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ABSTRACT 

 

Plant Litter Decomposition in  

Mitigated and Reference Wetlands 

 

Richard Tristan Gingerich 
 

Decomposition of plant litter in wetlands influences many processes and is driven by a 

complex web of interacting forces.  This makes litter decomposition a useful measure of wetland 

function and a possible means of judging wetland functional replacement in compensatory 

mitigation projects.  However, the web of interacting forces that intricately connect 

decomposition to wetland function also make it difficult to identify the importance of individual 

variables.  In order for decomposition to be used as a metric to judge wetland function, its 

driving forces must be better understood. 

This study examined some of the variables that drive decomposition.  Specifically, 

decomposition rates were studied in-depth at 3 mitigated and 3 reference wetlands, and more 

broadly at 8 created and 8 reference wetlands, located in the Allegheny Mountain ecoregion of 

West Virginia.  Decomposition rates were measured using the litter bag technique and 

incorporated five different litter types.  Four types of single species bags were created from 

common wetland litter species and included broadleaf cattail (Typha latifolia L.), common rush 

(Juncus effusus L.), brookside alder (Alnus serrulata (Ait.) Willd.), and reed canary grass 

(Phalaris arundinacea L.).  The fifth litter type was created from a mix of common rush, 

brookside alder, and reed canary grass.  Environmental measurements were taken throughout the 

study to determine their effect on decomposition and invertebrates were collected from litter 

bags to study the importance of biotic communities.  Fungal biomass was estimated by 

measuring the amount of ergosterol extracted from leaf litter. 

Decomposition rate constants were similar between mitigated and natural wetlands.  Reed 

canary grass had the fastest decomposition rate constant and broadleaf cattail had the slowest.  

Of the environmental parameters tested, models that included air (AT) and soil temperature (ST), 

water pH (WPH), hydroperiod (HP, proportion of days flooded), and the number of transitions 

between flooded and exposed conditions (FET) were best able to predict decomposition rate 

constants.  Overall, AT, ST, and WPH were directly related to decomposition rate constant, 

while HP was inversely related.   The FET was directly or inversely related to the decomposition 

rate constant depending on the litter type.   

For biological variables, invertebrate taxonomic groups had the strongest associations 

with decomposition trends compared to functional feeding groups or invertebrate metrics 

(abundance, richness, diversity).  Shredders, collector/gatherers, and omnivores were more 

strongly associated with early phases of decomposition, while oligochaetes and omnivores were 

most strongly associated with trends in decomposition during the later phase.  Ergosterol levels 

indicated that fungi colonized bags quickly, peaked at 35 days, and then decreased and leveled 

off by 300 days, but were not useful predictors of decomposition rate. 

 This study helps demonstrate the importance of both environmental and biological 

variables in naturally functioning systems and ultimately helps to improve wetland mitigation by 

expanding our understanding of wetland function.
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INTRODUCTION 

Wetland History and Law 

Wetlands provide many functions within an ecosystem including floodwater storage and 

retention, groundwater recharge, biological productivity, biogeochemical cycling and storage, 

wildlife and community habitat, sediment trapping, and water purification (Richardson 1994; 

Smith et al. 1995).  However, these functions have not always been recognized and valued.  

Between the 1780s and 1980s, 42 million ha (53%) of wetlands were lost in the contiguous 

United States (Dahl 1990).   

Starting in the 1970s, awareness concerning wetlands and their functions within the 

landscape began to curb widespread filling and conversion (USNRC 2001).  In 1988, the 

National Wetlands Policy Forum brought to the forefront the continued loss of wetlands in the 

United States and recommended a policy of “no net loss” of wetlands (Mitsch and Gosselink 

2007).  This recommendation was adopted by the administration of President George H. W. 

Bush, and along with the “no net loss” policy, came the requirement for the mitigation of 

wetlands to compensate for the government-approved destruction of an existing wetland.  

Wetland mitigation is intended to replace an existing wetland, or its functions, by creating a new 

wetland, restoring a former wetland, or enhancing or preserving an existing wetland.  After the 

mitigated wetland’s creation, there is a requirement for 5 years of monitoring to determine the 

success of the project (Votteler and Muir 1996).  Sections 401 and 404 of the Clean Water Act 

(CWA) grant regulatory control of most wetlands to the U.S. Army Corps of Engineers 

(USACOE) and the U.S. Environmental Protection Agency (USEPA) and require permits to be 

obtained and mitigation to be performed when dredging or filling a wetland.  A Memorandum of 
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Agreement between the USEPA and US Department of the Army, signed in 1990, clarified that 

wetland function must be replaced in addition to lost acreage (USEPA 1990). 

 On Earth Day in 2004, President George W. Bush called for a goal beyond the “no net 

loss policy,” calling for the restoration, improvement, and protection of more than 1.2 million 

hectares of wetlands in five years.  To track this progress, he directed the US Fish & Wildlife 

Service to conduct an updated wetland status and trends survey.  The findings are presented in a 

document titled, Status and Trends of Wetlands in the Conterminous United States 1998 to 2004.   

It found that between 1998 and 2004 a net gain of 77,630 ha of wetlands were created in the 

United States (Dahl 2006).   

This finding suggests two questions, the first being whether correct acreage is being 

created and reported.  Though Dahl (2006) found a net gain in acreage using aerial photography 

and field verification, it cannot be assumed that this implies acreage is being met for permitted 

projects.  Robb (2002) inventoried 345 permitted mitigation projects in Indiana and found that 

71% of palustrine forested wetlands (Cowardin et al. 1979) and 78% of wet meadow wetlands 

failed to meet the acreage requirements of their permits.   Morgan and Roberts (2003) found that 

72% of 50 mitigation projects in Tennessee had less acreage than stipulated.  Brown and 

Veneman (2001) studied 391 project files and 114 field sites in Massachusetts and found that 

64.9% failed to meet acreage requirements.  Allen and Feddema (1996) looked at 75 wetland 

projects with Section 404 permits and found that of 111.6 ha of required wetland mitigation, only 

77.3 ha (69.3%) were created.  To ensure this criterion is met requires relatively straightforward 

site visits that involve delineating the wetland boundary to ensure proper acreage. 

The second question is whether wetland function is adequately being replaced.  

According to Dahl (2006) open water and depressional wetlands were the most frequently 
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created types of wetlands contributing to the net gain in acreage.  However, 364,540 ha (4.9%) of 

freshwater shrub wetlands were lost at the same time.  Estuarine vegetated wetlands decreased 

by 13,120 ha from 1998 to 2004, while estuarine non-vegetated wetlands had a net gain of 1,620 

ha.  The report states that, “There was a substantial increase in the number of open water ponds 

as pond area increased by an estimated 12.6 percent.  Without the increased pond acreage, 

wetland gains would not have surpassed wetland losses.”  The study also states that it does not 

draw any conclusions regarding “trends in the quality of the nation’s wetlands” [emphasis added] 

(Dahl 2006).   

These trends in wetland types emphasize the importance of performing functional 

assessments of mitigated wetlands and ensuring adequate replacement of lost functions.  

Previous studies suggest that overall success is mixed.  Landscape placement of mitigated 

wetlands does not always match that of lost wetlands and affects wetland type and function 

(Bedford 1996; Hoeltje and Cole 2007, 2009).  Minkin and Ladd (2003) studied 60 mitigated 

sites to determine if they successfully met their permit objectives and found that 40 (67%) of the 

wetlands met the criteria of their permits, but that only 10 mitigated sites (17%) were adequate 

functional replacements for the impacted wetlands.  Zedler and Callaway (1999) monitored soil 

organic matter, soil nitrogen, plant growth, and plant canopies at the Sweetwater Marsh National 

Wildlife Refuge for 10 years at a 12-year-old site and found that wetland development was not 

trending towards surrounding natural conditions.  Sudol and Ambrose (2002) performed 

qualitative assessments of habitat quality at 55 projects associated with 126 ha of lost habitat and 

found that only 26 ha of mitigation was considered successful. 

In response to concerns over compensatory mitigation projects’ low functional success 

rates, the ACOE and USEPA issued updated regulations in 2008 that required measurable, 
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enforceable ecological performance standards and regular monitoring of mitigated wetlands 

(USDOD and USEPA 2008).  It will take time to determine if this new legislation is able to 

enforce successful functional replacement. 

 

Assessing Wetland Function through Litter Decomposition 

For functional performance to be fully assessed each function needs to be addressed; 

however, not all wetland functions have received equal attention.  A wide range of indicators 

have been studied to compare mitigated wetlands with reference sites, including vegetative 

communities, functional groups, and zonation (Galatowitsch and van der Valk 1996; Seabloom 

and van der Valk 2003; Balcombe et al. 2005a; Spieles 2005; Bouchard et al. 2007), wildlife 

presence and use (Brown and Smith 1998; Ratti et al. 2001; Snell-Rood and Cristol 2003; 

Balcombe et al. 2005b), fish presence and use (Shreffler et al. 1992; Williams and Zedler 1999), 

invertebrate presence (Scatolini and Zedler 1996; Brown et al. 1997; Stanczak and Keiper 2004; 

Balcombe et al. 2005c), soil composition (Bishel-Machung et al. 1996; Anderson et al. 2005; 

Bruland and Richardson 2006) or a combination of these (Confer and Niering 1992; Campbell et 

al. 2002; Edwards and Proffitt 2003; Balcombe et al. 2005d).  Far less focus has been put on 

functions such as sediment retention, biogeochemical cycling and storage, hydrologic flux and 

storage, groundwater recharge, and water purification.   

Litter decomposition has gained attention in recent years as a means of assessing wetland 

function.  Decomposition is an important component of wetland function (Richardson 1994; 

Spieles and Mora 2007) and is linked to many other wetland processes.  Physical and chemical 

properties of wetland soils are, in part, determined by the process and rate of decomposition 

(Mitsch and Gosselink 2007).  The rate and pattern of decomposition can influence nutrient 

availability and cycling (Prentki et al. 1978; Facelli and Pickett 1991), primary productivity 
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(Brinson et al. 1981), litter/organic matter accumulation (Gambrell and Patrick Jr. 1978; Xiong 

and Nilsson 1997), and seed germination (Xiong and Nilsson 1997; Taylor and Middleton 2004). 

These processes then support many other aspects and benefits wetlands provide.  Mitsch and 

Gosselink (2007) suggested that a common feature of wetland development is a shift from a 

detritus-poor to a detritus-based system over time. 

Litter decomposition also exerts influence at the ecosystem level by supporting major 

flows of energy that occur along detrital pathways (Brinson et al. 1981; Webster and Benfield 

1986).  Organic matter collecting in wetlands during the growing season or deposited during 

bankfull discharge events of nearby streams is broken down into coarse and fine particulate 

organic matter (CPOM and FPOM respectively) and dissolved nutrients that are then released 

back into streams during later flooding events.  These are important riparian wetland exports 

because they provide a nutrient source for aquatic organisms downstream (Richardson 1994; 

Dodds 2002; Mitsch and Gosselink 2007).  Additionally, waste organics and pollutants are 

deposited and decomposed in wetlands, which leads to improved water quality (Walbridge 1993; 

Mitsch and Gosselink 2007).  

Finally, decomposition can have effects on a global scale.  Decomposition is an indicator 

of a wetland’s organic matter storage potential (Richardson 1994).  Since decomposition is an 

important component in nutrient cycles, it is the only process enabling the massive recycling of 

chemical elements on the scale of whole ecosystems (Richardson 1994; Björn and Laskowski 

2006).  Slow litter decomposition in wetlands therefore contributes to global climate by 

sequestering carbon and balancing the atmospheric CO2 pool and rate of CO2 returning to the 

atmosphere (Richardson 1994; Björn and Laskowski 2006).  This is especially important in 
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wetlands because, although less than 4% of the earth’s surface is covered in wetlands, wet soils 

contain about one-third of all organic matter stored in the world’s soils (Dodds 2002).   

 

Phases of Decomposition 

Decomposition typically goes through three stages (Godshalk and Wetzel 1978; Brinson 

et al. 1981).  The first phase is rapid loss of mass from leaching and occurs within 48-92 hrs of 

inundation (Nykvist 1962; Webster and Benfield 1986).  Depending on temperature, turbulence, 

and the litter species, up to 29% of mass can be lost during the leaching phase (Petersen and 

Cummins 1974; Brinson 1977; Howard-Williams and Howard-Williams 1978).  Anderson 

(1973) attributed up to 75% of the weight losses from sweet chestnut (Castanea sativa Mill.) to 

leaching in a 31 month study, showing that though it defines the first stage, leaching can 

continue to contribute to weight loss through the second and third phases.   

The second phase of decomposition begins as rapid leaching ends and involves the 

colonization of litter by microbial organisms, which break down soft tissues.  Depending on the 

time of year and stage of the second phase, bacteria (Howard-Williams and Davies 1978; Robb 

et al. 1979) and fungi (Barlocher and Kendrick 1974; Gessner and Chauvet 1994; Findlay et al. 

2002) can drive decomposition rates.  It has been suggested that litter exposed to the air is mostly 

decomposed by fungi (Holland and Coleman 1987; Facelli and Pickett 1991) and submerged 

litter is processed by bacteria.  However, fungi can be important in submerged conditions as well 

(Mason 1976; Gessner and Chauvet 1994; Bauer et al. 2003).  Petersen and Cummins (1974) 

estimated that microbial activities caused about 30% weight loss from the original leaf mass in 

streams.  Hieber and Gessner (2002) attributed 15% and 18% mass loss of black alder (Alnus 

glutinosa (L.)Gaertn.) and crack willow (Salix fragilis L.) respectively to fungi, and 7% and 9% 

mass loss to bacteria.  
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The third and final phase of decomposition involves mechanical fragmentation of the 

litter by environmental forces, abrasion, and invertebrates (Webster and Benfield 1986; Fazi and 

Rossi 2000; Hieber and Gessner 2002; Hutchens Jr. and Wallace 2002).  Heard et al. (1999) 

found that mechanical abrasion and biological agents had similar levels of influence on litter 

decomposition rate in streams.  Many studies have shown differences in decomposition rates and 

attributed them to macroinvertebrate and detritivore presence or absence (Mason and Bryant 

1975; Coulson and Butterfield 1978; Kemp et al. 1985; Kirby 1992; Hutchens Jr. and Wallace 

2002).  Merritt and Lawson (1979) looked at litter processing in a Michigan floodplain woodland 

and found at least 29-32% of original litter weight loss was from macroinvertebrate activity.  

Hieber and Gessner (2002) attributed 64% of black alder and 51% crack willow leaf litter loss to 

invertebrates.  Many controlled studies have directly observed decomposition rate increasing 

with macroinvertebrate density (Cummins et al. 1973; Petersen and Cummins 1974; Herbst 

1982; Fazi and Rossi 2000).   

 

Variables Determining Decomposition Rate 

Decomposition is driven by three categories of variables:  biotic (microorganisms and 

invertebrates that break down litter), physical (environmental conditions the litter is in), and 

chemical (physical and nutrient composition of the litter) variables (Aerts and de Caluwe 1997).  

Physical variables exert additional control on decomposition by influencing the biotic 

communities that are present and their levels of activity (Meentemeyer 1978; Rejmánková and 

Houdková 2006; Inkley et al. 2008).   

Hydroperiod and temperature are often credited as being the two most significant factors 

that drive decomposition (Brinson et al. 1981; Webster and Benfield 1986; Batzer and Sharitz 

2006).  Temperature is positively correlated with decomposition rate (Morris and Lajtha 1986; 
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Middleton et al. 1992; Álvarez and Bécares 2006), but hydrology’s influence is less certain.  

Battle and Golladay (2001) showed that multiple flooding and exposure events yielded faster 

decomposition rates than permanently flooded conditions or a single flooded period followed by 

a dry period.  However, van der Valk et al. (1991) determined that more rapid decomposition 

occurred when litter experienced a single, longer flooded period and then dried.  Though there is 

not agreement about what type of hydrology yields the fastest decomposition rates, many studies 

have shown the importance of wet-dry cycles (Neckles and Neill 1994; Lockaby et al. 1996; 

Atkinson and Cairns 2001; Anderson and Smith 2002). 

Along with temperature and hydroperiod, many other physical variables have been 

hypothesized as influencing decomposition; however, for most alternatives studies exist both 

supporting and showing no influence on litter decomposition.   Water nutrients and quality have 

been found to increase (Davis 1991; Verhoeven and Arts 1992; Qualls and Richardson 2000) or 

be uncorrelated (Deghi et al. 1980) with decomposition rates.   pH has been shown to retard (Day 

Jr. 1987; Kittle et al. 1995; Taylor and Middleton 2004) or have no effect (Harper and Bolen 

1995) on decomposition.  Sedimentation can inhibit decomposition (Vargo et al. 1998) or have 

no effect (Atkinson and Cairns 2001).  Dissolved O2 may influence decomposition (Schipper and 

Reddy 1995) and soil moisture may be important in wetlands that have significant intervals of 

exposure (Battle and Golladay 2007). 

The chemical variables driving decomposition, sometimes referred to as litter quality, can 

be broken into 3 additional categories:  abundance of essential nutrient elements like nitrogen, 

potassium and phosphorus; fiber content and lignin; and presence of chemical inhibitors such as 

waxes, cutins (one of two waxy polymers that make up a plant’s cuticle), or tannins (Bell et al. 

1978; Webster and Benfield 1986).  Of all litter quality factors, increases in litter nitrogen and 
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the nitrogen:carbon ratio (Coulson and Butterfield 1978; Aerts and de Caluwe 1997; Poi de Neiff 

et al. 2006) and phosphorus and the phosphorus:carbon ratio (Bartsch and Moore 1985; Aerts 

and de Caluwe 1997; Rejmánková and Houdková 2006; Guo et al. 2008) are most often cited as 

causes of increased decomposition rates.  An increase in lignin is most often cited as a cause of 

depressed decomposition rates (Schwintzer 1984; Bartsch and Moore 1985; Poi de Neiff et al. 

2006).  Several studies also have shown that higher potassium and the potassium:carbon ratio 

(Bartsch and Moore 1985; Ohlson 1987) are associated with faster decomposition rates. 

 

Decomposition Study Design 

Decomposition has been studied using a variety of methods.  Leaf litter has been put out 

in enclosed mesh bags (Figure 1 & 2), called litter bags (Hodkinson 1975; Bell et al. 1978; Kittle 

et al. 1995; Battle and Golladay 2007), fastened together and anchored to mimic a natural 

obstruction’s debris accumulation, called a leaf pack (Boulton and Boon 1991; Ryder and 

Horwitz 1995), and at least one study involved unconfined litter (Cummins et al. 1980).  The 

tagging of standing dead leaves (Kuehn et al. 1999) and suspended woody debris (Rice et al. 

1997) also have been used.  Since litter quality, in part, determines decomposition rates, some 

studies have measured the decomposition of cotton strips to standardize the nutrient content of 

material between sites (Harrison et al. 1988; Trettin et al. 1996; McLaughlin et al. 2000; Penton 

and Newman 2007).  Each technique has different strengths and weaknesses, but, overall, the 

litter bag technique is most commonly used, especially in wetlands, with leaf packs being more 

common in stream studies (Webster and Benfield 1986).  The litter bag technique is the best 

method for determining and comparing decomposition rates and patterns for different plant 

species and when studying chemical changes (Berg et al. 2006).   
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Litter bag studies have a number of variables that need to be chosen and requires detailed 

planning.  Litter bag size, bag material, method of sealing the bag, litter type, litter amount, and 

mesh size are all considerations that have to be planned based on the goals of the research.  

Polyester and fiberglass meshes are commonly used.  Nylon meshes also are sometimes used, but 

contain nitrogen and cannot be used if litter nitrogen is going to be studied (Berg et al. 2006).  

Bags usually range from 10 x 10 cm to 20 x 20 cm and are sealed in a variety of ways.  Hot glue 

(Arp et al. 1999), plastic cable ties (Bedford 2005), rotex tape (Brock et al. 1985), staples (Deghi 

et al. 1980; Harper and Bolen 1995), Velcro® strips fitted to the bag (Grout et al. 1997), and 

sewing (Thormann and Bayley 1997; Anderson and Smith 2002) have all been used to shut the 

sides. 

One of the most important factors is mesh size.  Mesh size has varied from as small as 

0.25 mm (Bedford 2005) to as large as 5 x 5 cm (Cuffney and Wallace 1987) with an average 

coarse mesh size being around 5 mm and a fine mesh size around 1 mm.  Studies have shown 

that different mesh sizes can have no effect on decomposition rate (Coulson and Butterfield 

1978; Benfield et al. 1979; Brock et al. 1985; Murray-Gulde et al. 2005), but many studies have 

shown decomposition rates to be faster in larger mesh sizes (Mason and Bryant 1975; Merritt 

and Lawson 1979; Merritt and Lawson 1992; Bedford 2005).  The difference is often attributed 

to two main effects:  the size of the mesh limiting invertebrate access to the litter and allowing 

larger litter fragments to escape the bag (Brinson et al. 1981; Stewart and Davies 1989).  

However, Petersen and Cummins (1974) looked at decomposition rates in streams and suggested 

that bags with a small mesh may reduce gas and nutrient exchange rates and create an 

environment more prone to anaerobic conditions.  It also has been suggested that leaves within a 
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finer mesh are less exposed to leaching, abrasion, and fragmentation and therefore subject to 

lower loss of particles (Webster and Benfield 1986).   

 

Leaf Litter 

Litter type and amount help determine the size of the bag that is going to be used.  

Species common to wetlands are most often used and have an order of decreasing decomposition 

rates, when put into categories, of soft leaves > hard leaves and shrub shoots > mosses, lichens, 

and wood (Heal and French 1974).  Studies often involve anywhere from one to a dozen 

different species.  Litter bags may contain a single species or multiple species representing a 

natural mix of litter.  Some studies have shown that single-species decomposition rates do not 

accurately reflect ecosystem level decomposition rates as well as mixed-species litters 

(Gustafson 1943; Wardle et al. 1997; Gartner and Cardon 2004).  Mixes with dissimilar litter 

types, such as litter from trees and dicotyledonous herbs, were found to increase litter 

decomposition and may suggest a synergistic effect (Gustafson 1943; Wardle et al. 1997).   

Often, 5 to 20 g of leaf litter material is used, but as little as 0.5 to 1 g (Coulson and 

Butterfield 1978; Aerts and de Caluwe 1997) or as much as 300 g (Brock et al. 1985) have been 

used.  Leaf litter is usually collected after the plant has senesced to mimic natural processes.  

Once the litter is collected, it has to be dried to a constant mass to allow for standardized initial 

measurements.  Unfortunately, drying litter at a high temperature, such as 105 
o
C, can cause 

structural changes and loss of volatile compounds, such as terpenes (Berg et al. 2006).  Even far 

lower temperatures allow for some chemicals to volatize.  For this reason, many studies air-dry 

vegetation at room temperature for periods lasting from 24 hrs to 4 wk (Bartsch and Moore 1985; 

Hietz 1992; Aerts and de Caluwe 1997). 
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Mitigated versus Natural Wetland Litter Decomposition 

Few studies have attempted to look at differences in decomposition rates between 

mitigated and natural reference wetlands.  Atkinson and Cairns, Jr. (2001) compared litter 

decomposition of Scirpus cyperinus (L.)Kunth and Typha latifolia L. between eleven 20-year-old 

and six 2-year-old created wetlands in the Appalachian Mountains of Virginia.  They found that 

the older wetlands had faster decomposition (76% of mass remained after 507 days) than the 

younger wetlands (85%), but that both were lower than rates reported for comparable natural 

wetlands (53%).  Fennessy et al. (2008) found similar results when they conducted a study 

throughout Ohio.  They used a litter mixture of T. latifolia with Juncus effuses L. or J. tenuis 

Willd. at 10 mitigated wetlands and 9 natural wetlands, 3 of which were highly disturbed and 

treated as “non-reference” sites.  After one year, the litter in mitigated wetlands lost an average 

of 51.1% of their initial mass while litter in reference wetlands lost 62.6% on average.  They also 

found that inundated litter at natural wetlands had faster decomposition rates than litter under 

similar conditions at mitigated wetlands and suggested that other factors such as microbial 

community and litter quality were affecting the difference in decomposition rates.   

Not all studies have found litter decomposition to be slower in created wetlands.  Schmidt 

(2002) compared adjacent mitigated and natural wetlands in the coastal plain of Virginia.  

Mixtures of vegetation were created by collecting all standing material from several 1 m
2
 

quadrats in a marsh and collecting litter in leaf traps in an upland forest.  Typha sp. and S. 

cyperinus were the main marsh species and Acer rubrum L., Liquidambar styraciflua L., 

Quercus biocolor Willd., Quercus michauxii Nutt., and Magnolia virginiana L. were the main 

forest species.  He found both marsh and forest litter decomposed more quickly in the created 

wetlands than the adjacent natural wetlands, despite similar moisture regimes.  Schmidt (2002) 
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attributed some of the difference to increased temperature under the more sparsely shaded 

younger wetlands and suggested that other factors, such as differences in detritivore communities 

and direct contact with the soil at the mitigated site, may have contributed to the difference.   

Taylor and Middleton (2004) studied a reference wetland compared to a reclaimed coal-

slurry pond in the unglaciated Illinois Ozarks.  They used single species litter bags of Cyperus 

erythrorhizos Muhl., Phragmites australis (Cav.) Trin. ex Steud., Potamogeton nodosus Poir., 

and T. latifolia.  They found decomposition occurred more quickly in the coal slurry pond (k = 

2.409 yr
-1

, where k is the instantaneous exponential decay constant, as calculated by: W = exp
-kt

, 

where W is the proportion of mass remaining at time t [years]) than in the natural wetland (k = 

1.570 yr
-1

).  Taylor and Middleton (2004) attributed this to lower levels of soil pH in the natural 

wetland (5.3) than the coal slurry pond (7.9). 

Crawford et al. (2007) looked at decomposition of roots at restored and natural sites 

within the Great Dismal Swamp National Wildlife Refuge and the Alligator River National 

Wildlife Refuge in Virginia and North Carolina.  They used commercially grown 

Chamaecyparis thyoides (L.) Britton, Sterns & Poggenb. roots as a standard and native roots 

from each site.  C. thyoides roots had the same decomposition rate at all sites, but the native root 

decomposition was substantially faster on the restored sites.  The differences in decomposition 

were not due to the different environmental conditions at restored versus the natural sites, but 

were instead a product of differing litter quality.  Native roots on restored sites had lower lignin 

concentrations and higher phosphorus concentrations.  These differences emerged from there 

being substantially more woody vegetation at the reference sites and herbaceous vegetation at 

restored sites.  Crawford et al. (2007) hypothesized that once the canopy at the restored sites 
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closed and the vegetative community changed, decomposition rates would slow and eventually 

match the natural sites. 

Spieles and Mora (2007) found that environmental conditions influence decomposition 

more than wetland age.  They studied decomposition rates at three created wetlands of different 

ages, 4, 12 and 155 years, in Licking County, Ohio.  They used new leaves of Typha spp. as their 

leaf litter and found that decomposition rate constants were highest in the 4-year-old wetland (k 

= 1.61 yr
-1

), lowest in the 12-year-old wetland (k = 0.86 yr
-1

) and intermediate in the 155-year-

old wetland (k = 0.97 yr
-1

).  Spieles and Mora (2007) suggested that this finding was due to 

differences in hydrology.  The youngest wetland had a significantly greater mean depth, shorter 

drawdown duration, and less total time of exposure than the other two wetlands.   

At least one study has shown no difference between constructed and natural wetlands.  

Álvarez and Bécares (2006) studied a surface flow constructed wetland in Spain.  They found 

that T. latifolia decomposition rate constants measured in their study (k = 0.511-1.898 yr
-1

) were 

comparable to estimates reported from studies of natural wetlands.  The small number of studies 

and seemingly contradicting results make it currently impossible to describe any trends when 

comparing decomposition in constructed or mitigated wetlands with similar reference sites.   

 

Mitigated versus Natural Wetland Invertebrates 

Similar to decomposition studies, there have been few studies comparing 

macroinvertebrate communities in constructed wetlands with those found in similar natural 

wetlands.  The successful colonization of invertebrates have been mixed, with studies showing 

both comparable communities (Stanczak and Keiper 2004; Balcombe et al. 2005c; Meyer and 

Whiles 2008) and dissimilar communities (Scatolini and Zedler 1996; Fennessy et al. 2008).  

Several studies have found that dispersal ability hinders certain taxa.  Clams (Scatolini and 
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Zedler 1996), snails (Balcombe et al. 2005c; Meyer and Whiles 2008), amphipods (Meyer and 

Whiles 2008), isopods (Balcombe et al. 2005c), leeches (Meyer and Whiles 2008), and some 

hemipterans (Brown et al. 1997) have all been found to have lower abundances in created 

wetlands, which were attributed to lower dispersal rates.   

Similar abundance and diversity of species does not necessarily mean similar community 

compositions.  Fennessy et al. (2008) compared mitigated and natural wetlands in Ohio and 

found that there were major differences in taxa richness and relative abundance of several 

invertebrate groups.  Natural wetlands were high in numbers of dytiscid beetle, chironomids, 

dipterans and total taxa richness, while mitigated sites had higher mayfly and caddisfly taxa.  

This was mainly due to the two mayfly genera, Caenis and Callibaetis, which were found in high 

numbers at mitigated sites, are considered facultative to pollution tolerant, and were found in less 

than half of the natural wetlands.  Even Balcombe et al. (2005c), who found that overall familial 

richness, diversity, density and biomass were similar between mitigated and reference wetlands, 

noted some differences in community composition. The few observed differences were 

attributable to differences in vegetative community composition and structure, but were not 

considered detrimental to the wetlands ability to support anuran and avian wildlife. 

 

Success of Appalachian Mitigated Wetlands Compared to Natural Reference Wetlands 

 Trends for Appalachian mitigation projects seem to align with national trends, showing 

mixed results when observing different measures of success.  Cole and Shafer (2002) studied 23 

wetlands in central Pennsylvania and found that about 60% were considered successful based on 

their permit criteria. Hoeltje and Cole (2007) looked at hydrogeomorphic functional assessment 

models and found that created sites differed significantly from natural wetlands and that most of 

the differences observed were related to unnatural hydrologic regimes and to the characteristics 
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of the surrounding landscape.  Hoeltje and Cole (2009) found that created wetlands were farther 

from natural wetlands and had smaller mean forest patch sizes within a 1-km-radius circle 

around them than did the reference sites, indicating less hydrologic connectivity. Created 

wetlands also had less microtopographic variation than reference wetlands.  In each study they 

concluded that created wetlands were not fulfilling the criteria for successful wetland mitigation.   

Hydrology has been shown to be both successfully and unsuccessfully replicated in 

Appalachian mitigated wetlands.  Cole and Brooks (2000) conducted a study comparing 

hydrologic characteristics of natural and created floodplain wetlands in central Pennsylvania.  

The created wetlands were found to be generally wetter, and wetter for longer periods than 

natural sites, and had a larger component of open water at each site.  The natural wetlands had 

deeper median depth to water, shorter periods where soils were saturated or inundated, and a 

lower percentage of time where water was in the root zone.  Cole and Brooks (2000) suggested 

that in the haste to create wet sites, mitigation projects may be creating conditions that are more 

wet than naturally found in central Pennsylvanian wetlands.  This contradicts Copen (2004), who 

studied hydrology in three mitigated and one natural wetland in West Virginia.  He found that 

mitigated wetlands were performing well compared to the reference sites, with the exception of a 

few areas within the wetlands that were drier than natural sites.  Copen (2004) also found that 

groundwater was the primary source of hydrologic inputs for areas where wetland conditions 

were successfully created. 

Soil properties in Appalachian mitigated wetlands seem to be less successfully replicated.  

Bishel-Machung et al. (1996) studied soil properties in 20 reference wetlands and 44 wetland 

creation projects (age = 1-8 years, x = 4)  in Pennsylvania and found differences between 

wetland types.  Wetland creation projects contained more sand and less clay than reference 
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wetlands at a depth of 20 cm, and reference wetlands were siltier and higher in organic matter 

content at 5 cm.  The differences in soil organic matter contents resulted in reference wetlands 

having lower pH, bulk density, and matrix chroma and higher total nitrogen than created 

wetlands.  Neither site landscape position nor dominant cover type accounted for the variation in 

soil organic matter between reference and created sites.  Campbell et al. (2002) also looked at 

soil conditions in 14 natural and 12 created wetlands in Pennsylvania and found results similar to 

Bishel-Machung et al. (1996).  Soils in created wetlands had less organic matter content, greater 

bulk densities, higher matrix chroma, and more rock fragments than reference wetlands. Soils in 

reference wetlands had clay loam textures with high silt content, while sandy clay loam textures 

predominated in the created sites.   

 Campbell et al. (2002) also studied vegetation features.  Reference wetlands had greater 

species richness and total cover, while created wetlands included a greater proportion of upland 

species.  They also noted that there were significant differences between ages, but the differences 

were not necessarily trending towards natural systems in older wetlands.  In their study of 

Section 404 wetlands in Pennsylvania, Cole and Shafer (2002) note that estimates of the percent 

cover of emergent vegetation was the only success criterion specified in the majority of permits.  

However, despite this emphasis on vegetation, and a net gain of about 0.05 ha of wetlands per 

mitigation project, replacement of emergent, scrub–shrub, and forested wetlands with open water 

ponds or uplands had probably led to a net loss of vegetated wetlands.   

In contrast to these results, Balcombe et al. (2005a) found favorable results when 

comparing vegetation at 11 mitigated and 4 natural wetlands in West Virginia.  Mean total 

percent cover and mean weighted averages of plant communities were found to be similar 

between mitigated and natural sites.  Species richness, evenness, and diversity were found to be 
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greater at mitigated wetlands; however, they also tended to have more pioneer species, non-

native dominants, and species with relatively lower conservation quality.  Balcombe et al. 

(2005a) concluded that mitigated sites adequately supported hydrophytic vegetation and 

appeared to be developing vegetation similar to reference standards. 

 Appalachian mitigated wetlands do seem to be successful at providing wildlife habitat, 

with studies showing that mitigated wetlands had higher anuran species richness, diversity, 

Wisconsin index calling values, and abundance (Petranka et al. 2003; Balcombe et al. 2005b) 

and similar avian species richness, diversity and abundance (Balcombe et al. 2005b) as reference 

wetlands.  Balcombe et al. (2005d) evaluated invertebrate, avian, anuran, and vegetative 

communities along with habitat quality for eight wetland-dependent wildlife species (one reptile, 

one amphibian, three mammals, and three bird species).  Wetland ranks were then assigned 

based on several parameters that included richness, abundance, diversity, density and biomass.  

Mitigated wetlands were found to consistently score lower (better) than reference wetlands 

across all communities (Balcombe et al. 2005d).   

