) cycle. The OCTA cycle was developed by WVU based on real bus operating data from 

the Orange County Transportation Authority. The OCTA cycle is an intermediate speed test 

cycle consisting of acceleration, deceleration, idle and cruise operations representing real world 

transit bus operation.  Three back to back OCTA cycles were setup of which the first cycle was a 

warm-up cycle and the next to consecutive cycles were data taking cycles. The control computer 

initiated the pumps and mass flow controllers at the end of the first warm-up cycle to start the 

continuous data collection process. Samples were collected over a double length OCTA cycle so 

as to collect enough samples on the unregulated media for chemical characterization. The 

continuous data was recorded at 10Hz frequency. The driver is responsible for the control of 

vehicle speed according to the OCTA cycle speed trace and the control computer sends the 

calculated torque set point signals to the power absorbers Dyne-Loc systems for the vehicle 

loading. Unregulated media collection was done only on the second set of OCTA cycles. On 

completion of the cycle the vehicle is allowed for a 20 minute soak period before starting the 

next set of OCTA cycles. The study involved testing the vehicles with and without the after-

treatment device hence the test procedures were repeated for these two vehicle configurations. 
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Figure 4.3 Speed Vs Time trace of OCTA cycle 
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For collecting the background emissions for the unregulated sample a similar double 

length OCTA cycle was setup and the vehicle was switched off and the control computer 

initiated all sampling devices during this tests. One background test was performed for each 

vehicle configuration. This method was followed so as to obtain background samples for the 

same length of time as that of the vehicle driven tests. Hence this would not bring about a 

discrepancy in test length while calculating distance specific emissions for background.  

 
4.8 Emission Calculation 

The data acquisition system consists of different modules for reading voltage signals 

from different sources. These modules are called as channels. Each channel receives analog 

voltage from the various analyzers, temperature and pressure monitoring systems. An analog to 

digital converter is used to convert the analog voltage signals to digital signals in the form of 

ADC codes. The ADC codes are converted to their respective engineering units with the help of 

the calibration files for each channel. The reduction computer uses data from different channels 

and substitutes the values in the respective equations to calculate the distance specific emissions. 

The equations used to calculate the different emissions are stated in this section. 

For the calculation of the mass emissions of different exhaust constituents, it is necessary 

to calculate the flow through the tunnel (Vmix) and a factor known as the dilution factor (DF). 

Dilution factor is the ratio of theoretical amount of carbon-dioxide in the raw exhaust to the 

summation of the actual measured concentration of CO, CO2, and HC. The total volume of dilute 

exhaust drawn through the tunnel for a test period is calculated using the following equation 
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Where  
Vmixi : Instantaneous tunnel flow rate through the CFV in ft3/sec. 
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 Where 
 Δt : Time interval between each instantaneous measurement point (sec) 

n   : Number of measurement points 

Kv : Calibration coefficient of critical flow venturi 
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Pvi : Instantaneous pressure reading upstream of the CFV (inches Hg) 

Tvi : Instantaneous temperature reading upstream of the CFV (oR) 
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Where, 

CO2e : Carbon-dioxide concentration in dilute exhaust corrected for background (ppm). 

COe  : Carbon-monoxide concentration in dilute exhaust corrected for background  

  (ppm). 

HCe  : Hydrocarbon concentration in dilute exhaust corrected for background (ppm). 

 

4.8.1 Equations To Calculate Distance Specific Mass Of Regulated Emissions 

For the calculation of distance specific mass emissions of regulated exhaust constituents, 

the data in the units of ppm is converted to mass units of grams. The resulting mass of emissions 

over a test cycle is divided by the total distance in miles traveled by the vehicle during the cycle 

to derive the distance specific mass emissions. The equations used to derive the mass of 

emissions are as follows. 
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           Equation 4.12 

Where, 

(CO)e : Instantaneous CO concentration of dilute exhaust obtained from the CO   

  analyzer readings (ppm). 

Vmixi  : Instantaneous dilute exhaust flow through CFV from Equation 4.10 (scfm). 

ρco      : Density of CO 32.97 g/ft3 STP. 

Δt     : time interval between instantaneous measurement points (sec). 

COd  : Concentration of CO in dilution air corrected for water vapor (ppm). 

   dmd CORCO *)*000323.01( −=    [59] Equation 4.13  

 

R     : Relative humidity (%) 
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COdm : Concentration of CO in dilution air as obtained from CO analyzer readings (ppm). 

Vmix   : Total volume dilute exhaust drawn through the tunnel in a test period from  

  Equation 4.9 (scf). 

DF     : Dilution factor from Equation 4.11.  

    )/(
tantan mileg

ceTotalDis
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CO mass
ceSpecificdis =   Equation 4.14 

    

CO2 emissions are calculated using the following equation 
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           Equation 4.15 

Where, 

(CO)2e : Instantaneous CO2 concentration of dilute exhaust obtained from the CO2  

    analyzer readings (ppm). 

Vmixi    : Instantaneous dilute exhaust flow through CFV from Equation 4.10 (scfm). 

ρco2         : Density of CO2 51.81 g/ft3 STP. 

Δt        : time interval between instantaneous measurement points (sec). 

CO2d    : Concentration of CO2 in dilution air as obtained from CO2 analyzer readings  

   (ppm). 

Vmix   : Total volume dilute exhaust drawn through the tunnel in a test period from  

  Equation 4.9 (scf). 

DF     : Dilution factor from Equation 4.11. 
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ceSpecificdis =   Equation 4.16  
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NOx emissions calculations are performed with the following equations. 
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           Equation 4.17 
Where, 

NOxe : Instantaneous NOx concentration of dilute exhaust obtained from the NOx  

             analyzer readings (ppm). 

Vmixi    : Instantaneous dilute exhaust flow through CFV from Equation 4.10 (scfm). 

ρNOx     : Density of NOx 54.16 g/ft3 STP. 

Δt        : time interval between instantaneous measurement points (sec). 

NOxd  : Concentration of NOx in dilution air as obtained from NOx analyzer readings  

   (ppm). 

Vmix   : Total volume dilute exhaust drawn through the tunnel in a test period from  

  Equation 4.9 (scf). 

DF     : Dilution factor from Equation 4.11. 

KH     : Humidity correction factor 
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Where, 

H      : Absolute humidity of the engine intake air (grains of water/lb of dry air). 

Ri     : Relative humidity of the engine intake air (%). 

Pd    : Saturated vapor pressure at engine intake air dry bulb temperature (mm of Hg). 

Pb    : Barometric pressure (mm of Hg).  
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THC emissions are calculated using the following equations. 
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           Equation 4.21 
Where, 

HCe  : Instantaneous HC concentration of dilute exhaust obtained from the HC FID  

           analyzer readings (ppm). 

Vmixi : Instantaneous dilute exhaust flow through CFV from Equation 4.10 (scfm). 

ρHC   : Density of HC for CNG fueled vehicles 18.85 g/ft3 STP. 

Δt     : Time interval between instantaneous measurement points (sec). 

HCd  : Concentration of HC in dilution air as obtained from HC FID analyzer readings  

   (ppm). 

Vmix  : Total volume dilute exhaust drawn through the tunnel in a test period from   

            Equation 4.9 (scf). 

DF     : Dilution factor from Equation 4.11. 

   )/(
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The PM emission collected on filters from the secondary dilution tunnel is calculated using the 

following equation. 
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Where, 

Vmix  : Total volume dilute exhaust drawn through the tunnel in a test period from  

   Equation 4.9 (scf). 

Vsf     : Total sample volume of dilute exhaust drawn through the secondary dilution  

   tunnel (scf). 

Pf       : Actual mass of PM collected on the sample filter (grams). 

Pbf  : Actual mass of PM collected on the background filter (grams). 

DF     : Dilution factor from Equation 4.11. 
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4.8.2 Equations To Calculate distance Specific Emissions of Unregulated Species 

The unregulated species analysis was carried out at Desert Research Institute (DRI), 

Reno, Nevada. Preliminary data processing was performed by DRI and the concentrations were 

reported in the units of g/m3 to WVU. Final data reduction involved similar calculations as in 

regulated emissions to derive the distance specific emissions of unregulated species. 

The data reduction does not involve background correction. Hence concentrations are 

reduced as tunnel concentration and background concentrations separately. This methodology is 

followed to eliminate negative emissions value if background emissions happen to be greater 

than the test emissions. For the calculation of the emission concentration in the tunnel, the total 

flow through the tunnel is calculated. 

)( /0.1105.2/min MetalsOCECPMPMPMvocDNPHXADPUFimixTunnel VVVVVVVVVVV +++++++++=  

           Equation 4.24 

Where, 

VTunnel : Total flow through the tunnel in a test period (scf) 

Vmini     : Total flow through the secondary dilution tunnel in a test period (scf) 

VPUF/XAD : Total flow through the PUF/XAD cartridge in a test period (scf) 

VDNPH       : Total flow through the DNPH cartridge in a test period (scf) 

VVOC         : Total flow into the VOC canister in a test period (scf) 

VPM2.5, VPM10, VPM1, VEC/OC, VMetals : Total flow through the respective filters in a  test  

 period (scf) 

 

The tunnel flow was calculated from integrating actual flows of all sample trains from the 

read back value of the MFCs. 

 

4.8.2.1 Carbonyl Sample Analysis  

The carbonyl sample train was consisted of a silica gel Sep-Pak cartridge coated with 

DNPH. The exhaust was sampled through this cartridge at 0.5lpm, with the flow controlled 

through a MFC. The reactions of the DNPH with exhaust carbonyls create hydrazones in the 

cartridge which are further extracted and analyzed using High Performance Liquid 

Chromatography (HPLC) method. The procedures followed by DRI in the analysis of carbonyls 
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involve the extraction of hydrazones by eluting the cartridge with acetonitrile. And transferring 

part of the eluted sample into a 2-ml septum vial and injecting it into high performance liquid 

chromatograph through an auto sampler. The chromatogram used in DRI was Waters 2690 

Alliance System with 996 Photodiode Array Detector for separation and quantization of the 

hydrazones. DRI analyzed C1 through C7 carbonyl compounds. HPLC system used in DRI was 

equipped with the photodiode array detector, which makes the identification of carbonyl 

compounds much more accurate than the standard UV/VIS detector. More detailed description of 

the carbonyl analysis procedure followed by DRI is explained in APPENDIX A-1. 

The tunnel concentration of carbonyl compounds is calculated by the following equation. 

  610** −= sampletunnelectedTestUncorr CarbonylVCarbonyl    Equation 4.25  

 

Where, 

CarbonylTestUncorrected : Tunnel concentration of individual carbonyl compounds   

               without correcting for background concentration (grams). 

CarbonylSample          : Concentration obtained by HPLC analysis with preliminary   

              data processing from DRI ( 3/ mgμ ). 

Vtunnel           : As calculated in Equation 4.24 (m3) 

    

  ( )mileg
ceTotalDis

Carbonyl
Carbonyl ectedTestUncorrceSpecificDis

ectedTestUncorr /
tan

tan =   Equation 4.26 

 
4.8.2.2 Poly Aromatic Hydrocarbons/Nitro-Ploy Aromatic Hydrocarbon (PAH/n-PAH) 

Sample Analysis 

The PAH compounds were categorized as particle bound PAH, gas phase PA Hans semi-

volatile PAH. The PAH compounds were collected with a PUF/XAD sampling train. The 

sampling train is explained in Section 3.7.2.3. The samples from the PUF/XAD cartridge and 

TIGF filters were extracted and prepared for analysis. The sample preparation and analysis 

method is explained in detail in APPENDIX A-2. n-PAH analysis was carried out by HPLC 

method and the filters and PUF/XAD extracts were done using a Gas Chromatography and Mass 

Spectrometry (GC/MS) technique. A Varian CP-3800 GC equipped with a CP8400 auto sampler 
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and interfaced to a Varian Saturn 2000 Ion Trap operating in electron impact (EI) ionization 

mode was used for this purpose. The n-PAH analysis was carried out using the Varian 1200 

triple quadruple Gas Chromatograph/Mass Spectrometer (GC/MS) system with CP-8400 auto 

sampler.  

The tunnel concentrations of PAH/n-PAH were obtained from the following equation. 

   910** −= sampletunnelectedTestUncorr PAHVPAH    Equation 4.27 

Where, 

PAHTestUncorrected    : Tunnel concentration of individual PAH/n-PAH compounds   

                     without correcting for background concentration (grams). 

PAHSample    : Concentration obtained by HPLC/GC/MS analysis with preliminary 

       data processing from DRI ( 3/ mng ). 

Vtunnel     : As calculated in Equation 4.24 (m3) 

 

   ( )mileg
ceTotalDis

PAH
PAH ectedTestUncorrceSpecificDis

ectedTestUncorr /
tan

tan =    Equation 4.28 

 
4.8.2.3 Volatile Organic Compound Sample Analysis 

The Volatile Organic Compound sample was obtained by sampling with a VOC canister 

sampling system, supplied by DRI. A detailed description of the sampling system is discussed in 

Section 3.7.2.2.  The sealed canister samples were preconditioned and analyzed with the help of 

GC with flame ionization detector and GC with mass spectrometry. A detailed description of the 

preparatory steps before GC analysis and GC calibration procedures employed in DRI are stated 

in APPENDIX A-3.  

The tunnel concentrations of the various VOC compounds were obtained from the 

following equations. 

   610** −= sampletunnelectedTestUncorr VOCVVOC    Equation 4.29 

Where, 

VOCTestUncorrected          : Tunnel concentration of individual VOC compounds   

              without correcting for background concentration (grams). 
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VOCSample          : Concentration obtained by GC analysis with preliminary   

              data processing from DRI ( 3/ mng ). 