Similar numbers of individuals do not necessarily mean similar habitat use.  Hartwig and 

Kiviat (2007) found that though Blanding’s turtles (Emydoidea blandingii) used all constructed 

and adjacent natural wetlands in New York, they used the different types of wetlands for 

different purposes.  Blanding’s turtles appeared to be using the constructed wetlands to bask and 

forage in the spring and early summer, but moved to deeper wetlands in late summer when the 

constructed wetlands dried up or became too warm.  Constructed wetlands provided good 

basking habitat due to shallower water, less tree cover, and abundant basking logs compared to 

the natural wetlands.  Though the constructed wetlands were readily used by the turtles, they did 
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not provide the same habitat role as natural wetlands.  Hartwig and Kiviat (2007) concluded that 

attributing a positive or negative value to their findings was impossible.   

 There is a need to briefly revisit the studies of Atkinson and Cairns, Jr. (2001) and 

Balcombe et al. (2005c) mentioned in previous sections because of their relevance to 

Appalachian studies.  Atkinson and Cairns, Jr. (2001) studied decomposition rates between 

mitigated and natural wetlands in West Virginia and found that the older mitigated wetlands had 

faster decomposition than the younger mitigated wetlands, but that both were lower than rates 

reported for comparable natural wetlands.  Balcombe et al. (2005c) studied invertebrates at 11 

mitigated and 4 natural wetlands in West Virginia and found that they generally supported 

similar invertebrate assemblages, especially among benthic populations.   

 Overall, it appears that hydrology and soil composition seem to have mixed levels of 

success when compared to natural systems.  These in turn influence wetland vegetation and lead 

to varying levels of success.  Despite these differences, wildlife appears to have similar diversity 

and richness in mitigated and natural wetlands.  However, community composition and how 

habitat is used may differ between the wetland types.   

 

OBJECTIVES 

 This project was split into a primary and secondary study.  The objective of the primary 

study was to assess wetland function by evaluating and comparing litter decomposition rates at 

freshwater palustrine mitigated (n = 3) and natural reference (n = 3) wetlands in West Virginia.  

The specific objects were: 

1. To compare decomposition rates for mitigated versus natural wetlands. 

2. To determine rates and trends of decomposition for five different litter types: broadleaf 

cattail (T. latifolia.), common rush (J. effusus), brookside alder (Alnus serrulata 
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(Ait.)Willd.), reed canary grass (Phalaris arundinacea L.), and a mix of common rush, 

reed canary grass, and brookside alder. 

3. To determine the effect environmental variables (hydrology, soil moisture, temperature 

and pH) play in litter decomposition rates and compare results from mitigated to 

reference wetlands. 

4. To determine the effect that biotic variables (macroinvertebrate familial diversity, 

abundance and biomass, along with fungal biomass) have on decomposition rates and 

compare this effect between mitigated and natural wetlands. 

5. To investigate the feasibility of using decomposition of a known litter as a means of 

assessing wetland function. 

Based on my literature review, I created the following hypotheses.  I hypothesized that 

decomposition rates would be greater in mitigated than natural wetlands.  I hypothesized that 

differences in hydrology, more frequent and longer inundation periods along with higher soil 

moisture at mitigated sites, would cause increased decomposition rates at mitigated wetlands.  I 

believed the average soil moisture at the mitigated sites, in non-inundated areas, would be higher 

than the average soil moisture found at the reference wetlands and would cause faster 

decomposition.  I also hypothesized that temperature and pH would be positively correlated with 

decomposition rate, but that these variables would be similar among sites.   

I hypothesized that decomposition rates would vary between litter types.  I hypothesized 

that brookside alder and the mixed litter would have faster decomposition rates and that cattail 

would have a slower decomposition rate.  I hypothesized that the order of litter type 

decomposition rates would not vary greatly between wetlands. 
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I hypothesized that decomposition rate would change over time.  I believed there would 

likely be an initial period of leaching with rapid mass loss, followed by an intermediate period of 

microbial decomposition and conditioning that would end with a slow period of mechanical and 

invertebrate fragmentation.   

I hypothesized that fungal and macroinvertebrate presence would be positively correlated 

with decomposition, but to a lesser degree than hydroperiod or temperature.  I believed that 

decomposition rates would correlate with differences in macroinvertebrate abundance, familial 

diversity and biomass, but would not vary between mitigated and natural wetlands.  I 

hypothesized that fungal biomass would be greater in reference wetlands and would have a weak 

positive correlation with decomposition rates. 

Based on the above statements, the following null hypotheses were analyzed: 

1. There is no difference between average decomposition rates at reference and mitigated 

wetlands. 

2. Decomposition rate does not change over time. 

3. Decomposition rate is independent of litter type. 

4. Decomposition rate is independent of environmental variables and there is no difference 

in environmental variables between mitigated and natural wetlands. 

5. Decomposition rate is independent of biotic variables and there is no difference in biotic 

variables between mitigated and natural wetlands. 

The objective of the secondary study was to assess wetland function throughout West 

Virginia by evaluating and comparing litter decomposition rates at freshwater palustrine created 

(n = 8) and natural reference (n = 8) wetlands.  The specific objects were: 

1. To compare decomposition rates for created versus natural wetlands. 
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2. To determine how decomposition rate changes with created wetland age. 

I hypothesized that decomposition rates would be greater in mitigated than natural 

wetlands.  I also hypothesized that younger created wetlands would have faster decomposition 

rates than older wetlands, and that decomposition rate would trend towards rates comparable 

with those found in natural wetlands.   

Based on the above statements, the following null hypotheses were analyzed: 

1. There is no difference between average decomposition rates at reference and mitigated 

wetlands. 

2. Decomposition rate does not change with created wetland age. 

 

STUDY SITES 

This study was conducted in West Virginia, which is located in the mid-Atlantic region 

of the U.S.  Study sites are broken up into two groups, primary study sites and secondary study 

sites.  Six wetlands made up the primary study sites (Figure 3) and were comprised of three 

mitigated (Leading Creek, Sugar Creek, and Hazelton) and three reference wetlands 

(Meadowville, Upper Deckers Creek, and Bruceton Mills).  Primary study sites were included in 

an in-depth decomposition study that included five litter types and ran from December 2007 

through December 2009, along with a secondary study that used only T. latifolia in litter bags 

and ran from November 2008 through November 2009.  Ten additional wetlands were used in 

the secondary study (Figure 4) and were comprised of five created (Enoch Branch, Pedlar 

Wildlife Management Area [WMA], Upper Deckers Creek WMA, Elk Run, and VEPCO) and 

five reference wetlands (Muddlety, Indian Creek, Kanes Creek, Thomas Airfield, and Glade 

Run).   
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All but 2 of the study sites (Indian Creek and Pedlar Wildlife Management Area) were 

located in the Allegheny Mountains ecoregion, which runs up the middle of West Virginia and 

separates the Allegheny Plateau ecoregion from the Ridge and Valley ecoregion (Bailey 1983).  

In the Allegheny Mountain ecoregion, mountain ridges can reach between 1,200 and 1,375 m in 

elevation.  The remaining 2 study sites were located on the edge of the Allegheny Mountains, in 

the Allegheny Plateau ecoregion of the state, which is the unglaciated ecoregion to the west.  

Most of the ridges in this part of the state are 450 m or less in elevation.   

Reference wetlands were chosen based on their proximity to mitigated sites; similarity in 

elevation, size, and wetland classification; and their relative degree of disturbance.  Reference 

wetlands ranged in elevation from 275 to 965 m ( x = 596, S.E. = 84) and in size from 0.7 to 11.7 

ha ( x = 5.0, S.E. = 1.6) (Table 1).  Created wetlands ranged in age from 2 to 40 years ( x = 15.1, 

S.E. = 4.5), in elevation from 335 to 1,020 m ( x = 615, S.E. = 75), and in size from 0.1 to 17.0 

ha ( x = 5.9, S.E. = 1.9).  Relief was minimal in all wetlands, most of which were located in 

floodplains.  Almost all created wetlands had some level of disturbance on their edge in the form 

of roads with moderate to heavy traffic, houses, grazing, or cultivated land.  Many of the 

reference wetlands also had some amount of disturbance adjacent to them in the form of roads 

with light to heavy traffic, tree plantations, railroad tracks converted to a hiking/biking trail, 

grazing, or cultivated land.   

 

Primary Study Sites 

Upper Deckers Creek 

 The Upper Deckers Creek wetland (Figure 5 & 6) is a reference site located about 1 km 

southwest of Masontown, Preston County.  The site is a 2.1 ha oxbow wetland off Deckers Creek 

and is comprised mainly of palustrine aquatic bed, unconsolidated bottom, emergent persistent 
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and scrub-shrub wetland types.  The wetland is long and narrow, with a forested slope on its east 

side and a narrow fallow field separating it from Deckers Creek on the west side.  During wetter 

portions of the year, Deckers Creek overflows its banks and fills the wetland, causing its water 

levels to be flashy at times.  Reed canary grass, cowlily (Nuphar lutea ssp. advena 

(L.)Sm.(Ait.)), marsh purslane (Ludwigia palustris (L.)Ell.), and buttonbush (Cephalanthus 

occidentalis L.) are dominant species.   

Meadowville 

 The Meadowville wetland (Figure 7 & 8) is a reference site located in Meadowville, 

Barbour County.  It is 6.6 ha and is part of a bottomland wetland complex that straddles Glady 

Fork, a tributary of Sugar Creek.  The site was historically grazed, but became too moist and 

grazing was stopped about 40 years ago (Copen 2004).  Meadowville wetland is long and 

narrow, with a wooded slope running most of its west side and State Route 92 on its eastern 

edge.  Groundwater, direct rainfall, and surface water runoff are the primary sources of water 

(Copen 2004).  It is comprised of both emergent persistent and scrub-shrub habitat dominated by 

cattail, tussock sedge (Carex stricta Lam.), rice cutgrass (Leersia oryzoides (L.)Sw.), blue-joint 

grass (Calamagrostis canadensis var. canadensis (Michx.)Beauv.), and brookside alder. 

Bruceton Mills 

 The Bruceton Mills wetland (Figure 9 & 10) is a reference site located about 2.9 km 

north of Bruceton Mills, Preston County.  The site is the remnant of a beaver (Castor 

canadensis) pond and is comprised mainly of emergent persistent and scrub-shrub wetland.  The 

wetland is surrounded by a spruce plantation on the north, wooded hill slopes on the east and 

south, and grazed scrubland and farmland to the west.  An unnamed tributary of Glade Run flows 

through the wetland and is a primary source of water along with hillside runoff.  Reed canary 
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grass, rice cut grass, cattail and brookside alder are all present in good numbers, but reed canary 

grass is by far the dominant species. 

Leading Creek 

 The Leading Creek wetland (Figure 11 & 12) is a mitigated site that was built in 1996 by 

the West Virginia Division of Highways (DOH) as a mitigated wetland for the Appalachian 

Corridor H highway project.  It is located about 4 km south of Montrose in Randolph County.  

The wetland is 8.6 hectares in size and has wetland cells (unconnected portions of a single 

wetland complex) on both sides of Leading Creek.  It is bordered by a wooded hillside to the 

west, the Allegheny Highlands Trail and US Route 219 to the east, and farmland to the north and 

south.  Leading Creek wetland is a mix of unconsolidated bottom, aquatic bed, emergent 

persistent, scrub-shrub, and young forested wetland types.  The wetland receives water from a 

culvert that runs under US Route 92, surface runoff from the hillside, a natural seep, occasional 

overbank flooding, and groundwater (Copen 2004).  Hop sedge (Carex lupulina Muhl. ex 

Willd.), common and woodland rushes (J. subcaudatus var. subcaudatus (Engelm.) 

Coville&Blake), smartweed (Polygonum hydropiperoides Michx; P. persicaria L.), rice cutgrass, 

and brookside alder are dominant species.   

Sugar Creek 

 The Sugar Creek wetland (Figure 13 & 14) is a mitigated site that was built in 1995 by 

the DOH as a mitigated wetland for the Appalachian Corridor H highway project and is located 

about 3 km southwest of Meadowville in Barbour County.  Sugar Creek wetland is comprised of 

multiple unconnected cells on both sides of Sugar Creek and has emergent, open water, and 

scrub-shrub area.  Groundwater, surface flow, rainfall, and occasional overbank flooding are the 

primary sources of water (Copen 2004).  The wetland is surrounded by wooded hills with a sliver 
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of cleared fallow slope to the north.  Reed canary grass, wool grass (Scirpus cyperinus (L.) 

Kunth), woodland rush, American burreed (Sparganium americanum Nutt.) and brookside alder 

are all dominant species. 

Hazelton 

 

The Hazelton wetland (Figure 15 & 16) is a mitigated wetland located at the Hazelton 

exit (exit 29) of Interstate 68.  The wetland was created in 2006 as a mitigated site for the Mon-

Fayette Expressway system project.  Two stream channels, Cherry Run and Mill Run, converge 

into Little Sandy Creek within the main cell.  Two additional cells are located adjacent to County 

Route 5/7 in the northwest corner of the site.  Interstate 68 runs south of the wetland, County 

Route 5 runs to the east, County Route 5/7 runs to the north, and a small amount of wooded and 

scrubland lies to the west.  Flooding from the three streams is the primary source of water, along 

with runoff from roads.  It is primarily palustrine unconsolidated bottom, aquatic bed, and 

emergent types.  Broadleaf cattail, common and narrowpanicle rush (J. brevicaudatus (Engelm.) 

Fernald), white and red clover (Trifolium repens L.; T. pretense L.), and beggar-tick (Bidens sp.) 

are all dominant species. 

 

Secondary Study Sites 

Muddlety 

 

 The Muddlety reference wetland (Figure 17 & 18) is about 4.0 km north of Summersville 

in Nicholas County.  It is a semipermanently to permanently flooded bottomland complex 

dominated by shrub thickets consisting of swamp rose (Rosa palustris Marsh.) and silky cornel 

(Cornus amomum P.Mill.), as well as emergent marshes of American burreed and cattail 

(Balcombe 2003).  US Route 19 and County Route 19/41 run to the northwest and scattered 

fields and wooded hills lie to the north, east and south. 
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Indian Creek 

 The Indian Creek reference wetland (Figure 19 & 20) is about 4.0 km southeast of 

Arnettsville in Monongalia County.  The wetland lies in the confluence of Indian Creek and 

Monongahela River and is a delta wetland.  It lies between Indian Creek to the south and County 

Road 45 and a wooded hillslope to the north.  It is an emergent persistent wetland and broadleaf 

cattail is the dominant species. 

Kanes Creek 

The Kanes Creek reference wetland (Figure 21 & 22) is about 0.75 km southeast of 

Reedsville in Preston County.  The wetland is a forested semipermanently flooded to 

permanently flooded bottomland complex that lies along Kanes Creek.  The Mon River Rail 

Trail System: Deckers Creek Trail follows the wetland complex along its north end and there is 

forest and scattered fields around the wetland.  The Kanes Creek is impacted by acid mine 

drainage (AMD), but no visual evidence of AMD, associated with other portions of the stream, 

were present at the study site. 

Thomas Airfield 

The reference wetland at the Thomas airfield (Figure 23 & 24) is about 0.7 km northwest 

of Thomas in Tucker County.  The land is privately owned by Western Pocahontas Properties.  

The wetland complex is a series of beaver impoundments, with the largest impoundment being 

about 1.8 ha.  An unnamed tributary of the North Fork Blackwater River runs through the site.  It 

is primary unconsolidated bottom, aquatic bed, and emergent wetland.  The wetland is 

surrounded by a pine plantation to the south and wooded hills to the east, west, and north.  
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Glade Run 

 The Glade Run wetland (Figure 25 & 26) is a reference beaver impoundment wetland in 

the Canaan Valley National Wildlife Refuge and is about 9.0 km east of Davis in Tucker County.  

It is connected to a larger 1,672 ha wetland complex.  Glade Run flows through the wetland and 

is the primary source of water.  It is aquatic bed and emergent and is surrounded by scrub-shrub, 

emergent, and aquatic bed wetland along with forested slope. 

Enoch Branch  

 The Enoch Branch mitigated wetland (Figure 27 & 28) was created by DOH in 1997 as 

compensatory mitigation for the construction of US Route 19 (Corridor L).  It is located about 

4.0 km north of Summersville in Nicholas County and contains 2 main cells totaling 3.4 ha in 

size.  It consists of 1.0 ha of emergent, 2.0 ha of open water and aquatic bed, and 0.4 ha of scrub-

shrub wetland (Balcombe 2003).  Both cells are semipermanently to permanently flooded open 

water ponds with patches of common rush and the western cell contains brookside alder along its 

perimeter.  The wetland is surrounded by forested hill slope and a gravel road runs to the south. 

Pedlar Wildlife Management Area 

 The Pedlar WMA wetland (Figure 29 & 30) was created in 2006 by the WV Division of 

Natural Resources (DNR) to create wildlife habitat in the Pedlar WMA (Mike Peters, per. 

comm.).  It is located about 4.2 km from Cassville in Monongalia County.  It is a small wetland 

purposely created on the upslope side of a road cut into a hillside.  The road lies to the north and 

forested hillside surrounds the remainder of the wetland.   It is an aquatic bed and emergent 

wetland and hillside runoff is the primary source of water. 
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Upper Deckers Creek Wildlife Management Area 

 The Upper Deckers Creek WMA created wetland (Figure 31 & 32) is a reservoir open 

water wetland that was created through the impoundment of Dillan Creek.  It was constructed in 

1968 by the Monongahela Soil Conservation District, but it is unclear whether or not it was part 

of a mitigation project (Mike Peters, per. comm.).  Two impoundments (2.6 ha and 3.9 ha) were 

created and in 1974 DNR acquired the property.  It is located 1.9 km northwest of Reedsville in 

Preston County and is primarily unconsolidated bottom and aquatic bed with some emergent 

wetland area.  Along the southwestern portion of the wetland are a narrow forested stand and 

private residence and farm fields are scattered on all sides.   

Elk Run 

 The Elk Run mitigated wetland (Figure 33 & 34) was constructed in 1981 as mitigation 

for the Island Creek Coal Company’s creation of the Alpine Mine Complex Treated Water 

Impoundment (Balcombe 2003).  The site is now owned and managed by Consol Energy.  The 

site represents the enhancement and expansion of existing wetlands, associated with Elk Run, 

through the creation of water control structures.  It is located about 10.0 km north of Davis in 

Grant County.  It consists of two cells connected by a large dike.  The first cell is a large 

permanently flooded open water pond, while the second cell is temporarily flooded and 

dominated by rough arrowwood (Viburnum dentatum L.) and cattail (Balcombe 2003).  It is 3.8 

ha in size and consists of 0.4 ha emergents, 3.3 ha open water, and 0.1 ha scrub-shrub areas 

(Balcombe 2003).  The wetland is near mine land, but is surrounded by forest, with only a 

narrow stand of forest separating the wetland from the grassy contoured mine land to the north.  

Elk Run is impacted by acid mind drainage, but it does not seem to flow into the wetland. 
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VEPCO 

 The Virginia Electric and Power Company (VEPCO) wetland (Figure 35 & 36) was 

constructed in 1995 as mitigation for the creation of the Phase A Flue Gas Desulfurization By-

Product Facility at the Mount Storm Power Station (Balcombe 2003).  The site is now owned 

and managed by Dominion Resources Inc.  It is located 10.3 km from Davis in Tucker County 

and is 0.4 km off State Route 93 on A-frame Road.  The total mitigation area is 7.0 ha in size, 

consisting of 5.9 ha emergents, 0.9 ha open water, and 0.2 ha scrub-shrub areas (Balcombe 

2003). The 3 cells are separated by a series of dikes and each consists of 1 or 2 open water areas 

separated by temporarily flooded emergent vegetation.  The wetland is surrounded by forest on 

all sides.   

 

STUDY SPECIES 

 Four common wetland species were used in this study:  broadleaf cattail, common rush, 

brookside alder, and reed canary grass.  Cattail is a native wetland species that is an erect, 

rhizomatous, perennial aquatic growing to 3 m tall, with creeping rhizomes up to 70 cm long and 

from 0.5 to 3 cm in diameter (Mitich 2000).  Cattail is common throughout the United States and 

temperate and tropical places worldwide.  It occurs in coastal and valley marshes at elevations 

lower than 2,000 m (Hickman 1993).  Its ubiquitous distribution has led to it being used 

extensively in decomposition studies.  Previous studies have measured decomposition rate 

constants ranging from 0.17 to 1.50 yr 
-1

 (Middleton 1994; Álvarez and Bécares 2006; Spieles 

and Mora 2007) using the exponential decay model yt / yo = e
-kt

, where yo = initial litter mass, yt 

= litter mass at time t, and k is the decomposition rate constant (Olson 1963). 

 Common rush is a slow spreading, clump forming, grass-like perennial with short, finely 

divided rhizomes that are 15 to 25 centimeters long, growing from 0.6 to 5 centimeters beneath 
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the soil surface (Stevens 2003).  It is a wetland species that has a range including much of North 

America, Mexico, and Eurasia (Hickman 1993).  Common rush has decomposition rate constants 

that range from 0.36 to 2.04 yr
 -1

 (Kittle et al. 1995; Kuehn et al. 2000).  Kittle et al. (1995) 

compared common rush and broadleaf cattail decomposition rates in three wetlands receiving 

acid mine drainage in West Virginia and found that broadleaf cattail decomposed faster at all 

three sites. 

Brookside alder is a native nitrogen-fixing, thicket-forming shrub or small tree with dark, 

green foliage.  It can grow up to 3.5 m tall and produces nitrogen through the activity of 

nitrogen-fixing bacteria located in its root nodules.  Brookside alder has a distribution that covers 

the eastern U.S., from Florida to Maine and west to Oklahoma, Missouri and Illinois (Northeast 

Plant Materials Program 2006).  There are no decomposition rate constants for brookside alder in 

the literature, but stream studies have reported values of 0.908-2.701 yr
 -1

 for European alder 

(Alnus glutinosa (L.) Gaertn.) (Chauvet 1987; Scheiring 1993; Pereira et al. 1998).  Stream 

studies have shown that alder leaves in general break down more rapidly that other species, 

despite the fact that they are woody (Hart and Howmiller 1975; Sedell et al. 1975; Gessner et al. 

1991).  Wedderburn and Carter (1999) found that deciduous N-fixing tree species decomposed 

faster than other species in a silvopastoral system and attributed it to low lignin and C 

concentrations and high N content.  These results agree with many wetland litter decomposition 

studies (Coulson and Butterfield 1978; Bartsch and Moore 1985; Neely and Davis 1985; Ohlson 

1987; Aerts and de Caluwe 1997; Poi de Neiff et al. 2006).   

 Reed canary grass is a rhizomatous perennial grass that can reach 0.9 to 1.8 meters in 

height (Weinmann et al. 1984).  It is possible that it was native to North America, but European 

cultivars have been widely introduced for use as hay and forage and there are no easy traits to 
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differentiate between the native and European cultivars (White et al. 1993).  Reed canary grass 

forms dense, highly productive single species stands that inhibit and suppress many other 

wetland species (Apfelbaum and Sams 1987).  Hough and Cole (2009) measured reed canary 

grass decomposition rate constants of 1.55-4.19 yr
 -1

 at 14 wetlands in Pennsylvania and Kao et 

al. (2009) measured 68% mass remaining at the end of 150 d in New York.  Kao et al. (2009) 

also measured decomposition rates for common rush and found they were similar to reed canary 

grass.  They found that reed canary grass exhibited a strong capacity for N and P accumulation, 

but had a low capacity for retention of nutrients in aboveground litter.  This contrasted with 

common rush, which had high accumulation and retention of N and P (Kao et al. 2009). 
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Table 1.  List of 8 created and 8 reference wetland study sites in West Virginia, including site name, year constructed, size (ha), source builder, elevation (m 

above sea level), Universal Transverse Mercator (UTM) coordinates, basin, and watershed, 2007-2009. 

                  

Site name Year Size  Source Elev. UTM Y UTM X Basin Watershed 

  (ha)  (m)     

Created Wetlands                 

Leading Creek 1995 17.0 Division of Highways 600 4321563 602550 Tygart Valley Leading Creek 

Sugar Creek 1995 11.0 Division of Highways 490 4328850 591470 Tygart Valley Laurel Creek 

Hazelton 2006 2.7 Division of Highways 560 4390990 625708 Cheat River Little Sandy Creek 

Pedlar WMA 2006 0.1 Division of Natural Resources 335 4393134 575877 Dunkard Creek Dunkard Creek 

Upper Deckers WMA 1968 3.5 Monongahela Soil  520 4375719 602837 Monongahela River Upper Deckers Creek 

     Conservation District      

Elk Run 1981 3.8 Island Creek Coal Co. 830 4341542 636104 North Branch of Elk Run 

         the Potomac  

VEPCO 1995 5.7 Virginia Electric Power Co. 1020 4338218 641309 Cheat River Blackwater River 

Enoch Branch 1997 3.4 Division of Highways 570 4248058 513819 Gauley River Muddlety  Creek 

         

Reference Wetlands                 

Meadowville - 11.7 - 480 4330920 593940 Tygart Valley Laurel Creek 

Upper Deckers Creek - 2.1 - 515 4377282 602193 Monongahela Upper Deckers Creek 

Bruceton Mills - 1.4 - 515 4393306 615536 Cheat River Big Sandy Creek 

Indian Creek - 0.7 - 275 4379544 580789 Monongahela River Monongahela River 

Kanes Creek - 8.9 - 520 4373209 603528 Monongahela River Upper Deckers Creek 

Thomas Airfield - 3.5 - 940 4335279 629233 Cheat River Blackwater River 

Glade Run - 1.7 - 965 4328921 641158 Cheat River Blackwater River 

Muddlety - 10.4 - 560 4248673 516774 Gauley River Muddlety Creek 

         
 

 

 

 



 

 47 

 
 

Figure 1.  Photograph of litter bag with mixed litter type and coarse (2.8 mm) mesh. 

 
 

 
 
Figure 2.  Photograph of the 4 single species (reed canary grass, broadleaf cattail, brookside alder, and common 

rush) litter bags with fine (1.27 mm) mesh. 
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Figure 3.  Six primary study sites included in the primary study that ran from December 2007 through December 

2009.  Wetland sites were comprised of three mitigated and three reference wetlands, in the Allegheny Mountain 

region of West Virginia, USA. 
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Figure 4.  Sixteen study sites included in the secondary study that ran from November 2008 through November 

2009.  Study sites were comprised of eight created and eight reference wetlands located primarily in the Allegheny 

Mountain ecoregion of West Virginia, USA. 
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Figure 5.  Aerial photograph of Upper Deckers Creek reference wetland showing wetland perimeter and litter 

decomposition transects.  (Aerial photograph provided by WV GIS Tech Center) 

 

 



 

 51 

 
 
Figure 6.  Photograph of Upper Deckers Creek reference wetland, West Virginia, taken in October 2007.  (Photo 

taken by Ann Anderson.) 
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Figure 7.  Aerial photograph of Meadowville reference wetland showing wetland perimeter and litter decomposition 

transects.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 8.  Photograph of Meadowville reference wetland, West Virginia, taken in August 2009. 
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Figure 9.  Aerial photograph of Bruceton Mills reference wetland showing wetland perimeter and litter 

decomposition transects.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 10.  Photograph of Bruceton Mills reference wetland, West Virginia, taken in February 2009. 
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Figure 11.  Aerial photograph of Leading Creek mitigated wetland showing wetland perimeter and litter 

decomposition transects.  (Aerial photograph provided by WV GIS Tech Center) 

 



 

 57 

 
 

Figure 12.  Photograph of Leading Creek mitigated wetland, West Virginia, taken in July 2008. 
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Figure 13.  Aerial photograph of Sugar Creek mitigated wetland showing wetland perimeter and litter decomposition 

transects.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 14.  Photograph of Sugar Creek mitigated wetland, West Virginia, taken in July 2008. 
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Figure 15.  Aerial photograph of Hazelton mitigated wetland showing wetland perimeter and litter decomposition 

transects.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 16.  Photograph of Hazelton mitigated wetland, West Virginia, taken in October 2007. 
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Figure 17.  Aerial photograph of Muddlety reference wetland showing wetland perimeter and placement of litter 

decomposition bags.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 18.  Photograph of Muddlety reference wetland, West Virginia, taken in August 2009. 
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Figure 19.  Aerial photograph of Indian Creek reference wetland showing wetland perimeter and placement of litter 

decomposition bags.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 20.  Photograph of Indian Creek reference wetland, West Virginia, taken February 2009. 
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Figure 21.  Aerial photograph of Kanes Creek reference wetland showing wetland perimeter and placement of litter 

decomposition bags.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 22.  Photograph of Kanes Creek reference wetland, West Virginia, taken in February 2009. 
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Figure 23.  Aerial photograph of Thomas Airfield reference wetland showing wetland perimeter and placement of 

litter decomposition bags.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 24.  Photograph of the Thomas Airfield reference wetland, West Virginia, taken in August 2009. 
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Figure 25.  Aerial photograph of Glade Run reference wetland showing wetland perimeter and placement of litter 

decomposition bags.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 26.  Photograph of Glade Run reference wetland, West Virginia, taken in September 2008. 
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Figure 27.  Aerial photograph of Enoch Branch created wetland showing wetland perimeter and placement of litter 

decomposition bags.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 28.  Photograph of Enoch Branch created wetland, West Virginia, taken in May 2008. 
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Figure 29.  Aerial photograph of Pedlar Wildlife Management Area created wetland showing wetland perimeter and 

placement of litter decomposition bags.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 30.  Photograph of Pedlar Wildlife Management Area created wetland, West Virginia, taken in February 

2009. 
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Figure 31.  Aerial photograph of Upper Deckers Creek Wildlife Management Area created wetland showing wetland 

perimeter and placement of litter decomposition bags.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 32.  Photograph of Upper Deckers Creek Wildlife Management Area created wetland, West Virginia, taken 

in February 2009. 
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Figure 33.  Aerial photograph of Elk Run created wetland showing wetland perimeter and placement of litter 

decomposition bags.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 34.  Photograph of Elk Run created wetland, West Virginia, taken in August 2009. 
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Figure 35.  Aerial photograph of VEPCO created wetland showing wetland perimeter and placement of litter 

decomposition bags.  (Aerial photograph provided by WV GIS Tech Center) 
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Figure 36.  Photograph of VEPCO created wetland, West Virginia, taken in August 2009. 
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ABSTRACT 

 

Decomposition of organic matter in wetlands is linked to numerous wetland functions, making it 

a useful metric to assess wetland function.  We measured plant litter decomposition rates in three 

mitigated and three reference wetlands located in the Allegheny Mountains of West Virginia, 

from 2007 to 2009.  Four common wetland litter species were used:  broadleaf cattail (Typha 

latifolia L.), common rush (Juncus effusus L.), brookside alder (Alnus serrulata (Ait.)Willd.), 

and reed canary grass (Phalaris arundinacea L.).  A fifth litter type was created from a mixture 

of common rush, brookside alder, and reed canary grass.  Decomposition rate constant and 

percent mass remaining were statistically similar between mitigated and reference wetlands.  

Reed canary grass had the lowest percent of mass remaining at the end of the study, and was 

significantly lower than cattail, which was the species with the largest percent mass remaining, 

on 8 of the 14 collection dates.  Decomposition rate constants were similar among litter types for 

11 of the 14 days, with the rate for reed canary grass being significantly faster than the rate for 

broadleaf cattail on two of the dates and significantly faster than the rate for brookside alder and 

broadleaf cattail on the third date.  Our study indicates that mitigated wetlands had similar 

function, with regards to litter decomposition rate, as reference wetlands.  Additionally, reed 

canary grass, an invasive species, had comparable decomposition rate constants to the native 

common rush. 
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INTRODUCTION 

Mitigation for lost wetlands, required under Sections 401 and 404 of the Clean Water 

Act, created an average annual gain of 12,900 ha of wetlands between 1998 and 2004 (Dahl 

2006).  Freshwater, shrub wetlands had the highest losses (4.9%) during that time period while 

open water ponds composed the largest portion of wetland gain (12.9%) (Dahl 2006).  This 

offset in gain by wetland type leads to the question of whether wetland function is being created 

along with increased acreage, or if high-quality functional wetlands are being replaced by 

mitigated wetlands with reduced complexity and function.  Race and Fonseca (1996) surveyed 

mitigation projects nationwide and found that the success rate of permit-linked mitigation 

projects was low overall, which agrees with other studies (Holland and Kentula 1992; Zedler and 

Callaway 1999; Robb 2002; Morgan and Roberts 2003), but not all (Shreffler et al. 1992; Brusati 

et al. 2001; Stanczak and Keiper 2004; Balcombe et al. 2005a; Álvarez and Bécares 2006).   

Organic matter decomposition has long been recognized as an important function 

supported by wetlands (Simpson et al. 1983; Richardson 1994; Björn and Laskowski 2006).  It is 

directly and indirectly linked to many other wetland processes.  This makes it a useful tool for 

assessing the evolution of ecosystem function in created systems (Spieles and Mora 2007).  

Decomposition also is important as a driving force in nutrient cycling, supporting major flows of 

energy along detrital pathways in ecosystems (Brinson et al. 1981; Webster and Benfield 1986).  

Wetlands are especially important to ecosystem energy flow because they are the principal 

source of dissolved organic carbon for streams, rivers, and lakes (Dillon and Molot 1997; 

Mulholland 1997; Gergel et al. 1999). 

Litter decomposition typically goes through three stages (Godshalk and Wetzel 1978; 

Brinson et al. 1981).  The first phase is rapid loss of mass from leaching and occurs within 48-92 
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hrs of inundation (Nykvist 1962; Webster and Benfield 1986).  Depending on temperature, 

turbulence, and the litter species, up to 29% of mass can be lost during the leaching phase 

(Petersen and Cummins 1974; Brinson 1977; Howard-Williams and Howard-Williams 1978).  In 

a 31-month study, Anderson (1973) attributed up to 75% of the mass lost from sweet chestnut 

(Castanea sativa Mill.) to leaching, showing that in addition to defining the first stage, leaching 

can continue to contribute to weight loss through the second and third phases of decomposition.  

The second phase of decomposition begins as rapid leaching ends and involves the colonization 

of litter by microbial organisms which break down soft tissues.  Depending on the time of year 

and stage of the second phase, bacteria (Howard-Williams and Davies 1978; Robb et al. 1979) 

and fungi (Barlocher and Kendrick 1974; Gessner and Chauvet 1994; Findlay et al. 2002) can 

drive decomposition rates.  The third, and final phase, of decomposition involves mechanical 

fragmentation of the litter by environmental forces and invertebrates, which can contribute 

significantly to decomposition (Fazi and Rossi 2000; Hieber and Gessner 2002; Hutchens and 

Wallace 2002).  

Few studies have compared decomposition at mitigated wetlands with natural wetlands, 

but the few that have often find significantly different rates.  Atkinson and Cairns (2001) 

compared litter decomposition between eleven 20-year-old and six 2-year-old created wetlands 

in the Appalachian Mountains of Virginia and found that the older created wetlands had faster 

decomposition than the younger wetlands, but that both were lower than rates reported for 

comparable natural wetlands.  Fennessy et al. (2008) found similar results when they conducted a 

study of 10 mitigated wetlands and 9 natural wetlands throughout Ohio.  Taylor and Middleton 

(2004) found the opposite result, with a reclaimed coal-slurry pond in Illinois having higher 

decomposition rates than a reference wetland.  Crawford et al. (2007) also found decomposition 
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of roots was substantially faster in restored Atlantic white cedar (Chamaecyparis thyoides (L.) 

B.S.P.) wetlands than in natural sites.  Spieles and Mora (2007) studied decomposition rates at 

three created wetlands of different ages (4, 12 and 155 years) in Ohio and found that 

decomposition rates were highest in the 4-year-old wetland, lowest in the 12-year-old wetland 

and intermediate in the 155-year-old wetland.  Álvares and Bécares (2006) found decomposition 

rates of Typha latifolia at a created wetland in Spain were similar to rates reported in the 

literature. 

With so few studies and so much variance among results, it is difficult to generalize 

trends between mitigated and natural wetlands.  To determine if mitigated wetlands in West 

Virginia were functioning similarly to reference sites, with respect to decomposition rate, we 

designed an experiment to measure decomposition rates in three of each wetland type (mitigated 

and natural) using five different litter types.  Our objectives were to determine if decomposition 

rates were similar between mitigated and reference wetlands and to evaluate differences in 

decomposition rates between different common litter species found in West Virginia wetlands.   

 

MATERIALS AND METHODS  

Study Area 

Leaf decomposition rates were measured at three created and three reference wetlands 

located in the Allegheny Mountain ecoregion (Bailey 1983) of West Virginia, USA (Figure 1; 

Table 1).  The Allegheny Mountains run northeast in West Virginia, through Maryland, and into 

Pennsylvania.   

The three created wetlands were formed by the West Virginia Division of Highways 

(WVDOH) to mitigate for wetland losses associated with the Corridor H and Mon-Fayette 

Expressway system projects.  Leading Creek is 4 km south of Montrose in Randolph County.  It 
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is a mix of palustrine unconsolidated bottom, aquatic bed, emergent persistent, scrub-shrub, and 

young forested wetland types (Cowardin et al. 1979).  Hop sedge (Carex lupulina Muhl. ex 

Willd.), common and woodland rushes (Juncus effuses L.; J. subcaudatus var. subcaudatus 

(Engelm.) Coville&Blake), smartweed (Polygonum hydropiperoides Michx; P. persicaria L.), 

rice cutgrass (Leersia oryzoides (L.)Sw.), and brookside alder (Alnus serrulata (Ait.)Willd.) are 

dominant species.  The Sugar Creek wetland is located 3 km southwest of Meadowville, Barbour 

County.  It is comprised of multiple wetland cells and had palustrine aquatic bed, emergent 

persistent, and scrub-shrub types.  Reed canary grass (Phalaris arundinacea L.), wool grass 

(Scirpus cyperinus (L.)Kunth), woodland rush, American burreed (Sparganium americanum 

Nutt.) and brookside alder are all dominant species.  The Hazelton wetland is located at Exit 29 

on Interstate 68.  It is made up of one large wetland cell and two smaller cells (unconnected 

portions of a single wetland project) and is primarily palustrine unconsolidated bottom, aquatic 

bed, and emergent types.  Broadleaf cattail (Typha latifolia L.), common and narrowpanicle rush 

(J. brevicaudatus (Engelm.) Fernald), white and red clover (Trifolium repens L.; T. pretense L.), 

and beggar-tick (Bidens sp.) are all dominant species. 

The three reference wetlands were chosen based on their proximity to mitigated sites; 

similarity in elevation, size, and wetland classification; and their relative degree of disturbance.  

The Upper Deckers Creek wetland is located about 1 km southwest of Masontown, Preston 

County.  The wetland is an oxbow wetland off Deckers Creek and is comprised mainly of 

palustrine aquatic bed, unconsolidated bottom, emergent persistent, and scrub-shrub wetland 

types.  Reed canary grass, cowlily (Nuphar lutea ssp. advena (L.)Sm.(Ait.)), marsh purslane 

(Ludwigia palustris (L.)Ell.), and buttonbush (Cephalanthus occidentalis L.) are dominant 

species.  The Meadowville wetland is located at Meadowville, Barbour County.  The site was 
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historically grazed, but became too moist and grazing was stopped about 40 years ago.  It is 

comprised of palustrine emergent persistent, scrub-shrub, and young forested types, which are 

dominated by cattail, tussock sedge (Carex stricta Lam.), rice cutgrass, blue-joint grass 

(Calamagrostis canadensis var. canadensis (Michx.)Beauv.), and brookside alder.  The Bruceton 

Mills wetland is located about 2.9 km north of Bruceton Mills, Preston County.  The site was the 

remnant of a beaver (Castor canadensis) pond and was comprised mainly of palustrine emergent 

persistent and scrub-shrub habitat types.  Reed canary grass, rice cut grass, cattail and brookside 

alder are dominant species. 

In general, the mitigated wetlands have more open water and ponded areas than the 

reference sites, and the reference sites tend to have more scrub-shrub areas than the mitigated 

sites.  Leading Creek is the only mitigated site with a large portion of scrub-shrub and young 

forest.  All wetlands have some level of disturbance on their edge in the form of roads, grazing, 

or cultivated land. 

 

Decomposition (Litterbag) Procedures 

 Decomposition rates were measured using the litter bag method (Benfield 1996).  We 

chose four litter types based on common dominant species at mitigated and reference sites in 

West Virginia (Balcombe et al. 2005b, along with unpublished vegetation surveys) and collected 

them in September and October of 2007.  Litter included broadleaf cattail, common rush, 

brookside alder, and reed canary grass.  Some studies have shown that litter mixes can have non-

additive decomposition rates compared to single species (Gartner and Cardon 2004), so a fifth 

litter type was created with a mix of common rush, brookside alder, and reed canary grass.  The 

ratio of species was 3:2:1 reed canary grass : common rush : brookside alder in an attempt to 

mimic ratios present in the wetlands (Balcombe et al. 2005b). 
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 Many species of wetland vegetation have a standing dead period, during which some 

fungal colonization and decomposition can occur before it falls to the ground (Kuehn et al. 

1999).  To help ensure similar vegetation conditions, reed canary grass, common rush, and 

broadleaf cattail leaves and stems were clipped and collected as they senesced, but while still 

standing (Davis and van der Valk 1978; Hill 1985; Marsh et al. 2000; Bedford 2005).  Brookside 

alder leaves were collected mechanically with a leaf blower (STIHL model SH 85 D Shredder 

Vacuum/Blower; Virginia Beach, Virginia) reversed to suck leaves into the tube.  Brookside 

alder leaves that were not intact and any material other than alder leaves were discarded.  Several 

studies have shown that nutrient dynamics and litter quality can influence decomposition (Aerts 

and de Caluwe 1997; Baker et al. 2001; Fennessy et al. 2008).  To minimize differences in litter 

quality, each species was collected from only one area in a single wetland.  Brookside alder and 

broadleaf cattail were collected from Meadowville, reed canary grass was collected from Sugar 

Creek, and common rush was collected from Leading Creek.  All litter was air-dried for a 

minimum of 1 wk before being weighed and bagged. 

Litter bags were constructed from 1.27 mm vinyl-coated fiberglass window mesh 

(Benfield 1996).  The litter bags had external dimensions of 20 x 20 cm and were constructed 

with one folded side and three sides heat sealed.  To reinforce the melted sides, bags were 

stapled shut at 5-cm intervals with stainless steel staples (Deghi et al. 1980).  A small sealed 

plastic bag containing a plastic tag with a unique identification code was placed in each litter 

bag, along with the litter, to allow final masses to be matched with initial masses (Davis and van 

der Valk 1978; Vargo et al. 1998).  For the single species litter bags with broadleaf cattail, 

common rush, and reed canary grass, 20 g of litter was placed in each bag.  For brookside alder, 

20 g would have required the litter to be crushed, so only 12 g of litter was used.  The mixed 
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litter samples also had about 20 g (brookside alder [3.3 g], common rush [6.7 g], and reed canary 

grass [10 g]). 

 Nine transects were established using stratified sampling (Taylor and Middleton 2004), to 

represent aerial proportions of different environmental conditions, as represented by major 

vegetation communities, within each wetland (e.g., wetter portions of a wetland, dominated by 

Polygonum sp. and comprising 1/3 of the wetland by acreage, had 3 transects placed in it based 

on the proportion of wetland dominated by Polygonum sp.).  Ten wooden stakes were installed at 

7.5 m intervals along each transect and one type of each litter bag, five bags total, was attached 

to the base of each stake with 0.5 m lengths of nylon fishing line (Battle and Golladay 2001; 

Anderson and Smith 2002).  Litter bags were placed prostrate on bare ground or on top of any 

existing litter to mimic natural litter deposition.  If the stake was in standing water, the litter bag 

was first dunked to inundate the surface and minimize any hydrophobic effect the mesh might 

have contributed and then allowed to float or sink unimpeded.   

Ninety of each type of litter bag (nine transects of 10 stakes) were placed for a total of 

450 litter bags in each wetland and 2,700 litter bags overall.  Six replicates of each litter type 

were retrieved the same day the bags were placed in the field to calculate the loss of mass due to 

handling (Benfield 1996).  Four replicates were then retrieved on 14 different dates:  7 d (1 wk), 

21 d (3wk), 35 d (5 wk), 49 d (7 wk), 77 d (11 wk), 119 d (17 wk), 168 d (24 wk), 224 d (32 wk), 

294 d (42 wk), 364 d (52 wk), 455 (65 wk), 546 d (78 wk), 637 d (91 wk), and 728 d (104 wk).  

The four replicates were sampled by collecting all litter bags present at four randomly chosen 

stakes within a wetland.  Stratified random sampling, with transects as strata, was used to ensure 

that two samples were never pulled from the same transect during a single, or two consecutive, 

collection dates. 
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When bags were collected, they were gently brought to the surface if submerged, then 

excess sediment and plant material was removed from the outside of the litter bag before they 

were placed in individual plastic bags and transported back to the lab on ice (Benfield 1996).  

Once back at the lab, any additional debris adhering to the outside of the bags was removed 

before it was opened.  Litter was carefully removed from the interior of the bag and sediment 

was rinsed off.  The litter was then oven-dried (65° C) for about 1 wk until a constant mass was 

reached (Morris and Lajtha 1986; Verhoeven and Arts 1992; Lockaby et al. 1996), the mass was 

recorded, and the litter was ground to a powder in a Wiley mill with a 2-mm mesh screen 

(Thomas® Scientific Wiley Cutting Mill model ED-5; Philadelphia, Pennsylvania).  Three 

subsamples of 250 mg of powder were placed in an aluminum pan and ashed at 550
o 
C for 30 

minutes.  Once a sample cooled, it was weighed and the proportion of mass remaining was 

subtracted from the original 250 mg, averaged across the three samples, and used to calculate the 

ash-free dry mass (AFDM) of the litter bag.  The AFDM was used during analysis to minimize 

error from sedimentation. 

 

Data Analysis 

 Litter decomposition was the dependent variable and was analyzed using two different 

models.  The first model was the percent of mass remaining.   The second model was the 

exponential decay model, which expresses the decomposition rate as constant k:  yt / yo = e
 –kt

, 

where yt is the AFDM at time t (yr) and yo is the initial AFDM (Olson 1963; Brock et al. 1985).  

In this model, k is expressed as yr
 -1

 and represents the instantaneous mass loss rate.  We 

averaged replicate bags from each wetland prior to analysis.  Normality was tested using 

Program PROC UNIVARIATE (SAS® v9.1.3) and found to be violated for both proportion of 

mass remaining and k, therefore data were rank transformed (Conover and Iman 1981).   
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Analysis of variance (ANOVA) was run using Program PROC MIXED (SAS® v9.1.3), with 

wetland defined as a random effect, to test the significance of wetland type (n = 2), litter type 

(n=5), collection date (n=14), and their interactions.  A series of models were run using differing 

covariance structures to determine which had the best fit, then the model with the lowest Akaike 

Information Criteria (AIC) value was chosen.  AIC values represent the goodness of fit for a 

model, with lower values indicating a better fit, while penalizing models with more parameters.  

Differences in mean decomposition rates, at the wetland level, were compared using Tukey’s 

least-square means.  Tests were considered significant at p < 0.05.   

 

RESULTS  

Wetland Types 

 Overall plant litter decomposition, over the 728-d study, was similar (Table 2) between 

mitigated and reference wetlands for percent mass remaining and k (Table 3).  Though not 

statistically significant, by 224 d the average mass of litter in reference wetlands was lower than 

mitigated wetlands and remained so throughout the rest of the study (Figure 2).  This trend is 

matched with a slightly higher k in reference wetlands, signifying a slightly higher rate of 

decomposition (Figure 3).  The highest k values, 2.069 and 1.779 yr 
-1

 for reference and 

mitigated wetlands respectively, were observed during the first collection date at 7 d.  They then 

continued to fall until they reached 0.364 and 0.353 yr 
-1

 around 165 d.  After that point k values 

rose again and roughly leveled off with an average around 0.590 and 0.506 yr 
-1

, for reference 

and mitigated wetlands respectively, from 290 d through the end of the study.  Figure 2 also 

shows decomposition trends, with two plateaus that begin at 77 and 365 d and are captured by 

two collection dates in both mitigated and reference wetlands.  The first spans 41 d and begins 

near the end of February, and the second spans 91 d and begins in December.  
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Litter Types 

 A significant interaction between litter type and collection date was found for both 

percent of mass remaining (F52,208 = 1.70, P = 0.005) and decomposition rate constant (F52,208 = 

0.59, P = 0.001).  Therefore, analyses between litter types were examined within each collection 

date (Appendix A).  For every collection date, except 364 d, reed canary grass had the lowest 

percent of mass remaining, and for 11 of the 14 dates the mixed litter bags had the second lowest 

(Figure 4).  Brookside alder and common rush generally had the third and fourth lowest percent 

of mass remaining respectively, but then switch ranks around 224 d.  For every collection date 

except 21 and 637 d, broadleaf cattail had the largest percent of mass remaining.   

Through 49 d there were no significant differences between percent of mass remaining 

for any of the litter types.  However by 77 d, reed canary grass was significantly lower than 

broadleaf cattail and remained so through the rest of the study, with the exceptions of 364 and 

728 d when their masses were similar.  At 119 d, cattail had a significantly higher mass than all 

other species except common rush, and at 224 and 637 d, cattail had a significantly higher mass 

than reed canary grass and the mixed litter.  At 546 d brookside alder had a significantly higher 

percent of mass remaining than reed canary grass and at 637 d brookside alder had significantly 

higher mass than reed canary grass and the mixed litter.  At the end of the study, all litter types 

were similar. 

For measures of k, all species of litter had their highest rate of decomposition measured in 

the first collection period at 7 d, except broadleaf cattail that had its highest decomposition 

measured at 21 d (Figure 5, Appendix B).  Broadleaf cattail had the lowest k for 11 of the 14 

collection dates and the lowest mean, minimum (0.121 yr 
-1

), and maximum (1.079 yr 
-1

) of all 

species.  Reed canary grass had the highest k for every collection period, except 364 d, and had 
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the highest mean, minimum (0.534 yr 
-1

), and maximum (2.790 yr 
-1

) of all species.  The mixed 

litter had the second highest k for 11 of the 14 collection dates, the second highest mean and 

minimum (0.407 yr 
-1

), and the third highest maximum (1.960 yr 
-1

) of all species.  

Decomposition rate constants were similar for all litter types for all collection dates except three.  

At 224 and 294 d, reed canary grass (224 d [0.773 yr
-
1]; 294 d [0.801 yr

-1
]) and the mixed litter 

(224 d [0.718 yr
-1

]; 294 [0.735 yr
-1

]) were significantly higher than broadleaf cattail (224 d 

[0.0271 yr
-1

]; 294 d [0.340 yr
-1

]).  At 637 d reed canary grass (0.724 yr
-1

) was significantly 

higher than brookside alder (0.336 yr
-1

) and broadleaf cattail (0.346 yr
-1

). 

 

DISCUSSION 

Decomposition in Mitigated and Reference Wetlands 

  Our findings indicate that decomposition rate constants are similar between mitigated and 

reference wetlands.  This suggests that functional equivalence may have been reached at these 

sites after a relatively short time (2-12 years after construction).  Some studies have shown 10 to 

25 years are needed for created wetlands to function similarly to natural sites (Mitsch and Wilson 

1996; Simenstad and Thom 1996; Craft et al. 1999; Gutrich and Hitzhusen 2004), which places 

our wetlands on the young end of that timeline.  Few studies have been performed comparing 

decomposition in mitigated and reference wetlands, but the majority that have been performed 

found differing rates (Atkinson and Cairns 2001; Taylor and Middleton 2004; Spieles and Mora 

2007; Fennessy et al. 2008).  Our results agree with Álvarez and Bécares (2006) who found 

similar decomposition rates when they compared broadleaf cattail in a constructed wetland in 

Spain with documented rates from natural wetlands.  Our results also agree with Balcombe et al. 

(2005a) who looked at biotic indicators of wetland function in West Virginia mitigated wetlands, 
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including three of the wetlands used in this study, and found that they adequately supported 

ecological communities.   

Our sample size for this study was small, with only three mitigated and three reference 

wetlands, but we are confident in our results because of the large number of samples collected, 

280 per wetland and 1,680 total, and the relatively consistent trends observed over the two year 

study.  Most decomposition studies allow leaf litter to decompose for a year or less, but our study 

observed trends in the second year, specifically that k levels off to a stable value, which shorter 

studies would have missed. 

 

Litter Types 

Broadleaf cattail has been studied extensively because it is a ubiquitous wetland species.  

Our k values for broadleaf cattail had a minimum that was lower than rates reported in other 

studies, but most values fell within the range reported (0.31 – 1.57 yr 
-1

) in other studies (Findlay 

et al. 1990; Álvarez and Bécares 2006).  The standard error for broadleaf cattail samples was 

often higher than most other litter types which, in part, is due to initial drying of the litter.  All 

litter was air dried, weighed, and bagged in the same manner.  A subset of samples were then 

dried and ashed to calculate a correction factor for initial leaf masses to account for handling loss 

and conversion to ash-free dry masses.  For the other four litter types, that correction factor 

ranged from 0.839 to 0.951, but for broadleaf cattail the correction factor ranged from 0.688 to 

0.770.  We attributed this large disparity to the broadleaf cattail not drying as well as the other 

litter types.  When the initial litter samples were oven-dried and ashed, a larger proportion of 

initial weight was lost as water.  This led to some samples having corrected initial weights equal 

to or less than the final weights for early sample dates and probably created deflated k values for 

cattail.  Larger initial samples to calculate correction factors, longer periods of drying, or drying 
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under slight heat are possible corrections for this problem in future studies.  Most studies do not 

report correction factors or implications of incomplete drying on results, but may contain similar 

errors in their results. 

Brookside alder began the study with the second highest k value at 7 d, but ended being 

grouped with broadleaf cattail as having the second highest percent of mass remaining after 728 

d.  Alder are nitrogen-fixing woody plants and therefore have high amounts of nitrogen in their 

leaves.  Nykvist (1962) looked at Alnus glutinosa (L.) Gaertn. leaching and decomposition under 

various conditions and found that the alder leaves were leached more easily than Quercus robur 

(L.) or Fagus silvatica (L.) leaves and that this contributed to faster decomposition rate 

constants.  This likely explains the high k seen early in the study.  Once the initial soluble 

nutrients were gone, decomposition rate constants decreased and were more comparable to the 

other species during the second phase of decomposition.  During the third phase, the alder k 

value dropped again to rates similar to cattail.  We suspect this is caused by alder having higher 

lignin content, similar to broadleaf cattail.  By the end of the study, a noticeable proportion of 

alder leaves had their nutrient-rich, soft blades completely decomposed, but still had mostly 

intact petioles and veins.  These tougher parts were more difficult to fragment and led to a lower 

average k during the third phase of decomposition. 

We could not find any wetland studies that reported alder decomposition, but we found 

stream studies that reported values of 0.908-2.701 yr
 -1

 for A. glutinosa (Chauvet 1987; Scheiring 

1993; Pereira et al. 1998).  Our rates for brookside alder were lower than the reported rates, but 

this may have been due to higher rates of mechanical fragmentation in lotic systems compared to 

lentic ones and differences in biotic communities.   
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Common rush had k values comparable to those reported in previous studies (0.36-2.04 

yr
 -1

), but makes the minimum in our study a bit low (Kittle et al. 1995; Kuehn et al. 2000).  

Kittle et al. (1995) also looked at common rush decomposition and compared it to broadleaf 

cattail decomposition rates in three wetlands receiving acid mine drainage in West Virginia.  

They found that cattail decomposition rates were significantly higher over 155 d than common 

rush in each of their wetlands.  In our study, common rush and broadleaf cattail had similar k 

values for all collection dates.  Kittle et al. (1995) also found faster decomposition rates for both 

species than were measured in this study, despite pH impeding decomposition. 

 Our decomposition rate constant for reed canary grass were low compared to Hough and 

Cole (2009), who measured a range of 1.55-4.19 yr
 -1

 at 14 wetlands in Pennsylvania and Kao et 

al. (2009) who measured 68% mass remaining at the end of 150 d in New York.  Kao et al. 

(2009) studied common rush and reed canary grass and found no significant difference between 

decomposition rate constants, which agrees with our study.  These rates are of special interest 

since reed canary grass is an invasive grass that aggressively colonizes wetlands.  Several studies 

have shown that exotic species can change soil properties (Ehrenfeld 2003; Vanderhoeven et al. 

2005; Dassonville et al. 2008) and differing decomposition rates could potentially be another 

way for invasive species to influence wetland function. 

No other study that we found used a similar litter mix, so there are no comparable rates 

for our mixed litter samples.  Wardle et al. (1997) looked at decomposition of 102 litter 

combinations made from 32 species and found that litter mixes had large and unpredictable 

effects that could both increase or decrease litter decomposition rate.  Gartner and Cardon (2004) 

reviewed 30 decomposition studies that incorporated litter mixes and found that 67% had non-

additive patterns of mass loss, with some studies finding mass loss 65% higher in mixes than 
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single species litter.  No increased decomposition rates, due to mixing, were measured in this 

study.  The mixed litter had statistically similar decomposition rates to the other four species.   

 

Phases of Decomposition 

 The trend of decomposition we observed is typical of the three phases observed in past 

studies (Godshalk and Wetzel 1978; Brinson et al. 1981).  The k value at 7 d was close to or 

exceeded double the value of any later date for reed canary grass, brookside alder, common rush 

and the mixed litter, suggesting rapid mass loss from leaching.  Only broadleaf cattail had its 

highest decomposition rate at 21 d rather than 7 d and may be due, in part, to the fact that 

broadleaf cattail was the only litter that still had bags floating at 7 d.  The lack of complete 

submersion until after 7 d could have postponed or extenuated the leaching phase and 

contributed to the higher k at 21 d.  The second phase of decomposition appears to have 

continued until between 168 and 224 d, at which point decomposition began to proceed at a 

constant rate.  The third phase of decomposition involves mechanical fragmentation of the litter 

by environmental forces and invertebrates and may explain the dip in k between 77 and 224 d.  It 

is possible that there was a transition period between the end of the second phase, when fungi 

and some invertebrate functional feeding groups began to decline (Gingerich 2010: Chapter 5), 

and the point where oligochaetes and third phase decomposers reached adequate numbers to 

drive decomposition, sometime after 224 d.  Between 224 and 728 d, k was fairly steady with a 

small amount of fluctuation that was probably seasonal and due to environmental factors such as 

temperature and hydrology (Morris and Lajtha 1986; Middleton et al. 1992; Gingerich 2010: 

Chapter 4).  Lower k values were measured in the winter and early spring, when temperatures 

were low and sub-freezing conditions may have halted some biological processes. 
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Conclusions 

Though past studies have found that permit-linked mitigation projects have a low overall 

success rate nationwide, wetland function, with regards to litter decomposition, is comparable 

between the reference and mitigated wetlands studied.  Additionally, reed canary grass, an 

invasive wetland grass, had a similar decomposition rate and trend to the other native species.  

Our mixed litter bags showed no apparent synergistic decomposition rates compared to single 

species bags.  Future monitoring efforts to determine mitigation success need to focus on the 

replacement of wetland function in addition to wetland acreage, and monitoring decomposition is 

one promising way of achieving this goal. 
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Table 1.  List of three mitigated and three reference wetland study sites in West Virginia, including site name, year constructed, size (ha), elevation (m above sea 

level), Universal Transverse Mercator (UTM) coordinates, basin, and watershed, 2007-2009. 

                

Site name Year Size  Elevation UTM Y UTM X Basin Watershed 

  (ha) (m)     

Mitigated Sites               

Leading Creek 1995 16.99 600 4321563 602550 Tygart Valley Leading Creek 

Sugar Creek 1995 10.95 490 4328850 591470 Tygart Valley Laurel Creek 

Hazelton 2006 2.68 560 4390990 625708 Cheat Little Sandy Creek 

        

Reference Sites               

Meadowville N/A 11.67 480 4330920 593940 Tygart Valley Laurel Creek 

Upper Deckers Creek N/A 2.10 515 4377282 602193 Monongahela Upper Deckers Creek 

Bruceton Mills N/A 1.41 515 4393348 615433 Cheat Big Sandy Creek 
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Table 2.  Analysis of variance results for decomposition, expressed as percent of ash-free dry mass remaining after 

728 days and average decomposition rate constant k (yr
-1

), in six wetlands (3 mitigated, 3 reference) in the 

Allegheny Mountains of West Virginia, December 2007 to December 2009.  Wetland type (mitigated, reference), 

date (n=14), litter type (brookside alder, reed canary grass, common rush, broadleaf cattail, mixed litter), and their 

interactions were all tested. 

              

   % Mass Remaining  k 

Effect d.f.  F Value P Value  F Value P Value 

Wetland (n=2) 1,4  2.93 0.162  2.39 0.197 

Date (n=14) 13,52  249.88 < 0.001*  13.75 < 0.001* 

Wetland*Date 13,52  0.93 0.533  1.01 0.452 

Litter (n=5) 4,16  24.71 < 0.001*  17.75 < 0.001* 

Wetland*Litter 4,16  0.39 0.814  0.59 0.673 

Litter*Date 52,208  1.70 0.005*  1.87 0.001* 

Wetland*Litter*Date 52,208   0.52 0.997   0.73 0.914 

* Significant (α = 0.05)       
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Table 3.  Mean, standard error (S.E.), and analysis of variance (ANOVA) results for decomposition of five litter 

types, expressed as percent of ash-free dry mass remaining after 728 days and k (yr 
-1

), in six wetlands (three 

mitigated and three reference) in the Allegheny Mountains of West Virginia, December 2007 to December 2009.  P 

values were calculated using analysis of variance (ANOVA) to compare litter decomposition in mitigated and 

reference wetlands.  

                      

Litter Reference  Mitigated  Overall F value P value 

  Mean S.E.   Mean S.E.   Mean S.E. (d.f. = 1,4) (α = 0.05) 

Mass Remaining           

Brookside Alder 40.9 4.30  47.7 2.34  44.3 2.67 2.28 0.206 

Reed Canary Grass 24.5 3.39  28.4 2.57  26.5 2.09 0.09 0.777 

Common Rush 27.5 3.61  34.1 4.32  30.8 2.93 1.20 0.335 

Broadleaf Cattail 43.6 6.49  48.0 8.25  45.8 4.79 0.00 0.974 

Mixed Litter 24.4 2.59  32.1 2.67  28.3 2.39 1.03 0.367 

Overall 32.2 4.17  38.1 4.09  35.1 4.12 2.93 0.162 

           
Decomposition Rate 
Constant (k)           

Brookside Alder 0.744 0.196  0.603 0.122  0.673 0.158 1.48 0.291 

Reed Canary Grass 0.942 0.163  0.898 0.143  0.920 0.153 0.29 0.619 

Common Rush 0.634 0.075  0.584 0.093  0.609 0.083 1.05 0.363 

Broadleaf Cattail 0.344 0.048  0.459 0.089  0.402 0.060 0.14 0.723 

Mixed Litter 0.862 0.136  0.678 0.071  0.770 0.102 0.38 0.572 

Overall 0.705 0.104   0.644 0.072   0.675 0.086 2.39 0.197 
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Figure 1.  Six study sites, comprised of three mitigated and three reference wetlands, in the Allegheny Mountain 

region of West Virginia, USA, 2007-2009. 
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Figure 2.  Mean (± S.E.) percent ash-free dry mass remaining for three mitigated and three reference wetlands in the Allegheny Mountain region of West 

Virginia, December 2007 through December 2009.   The transitions between the first (I), second (II), and third (III) stages of decomposition are identified by 

vertical lines.  The first stage is characterized by the rapid leaching of nutrients, the second phase is characterized by the colonization of the litter surfaces by 

microbial organisms and breakdown of soft tissues, and the third phase is mechanical fragmentation of remaining material by invertebrates and environmental 

processes. 
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Figure 3.  Mean (± S.E.) decomposition rate constants k (yr  

-1
) for three mitigated and three reference wetlands in the Allegheny Mountain region of West 

Virginia, December 2007 through December 2009.  The transitions between the first (I), second (II), and third (III) stages of decomposition are identified by 

vertical lines.  The first stage is characterized by the rapid leaching of nutrients, the second phase is characterized by the colonization of the litter surfaces by 

microbial organisms and breakdown of soft tissues, and the third phase is mechanical fragmentation of remaining material by invertebrates and environmental 

processes. 
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Figure 4.  Mean percent ash-free dry mass remaining for five litter types in three mitigated and three reference wetlands in the Allegheny Mountain region of 

West Virginia, December 2007 through December 2009.  An “*” denotes a collection date where at least two litter types are significantly different.  The 

transitions between the first (I), second (II), and third (III) stages of decomposition are identified by vertical lines.  The first stage is characterized by the rapid 

leaching of nutrients, the second phase is characterized by the colonization of the litter surfaces by microbial organisms and breakdown of soft tissues, and the 

third phase is mechanical fragmentation of remaining material by invertebrates and environmental processes.
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Figure 5.  Mean decomposition rate constants k (yr  

-1
) for three mitigated and three reference wetlands in the Allegheny Mountain region of West Virginia, 

December 2007 through December 2009.  An “*” denotes a collection date where at least two litter types are significantly different.  The transitions between the 

first (I), second (II), and third (III) stages of decomposition are identified by vertical lines.  The first stage is characterized by the rapid leaching of nutrients, the 

second phase is characterized by the colonization of the litter surfaces by microbial organisms and breakdown of soft tissues, and the third phase is mechanical 

fragmentation of remaining material by invertebrates and environmental processes.
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ABSTRACT 

 

Wetland mitigation has created a net gain in wetland acreage in recent years; however, it is less 

clear that wetland function is being replaced.  Litter decomposition in wetlands is linked to 

numerous wetland functions, making it a useful metric to assess wetland function.  We measured 

plant litter decomposition rates over 12 months, beginning in November 2008, in 8 created and 8 

reference wetlands located in the Allegheny Mountains of West Virginia,.  Broadleaf cattail 

(Typha latifolia L.) litter bags were placed in each wetland and collected at 3 month intervals.  

Decomposition rate constant and percent mass remaining were not statistically different between 

created and reference wetlands.  Age of created wetland was uncorrelated with decomposition 

rate constant.  Our study indicates that created wetlands had similar function, with regards to 

decomposition, as reference wetlands.  This type of study could be implemented into wetland 

mitigation permitting to address functional replacement.   

 

 



 

 116 

INTRODUCTION 

Wetland functions include floodwater storage, groundwater recharge, biological 

productivity, biogeochemical cycling and storage, wildlife and community habitat, sediment 

trapping, and water purification (Richardson 1994; Smith et al. 1995).  However, these functions 

have not always been recognized and valued.  Between the 1780s and 1980s 42 million ha (53%) 

of wetlands were lost in the contiguous United States (Dahl 1990).  In 1988, the National 

Wetlands Policy Forum brought to the forefront the continued loss of wetlands and 

recommended a policy of “no net loss” of wetlands (Mitsch and Gosselink 2007).  This 

recommendation was adopted by the administration of President George H. W. Bush.  Section 

401 and 404 of the Clean Water Act (CWA) helped control the loss of wetlands by granting 

regulatory control of most wetlands to the U.S. Army Corps of Engineers (USACOE) and the 

U.S. Environmental Protection Agency (USEPA).  Permits and mitigation are now required for 

the dredging or filling of wetlands and a Memorandum of Agreement between the USEPA and 

Department of the Army, signed in 1990, clarified that wetland function must be replaced in 

addition to lost acreage (USEPA 1990).   

As a result of this legislation, wetland acreage increased by 77,630 ha between 1998 and 

2004 (Dahl 2006).  Though increases in acreage is a positive trend, two concerns remain, the first 

being whether correct acreage is being created and reported.  Robb (2002) inventoried 345 

permitted mitigation projects in Indiana and found that 71% of palustrine forested wetlands and 

78% of wet meadow wetlands failed to meet the acreage requirements of their permit.   Morgan 

and Roberts (2003) found that 72% of 50 mitigation projects in Tennessee had less acreage than 

stipulated.  To ensure this criterion is met requires relatively straightforward site visits that 

involve delineating the wetland boundary to ensure proper acreage. 



 

 117 

The second concern is whether wetland function is being replaced.  According to Dahl 

(2006) open water and depressional wetlands were the most frequently created types of wetlands 

contributing to the net gain in acreage.  However, 364,540 ha (4.9%) of freshwater shrub 

wetlands were among the original wetlands lost.  Estuarine vegetated wetlands decreased by 

13,100 ha from 1998 to 2004, while estuarine non-vegetated wetlands had a net gain of 1,620 ha.  

This trend of replacing one wetland type with another emphasizes why it is important to perform 

functional assessments of mitigated wetlands to ensure that the shift in type allows adequate 

replacement of lost functions.  Previous studies suggest that overall success is mixed.  Landscape 

placement of mitigated wetlands does not always match that of lost wetlands and affects wetland 

type and function (Bedford 1996; Hoeltje and Cole 2009).  Minkin and Ladd (2003) studied 60 

mitigated sites to determine if they successfully met their permit objectives and found that 40 

(67%) of the wetlands met the criteria of their permits, but that only 10 mitigated sites (17%) 

were adequate functional replacements for the impacted wetlands.  Race and Fonseca (1996) 

surveyed mitigation projects nationwide and found that the success rate of permit-linked 

mitigation projects was low overall.   