Vtunnel           : As calculated in Equation 4.24 (m3) 

   ( )mileg
ceTotalDis

VOC
VOC ectedTestUncorrceSpecificDis

ectedTestUncorr /
tan

tan =   Equation 4.30 

 
4.8.2.4 Elemental/Organic Carbon (EC/OC) Sample Analysis 

The sample for analysis of EC/OC was collected on 47mm pre-fired Quartz filter. 

Particles of 2.5 micron cut size segregated using a cyclone was collected on the filters. DRI 

employed the thermal/optical reflectance (TOR) method for the analysis of EC and OC. The 

TOR method is based on the principle that different types of carbon-containing particles are 

converted to gases under different temperature and oxidation conditions. The TOR method helps 

to distinguish 7 different carbon fractions. A detailed description of the methodology and 

procedure of analysis are described in APPENDIX A-4.  

The tunnel concentrations of EC/OC are obtained from the following equation. 

  6

/

10*/*2*/ −= sample
OCEC

tunnel
ectedTestUncorr OCEC

V
V

OCEC   Equation 4.31 

Where, 

EC/OCTestUncorrected    : Tunnel concentration of individual EC/OC compounds   

              without correcting for background concentration (grams). 

EC/OCSample         : Concentration obtained by TOR analysis with preliminary   

              data processing from DRI ( filterg /μ ). 

Vtunnel          : As calculated in Equation 4.24 (m3) 

VEC/OC                 : Total flow rate through pre-fired Quartz filter (m3)  
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/
/ tan =   Equation 4.32 
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4.8.2.5 Metals Sample Analysis 

Samples were metal analysis was collected on 47mm Teflon filters. Particles of 2.5 

micron cut size segregated using a cyclone was collected on the filters. The Teflon filters were 

pre-conditioned for 24 hours before analysis. X-Ray Fluorescence (XRF) method was used to 

identify the different metals in the sample. A Kevex Corporation Model 700/8000 Energy 

Dispersive X-Ray Fluorescence (EDXRF) analyzer using a side-window, liquid-cooled, 60 keV, 

3.3 milliamp rhodium anode x-ray tube and secondary fluorescers was used for this purpose. A 

detailed description of the analysis methodology, instrument resolution and mimium detection 

limit are stated in APPENDIX A-5. 

The tunnel concentrations of different metals are obtained from the following equation. 

  610**2* −= sample
Metals

tunnel
ectedTestUncorr Metals

V
V

Metals    Equation 4.33 

Where, 

MetalsTestUncorrected    : Tunnel concentration of individual Metals compounds   

             without correcting for background concentration (grams). 

MetalsSample         : Concentration obtained by XRF analysis with preliminary   

              data processing from DRI ( filterg /μ ). 

Vtunnel          : As calculated in Equation 4.24 (m3) 

VMetals                 : Total flow rate through Teflon filter (m3)  

 

  ( )mileg
ceTotalDis

Metals
Metals ectedTestUncorrceSpecificDis

ectedTestUncorr /
tan

tan =    Equation 4.34 
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CHAPTER 5 - RESULTS AND DISCUSSION 

The two natural gas transit buses were tested on the WVU transportable chassis 

dynamometer laboratory. Regulated emissions from both vehicles with and without the after-

treatment devices were measured and a complete characterization of exhaust from the RTA 

natural gas bus was successfully carried out. The after-treatment device which was a two-way 

oxidation catalyst was manufactured by Engine Control Systems. The vehicles were subjected to 

a double length OCTA cycle. This chapter discusses the results obtained and the effectiveness of 

the catalyst in reducing regulated and unregulated constituents of vehicle exhaust. The regulated 

emission constituents measured in this study were CO, NOx, THC and PM. The regulated 

emission results presented here are an average of multiple runs and the error bars plotted as 

maximum and minimum value in the multiple runs. The unregulated category which includes, 

VOC, PAH, Carbonyls, Metals and EC/OC were characterized and quantified by DRI. The 

unregulated data presented here are not corrected for background and presented as test non-

corrected and background values for that corresponding test configuration. As part of the study 

particle size measurements were performed using the SMPS. A particle sizing study was 

conducted to study the variation in particle size distribution in vehicle exhaust during the catalyst 

warm-up period in cold starts. 

 

5.1 Regulated Emissions Results 

The results of the regulated emissions obtained from the testing of the RTA transit bus 

are shown in Figure 5.1. The oxidation catalyst was effective in reducing the concentration of 

CO by 98.9%. The THC emissions were reduced by 62.4% with the use of the oxidation catalyst. 

The effectiveness of an after-treatment device in reducing hydrocarbon emissions from natural 

gas vehicles is limited only to the Non-Methane Hydrocarbon (NMHC) portion of the total 

hydrocarbon emissions. This is due to the fact that NMHC is the only environmental concern, 

due to its smog forming capabilities. Methane, which forms the major portion of hydrocarbon 

emissions from natural gas vehicles, is considered not to be phototoxic. The PM emissions from 

natural gas vehicles is usually extremely low and often below quantifiable limits. This is due to 

the gaseous nature of the combusting fuel combined with spark ignition. The only source of PM 
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from natural gas vehicle could be as a result of lube oil combustion. The PM value seen from the 

vehicle without the after-treatment device could be as a result of the lube oil combustion. 
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Figure 5.1 Regulated Emissions Result from RTA Transit Bus. 

 
Figure 5.2 shows the methane and NMHC split in the exhaust of the RTA natural gas 

vehicle. The methane concentration was obtained from the VOC analysis of DRI. The methane 

analysis of the exhaust showed that 63.8% of the exhaust from the baseline configuration 

consists of methane. This is due to the fact that the natural gas vehicles are more prone to 

incomplete combustion and consequently higher levels of hydrocarbon emissions consisting 

predominantly of methane is seen. The NMHC portion of the hydrocarbon emissions were 

reduced by 72.4%. Most oxidation catalysts are not efficient in reducing methane concentration 

in exhaust. This is due to the fact that methane oxidation requires higher light off temperatures in 

the exhaust around 500oC [45]. And in order to increase the exhaust temperatures to suitable 

levels engine designers would have to sacrifice thermal efficiency of the engine. Though on 

regulatory stand point methane reduction is not of major concern as it is not phototoxic, factors 

such as its contribution to global warming and the formation of additional formaldehyde due to 

impartial oxidation in the oxidation catalyst warrants after-treatment device manufacturers to 
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consider the reduction of methane in the exhaust of natural gas vehicles. Certain platinum group 

metals in the right ratio are able to achieve considerable reduction in methane concentration in 

the exhaust at lower light off temperatures [45].  This particular oxidation catalyst that was fitted 

to the RTA transit bus tested in this study was effective in reducing the methane concentration by 

57%. 
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Note: Methane concentration obtained from DRI VOC analysis  
Figure 5.2 Methane/NMHC Results from RTA Transit Bus 

The results of the regulated emissions from the LACMTA transit bus are shown in Figure 

5.3. The results showed a 99.3% reduction in CO concentration. The CO concentrations with the 

after-treatment device was reduced to below detectable limits in most of the test runs. The PM 

values were very low in number. The THC levels in the exhaust from the LACMTA transit bus 

was only reduced by 29.1% with the after-treatment device. It is also to be noted that the NMHC 

speciation was not performed on this vehicle. Therefore it could be possible that majority of the 

THC composition could be methane and the catalyst that was retrofitted to the LACMTA transit 

bus was not effective in reducing methane and as a result it reflects as higher hydrocarbon 

emissions in the exhaust without the after-treatment device. 

The catalyst being a two-way catalyst did not show any effect on the NOx concentrations 

in the exhaust of both the vehicles. 
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Figure 5.3 Regulated Emissions Result from LACMTA Transit Bus. 

 
 

5.2 Unregulated Emissions Results 

The unregulated emissions sample with special sampling media and analyzed by DRI. 

The categories of unregulated emissions analyzed in this study include, carbonyls, Poly Aromatic 

Hydrocarbons (PAH), Volatile Organic Compounds (VOC), metals, Elemental Carbon/Organic 

Carbon (EC/OC) fraction. The unregulated emissions results are presented as test non-corrected 

values and background values for the respective tests separately. This is to avoid the occurrence 

of negative emissions values in the case of the background being higher than the test values. 

Unregulated emissions results have uncertainty values associated with each species detected. 

This uncertainty value depicts the measurement error associated with each species. The 

calculation of this uncertainty is discussed in APPENDIX V. DRI’s data reduction program takes 

into account uncertainty in sample volume flows also. 
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5.2.1 Carbonyl Emissions Result 

The carbonyl emissions were sampled onto DNPH cartridges and later extracted and 

analyzed by DRI using high performance liquid chromatography method. Carbonyl emissions 

characterization involved the identification of 14 different carbonyl compounds. The results of 

carbonyl emissions are shown in Figure 5.4. 
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Figure 5.4 Carbonyl Emissions Results from RTA Transit Bus. 

 

The after-treatment device was effective in reducing the carbonyl emissions by 96%. 

Total carbonyl emissions with the after-treatment device were reduced close to levels found in 

tunnel background concentration. The compounds that are shown in the legend but not visible in 

the chart were below detectable limits. Figure 5.5 and Figure 5.6 shows a detailed classification 

of the various carbonyl compounds found in the exhaust and their percentage contribution to the 

total carbonyl emissions.  
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Figure 5.5 Carbonyl Compounds Concentration Without After-treatment Device. 
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Figure 5.6 Carbonyl Compounds Concentration With After-treatment Device. 
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The results from Figure 5.5 and Figure 5.6 show that formaldehyde was the major 

contributor towards carbonyl emissions in natural gas vehicles. The growth of natural gas 

vehicles and the formaldehyde emissions associated with them have forced regulatory authorities 

to enforce regulations on formaldehyde. Emission regulations of EPA for the clean fuel vehicles 

place the cap on formaldehyde emissions at 0.025 g/bhp-hr. Formaldehyde being the major 

product of incomplete oxidation of methane is a target species for catalyst manufacturers. The 

results from the transit bus configurations with the after-treatment device shows that 

formaldehyde reduction of 97.5% was achieved and subsequently concentrations were reduced 

close to background levels. The result also indicated the presence of acetaldehyde in the 

configuration with the after-treatment device while the same not being identified in the baseline 

configuration of the transit bus. Though the level of acetaldehyde was low it could have formed 

due to the impartial oxidation of the unburned methane within the oxidation catalyst. Study 

conducted by Sakai et al. has shown that with the presence of NO in the exhaust inhibits the 

oxidation of methane and increases the formation of formaldehyde [60, 61]. Although the 

experiments conducted by Sakai et al. did not establish the formation of other carbonyl 

compounds, acetaldehyde also known as ethanal is one step higher than formaldehyde in the 

carbonyl compound hierarchy. Hence presence of acetaldehyde in the exhaust with the after-

treatment device present might hint the acetaldehyde formation mechanism similar to the 

formaldehyde formation mechanism illustrated by Sakai et al. 

Figure 5.7 shows the total carbonyl emissions with the total uncertainty in the 

measurement involved. The results show that with the after-treatment device the concentrations 

of carbonyl compounds were very low such that the uncertainty in the measurement was close to 

the analyte concentration values indicating higher error in measurement for very low 

concentrations of compounds detected. 



 93

4.88E-01

1.04E-029.84E-03
1.85E-02

3.82E-033.99E-03 3.90E-03
2.71E-02

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

5126-2 With ATD 5127-1 BG With ATD 5133-2 W/O ATD 5134-1 BG W/O ATD

g/
m

ile

Total Carbonyl Concentration
Total Carbonyl Uncertainity

 
Figure 5.7  Total Carbonyl Concentration and Measurement Uncertainty 

 
 
5.2.2 Poly Aromatic Hydrocarbons/ nitro- Poly Aromatic Hydrocarbons (PAH/n-PAH) 

Result 

The samples for the analysis of PAH/n-PAH compounds were collected on PUF/XAD 

cartridge and later extracted and analyzed by DRI using GC/MS techniques. DRI caharcterized 

93 different PAH compounds and 29 different nitro-PAH compounds. PAH are usually believed 

to be as result of combustion of aromatic fuels such as diesel. The aromatic fraction of CNG fuel 

is very negligible as seen from the fuel analysis report attached in APPENDIX A. Hence the 

source of PAH emissions from CNG vehicles could be from the combustion of lubrication oil. 

The PAH analysis obtained from DRI are subdivided into particle phase PAH, semi-volatile 

phase PAH, and gas phase PAH. The semi-volatile and gas phase PAH are obtained from 

extraction of sample from the PUF/XAD cartridge and the particle phase PAH are obtained from 

the extraction of sample from the TIGF filter placed upstream of the cartridge holder. Figure 5.8 

and Figure 5.9 and Figure 5.10 show the results of the different categories of PAH emissions. 
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Figure 5.8 Results of Gas Phase PAH Emissions from RTA Transit Bus. 
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Figure 5.9 Results of Semi-Volatile Phase PAH Emissions from RTA Transit Bus. 
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Figure 5.10 Results of Particle Phase PAH Emissions from RTA Transit Bus. 
 

The results show that the after-treatment device was effective in reducing the total gas 

phase and total semi-volatile PAH emissions by 45.6% and 56.2% respectively. However there 

was a 17% increase in particle phase PAH, and this could attributed to measurement uncertainty 

as the detected concentrations were very close to background levels. Figure 5.11 and Figure 5.12 

show the contribution of individual PAH compounds to the total PAH emissions. The results 

show naphthalene as the major contributor in the gas phase PAH portion of emissions , but it also 

to be noted that the naphthalene concentrations are close background value that were seen. And 

the detected concentrations were very low hence the effect of uncertainty on the data is higher. 