In response to Dahl (2006) and other findings, the USACOE and USEPA issued updated 

regulations in 2008 that required measurable, enforceable ecological performance standards and 

regular monitoring of mitigated wetlands (USDOD and USEPA 2008).  For functional 

performance to be fully assessed, each function needs to be addressed; however, not all wetland 

functions have received equal attention.  Vegetative communities (Galatowitsch and van der 

Valk 1996; Seabloom and van der Valk 2003; Balcombe et al. 2005a; Spieles 2005) and habitat 

use by wildlife (Williams and Zedler 1999; Snell-Rood and Cristol 2003; Stanczak and Keiper 

2004; Balcombe et al. 2005b) have been extensively studied in mitigated wetlands, but other 
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important functions such as sediment retention, biogeochemical cycling and storage, hydrologic 

flux and storage, and groundwater recharge have received less focus.  Organic matter 

decomposition has also been largely overlooked, but has gained attention in recent years.  

Decomposition is linked to many additional wetland functions, making it a useful tool for 

assessing the evolution of overall ecosystem function (Spieles and Mora 2007).  Organic matter 

accumulation, export, and nutrient cycling are all examples of processes connected to 

decomposition.  Decomposition supports major flows of energy that occur along detrital 

pathways making it an important driving force in nutrient cycling (Brinson et al. 1981; Webster 

and Benfield 1986).   

Few studies have compared decomposition rates in mitigated wetlands with natural 

wetlands, but the few that have often find differing results.  Atkinson and Cairns (2001) and 

Fennessy et al. (2008) found that decomposition occurs more slowly in mitigated wetlands 

compared to reference wetlands, while Taylor and Middleton (2004) and Crawford et al. (2007) 

found the opposite to be true.  Spieles and Mora (2007) found no trend between decomposition 

rate and wetland age at 3 created wetlands in Ohio.  Only Álvares and Bécares (2006) found 

similar decomposition rates of Typha latifolia at a created wetland in Spain as compared to rates 

reported in the literature.  With so few studies and so much variance between results, it is 

difficult to generalize trends between mitigated and natural wetlands.  To determine if created 

wetlands in West Virginia were functioning similarly to reference sites, with respect to 

decomposition, we designed an experiment to measure decomposition rates in 8 of each wetland 

type at sites in West Virginia, USA.   
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MATERIALS AND METHODS  

Study Area 

 This study was conducted in West Virginia, which is located in the mid-Appalachian 

region of the U.S.  In the Allegheny Mountain ecoregion (Bailey 1983), where most of the study 

sites were located (Figure 1), mountain ridges can reach between 1,200 and 1,375 m in elevation.  

The Allegheny Mountains are located in the center of West Virginia and continue north through 

Maryland into central Pennsylvania.  Two of the study sites were located in the Allegheny 

Plateau ecoregion, which is an unglaciated region to the west of the Allegheny Mountains.  Most 

of the ridges in this part of the state are 450 m or less in elevation.   

 Eight created wetlands were evaluated in this study: Leading Creek, Sugar Creek, 

Hazelton, Elk Run, Virginia Electric and Power Company (VECO), Upper Deckers Creek 

Wildlife Management Area (WMA), Pedlar WMA, and Enoch Branch (Appendix C).  All 

created wetlands were constructed except for Elk Run, which was a combination of created and 

restored wetland.  Pedlar WMA and Enoch Branch were located in the Western Hill region, 

while all other wetlands were located in the Allegheny Mountain region.  One wetland (Leading 

Creek) was predominantly palustrine scrub-shrub, 2 wetlands (Upper Deckers Creek WMA, Elk 

Run) were predominantly palustrine unconsolidated bottom and aquatic bed, and the other 5 

wetlands were predominantly palustrine emergent persistent (Cowardin et al. 1979).  However, 

all wetlands had some combinations of scrub-shrub, emergent, and aquatic bed.  Almost all 

created wetlands had some level of disturbance on their edge in the form of roads with moderate 

to heavy traffic, houses, grazing, or cultivated land.  Created wetlands ranged in age from 2 to 40 

years ( x = 15.1, S.E. = 4.5), in elevation from 335 to 1,020 m ( x = 615, S.E. = 75), and in size 

from 0.1 to 17.0 ha ( x = 5.9, S.E. = 1.9). 
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 Eight reference wetlands were chosen to compare with the created wetlands:  

Meadowville, Upper Deckers Creek, Kanes Creek, Bruceton Mills, Indian Creek, Thomas 

Airfield, Glade Run, and Muddlety.  Reference wetlands were chosen based on their proximity to 

mitigated sites (to minimize differences in climatic events); similarity in elevation, size, and 

wetland classification; and their relative degree of disturbance.  Muddlety and Indian Creek were 

located in the Western Hill region, while all other wetlands were located in the Allegheny 

Mountain region.  Three reference wetlands (Meadowville, Upper Deckers Creek, Kanes Creek) 

were classified as palustrine scrub-shrub, 2 (Thomas Airfield, Glade Run) were beaver (Castor 

canadensis) impoundments that were predominantly palustrine aquatic bed, and the other 3 were 

predominantly palustrine emergent persistent.  However, all wetlands had some combination of 

emergent, scrub-shrub, and aquatic bed.  Many of the wetlands had some amount of disturbance 

adjacent to them in the form of roads with light to heavy traffic, tree plantations, railroad tracks 

converted to a trail, grazing, or cultivated land.  Reference wetlands ranged in elevation from 275 

to 965 m ( x = 596, S.E. = 84) and in size from 0.7 to 11.7 ha ( x = 5.0, S.E. = 1.6). 

 

Experimental Design 

 Decomposition rates were measured using the litter bag method (Benfield 1996).  

Broadleaf cattail (Typha latifolia L.) was chosen as the litter type because it is ubiquitous in most 

wetlands.  Many species of wetland vegetation have a standing dead period, during which some 

fungal colonization and decomposition can occur before it falls to the ground (Kuehn et al. 

1999).  To help ensure similar vegetation conditions, broadleaf cattail leaves and stems were 

clipped and collected as they senesced in September 2008 (Davis and van der Valk 1978; Hill 

1985; Marsh et al. 2000; Bedford 2005).  To minimize differences in litter quality, all broadleaf 

cattail was collected from only one area in the Meadowville reference wetland.  Leaves and 
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stems were air-dried for a minimum of 10 days before being weighed and bagged (Taylor and 

Middleton 2004). 

Litter bags were constructed from 1.27 mm vinyl-coated fiberglass window mesh and 

were filled with 20 g of broadleaf cattail (Benfield 1996).  The litter bags had external 

dimensions of 20 x 20 cm and were constructed with one folded side and 3 heat-sealed sides.  To 

reinforce the melted sides, bags were stapled shut at 5-cm intervals with stainless steel staples 

(Deghi et al. 1980).  A small sealed plastic bag containing a plastic tag with a unique 

identification code was placed in each litter bag, along with the litter, to allow final masses to be 

matched up with initial masses (Davis and van der Valk 1978; Vargo et al. 1998). 

In each wetland, 5 stakes were placed 3 m apart in approximately 30 cm of water 

between October 31 and November 15, 2008.  A total of 28 bags were then attached to the stakes 

(3 stakes with 6 bags and 2 stakes with 5 bags) with 0.5 m long thick nylon line (Battle and 

Golladay 2001; Anderson and Smith 2002).  The litter bags were dunked to completely wet the 

surface and minimize any hydrophobic effect the mesh might have contributed and then allowed 

to float or sink.  Twenty litter bags were collected when litter bags were first placed in the field 

to establish correction factors for initial masses due to incomplete drying and handling (Benfield 

1996).  Six replicates were then retrieved every 3 months over the course of a year.  

Unfortunately, loss of litter bags was greater than expected at some wetlands (Leading Creek, 

Glade Run, Upper Deckers WMA) due to currents during flooding and wildlife damage and 

resulted in fewer bags being collected (Appendix D).  Additionally, thick ice hindered collection 

at Upper Deckers Creek, allowing only 5 litter bags to be collected after 3 months.   

When bags were collected, they were gently brought to the surface if submerged, then 

excess sediment and plant material were removed from the outside of the litter bag before they 
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were placed in plastic bags and transported back to the lab on ice (Benfield 1996).  Once back at 

the lab, any additional debris adhering to the outside of the bags was removed before it was 

opened.  Litter was carefully removed from the interior of the bag and sediment was rinsed off.  

The litter was then oven-dried (65° C) for 1 week until a constant mass was reached.  The mass 

was recorded and the litter was ground to powder in a 2-mm mesh Wiley Mill (Thomas 

Scientific Wiley Cutting Mill model ED-5; Philadelphia, Pennsylvania).  Three subsamples of 

250 mg of powder were placed in an aluminum pan and ashed at 550
o 
C for 30 minutes.  Once a 

sample cooled, it was weighed and the proportion of mass remaining was subtracted from the 

original mass to determine the ash-free dry mass (AFDM).  The AFDM was used during analysis 

to minimize error from sedimentation. 

 

Data Analysis 

 Litter decomposition was the dependent variable and was analyzed using 2 different 

models.  The first model was the percent mass remaining.  The second model was the 

exponential decay model, which expresses the decomposition rate as constant k (yr
-1

):                

yt / yo = e
 –kt

, where yt is the AFDM at time t (yr) and yo is the initial AFDM (Olson 1963; Brock 

et al. 1985).  Analysis of variance (ANOVA) assumptions were tested using PROC 

UNIVARIATE (SAS® v9.1.3) and both proportion of mass remaining and decomposition rate 

were found to be normally distributed according to the Shapiro-Wilks test.  All analyses were 

conducted using ANOVA in PROC MIXED (SAS® v9.1.3), with wetland defined as a random 

effect.  Wetland type (n=2), collection date (n=4) and their interaction was tested.  Since 

wetlands were the experimental unit, replicate bags from a wetland were averaged for each 

collection date.  A series of models were run using differing covariance structures to determine 

which had the best fit, then the model with the lowest AIC value was chosen.  One way 
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comparisons were performed using Tukey’s least-square means.  Tests were considered 

significant at P < 0.05.  The relation between age and decomposition rate was examined using 

linear and polynomial regression with repeated measures (PROC MIXED in SAS® v9.1.3).  

Linear, quadratic, cubic, and quartic models were compared and the cubic regression was chosen 

based on the largest R
2
. 

 

RESULTS  

Overall decomposition rates were similar between created (% mass remaining: x =56.0%, 

SE = 2.79; k: 0.526 yr
 -1

, SE = 0.042) and reference (% mass remaining: x =54.6%, SE = 2.67; k: 

0.517 yr
 -1

, SE = 0.040) wetlands (Figure 2, 3) for both percent of mass remaining (F1,14 = 0.01; p 

= 0.941) and decomposition rate constants k (F1,14 = 0.01; p = 0.939) (Appendix E).  The lowest 

k was measured at 6 months and had a mean of 0.429 yr
 -1

, while the highest k was measured at 

12 months and had a mean of 0.608 yr 
-1

 (Figure 3).  No significant trend was found between 

wetland age and decomposition rate constant (F4,3 = 0.98, p = 0.528).  The oldest wetland, Upper 

Deckers Creek WMA (40 years), had the largest mean k ( x = 0.839 yr
 -1

, SE = 0.087) and the 

second oldest wetland, Elk Run (27 years), had the smallest mean k ( x = 0.240 yr
 -1

, SE = 0.075).  

A cubic model best fit (R
2
 = 0.263) the breakdown rates (Figure 4). 

 

DISCUSSION 

 Our study found decomposition rates to be similar between created and reference 

wetlands, which agrees with Álvares and Bécares (2006).  Most studies comparing 

decomposition in created and reference wetlands have found differing rates between wetland 

types (Atkinson and Cairns 2001; Taylor and Middleton 2004; Spieles and Mora 2007; Fennessy 

et al. 2008).  Site conditions, such as environmental (temperature, hydrology, and water pH; 
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Gingerich 2010: Chapter 4) and biotic (taxonomic groups and functional feeding groups; 

Gingerich 2010: Chapter 5) variables better explain differences in decomposition rate than 

wetland type. 

The plot of age and decomposition rate suggested that k has a nonlinear relation with 

wetland age (Figure 4).  A medium decomposition rate is observed for younger wetlands, then 

drops with Elk Run (age = 27 yr) having the slowest rate, and finally rises with Upper Deckers 

Creek WMA (age = 40 yr) having the fastest rate.  This is possibly explained by two hypotheses.  

First, it is possible that wetland succession and decomposition rate do not trend towards natural 

conditions.  Second, if wetlands are trending towards natural conditions it is possible that 

transitional phases have slower decomposition rates than the final natural phase.  Past studies 

have suggested that 10 to 25 years are needed for created wetland functions to match natural 

systems (Mitsch and Wilson 1996; Simenstad and Thom 1996; Craft et al. 1999; Gutrich and 

Hitzhusen 2004).  Therefore, in the first 25 years, it is likely that functions such as sediment 

retention, hydrology, and availability of certain nutrients shifted as upland soils converted to 

hydric soils and hydrophytes established themselves.  A second hypothesis is that a lack of 

shading in young, poorly-vegetated wetlands led to higher temperatures, which have been found 

to increase decomposition rate (Brinson 1977; Middleton et al. 1992; Álvarez and Bécares 2006; 

Gingerich 2010: Chapter 4).  As vegetation grew, soil and water temperatures decreased with 

increased shading, leading to slower decomposition rates in older wetlands.  As overall wetland 

function increases with age, breakdown rate might again increase until it matches natural 

systems.  Because environmental conditions were not measured, we can not specifically 

determine what conditions might be driving decomposition at these wetlands; however, 
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hydrology has been shown to be associated with litter decomposition rates (Gingerich 2010: 

Chapter 4) and may partially account for variance among wetlands. 

 The 3 phases of decomposition ([1] leaching, [2] microbial colonization and breakdown, 

and [3] mechanical fragmentation by invertebrates) (Godshalk and Wetzel 1978; Brinson et al. 

1981; Gingerich 2010: Chapter 5) may explain the decline in k between 3 and 6 months (i.e., 

breakdown of soft tissues is completed).  The decomposition rate then increased after 6 months 

as the remaining litter was colonized and mechanically fragmented by invertebrates.   

 Broadleaf cattail has been studied extensively due to its global distribution, high 

visibility, and ubiquitous distribution in wetland systems.  Our k values for broadleaf cattail 

ranged from 0.069-1.092 yr 
-1

, which has a minimum that is lower than rates reported in other 

studies but generally overlaps with previously reported values (Table 1).  When litter bags were 

first placed in wetlands, 20 litter bags were dried and ashed to calculate a correction factor for 

initial leaf masses to account for handling loss and convert to ash-free dry masses.  The 

correction factor was calculated as 0.74 and all initial masses were multiplied by this correction 

factor.  The fact that the correction factor was ¾ the initial mass indicates that the material was 

not dry when it was weighed and bagged.  If material was drier on average than the subset used 

to create the correction, the large correction factor could lead to under-estimated decomposition 

rates.  Likewise, if material was air dried to a constant mass, but was not dried under heat and 

retained moisture without a correction factor, decomposition rates would be over-estimated.  

Most studies do not address their correction factor, which indicates how dry initial leaf material 

was and lends insight into a possible source of error. 

For wetland mitigation to be considered fully successful, created wetland function will 

need to be measured in the future, and that should include decomposition.  A study, such as the 
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one outlined in this publication, requires relatively little work to implement, with the majority of 

labor being required at initiation when litter bags are created.  Any litter type could be used, but 

cattail is especially abundant, easy to collect, and well documented.  However, a few points 

should be kept in mind when implementing a similar study.  The first is that collection location 

and study species should be chosen based on what species are already present at the study sites.  

Care should be taken when putting out vegetative material because there is always the possibility 

of unintended seed being transferred in the litter bag and introducing undesirable species.  

Secondly, material should be allowed to dry completely by weighing it throughout the drying 

process until its mass ceases to change.  Incomplete drying is a potential source of error when 

calculating decomposition.  A correction factor should also be calculated and used in analysis.  

Third, make sure to install more litter bags in the field than are needed for the study to allow for 

losses due to unforeseen events such as high flows during flooding, the loss of stakes, wildlife 

interference, and loss of material due to litterbag weathering.  Finally, decomposition proceeds 

over the course of seasons and years and diverging trends could potentially emerge after longer 

periods of time.  To address this, study durations should be a minimum of one year, preferably 

longer.   

 

Conclusion 

Wetland function, in regards to decomposition rate, was similar between created and 

mitigated wetlands in West Virginia.  Additionally, created wetland age did not have a linear 

relation with decomposition rate, suggesting that wetlands are either not trending towards natural 

conditions or that transitional successional stages have slower decomposition rates than the 

initial and final phases.  Finally, for wetland mitigation to be fully satisfied, wetland function 



 

 127 

needs to be addressed during permitting.  Decomposition is easily measured by the litter bag 

technique and can provide a useful means of assessing wetland function.   
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Table 1.  A comparison of Typha latifolia decomposition rate constants (% mass remaining and k [yr
 -1

]) in the literature with this study. 

 

  Mesh Study % Mass Decomposition rate 

  Size (mm) Period (d) Remaining constant k (yr 
-1

) 

Our Study 1.27 365 created wetlands:  56.0% 0.526 

      reference wetlands:  54.6% 0.517 

Álvarez and Bécares 2006 1 90 extrapolated by  winter:  0.730 

      author to 31% summer:  1.570 

Atkinson and Cairns 2001  -  365 2-yr-old wetland:  80%  -  

      20-yr-old wetland:  72%   

Findlay et al. 1990  -  365  -  0.31 

Kittle et al. 1995 1.5 155 36-46%  -  

Middleton 1994 1 190  -  winter:  1.27 

        summer:  1.40 

Poi de Neiff et al. 2006 2 125 - 1.46 

Spieles and Mora 2007 1.6 360 4-yr-old wetland:  21.4% 1.540 

     12-yr-old wetland:  61.1% 0.493 

      155-yr-old wetland:  33.1% 1.107 

Taylor and Middleton 2004 1 150  -  coal slurry pond:  0.986 

       natural pond:  0.767 

Thormann and Bayley 1997 1 365 36%  -  

Vargo et al. 1998 1.5 158 30.3-59%  0.621 - 0.767 
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Figure 1.  Sixteen study sites, comprised of 8 created and 8 reference wetlands located primarily in the Allegheny 

Mountain ecoregion of West Virginia, 2007-2009. 
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Figure 2.  Mean (± S.E.) percent ash-free dry mass remaining for 8 created and 8 reference wetlands in West Virginia, USA, November 2008 through November 

2009.    
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Figure 3.  Mean (± S.E.) decomposition rate constants k (yr 

-1
) for 8 created and 8 reference wetlands in West Virginia, USA, November 2008 through November 

2009. 

 



 

 137 

Breakdown Rate vs Wetland Age

y = 0.00007x
3
 - 0.003x

2
 + 0.030x + 0.516

Adjusted R
2
 = 0.263, p  = 0.281

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45

Years Since Creation

k
 (

y
r -

1
)

 
Figure 4.  Decomposition rate constant k (yr

 -1
) as a function of wetland age for 8 created wetlands in West Virginia, 

USA, November 2008 through November 2009.  A polynomial regression (k = 0.00007*years
3
 – 0.0034 * years

2
 + 

0.0297 * years + 0.5164; Adjusted R
2
 = 0.263; p = 0.281) had the best fit. 
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ABSTRACT 

 

 

Wetland plant litter decomposition is a component of numerous wetland functions and is 

therefore a useful means of assessing overall wetland function; however, factors influencing 

decomposition are not well understood.  Environmental conditions influence decomposition 

differently depending on the litter species and mix of environmental conditions present.  To look 

at environmental controls of decomposition, we measured plant litter decomposition rates in 6 

wetlands located in West Virginia, USA.  Four common wetland litter species were used to 

determine decomposition rates:  broadleaf cattail (Typha latifolia L.), common rush (Juncus 

effusus L.), brookside alder (Alnus serrulata (Ait.)Willd.), and reed canary grass (Phalaris 

arundinacea L.).  A fifth litter type was created from a mix of common rush, brookside alder, 

and reed canary grass.  Litter bags were collected over 2 years, from December 2007 to 

December 2009, and environmental variables near litter bags were measured every 2 wk.  Nine 

environmental model parameters and 1 study parameter were then used to construct and test the 

ability of 22 a priori models to predict the decomposition rate of each litter type.  The 

environmental variables that most influenced, and therefore best predicted, decomposition rate 

varied among litter types.  Brookside alder decomposition rate was best predicted by soil 

temperature (ST), water pH (WPH), and the number of transitions between flooded and exposed 

conditions (FET); reed canary grass decomposition rate was best predicted by air temperature 

(AT), WPH, and ST; common rush decomposition rates were best predicted by AT and FET; 

broadleaf cattail decomposition rate was best predicted by hydroperiod (HP) and FET; and the 

mixed litter decomposition rate was best predicted by AT and WPH.  Overall, AT, ST, and WPH 

were directly related to decomposition rate, while HP was inversely related.   The FET was 

directly related to decomposition rates of common rush and broadleaf cattail and inversely 
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related to the decomposition rate of brookside alder.  Understanding the environmental factors 

that direct litter decomposition rate, and through it influence wetland function, allows for the 

establishment of more complete mitigation and functional assessment criteria, leading to better 

functional replacement. 

 

1.  Introduction 

The ability of mitigated wetlands to replace the ecosystem functions of lost natural 

wetlands has been widely studied and debated in recent years (Mitsch and Wilson, 1996; Zedler 

and Callaway, 1999; Gutrich and Hitzhusen, 2004; Hoeltje and Cole, 2009).  Litter 

decomposition has been put forth as a useful way of assessing wetland function and quantifying 

possible differences between mitigated and reference wetland function (Atkinson and Cairns, 

2001; Spieles and Mora, 2007; Fennessy et al., 2008).  Wetland litter decomposition is linked to 

many other wetland processes and is therefore an important component of wetland function 

(Richardson, 1994; Spieles and Mora, 2007).  Litter decomposition influences the physical and 

chemical properties of wetland soils (Mitsch and Gosselink, 2007), nutrient availability and 

cycling (Prentki et al., 1978; Facelli and Pickett, 1991), primary productivity (Brinson et al., 

1981), litter/organic matter accumulation (Gambrell and Patrick Jr., 1978; Xiong and Nilsson, 

1997), and seed germination (Xiong and Nilsson, 1997; Taylor and Middleton, 2004).  Mitsch 

and Gosselink (2007) suggested that a common feature of wetland development is a shift from a 

detritus-poor to a detritus-based system over time. 

Organic matter decomposition in wetlands exerts influence at the ecosystem level by 

supporting major flows of energy that occur along detrital pathways (Brinson et al., 1981; 

Webster and Benfield, 1986).  Organic matter collecting in wetlands during the growing season 

or deposited during bankfull discharge events of nearby streams is broken down into coarse and 
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fine particulate organic matter (CPOM and FPOM respectively) and dissolved nutrients that are 

then released back into streams during later flooding events.  These are important riparian 

wetland exports because they provide a nutrient source for aquatic organisms downstream 

(Richardson, 1994; Mitsch and Gosselink, 2007).  Additionally, waste organics and pollutants 

are deposited and decomposed in wetlands, which leads to improved water quality (Walbridge, 

1993; Mitsch and Gosselink, 2007).  

Decomposition can have effects on a global scale.  Decomposition of organic matter is an 

important component in nutrient cycles and is the only process enabling the massive recycling of 

chemical elements on the scale of whole ecosystems (Richardson, 1994; Björn and Laskowski, 

2006).  Slow decomposition rates in wetlands lead to organic matter accumulation and CO2 

sequestration (Richardson, 1994).  Decomposition is therefore an indicator of organic matter 

storage potential in wetlands and influences global climate by sequestering carbon, which 

influences the rate at which CO2 returns to the atmosphere and balances the atmospheric CO2 

pool (Richardson, 1994; Björn and Laskowski, 2006).  This is especially important in wetlands 

compared to terrestrial systems because, although less than 4% of the earth’s surface is covered 

in wetlands, hydric soils contain about one-third of all organic matter stored in the world’s soils 

(Dodds, 2002).  Hence, understanding decomposition in wetlands has important implications for 

predicting and modeling global climate change. 

Decomposition is driven by 3 categories of variables: biotic (microorganisms and 

invertebrates that break down litter), chemical (physical and nutrient composition of the litter), 

and physical (environmental conditions where the litter occurs) (Aerts and de Caluwe, 1997).  

Physical variables exert additional control on decomposition by influencing the biotic 

communities that are present and their levels of activity (Meentemeyer, 1978; Rejmánková and 
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Houdková, 2006; Inkley et al., 2008).  Hydroperiod and temperature are the 2 environmental 

variables most often credited as best predicting decomposition rate.  Temperature is directly 

related to decomposition rate (Morris and Lajtha, 1986; Middleton et al., 1992; Álvarez and 

Bécares, 2006).  The role of hydrology is less constant across wetlands, but many studies suggest 

that wet-dry cycles influence litter decomposition rate (Atkinson and Cairns, 2001; Battle and 

Golladay, 2001; Anderson and Smith, 2002).  Water chemistry (Davis, 1991; Verhoeven and 

Arts, 1992; Qualls and Richardson, 2000), water pH (Day Jr., 1987; Kittle et al., 1995; Taylor 

and Middleton, 2004), sedimentation (Vargo et al., 1998; Atkinson and Cairns, 2001), dissolved 

O2 (Schipper and Reddy, 1995), and soil moisture (Battle and Golladay, 2007) can all influence 

plant litter decomposition rates. 

Despite the importance of decomposition, the role of physico-chemical variables is not 

well understood, in part because it is highly variable among locations.  Therefore, we evaluated 

the influence of 9 environmental parameters and 1 study parameter (no. of days litter is in a 

wetland) on plant litter decomposition in mitigated and reference wetlands in West Virginia.  We 

created 22 a priori models based on the 10 parameters to assess the decomposition of broadleaf 

cattail (Typha latifolia L.), common rush (Juncus effusus L.), brookside alder (Alnus serrulata 

(Ait.)Willd.), reed canary grass (Phalaris arundinacea L.), and a mixed litter.  Specifically, our 

objective was to determine which environmental parameters best predict litter decomposition 

rate. 

 

2.  Materials and methods  

2.1.  Study Area 

Leaf decomposition rates were measured at 3 mitigated and 3 reference wetlands located 

in the Allegheny Mountain ecoregion (Bailey 1983) of West Virginia, USA (Figure 1; Table 1).  
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The Allegheny Mountains are part of the Appalachian Mountain Range and form a distinct 

region in the eastern United States (Fenneman, 1938).  The 3 mitigated wetlands were 

constructed by the West Virginia Division of Highways (WVDOH) to compensate for wetland 

losses associated with the Corridor H and Mon-Fayette Expressway system projects.  The 3 

reference wetlands were chosen based on their proximity to mitigated sites; similarity in 

elevation, size, wetland classification, and vegetative types; and their relative degree of 

disturbance.  The Upper Deckers Creek wetland is an oxbow wetland, the Bruceton Mills 

wetland is the remnant of a beaver (Castor canadensis) impoundment, and the Meadowville 

wetland is a floodplain wetland.  In general, excluding the Upper Deckers Creek oxbow wetland, 

the mitigated wetlands had more open water and ponded areas than the reference sites, and the 

reference sites tended to have more scrub-shrub areas than the mitigated sites.  Leading Creek is 

the only mitigated site with a large portion of scrub-shrub and young forest.  All wetlands had 

some level of disturbance on their edge in the form of roads, grazing, or cultivated land. 

 

2.2.  Decomposition (Litterbag) Procedures 

 We studied decomposition using the litter bag method (Benfield, 1996).  We chose 4 

litter types (i.e., broadleaf cattail, common rush, brookside alder, and reed canary grass) based on 

common dominant species at mitigated and reference sites in West Virginia (Balcombe et al., 

2005; Veselka IV, 2008) and collected them in September and October of 2007.  Litter mixes can 

have non-additive decomposition rates compared to single species (Gartner and Cardon, 2004), 

so a fifth litter type was created with a mixture (3:2:1) of reed canary grass, common rush, and 

brookside alder to mimic ratios present in the wetlands (Balcombe et al., 2005). 

 Many species of wetland vegetation have a standing dead period, during which some 

fungal colonization and decomposition occur before it falls to the ground (Kuehn et al., 1999).  
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To help ensure similar vegetative conditions, reed canary grass, common rush, and broadleaf 

cattail leaves and stems were clipped and collected as they senesced, but while still standing 

(Marsh et al., 2000; Bedford, 2005).  Brookside alder leaves were collected with a STIHL model 

SH 85 D Shredder Vacuum/Blower (STIHL Incorporated, Virginia Beach, VI) reversed to suck 

leaves into the tube and then dumped in a basket.  Brookside alder leaves that were not intact and 

any material other than alder leaves were discarded.  To minimize differences in litter quality, 

each species was collected from only one area in a single wetland (Aerts and de Caluwe, 1997; 

Baker et al., 2001; Fennessy et al., 2008).  All litter was air-dried for a minimum of 1 wk before 

being weighed and bagged. 

We constructed 20 × 20 cm litter bags from 1.27 mm vinyl-coated fiberglass window 

mesh (Benfield, 1996).  The litter bags were constructed with one folded side and 3 sides heat 

sealed and reinforced with stainless steel staples at 5-cm intervals (Deghi et al., 1980).  A small 

sealed plastic bag containing a plastic tag with a unique identification code was placed in each 

litter bag, to allow final masses to be matched up with initial masses (Davis and van der Valk, 

1978; Vargo et al., 1998).  For the single species litter bags with broadleaf cattail, common rush, 

and reed canary grass, 20 g of litter was placed in each bag.  For brookside alder, 20 g would 

have required the litter to be crushed, so only 12 g of litter was used.  The mixed litter samples 

also had 20 g (brookside alder [3.3 g], common rush [6.7 g], and reed canary grass [10 g]). 

 Nine transects were established, using stratified sampling (Taylor and Middleton 2004), 

to represent aerial proportions of different environmental conditions, as represented by major 

vegetation communities, within each wetland.  Ten wooden stakes were installed at 7.5 m 

intervals along each transect and one type of each litter bag, 5 bags total, was attached to the base 

of each stake with 0.5 m lengths of thick nylon line (Battle and Golladay, 2001; Anderson and 
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Smith, 2002).  Litter bags were placed flat on bare ground or on top of any existing litter to 

mimic natural litter deposition.  If the stake was in standing water the litter bag was first dunked 

to completely wet the surface and minimize any hydrophobic effect the mesh might have 

contributed and then allowed to float or sink.   

This study was a subset of a larger study (Gingerich, 2010: Chapter 1), with 90 of each 

type of litter bag (9 transects of 10 stakes with 5 litter bags attached to a stake), 450 total litter 

bags, in each wetland and 2,700 total litter bags included in the study.  Six replicates of each 

litter type were retrieved the same day the bags were placed in the field to calculate the loss of 

mass due to handling (Benfield, 1996).  For this study, 4 replicates were then retrieved on 8 

different dates: 168 d (24 wk), 224 d (32 wk), 294 d (42 wk), 364 d (52 wk), 455 (65 wk), 546 d 

(78 wk), 637 d (91 wk), and 728 d (104 wk).  We sampled the 4 replicates by collecting all litter 

bags from 4 randomly chosen stakes in each wetland, for a total of 960 bags (192 of each litter 

type from 192 stakes) being collected. 

Litter bags were transported back to the lab on ice, cleared of external material, and 

opened.  Litter was carefully removed from the interior of the bag and sediment was rinsed off.  

We oven-dried (65° C) leaf litter for about 1 wk until a constant mass was reached (Morris and 

Lajtha, 1986; Lockaby et al., 1996), recorded mass, and ground the litter to a powder in a 2-mm 

mesh Thomas Wiley Mill (Thomas Scientific, Swedesboro, NJ).  Three subsamples of the 

ground litter were then incinerated to calculate ash-free dry mass (AFDM). 

 

2.3.  Environmental Measurements 

We measured environmental variables within 1 m of each stake every 2 wk.  Air 

temperature was measured at every stake.  If a stake was inundated we measured water 

temperature (°C) with an AquaCal
®
 ClineFinder (Catalina Technologies, Inc., Tuscon, AZ), 
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water depth (cm), and water pH with a YSI
®

 Model 63 pH & Conductivity Meter (YSI, Inc., 

Yellow Springs, OH).  If a stake was exposed we measured soil temperature (°C) and soil 

moisture.  Soil moisture was measured on a scale of 0 (dry) to 10 (saturated) with a Soil 

Moisture Meter (Lincoln Irrigation, Inc., Lincoln, NE).  Two HOBO pendant temperature 

loggers (Onset Computer Corp., Pocasset, MA) were placed on opposite ends of each wetland to 

record hourly air temperatures throughout the study. 

 

2.4.  Calculation of Model Variables 

 We used an exponential decay rate to model leaf litter decomposition and calculate 

decomposition rate: 

yt / yo = e
 –kt

                  (1) 

where k is the instantaneous decomposition rate constant (yr 
-1

), yt is the AFDM at time t (yr), 

and yo is the initial AFDM (Olson, 1963; Brock et al., 1985). 

 No significant difference was found among litter decomposition rates in mitigated and 

reference wetlands (Gingerich, 2010: Chapter 2) for any of the litter types, therefore all data 

were pooled and analyzed together.  Nine environmental parameters (air temperature [AT], water 

temperature [WT], soil temperature [ST], water depth [WD], sum fluctuation of water depth 

[SF], hydroperiod [HP], flood and exposed transitions [FET], water pH [WPH], and soil 

moisture [SM]) were calculated from the 6 environmental measurements recorded in wetlands 

and included in analysis along with one model parameter (number of days litter was in the 

wetland [ND]).  Environmental measurements were averaged across sampling dates to obtain a 

mean value for each stake.  SF was calculated as the average observed change in WD per day 

(cm d
-1

): 

Σ ((|WDm+1 – WDm|) ÷ (m+1 – m))                (2) 
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where WDm is the water depth on measurement date m and WDm+1 is the water depth on the next 

measurement date m+1.  HP was calculated from water depth measurements as number of days 

litter bags were flooded divided by total days litter bags were in the wetland.  When 2 

consecutive measurement dates were flooded or exposed, all days between were considered 

flooded or exposed, respectively.  When there was a transition between flooded and exposed, the 

number of days between the measurement dates were divided by 2, with half considered flooded 

and half considered exposed.  The number of observed transitions between flooded and exposed 

conditions was divided by total number of days litter bags were in the wetland to obtain FET.  