The reasons for high background concentrations could be the operation of heavy earth moving 

machinery adjacent to the test site during the test period. And as WVU transportable lab does not 

have means of removing volatile contaminants from the dilution air. As seen in many previous 

studies isomers of methyl-biphenyl seem to contribute significantly to the PAH emissions. The 

after-treatment device was effective in reducing isomers of methyl-biphenyl by 66.4%. 
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Figure 5.11 Gas Pahse PAH Compounds in the Exhaust from RTA Transit Bus With After-

treatment Device. 
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Figure 5.12 Gas Pahse PAH Compounds in the Exhaust from RTA Transit Bus Without 

After-treatment Device. 
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Figure 5.13 and Figure 5.14 show the percentage contribution of the semi volatile phase 

PAH compounds to the total PAH emissions under different vehicle configuration. The after-

treatment device was effective in removing only 9-flourenone and Perinaphthenone. The total 

semi volatile phase PAH was reduced by 56%.  

The concentrations of particle phase PAH were very low and close to background levels. 

This increases the uncertainty error associated with them and the data is quite insignificant to 

correlate with engine operation and catalyst performance. 
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Figure 5.13 Semi Volatile PAH Compounds in the Exhaust from RTA Transit Bus Without 

After-treatment Device. 
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Figure 5.14 Semi Volatile PAH Compounds in the Exhaust from RTA Transit Bus With 

After-treatment Device. 
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Figure 5.15 Total PAH Emissions and Uncertainty Values from RTA Transit Bus. 

The above shown uncertainty levels for the total PAH emissions were greatest for particle 

phase PAH as they were most often below detectable limits. The uncertainty for gas phase and 
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semi volatile PAH compounds were on the whole less with exception of certain species which 

were reduced to below detectable limits the catalyst. 

Figure 5.16 shows the nitro-PAH results obtained from the RTA transit bus. N-PAH 

compounds are believed to be formed from the reaction of PAH compounds with atmospheric 

nitrogen. The concentration of n-PAH compounds were very low and the most dominant species 

was found to be nitronaphthalene. The after-treatment device was effective in reducing n-PAH 

emissions by 60%. 

0.000E+00

2.000E-07

4.000E-07

6.000E-07

8.000E-07

1.000E-06

1.200E-06

1.400E-06

5126 with ATD 5127 Bkgd (With
ATD)

5133 W/O ATD 5134 Bkgd (W/O
ATD)

g/
m

ile

6-nitrobenz[a]pyrene
6-nitrochrysene
2,7-dinitrofluoren-9-one
2,7-dinitrofluorene
4-nitropyrene
3-nitrofluoranthene
2-nitropyrene
2-nitrofluoranthene
1-nitropyrene
9-nitrophenanthrene
9-nitroanthracene
4-nitrophenanthrene
3-nitrophenanthrene
2-nitrophenanthrene
2-nitroanthracene
1,8-dinitronaphthalene
1,5-dinitronaphthalene
1,3-dinitronaphthalene
2-nitrofluorene
5-nitroacenaphthene
4-nitrobiphenyl
3-nitrobiphenyl
2-nitrobiphenyl
1-methyl-6-nitronaphthalene
2-methyl-4-nitronaphthalene
1-methyl-4-nitronaphthalene
1-methyl-5-nitronaphthalene
2-nitronaphthalene
1-nitronaphthalene

 
Figure 5.16 Results of n-PAH Emissions From RTA Transit Bus. 

 
5.2.3 Volatile Organic Carbon (VOC) Emissions Results 

The VOC speciation was carried out by analyzing the sample collected into the canisters. 

The pressurized canister samples were analyzed by GC/MS technique to identify the various 

VOC species. The VOC species can be further classified as alkanes, alkynes, olefins, and 

aromatics and can be further sub divided based on number of carbon atoms. The results of the 

VOC speciation are classified according to the carbon-carbon bonds and the number of carbon 

atoms. By this method it is easier to point out the segment of the VOC in which the catalyst was 

most effective. 
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5.2.3.1 Alkanes Fraction of VOC Emissions 

The results of the VOC speciation indicated that the after-treatment device was effective 

in reducing the total VOC emissions by 92.6%. Figure 5.17 shows the results of the C2-C5 

alkanes emissions. 

C2-C5 Alkanes

0.000E+00

1.000E-01

2.000E-01

3.000E-01

4.000E-01

5.000E-01

6.000E-01

7.000E-01

8.000E-01

5126 with ATD 5127 Bkgd (With ATD) 5133 W/O ATD 5134 Bkgd (W/O ATD)

g/
m

ile

n-pentane
iso-pentane
cyclopentane
n-butane
iso-butane
propane
ethane

0.000E+00
1.000E-03
2.000E-03
3.000E-03
4.000E-03
5.000E-03
6.000E-03
7.000E-03
8.000E-03
9.000E-03
1.000E-02

5127 Bkgd
(With ATD)

5134 Bkgd
(W/O ATD)

g/
m

ile

 
Figure 5.17 C2-C5 Alkanes Emissions Results from RTA Transit Bus 

 
The results show that the major contributor to the VOC emissions in the C2-C5 alkanes 

segment was ethane without the after-treatment device. The source of ethane is directly related to 

the 2% ethane present in the natural gas test fuel. The concentration of ethane was reduced by 

86% with the use of after-treatment device. In comparison to background levels of ethane the 

concentrations even after the oxidation catalyst is two orders of magnitude higher. This is again 

attributed to the fact that hydrocarbons with lesser carbon atoms have higher light off 

temperatures. The reduction in concentration higher carbon number alkanes was more 

predominant. 

Figure 5.18 shows the results of C6 and greater carbon number alkane fraction of the 

VOC emissions. The after-treatment device was effective in reducing the total VOC emissions in 

this segment by 85.6%. 
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Figure 5.18 C6+ Alkanes Emissions Results from RTA Transit Bus 

 

The results show that the after-treatment device reduced the concentration of C6 and 

greater alkane compounds to background concentration levels. The results indicate that the after-

treatment device is very efficient in reducing higher chain volatile hydrocarbon compounds. 

Species such as 2-methylpentane, n-heptane, and n-hexane were reduced to below detection 

limits with the use of the after-treatment device. 

 

5.2.3.2 Olefins Fraction of VOC Emissions 

Olefins are hydrocarbon compounds which consist of carbon-carbon double bonds. 

Ethene is usually formed due to the cracking of higher hydrocarbon compounds. However the 

formation of ethene from natural gas fueled vehicles with very less higher chain hydrocarbons 

present in the fuel is unclear. The formation of ethane could be attributed to the partial oxidation 

of ethane or higher hydrocarbons present in trace quantities in the fuel. 
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Figure 5.19 C2-C5 Olefins Emissions Results from RTA Transit Bus 

 
The results showed that the concentration of ethene in the exhaust was reduced by 98% 

with the use of after-treatment device. One interesting trend is to be noted in comparing ethene 

reduction and acetaldehyde formation in the exhaust with the after-treatment device present. As 

stated earlier in the carbonyl emission result there was the appearance of acetaldehyde with the 

presence of after-treatment device which was not present in the baseline configurations. This 

trend could be attributed to the oxidation of ethene. The production of acetaldehyde from ethene 

in the presence of catalyst containing platinum group metals is a well documented process [62]. 

This process has also been used for the industrial production of acetaldehyde. The results 

obtained from the current study also show sharp contrast to this acetaldehyde formation 

mechanism. The presence of platinum group metals in the oxidation catalyst might have aided 

the oxidation of ethene to acetaldehyde, which resulted in decrease of ethene concentration and 

subsequent increase in acetaldehyde concentration. 

Figure 5.20 shows the C6 and higher carbon number Olefin compounds. There was a 

84% reduction in this fraction of Olefins emission with the presence of after-treatment device. 

Emission concentrations with after-treatment device were reduced to background levels. 
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Figure 5.20 C6+ Olefins Emissions Results from RTA Transit Bus 

 
5.2.3.3 Alkynes Fraction of  VOC Emissions 

Alkynes are hydrocarbon compounds that have carbon-carbon triple bond. Figure 5.21 

shows the alkynes fraction of the VOC emissions from the RTA transit bus. The results of 

alkynes emissions showed the presence of only propyne and acetlyne. The results show a 96% 

reduction in alkyne fraction with acetylene being reduced by 96%. Propyne was reduced to 

below detection limits with the after-treatment device. A study conducted by Shigeru et al. has 

shown that methane undergoes pyrolitic reaction using a pulse of direct current discharge to form 

C2 hydrocarbons readily. Acetylene has the greatest potential for formation with this mechanism 

[63]. This could be the case for the formation of many C2 hydrocarbons including acetylene in 

natural gas engines where spark ignition is used as the combustion initiator. Hence in the region 

around the spark plug electrode in which the electric pulse from the spark plug could induce 

pyrolitic reaction of methane which in turn produces C2 hydrocarbons in addition to acetylene. 
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Figure 5.21 Alkynes Emissions Results from RTA Transit Bus 

 
5.2.3.4 Aromatic Fraction of VOC Emissions 

Aromatics are hydrocarbons which consist of benzene rings attached to them. Aromatic 

fractions are basically dominant in emissions from diesel engines as diesel contains higher 

fraction of aromatic compounds. Source of aromatic hydrocarbons in natural gas vehicle 

emissions is unclear and could be attributed to pyrolitic reaction of natural gas fuel. The total 

aromatic fraction of VOC was reduced by 53.4% with the use of after-treatment device. Figure 

5.22 shows the results of the aromatic fraction of the VOC emissions. One of the main 

contributors of emissions in this category was benzene which is extremely toxic and considered 

to be carcinogenic in nature. Benzene concentration was reduced by 86% with the after-treatment 

device and the levels that were found with the after-treatment device was equivalent to those 

found in background samples. Similarly toluene which is closely associated with benzene in its 

aromatic properties was also reduced by 48% and reduced to levels found in background sample. 
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Figure 5.22 Aromatic Emissions Results from RTA Transit Bus 

 
 
5.2.4 Metals Emission Results 

The samples for the metals analysis of the vehicle emission was collected on 47mm 

Teflon filters. The particulates were classified using a PM 2.5 cyclone before collecting them on 

the filters. DRI used XRF spectrometry method for the analysis of the various metallic elements 

present in the exhaust. The source of metal emissions could be due to engine wear, lubrication oil 

additives, and even shedding of material by the oxidation catalyst. Figure 5.23 shows the 

metallic elements emissions from the RTA transit bus. 

The results of the emissions showed very high concentration of metals in the background 

sample and were consistent with both vehicle configurations. The results showed higher 

emissions of metals with after-treatment device than the baseline configuration. Concentration of 

iron had increased by 50% and elements such as tantalum, indium, tin and cadmium were seen 

with the after-treatment device present. The source of these metals could be from the catalytic 

converter itself. More concrete conclusion could be derived only by reviewing the catalyst 
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chemistry and design. Most of the other metals concentraions were consistent in their 

concentrations before and after the catalyst. 
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Figure 5.23 Metals Emissions from RTA Transit Bus. 

 
5.2.5 EC/OC Emissions Results 

The samples for the analysis of EC/OC fractions were collected on pre-fired quartz 

filters. The particles were sized classified using a PM2.5 cyclone before collecting them on the 

filter. The samples were later subjected to Thermal Optical Reflectance analysis by DRI to 

quantify EC/OC emissions 

Carbon fractions found in the exhaust of CNG vehicles are usually organic in nature with 

very minimal or no elemental carbon fractions. This is due to the gaseous nature of fuel which 

upon combustion does not produce elemental carbon, which is a characteristic of liquid fuels. 

Figure 5.24 shows the EC/OC emission fractions from the exhaust of the RTA transit bus. 



 107

0.00000

0.00500

0.01000

0.01500

0.02000

0.02500

5126-2 With ATD 5127-1 BG With ATD 5133-2 W/O ATD 5134-1 BG W/O ATD

g/
m

ile

Organic Carcon

Elemental Carbon

 
Figure 5.24 EC/OC Emissions from RTA Transit Bus 

 
The results show the after-treatment device had no effect on the concentrations of organic 

carbon fraction in the exhaust. This could be due to the fact that the catalytic converter was a 

flow through type device which had minimal effect on the particle matter stream. 

 

5.3 Particle Sizing Results 

A particle sizing study was carried out to assess the effect of the catalyst on the particle 

size distribution during the warm up period of the catalyst from early a cold start. In addition to 

this study concentrations of particles of certain diameter were tracked during the course of the 

entire double length OCTA cycle. Raw exhaust was sampled and diluted using the ejector 

dilution setup and particle size distribution was measured using the SMPS. 

 For the cold start particle size distribution study the vehicle was operated at 

steady state conditions starting with 20mph, followed by idle, followed by 30mph, followed by 

40mph vehicle speeds. The tests were setup as quickly as possible without letting the vehicle 

cool down so as to establish a proper trend in the particle size distribution during the warm up 

period of the catalytic converter. This test procedure was followed for two vehicle configurations 
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with and without the after-treatment device. A dilution ratio of 20 was chosen so as to produce 

maximum nucleation as prescribed by Kittelson et al in their study with respect to dilution ratio 

and saturation vapor pressure of volatile hydrocarbons to produce nucleation mode particles [48]. 

Higher dilution ratios were avoided due to the fact that it would end up in lesser particle 

concentrations and higher aerosol flow velocity from the ejector dilutor which in turn would 

increase the error in concentration measurement. 

The results of the particle size distribution from the baseline configuration of the vehicle 

showed a distinctive nucleation mode peak which is characteristic of natural gas vehicle particle 

distribution. The distribution peaked consistently at CMD of 22.5nm. The nucleation mode seen 

here is a result of the sudden cooling of hydrocarbon compounds upon dilution to undergo 

homogenous nucleation to form nano particles.  The results were consistent in showing a 

decreasing overall particle concentration with increasing vehicle speeds, which is in direct 

correlation with the fact that hydrocarbon emissions would decrease with increasing vehicle 

speed in Otto cycle engines. 
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Figure 5.25 Particle Size Distribution From RTA Transit Bus Without the After-treatment 

Device During Cold Start Operations 
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Figure 5.26 shows the particle size distribution from the RTA transit bus with the after-

treatment device present. 
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Figure 5.26 Particle Size Distribution from RTA Transit Bus With the After-treatment 

Device During Cold Start Operations. 