All environmental variables were based on static points in time and limited by the 2-wk 

measurement period.  Changes that potentially occurred between measurement points were not 

reflected in the data. 

 To ensure the same population of litter bags were used in all analyses, any stake location 

missing one or more litter bags was excluded from analysis.  Additionally, to ensure that 

environmental conditions were present long enough to influence decomposition, ≥10% of 

measurement dates needed to have a measurement obtained for a given parameter for it to be 

averaged and included in analysis.  If one parameter at a stake was not obtained at ≥10% of the 

measurement dates, the stake and all litter bags associated with it were excluded from analysis.  

Of the initial 192 stakes we collected, litter bags from only 96 stakes (50%) met the above 

criteria and were included in analysis.  

 Normality was checked using the Shapiro-Wilk test (shapiro.test {stats}) in Program R 

(version 2.10.1) and parameters were transformed to more closely approximate normality.  FET 

and k for the mixed litter type were square root transformed.  WPH, SF, k for brookside alder, 

and k for reed canary grass were natural log transformed.  WD was natural log (x+1) 
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transformed.  ST was inverse square root ([1/-(sqrt x)] + 1) transformed.  Correlations were 

checked visually using a scatterplot matrix (pairs {graphics}) and with the Pearson’s correlation 

(cor {stats}) in Program R.  No variables were highly correlated (-0.75 > r > 0.75), so all were 

included in analysis. 

 

2.5.  Model Selection 

We used Chamberlin’s (1931) multiple working hypothesis approach and developed 22 a 

priori linear mixed effects models to predict decomposition rate constant (k).  Ten of the models 

were single parameter models (e.g., k = AT).  The remaining 12 models were based on the 

literature and included: 

1.  Decomposition rate is best predicted by temperature (Morris and Lajtha, 1986; 

Middleton et al., 1992; Álvarez and Bécares, 2006). 

 k = AT + WT + ST 

2.  Decomposition rate is best predicted by exposed conditions (Battle and Golladay, 

2007). 

 k = AT + ST + SM 

 k = AT + ST + SM + WPH 

 k = ST + SM 

3.  Decomposition rate is best predicted by temperature and hydrology (Brinson, 1977; 

Middleton et al., 1992). 

  k = AT + FET 

  k = AT + FET + HP 

4.  Decomposition rate is best predicted by inundated conditions (van der Valk et al., 

1991; Neckles and Neill, 1994; Atkinson and Cairns, 2001). 
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  k = HP + FET 

  k = WD + HP + SF 

  k = WT + WD + WPH + HP + FET + SF 

5.  Decomposition rate is best predicted by temperature and pH (Day Jr., 1987; Kittle et 

al., 1995; Taylor and Middleton, 2004).  

  k = AT + WPH 

  k = WT + WPH 

6.  Decomposition rate is best predicted by the global model, excluding ND. 

  k = AT + WT + ST + WD + HP + FET + SF + WPH + SM 

 We used Akaike’s Information Criterion for small sample sizes (AICc) to compare 

competing models because the ratio of observations (n = 96) to parameters (n = 10) was < 40 

(Burnham and Anderson, 2002).  AICc is a measure of goodness of fit, with a small value 

indicating a better model fit, and penalizes models with more parameters (law of parsimony).  

Models were tested with a linear mixed effects (lme {nlme}) model in Program R, with wetlands 

treated as a random effect (i.e., factors not deliberately arranged by the experimenters, but which 

were sampled from a population of possible samples).  Models were ranked by AICc, with the 

best model having the smallest AICc value (Burnham and Anderson, 2002).  We then calculated 

AICc differences (∆i = AICc  lowest - AICci) and Akaike weights (wi) for the i
th

 model in 

comparison.  The larger the ∆i and smaller the wi, the less likely it is that the model is the best 

approximating model given the data.  Following Burnham and Anderson (2002), models with ∆i 

< 2 have substantial support as the best approximating model.  Models with 2 < ∆i < 8 have 

considerably less support and models ∆i > 8 have essentially no support.  When model selection 
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was uncertain because multiple models had ∆i < 2, we averaged the predicted response variables 

across those models (Burnham and Anderson, 2002). 

 

3.  Results 

3.1.  Decomposition Rates and Environmental Measurements 

 Litter decomposition rates varied among litter types (Table 2, Appendix L; Gingerich, 

2010: Chapter 2), with reed canary grass having the fastest and the mixed litter having the 

second fastest mean, minimum, and maximum decomposition rates.  Broadleaf cattail had the 

slowest mean, minimum and maximum decomposition rates.   

Temperature varied depending on where it was recorded; mean WT was similar (1.1x) to 

mean AT, but mean ST was nearly double (1.7x) mean AT (Table 3, Appendix M & N).  ST also 

had the highest mean maximum, but WT had the highest mean minimum. 

 

3.2.  Brookside Alder 

 The best model (Table 4; Appendix O) to predict brookside alder decomposition was the 

{ST} model; however, the ∆i was low enough and wi was high enough for the second {FET} and 

third {WPH} best models that all 3 received substantial support.  Therefore, model averaging 

was applied to all 3 to obtain a final model (Table 5):   

k = -1.78 + 0.74×ST – 0.38×FET + 0.21×WPH             (3) 

In light of the a priori models that were run, a set of a posteriori models were run based 

on the parameters in the models with substantial Akaike support that were not considered with 

the a priori models:  Three of the models were found to have lower AICc scores than the best a 

priori models: 

k = -2.41 + 1.48×ST – 0.34×FET + 1.06×WPH (∆i = -1.71)            (4) 
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k = -2.46 + 1.57×ST + 1.07×WPH (∆i = -1.08)              (5) 

k = -0.47 + 1.38×ST – 0.47×FET (∆i = -0.70)              (6) 

  

3.3.  Reed Canary Grass 

 The best model predicting reed canary grass decomposition rate (Table 4; Appendix P) 

was the {AT + WPH} model; however, the second best model {ST} had a ∆i = 1.81 and a wi  = 

0.21 and therefore also was given substantial support.  All other models had ∆i > 2.  We averaged 

the top 2 models and obtained a final model:   

k = -2.91 + 0.04×AT + 0.43×ST + 1.06×WPH             (7)   

We ran a set of a posteriori models and came up with 4 models that had lower ∆i than our 

best model: 

k = -2.26 + 1.67×ST + 1.08×FET + 1.19×WPH (∆i = -2.72)            (8) 

k = -4.13 + 0.06×AT + 1.60×FET + 1.65×WPH (∆i = -2.56)            (9) 

k = -3.88 + 0.06×AT + 0.42×ST + 1.68×FET + 1.61×WPH (∆i = -2.11)         (10) 

k = -2.13 + 1.42×ST + 1.17×WPH (∆i = -1.72)            (11) 

Three of the 4 a posteriori models have ∆i < -2.  This lends them substantial Akaike support for 

being better than our a priori best {AT + WPH} model.  Though the a posteriori models lend 

support to the parameters in our averaged a priori model, when we ran the parameters from our 

averaged model it had a ∆i = 3.40.  The top 3 a posteriori models also include FET, which is not 

included in our a priori top models and therefore is not in our averaged model.  The top model 

from our a posteriori models  has the same parameters as the averaged model for the brookside 

alder litter.  Based on wi, the {ST + FET + WPH} model is 6.0 times more likely to be the best 

explanation of decomposition rate than our averaged {AT + ST + WPH} model. 
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3.4.  Common rush 

The {AT + FET} model best predicted common rush decomposition rate (Table 4; 

Appendix Q); however, the second best model {AT} had a ∆i = 0.49 and therefore was also 

given substantial support.  When the 2 models were averaged we obtained:   

k = 0.10 + 0.05×AT + 0.42×FET                        (12)  

We ran 2 additional a posteriori models, but both had ∆i > 2 and therefore did not have much 

support compared to our top a priori models.   

 

3.5.  Broadleaf Cattail 

The {FET} model best predicted decomposition rate (Table 4; Appendix R); however, 

the second best model {HP} had a ∆i = 0.32 and the third best model {HP + FET} had a ∆i = 

0.77, therefore they also were given substantial support.  When the 3 models were averaged we 

obtained:   

k = 0.33 – 0.11×HP + 0.51×FET             (13) 

Based on the results of the a priori models we ran 3 a posteriori models, but the models had ∆i > 

2 and therefore did not have much support compared to our top a priori models.   

 

3.6.  Mixed Litter 

Only one a priori model received substantial Akaike support (Table 4; Appendix S):   

k = -0.88 + 0.03×AT + 0.77×WPH             (14) 

Two a posteriori models were run, but only one had ∆i < 2: 

k = -1.15 + 0.04×AT + 0.81×FET + 0.84×WPH  (∆i = -2.60)           (15) 

Based on wi, the a posteriori {AT + FET + WPH} model is 3.7 times more likely to be the best 

explanation of decomposition rate compared to the a priori {AT + WPH} model.   
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4.  Discussion 

4.1.  Brookside Alder 

The brookside alder model suggests that both inundated and exposed conditions, and the 

number of times these conditions alternate, influence decomposition rate of brookside alder.  It is 

important to note that ST and WPH were directly related with decomposition rate, while FET 

was inversely related.  This agrees with other studies that have shown temperature to increase 

decomposition rate (Morris and Lajtha, 1986; Middleton et al., 1992; Álvarez and Bécares, 

2006).  It is also interesting to note that ST predicted brookside alder decomposition rate better 

than AT, stressing the importance of microhabitat conditions over landscape conditions.   

The direct WPH relation makes sense because wetlands tend to be acidic and low WPH 

inhibits decomposition (Day Jr., 1987; Kittle et al., 1995; Taylor and Middleton, 2004).  The 

inverse relation of FET with decomposition conflicts with some past studies that indicate 

alternating wetting and drying (Battle and Golladay, 2001; Anderson and Smith, 2002; Guo et 

al., 2008) are generally directly correlated with decomposition rate.  It is possible that exposed 

conditions decreased decomposition by allowing the litter (van der Valk et al., 1991) and soil 

(Battle and Golladay, 2007) to desiccate, which also would have made conditions less hospitable 

to invertebrates and microbial organisms.  It also is possible that there was more FET than is 

ideal for decomposition.  Lockaby et al. (1996) found that a single, relatively brief inundation 

period had the greatest positive influence on decomposition rate.  Every time conditions change 

from flooded to exposed or vice versa, invertebrate and microbial communities change.  

Frequent changes may then decrease decomposition by hindering biological forces that 

contribute to litter processing.   
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4.2.  Reed Canary Grass 

Our models suggest that temperature when litter is exposed (air and soil), and WPH when 

litter is flooded, are the most important parameters driving decomposition.  Decomposition rate 

had a direct relation with soil temperature and water pH.  This agrees with Hough and Cole 

(2009), who found soil pH to influence reed canary grass decomposition rate.  The model also 

shows a direct relation among decomposition and AT, which agrees with the literature.  Unlike 

any of the other litter types, reed canary grass decomposition rate is best predicted by both ST 

and AT, suggesting it is strongly influenced by both rapidly fluctuating air temperatures and the 

more stable soil temperatures.  A posteriori models suggest that FET is important for reed canary 

grass as well and supports FET as being an important component among litter types. 

 

4.3.  Common Rush 

Unlike the models for brookside alder and reed canary grass, ST was not included in the 

top models for common rush.  Common rush has a less dense leaf structure than brookside alder 

or reed canary grass, with leaves containing arenchyma tissue.  It is possible that the structure of 

the leaves retained moisture better, making them less prone to high ST and drying during 

exposed periods.  Despite several studies (Carpenter et al., 1983; Kittle et al., 1995) indicating 

common rush decomposition rates to be impeded by low pH, WPH was not included in our top 

models.  We believe that WPH did not vary enough among stakes to significantly influence 

common rush decomposition rate. 

In contrast to brookside alder, FET is directly related to common rush decomposition 

rate, which suggests that more transition events between flooded and exposed conditions 

increases decomposition rate and agrees with past studies.  It is possible that terrestrial and 

aquatic communities provide different roles and condition the litter differently.  When leaf litter 
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transitions from flooded to exposed and back, the communities of organisms work in tandem to 

decompose the litter.  More transitions allow each community of organisms more opportunities 

to access the litter.  This tandem processing may be more important for common rush than 

brookside alder, causing transitions to directly influence common rush decomposition rates.  In 

contrast, brookside alder may only be processed quickly by aquatic or terrestrial communities, 

but not both.  Changes between flooded and exposed conditions would therefore slow the 

decomposition rate of brookside alder. 

 

4.4.  Broadleaf Cattail 

The averaged model for broadleaf cattail decomposition rate was similar to the common 

rush model with regards to FET being directly related to decomposition rate.  Broadleaf cattail, 

like common rush, has arenchyma tissue and may decompose similarly.  The top models for 

broadleaf cattail decomposition rate also did not include WPH, which is only true of it and 

common rush.  However, unlike the models for the other species, the broadleaf cattail model was 

the only one that did not have a temperature parameter.  This contradicts previous cattail studies 

that found temperature influenced decomposition rate (Morris and Lajtha, 1986; Álvarez and 

Bécares, 2006). 

It also was the only model to include HP, with a negative value implying that longer 

flooding periods led to lower decomposition rates.  This agreed with Atkinson and Cairns (2001) 

who used broadleaf cattail in their decomposition study and found that slower decomposition 

rates were associated with longer hydroperiods.  They suggested that longer hydroperiods 

created anaerobic conditions that slowed microbial efficiency.  Intermittent flooding may lead to 

higher decomposition rates for cattail than permanently flooded conditions (van der Valk et al., 

1991).  However, others have found that more rapid decomposition occurs when litter is flooded 
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(Middleton et al., 1992).  Our study suggests that more frequent changes between flooded and 

exposed conditions, along with shorter periods of flooding, led to the fastest broadleaf cattail 

decomposition rates. 

 

4.5.  Mixed Litter 

Because the mixed litter is comprised of brookside alder, reed canary grass, and common 

rush, it is not surprising that the model parameters would be a combination of those found in the 

other 3 species.  Both AT and WPH are included in 2 of the averaged, single species models and 

are directly related with decomposition rate.  Interestingly, ST is not included in the model, 

despite being included for both the reed canary grass and brookside alder models.  The lack of 

ST in the model may suggest that common rush is having a significant influence on the mixed 

litter’s decomposition, even though it is only 1/3 of the leaf litter by mass.  The a posteriori 

model containing {AT + FET + WPH} estimates a positive value for {FET}, which is similar to 

common rush but dissimilar to brookside alder and also supports the hypothesis that common 

rush is more strongly influencing the parameters effecting the mixed litter than the other two 

species.  If common rush is indeed retaining moisture longer than the other 2 species, it is 

possible that it is influencing their decomposition rates.   

 

4.6  Management Implications and Conclusions 

 It is important that compensatory mitigation projects create conditions that will lead to 

ecological functions similar to those lost.  Faster decomposition rates allow for less carbon 

sequestration and organic matter being released back into adjacent streams; however, slower 

decomposition rates lead to slower nutrient cycling, which can reduce primary productivity and 

cause impacts up the food chain.  Therefore, rates similar to natural systems are most ideal.  
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Establishing natural estimates of litter decomposition in wetlands also could allow 

decomposition to be incorporated into wetland assessments and used to judge landscape 

functional trends at the state and regional levels.  In 2011, the EPA plans to conduct a National 

Wetland Condition Assessment (USEPA, 2009), and the inclusion of litter decomposition could 

establish regional norms for decomposition, allowing better understanding and assessment of 

wetland function. 

We found that 5 parameters, air and soil temperature, water pH, hydroperiod, and the 

number of transitions between flooded and exposed, were in the top models for our 5 litter types.  

Air temperature was directly related with the decomposition rate of reed canary grass, common 

rush, and the mixed litter; soil temperature was directly related to decomposition rates of 

brookside alder and reed canary grass.  Water pH was directly related to decomposition rates of 

brookside alder, reed canary grass, and the mixed litter.  Hydroperiod was inversely related to 

broadleaf cattail decomposition rate.  The number of transitions between flooded and exposed 

conditions was inversely related to brookside alder decomposition rate, but directly related to 

broadleaf cattail and common rush decomposition rates.  Water temperature, water depth, the 

sum fluctuation of the water depth, soil moisture, and the number of days litter was in the 

wetland were excluded from top models and were not as strongly associated with decomposition 

rates as parameters in the averaged models.  Also, our mixed litter suggested that common rush 

may influence the decomposition of reed canary grass and brookside alder. 

Environmental conditions driving wetland functions need to be considered when planning 

wetland creation projects and addressed in criteria to judge wetland functional success.  Because 

different mixes of environmental forces influence decomposition of different litter types, it is 

important that heterogeneity is incorporated into wetland creation projects.  Varying hydrology 
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and water depths influence decomposition directly, but also lead to varying vegetation 

communities, which can influence air and soil temperature.  Hydrology can be determined, in 

part, by considering landscape placement (i.e., floodplain, depression, impounded headwater 

stream) of mitigation projects to match the lost natural wetlands (Hoeltje and Cole, 2007).  We 

know of no simplistic way to influence water pH through wetland construction, but similar to 

hydrology, landscape placement can partly determine water pH.  In West Virginia, where acid 

mine drainage (AMD) from coal mining acidifies streams and is a large problem, flooding of 

AMD streams into adjacent wetlands can retard litter decomposition rate (Kittle et al., 1995), 

thereby impeding natural wetland functions.  Therefore, areas receiving AMD should be avoided 

for mitigation projects unless the mitigation is designed specifically to address AMD issues.  

Considerations of environmental variables will help ensure similar conditions to those lost and 

help create a wetland with similar litter decomposition rates and overall function. 
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Table 1.  List of 3 mitigated and 3 reference wetland study sites in West Virginia, including site name, county, closest town, year constructed, size (ha), elevation 

(m above sea level), wetland classifications, and dominant vegetative species, 2007-2009.  

              

Site name County and  Year Size  Elevation Wetland Classifications
a
 Dominant Vegetative Species 

  Closest Town Created (ha) (m) at Site   

Mitigated Sites       

Leading Creek Montrose,  1995 17.0 600 UB, AB, EP, SS
b
, F hop sedge (Carex lupulina Muhl. ex Willd.),  

 Randolph Co.     common rush, woodland rush (J. subcaudatus  

      var. subcaudatus (Engelm.) Coville&Blake),  

      smartweed (Polygonum hydropiperoides Michx;  

      P. persicaria L.), rice cutgrass (Leersia oryzoides  

      (L.)Sw.), brookside alder 

       

Sugar Creek Meadowville,  1995 11.0 490 AB, EP, SS reed canary grass, wool grass (Scirpus  

 Barbour Co.     cyperinus (L.)Kunth), woodland rush, American  

      burreed (Sparganium americanum Nutt.), 

      brookside alder 

       

Hazelton Hazelton,  2006 2.7 560 UB, AB, EP broadleaf cattail, common rush, white clover 

 Preston Co.     (Trifolium repens L.), red clover (T. pretense L.), 

      beggar-tick (Bidens sp.) 

Reference Sites       

Meadowville Meadowville,. N/A 11.7 480 AB, EP, SS, F broadleaf cattail, tussock sedge (Carex stricta  

 Barbour Co     Lam.), rice cutgrass, brookside alder 

       

Upper Deckers  Masontown,  N/A 2.1 515 UB, AB, SS, F cowlily (Nuphar lutea ssp. advena (L.)Sm.(Ait.)),  

Creek Preston Co.     buttonbush (Cephalanthus occidentalis L.), 

      brookside alder 

       

Bruceton Mills Bruceton Mills,  N/A 1.4 515 EP, SS reed canary grass, rice cut grass, broadleaf  

  Preston Co.         cattail, brookside alder 
a
 palustrine:  unconsolidated bottom = UB, aquatic bed = AB, emergent persistent = EP, scrub-shrub = SS, forested = F (Cowardin et al. 1979) 

b
 bold text indicates dominant classifications
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Table 2.  Mean, standard error (S.E.), minimum, and maximum results for decomposition of 5 litter types, expressed 

as decomposition rate constant k (yr 
-1

), in 3 mitigated and 3 reference wetlands in West Virginia, 2007 to 2009. 

            

Litter Type Mean S.E. Min Max 

Brookside Alder 0.432 0.016 0.159 1.074 

Reed Canary Grass 0.718 0.019 0.399 1.513 

Common Rush 0.571 0.016 0.109 1.026 

Broadleaf Cattail 0.358 0.016 0.000 0.882 

Mixed Litter
a
 0.649 0.017 0.262 1.164 

a
  Mixed litter bags contained 3.3 g brookside alder, 6.6 g  

   common rush, and 10.0 g of reed canary grass 
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Table 3.  Mean, standard error (S.E.), and analysis of variance (ANOVA) results for 9 environmental parameters measured in 3 mitigated and 3 reference 

wetlands in West Virginia, December 2007 to December 2009.  Averages were obtained by taking the mean of environmental measurements obtained at 96 

stakes included in modeling of decomposition rate.  Analysis of variance results compare environmental parameters among mitigated and reference wetlands (α = 

0.05). 

                       

 Mitigated  Reference  Overall F value P value 

  Mean  S.E.   Mean S.E.   Mean  S.E. (d.f. = 1,4)   

Air Temperature
a
 7.61 0.20  7.01 0.20  7.29 0.15 0.626 0.473 

Water Temperature 9.01 0.29  8.39 0.30  8.72 0.22 0.546 0.501 

Soil Temperature 14.45 0.67  11.88 0.42  12.67 0.37 5.470 0.079 

Water Depth
b
 6.29 0.63  4.80 0.59  5.44 0.46 0.959 0.383 

Hydroperiod
c
 0.46 0.02  0.45 0.03  0.45 0.02 0.042 0.847 

No. of transitions between flooded and exposed
d
 0.019 0.001  0.021 0.001  0.020 0.001 0.035 0.862 

Sum fluctuations
e
 0.42 0.04  0.38 0.04  0.39 0.03 0.066 0.811 

Water pH 6.24 0.07  6.32 0.03  6.25 0.03 0.010 0.925 

Soil Moisture
f
 7.35 0.22   8.90 0.10   8.19 0.14 2.338 0.201 

a  
 °C           

b
   cm           

c
   proportion of days            

d
   no. of transitions / days           

e
  cm / day           

f
  0 dry – 10 saturated           
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Table 4.  A priori models predicting litter decomposition rate with substantial Akaike support.  Ranking is based on 

Akaike’s Information Criterion for small sample sizes (AICc), with smaller values indicating a better model fit.  Air 

temperature (AT), soil temperature (ST), hydroperiod (HP), the number of transitions between flooded and exposed 

(FET), and water pH (WPH) were all found to have substantial support for at least one of the litter types. 

  

Model structure AICc K
a
 ∆i

b wi
c
 

Brookside Alder     

k = -2.00 + 1.50×ST 75.99 4 0.00 0.37 

k = -0.74 - 1.29×FET 77.04 4 1.05 0.22 

k = -2.74 + 0.98×WPH 77.72 4 1.73 0.16 

     

Reed Canary Grass     

k = -3.59 + 0.05×AT + 1.53×WPH 3.38 5 0.00 0.52 

k = -1.38 + 1.39×ST 4.97 4 1.59 0.24 

     

Common Rush     

k = 0.04 + 0.06×AT + 0.77×FET -92.32 5 0.00 0.45 

k = 0.18 + 0.05×AT -92.05 4 0.27 0.39 

     

Broadleaf Cattail     

k = 0.22 + 0.94×FET -87.22 4 0.00 0.31 

k = 0.44 - 0.20×HP -86.89 4 0.32 0.26 

k = 0.36 - 0.17×HP + 0.52×FET -86.23 5 0.99 0.19 

     

Mixed Litter     

k = -0.88 + 0.03×AT + 0.77×WPH -171.05 5 0.00 0.98 
a
  K = number of parameters, including intercept and error 

     
b
  ∆i = AICc lowest  - AICci for the i

th
 model in comparison 

c
  wi

 
= Akaike weights 
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Table 5.  Parameter estimates, standard errors (SE), and 95% confidence intervals for averaged models
a
 predicting 

decomposition rate constant k (yr 
-1

) of each litter type.  

 

    95% CI 

Model Parameter
b 

Estimate SE Lower Upper 

Brookside Alder Intercept -1.78 5.48 -12.47 8.90 

 WPH 0.21 0.27 -0.32 0.74 

 FET -0.38 2.23 -4.73 3.97 

 ST 0.74 0.82 -0.86 2.35 

      

Reed Canary Grass Intercept -2.91 3.69 -10.10 4.27 

 AT 0.04 0.00 0.04 0.04 

 WPH 1.06 0.15 0.77 1.35 

 ST 0.43 0.49 -0.52 1.37 

      

Common Rush Intercept 0.10 0.00 0.10 0.10 

 AT 0.05 0.00 0.05 0.05 

 FET 0.42 0.12 0.18 0.65 

      

Broadleaf Cattail Intercept 0.33 0.00 0.33 0.33 

 HP -0.11 0.00 -0.11 -0.11 

 FET 0.51 0.18 0.16 0.86 

      

Mixed Litter Intercept -0.88 0.37 -1.60 -0.16 

 AT 0.03 0.01 0.02 0.04 

  WPH 0.77 0.19 0.40 1.15 
a 
 Models were averaged for brookside alder, reed canary grass, common rush, and  

    broadleaf cattail because more than one model predicting litter decomposition rate 
had substantial Akaike support.  

b
  AT = air temperature, ST = soil temperature, HP = hydroperiod, FET = number of  

   transitions between flooded and exposed, and WPH = water pH 
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Figure 1.  Six study sites, comprised of 3 mitigated and 3 reference wetlands, in the Allegheny Mountain region of West Virginia, USA, 2007-2009. 
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Summary 

1.  Wetland plant litter decomposition influences many wetland processes, and is itself driven by 

a complex web of interacting parameters.  Invertebrates and microbes make up one portion of 

that web by processing organic material; however, their role is poorly understood.   

2.  To explore invertebrate and fungal influence on plant litter decomposition rate, we measured 

the decomposition of litter in three mitigated and three reference wetlands in the Mid-Atlantic 

Highlands of West Virginia, USA.   

3.  Litter decomposition rates and most invertebrate metrics were not statistically different 

among mitigated and reference wetlands; only oligochaetes (worms) and the functional feeding 

group (FFG) collector/gatherers had numbers that were statistically higher in mitigated wetlands.   

4.   Invertebrate metrics were able to explain 24.9 (FFG) to 30.9% (taxonomic groups) of 

variance in decomposition during the early phases (< 224 days) and 14.9 (FFG) to 21.4% 

(taxonomic groups) of the variance in the later phase (≥ 224 days) of litter decomposition.  

Shredders, collector/gatherers, and omnivores were more strongly associated with early phases 

of decomposition, while oligochaetes and omnivores were most strongly associated with trends 

in decomposition during the later phase. 

5.  Fungal biomass, as measured by ergosterol concentration, was similar among wetlands types, 

but was significantly higher in early phases of litter decomposition than the later phase.   

6.  Synthesis.  Decomposition influences many aspects of wetland function, making the variables 

that determine decomposition rates important to understand.  These results show that 

decomposition rates are similar between mitigated and reference wetlands, and that invertebrate 

community composition influences decomposition. Understanding these interactions is crucial to 

being able to assess and mitigate for lost wetland function. 
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Introduction 

To understand functions provided by wetlands, it is important to understand the web of 

interacting forces that drive those functions.  Litter decomposition is an example of a process that 

is linked to many other wetland processes, including physical and chemical properties of wetland 

soils (Mitsch & Gosselink 2007), nutrient availability and cycling (Prentki, Gustafson & Adams 

1978; Facelli & Pickett 1991), primary production (Brinson, Lugo & Brown 1981), and 

litter/organic matter accumulation (Gambrell & Patrick Jr. 1978; Xiong & Nilsson 1997).  These 

processes are then linked with other processes and create a chain of interactions that determine 

wetland function.   

Decomposition is driven by biotic (microorganisms and invertebrates that break down 

litter), physical (environmental conditions the litter encounters), and chemical (composition of 

the litter) variables (Aerts & de Caluwe 1997).  These three variables interact to drive 

decomposition through three phases (Godshalk & Wetzel 1978; Brinson, Lugo & Brown 1981).  

The first phase,  rapid loss of mass from leaching, occurs within 48-92 h of inundation, and is 

largely influenced by physical variables (Webster & Benfield 1986; Nykvist 1962).  The second 

phase of decomposition begins as rapid leaching ends and involves the colonization of litter by 

microbial organisms which break down soft tissues.  The third and final phase of decomposition 

involves mechanical fragmentation of the litter by physical forces and invertebrates (Hieber & 

Gessner 2002; Fazi & Rossi 2000; Hutchens Jr. & Wallace 2002).   

Biological forces exert influence over two of the three phases.  Depending on the time of 

year and stage of the second phase, bacteria (Howard-Williams & Davies 1978; Robb et al. 

1979) or fungi (Barlocher & Kendrick 1974; Findlay, Dye & Kuehn 2002; Gessner & Chauvet 

1994) can drive decomposition rates.  Litter exposed to the air is mostly decomposed by fungi 
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(Holland & Coleman 1987; Facelli & Pickett 1991) and submerged litter is primarily processed 

by bacteria; however, fungi also can be important in submerged conditions (Mason 1976; 

Gessner & Chauvet 1994; Bauer et al. 2003).  Some studies have attributed as much as 7 to 30% 

of litter mass loss to microbial activities (Petersen & Cummins 1974; Hieber & Gessner 2002).  

Many studies have shown differences in decomposition rates and attributed them to 

macroinvertebrate and detritivore presence or absence (Mason & Bryant 1975; Coulson & 

Butterfield 1978; Kemp, Conner & Day 1985; Hutchens Jr. & Wallace 2002; Kirby 1992) and 

many controlled studies have directly observed decomposition rate increasing with 

macroinvertebrate density (Cummins et al. 1973; Petersen & Cummins 1974; Herbst 1982; Fazi 

& Rossi 2000).  Some previous studies have attributed as much as 29 to 64% of mass loss to 

invertebrate activity (Merritt & Lawson 1979; Hieber & Gessner 2002).  Invertebrates belonging 

to the functional feeding group (FFG) shredders and detritivores are often credited with 

contributing the greatest influence (Cuffney & Wallace 1987; Graca 1993; Webster & Benfield 

1986). 

Mesh litter bags have long been used to assess both decomposition rates and the role of 

macroinvertebrates on decomposition (Witkamp & Olson 1963; Merritt & Lawson 1979; Stewart 

& Davies 1989).  By using multiple mesh sizes, invertebrates can be excluded from or allowed 

access to the litter creating a continuum that can be studied.  In this study, we used two sizes of 

mesh litter bags to study the role of invertebrates on decomposition.  Specifically, our objectives 

were to determine to what extent invertebrates contributed to litter decomposition rate in six 

wetlands in the Mid-Atlantic Highlands, USA.  Our second objective was to determine if 

decomposition rates were correlated with fungal biomass, and, if so, to determine how the 
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influence of fungal biomass on litter decomposition compared with the influence of 

invertebrates.   

 

Materials and methods  

Study Area 

Leaf breakdown rates were measured at three mitigated and three reference wetlands 

located in the Mid-Atlantic Highlands region of West Virginia, USA (Figure 1).  The three 

mitigated wetlands (Leading Creek, Sugar Creek, Hazelton) were constructed by the West 

Virginia Division of Highways (WVDOH) to compensate for wetland losses associated with the 

Corridor H and Mon-Fayette Expressway system projects (Table 1).  The three reference 

wetlands (Meadowville, Upper Deckers Creek, Bruceton Mills) were chosen based on their 

proximity to mitigated sites (to minimize differences in climatic events); similarity in elevation, 

size, and wetland classification; and their relative degree of disturbance.  All wetlands were 

associated with streams and received water from overbank flooding, with hillslope runoff and 

groundwater being additional sources of water.  All wetlands had a mixture of flooded and 

exposed conditions for the majority of the year, with brief periods of deeper flooding, but 

mitigated wetlands tended to have a higher percentage of open water and ponded areas than 

reference sites.  Reference sites tended to have more scrub-shrub areas than the mitigated sites 

and Leading Creek, Meadowville, and Upper Deckers Creek had portions of scrub-shrub and 

young forest.  All wetlands had some level of disturbance on their edge in the form of roads, 

grazing, or cultivated land. 
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Decomposition (Litterbag) Procedures 

 We collected (September – October 2007) three litter species (common rush [Juncus 

effusus L.], brookside alder [Alnus serrulata (Ait.)Willd.], and reed canary grass [Phalaris 

arundinacea L.]) based on common dominant species at mitigated and reference sites in West 

Virginia (Balcombe et al. 2005a; Veselka IV 2008) and used the litter bag method to compute 

litter decomposition rates (Benfield 1996).  Litter mixes can have non-additive decomposition 

rates compared to single species (Gartner & Cardon 2004), therefore 20 g of litter was created 

from a mix of 3:2:1 reed canary grass (10 g), common rush (6.6 g), and brookside alder (3.3 g) in 

an attempt to mimic ratios present in the wetlands (Balcombe et al. 2005a; Veselka IV 2008). 

 To minimize variability, reed canary grass and common rush leaves and stems were 

clipped and collected as they senesced, but while still standing (Marsh et al. 2000; Bedford 

2005).  We collected brookside alder leaves with a STIHL model SH 85 D Shredder 

Vacuum/Blower (STIHL Incorporated, Virginia Beach, VI) reversed to suck leaves into the tube.  

Brookside alder leaves that were not intact and any material other than alder leaves were 

discarded.  To minimize differences in litter quality, each species was collected from only one 

area in a single wetland (Baker et al. 2001; Fennessy, Rokosch & Mack 2008; Aerts & de 

Caluwe 1997).  We air-dried all litter for a minimum of 1 week before weighing and bagging it. 

We constructed 20 × 20 cm litter bags from 1.27 mm (fine) and 2.8 mm (coarse) vinyl-

coated fiberglass window mesh (Benfield 1996).  Litter bags were constructed with one folded 

side and three sides heat sealed, and reinforced with stainless steel staples at 5-cm intervals 

(Deghi, Ewel & Mitsch 1980).  Each bag was uniquely marked with a plastic tag (Davis & van 

der Valk 1978; Vargo, Neely & Kirkwood 1998).   
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 Nine transects were established, using stratified sampling (Taylor and Middleton 2004), 

to represent aerial proportions of environmental conditions, as determined by major vegetation 

communities, within each wetland.  Ten wooden stakes were installed at 7.5 m intervals along 

each transect and one fine and one coarse-mesh bag was attached to the base of each stake with 

0.5 m lengths of nylon fishing line (Battle & Golladay 2001; Anderson & Smith 2002).  Litter 

bags were placed flat on bare ground or on top of any existing litter to mimic natural litter 

deposition.  If the stake was located in standing water, the litter bag was first dunked to 

completely inundate the surface and minimize any hydrophobic effect the mesh might contribute 

and then allowed to float or sink without interference.   