 
The results showed that with the first vehicle operation at the steady state speed of 20mph 

the particle size distribution was equivalent to that of baseline configuration distribution. As the 

test progressed the catalytic converter temperature increased and subsequent decrease in particle 

size distribution is seen.  The temperature seen in the chart is the exterior temperature of the 

converter shroud and not the temperature of the catalyst surface. This temperature was recorded 

to get a broad prospect on the correlation between temperature increase of the catalytic converter 

and the subsequent decrease in particle concentration. The results show a complete removal of 

the nucleation mode seen earlier in the baseline configuration; this is due to the operation of the 

catalytic converter in oxidizing the unburned hydrocarbons and preventing nucleation.  

The particle size distribution for the 40mph steady state operation shows a distinctive 

nucleation mode spike at 15.1nm. This spike could not be attributed as measurement error as it 

was consistent during all the 6 consecutive samples. Upon review of literature this phenomenon 

could be attributed to the storage effect of catalytic converter. Every catalytic converter 
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undergoes a phase during the warm up period where it absorbs the volatile compounds onto its 

cold catalyst surface. This effect is known as the storage effect of catalyst [41]. And when the 

catalyst warms up it starts to shed these absorbed hydrocarbons without oxidizing them [41]. 

And this sudden release of volatile hydrocarbons undergoes homogenous nucleation to produce 

nano particles and appear as a sharp nucleation mode spike in the particle size distribution. 
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Figure 5.27 Particle Size Distribution Comparison With and Without the After-treatment 

Device with Continuously Warming Catalytic Converter. 
 

Figure 5.27 shows a good match in the particle size distribution curve with and without 

the after-treatment device at 20mph and coldest catalyst temperature. The particle size 

distribution seen in the figure above shows that the catalyst was very effective in oxidizing 

volatile hydrocarbons immediately after catalyst warm up so as to completely eliminate the 

nucleation mode. 

The study also involved the tracking of concentration of particle of three different 

diameters over the entire length of the double OCTA cycle. The diameters chosen were 20nm, 

35nm and 55nm. Figure 5.28, Figure 5.29 and Figure 5.30 shows the concentration of particles of 

three different diameters in two vehicle configurations. 
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Figure 5.28 20nm Particle Concentration With and Without the After-treatment Device 
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Figure 5.29 35nm Particle Concentration With and Without the After-treatment Device 
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Figure 5.30 55nm Particle Concentration With and Without the After-treatment Device 
 

Results of the particle concentration at three different diameter show that with the after-

treatment device present particle concentrations had decreased by two orders of magnitude in all 

three particle diameters. The results also show more of a constant particle concentration with the 

after-treatment device present for the 20nm and 35nm particles. This is due to the oxidation of 

hydrocarbon compounds by the after-treatment device, which in turns lowers nucleation and 

produces a low particle concentration which does not vary much with the vehicle speed. The 

55nm data taking process was started 800sec late hence it does not show particle concentration 

for the first period of the cycle. 
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CHAPTER 6 - CONCLUSIONS 

The chassis dynamometer testing on the two CNG fueled heavy duty transit authority 

busses powered Detroit Diesel Series 50 engines were successfully carried out as per the work 

plan. All tests were carried out in accordance with regulations given in CFR40 part 86. The 

studies aim of evaluating the effectiveness of an all palladium catalyst formulation retro-fitted on 

natural gas transit bus was successfully carried out. 

The results of the regulated emissions test conducted on the RTA and LACMTA busses 

showed that with the after-treatment device with present CO emissions were reduced to non-

detectable levels from both busses and HC emissions were reduced by 62% from the RTA bus 

and by about 29% from the LACMTA bus. The methane speciation of the exhaust from the RTA 

bus also showed that the catalyst was effective in reducing methane emissions by 57% and the 

NMHC fraction was reduced by 72%. 

The results of the unregulated emissions speciation carried out on the RTA bus showed 

and overall decrease in concentration of all compounds with the after-treatment device present. 

With the presence of after-treatment device the total emissions of carbonyl compounds were 

reduced by 96%, Poly Aromatic Hydrocarbons were reduced by 46% and Volatile Organic 

compounds were reduced by 92%. The metals emission results showed an increase in 

concentration of certain metals. The after-treatment device had no effect on the organic carbon 

fraction of the exhaust. 

 

6.1 Recommendations 

This study has clearly shown that natural gas fueled vehicle is a cleaner alternative to 

heavy duty vehicles only in the presence of suitable after-treatment device. The unregulated 

emission results illustrate the fact that natural gas vehicles exhaust contains many toxic air 

pollutants which necessitates the need for after-treatment devices. The recommendations that can 

be suggested from this study are, 

• Vehicle engine strategy plays a very important role in the tail pipe emissions; hence 

the effectiveness of the catalyst over engines from different engine manufacturers 

must be studied. 
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• Stripping the dilution air from VOC with the use of activated charcoal is necessary to 

reduce background interference in measuring toxic air contaminants of very low 

concentrations. 

• Difference in concentration of toxic air pollutants in ambient air and within the tunnel 

should be studied in order to better understand the background contribution of 

unregulated emissions to the test value. 
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APPENDIX A - UNREGULATED SPECIES ANALYSIS PROCEDURE 
(Source: Desert Research Institute, 2007) 

 
A.1 Gaseous Carbonyl Compound Analysis Procedure 

C1 through C7 carbonyl compounds were collected with Sep-Pak cartridges, which have 

been impregnated with an acidified 2,4-dinitrophenylhydrazine (DNPH) reagent (Waters, Inc).  

When ambient air was drawn through the cartridge, carbonyls in the air sample are captured by 

reacting with DNPH to form hydrazones, which are separated and quantified using HPLC in the 

laboratory.  Depending on the type of sorbent (C18, or silica gel, (Si) in the cartridge, the 

ambient measurement results are subject to various artifacts due to interaction with ozone.  

However, since ozone is not present in the vehicle exhaust, this is not a concern, and commercial 

Si cartridges from Waters are adequate for this project. 

After sampling, the cartridges were eluted with acetonitrile.  An aliquot of the eluent was 

transferred into a 2-ml septum vial and injected with an autosampler into a high performance 

liquid chromatograph (Waters 2690 Alliance System with 996 Photodiode Array Detector) for 

separation and quantization of the hydrazones. The carbonyl concentrations, in ppb, were 

computed from the amounts measured after blank correction and the volume of air sampled using 

the following equation: 

 ppbi = m b
f t MW
i i

i

−
×

× ×1000 24 45.         (1)  

where ppbi= concentration in ppb of carbonyl species, i,  

 mi  = ug of i measured in the sample, 

 bi  = average ug of i in the blank, 

 t   = sampling duration, in minutes, 

 f   = sampling flow rate, in liters/min, 

 MWi = molecular weight of i. 
 

 Since our HPLC system was equipped with the photodiode array detector, the 

identification of carbonyl compounds was much more accurate than with standard UV/VIS 

detector.  Also, the sensitivity of the analysis was enhanced by using the photodiode array 

detector. 
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A.2 Polyaromatic Hydrocarbon/nitro-Polyaromatic Hydrocarbon Analysis Procedure 

For each sample, PUF/XAD/PUF cartridges and TIGF filters were extracted and analyzed 

together.  Prior to extraction, the following deuterated internal standards were added to each 

filter and PUF/XAD sorbent (Table 3-1). 

Table A.1 List of Deuterated Internal Standards 

PAH Alkanes N-PAH 
naphthalene-d8 dodecane-d26 2-nitrodiphenyl-d9 

biphenyl-d10 hexadecane-d34 1-nitropyrne-d9 
acenaphthene-d10 eicosane-d42  
phenanthrene-d10 octacosane-d58  

anthracene-d10 tetracosane-d50  
pyrene-d12 hexatriacontane-d74  

benz(a)anthracene-d12   
chrysene-d12   

benzo[k]fluoranthene-d12   
benzo[e]pyrene-d12   
benzo[a]pyrene-d12   

benzo[g,h,i]perylene-d12   
coronene-d12   

 
Filters and XAD-4 were extracted with dichloromethane using the Dionex ASE followed 

by acetone extraction under the same conditions. Since PUF media degrades when extracted with 

dichloromethane, the PUF were extracted twice with acetone using the Dionex ASE.  This 

method gives good recovery for PAH. 

 All extracts were then concentrated by rotary evaporation at 35°C under gentle vacuum 

to ~1 mL and filtered through 0.2 μm PTFE disposal filter device (Whatman Pura discTM 25TF), 

rinsing the flask 3 times with 1 ml dichloromethane (DCM) and acetone (50/50 by volume) each 

time.   The extract was concentrated to 1 ml and split into two fractions, as follows: 

The first fraction was precleaned by the solid-phase extraction technique, using 

Superclean LC-SI SPE cartridges (Supelco) with sequential elution with hexane, and 

hexane/benzene (1:1). The second fraction was utilized for the polar compound analysis without 

precleaning. It was derivatized using a mixture of bis(trimethylsilyl)trifluoroacetamide and 

pyridine to convert the polar compounds into their trimethylsilyl derivatives for analysis of 

organic acids and diacids, cholesterol, sitosterol, and levoglucosan.  
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The samples collected for nitro-PAH analyses were extracted with dichloromethane as 

described above.  The extracts were precleaned by the solid-phase extraction technique, using 

Aminopropyl (NH2) SPE cartridges, with sequential elution with hexane/DCM, 98/2 v/v and 

hexane/DCM 80/20 v/v. For nitro- and dinitro-PAH analysis, these fractions were combined and 

further cleaned by semi-preparative normal-phase high performance liquid chromatography 

(HPLC) technique. The Chromegabond Amino Cyano 25 cm x 9.6 mm column (ES Industries, 

West Berlin, NJ) and isocratic elution with 20% DCM in hexane was used.  The fraction 

corresponding to nitro- and dinitro-PAH was collected and analyzed by negative ion chemical 

ionization GC/MS. 

The filters and PUF/XAD extracts were analyzed by gas chromatography/mass 

spectrometry (GC/MS), using Varian CP-3800 GC equipped with a CP8400 autosampler and 

interfaced to a Varian Saturn 2000 Ion Trap operating in electron impact (EI) ionization mode. 

Injections (1 µL) were made in the splitless mode onto a 30m long 5% phenylmethylsilicone 

fused-silica capillary column (DB-5ms, J&W Scientific or equivalent).  Quantification of the 

individual compounds was obtained by selective ion storage (SIS) technique, monitoring the 

molecular (or the most characteristic) ion of each compound of interest and the corresponding 

deuterated internal standard.  Calibration curves for the GC/MS quantification were made for the 

most abundant and characteristic ion peaks of the compounds of interest (Table 3-1) using the 

deuterated species most closely matched in volatility and retention characteristics as internal 

standards.  National Institute of Standards and Technology (NIST) Standard Reference Material 

(SRM) 1647 (certified PAH) with the addition of deuterated internal standards and of those 

compounds not present in the SRM (i.e., oxy-PAH, nitro-PAH, hopane, sterenes, carpanes, 

hydrocarbons, cycloalkanes) were used to make calibration solutions.  A six- to eight-level 

calibration was performed for each compound of interest and the calibration check (using median 

calibration standards) was run every 10 samples to check for accuracy of analyses.  If the relative 

accuracy of measurement (defined as a percent difference from the standard value) was less than 

20%, the instrument was recalibrated. 

The nitro-and dinitro-PAH were analyzed using the Varian 1200 triple quadrupole gas 

chromatograph/mass spectrometer (GC/MS/MS) system with CP-8400 autosampler.  The tandem 

MS/MS system allowed for structural elucidation of unknown compounds with precursor, 

product and neutral loss scan.  The GC interface allowed for sensitive analyses of complex 
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mixtures in electron impact (EI) as well as positive and negative chemical ionization (CI) mode.  

Negative CI offered a superior sensitivity for the analysis of nitro-PAH (approximately 100 

times higher than EI or positive CI) that could be emitted from combustion sources, including 

motor vehicle engines.  For negative CI, 10 fg/ul of octafluoronaphthalene gave S/N of 20:1.  

This superior sensitivity offered the advantage of analyzing small samples collected during a 

short sampling time.  Injections (1 µL) were made in the splitless mode onto a 30m long x 0.25 

mm id 50% phenylmethylsilicone fused-silica capillary column (DB-17ms, CP-Sil-24ms or 

equivalent).  Quantification of the individual compounds was obtained by multiple ion detection 

(MID) technique, monitoring the molecular ion of each compound of interest and the 

corresponding deuterated internal standard. Calibration curves for the GC/MS quantification 

were made for the most abundant and characteristic ion peaks of the compounds of interest using 

the deuterated species most closely matched in volatility and retention characteristics as internal 

standards and the authentic standards of quantified nitro-PAH. A six- to eight-level calibration 

was performed for each compound of interest and the calibration check (using median calibration 

standards) was run every 10 samples to check for accuracy of analyses.  If the relative accuracy 

of measurement (defined as a percent difference from the standard value) was less than 20%, the 

instrument was recalibrated. 

Diesel fuel and lubrication oil samples were obtained from the vehicles immediately after 

emissions sampling and were analyzed for PAH and hopanes/steranes.  The oils were cleaned 

and fractionated prior to analysis. Clean up was conducted on a 12ml Supelco solid phase 

extraction (SPE) cartridge packed with 2g of SiOH.  Cartridges were placed on a vacuum 

manifold and conditioned prior to cleanup with 14ml of hexane.  Prior to cleanup, fuels and oils 

were diluted in hexane (300 and 150 μl/1ml).  Three hundred microliters of the diluted fuel or oil 

was spiked onto a SPE cartridge along with ten microliters of tetrocosane-d50 (internal standard) 

and the PAH internal standard mixture described above.  Samples were eluted and fractionated 

with 8ml of hexane followed by 10ml of benzene/hexane (1:1).   

 

A.3 VOC Analysis Procedure 

For the analysis of all VOC, a 2D-chromatography method was employed.  Gaseous 

sample is preconcentrated on the three stages of Entech preconcentrator (glass beads with Tenax, 

Tenax and capillary tube) and injected into the head of a DB-1 type column (60 m long 0.32 mm 
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i.d., 1 µm film thickness) at room temperature.  This column was connected through a three-way 

valve with two other columns:  a 15 m DB-1 type column (0.32 mm i.d., 0.5 µm film thickness), 

leading to the MS and a 30 m x 0.32 mm i.d. GasPro column (a PLOT type column, J&W 

Scientific) leading to the FID.   During the first few minutes after injection, the sample was 

eluted through the 60 m DB-1 and 30 m GasPro column and peaks were detected by the FID.   

After suitable time (approximately 6 – 10 min), the valve was switched and the sample was 

directed through the 15 m DB-1 column to the MS detector.  This way, the very light 

hydrocarbons (C2 up to C4) are clearly separated on the Gas-Pro column and detected by the 

FID, and the heavier hydrocarbons (up to C12), are unequivocally identified and quantified by 

the ion trap MS.  

The GC/FID and GC/MS response was calibrated in ppbv, using a 74 component mixture 

(Air Environmental, Inc., Denver, CO) in the ppbv range of concentrations, traceable to the 

NIST Standard Reference Materials (SRM).  A three-level calibration was performed for each 

compound of interest and the calibration check (using median calibration standards) was 

analyzed every 10 samples to check for accuracy of analyses.  If the relative accuracy of 

measurement (defined as a percent difference from the standard value) was less than 20%, the 

instrument was recalibrated. Blanks were performed once daily.  Our analysis plan and data 

processing standards call for the replicate analysis of approximately 10% of the samples. The 

replicate analyses are flagged in our database and the programs we have for data processing 

extract these replicates and determine a replicate precision.  These are then converted into an 

absolute precision for each measurement, which can be reported if required. 

 

A.4 EC/OC Analysis Procedure 

The thermal/optical reflectance (TOR) method measured organic (OC) and elemental 

(EC) carbon.  The TOR method is based on the principle that different types of carbon-

containing particles are converted to gases under different temperature and oxidation conditions.  

The different carbon fractions from TOR are useful for comparison with other methods, which 

are specific to a single definition for organic and elemental carbon. These specific carbon 

fractions also help distinguish among seven carbon fractions reported by TOR:  

1) The carbon evolved in a helium atmosphere at temperatures between ambient and 

120 °C (OC1) 
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2) The carbon evolved in a helium atmosphere at temperatures between 120 and 250°C 

(OC2) 

3) The carbon evolved in a helium atmosphere at temperatures between 250 and 450 oC 

(OC3) 

4) The carbon evolved in a helium atmosphere between 450 and 550°C (OC4) 

5) The carbon evolved in an oxidizing atmosphere at 550°C (EC1) 

6) The carbon evolved in an oxidizing atmosphere between 550 and 700°C (EC2) 

7) The carbon evolved in an oxidizing atmosphere between 700 and 800°C (EC3) 

The thermal/optical reflectance carbon analyzer consisted of a thermal system and an 

optical system.  The thermal system consisted of a quartz tube placed inside a coiled heater.  

Current through the heater was controlled to attain and maintain pre-set temperatures for given 

time periods.  A portion of a quartz filter was placed in the heating zone and heated to different 

temperatures under non-oxidizing and oxidizing atmospheres.  The optical system consisted of a 

He-Ne laser, a fiber optic transmitter and receiver and a photocell.  The filter deposit faces a 

quartz light tube so that the intensity of the reflected laser beam can be monitored throughout the 

analysis. 

As the temperature increased from ambient (~25°C) to 550°C, organic compounds were 

volatilized from the filter in a non-oxidizing (He) atmosphere while elemental carbon was not 

oxidized.  When oxygen was added to the helium at temperatures greater than 550°C, the 

elemental carbon burned and entered the sample stream.  The evolved gases passed through an 

oxidizing bed of heated manganese dioxide where they were oxidized to carbon dioxide, and 

then across a heated nickel catalyst, which reduced the carbon dioxide to methane (CH4).  The 

methane was then quantified with a flame ionization detector (FID). 

The reflected laser light was continuously monitored throughout the analysis cycle. The 

negative change in reflectance was proportional to the degree of pyrolytic conversion from 

organic to elemental carbon, which takes place during organic carbon analysis.  After oxygen 

was introduced, the reflectance increased rapidly as the light-absorbing carbon was burned off 

the filter.  The carbon measured after the reflectance attained the value it had at the beginning of 

the analysis cycle was classified as elemental carbon.  This adjustment for pyrolysis in the 

analysis was significant, as high as 25% of organic or elemental carbon, and was not ignored. 
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The system was calibrated by analyzing samples of known amounts of methane, carbon 

dioxide, and potassium hydrogen phthalate (KHP).  The FID response was ratioed to a reference 

level of methane injected at the end of each sample analysis.  Performance tests of the instrument 

calibration were conducted at the beginning and end of each day’s operation.  Intervening 

samples were re-analyzed when calibration changes of more than ±10% were found. 

Known amounts of American Chemical Society (ACS) certified reagent grade crystal 

sucrose and KHP were committed to TOR as a verification of the organic carbon fractions.  

Fifteen different standards were used for each calibration.  Widely accepted primary standards 

for elemental and/or organic carbon are still lacking.  Results of the TOR analysis of each filter 

were entered into the DRI database. 

 

A.5 Metals Analysis Procedure 

X-ray fluorescence (XRF) analysis was performed on Teflon-membrane filters using an 

energy dispersive x-ray fluorescence (EDXRF) analyzer. Table 3-2 lists the elements, together 

with their Minimum Detectable Limits (MDL), for three different analytical protocols.  Since the 

required limit of detection was not specified we propose to use the protocol B (which was less 

expensive). However, if necessary the more expensive protocols C or D could be used. 

Table A.2 X-Ray Fluorescence method minimum detectable limits using DRI standard 
analysis protocols 

Element Protocol A 
ng/cm2 

Protocol B 
ng/cm2 

Protocol C 
ng/cm2 

Protocol D 
ng/cm2 

 Al 10 7.2 3.6 2.5 
 Si 6.3 4.4 2.2 1.4 
 P 5.6 4.0 2.0 1.4 
 S 5.0 3.5 1.8 1.2 
 Cl 10 7.4 3.7 2.6 
 K 6.1 4.3 2.2 1.5 
 Ca 4.5 3.2 1.6 1.1 
 Ti 2.9 2.1 1.0 0.73 
 V 2.5 1.7 0.87 0.62 
 Cr 1.9 1.4 0.67 0.48 
 Mn 1.6 1.1 0.56 0.40 
 Fe 1.5 1.1 0.54 0.38 
 Co 0.88 0.62 0.31 0.22 
 Ni 0.89 0.63 0.31 0.22 
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Element Protocol A 
ng/cm2 

Protocol B 
ng/cm2 

Protocol C 
ng/cm2 

Protocol D 
ng/cm2 

 Cu 1.1 0.76 0.38 0.27 
 Zn 1.1 0.76 0.38 0.27 
 Ga 1.9 1.4 0.68 0.48 
 As 1.6 1.1 0.56 0.39 
 Se 1.2 0.86 0.43 0.31 
 Br 1.0 0.72 0.36 0.25 
 Rb 1.0 0.68 0.34 0.24 
 Sr 1.1 0.78 0.39 0.28 
 Y 1.3 0.92 0.46 0.33 
 Zr 1.7 1.2 0.59 0.42 
 Mo 2.7 1.9 0.95 0.67 
 Pd 11 7.6 3.8 2.7 
 Ag 12 8.6 4.3 3.0 
 Cd 12 8.6 4.3 3.0 
 In 13 9.5 4.8 3.4 
 Sn 17 12 6.2 4.4 
 Sb 18 13 6.4 4.5 
 Ba 52 37 18 13 
 La 62 44 22 16 
 Au 3.1 2.2 1.1 0.77 
 Hg 2.6 1.8 0.91 0.65 
 Tl 2.5 1.8 0.88 0.62 
 Pb 3.0 2.2 1.1 0.76 
 U 2.3 1.7 0.83 0.59 

 

XRF analyses were performed on a Kevex Corporation Model 700/8000 energy 

dispersive x-ray fluorescence (EDXRF) analyzer using a side-window, liquid-cooled, 60 keV, 

3.3 milliamp rhodium anode x-ray tube and secondary fluorescers.  The x-ray output stability 

was within 0.25% for any 8-hour period within a 24-hour duration.  The silicon detector has an 

active area of 30 mm2, with a system resolution better than 165 eV.  The analysis was controlled, 

spectra were acquired, and elemental concentrations were calculated by software implemented 

on an LSI 11/23 microcomputer, which was interfaced to the analyzer.  Five separate XRF 

analyses were conducted on each sample to optimize the detection limits for the specified 

elements.  

Three types of XRF standards were used for calibration, performance testing, and 

auditing:  1) vacuum-deposited thin-film elements and compounds (Micromatter, Deer Harbor, 

WA); 2) polymer films; and 3) NIST thin-glass films.  The vacuum deposit standards cover the 
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largest number of elements and were used as calibration standards. The polymer film and NIST 

standards were used as quality control standards.  NIST standards were the definitive standard 

reference material, but these are only available for the species Al, Ca, Co, Cu, Mn, and Si (SRM 

1832) and Fe, Pb, K, Si, Ti, and Zn (SRM 1833).  A separate Micromatter (Deer Harbor, WA) 

thin-film standard was used to calibrate the system for each element. 

During XRF analysis, filters were removed from their Petri slides and placed with their 

deposit sides down into polycarbonate filter cassettes.  A polycarbonate retainer ring kept the 

filter flat against the bottom of the cassette.  These cassettes were loaded into a carousel in the x-

ray chamber which contains 16 openings.  The filter identifications were recorded on a data sheet 

to correspond to the numbered positions in the carousel.  The sample chamber was evacuated to 

10-3 torr and a computer program controlled the positioning of the samples and the excitation 

conditions.  Complete analysis of 16 samples under five excitation conditions required 

approximately 6 hours.  The vacuum in the x-ray chamber and the heat induced by the absorption 

of x-rays can cause certain materials to volatilize.  For this reason, labile species such as nitrate 

and organic carbon were measured on a quartz-fiber filter rather than on the Teflon-membrane 

filter, which was subjected to XRF analysis. 

A quality control standard and a replicate from a previous batch were analyzed with each 

set of 14 samples.  When a quality control value differed from specifications by more than ±5% 

or when a replicate concentration differed from the original value (when values exceeded 10 

times the detection limits) by more than ±10%, the samples were re-analyzed.  If further tests of 

standards showed that the system calibration had changed by more than ±2%, the instrument was 

re-calibrated as described above.  All XRF results were directly entered into the DRI databases. 

 

A.6 Uncertainty Calculation 

All analytical results were evaluated in terms of their associated measurement errors 

according to the following equation: 

( )22 )()PrRe*(int tectionLimiAnalyteDetecisionplicatecentrationAnalyteConyUncerata +=
 

Replicate precision for each analyte is determined by multiple injections (replicates) of at 

least ten per cent of all of the analyzed samples.  Precision is then determined by: 
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By this equation the analytical minimum detection limit (MDL) will determine the 

analyte uncertainty when sample concentrations approach zero. Similarly, the MDL will have 

little impact on the uncertainty of a higher concentration sample, where the concentration is 

many times the detection limit. In addition to this, the uncertainty in the volume flow is 

incorporated into the final uncertainty by a similar root-mean-square method. In this way the 

uncertainty most accurately represents the true uncertainty of the sample. Also, all samples are 

corrected for lot-specific sampling media blank values prior to the final concentration 

calculations.  Software programs have been developed by DRI to automate the data processing 

and reporting functions. 
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APPENDIX B - TEST VEHICLE AND ENGINE SPECIFICATIONS 
 

Two Transit buses were used for this study. The buses were part of the Riverside Transit 

Authority (RTA) and Los Angeles County Metro Transit Authority (LACMTA). The vehicle and 

engine specification of the two buses are given below 

Table B.1 Test Vehicle Specifications 
 LACMTA RTA 
Vehicle Type Transit Bus Transit Bus 
Vehicle ID Number (VIN) 1N9TA1BA7XL013312 1N90401562A140498
Vehicle Manufacturer Neoplan NABI, Inc. 
Vehicle Model Year 1999 2002 
Gross Vehicle Weight (GVW) (lb.) 40600 40600 
Vehicle Total Curb Weight (lb.) 32660 33040 
Vehicle Tested Weight (lb.) 37840 37840 
Odometer Reading (mile) 161113 229981 
Transmission Type Auto Auto 
Transmission Configuration 4 speed 4 speed 
Number of Axles 2 2 

 

Table B.2 Test Vehicle’s Engine Specifications 
 LACMTA RTA 
Engine Type Detroit Diesel S-50 Detroit Diesel S-50 
Engine ID Number 04R027372 04R0040516 
Engine Model Year 1999 2005 
Engine Displacement (Liter) 8.5 8.5 
Number of Cylinders 4 4 
Engine Rated Power (hp) 275 275 
Primary Fuel CNG CNG 
Catalytic Converter Manufacturer ECS oxidation catalyst ECS oxidation catalyst
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APPENDIX C - UNREGULATED SPECIATION DATA OF RTA CNG TRANSIT BUS 
 