In December 2007, ninety of each type of litter bag (180 total) were placed in each 

wetland for a total of 1,080 litter bags.  Extra litter bags (1.5x the collected number) were placed 

in wetlands to compensate for anticipated litter bag losses from environmental disturbance (e.g., 

currents during flooding) and destruction from wildlife.  Six replicates of each litter type were 

retrieved the same day the bags were placed in the field to calculate the loss of mass due to 

handling (Benfield 1996).  Four replicates were then retrieved on 14 different dates:  at 7 days (1 

week), 21 days (3 weeks), 35 days (5 weeks), 49 days (7 weeks), 77 days (11 weeks), 119 days 

(17 weeks), 168 days (24 weeks), 224 days (32 weeks), 294 days (42 weeks), 364 days (52 

weeks), 455 (65 weeks), 546 days (78 weeks), 637 days (91 weeks) and 728 days (104 weeks).  

We sampled the four replicates by collecting all litter bags from four randomly chosen stakes in 

each wetland.  A total of 686 litter bags were collected.   

Litter bags were transported to the lab on ice, cleared of external material, and opened.  

Litter was rinsed from the interior of the bag into a 500 μm sieve and sediment was rinsed off.  

Invertebrates were picked from the litter and preserved in 80% ethanol.  We oven-dried (65° C) 
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leaf litter for 7 - 9 days until a constant mass was reached (Morris & Lajtha 1986; Lockaby, 

Murphy & Somers 1996), recorded mass, and ground the litter to a powder in a 2-mm mesh 

Thomas Wiley Mill (Thomas Scientific, Swedesboro, NJ).  Three subsamples of the ground litter 

were then incinerated to calculate ash-free dry mass (AFDM), which was used for statistical 

analysis. 

 

Invertebrates 

We identified invertebrates to family, FFG, and tallied individuals (Merrit & Cummins 

1996; Bland & Jaques 1978; Chu & Cutkomp 1992; Peckarsky et al. 1990; Ubick et al. 2005; 

Stehr 1991; Wolfenbarger et al. 2008; Dindal 1990).  Some individuals proved problematic to 

identify to family, therefore leeches (Hirundinea), worms (Oligochaeta), and mites (Acarni) were 

identified to subclass and slugs (Stylommatophora) were identified to order, but were considered 

equivalent and included in analysis with families.  Taxonomic groups that could not be identified 

to specific feeding guilds (scrapers, filterers, predators, collector/gatherers, shredders) were 

identified to the general groups of herbivores, omnivores or predators.  Because terrestrial 

invertebrates have greater diversity and less available information on their FFG, they were often 

identified as herbivores, omnivores, or predators and made up a larger portion of those groups 

than aquatic species.  Total dry mass of oligochaetes was 2.5x greater than the next taxonomic 

group, therefore they were separated out into their own group for FFG analysis.  Total biomass 

and detritivore metrics were calculated both with and without the inclusion of oligochaetes.  

Richness was expressed as the number of taxonomic groups/litter bag.  Biomass (mg/litter bag) 

was obtained by oven-drying samples at 55 °C for ≥48 h to a constant mass (0.0001 g) and using 

an analytic scale (Balcombe et al. 2005b). 
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Ergosterol 

 Fungal biomass was estimated by the extraction and quantification of ergosterol from 

ground litter (Kuehn et al. 2000; Newell, Arsuffi & Fallon 1988) using a modified form of the 

cold ethanol procedure described in Richardson and Logendra (1997).  We mixed 0.2 g of 

ground litter and 1 mL of absolute ethanol in 2-mL, screw-cap microcentrifuge tubes (Fisher 

Scientific, Pittsburgh, PA) in a FastPrep FP120 (Q-biogene, Irvine,CA) with agitation at 6.0 m/s 

for 30 s.  Ergosterol was then extracted for 30 min by rotating, end-over-end at 15 rpm, on a 

Glas-Col (Terre Haute, IN) mini-rotator.  Samples were centrifuged for 10 min at 10,000 rpm in 

a VSB-14 microcentrifuge (Shelton Scientific, Shelton, CT) before the supernatant was removed 

and filtered, through a 0.22-μm nylon filter microcentrifuge tube (Costar, Corning, NY), by 

centrifugation for 2 min at 10,000 rpm. 

Ergosterol was analyzed by high-performance liquid chromatography (HPLC) on a 150 

mm × 4.6 mm Phenomenex Prodigy 5-μm ODS3 reverse phase C18 column (Phenomenex, 

Torrance, CA).  HPLC conditions were described previously (Panaccione & Coyle 2005) and 

consisted of a model 600 pump controller with an in-line degasser, a model 717plus autosampler, 

and a model 2487 absorbance detector (all from Waters Corp., Milford, MA).  Samples were 

eluted isocratically with 100% methanol at a flow rate of 1.0 mL min
-1

, and peaks were 

monitored at 280 nm.  Ergosterol eluted at ~9.0 min and was quantitated by the external standard 

method using a pure compound (UV absorption in MeOH, λmax = 282 with shoulders at 269 and 

293) obtained from a commercial source (MP Biomedicals, Solon, OH).  The presence of 

ergosterol was confirmed by comparison of HPLC retention times and UV absorption between 

the unknown peak and pure standard (Appendix T).  Ergosterol is expressed as μg ergosterol  

mg 
-1

 dry weight litter. 
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Data Analysis 

 We used an exponential decay rate to model leaf litter decomposition and calculate 

decomposition rate: 

yt / yo = e
 –kt

              eqn 1 

where k is the instantaneous decomposition rate constant (year 
-1

), yt is the AFDM at time t 

(years), and yo is the initial AFDM (Olson 1963; Brock et al. 1985).   

 Normality was checked using the Shapiro-Wilk test (shapiro.test {stats}) in Program R 

(version 2.10.1) and parameters were transformed to more closely approximate normality.  All 

count data were log transformed, decomposition rate of litter was inverse square root ([1/-(sqrt 

x)] + 1) transformed, and ergosterol was sqrt transformed.  Correlations between invertebrate 

metrics were checked visually using a scatterplot matrix (pairs {graphics}) and with the 

Pearson’s correlation (cor {stats}) in Program R.  Diversity and richness were highly correlated 

(r > 0.75), therefore richness was used because it was better able to predict litter decomposition 

(lower Akaike Information Criteria value) (Burnham and Anderson, 2002) diversity when tested 

in a single parameter regression model.  Analysis of variance (ANOVA) tested the influence of 

mesh size (fine, coarse), wetland type (mitigated, reference), collection date, and biomass of 

invertebrate metrics (collected from litter bags) on decomposition rate using a linear mixed 

effects (lme {nlme}) model in Program R.  Wetlands was treated as a random effect (i.e., factors 

we did not deliberately arrange, but which were sampled from a population of possible samples) 

and stakes were experimental units.  Regression tree analysis was performed using mvpart 

{mvpart} in Program R to identify quantitative differences in decomposition rates based on the 

biomass of taxonomic groups, FFG, and all invertebrate metrics (De'ath & Fabricius 2000).  
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Regression trees were pruned, based on percent of variance explained, to prevent over-fitting the 

data. 

 

Results 

Decomposition 

Decomposition was not statistically different between litter bag mesh sizes (Figure 2) and 

wetland types (Figure 3).  Proportion of mass remaining for fine mesh ( x = 28.3, S.E. = 1.8) and 

coarse mesh ( x = 26.1, S.E. = 1.7) bags were similar (F1,41 = 1.05, p = 0.312).  Litter 

decomposition rate constants were rapid initially, likely due to rapid mass loss from leaching.  

They then continued to slow until 119 to 168 days, after which decomposition rates rose slightly 

and leveled off to an average rate of 0.69 year 
-1

 for the rest of the study period, with only slight 

fluctuations that were likely due to seasonal effects. 

ANOVA indicated a significant interaction between wetland type and mesh size for 

decomposition rate constant (Table 2); therefore average decomposition rate constants of meshes 

were tested within each wetland type.  For mitigated wetlands, mean k for fine mesh ( x = 0.69, 

S.E. = 0.04) and coarse mesh ( x = 0.78, S.E. = 0.04) bags were not significantly different (F1,315 

= 3.60, p = 0.059).  For reference wetlands, mean k for fine mesh ( x = 0.87, S.E. = 0.06) and 

coarse mesh ( x = 0.77, S.E. = 0.04) bags were again not significant (F1,320 = 1.38, p = 0.241).  

The significant interaction therefore was a product of fine mesh bags having a higher 

decomposition rate in reference wetlands, but a lower mean rate in mitigated wetlands.  

Collection date also was significant, indicating that rates changed over time.  Because 

decomposition rate was similar among mesh sizes and wetland types, all litter bags were 

combined for invertebrate analysis.  
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Invertebrates 

 We picked 7,973 individuals from the 642 collected litter bags and identified them to 125 

taxonomic groups (120 families, one order, and four subclasses; Appendix U).  Oligochaetes 

(worms), formicids (ants), and stylommatophores (slugs) accounted for 78.7% of the total 

biomass (9,696 mg dry mass) of invertebrates collected (Table 3).  Formicids, chironomids 

(midge larvae), oligochaetes, and asellids (aquatic pill bugs) accounted for 67.5% of total 

individuals picked from litter bags.  Invertebrates were significantly higher by mass in coarse 

mesh litter bags than fine mesh bags for nearly all metrics (Table 4).  Only mean diversity was 

higher in fine mesh bags and only shredder, scraper and oligochaete biomasses were similar 

between coarse and fine mesh bags.  Predators were the most abundant FFG, accounting for 

72.2% of dry mass.  Herbivores were the second most abundant feeders in litter bags, accounting 

for 13.2% of dry mass.  When oligochaetes were included within the grouping of detritivores, it 

comprised 13.0% by mass; but when oligochaetes were removed only 1.2% of dry mass was 

detritivores.  Collector gatherers were 12.5% of dry mass when oligochaetes were grouped with 

them, but only 0.75% when oligochaetes were excluded.  Only 2.7% of individuals (0.93% by 

mass) could not be placed in any functional feeding group.   

 Most invertebrate metrics were similar between mitigated and reference wetlands (Table 

4).  A total of 4,099 individuals (72.9% by mass) were collected from mitigated wetland bags 

and 3,874 individuals (27.1% by mass) were collected from reference wetland bags.  Differences 

in mass between wetland types were mostly due to oligochates, with total biomass including 

oligochaetes, detritivore biomass including oligochaetes, and oligochaetes all being significantly 

higher in mitigated wetlands.  Collector/gatherers also were significantly higher in mitigated 
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wetlands.   Reference wetlands had higher mean richness, diversity, predator biomass, filterer 

biomass, and omnivore biomass, but none were significantly different. 

 Biomass for most FFG peaked prior to 224 days, then decreased and leveled off for the 

remainder of the study (Figure 4); only oligochaetes peaked later, at 546 days.  Because of this 

shift in invertebrate composition, regression tree analysis was run on phases 1 and 2 (early 

phases, < 224 days) of decomposition separately from phase 3 (late phase, ≥ 224 days).  It 

revealed that in the early phases of decomposition, trends in limnephilids (shredder caddisfly) 

were most strongly associated with high decomposition rates, but when limnephilids were < 0.15 

mg then decomposition was lower and slugs were associated with decomposition (Figure 5, 

Appendix V).  Higher larval dytiscid (predatory beetle) biomass also was associated with higher 

decomposition rates.  In the later phase of decomposition (Figure 6, Appendix W), adult 

hydrophilids (collector/gatherer beetle) were most strongly associated with higher decomposition 

rates, followed by oligochaetes.   

 High collector/gatherer biomass along with high shredder biomass led to the largest 

decomposition rates during early phases (Figure 7, Appendix X).  When collector/gatherer 

biomass was low, omnivore biomass determined decomposition rates followed by herbivore 

biomass.  In late phase decomposition (Figure 8, Appendix Y), higher rates were associated 

primarily with oligochaete biomass, followed by omnivores.   

When all invertebrate metrics were analyzed together, taxonomic groups were the most 

strongly associated metric with decomposition rate and the regression tree yielded the same 

results as taxonomic groups only (Figure 5, Appendix Z).  The late phase regression tree, 

however, was a mix of invertebrate metrics, FFG, and taxa (Figure 9, Appendix AA).  Adult 

hydrophilids were associated with the largest decomposition rates, but when they were < 1.43 
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mg, oligochaetes were associated with higher decomposition rates.  Higher taxonomic richness 

and total biomass also led to the fastest decomposition rates. 

 

Fungi 

 Fungi colonized the litter quickly, peaking at 35 days and again with a smaller peak at 77 

days (Figure 10).  Early phases of decomposition had a mean ergosterol of 0.083 μg mg 
-1

 dry 

litter (S.E. = 0.004), while the late phase of decomposition had a mean ergosterol of 0.052 μg 

mg
-1

 dry litter (S.E. = 0.004), which was significantly less (F1,312 = 33.62, p < 0.001).  Overall 

mean ergosterol was 0.067 μg mg 
-1

 dry litter (S.E. = 0.003), but was not significantly (F1,234 = 

1.17, p = 0.280) related to overall decomposition rate.  When early and late phase ergosterol and 

decomposition were tested separately, ergosterol did not significantly predict decomposition for 

either phase (early: F1,151 = 0.46, p = 0.499; late: F1,154 = 0.154, p = 0.695).  Concentrations of 

ergosterol in leaf litter (Appendix BB) were similar (F1,4 = 0.017, p = 0.902) between mitigated 

( x  = 0.065, S.E. = 0.004) and reference ( x  = 0.067, S.E. = 0.004) wetlands. 

 

Discussion 

Litter Decomposition 

 Litter decomposition in mitigated and reference wetlands was not statistically different, 

which is supported by results found in several other studies (Álvarez & Bécares 2006; Gingerich 

2010: Chapter 2 & 3).  Decomposition was not statistically different between two different mesh 

sizes, suggesting that mesh size and the inclusion or exclusion of invertebrates did not influence 

decomposition, as has been suggested (Brinson, Lugo & Brown 1981; Stewart & Davies 1989).  

Litter decomposition rates did change over time before leveling out between 119 and 224 days.  



 

 184 

Transitions between phase 2 and phase 3 of decomposition may be marked by the leveling out of 

decomposition rate and decreased presence of invertebrates and fungi.   

 

Invertebrates 

 Invertebrates were significantly different between coarse and fine mesh bags for nearly 

all metrics analyzed; however, decomposition rates were similar, implying that invertebrates did 

not strongly influence decomposition rates, which is similar to other studies (Mason & Bryant 

1975; Coulson & Butterfield 1978).  Regression tree analysis revealed trends in invertebrates 

associated with decomposition.  In early phases of decomposition, soft leaf tissue and high 

fungal colonization attracted many invertebrates to the decomposing litter.  Collector/gatherers, 

shredders and omnivore numbers peaked and high prey numbers attracted predators.  As the litter 

decomposition transitioned from the early phases into the late phase, most invertebrate numbers 

declined and leveled off, except oligochaetes whose numbers increased.  This may be because 

oligochaetes were able to process the remaining tougher tissues of the litter, or because over time 

the litter bags were better incorporated into the top soil horizon, allowing oligochaetes better 

access to the material. 

When all metrics were analyzed collectively, taxonomic groups were more strongly 

associated with trends in decomposing litter than FFG, abundance, richness, or diversity.  This 

suggests that within FFG, certain taxa were more strongly associated with decomposition, and 

possibly contributed more to decomposition rate, than the group as a whole.  As invertebrate 

numbers declined in late phase decomposition, taxa richness and total biomass became more 

important, but were still preceded in the regression tree by individual taxa. 

Several hypotheses may explain the lack of strong invertebrate associations with 

decomposition.  First, invertebrate communities sampled from litter bags may not adequately 
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reflect natural community composition (Dobson 1991).  All litter bags were collected during the 

middle of the day, which may have poorly represented invertebrates with diel migrations, such as 

oligochaetes (Erman 1973) and chironomids (Ola, Irmgard & Anders 2001).  Second, predator 

abundances are likely influencing decomposition through top-down control of decomposers.  

Predator numbers were extremely high in litter bags and predator taxa were included in 

regression trees indicating trends strongly associated with decomposition rate.  Finally, it is 

possible that invertebrates did not strongly influence decomposition (Álvarez & Bécares 2006; 

Hanlon 1982), or influenced decomposition in a way that was not captured by our metrics.   

 

Fungi 

 Our study confirmed the increased presence of fungi in decomposing litter between 0 and 

300 days, but fungal biomass was not a useful predictor of decomposition rate.  During early 

phases of decomposition microbes condition the plant litter, taking advantage of nutrients being 

released during the breakdown process and facilitating decomposition.  Once most nutrients have 

been leached and soft material has been broken down, decomposition passes into its third phase 

and the role of microbes diminishes (Godshalk & Wetzel 1978; Brinson, Lugo & Brown 1981).  

This is supported by the decline and leveling off of ergosterol levels around 300 days.  A second 

increase in fungi occurs between 546 and 639 days, but is likely due to environmental conditions 

and not the decomposing litter.   

 This is one of only a few studies comparing fungi in created and reference wetlands, and 

the only study that has compared fungi in created and reference wetlands using litter 

decomposition as a basis.  Confer and Niering ( 1992) compared mycorrhizae in roots in created 

and natural wetlands and found that they were higher in created wetlands, attributing the 

difference to higher nutrient availability.  The fact that ergosterol levels were similar in litter 
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from mitigated and reference wetlands indicated that fungal biomass involved with 

decomposition are similar among wetland types and suggests that mitigated wetlands in the Mid-

Atlantic Highlands region are functioning similarly to natural wetlands at the microbial level. 

 

Conclusion 

 Overall, litter decomposition rates were similar among mitigated and reference wetlands 

and across varying invertebrate communities.  Invertebrates were more abundant in coarse mesh 

bags and were comparable or more abundant in mitigated wetlands.  Oligochates and 

collector/gatherer numbers were higher in mitigated wetlands.  Shredders, collector/gatherers, 

and omnivores were associated with trends in litter decomposition during the early phases, but 

oligochaetes and omnivores were most strongly associated with decomposition trends in the later 

phase of decomposition.  Because of the importance of individual taxa (oligochaetes, 

limnephilids, stylommatophores, and dytiscids) future studies should consider identifying taxa to 

genus.  Based on ergosterol levels, fungi colonized the leaf litter quickly, peaking at 35 days, 

then decline and level off by 300 days.  Ergosterol levels were significantly higher in early 

phases of decomposition than the later phase and were similar among wetlands types.  Ergosterol 

levels were not significant with overall litter decomposition rates.   

Invertebrate metrics were able to explain 24.9 to 30.9% of variance in decomposition 

during the early phases and 14.9 to 21.4% of the variance in the later phase of litter 

decomposition.  These numbers represent substantial portions of a dynamic process that involves 

many interacting forces and phases, of which invertebrates and fungi comprise only a portion. 

Though we found low measurable influence of fungi on decomposition, it is likely that their 

contribution was more significant than our results reflect.  Further studies are needed to more 

fully identify the associations between biological variables and litter decomposition. 
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Table 1.  List of three mitigated and three reference wetland study sites in West Virginia, including site name, year constructed, size (ha), elevation (m above sea 

level), and wetland classifications, 2007-2009. 

                

Site name County and  Wetland Year Size  Elevation Wetland  Dominant Vegetative Species 

  Closest Town Type Created (ha) (m) Classifications
†
 at Site

 
  

Leading  Montrose,  M 1995 17.0 600 UB, AB, EP, SS
‡
, F 

hop sedge (Carex lupulina Muhl. ex 
Willd.), 

Creek Randolph,       common rush, smartweed (Polygonum 

 Co.      hydropiperoides Michx; P. persicaria L.), 

       rice cutgrass (Leersia oryzoides (L.)Sw.), 

       brookside alder 

        

Sugar Creek Meadowville,  M 1995 11.0 490 AB, EP, SS reed canary grass, wool grass (Scirpus 

 Barbour Co.      cyperinus (L.)Kunth), woodland rush, 

       American burreed (Sparganium 

       americanum Nutt.), brookside alder 

        

Hazelton Hazelton,  M 2006 2.7 560 UB, AB, EP broadleaf cattail, common rush, white and 

 Preston Co.      red clover (Trifolium repens L.; T. 

       pretense L.), beggar-tick (Bidens sp.) 

        

Meadowville Meadowville,  R N/A 11.7 480 AB, EP, SS, F broadleaf cattail, tussock sedge (Carex 

 Barbour Co.      
stricta Lam.), rice cutgrass, brookside 
alder 

        
Upper 
Deckers  Masontown,  R N/A 2.1 515 UB, AB, SS, F cowlily (Nuphar lutea ssp. advena 

Creek Preston Co.      (L.)Sm.(Ait.)), buttonbush (Cephalanthus 

       occidentalis L.), brookside alder 

        

Bruceton Mills Bruceton Mills,  R N/A 1.4 515 EP, SS reed canary grass, rice cut grass, cattail 

  Preston Co.           brookside alder 
†
 palustrine:  unconsolidated bottom = UB, aquatic bed = AB, emergent persistent = EP, scrub-shrub = SS, forested = F (Cowardin et al. 1979) 

‡
 bold text indicates dominant classifications 
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Table 2.  Analysis of variance results for decomposition, expressed as average decomposition rate constant k      

(year 
-1

), in six wetlands (three mitigated, three reference) in West Virginia, December 2007 to December 2009.  

Wetland type (mitigated, reference), mesh size (fine, coarse), date (n=14), and their interactions were all tested.  

Date and the interaction between type and mesh were significant (p < 0.05). 

 

Effect Num DF Den DF F value p value 

Type 1 583 0.17 0.680 

Mesh 1 583 0.22 0.637 

Date 13 583 14.54 < 0.001* 

Type*Mesh 1 583 4.75 0.030* 

Type*Date 13 583 0.9 0.557 

Mesh*Date 13 583 0.32 0.990 

Type*Mesh*Date 13 583 0.81 0.650 
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Table 3.  Overall means per bag, standard errors (S.E.), and maximums for five invertebrate metrics, seven 

functional feeding groups (FFG), and the top 20 taxonomic groups by mass (mg dry mass).  Minimums were 0 for 

all metrics. 

 

Invertebrate Metric Family Mean 
(mg) 

S.E. 
(mg) 

Max 
(mg) 

Abundance 12.3 2.68 1011 

Richness 2.3 0.09 13 

Diversity 0.53 0.024 2.3 

Biomass (with Oligochaetes) 14.92 1.524 482.9 

Biomass (without Oligochaetes) 13.16 1.200 353.5 

Detritivores (with Oligochaetes) 1.94 0.954 471.3 

Detritivores (without Oligochaetes) 0.18 0.036 11.6 

Predators & Parasites 10.78 1.148 353.5 

Shredders 0.14 0.042 14.5 

Collector/Gatherers 0.11 0.022 7.6 

Scrapers 0.02 0.019 12.1 

Filterer/Collectors 0.00 0.000 0.3 

Herbivores 1.97 0.289 91.3 

Omnivores 0.01 0.005 2.7 

Oligochaeta (Subclass)  4.51 0.738 235.7 

Hymenoptera Formicidae 1.76 0.954 471.0 

Stylommatophora   1.36 0.269 90.6 

Isopoda Asellidae 0.85 0.239 113.5 

Veneroida Sphaeriidae 0.77 0.333 181.8 

Diptera Chironomidae (l)
†
 0.46 0.224 97.9 

Diptera Tipulidae (l) 0.46 0.100 29.1 

Araneae Pisauridae 0.46 0.095 29.7 

Ephemeroptera Leptophlebiidae 0.44 0.208 114.6 

Coleoptera Hydrophilidae (l) 0.42 0.058 12.4 

Basommatophora Physidae 0.37 0.216 119.4 

Decapoda Cambaridae 0.31 0.306 199.1 

Megaloptera Corydalidae 0.27 0.114 56.8 

Basommatophora Planorbidae 0.24 0.094 35.5 

Coleoptera Carabidae (a) 0.24 0.044 12.2 

Basommatophora Lymnaeidae 0.16 0.068 39.9 

Isopoda Armadillidiidae 0.13 0.047 20.2 

Chordeumatida Conotylidae 0.11 0.037 20.2 

Hirudinea (Subclass)  0.11 0.032 11.6 

Coleoptera Dystiscidae (l) 0.10 0.039 18.9 

   
†
 Indicates adult (a) or larvae (l). 
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Table 4.  Comparisons of means per bag and standard errors (S.E.) using analysis of variance (ANOVA) for five invertebrate metrics, seven functional feeding 

groups, and oligochaetes, expressed as dry mass (mg), among litter bag mesh sizes and wetland types.   

 

  Fine Mesh  Coarse Mesh    
Mitigated 
Wetlands  

Reference 
Wetlands   

 Invertebrate Metric   Mean S.E.  Mean S.E. (F1,635) p value  Mean S.E.  Mean S.E. (F1,635) p value 

Abundance  5.60 1.3  19.0 5.2 18.86 < 0.001  12.7 4.1  11.8 3.5 0.66 0.427 

Richness  1.6 0.10  2.9 0.15 55.97 < 0.001  1.9 0.12  2.6 0.14 2.26 0.133 

Diversity  0.68 0.04  0.38 0.03 47.91 < 0.001  0.41 0.03  0.64 0.04 3.33 0.068 

Total Mass  2.95 0.52  17.91 2.55 55.42 < 0.001  10.88 1.96  9.94 1.80 0.06 0.803 

(without Oligochaeta)                 

Total Mass  6.30 0.95  23.58 2.83 39.8 < 0.001  17.83 2.39  12.06 1.90 6.87 0.009 

(with Oligochaeta)                 

Detritivores  1.85 0.50  7.48 1.36 25.53 < 0.001  5.09 1.30  4.22 0.69 0.14 0.708 

(without Oligochaeta)                 

Detritivores  5.20 0.93  13.15 1.82 16.84 < 0.001  12.03 1.84  6.34 0.93 9.75 0.002 

(with Oligochaeta)                 

Predators  0.85 0.10  4.02 0.42 52.95 < 0.001  1.92 0.28  2.94 0.35 1.00 0.320 

Shredders  0.01 0.01  0.06 0.02 3.74 0.055  0.05 0.02  0.03 0.01 1.14 0.292 

Collector/Gatherers  4.41 0.90  9.16 1.58 5.51 0.020  10.45 1.67  3.17 0.70 7.17 0.008 

Scrapers  0.39 0.20  1.31 0.55 0.75 0.386  0.97 0.53  0.73 0.24 0.01 0.944 

Filterers  0.12 0.08  1.43 0.66 3.95 0.047  0.73 0.35  0.81 0.57 0.01 0.905 

Herbivores  0.16 0.04  0.76 0.16 12.76 < 0.001  0.46 0.11  0.45 0.13 0.01 0.933 

Omnivores  0.14 0.04  6.14 1.97 25.64 < 0.001  3.09 1.29  3.17 1.49 0.03 0.863 

Oligochaeta   3.35 0.80  5.67 1.24 2.75 0.101  6.94 1.35  2.12 0.59 11.16 0.001 
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Figure 1.  Six study sites, comprised of three mitigated and three reference wetlands, in the Mid-Atlantic Highlands region of West Virginia, USA, 2007-2009. 
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Figure 2.  Litter decomposition, expressed as percent initial ash-free dry mass and decomposition rate constant k (year 

-1
), in litter bags with two mesh sizes (fine 

[1.27 mm] and coarse [2.8 mm]) over 728 days (December 2007 to December 2009) in three mitigated and three reference wetlands in the Mid-Atlantic 

Highlands region.   
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Figure 3.  Litter decomposition, expressed as percent initial ash-free dry mass and decomposition rate constant k (year 

-1
), over 728 days (December 2007 to 

December 2009) in three mitigated and three reference wetlands in the Mid-Atlantic Highlands region. 
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Figure 4.  Litter decomposition rate constant k (year
-1

) and invertebrate functional feeding group biomass (mg dry mass litter) from litter bags collected from 

three mitigated and three reference wetlands in the Mid-Atlantic Highlands region, December 2007 to December 2009. 
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Dyt = Dytiscidae, Coleoptera, larvae (Predator) 

Lim = Limnephilidae, Trichoptera (Shredder, filterer) 

Sty = Stylommatophora (Order, omnivore, detritivore) 

 

 

Figure 5.  Regression tree analysis to identify invertebrate taxa, by biomass, associated with trends in the early 

phases (< 224 days) of decomposition.  Decomposition was measured over two years in three mitigated and three 

reference wetlands in the Mid-Atlantic Highlands region, USA, December 2007 to December 2009.  Divisions in the 

regression tree explain 24.9% of variance in decomposition rates. 
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Hyd = Hydrophilidae, Coleoptera, adult (Collector/gatherer) 

Lin = Linyphiidae, Araneae (Predator) 

Oli = Oligochaeta (Collector/gatherer) 

Sty = Stylommatophora (Order, omnivore, detritivore) 
 

 
Figure 6.  Regression tree analysis to identify invertebrate taxa, by biomass, associated with trends in the late phase 

(≥ 224 days) of decomposition.  Decomposition was measured over two years in three mitigated and three reference 

wetlands in the Mid-Atlantic Highlands region, USA, December 2007 to December 2009.  Divisions in the 

regression tree explain 21.4% of variance in decomposition rates. 
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CG = Collector/gatherer 

HB = Herbivore 

OM = Omnivore 

SH = Shredder 

 

 
Figure 7.  Regression tree analysis to identify invertebrate functional feeding groups (FFG), by biomass, associated 

with trends in the early phases (< 224 days) of decomposition.  Decomposition was measured over two years in 

three mitigated and three reference wetlands in the Mid-Atlantic Highlands region, USA, December 2007 to 

December 2009.  Divisions in the regression tree explain 30.8% of variance in decomposition rates.
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Oli = Oligochaeta (Collector/gatherer) 

OM = Omnivore 

 

 
Figure 8.  Regression tree analysis to identify invertebrate functional feeding groups (FFG), by biomass, associated 

with trends in the late phase (≥ 224 days) of decomposition.  Decomposition was measured over two years in three 

mitigated and three reference wetlands in the Mid-Atlantic Highlands region, USA, December 2007 to December 

2009.  Divisions in the regression tree explain 14.9% of variance in decomposition rates. 
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Taxonomic Groups (mg dry mass) 

Hyd = Hydrophilidae, Coleoptera, adult (Collector/gatherer) 

Lin = Linyphiidae, Araneae (Predator) 

Oli = Oligochaeta (Collector/gatherer) 

 

Invertebrate Metric 

Rich = Richness (no. taxa) 

Mass = Total biomass (mg dry mass) 

 

 
Figure 9.  Regression tree analysis to identify invertebrate metrics associated with trends in the late phase (≥ 224 

days) of decomposition.  Decomposition was measured over two years in three mitigated and three reference 

wetlands in the Mid-Atlantic Highlands region, USA, December 2007 to December 2009.  Divisions in the 

regression tree explain 20.7% of variance in decomposition rates.
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Figure 10.  Graph of litter decomposition rate constant k (year

-1
) and fungal biomass (μg ergosterol mg

-1
 dry mass litter) from litter bags collected from three 

mitigated and three reference wetlands in West Virginia, USA, December 2007 to December 2009. 
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INTRODUCTION 

Wetland mitigation has led to a net gain in wetland acreage in recent years (Dahl 2006); 

however, it is unclear that wetland function is being adequately replaced (Bedford 1996; Minkin 

and Ladd 2003; Hoeltje and Cole 2009).  Decomposition of plant litter influences many wetland 

processes and is itself driven by a complex web of interacting forces.  This makes plant litter 

decomposition a useful measure of wetland function and a possible metric for judging functional 

replacement in compensatory mitigation projects.  Litter decomposition is linked to the physical 

and chemical properties of wetland soils (Mitsch and Gosselink 2007), nutrient availability and 

cycling (Prentki et al. 1978; Facelli and Pickett 1991), primary productivity (Brinson et al. 1981), 

litter/organic matter accumulation (Gambrell and Patrick Jr. 1978; Xiong and Nilsson 1997), and 

seed germination (Xiong and Nilsson 1997; Taylor and Middleton 2004).  However, the web of 

interacting forces that intricately connect decomposition to wetland function also obscures study 

of individual variables.  For decomposition to be used as a metric to judge wetland function, its 

driving forces must be better understood.  To better understand trends in decomposition among 

mitigated and reference wetlands and the variables influencing them, we conducted a 2-year 

study of wetland litter decomposition rates in the Allegheny Mountains region (Mid-Atlantic 

Highlands region) of West Virginia.   

 

OBJECTIVES AND HYPOTHESES 

 An in-depth study of litter decomposition, using litter bags, was conducted in 3 mitigated 

and 3 reference wetlands from December 2007 to December 2009 (Gingerich 2010: Chapters 2, 

4 & 5).  The 8 study objectives and 15 hypotheses for this portion of the study are listed below: 
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Objective 1:  To compare decomposition rates for mitigated versus natural wetlands 

(Gingerich 2010: Chapter 2). 

  Hypothesis A:  Litter decomposition rate is greater in mitigated wetlands in response 

to differences in hydrology (longer inundation periods and wetter soil 

in mitigated wetlands than in reference wetlands). 

Objective 2:  To determine rates and trends of decomposition for five different litter types: 

broadleaf cattail (Typha latifolia L.), common rush (Juncus effusus L.), brookside alder 

(Alnus serrulata (Ait.) Willd.), reed canary grass (Phalaris arundinacea L.), and a litter mix 

of common rush, reed canary grass, and brookside alder (Gingerich 2010: Chapter 2). 

  Hypothesis B:  Litter types have significantly different rates of decomposition. 

  Hypothesis C:  Brookside alder and the mixed litter have significantly faster 

decomposition rates. 

  Hypothesis D:  Broadleaf cattail has significantly lower rates of decomposition.   

  Hypothesis E:  The order of litter decomposition rates among litters do not vary with 

wetland type. 

Objective 3:  To measure the influence of environmental variables on litter decomposition 

(Gingerich 2010: Chapter 4). 

  Hypothesis F:  Temperature is positively associated with decomposition. 

  Hypothesis G:  Water pH is positively associated with decomposition. 

  Hypothesis H:  Soil moisture is positively associated with decomposition. 

  Hypothesis I:  Longer inundation periods are positively associated with 

decomposition. 
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  Hypothesis J:  More frequent transitions between flooded and exposed conditions are 

positively associated with decomposition. 