Table C.1 Distance specific emissions data of carbonyl compounds 

g/mile 5126 With ATD 5127 Bkgd With ATD 5133  W/O ATD 5134  Bkgd W/O ATD 
Formaldehyde 1.1594E-02 2.6272E-03 4.8714E-01 5.2299E-03 
acetaldehyde 3.8875E-03 2.9725E-03 0.0000E+00 1.6314E-03 

acetone 1.1561E-03 2.4657E-03 0.0000E+00 2.7710E-03 
Acrolein 4.0089E-04 4.2196E-04 0.0000E+00 1.4150E-04 

Propionaldehyde 4.8735E-04 4.1679E-04 0.0000E+00 1.7740E-04 
Crotonaldehyde 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

methyl ethyl ketone 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Methacrolein 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

n-butyraldehyde 6.4121E-04 3.9375E-04 1.6116E-04 4.5270E-04 
benzaldehyde 0.0000E+00 2.9355E-04 0.0000E+00 0.0000E+00 

Glyoxal 5.1803E-05 5.4513E-05 7.8074E-05 2.7410E-05 
Valeraldehyde 3.0270E-04 1.9119E-04 1.2173E-04 0.0000E+00 

m-Tolualdehyde 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Hexaldehyde 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

 

Table C.2 Distance specific measurement uncertainty data of carbonyl compounds 

g/mile 
5126-2 With ATD 

uncertainty 
5127-1 BG With ATD 

uncertainty 
5133-2 W/O ATD 

uncertainty 
5134-1 BG W/O ATD 

uncertainty 
Formaldehyde 5.9247E-04 1.8336E-04 2.4412E-02 2.8956E-04 
acetaldehyde 4.5605E-04 4.5921E-04 4.0970E-04 4.4450E-04 

acetone 6.2029E-04 8.6215E-04 4.3180E-04 9.1105E-04 
Acrolein 2.0922E-04 2.2021E-04 0.0000E+00 1.6524E-04 

Propionaldehyde 2.3116E-04 2.2200E-04 1.4018E-04 1.8264E-04 
Crotonaldehyde 1.8391E-04 1.9358E-04 1.8463E-04 1.9453E-04 

methyl ethyl ketone 1.8735E-04 1.9709E-04 1.8809E-04 1.9806E-04 
Methacrolein 1.8391E-04 1.9358E-04 1.8463E-04 1.9453E-04 

n-butyraldehyde 2.7838E-04 1.8799E-04 1.3320E-04 2.1450E-04 
benzaldehyde 2.4439E-04 2.5755E-04 2.4535E-04 2.5840E-04 

Glyoxal 9.0769E-05 9.5560E-05 9.1194E-05 9.5978E-05 
Valeraldehyde 2.1273E-04 2.2355E-04 2.1310E-04 2.2438E-04 

m-Tolualdehyde 2.6392E-04 2.7765E-04 2.6497E-04 2.7901E-04 
Hexaldehyde 2.3597E-04 2.4842E-04 2.3690E-04 2.4965E-04 
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Table C.3 Distance specific emissions data of nitro-polyaromatic hydrocarbons 

g/mile 5126 with ATD 5127 Bkgd With ATD 5133 W/O ATD 5134 Bkgd W/O ATD
1-nitronaphthalene 2.6542E-07 1.2795E-07 1.0267E-06 1.6111E-07 
2-nitronaphthalene 2.8630E-08 1.1342E-08 1.7275E-07 9.6236E-09 

1-methyl-5-nitronaphthalene 0.0000E+00 0.0000E+00 6.4356E-09 0.0000E+00 
1-methyl-4-nitronaphthalene 1.6841E-08 0.0000E+00 2.1000E-08 5.3465E-09 
2-methyl-4-nitronaphthalene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
1-methyl-6-nitronaphthalene 5.2207E-08 0.0000E+00 1.8968E-08 3.8138E-08 

2-nitrobiphenyl 5.7260E-09 2.4811E-09 4.0646E-09 2.1386E-09 
3-nitrobiphenyl 7.0733E-09 2.8355E-09 9.4841E-09 2.8514E-09 
4-nitrobiphenyl 6.0628E-09 0.0000E+00 4.4033E-09 1.0693E-09 

5-nitroacenaphthene 0.0000E+00 3.5444E-10 0.0000E+00 0.0000E+00 
2-nitrofluorene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1,3-dinitronaphthalene 4.1092E-08 0.0000E+00 2.0662E-08 3.1366E-08 
1,5-dinitronaphthalene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
1,8-dinitronaphthalene 0.0000E+00 2.1267E-09 0.0000E+00 2.4950E-09 

2-nitroanthracene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
2-nitrophenanthrene 0.0000E+00 3.8989E-09 2.0323E-09 5.7029E-09 
3-nitrophenanthrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
4-nitrophenanthrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

9-nitroanthracene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
9-nitrophenanthrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1-nitropyrene 0.0000E+00 0.0000E+00 5.0808E-09 0.0000E+00 
2-nitrofluoranthene 2.8293E-08 1.9849E-08 1.4226E-08 4.3485E-08 

2-nitropyrene 0.0000E+00 0.0000E+00 1.7613E-08 0.0000E+00 
3-nitrofluoranthene 0.0000E+00 0.0000E+00 0.0000E+00 3.5643E-10 

4-nitropyrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
2,7-dinitrofluorene 7.6795E-08 1.4532E-08 4.4033E-09 2.3881E-08 

2,7-dinitrofluoren-9-one 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
6-nitrochrysene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

6-nitrobenz[a]pyrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
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Table C.4 Distance specific measurement uncertainty data of nitro-polyaromatic hydrocarbons 

g/mile 
5126 with ATD 

Uncertainty 
5127 Bkgd (With 
ATD) Uncertainty 

5133 W/O ATD 
Uncertainty 

5134 Bkgd (W/O 
ATD) Uncertainty 

1-nitronaphthalene 1.5107E-08 6.7055E-09 5.7516E-08 8.0149E-09 
2-nitronaphthalene 1.4053E-09 6.7055E-10 9.1744E-09 3.3395E-10 

1-methyl-5-nitronaphthalene 0.0000E+00 0.0000E+00 3.5286E-10 0.0000E+00 
1-methyl-4-nitronaphthalene 1.4053E-09 0.0000E+00 1.4114E-09 3.3395E-10 
2-methyl-4-nitronaphthalene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
1-methyl-6-nitronaphthalene 1.0188E-08 0.0000E+00 3.8815E-09 6.6791E-09 

2-nitrobiphenyl 7.0264E-10 3.3527E-10 3.5286E-10 3.3395E-10 
3-nitrobiphenyl 2.1079E-09 6.7055E-10 2.8229E-09 6.6791E-10 
4-nitrobiphenyl 3.5132E-10 0.0000E+00 3.5286E-10 0.0000E+00 

5-nitroacenaphthene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
2-nitrofluorene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1,3-dinitronaphthalene 7.7291E-09 0.0000E+00 3.8815E-09 5.3433E-09 
1,5-dinitronaphthalene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
1,8-dinitronaphthalene 0.0000E+00 0.0000E+00 0.0000E+00 3.3395E-10 

2-nitroanthracene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
2-nitrophenanthrene 0.0000E+00 3.3527E-10 0.0000E+00 3.3395E-10 
3-nitrophenanthrene 7.0264E-10 0.0000E+00 0.0000E+00 0.0000E+00 
4-nitrophenanthrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

9-nitroanthracene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
9-nitrophenanthrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1-nitropyrene 0.0000E+00 0.0000E+00 3.5286E-10 0.0000E+00 
2-nitrofluoranthene 8.0804E-09 5.0291E-09 3.8815E-09 1.1020E-08 

2-nitropyrene 0.0000E+00 0.0000E+00 1.4114E-09 0.0000E+00 
3-nitrofluoranthene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

4-nitropyrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
2,7-dinitrofluorene 2.5647E-08 4.3586E-09 1.4114E-09 7.0130E-09 

2,7-dinitrofluoren-9-one 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
6-nitrochrysene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

6-nitrobenz[a]pyrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
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Table C.5 Distance specific emissions data of gas phase polyaromatic hydrocarbons 

g/mile 5126 with ATD 5127 Bkgd With ATD 5133 W/O ATD 5134 Bkgd W/O ATD 
Naphthalene 2.9559E-04 3.5929E-04 3.9768E-04 3.6972E-04 

2-methylnaphthalene 5.0358E-06 2.7955E-06 1.9399E-05 4.9145E-06 
1-methylnaphthalene 7.1272E-07 6.8585E-07 8.9811E-06 1.4582E-06 

Biphenyl 1.2826E-06 0.0000E+00 2.4635E-06 4.3199E-07 
1+2ethylnaphthalene 3.7529E-06 4.2179E-07 2.2582E-06 6.4799E-07 

2,6+2,7-dimethylnaphthalene 2.4228E-06 1.7407E-06 7.2875E-06 9.7199E-07 
1,3+1,6+1,7dimethylnaphth 5.8432E-06 2.0044E-06 8.3138E-06 1.9982E-06 
1,4+1,5+2,3-dimethylnaphth 9.9767E-07 3.1652E-07 2.3609E-06 0.0000E+00 

1,2-dimethylnaphthalene 2.8495E-07 2.1089E-07 3.0789E-07 1.6218E-07 
2-Methylbiphenyl 9.5821E-05 6.0867E-05 2.5609E-04 6.1511E-05 
3-Methylbiphenyl 3.5678E-05 1.9199E-05 1.0639E-04 2.1278E-05 
4-Methylbiphenyl 9.5964E-06 5.5910E-06 3.7669E-05 5.8865E-06 

Dibenzofuran 6.6522E-07 1.5808E-07 1.5395E-06 1.0800E-07 
A-trimethylnaphthalene 6.6522E-07 1.0562E-07 1.1804E-06 5.4177E-08 

1-ethyl-2-methylnaphthalene 9.5017E-07 1.0562E-07 3.7466E-06 3.2400E-07 
B-trimethylnaphthalene 1.2826E-06 5.2812E-08 1.8477E-06 4.3199E-07 
C-trimethylnaphthalene 1.9953E-06 2.6371E-07 0.0000E+00 2.1600E-07 

2-ethyl-1-methylnaphthalene 1.1876E-06 9.4955E-07 5.1485E-08 5.3999E-07 
E-trimethylnaphthalene 1.4248E-07 2.6371E-07 1.0263E-06 3.2400E-07 
F-trimethylnaphthalene 1.6151E-06 5.2812E-08 0.0000E+00 0.0000E+00 

2,3,5+I-trimethylnaphthalene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
2,4,5-trimethylnaphthalene 0.0000E+00 1.5808E-07 3.5938E-07 0.0000E+00 

J-trimethylnaphthalene 0.0000E+00 0.0000E+00 8.2105E-07 0.0000E+00 
1,4,5-trimethylnaphthalene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Acenaphthylene 2.3746E-07 5.2812E-08 3.0789E-07 1.6218E-07 
Acenaphthene 0.0000E+00 0.0000E+00 1.5412E-07 0.0000E+00 

Fluorene 1.2351E-06 3.1652E-07 2.7714E-06 3.7817E-07 
Dibenzothiophene 0.0000E+00 0.0000E+00 2.0526E-07 0.0000E+00 

Phenanthrene 5.2258E-06 1.4770E-06 5.5428E-06 1.7822E-06 
Anthracene 0.0000E+00 0.0000E+00 1.0263E-07 0.0000E+00 

A-methylfluorene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
1-methylfluorene 1.8997E-07 1.0562E-07 1.5412E-07 5.4177E-08 
B-methylfluorene 9.4984E-08 0.0000E+00 1.0263E-07 0.0000E+00 
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Table C.6 Distance specific measurement uncertainty data of gas phase polyaromatic hydrocarbons 

g/mile 
5126 with ATD 

Uncertainty 
5127 Bkgd (With ATD) 

Uncertainty 
5133 W/O ATD 

Uncertainty 
5134 Bkgd (W/O ATD) 

Uncertainty 
Naphthalene 1.5768E-05 1.7323E-05 2.0866E-05 1.7450E-05 

2-methylnaphthalene 6.0673E-07 3.7383E-07 2.1740E-06 5.5603E-07 
1-methylnaphthalene 2.0166E-07 1.5322E-07 1.6196E-06 3.1125E-07 

Biphenyl 2.0939E-07 4.9956E-08 3.4545E-07 1.0319E-07 
1+2ethylnaphthalene 8.1753E-07 1.0192E-07 4.9542E-07 1.5495E-07 

2,6+2,7-dimethylnaphthalene 5.1188E-07 3.5908E-07 1.4926E-06 2.0739E-07 
1,3+1,6+1,7dimethylnaphth 1.0856E-06 3.6210E-07 1.5582E-06 3.6635E-07 
1,4+1,5+2,3-dimethylnaphth 7.2372E-08 5.2303E-08 2.0219E-07 5.0761E-08 

1,2-dimethylnaphthalene 5.1644E-08 5.0962E-08 5.5752E-08 5.1095E-08 
2-Methylbiphenyl 5.9581E-06 3.5884E-06 1.5141E-05 3.5807E-06 
3-Methylbiphenyl 6.2391E-06 4.0471E-06 1.5064E-05 4.2673E-06 
4-Methylbiphenyl 1.4313E-06 9.8503E-07 4.2732E-06 1.0489E-06 

Dibenzofuran 6.0779E-08 5.0626E-08 1.3373E-07 5.0761E-08 
A-trimethylnaphthalene 1.0505E-07 5.0291E-08 1.7184E-07 5.0761E-08 

1-ethyl-2-methylnaphthalene 1.5704E-07 5.0291E-08 5.1941E-07 5.2765E-08 
B-trimethylnaphthalene 1.2015E-07 4.9956E-08 1.4397E-07 5.4435E-08 
C-trimethylnaphthalene 1.4474E-07 5.1297E-08 5.3635E-08 5.1763E-08 

2-ethyl-1-methylnaphthalene 2.5576E-07 2.0452E-07 5.3635E-08 1.0419E-07 
E-trimethylnaphthalene 5.0239E-08 5.1297E-08 7.5512E-08 5.2765E-08 
F-trimethylnaphthalene 1.3104E-07 4.9956E-08 5.3635E-08 5.0761E-08 

2,3,5+I-trimethylnaphthalene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
2,4,5-trimethylnaphthalene 4.9536E-08 9.9911E-08 1.0868E-07 5.0761E-08 

J-trimethylnaphthalene 4.9536E-08 4.9956E-08 2.1807E-07 5.0761E-08 
1,4,5-trimethylnaphthalene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 

Acenaphthylene 5.1293E-08 4.9956E-08 1.0798E-07 5.1095E-08 
Acenaphthene 4.9536E-08 4.9956E-08 5.3988E-08 5.0761E-08 

Fluorene 2.0869E-07 5.2303E-08 4.0120E-07 5.3767E-08 
Dibenzothiophene 4.9536E-08 4.9956E-08 5.4694E-08 5.0761E-08 

Phenanthrene 7.9329E-07 2.5917E-07 8.5251E-07 2.6650E-07 
Anthracene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 

A-methylfluorene 9.9073E-08 4.9956E-08 1.0692E-07 5.0761E-08 
1-methylfluorene 5.0590E-08 5.0291E-08 5.3988E-08 5.0761E-08 
B-methylfluorene 4.9888E-08 4.9956E-08 5.3635E-08 5.0761E-08 
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Table C.7 Distance specific emissions data of particle phase polyaromatic hydrocarbons 

g/mile 5126 with ATD 5127 Bkgd With ATD 5133 W/O ATD 5134 Bkgd W/O ATD 
4-methylpyrene 9.4984E-08 0.0000E+00 0.0000E+00 0.0000E+00 
1-methylpyrene 1.4248E-07 0.0000E+00 5.1485E-08 0.0000E+00 

Benzo(c)phenanthrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Benzo(ghi)fluoranthene 1.4248E-07 0.0000E+00 0.0000E+00 0.0000E+00 
Cyclopenta(c,d)pyrene 0.0000E+00 1.0562E-07 5.1485E-08 5.4177E-08 

Benz(a)anthracene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Chrysene-Triphenylene 4.7492E-08 1.0562E-07 5.1485E-08 5.4177E-08 

Benzanthrone 0.0000E+00 0.0000E+00 1.5412E-07 0.0000E+00 
7-methylbenz(a)anthracene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

3-methylchrysene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Benz(a)anthracene-7,12-dione 1.8997E-07 0.0000E+00 1.5412E-07 0.0000E+00 

5+6-methylchrysene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Benzo(b+j+k)fluoranthene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Benzo(a)fluoranthene 5.2241E-07 0.0000E+00 0.0000E+00 0.0000E+00 
BeP 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
BaP 6.6522E-07 1.1076E-06 1.1804E-06 1.0262E-06 

Perylene 4.7492E-08 0.0000E+00 0.0000E+00 0.0000E+00 
7-methylbenzo(a)pyrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

9,10-dihydrobenzo(a)pyrene-7(8H)-one 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Dibenzo(a,j)anthracene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Indeno[123-cd]pyrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Dibenzo(ah+ac)anthracene 0.0000E+00 3.6933E-07 0.0000E+00 0.0000E+00 
Benzo(b)chrysene 3.7994E-07 2.1089E-07 2.5675E-07 1.0800E-07 

Picene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Benzo(ghi)perylene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Anthanthrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Dibenzo(b,k)fluoranthene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Dibenzo(a,e)pyrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Coronene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Dibenzo(a,h)pyrene 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
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Table C.8 Distance specific measurement uncertainty data of particle phase polyaromatic hydrocarbons 

g/mile 
5126 with ATD 

Uncertainty 
5127 Bkgd (With ATD) 

Uncertainty 
5133 W/O ATD 

Uncertainty 
5134 Bkgd (W/O ATD) 

Uncertainty 
4-methylpyrene 4.9888E-08 4.9956E-08 5.3635E-08 5.0761E-08 
1-methylpyrene 5.0239E-08 4.9956E-08 5.3635E-08 5.0761E-08 

Benzo(c)phenanthrene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Benzo(ghi)fluoranthene 5.0239E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Cyclopenta(c,d)pyrene 4.9536E-08 5.0291E-08 5.3635E-08 5.0761E-08 

Benz(a)anthracene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Chrysene-Triphenylene 4.9536E-08 5.0291E-08 5.3635E-08 5.0761E-08 

Benzanthrone 4.9536E-08 4.9956E-08 5.3988E-08 5.0761E-08 
7-methylbenz(a)anthracene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 

3-methylchrysene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Benz(a)anthracene-7,12-dione 9.9776E-08 4.9956E-08 5.3988E-08 5.0761E-08 

5+6-methylchrysene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Benzo(b+j+k)fluoranthene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 

Benzo(a)fluoranthene 5.6914E-08 4.9956E-08 5.3635E-08 5.0761E-08 
BeP 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
BaP 1.5283E-07 2.0653E-07 2.2266E-07 1.5930E-07 

Perylene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
7-methylbenzo(a)pyrene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 

9,10-dihydrobenzo(a)pyrene-7(8H)-one 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Dibenzo(a,j)anthracene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Indeno[123-cd]pyrene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 

Dibenzo(ah+ac)anthracene 4.9536E-08 5.2973E-08 5.3635E-08 5.0761E-08 
Benzo(b)chrysene 1.5001E-07 1.0025E-07 1.0762E-07 5.0761E-08 

Picene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Benzo(ghi)perylene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 

Anthanthrene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Dibenzo(b,k)fluoranthene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 

Dibenzo(a,e)pyrene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Coronene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 

Dibenzo(a,h)pyrene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
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Table C.9 Distance specific emissions data of semi-volatile phase polyaromatic hydrocarbons 

g/mile 5126 with ATD 5127 Bkgd (With ATD) 5133 W/O ATD 5134 Bkgd (W/O ATD) 
9-fluorenone 2.9930E-06 1.0020E-06 1.9348E-05 1.5662E-06 

Xanthone 1.8997E-07 1.5808E-07 2.5675E-07 0.0000E+00 
Acenaphthenequinone 5.4158E-06 0.0000E+00 5.9533E-06 0.0000E+00 

Perinaphthenone 2.6602E-06 3.1652E-07 1.1289E-06 0.0000E+00 
2-methylanthracene 1.4248E-07 7.9112E-07 2.0526E-07 2.1600E-07 

3-methylphenanthrene 0.0000E+00 0.0000E+00 1.0263E-06 0.0000E+00 
2-methylphenanthrene 0.0000E+00 0.0000E+00 4.6201E-07 0.0000E+00 
9-methylphenanthrene 9.4984E-08 1.4770E-06 5.6464E-07 5.4177E-08 

4,5-methylenephenanthrene 1.8997E-07 1.5808E-07 3.5938E-07 1.6218E-07 
1-methylphenanthrene 4.7492E-08 1.5822E-06 0.0000E+00 5.4177E-08 

Anthrone 7.6021E-07 0.0000E+00 5.1316E-07 0.0000E+00 
Anthraquinone 5.7024E-07 1.0562E-07 5.1316E-07 0.0000E+00 

3,6-dimethylphenanthrene 0.0000E+00 2.2153E-06 0.0000E+00 0.0000E+00 
A-dimethylphenanthrene 0.0000E+00 0.0000E+00 1.4883E-06 0.0000E+00 
B-dimethylphenanthrene 1.4248E-07 0.0000E+00 1.4368E-06 0.0000E+00 
C-dimethylphenanthrene 3.7994E-07 3.1652E-07 2.0526E-07 0.0000E+00 
D-dimethylphenanthrene 0.0000E+00 2.1089E-07 1.5412E-07 5.4177E-08 

1,7-dimethylphenanthrene 8.5519E-07 2.6371E-07 4.6201E-07 0.0000E+00 
E-dimethylphenanthrene 8.5519E-07 1.5808E-07 1.0263E-07 0.0000E+00 

9-methylanthracene 9.4984E-08 5.2812E-08 0.0000E+00 5.4177E-08 
Fluoranthene 5.7024E-07 0.0000E+00 4.6201E-07 0.0000E+00 

Pyrene 6.1773E-07 2.5318E-06 3.7977E-06 2.9163E-06 
9-Anthraaldehyde 0.0000E+00 0.0000E+00 5.1485E-08 0.0000E+00 

Retene 4.7492E-08 0.0000E+00 0.0000E+00 0.0000E+00 
Benzonaphthothiophene 4.7492E-08 0.0000E+00 5.1485E-08 0.0000E+00 
1+3-methylfluoranthene 9.4984E-08 2.1089E-07 5.1485E-08 0.0000E+00 

1-MeFl+C-MeFl/Py 9.4984E-08 2.1089E-07 5.1485E-08 0.0000E+00 
B-MePy/MeFl 4.7492E-08 1.5808E-07 5.1485E-08 0.0000E+00 
C-MePy/MeFl 0.0000E+00 5.2812E-08 1.5412E-07 0.0000E+00 
D-MePy/MeFl 9.4984E-08 5.2812E-08 5.1485E-08 0.0000E+00 
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Table C.10 Distance specific measurement uncertainty data of semi-volatile phase polyaromatic hydrocarbons 

g/mile 
5126 with ATD 

Uncertainty 
5127 Bkgd (With ATD) 

Uncertainty 
5133 W/O ATD 

Uncertainty 
5134 Bkgd (W/O ATD) 

Uncertainty 
9-fluorenone 1.6618E-07 6.9066E-08 1.0205E-06 8.9166E-08 

Xanthone 5.0590E-08 5.0626E-08 5.5046E-08 5.0761E-08 
Acenaphthenequinone 7.5078E-07 4.9956E-08 8.1017E-07 5.0761E-08 

Perinaphthenone 2.0482E-07 5.2303E-08 1.2209E-07 5.0761E-08 
2-methylanthracene 5.0239E-08 1.0662E-07 5.4694E-08 5.1763E-08 

3-methylphenanthrene 4.9536E-08 4.9956E-08 1.1962E-07 5.0761E-08 
2-methylphenanthrene 9.9073E-08 9.9911E-08 2.1525E-07 5.0761E-08 
9-methylphenanthrene 4.9888E-08 3.0745E-07 1.6302E-07 5.0761E-08 

4,5-methylenephenanthrene 5.0590E-08 5.0626E-08 5.6811E-08 5.1095E-08 
1-methylphenanthrene 4.9536E-08 9.0524E-08 5.3635E-08 5.0761E-08 

Anthrone 3.0003E-07 4.9956E-08 2.1560E-07 1.0119E-07 
Anthraquinone 1.5177E-07 5.0291E-08 1.1009E-07 5.0761E-08 

3,6-dimethylphenanthrene 4.9536E-08 1.8339E-07 5.3635E-08 5.0761E-08 
A-dimethylphenanthrene 4.9536E-08 4.9956E-08 1.3197E-07 5.0761E-08 
B-dimethylphenanthrene 5.0239E-08 4.9956E-08 1.3056E-07 5.0761E-08 
C-dimethylphenanthrene 1.0118E-07 1.0092E-07 5.4694E-08 5.0761E-08 
D-dimethylphenanthrene 4.9536E-08 5.0962E-08 5.3988E-08 5.0761E-08 

1,7-dimethylphenanthrene 6.7103E-08 5.1297E-08 5.8575E-08 5.0761E-08 
E-dimethylphenanthrene 6.7103E-08 5.0626E-08 5.3635E-08 5.0761E-08 

9-methylanthracene 4.9888E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Fluoranthene 2.0061E-07 4.9956E-08 2.1525E-07 5.0761E-08 

Pyrene 1.0434E-07 2.3335E-07 3.7686E-07 2.4412E-07 
9-Anthraaldehyde 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 

Retene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
Benzonaphthothiophene 4.9536E-08 4.9956E-08 5.3635E-08 5.0761E-08 
1+3-methylfluoranthene 4.9888E-08 5.0962E-08 5.3635E-08 5.0761E-08 

1-MeFl+C-MeFl/Py 4.9888E-08 5.0962E-08 5.3635E-08 5.0761E-08 
B-MePy/MeFl 4.9536E-08 5.0626E-08 5.3635E-08 5.0761E-08 
C-MePy/MeFl 4.9536E-08 4.9956E-08 5.3988E-08 5.0761E-08 
D-MePy/MeFl 4.9888E-08 4.9956E-08 5.3635E-08 5.0761E-08 
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Table C.11 Distance specific emissions data of C6+ alkanes 

g/mile 5126 with ATD 5127 Bkgd With ATD 5133 W/O ATD 5134 Bkgd W/O ATD 
cyclohexane 7.0720E-05 5.2094E-05 9.6365E-04 1.8709E-05 

methylcyclopentane 1.1079E-04 9.1784E-05 1.0288E-03 9.4794E-05 
2,2-dimethylbutane 5.0686E-05 1.8922E-04 7.6093E-04 9.3226E-05 
2,3-dimethylbutane 6.6375E-05 7.1117E-05 5.4976E-04 5.2360E-05 

n-hexane 1.0741E-04 1.5493E-04 2.3386E-03 1.1238E-04 
2-methylpentane 2.1723E-04 2.0573E-04 2.2743E-03 1.5453E-04 
3-methylpentane 1.2430E-04 1.3842E-04 1.2719E-03 9.9612E-05 
2-methylhexane 2.3790E-04 1.2156E-04 7.1081E-04 1.3534E-04 

methylcyclohexane 5.2256E-05 6.5119E-05 1.0842E-03 6.8395E-05 
1,3-dimethylcyclopentane (cis) 3.8508E-05 4.3417E-05 2.3927E-04 5.6759E-05 