Objective 4:  To measure the influence of biotic variables (invertebrates and fungi) on litter 

decomposition (Gingerich 2010: Chapter 5). 

  Hypothesis K:  Invertebrate abundance, diversity, and total biomass are positively 

associated with decomposition, but to a lesser degree than 

hydroperiod or temperature. 

  Hypothesis L:  Invertebrate metrics are similar between mitigated and reference 

wetlands. 

  Hypothesis M:  Fungal biomass has a weak positive association with decomposition. 

  Hypothesis N:  Fungal biomass is greater in reference wetlands. 

Objective 5:  To model decomposition trends over time (Gingerich 2010: Chapter 2-5). 

  Hypothesis O:  Decomposition rates change over time, corresponding with the 3 

phases of decomposition (leaching [rapid], microbial decomposition 

and conditioning of soft tissues [moderate], and mechanical 

fragmentation by biotic and environmental forces [slow]). 

Objective 6:  To investigate the feasibility of using decomposition of known litters as a 

means of assessing wetland function. 

 

A secondary study measured decomposition rates in a broader range of wetlands (8 

mitigated and 8 reference) in West Virginia , USA, from November 2008 to November 2009 

(Gingerich 2010: Chapter 3).  Objectives and hypotheses for the secondary study are listed 

below: 
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Objective 7:  To compare decomposition rates for created versus natural wetlands (Gingerich 

2010: Chapter 3). 

Hypothesis P:  Litter decomposition rate is greater in created wetlands.  

Objective 8:  To determine how decomposition rate changes with created wetland age 

(Gingerich 2010: Chapter 3). 

Hypothesis Q:  Younger created wetlands have faster decomposition rates 

Hypothesis R:  Litter decomposition in created wetlands trend towards rates in natural 

wetlands as created wetlands age. 

 

RESULTS 

Comparison of Mitigated and Reference Wetlands 

 Litter decomposition rates were found to be similar (p > 0.05) between created and 

reference wetlands in the primary study (Gingerich 2010: Chapter 2; mean % mass remaining 

after 728 d for all litter types: x =35.1%, SE = 4.1; k: 0.675 yr
 -1

, SE = 0.086) and the secondary 

study (Gingerich 2010: Chapter 3; % mass remaining after 365 d for broadleaf cattail: x =55.3%, 

SE = 1.9; k: 0.522 yr
 -1

, SE = 0.037), which failed to support hypotheses A and P.  The similarity 

in decomposition rates between wetland types can be explained by the fact that nearly all 

variables measured for mitigated wetlands were similar to reference wetlands.  All 

environmental measurements (Gingerich 2010: Chapter 4) and fungal biomass (Gingerich 2010: 

Chapter 5) were similar between wetland types, which failed to support hypothesis N, and most 

invertebrate metrics (Gingerich 2010: Chapter 5) were similar, supporting hypothesis L.  Only 

invertebrate metrics that included oligochaetes (total biomass, detritivore biomass, and 

oligochaetes biomass) and biomass of the functional feeding group collector/gatherers were 

significantly higher in mitigated wetlands. 
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 Decomposition rate did not follow a linear trend with wetland age and failed to support 

hypotheses Q and R.  Decomposition rates in young wetlands were moderately fast, but then 

declined in a 27-year-old wetland before reaching the fastest rate in a 40-year-old wetland.  This 

non-linear progression suggests that mitigation wetlands may not be trending towards a final 

“natural” state but may instead be more randomly transitioning based on stochastic forces such 

as environmental conditions. 

 

Comparison of Litter Types 

 Proportion of mass remaining was significantly different among litter types on 8 of 14 

collection dates and decomposition rate was significantly different on 3 of 14 collection dates 

(Gingerich 2010: Chapter 2), supporting hypothesis B.  Reed canary grass had the highest k for 

every collection period, except 364 d, and had the highest mean (0.920 yr
 -1

, SE = 0.153), 

minimum (0.534 yr 
-1

), and maximum (2.790 yr 
-1

) of all species.  The mixed litter had the 

second highest k for 11 of the 14 collection dates, the second highest mean (0.770 year
 -1

, SE = 

0.102) and minimum (0.407 year 
-1

), and the third highest maximum (1.960 yr 
-1

) of all species, 

supporting hypothesis C.  However, brookside alder had a significantly larger proportion of mass 

remaining on 3 of the 14 collection dates and a significantly lower decomposition rate constant 

on 1 of the collection dates, which failed to support hypothesis C’s prediction for alder.  

Broadleaf cattail had the lowest k for 11 of the 14 collection dates and the lowest mean (0.402     

yr 
-1

, SE = 0.060), minimum (0.121 yr 
-1

), and maximum (1.079 yr 
-1

) of all species, supporting 

hypothesis D.  Comparisons of decomposition rates among litter types were not made among 

wetland types, but within litter types the order of fastest decomposition rate changed over 

collection dates, which failed to support hypothesis E. 
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Influence of Environmental Variables on Litter Decomposition 

 

The environmental variables that most influenced, and therefore best predicted, 

decomposition rate varied among litter types.  Brookside alder decomposition rate was best 

predicted by soil temperature (ST), water pH (WPH), and the number of transitions between 

flooded and exposed conditions (FET); reed canary grass decomposition rate was best predicted 

by air temperature (AT), WPH, and ST; common rush decomposition rates were best predicted 

by AT and FET; broadleaf cattail decomposition rate was best predicted by hydroperiod (HP) 

and FET; and the mixed litter decomposition rate was best predicted by AT and WPH.  AT, ST, 

and WPH were positively associated with decomposition rate, which supports hypotheses F and 

G, while HP was negatively associated with decomposition rate, which failed to support 

hypothesis I.  Soil moisture was not included in the top models predicting decomposition rate, 

disproving hypothesis H.   The FET was positively associated with decomposition rates of 

common rush and broadleaf cattail and negatively associated with the decomposition rate of 

brookside alder, giving only partial support to hypothesis J.   

 

Influence of Biological Variables on Litter Decomposition Rate 

Invertebrate metrics explained 24.9 to 30.9% of variance in decomposition during the 

early phases (< 224 d) and 14.9 to 21.4% of the variance in the later phase (≥ 224 d) of litter 

decomposition (Gingerich 2010: Chapter 5).  Individual taxa were more strongly associated with 

trends in decomposition than functional feeding groups or invertebrate metrics (abundance, 

richness, diversity).  Shredders, collector/gatherers, and omnivores were more strongly 

associated with early phases of decomposition, while oligochaetes and omnivores were most 

strongly associated with trends in decomposition during the later phase.   
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Fungal biomass was significantly higher (Gingerich 2010: Chapter 5) in the early phases 

of decomposition, peaking ( x = 0.103 μg ergosterol mg 
-1 

dry litter, S.E. = 0.010) at 35 days, but 

then declined and leveled off ( x = 0.041 μg ergosterol mg 
-1

 dry litter, SE = 0.007) around 300 d.  

Fungal biomass was not significantly related to decomposition rate and failed to support 

hypothesis M. 

It is not possible to judge whether environmental or biological variables had a greater 

association with decomposition (hypothesis K) because environmental variables were modeled 

with parametric statistical methods and invertebrates were modeled with non-parametric 

methods.  Based on results for environmental and biological variables, both sets of variables 

influenced decomposition rates and explained a portion of the variance that was observed.  

 

Trends in Decomposition 

 A distinct trend emerged (hypothesis O) in decomposition rate that was present regardless 

of litter type, mesh size, or wetland type (Gingerich 2010: Chapter 2 & 5) and seemed to follow 

the 3 phases of decomposition (Godshalk and Wetzel 1978; Brinson et al. 1981).  The first phase 

is leaching of soluble nutrients and brings about rapid mass loss.  The second phase of 

decomposition is colonization and conditioning of soft leaf tissues by microbes.  The third phase 

is mechanical fragmentation by environmental forces and invertebrates.   

The highest decomposition rates were always measured on the first collection period (7 

d), except for broadleaf cattail which peaked on the second collection date (21 d), and were 

likely due to leaching.  Decomposition rates continued to be high on subsequent collection dates 

but declined rapidly, reaching their lowest levels between 119 and 168 days.  Invertebrate 

biomass for most functional feeding groups peaked and declined before 168 days, but ergosterol 

concentration peaked and remained high for longer, declining but not leveling off until about    
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300 d.  Between 168 and 224 d, decomposition transitioned from rapidly fluctuating early rates 

into a steadier late phase of decomposition.  This likely signified the transition from the second 

phase of decomposition, when invertebrate functional feeding groups such as shredders peaked, 

to the third phase of decomposition when only tougher tissues remained and oligochaete biomass 

peaked.  Though microbial activity is generally associated with the second phase of 

decomposition, based on this study it appears that microbes are high, peaking during the second 

phase, but then continue to have elevated numbers into the third (late) phase of decomposition. 

 

Management Implications 

 Functions within wetland systems are intricately interwoven and therefore when portions 

of a wetland system are missing or impaired they can cause rippling effects throughout other 

functions.  This study demonstrated the wide range of variables associated with litter 

decomposition in wetlands and the opportunity decomposition provides to measure wetland 

function.  However, for decomposition to become useful as a metric of wetland assessments, 

studies need to be performed to determine regional “norms” and allow for a standard to compare 

results against.  The National Wetland Condition Assessment that the US Environmental 

Protection Agency plans to conduct in 2011 (USEPA 2009) provides a good example of a large-

scale study that could incorporate measurements of decomposition rate using a standardized litter 

(cattail is recommended because of its ubiquitous distribution and relative ease to collect) to 

identify regional trends.  Though litter bag studies can require a significant amount of 

preparation and processing time for thorough studies, such as the one conducted here, methods 

could be shortened and standardized to define a number of litter bags to place throughout a 

wetland and then collect them at the 1 year mark, allowing the litter enough time to pass through 

early stages of high fluctuation and into a more constant state of decomposition.   
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 This study also illustrates the importance of heterogeneity in wetland mitigation projects.  

With so many variables linked to wetland function, it is difficult to fully consider and implement 

a design that best replicates function.  Therefore, heterogeneity helps improve the likelihood that 

the mix of conditions present in a wetland system are able to support a complete array of 

functions.   

 In conclusion, litter decomposition should be considered for inclusion in wetland 

functional assessments as a component of a comprehensive multimetric approach.  The national 

wetland policy of “no net loss” can only be fully achieved once complete functional replacement 

has been met, and litter decomposition provides a metric to evaluate that goal. 
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Appendices 

 
Appendix A.  Mean and standard error (S.E.) results for decomposition of five litter types, expressed as percent of 

ash-free dry mass remaining, in six wetlands in the Allegheny Mountains of West Virginia, December 2007 to 

December 2009.  All 14 collection dates are displayed, with litter types in order of percent mass remaining.  Within 

each collection period, litter type is ordered by their mean percent mass remaining. 

           

Litter Days Mean
a
   S.E.  Litter Days Mean   S.E. 

Reed Canary Grass 7 94.74 a 1.17  Reed Canary Grass 224 62.85 a 1.79 

Brookside Alder 7 95.10 a 1.13  Mixed Litter 224 65.01 a* 1.93 

Mixed Litter 7 96.31 a 1.41  Common Rush 224 72.77 a,b* 1.29 

Common Rush 7 96.87 a 0.63  Brookside Alder 224 75.61 a,b 2.03 

Broadleaf Cattail 7 99.12 a 0.88  Broadleaf Cattail 224 85.20 b* 2.03 
           

Reed Canary Grass 21 93.24 a 0.96  Reed Canary Grass 294 53.45 a 1.91 

Brookside Alder 21 93.80 a 0.65  Mixed Litter 294 56.84 a,b 1.83 

Mixed Litter 21 94.32 a 1.16  Common Rush 294 61.95 a,b 2.63 

Broadleaf Cattail 21 94.44 a* 1.78  Brookside Alder 294 69.08 a,b 3.06 

Common Rush 21 96.50 a 0.55  Broadleaf Cattail 294 76.71 b 1.12 
           

Reed Canary Grass 35 90.34 a 1.24  Mixed Litter 364 47.92 a 2.72 

Mixed Litter 35 91.58 a 1.77  Reed Canary Grass 364 48.27 a 2.05 

Brookside Alder 35 92.00 a 0.62  Common Rush 364 52.13 a 2.50 

Common Rush 35 94.24 a 0.77  Brookside Alder 364 63.67 a 2.66 

Broadleaf Cattail 35 96.77 a 1.93  Broadleaf Cattail 364 66.46 a 3.22 
           

Reed Canary Grass 49 89.13 a 1.43  Reed Canary Grass 455 45.67 a 2.11 

Mixed Litter 49 91.38 a 1.69  Mixed Litter 455 50.34 a,b 3.15 

Brookside Alder 49 91.90 a 0.67  Common Rush 455 55.17 a,b 2.28 

Common Rush 49 94.02 a 0.72  Brookside Alder 455 62.19 a,b 2.80 

Broadleaf Cattail 49 94.72 a 1.66  Broadleaf Cattail 455 68.30 b 3.22 
           

Reed Canary Grass 77 85.86 a 1.31  Reed Canary Grass 546 36.43 a 2.02 

Mixed Litter 77 88.00 a,b 1.39  Mixed Litter 546 41.33 a,b 0.59 

Brookside Alder 77 88.94 a,b 0.80  Common Rush 546 44.22 a,b 2.48 

Common Rush 77 90.76 a,b 1.01  Brookside Alder 546 57.74 b 1.21 

Broadleaf Cattail 77 93.55 b 1.31  Broadleaf Cattail 546 58.03 b 2.20 
           

Reed Canary Grass 119 84.23 a 1.51  Reed Canary Grass 637 29.72 a 1.84 

Mixed Litter 119 86.43 a 1.33  Mixed Litter 637 34.51 a 2.08 

Brookside Alder 119 87.46 a 0.80  Common Rush 637 36.46 a,b 2.77 

Common Rush 119 89.46 a,b 1.29  Broadleaf Cattail 637 56.48 b 2.84 

Broadleaf Cattail 119 96.54 b 2.51  Brookside Alder 637 56.71 b 3.44 
           

Reed Canary Grass 168 78.12 a 0.41  Reed Canary Grass 728 26.48 a 2.09 

Mixed Litter 168 83.53 a,b 2.04  Mixed Litter 728 28.26 a 2.39 

Brookside Alder 168 86.68 a,b 1.04  Common Rush 728 30.79 a 2.93 

Common Rush 168 87.58 a,b 1.55  Brookside Alder 728 44.30 a 2.67 

Broadleaf Cattail 168 91.41 b* 1.20  Broadleaf Cattail 728 45.80 a 4.79 

* Indicates a significant change (P < 0.05) from the previous collection. 
a
 Means followed by the same lowercase letters are not different (P > 0.05) across litter types. 
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Appendix B.  Mean and standard error (S.E.) results for decomposition of five litter types, expressed as k (yr 
-1

), in 

six wetlands in the Allegheny Mountains of West Virginia, December 2007 to December 2009.  All 14 collection 

dates are displayed, with litter types in order of percent mass remaining.  Within each collection period, litter type is 

ordered by their mean k. 

 

Litter Days Mean
a
   S.E.  Litter Days Mean   S.E. 

Broadleaf Cattail 7 0.599 a 0.466  Broadleaf Cattail 224 0.271 a 0.039 

Common Rush 7 1.617 a 0.309  Brookside Alder 224 0.467 a,b 0.045 

Mixed Litter 7 1.960 a 0.769  Common Rush 224 0.528 a,b 0.029 

Brookside Alder 7 2.581 a 0.595  Mixed Litter 224 0.718 b* 0.049 

Reed Canary Grass 7 2.790 a 0.645  Reed Canary Grass 224 0.773 b 0.048 
           

Common Rush 21 0.642 a* 0.100  Broadleaf Cattail 294 0.340 a 0.019 

Mixed Litter 21 1.064 a 0.219  Brookside Alder 294 0.477 a,b 0.062 

Broadleaf Cattail 21 1.079 a* 0.327  Common Rush 294 0.612 a,b 0.052 

Brookside Alder 21 1.118 a 0.149  Mixed Litter 294 0.735 b 0.047 

Reed Canary Grass 21 1.265 a 0.185  Reed Canary Grass 294 0.801 b 0.048 
           

Broadleaf Cattail 35 0.371 a 0.203  Broadleaf Cattail 364 0.420 a 0.050 

Common Rush 35 0.623 a 0.094  Brookside Alder 364 0.455 a 0.041 

Brookside Alder 35 0.870 a 0.083  Common Rush 364 0.663 a 0.052 

Mixed Litter 35 0.941 a 0.213  Reed Canary Grass 364 0.736 a 0.041 

Reed Canary Grass 35 1.074 a 0.159  Mixed Litter 364 0.746 a 0.055 
           

Broadleaf Cattail 49 0.435 a 0.137  Broadleaf Cattail 455 0.314 a 0.041 

Common Rush 49 0.466 a 0.055  Brookside Alder 455 0.397 a 0.041 

Brookside Alder 49 0.639 a 0.050  Common Rush 455 0.495 a 0.047 

Mixed Litter 49 0.685 a 0.135  Mixed Litter 455 0.560 a 0.051 

Reed Canary Grass 49 0.872 a 0.114  Reed Canary Grass 455 0.635 a 0.037 
           

Broadleaf Cattail 77 0.332 a 0.065  Brookside Alder 546 0.370 a 0.014 

Common Rush 77 0.462 a 0.053  Broadleaf Cattail 546 0.373 a 0.024 

Brookside Alder 77 0.557 a 0.043  Common Rush 546 0.558 a 0.037 

Mixed Litter 77 0.611 a 0.075  Mixed Litter 546 0.593 a 0.012 

Reed Canary Grass 77 0.728 a 0.072  Reed Canary Grass 546 0.692 a 0.039 
           

Broadleaf Cattail 119 0.121 a 0.080  Brookside Alder 637 0.336 a 0.037 

Common Rush 119 0.346 a 0.044  Broadleaf Cattail 637 0.346 a 0.030 

Brookside Alder 119 0.417 a 0.028  Common Rush 637 0.602 a,b 0.047 

Mixed Litter 119 0.453 a 0.047  Mixed Litter 637 0.644 a,b 0.038 

Reed Canary Grass 119 0.534 a 0.054  Reed Canary Grass 637 0.724 b 0.040 
           

Broadleaf Cattail 168 0.213 a 0.029  Broadleaf Cattail 728 0.413 a 0.055 

Common Rush 168 0.298 a 0.039  Brookside Alder 728 0.422 a 0.033 

Brookside Alder 168 0.321 a 0.028  Common Rush 728 0.613 a 0.051 

Mixed Litter 168 0.407 a 0.055  Mixed Litter 728 0.661 a 0.051 

Reed Canary Grass 168 0.553 a 0.013  Reed Canary Grass 728 0.702 a 0.056 

* Indicates a significant change (P < 0.05) from the previous collection. 
a
 Means followed by the same lowercase letters are not different (P > 0.05) across litter types. 
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Appendix C.  List of 8 created and 8 reference wetland study sites in West Virginia, including site name, year constructed, size (ha), the organization that created 

the wetland, elevation (m above sea level), Universal Transverse Mercator (UTM) coordinates, basin, and watershed, 2008-2009. 

                  

Site Name Year Size  Source Elev. UTM Y UTM X Basin Watershed 

  (ha)  (m)     

Created Wetlands                 

Leading Creek 1995 17.0 Division of Highways 600 4321563 602550 Tygart Valley Leading Creek 

Sugar Creek 1995 11.0 Division of Highways 490 4328850 591470 Tygart Valley Laurel Creek 

Hazelton 2006 2.7 Division of Highways 560 4390990 625708 Cheat River Little Sandy Creek 

Pedlar WMA 2006 0.1 Division of Natural Resources 335 4393134 575877 Dunkard Creek Dunkard Creek 

Upper Deckers Creek WMA 1968 3.5 Monongahela Soil  520 4375719 602837 Monongahela River Upper Deckers Creek 

     Conservation District      

Elk Run 1981 3.8 Island Creek Coal Co. 830 4341542 636104 North Branch of Elk Run 

         the Potomac  

VEPCO 1995 5.7 Virginia Electric Power Co. 1020 4338218 641309 Cheat River Blackwater River 

Enoch Branch 1997 3.4 Division of Highways 570 4248058 513819 Gauley River Muddlety  Creek 

         

Reference Wetlands                 

Meadowville - 11.7 - 480 4330920 593940 Tygart Valley Laurel Creek 

Upper Deckers Creek - 2.1 - 515 4377282 602193 Monongahela Upper Deckers Creek 

Bruceton Mills - 1.4 - 515 4393306 615536 Cheat River Big Sandy Creek 

Indian Creek - 0.7 - 275 4379544 580789 Monongahela River Monongahela River 

Kanes Creek - 8.9 - 520 4373209 603528 Monongahela River Upper Deckers Creek 

Thomas Airfield - 3.5 - 940 4335279 629233 Cheat River Blackwater River 

Glade Run - 1.7 - 965 4328921 641158 Cheat River Blackwater River 

Muddlety - 10.4 - 560 4248673 516774 Gauley River Muddlety Creek 
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Appendix D.  Number of litter bags collected at each wetland for each date.  Flooding early in the study at Leading 

Creek and Glade Run caused losses to be higher than expected and resulted in lower collection numbers at 9 and 12 

months.  Thick ice at Upper Deckers Creek hindered collection and caused there to be only 5 bags collected at 3 

months.  Losses at Upper Deckers Creek WMA were high when wildlife destroyed one of the stakes; therefore, only 

5 bags were collected at 9 months to ensure a full set at 12 months. 

          

 No. of Bags Collected on Each Collection Date 

Created Wetlands 3 months 6 months 9 months 12 months 

Leading Creek 6 6 4 4 

Sugar Creek 6 6 6 6 

Hazelton 6 6 6 6 

Pedlar WMA 6 6 6 6 

Upper Deckers Creek WMA 6 6 5 6 

Elk Run 6 6 6 6 

VEPCO 6 6 6 6 

Enoch Branch 6 6 6 6 

     

Reference Wetlands         

Meadowville 6 6 6 6 

Upper Deckers Creek 5 6 6 6 

Bruceton Mills 6 6 6 6 

Indian Creek 6 6 6 6 

Kanes Creek 6 6 6 6 

Thomas Airfield 6 6 6 6 

Glade Run 6 6 4 2 

Muddlety 6 6 6 6 
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Appendix E.  Decomposition rate, presented as mean percent ash-free dry mass remaining and decomposition rate constant k (yr 
-1

), for each collection date for 

16 wetlands (8 created and 8 reference) in West Virginia, November 2008 to November 2009.   

                          

  3 mo  6 mo  9 mo  12 mo 

Created Wetlands   Proportion Rate   Proportion Rate   Proportion Rate   Proportion Rate 

Leading Creek  87.198 0.539  88.598 0.242  71.948 0.429  56.059 0.581 

Sugar Creek  90.987 0.369  82.168 0.401  65.890 0.545  56.515 0.574 

Hazelton  94.930 0.227  89.662 0.219  70.451 0.458  60.689 0.501 

Elk Run  98.426 0.069  92.486 0.157  76.424 0.350  68.892 0.382 

VEPCO  78.800 0.838  72.244 0.635  66.586 0.523  56.201 0.582 

Enoch Branch  91.424 0.362  83.904 0.360  70.493 0.458  59.157 0.528 

Pedlar WMA  79.526 0.942  75.117 0.580  54.476 0.802  44.840 0.811 

Upper Deckers WMA   76.057 1.092   69.705 0.773   59.838 0.695   45.359 0.797 

Average  87.169 0.555  81.736 0.421  67.013 0.533  55.964 0.594 

             

Reference Wetlands                         

Meadowville  90.718 0.397  72.570 0.645  65.204 0.558  54.145 0.629 

Upper Deckers Creek  92.035 0.329  93.153 0.146  73.742 0.400  62.740 0.467 

Bruceton Mills  93.243 0.281  84.902 0.327  65.728 0.545  57.644 0.552 

Thomas Airfield  76.162 1.061  71.678 0.665  63.656 0.589  56.078 0.587 

Glade Run  92.927 0.258  88.077 0.248  83.895 0.228  39.541 0.940 

Muddlety  86.774 0.576  77.342 0.520  61.110 0.652  49.074 0.719 

Indian Creek  95.172 0.206  89.024 0.239  71.025 0.451  54.795 0.611 

Kanes Creek   77.232 1.033   72.435 0.700   67.953 0.525   62.635 0.476 

Average  88.033 0.518  81.148 0.436  69.039 0.494  54.581 0.623 
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Appendix F.  Average air temperature, recorded hourly from December 2007 to December 2009, by two temperature loggers in Leading Creek mitigated 

wetland. 
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Appendix G.  Average air temperature, recorded hourly from December 2007 to December 2009, by two temperature loggers in Sugar Creek mitigated wetland. 
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Appendix H.  Average air temperature, recorded hourly from December 2007 to December 2009, by two temperature loggers in Hazelton mitigated wetland. 
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Appendix I.  Average air temperature, recorded hourly from December 2007 to December 2009, by two temperature loggers in Meadowville reference wetland. 
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Appendix J.  Average air temperature, recorded hourly from December 2007 to December 2009, by two temperature loggers in Upper Deckers Creek reference 

wetland. 
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Appendix K. Average air temperature, recorded hourly from December 2007 to December 2009, by two temperature loggers in Bruceton Mills reference 

wetland. 
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Appendix L.  Mean, standard error (S.E.), minimum, and maximum results for decomposition of 5 litter types 

(brookside alder, reed canary grass, common rush, broadleaf cattail, mixed litter), expressed as decomposition rate 

constant k (yr 
-1

), in 3 mitigated and 3 reference wetlands in West Virginia, 2007 to 2009.  Number of stakes from 

each wetland are shown in parentheses below the wetland name.  

                    

   Mitigated Wetlands  Reference Wetlands 

   Leading Sugar Hazelton  Meadowville Upper  Bruceton 

   Creek Creek (n = 8)  (n = 16) Deckers Mills 

   (n = 16) (n = 20)    Creek (n = 18) 

Litter Type               (n = 18)   

Brookside  Mean  0.434 0.419 0.282  0.467 0.399 0.517 

Alder SE  0.020 0.031 0.033  0.036 0.030 0.056 

 Min  0.252 0.242 0.159  0.255 0.228 0.204 

 Max  0.549 0.631 0.466  0.894 0.747 1.074 

          

Reed  Mean  0.758 0.669 0.522  0.786 0.645 0.839 

Canary SE  0.038 0.028 0.034  0.045 0.031 0.057 

Grass Min  0.521 0.458 0.399  0.415 0.400 0.410 

 Max  1.014 0.928 0.673  1.082 0.906 1.513 

          

Common  Mean  0.612 0.573 0.390  0.632 0.541 0.590 

Rush SE  0.037 0.029 0.018  0.041 0.032 0.044 

 Min  0.367 0.397 0.302  0.424 0.247 0.109 

 Max  0.849 0.806 0.462  1.026 0.818 0.937 

          

Broadleaf  Mean  0.431 0.297 0.262  0.491 0.316 0.326 

Cattail SE  0.034 0.031 0.059  0.040 0.026 0.033 

 Min  0.250 0.134 -0.008  0.219 0.047 0.102 

 Max  0.735 0.603 0.497  0.882 0.589 0.565 

          

Mixed  Mean  0.661 0.612 0.464  0.727 0.609 0.733 

Litter SE  0.035 0.026 0.037  0.048 0.033 0.047 

 Min  0.354 0.433 0.262  0.442 0.262 0.421 

  Max   0.848 0.769 0.631   1.162 0.836 1.164 
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Appendix M.  Mean, standard error (S.E.), minimum, and maximum for 9 environmental parameters measured in 3 

mitigated and 3 reference wetlands in West Virginia, December 2007 to December 2009. Number of stakes from 

each wetland are shown in parentheses under the wetland name.  

                    

   Mitigated Wetlands  Reference Wetlands 

   Leading Sugar Hazelton  Meadowville Upper  Bruceton 

   Creek Creek (n = 8)  (n = 16) Deckers Mills 

Environmental  (n = 16) (n = 20)    Creek (n = 18) 

Parameters
a
               (n = 18)   

AT Mean  7.869 7.661 6.970  7.851 6.399 7.070 

 SE  0.424 0.258 0.355  0.398 0.317 0.376 

 Min  3.303 5.498 5.957  4.350 3.083 2.487 

 Max  10.759 9.428 8.674  10.084 8.440 9.228 

          

WT Mean  8.517 9.415 8.899  8.886 6.906 9.417 

 SE  0.417 0.454 0.832  0.457 0.370 0.581 

 Min  5.080 7.232 4.813  5.970 4.857 5.900 

 Max  12.073 13.400 12.341  11.836 11.850 15.717 

          

ST Mean  14.445 13.394 16.428  13.569 11.839 10.240 

 SE  1.172 0.589 2.216  0.841 0.488 0.793 

 Min  8.567 8.791 8.710  9.467 7.378 3.986 

 Max  27.340 18.388 27.650  19.917 18.117 19.200 

          

WD Mean  6.936 5.916 5.496  3.282 6.035 3.152 

 SE  0.835 1.291 0.601  0.448 0.624 0.439 

 Min  1.906 1.000 2.696  0.671 2.091 0.395 

 Max  13.625 24.375 7.923  7.047 12.078 6.129 

          

HP Mean  0.472 0.428 0.506  0.455 0.263 0.558 

 SE  0.042 0.039 0.044  0.044 0.037 0.056 

 Min  0.251 0.130 0.237  0.162 0.126 0.137 

 Max  0.755 0.685 0.616  0.707 0.697 0.854 

          

FET Mean  0.022 0.016 0.022  0.018 0.023 0.021 

 SE  0.002 0.001 0.002  0.002 0.002 0.002 

 Min  0.011 0.006 0.014  0.004 0.011 0.009 

 Max  0.039 0.029 0.029  0.033 0.040 0.035 

          

SF Mean  0.513 0.341 0.379  0.156 0.745 0.137 

 SE  0.064 0.062 0.063  0.016 0.053 0.011 

 Min  0.113 0.097 0.135  0.066 0.309 0.051 

  Max   1.096 0.947 0.614   0.273 1.302 0.214 
a
  AT- air temperature (°C), WT - water temperature, ST – soil temperature, WD - water depth (cm),  

   HP - hydroperiod (proportion of days), FET - number of transitions between flooded and exposed  
   (# / days), SF – sum fluctuation of water depth (cm / day), WPH - water pH, SM - soil moisture (0 dry   

- 10 saturated) 
 

 

 



 

 232 

Appendix M.  Continued. 

                    

   Mitigated Wetlands  Reference Wetlands 

   Leading Sugar Hazelton  Meadowville Upper  Bruceton 

   Creek Creek (n = 8)  (n = 16) Deckers Mills 

Environmental  (n = 16) (n = 20)    Creek (n = 18) 

Parameters
a
               (n = 18)   

WPH Mean  6.176 5.956 6.937  6.271 6.230 6.461 

 SE  0.072 0.070 0.129  0.100 0.030 0.022 

 Min  5.767 5.400 6.600  5.241 5.900 6.296 

 Max  6.700 6.686 7.586  6.700 6.450 6.660 

          

SM Mean  6.393 7.212 9.312  9.101 8.675 8.782 

 SE  0.246 0.287 0.274  0.140 0.196 0.163 

 Min  4.765 4.583 7.765  8.136 6.524 7.444 

  Max   8.600 9.250 10.000   10.000 9.889 9.750 
a
  AT- air temperature (°C), WT - water temperature, ST – soil temperature, WD - water depth (cm),  

   HP - hydroperiod (proportion of days), FET - number of transitions between flooded and exposed  
   (# / days), SF – sum fluctuation of water depth (cm / day), WPH - water pH, SM - soil moisture (0 

dry - 10 saturated) 
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Appendix N.  Mean and standard error (S.E.) for 9 environmental parameters measured in 3 mitigated and 3 reference wetlands in West Virginia, December 2007 

to December 2009.  Averages were obtained by taking the mean of environmental measurements obtained at 90 stakes in each wetland. 