3-methylhexane 1.2630E-04 1.4767E-04 5.9129E-04 9.9495E-05 
n-heptane 2.0348E-04 1.7425E-04 1.3011E-03 1.2623E-04 

2,3-dimethylpentane 6.0342E-05 5.7592E-05 2.5684E-04 7.1280E-05 
2,4-dimethylpentane 5.4729E-05 4.4302E-05 1.7922E-04 4.3065E-05 

2-methylheptane 4.7981E-06 2.6929E-05 5.6293E-05 1.8617E-05 
3-methylheptane 3.5186E-05 3.3661E-05 1.8818E-04 3.2157E-05 
4-methylheptane 1.7593E-05 8.4152E-06 9.3286E-05 1.5232E-05 

n-octane 5.5978E-05 1.8514E-05 1.9944E-04 3.7235E-05 
2,2,4-trimethylpentane 6.3975E-05 5.8907E-05 2.1070E-04 5.0775E-05 
2,3,4-trimethylpentane 7.5171E-05 6.3956E-05 3.8601E-05 4.9082E-05 

n-nonane 1.2039E-04 6.4289E-05 1.6805E-04 6.0847E-05 
n-decane 1.1958E-04 7.5498E-05 7.6157E-05 8.0140E-05 

n-undecane 8.5371E-05 6.2195E-05 5.9435E-05 3.0114E-05 
 

Table C.12 Distance specific emissions data of C2-C5 alkanes 

g/mile 5126 with ATD 5127 Bkgd With AT) 5133 W/O ATD 5134 Bkgd W/O ATD 
ethane 7.4787E-02 2.7523E-03 5.3385E-01 2.1675E-03 

propane 8.3935E-03 1.5995E-03 9.3774E-02 1.3640E-03 
iso-butane 1.2788E-03 3.1264E-04 2.4039E-02 2.9545E-04 
n-butane 1.1689E-03 4.5654E-04 2.3114E-02 4.1690E-04 

cyclopentane 3.9287E-05 2.9973E-05 3.4175E-04 2.5984E-05 
iso-pentane 6.7095E-04 5.3379E-04 9.9410E-03 4.3627E-04 
n-pentane 3.7084E-04 2.1054E-04 6.5511E-03 2.0210E-04 
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Table C.13 Distance specific emissions data of C6+ olefins 

g/mile 5126 with ATD 5127 Bkgd With ATD 5133 W/O ATD 5134 Bkgd W/O ATD 
1,3-hexadiene (trans) 0.0000E+00 1.2106E-06 2.3137E-06 1.2173E-06 

cyclohexene 1.0355E-05 1.2107E-06 2.2677E-04 3.6525E-06 
c-2-hexene 2.3573E-06 2.4807E-06 2.9632E-05 1.2473E-06 

2-methyl-1-pentene 4.2432E-05 4.9613E-06 3.4492E-04 4.9891E-06 
t-2-hexene 5.8933E-06 1.2403E-06 5.0968E-05 1.2473E-06 
1-heptene 3.8508E-05 2.4603E-05 2.2267E-04 1.8920E-05 

2,3-dimethyl-2-pentene 1.3753E-06 1.4472E-06 8.2982E-06 1.4554E-06 
alpha-pinene 4.7687E-05 8.0291E-06 1.1509E-05 8.0742E-06 

 

 

Table C.14 Distance specific emissions data of C2-C5 olefins 

g/mile 5126 with ATD 5127 Bkgd With ATD 5133 W/O ATD 5134 Bkgd W/O ATD 
ethene 6.1625E-03 4.0234E-04 5.7043E-01 3.5273E-04 

propene 3.4122E-04 1.0109E-04 2.8022E-02 1.7213E-04 
1,2-butadiene 7.5753E-07 1.5943E-06 2.7425E-05 8.0164E-07 
1,3-butadiene 1.5151E-06 8.7688E-06 1.5236E-05 1.3628E-05 

1-butene + isobutene 2.2239E-04 1.3892E-04 8.8737E-03 7.9831E-05 
c-2-butene 2.7504E-05 4.9616E-06 1.1862E-03 8.3157E-06 
t-2-butene 1.4145E-05 4.1347E-06 1.4027E-03 1.0810E-05 
isoprene 9.5389E-07 3.4129E-05 4.7963E-06 4.9461E-05 

2-methyl-1-butene 2.0626E-05 1.2403E-05 4.5138E-04 1.9748E-05 
2-methyl-2-butene 6.8752E-06 7.2349E-06 1.6297E-04 8.3148E-06 

c-2-pentene 3.9287E-06 2.0671E-06 1.4322E-04 6.2361E-06 
1-pentene 4.5180E-05 2.8940E-05 4.3261E-04 1.2472E-05 

t-2-pentene 1.3750E-05 6.2013E-06 2.6273E-04 5.1968E-06 
cyclopentene 6.9031E-06 2.4214E-06 2.2446E-04 1.2175E-06 
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Table C.15 Distance specific emissions data of C2-C5 alkynes 

g/mile 5126 with ATD 5127 Bkgd With ATD 5133 W/O ATD 5134 Bkgd W/O ATD 
acetylene 8.066E-04 7.664E-06 2.380E-02 3.410E-04 
propyne 2.132E-05 2.362E-06 8.773E-04 4.750E-06 

 

Table C.16 Distance specific emissions data of aromatics 

g/mile 5126 with ATD 5127 Bkgd With ATD 5133 W/O ATD 5134 Bkgd W/O ATD 
benzene 2.8333E-04 2.6477E-04 1.8460E-03 1.9332E-04 
toluene 6.0134E-04 4.9836E-04 1.1536E-03 3.5231E-04 
styrene 1.6037E-05 2.1479E-05 2.1992E-05 1.5428E-05 

ethylbenzene 1.0411E-04 7.1997E-05 1.0320E-04 5.3514E-05 
m&p-xylene 2.0971E-04 1.5182E-04 2.4380E-04 1.6998E-04 

o-xylene 1.1601E-04 7.9822E-05 9.1238E-05 7.2401E-05 
indan 1.1588E-05 6.9680E-06 1.8312E-05 7.0071E-06 

1,2,3-trimethylbenzene 2.6935E-05 1.4172E-05 2.3700E-05 1.4251E-05 
1,2,4-trimethylbenzene+t-butylbenzene 3.5352E-05 1.4172E-05 2.8779E-05 1.2470E-05 

1,3,5-trimethylbenzene 1.8518E-05 8.8574E-06 1.3543E-05 1.7814E-05 
isopropylbenzene 1.0100E-04 1.9486E-05 1.5236E-05 5.3442E-06 

3-ethyltoluene 6.0603E-05 3.0115E-05 3.3858E-05 3.5628E-05 
n-propylbenzene 4.7135E-05 1.9486E-05 1.8622E-05 1.2470E-05 

o-ethyltoluene 2.6935E-05 1.5943E-05 1.8622E-05 1.4251E-05 
4-ethyltoluene 3.0301E-05 1.9486E-05 2.0315E-05 1.7814E-05 
n-butylbenzene 1.6915E-05 7.9112E-06 1.3230E-05 3.9778E-06 

1,3-diethylbenzene 9.3988E-05 5.1431E-05 1.9470E-04 4.1773E-05 
1,4-diethylbenzene 3.7595E-06 0.0000E+00 1.7013E-05 1.9892E-06 
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Table C.17 Distance specific emissions data of metals 

g/mile 5126 with ATD 5127 Bkgd (With ATD) 5133 W/O ATD 5134 Bkgd (W/O ATD) 
Sodium 0.0000E+00 2.4878E-04 0.0000E+00 3.7868E-04 

Magnesium   0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Aluminum  7.8413E-05 0.0000E+00 4.6910E-05 0.0000E+00 

Silicon  1.1792E-04 1.2869E-04 7.7828E-05 0.0000E+00 
Phosphorous  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Sulfur  3.4187E-04 2.0684E-04 2.8592E-04 0.0000E+00 
Chlorine  1.1951E-06 4.4401E-06 0.0000E+00 0.0000E+00 

Potassium  2.6957E-05 4.5630E-05 1.5992E-06 0.0000E+00 
Calcium  1.1241E-04 7.4935E-05 6.5167E-05 0.0000E+00 

Scandium  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Titanium  0.0000E+00 0.0000E+00 1.8258E-05 3.2411E-05 

Vanadium  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Chromium  7.0446E-05 1.0260E-04 8.6557E-05 0.0000E+00 
Manganese  1.2283E-05 3.8731E-05 8.3958E-06 0.0000E+00 

Iron  2.9646E-04 5.3704E-04 1.4739E-04 1.5017E-05 
Cobalt  1.1712E-04 0.0000E+00 1.4060E-04 2.4461E-06 
Nickel   4.7805E-06 5.7858E-05 1.0328E-05 0.0000E+00 

Copper  1.7462E-05 0.0000E+00 0.0000E+00 0.0000E+00 
Zinc  1.5802E-05 0.0000E+00 1.9857E-05 0.0000E+00 

Gallium  0.0000E+00 0.0000E+00 1.1927E-05 9.7846E-06 
Arsenic  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Selenium  0.0000E+00 6.8992E-06 7.5296E-06 2.9558E-05 
Bromine  0.0000E+00 1.4208E-05 0.0000E+00 0.0000E+00 

Rubidium  1.5470E-05 0.0000E+00 0.0000E+00 0.0000E+00 
Strontium  0.0000E+00 2.2815E-05 1.8258E-05 1.6172E-05 

Yttrium  8.6978E-06 8.9484E-06 7.9294E-06 7.2705E-06 
Zirconium  1.5935E-06 0.0000E+00 0.0000E+00 0.0000E+00 
Niobium  0.0000E+00 6.9675E-06 1.0795E-05 3.6692E-06 

Molybdenum  3.0874E-05 1.3867E-05 2.1456E-05 0.0000E+00 
Palladium  0.0000E+00 0.0000E+00 3.2584E-05 1.0287E-04 

Silver  3.5654E-05 4.2351E-05 4.2112E-05 8.0859E-06 
Cadmium  3.8377E-05 0.0000E+00 0.0000E+00 0.0000E+00 

Indium  7.0844E-05 0.0000E+00 0.0000E+00 0.0000E+00 
Tin  1.6267E-05 0.0000E+00 2.7386E-05 2.9558E-05 

Antimony  0.0000E+00 0.0000E+00 6.9898E-05 0.0000E+00 
Cesium  0.0000E+00 0.0000E+00 0.0000E+00 6.4551E-06 
Barium  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Lanthanum  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Cerium  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Samarium  0.0000E+00 4.8499E-06 0.0000E+00 0.0000E+00 
Europium  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Terbium  1.7462E-05 0.0000E+00 0.0000E+00 0.0000E+00 
Hafnium  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
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Tantalum  9.5012E-05 0.0000E+00 0.0000E+00 8.8333E-07 
Wolfram  0.0000E+00 0.0000E+00 3.6182E-05 9.4380E-05 
Iridium  0.0000E+00 1.8307E-05 1.5459E-05 0.0000E+00 
Gold  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Mercury  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Thallium 0.0000E+00 2.4591E-06 4.7976E-06 0.0000E+00 

Lead  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
Uranium  0.0000E+00 0.0000E+00 0.0000E+00 2.8538E-06 

 

Table C.18 Distance specific emissions data of EC/OC 

g/mile 
5126-2 With 

ATD 
5127-1 BG With 

ATD 
5133-2 W/O 

ATD 
5134-1 BG W/O 

ATD 
Organic Carbon Fraction 1 concentration     0.01009 0.00513 0.01101 0.00440 
Organic Carbon Fraction 2 concentration     0.00563 0.00321 0.00505 0.00243 
Organic Carbon Fraction 3 concentration     0.00241 0.00066 0.00223 0.00012 
Organic Carbon Fraction 4 concentration     0.00244 0.00000 0.00226 0.00000 
Organic Carbon Fraction 5 concentration     0.00000 0.00000 0.00000 0.00000 
Pyrolyzed organic carbon, thermal method, transmittance 
concentration  0.00000 0.00000 -0.00226 0.00000 
Pyrolyzed organic carbon, thermal method,reflectance 
concentration  0.00000 0.00000 -0.00226 0.00000 
Organic carbon,thermal method, transmittance 
concentration  0.01813 0.00900 0.01829 0.00696 
Organic carbon,thermal method, reflectance concentration  0.01813 0.00900 0.01829 0.00696 
Elemental Carbon Fraction 1 concentration     0.00000 0.00000 0.00000 0.00000 
Elemental Carbon Fraction 2 concentration     0.00000 0.00000 0.00000 0.00000 
Elemental Carbon Fraction 3 concentration     0.00000 0.00000 0.00000 0.00000 
Elemental Carbon Fraction 4 concentration     0.00000 0.00000 0.00000 0.00000 
Elemental Carbon Fraction 5 concentration     0.00000 0.00000 0.00000 0.00000 
Elemental carbon,thermal method, transmittance 
concentration  0.00244 0.00000 0.00226 0.00000 
Elemental carbon,thermal method, reflectance concentration 0.00244 0.00000 0.00226 0.00000 
Total Carbon concentration     0.02057 0.00900 0.02055 0.00696 
 


	Evaluation of exhaust after-treatment device effectiveness in reducing regulated and unregulated emissions from natural gas fueled heavy duty transit bus
	Recommended Citation

	Title Page

	Abstract

	 Acknowledgements 
	 Table of Contents 
	CHAPTER 1 -  INTRODUCTION 
	CHAPTER 2 -  LITERATURE REVIEW 
	CHAPTER 3 -  EXPERIMENTAL SETUP 
	CHAPTER 4 -  EMISSION TEST PROCEDURE 
	CHAPTER 5 -  RESULTS AND DISCUSSION 
	CHAPTER 6 -  CONCLUSIONS 
	 References 


		2008-05-09T18:50:17-0400
	John H. Hagen
	I am approving this document