                      

 Mitigated  Reference  Overall F value P value 

  Mean S.E.   Mean S.E.   Mean S.E. (d.f. = 1,4)   

Air Temperature
a
 10.51 0.25  10.24 0.21  10.37 0.16 0.674 0.458 

Water Temperature 8.83 0.85  8.80 1.12  8.82 0.63 0.001 0.982 

Soil Temperature 13.04 0.31  11.97 0.61  12.50 0.39 2.469 0.191 

Water Depth
b
 4.20 0.36  3.49 1.34  3.85 0.64 0.265 0.634 

Hydroperiod
c
 0.28 0.03  0.31 0.08  0.29 0.04 0.073 0.801 

No. of transitions between flooded and exposed
d
 0.011 0.001  0.013 0.002  0.012 0.001 0.547 0.501 

Sum fluctuations
e
 0.25 0.03  0.25 0.15  0.25 0.07 0.001 0.984 

Water pH 6.20 0.24  6.28 0.05  6.24 0.11 0.111 0.756 

Soil Moisture
f
 7.73 0.53   8.67 0.26   8.20 0.34 2.487 0.190 

a  
 °C           

b
   cm           

c
   proportion of days            

d
   no. of transitions / days           

e
  cm / day           

f
  0 dry – 10 saturated           
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Appendix O.  Akaike rankings for 23 a priori models predicting brookside alder decomposition rate.  Soil temperature, number of transitions between flood and 

exposed, and water pH all had substantial Akaike support based on the data.   
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k = -2.00 + 1.50×ST 4  75.99 0.00 1.00 0.37   

k = -0.74 - 1.29×FET 4  77.04 1.05 0.59 0.22 1.7 

k = -2.74 + 0.98×WPH 4  77.72 1.73 0.42 0.16 2.4 

              

G
o
o
d

 

k = -3.99 + 0.06×AT + 1.43×WPH 5  79.44 3.45 0.18 0.07 5.6 

k = -0.87 + 0.16×HP - 0.89×FET 5  79.97 3.98 0.14 0.05 7.3 

k = -1.01 + 0.20×HP 4  80.72 4.73 0.09 0.03 11 

k = -1.26 + 0.05×AT - 0.17×FET 5  81.11 5.12 0.08 0.03 13 

k = -1.29 + 0.05×AT 4  81.52 5.53 0.06 0.02 16 

k = -2.07 + 1.46×ST + 0.01×SM 5  82.95 6.96 0.03 0.01 32 

k = -1.045 + 0.07×WD 4  82.90 6.90 0.03 0.01 32 

k = -0.86 + 0.05×SF 4  83.60 7.61 0.02 0.01 45 

P
o
o
r 

k = -1.35 + 0.05×AT + 0.12×FET + 0.13×HP 6  84.34 8.35 0.02 0.01 65 

k = -2.89 + 0.02×WT + 0.96×WPH 5  84.61 8.62 0.01 0.00 74 

k = -1.11 + 0.02×WT 4  84.98 8.99 0.01 0.00 89 

k = -1.09 + 0.02×SM 4  84.99 9.00 0.01 0.00 90 

k = -4.15 + 0.05×AT + 0.22×ST + 0.01×SM + 1.40×WPH 7  86.65 10.65 0.00 0.00 206 

k = -1.64 + 0.04×AT + 0.37×ST + 0.02×SM 6  88.54 12.55 0.00 0.00 531 

k = -1.87 + 0.03×AT + 0.02×WT + 0.79×ST 6  89.07 13.08 0.00 0.00 694 

k = -0.85 - 0.07×WD + 0.29×HP + 0.08×SM 6  89.95 13.96 0.00 0.00 1.E+03 

k = -2.34 + 0.02×WT - 0.18×WD + 0.96×WPH + 0.39×HP -  9  95.28 19.28 0.00 0.00 2.E+04 

   1.34×FET + 0.16×SF       

k = -0.89 - 0.00007×ND 4  95.55 19.55 0.00 0.00 2.E+04 

k = -3.71 + 0.06×AT + 0.01×WT - 0.25×WD + 1.39×WPH + 12  104.91 28.92 0.00 0.00 2.E+06 

   0.41×HP - 0.44×FET+ 0.21×SF + 0.23×ST + 0.01×SM             
a
 AT = air temperature, WT = water temperature, ST = soil temperature, WD = water depth, HP = hydroperiod, FET = no. of transitions 

 between flooded and exposed, SF = sum fluctuation of water depth, WPH = water pH, SM = soil moisture, ND = no. days in the wetland 
b
 K = number of parameters, including intercept and error 

c
 ∆I = AICc lowest  - AICci for the i

th
 model in comparison 

d
 £(gi|x) = likelihood of a model 

e
 wi = Akaike Weights 
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Appendix P.  Akaike rankings for 23 a priori models predicting reed canary grass decomposition rate.  Air temperature, soil temperature, and water pH all had 

substantial Akaike support based on the data.   
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k = -3.59 + 0.05×AT + 1.53×WPH 5   3.38 0.00 1.00 0.52   

k = -1.38 + 1.39×ST 4   4.97 1.59 0.45 0.24 2.2 

       

              

G
o
o
d

 k = -2.47 + 1.13×WPH 4   6.18 2.80 0.25 0.13 4.1 

k = -0.93 + 0.05×AT + 1.21×FET 5   8.96 5.57 0.06 0.03 16 

k = 0.38 + 0.02×FET 4   9.36 5.98 0.05 0.03 20 

k = -0.70 + 0.04×AT 4 10.03 6.64 0.04 0.02 28 

P
o
o
r 

k = -3.72 + 0.05×AT + 0.12×ST + 0.02×SM + 1.48×WPH 7 11.71 8.32 0.02 0.01 64 

k = -1.47 + 1.31×ST + 0.02×SM 5 12.19 8.81 0.01 0.01 82 

k = -0.91 + 0.05×AT + 1.13×FET - 0.03×HP 6 13.36 9.97 0.01 0.00 146 

k = -0.38 - 0.003×HP 4 13.35 9.97 0.01 0.00 146 

k = -0.38 - 0.002×HP + 0.02×FET 5 13.70 10.31 0.01 0.00 174 

k = -2.39 - 0.01×WT + 1.15×WPH 5 14.11 10.73 0.00 0.00 214 

k = -0.37 - 0.01×WD 4 15.27 11.88 0.00 0.00 381 

k = -0.61 + 0.03×SM 4 15.46 12.08 0.00 0.00 419 

k = -0.37 + 0.01×SF 4 15.49 12.11 0.00 0.00 426 

k = -0.68 + 0.05×AT - 0.02×WT + 0.18×ST 6 16.99 13.60 0.00 0.00 900 

k = -0.27 - 0.01×WT 4 17.01 13.63 0.00 0.00 9.E+02 

k = -1.12 + 0.04×AT + 0.40×ST + 0.02×SM 6 17.51 14.13 0.00 0.00 1.E+03 

k = -0.19 - 0.11×WD + 0.16×HP + 0.07×SF 6 23.75 20.36 0.00 0.00 3.E+04 

k = -0.35 - 0.00007×ND 4 26.93 23.55 0.00 0.00 1.E+05 

k = -3.64 + 0.07×AT - 0.02×WT - 0.22×WD + 1.66×WPH +  12 28.86 25.48 0.00 0.00 3.E+05 

   0.22×HP + 0.29×FET + 0.14×SF + 0.22×ST + 0.02×SM       

k = -2.07 - 0.01×WT - 0.14×WD + 1.17×WPH + 0.22×HP - 9 29.03 25.64 0.00 0.00 4.E+05 

   0.72×FET + 0.09×SF             
a
 AT = air temperature, WT = water temperature, ST = soil temperature, WD = water depth, HP = hydroperiod, FET = no. of transitions 

 between flooded and exposed, SF = sum fluctuation of water depth, WPH = water pH, SM = soil moisture, ND = no. days in the wetland 
b
 K = number of parameters, including intercept and error 

c
 ∆I = AICc lowest  - AICci for the i

th
 model in comparison 

d
 £(gi|x) = likelihood of a model 

e
 wi = Akaike Weights 
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Appendix Q.  Akaike rankings for 23 a priori models predicting common rush decomposition rate.  Air temperature and number of transitions between flood and 

exposed had substantial Akaike support based on the data.   
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k = 0.04 + 0.06×AT + 0.77×FET 5 -92.32 0.00 1.00 0.45  

k = 0.18 + 0.05×AT 4 -92.05 0.27 0.87 0.39 1.1 

        

        

G
o
o
d

 k = 0.04 + 0.05×AT + 0.08×WPH 5 -89.21 3.12 0.21 0.09 4.8 

k = 0.09 + 0.06×AT + 0.59×FET - 0.08×HP 6 -87.89 4.44 0.11 0.05 9.2 

k = -0.41 + 1.36×ST 4 -84.48 7.84 0.02 0.01 50 

P
o
o
r 

k = 0.04 + 0.05×AT + 0.12×ST + 0.01×SM 6 -81.42 10.91 0.00 0.00 233 

k = 0.13 + 0.05×AT - 0.002×WT + 0.10×ST 6 -79.90 12.43 0.00 0.00 499 

k = -0.07 + 0.05×AT + 0.12×ST + 0.01×SM + 0.06×WPH 7 -78.57 13.75 0.00 0.00 969 

k = -0.43 + 1.35×ST + 0.002×SM 5 -75.76 16.56 0.00 0.00 4.E+03 

k = 0.64 - 0.55×FET 4 -73.62 18.70 0.00 0.00 1.E+04 

k = 1.18 - 0.33×WPH 4 -72.44 19.89 0.00 0.00 2.E+04 

k = 0.57 - 0.01×HP 4 -68.87 23.45 0.00 0.00 1.E+05 

k = 0.67 - 0.04×HP - 0.66×FET 5 -68.64 23.69 0.00 0.00 1.E+05 

k = 0.61 - 0.03×WD 4 -67.62 24.70 0.00 0.00 2.E+05 

k = 0.53 - 0.02×SF 4 -67.22 25.10 0.00 0.00 3.E+05 

k = 0.48 + 0.01×SM 4 -65.80 26.53 0.00 0.00 6.E+05 

k = 0.50 + 0.01×WT 4 -64.84 27.49 0.00 0.00 9.E+05 

k = 1.14 0.01×WT - 0.35×WPH 5 -63.15 29.17 0.00 0.00 2.E+06 

k = -0.41 + 0.04×AT + 0.01×WT - 0.18×WD + 0.06×WPH +  12 -58.14 34.18 0.00 0.00 3.E+07 

   0.04×HP + 0.10×FET + 0.10×SF + 1.09×ST + 0.01×SM       

k = 0.48 + 0.0002×ND 4 -59.18 33.14 0.00 0.00 2.E+07 

k = 0.62 - 0.05×WD + 0.08×HP + 0.01×SF 6 -56.95 35.37 0.00 0.00 5.E+07 

k = 1.38 + 0.01×WT - 0.10×WD -0.31×WPH + 0.11×HP -  9 -45.50 46.82 0.00 0.00 1.E+10 

   0.80×FET + 0.05×SF       
a
 AT = air temperature, WT = water temperature, ST = soil temperature, WD = water depth, HP = hydroperiod, FET = no. of transitions 

 between flooded and exposed, SF = sum fluctuation of water depth, WPH = water pH, SM = soil moisture, ND = no. days in the wetland 
b
 K = number of parameters, including intercept and error 

c
 ∆I = AICc lowest  - AICci for the i

th
 model in comparison 

d
 £(gi|x) = likelihood of a model 

e
 wi = Akaike Weights 
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Appendix R.  Akaike rankings for 23 a priori models predicting broadleaf cattail decomposition rate.  Hydroperiod and number of transitions between flood and 

exposed had substantial Akaike support based on the data.   
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k = 0.22 + 0.94×FET 4 -87.22 0.00 1.00 0.31  

k = 0.44 - 0.20×HP 4 -86.89 0.32 0.85 0.26 1.2 

k = 0.36 - 0.17×HP + 0.52×FET 5 -86.23 0.99 0.61 0.19 1.6 

         

G
o
o
d

 k = 0.48 - 0.07×WD 4 -84.83 2.39 0.30 0.09 3.3 

k = 0.59 - 0.32×ST 4 -84.44 2.78 0.25 0.08 4.0 

k = 0.53 - 0.10×WPH 4 -83.42 3.79 0.15 0.05 6.7 

k = 0.33 - 0.02×SF 4 -79.25 7.97 0.02 0.01 54 

P
o
o
r 

k = 0.10 + 0.01×AT + 1.22×FET 5 -79.08 8.13 0.02 0.01 58 

k = 0.22 + 0.01×AT + 0.81×FET - 0.18×HP 6 -78.44 8.77 0.01 0.00 80 

k = 0.46 - 0.01×WT 4 -78.67 8.55 0.01 0.00 72 

k = 0.45 - 0.01×SM 4 -77.88 9.33 0.01 0.00 106 

k = 0.32 + 0.004×AT 4 -76.66 10.56 0.01 0.00 196 

k = 0.63 - 0.28×ST - 0.01×SM 5 -76.07 11.15 0.00 0.00 263 

k = 0.62 - 0.01×WT - 0.08×WPH 5 -75.98 11.24 0.00 0.00 275 

k = 0.57 - 0.09×WD - 0.05×HP + 0.03×SF 6 -75.22 12.00 0.00 0.00 403 

k = 0.46 + 0.004×AT - 0.07×WPH 5 -74.02 13.20 0.00 0.00 735 

k = 1.03 + 0.03×AT - 0.02×WT - 1.02×ST 6 -72.44 14.78 0.00 0.00 2.E+03 

k = 0.29 + 0.0001×ND 4 -70.00 17.22 0.00 0.00 5.E+03 

k = 0.77 + 0.02×AT -0.66×ST - 0.01×SM 6 -68.47 18.75 0.00 0.00 1.E+04 

k = 0.67 + 0.02×AT - 0.68×ST - 0.01×SM + 0.06×WPH 7 -65.77 21.44 0.00 0.00 5.E+04 

k = 0.64 - 0.01×WT - 0.06×WD - 0.05×WPH - 0.07×HP +  9 -62.81 24.40 0.00 0.00 2.E+05 

   0.25×FET + 0.014×SF       

k = 0.43 + 0.02×AT - 0.01×WT - 0.08×WD + 0.16×WPH +  12 -45.45 41.77 0.00 0.00 1.E+09 

   0.001×HP + 0.52×FET + 0.03×SF - 0.37×ST - 0.01×SM            
a
 AT = air temperature, WT = water temperature, ST = soil temperature, WD = water depth, HP = hydroperiod, FET = no. of transitions 

 between flooded and exposed, SF = sum fluctuation of water depth, WPH = water pH, SM = soil moisture, ND = no. days in the wetland 
b
 K = number of parameters, including intercept and error 

c
 ∆I = AICc lowest  - AICci for the i

th
 model in comparison 

d
 £(gi|x) = likelihood of a model 

e
 wi = Akaike Weights 
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Appendix S.  Akaike rankings for 23 a priori models predicting decomposition rate for the mixed litter (3.3 g brookside alder, 6.6 g common rush, and 10 g reed 

canary grass).  Air temperature and water pH had substantial Akaike support based on the data.   
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k = -0.88 + 0.03×AT + 0.77×WPH 5 -171.05 0.00 1.00 0.98  

       

       

             

P
o
o
r 

k = 0.47 + 0.03×AT + 0.60×FET 5 -161.29 9.77 0.01 0.01 132 

k = 0.59 + 0.03×AT 4 -161.30 9.76 0.01 0.01 131 

k = -0.85 + 0.03×AT - 0.08×ST - 0.001×SM + 0.79×WPH 7 -158.45 12.60 0.00 0.00 545 

k = 0.27 + 0.72×ST 4 -158.86 12.20 0.00 0.00 446 

k = 0.52 + 0.03×AT + 0.46×FET - 0.06×HP 6 -156.25 14.80 0.00 0.00 2.E+03 

k = -0.15 + 0.51×WPH 4 -155.35 15.71 0.00 0.00 3.E+03 

k = 0.81 - 0.14×FET 4 -151.92 19.14 0.00 0.00 1.E+04 

k = 0.28 + 0.73×ST - 0.001×SM 5 -149.35 21.70 0.00 0.00 5.E+04 

k = 0.54 + 0.03×AT + 0.04×ST 0.003×SM 6 -148.94 22.12 0.00 0.00 6.E+04 

k = 0.80 - 0.03×HP 4 -148.08 22.98 0.00 0.00 1.E+05 

k = 0.59 + 0.03×AT - 0.002×WT + 0.01×ST 6 -147.69 23.36 0.00 0.00 1.E+05 

k = 0.84 - 0.04×HP - 0.23×FET 5 -146.31 24.75 0.00 0.00 2.E+05 

k = 0.80 - 0.01×WD 4 -145.93 25.13 0.00 0.00 3.E+05 

k = 0.80 + 0.01×SF 4 -145.78 25.27 0.00 0.00 3.E+05 

k = -0.16 + 0.002×WT + 0.50×WPH 5 -144.61 26.45 0.00 0.00 6.E+05 

k = 0.76 + 0.004×SM 4 -144.58 26.47 0.00 0.00 6.E+05 

k = 0.77 + 0.003×WT 4 -143.35 27.70 0.00 0.00 1.E+06 

k = -0.88 + 0.04×AT + 0.0001×WT - 0.11×WD + 0.77×WPH +   12 -134.91 36.15 0.00 0.00 7.E+07 

   0.06×HP + 0.19×FET + 0.09×SF + 0.32×ST + 0.001×SM       

k = 0.77 + 0.00005×ND 4 -134.72 36.33 0.00 0.00 8.E+07 

k = 0.87 - 0.03×WD + 0.01×HP + 0.03×SF 6 -134.12 36.93 0.00 0.00 1.E+08 

k = 0.09 + 0.002×WT - 0.06×WD + 0.49×WPH + 0.05×HP -  9 -123.54 47.51 0.00 0.00 2.E+10 

   0.44×FET + 0.05×SF       
a
 AT = air temperature, WT = water temperature, ST = soil temperature, WD = water depth, HP = hydroperiod, FET = no. of transitions 

 between flooded and exposed, SF = sum fluctuation of water depth, WPH = water pH, SM = soil moisture, ND = no. days in the wetland 
b
 K = number of parameters, including intercept and error 

c
 ∆I = AICc lowest  - AICci for the i

th
 model in comparison 

d
 £(gi|x) = likelihood of a model 

e
 wi = Akaike Weights 
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Appendix T.  Sample printout of high-performance liquid chromatography results.  Peaks represent chemicals 

coming off the column at different times.  Ergosterol peaks of litter samples are identified by comparison of 

retention time on the column with the standard and are quantified by comparison of the area under the peak with the 

area of the standard.  
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Appendix U.  Table of taxonomic groups identified in litter bags collected over 2 years in 3 mitigated and 3 reference wetlands.  Total abundance along with 

total, mean, S.E., and maximum biomass (mg dry mass) are presented for each taxonomic group along with functional feeding guild and if members are 

detritivores.  Adults (a) and larvae (l) are indicated after taxonomic groups where the distinction is unclear. 

 

      Functional  

   Total Total Mean S.E. of Max Feeding  

Subclass Order Family Abundance Biomass Biomass Biomass Biomass Group Detritivore 

Oligochaeta   669 2930.00 4.51 0.74 235.7 CG Y 

Pterygota  Hymenoptera Formicidae 3295 1141.90 1.76 0.95 471.0 OM  

Pulmonata Stylommatophora  113 886.70 1.36 0.24 113.5 OM Y 

Eumalacostraca  Isopoda Asellidae 617 550.25 0.85 0.33 181.8 CG Y 

Heterodonta Veneroida Sphaeriidae 175 1001.57 0.77 0.27 90.6 FC  N 

Pterygota  Diptera Chironomidae (l) 801 301.80 0.46 0.09 29.7 CG Y 

Pterygota  Diptera Tipulidae (l) 74 297.20 0.46 0.21 114.6 CG,SH Y 

Micrura Araneae Pisauridae 227 296.90 0.46 0.06 12.4 PR N 

Pterygota  Ephemeroptera Leptophlebiidae 120 284.60 0.44 0.22 119.4 CG N 

Pterygota  Coleoptera Hydrophilidae (l) 142 272.10 0.42 0.31 199.1 PR N 

Pulmonata Basommatophora Physidae 32 485.37 0.37 0.22 97.9 SC  Y 

Eumalacostraca  Decapoda Cambaridae 1 199.10 0.31 0.09 35.5 CG Y 

Pterygota  Megaloptera Corydalidae 24 176.70 0.27 0.04 12.2 PR N 

Pulmonata Basommatophora Planorbidae 59 316.04 0.24 0.10 29.1 SC  Y 

Pterygota  Coleoptera Carabidae (a) 108 155.10 0.24 0.07 39.9 PR N 

Pulmonata Basommatophora Lymnaeidae 24 204.16 0.16 0.11 56.8 SC  Y 

Eumalacostraca  Isopoda Armadillidiidae 30 81.10 0.12 0.05 20.2 HB Y 

Helminthomorpha  Chordeumatida Conotylidae 58 73.30 0.11 0.03 11.6 HB Y 

Hirudinea   69 71.80 0.11 0.04 18.9 PR, PA N 

Pterygota  Coleoptera Dystiscidae (l) 31 66.50 0.10 0.06 33.6 PR N 

Pterygota  Diptera Tabanidae (l) 6 64.90 0.10 0.01 3.4 PR N 

Pterygota  Coleoptera Staphylinidae (a) 114 56.60 0.09 0.04 25.4 PR N 

Pterygota  Lepidoptera Noctuidae 15 50.40 0.08 0.01 3.1 HB N 

Micrura Araneae Lycosidae 35 41.30 0.06 0.03 17.1 PR N 

Orthogastropoda Neotaenioglossa Hydrobiidae 10 79.46 0.06 0.04 20.2 SC  Y 

Micrura Araneae Anyphaenidae 26 39.00 0.06 0.02 6.1 PR N 

Pterygota  Lepidoptera Arctiidae 4 37.20 0.06 0.03 14.5 HB N 

Micrura Araneae Theridiosomatidae 92 35.60 0.05 0.01 7.7 PR N 

PR – Predator  CG – Collector/gatherer  HB – Herbivore   

PA – Parasite  SC – Scraper   OM – Omnivore   

SH – Shredder  FC – Filterer/collector 
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Appendix U.  Continued. 

 

      Functional  

   Total Total Mean S.E. of Max Feeding  

Subclass Order Family Abundance Biomass Biomass Biomass Biomass Group Detritivore 

Pterygota  Coleoptera Lampyridae (l) 6 33.90 0.05 0.03 12.1 PR N 

Micrura Araneae Linyphiidae 102 32.40 0.05 0.01 6.4 PR N 

Pterygota  Collembola Isotomidae 176 33.20 0.05 0.02 9.9 CG Y 

Pterygota  Coleoptera Dystiscidae (a) 15 33.00 0.05 0.02 13.7 PR N 

Pterygota  Coleoptera Hydrophilidae (a) 30 28.62 0.04 0.01 6.0 CG N 

Pterygota  Odonata Coenagrionidae 37 27.30 0.04 0.03 15.7 PR N 

Pterygota  Diptera Ceratopogonidae (l) 56 26.00 0.04 0.03 22.0 PR N 

Pterygota  Coleoptera Carabidae (l) 29 23.40 0.04 0.01 5.2 PR N 

Pterygota  Collembola Poduridae 125 18.10 0.03 0.01 4.2 CG Y 

Pterygota  Diptera Stratiomyidae (l) 10 16.70 0.03 0.01 4.7 CG Y 

Pterygota  Odonata Libellulidae 4 16.00 0.02 0.02 16.0 PR N 

Pterygota  Diptera Ptychopteridae (a) 4 15.80 0.02 0.02 11.8   

Pterygota  Hemiptera Hebridae 55 15.80 0.02 0.01 3.2 PR N 

Pterygota  Diptera Ephydridae (l) 6 12.70 0.02 0.01 9.3 CG N 

Anamorpha Lithobiomorpha Lithobiidae 11 12.50 0.02 0.01 4.2 PR N 

Pterygota  Coleoptera Gyrinidae (a) 4 12.10 0.02 0.02 12.1 PR N 

Eumalacostraca  Isopoda Porcellionidae 7 11.10 0.02 0.01 5.7 HB Y 

Pterygota  Coleoptera Staphylinidae (l) 17 10.80 0.02 0.01 3.7 PR N 

Pterygota  Coleoptera Cerambycidae (a) 2 7.60 0.01 0.01 2.8 HB N 

Pterygota  Coleoptera Scirtidae (l) 12 7.60 0.01 0.01 7.6 SC N 

Pterygota  Coleoptera Curculionidae (a) 9 7.30 0.01 0.01 4.0 SH N 

Micrura Araneae Salticidae 8 7.20 0.01 0.01 3.3 PR N 

Pterygota  Hemiptera Mesoveliidae 2 6.70 0.01 0.01 6.7 PR N 

Pterygota  Hemiptera Aradidae 22 6.60 0.01 0.00 2.6 HB N 

Pterygota  Coleoptera Chrysomelidae (a) 6 6.50 0.01 0.01 2.8 SH N 

Micrura Araneae Gnaphosidae 3 6.20 0.01 0.01 2.9 PR N 

Pterygota  Ephemeroptera Caenidae 15 5.90 0.01 0.01 3.6 CG N 

Pterygota  Ephemeroptera Siphlonuridae 15 5.90 0.01 0.01 5.9 CG N 

Pterygota  Hemiptera Hydrometridae 4 5.70 0.01 0.01 5.7 PR N 

Dromopoda Pseudoscorpionida Neobisiidae 21 5.50 0.01 0.00 0.8 PR N 

PR – Predator  CG – Collector/gatherer  HB – Herbivore 

PA – Parasite  SC – Scraper   OM – Omnivore 

SH – Shredder  FC – Filterer/collector  
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Appendix U.  Continued. 

 

      Functional  

   Total Total Mean S.E. of Max Feeding  

Subclass Order Family Abundance Biomass Biomass Biomass Biomass Group Detritivore 

Pterygota  Coleoptera Haliplidae (a) 4 5.50 0.01 0.01 4.7 SH N 

Pterygota  Diptera Psychodidae (l) 13 4.40 0.01 0.01 4.4 CG N 

Pterygota  Orthoptera Gryllidae 1 4.40 0.01 0.00 3.1 OM Y 

Pterygota  Coleoptera Noteridae (a) 2 3.50 0.01 0.00 2.7 PR N 

Pterygota  Plecoptera Perlodidae 28 3.40 0.01 0.00 2.5 PR  N 

Pterygota  Hemiptera Thyreocoridae 1 3.00 0.00 0.00 3.0 HB N 

Acarni   25 3.00 0.00 0.00 0.8 HB  

Pterygota  Coleoptera Anthribidae (a) 2 2.90 0.00 0.00 2.6 HB N 

Dromopoda Opiliones Sclerosomatidae 3 2.80 0.00 0.00 2.0 PR N 

Pterygota  Ephemeroptera Ephemerellidae 3 2.80 0.00 0.00 2.0 CG Y 

Pterygota  Hemiptera Psyllidae 5 2.70 0.00 0.00 1.1 HB N 

Pterygota  Coleoptera Byrrhidae (a) 4 2.20 0.00 0.00 1.0 HB N 

Pterygota  Hemiptera Cicadellidae 3 2.20 0.00 0.00 2.1 HB N 

Micrura Araneae Mimetidae 2 2.00 0.00 0.00 1.1 PR N 

Pterygota  Plecoptera Capniidae 1 2.00 0.00 0.00 2.0 SH Y 

Pterygota  Diptera Sciomyzidae (l) 1 1.90 0.00 0.00 1.9 PR N 

Pterygota  Coleoptera Coccinellidae (a) 2 1.70 0.00 0.00 1.4 PR N 

Pterygota  Lepidoptera Hesperiidae 1 1.60 0.00 0.00 1.6 HB N 

Micrura Araneae Liocranidae 6 1.50 0.00 0.00 1.1 PR N 

Pterygota  Coleoptera Endomychidae (a) 2 1.50 0.00 0.00 0.8 HB N 

Pterygota  Hemiptera Largidae 1 1.50 0.00 0.00 1.5 HB N 

Pterygota  Hemiptera Pyrrhocoridae 1 1.50 0.00 0.00 1.5 HB N 

Micrura Araneae Thomisidae 2 1.40 0.00 0.00 1.0 PR N 

Pterygota  Trichoptera Limnephilidae 3 1.40 0.00 0.00 0.8 SH Y 

Micrura Araneae Philodromidae 2 1.30 0.00 0.00 1.3 PR N 

Pterygota  Coleoptera Elateridae (a) 1 1.30 0.00 0.00 1.3 HB N 

Pterygota  Diptera Dolichopodidae (a) 4 1.10 0.00 0.00 0.4 PR N 

Anamorpha Lithobiomorpha Henicopidae 1 1.00 0.00 0.00 1.0 PR N 

Pterygota  Diptera Phoridae (a) 2 1.00 0.00 0.00 0.6 HB N 

PR – Predator  CG – Collector/gatherer  HB – Herbivore 

PA – Parasite  SC – Scraper   OM – Omnivore 

SH – Shredder  FC – Filterer/collector  
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Appendix U.  Continued. 

 

      Functional  

   Total Total Mean S.E. of Max Feeding  

Subclass Order Family Abundance Biomass Biomass Biomass Biomass Group Detritivore 

Pterygota  Diptera Tipulidae (a) 2 1.0 0.00 0.00 0.6 PR N 

Pterygota  Plecoptera Leuctridae 4 0.9 0.00 0.00 0.8 SH Y 

Pterygota  Coleoptera Cantharidae (a) 1 0.8 0.00 0.00 0.8 PR N 

Pterygota  Coleoptera Elmidae (a) 1 0.8 0.00 0.00 0.8 CG,SC N 

Pterygota  Diptera Dolichopodidae (l) 2 0.8 0.00 0.00 0.4 PR N 

Pterygota  Hemiptera Miridae 1 0.8 0.00 0.00 0.8 OM N 

Pterygota  Plecoptera Nemouridae 1 0.8 0.00 0.00 0.8 SH  Y 

Pterygota  Lepidoptera Gelechiidae 3 0.8 0.00 0.00 0.6 HB N 
Pterygota Coleoptera Pselaphidae (a) 3 0.7 0.00 0.00 0.4 Non-

feeding 
 

Pterygota  Lepidoptera Pyralidae 3 0.7 0.00 0.00 0.4 HB N 

Pterygota  Hemiptera Aphididae 4 0.7 0.00 0.00 0.4 HB N 

Pterygota  Plecoptera Chloroperlidae 1 0.7 0.00 0.00 0.7 PR N 

Pterygota  Diptera Psychodidae (a) 2 0.6 0.00 0.00 0.5 OM N 

Pterygota  Odonata Corduliidae 1 0.6 0.00 0.00 0.6 PR N 

Pterygota  Diptera Ceratopogonidae (a) 2 0.5 0.00 0.00 0.3 PA N 

Pterygota  Diptera Empididae (a) 1 0.5 0.00 0.00 0.5 PR N 

Pterygota  Hymenoptera Halictidae 1 0.5 0.00 0.00 0.5 HB N 

Pterygota  Hymenoptera Platygastridae 1 0.5 0.00 0.00 0.5 PA N 

Pterygota  Lepidoptera Tortricidae 0.5 0.00 0.00 0.5 HB N 

Pterygota  Coleoptera Elmidae (l) 1 0.4 0.00 0.00 0.4 CG,SC N 

Pterygota  Collembola Sminthuridae 4 0.4 0.00 0.00 0.1 CG Y 

Pterygota  Diptera Milichiidae (a) 1 0.4 0.00 0.00 0.4 PR N 

Pterygota  Hymenoptera Scelionidae 1 0.4 0.00 0.00 0.4 PA N 

Pterygota  Coleoptera Bostrichidae (a) 1 0.3 0.00 0.00 0.3 HB N 

Pterygota  Diptera Sciaridae (a) 2 0.3 0.00 0.00 0.3     

Pterygota  Ephemeroptera Baetidae 1 0.3 0.00 0.00 0.3 CG N 

Pterygota  Hemiptera Reduviidae 4 0.3 0.00 0.00 0.3 PR N 

Pterygota  Hemiptera Tingidae 1 0.3 0.00 0.00 0.3 HB N 

Pterygota  Coleoptera Rhysodidae (a) 1 0.2 0.00 0.00 0.2 HB N 

PR – Predator  CG – Collector/gatherer  HB – Herbivore 

PA – Parasite  SC – Scraper   OM – Omnivore 

SH – Shredder  FC – Filterer/collector  
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Appendix U.  Continued. 

 

            Functional   

   Total Total Mean S.E. of Max Feeding  

Subclass Order Family Abundance Biomass Biomass Biomass Biomass Group Detritivore 

Pterygota  Collembola Hypogastruridae 2 0.2 0.00 0.00 0.1 CG Y 

Pterygota  Diptera Mycetophilidae (a) 1 0.2 0.00 0.00 0.2   

Pterygota  Trichoptera Dipseudopsidae 2 0.2 0.00 0.00 0.2 FC N 

Pterygota  Diptera Chaoboridae (a) 1 0.1 0.00 0.00 0.1   

Pterygota  Diptera Rhagionidae (a) 1 0.1 0.00 0.00 0.1 PR N 

Pterygota  Diptera Trichoceridae (a) 1 0.1 0.00 0.00 0.1   

Pterygota  Hemiptera Pemphigidae 1 0.1 0.00 0.00 0.1 HB N 

Pterygota  Hemiptera Piesmatidae 1 0.1 0.00 0.00 0.1 HB N 

Pterygota  Hymenoptera Braconidae 1 0.1 0.00 0.00 0.1 HB,PA N 

PR – Predator  CG – Collector/gatherer  HB – Herbivore 

PA – Parasite  SC – Scraper   OM – Omnivore 

SH – Shredder  FC – Filterer/collector  
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Appendix V.  Regression tree analysis to identify invertebrate taxa, by biomass, associated with trends in the early phases (< 224 d) of decomposition.  

Decomposition was measured over 2 years in 3 mitigated and 3 reference wetlands in the Mid-Atlantic Highlands region, USA, December 2007 to December 

2009.  Divisions in the regression tree explain 70.2% of variance in decomposition rates. 

 

 
Taxonomic Groups (mean mg per bag) 

Ase = Asellidae, Isopoda (Collector/gatherer)    Lin = Linyphiidae, Araneae (Predator) 

Car = Carabidae, Coleoptera, adult (Predator)   Pis = Pisauridae, Araneae (Predator) 

Dyt = Dytiscidae, Coleoptera, larvae (Predator)    Pod = Poduridae, Collembola (Collector/gatherer, detritivore) 

Hyd = Hydrophilidae, Coleoptera, larvae (Predator)   Sta = Staphylinidae, Coleoptera, adult (Predator) 

Iso = Isotomidae, Collembola (Collector/gatherer, detritivore)   Sty = Stylommatophora (Order, omnivore, detritivore) 

Lim = Limnephilidae, Trichoptera (Shredder, Filterer)  The = Theridiosomatidae, Araneae (Predator) 
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Appendix W.  Regression tree analysis to identify invertebrate taxa, by biomass, associated with trends in the late phase (≥ 224 d) of decomposition.  

Decomposition was measured over 2 years in 3 mitigated and 3 reference wetlands in the Mid-Atlantic Highlands region, USA, December 2007 to December 

2009.  Divisions in the regression tree explain 41.8% of variance in decomposition rates. 

 
Taxonomic Groups (mg dry mass) 

Ase = Asellidae, Isopoda (Collector/gatherer)  

Chi = Chironomidae, Diptera, larvae (Collector/gatherer) 

Hyd (a) = Hydrophilidae, Coleoptera, adult (Predator) 

Hyd (l) = Hydrophilidae, Coleoptera, larvae (Collector/gatherer) 

Lin = Linyphiidae, Araneae (Predator) 

Oli = Oligochaeta (Subclass, collector/gatherer)  

Sta = Staphylinidae, Coleoptera, adult (Predator) 

Sty = Stylommatophora (Order, omnivore, detritivore) 

Tip = Tipulidae, Diptera, larvae (Collector/gatherer, shredder) 
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Appendix X.  Regression tree analysis to identify invertebrate functional feeding groups (FFG), by biomass, associated with trends in the early phases (< 224 d) 

of decomposition.  Decomposition was measured over 2 years in 3 mitigated and 3 reference wetlands in the Mid-Atlantic Highlands region, USA, December 

2007 to December 2009.  Divisions in the regression tree explain 46.0% of variance in decomposition rates. 

 
Functional Feeding Groups (mg dry mass) 

CG = Collector/gatherer 

HB = Herbivore 

Oli = Oligochaeta (Subclass, Collector/gatherer) 

OM = Omnivore 

P = Predator/parasite 

SC = Scraper 

SH = Shredder 
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Appendix Y.  Regression tree analysis to identify invertebrate functional feeding groups (FFG), by biomass, associated with trends in the late phase (≥ 224 d) of 

decomposition.  Decomposition was measured over 2 years in 3 mitigated and 3 reference wetlands in the Mid-Atlantic Highlands region, USA, December 2007 

to December 2009.  Divisions in the regression tree explain 38.5% of variance in decomposition rates. 

 

 
Functional Feeding Groups (mg dry mass) 

CG = Collector/gatherer 

Oli = Oligochaeta (Subclass, Collector/gatherer) 

OM = Omnivore 
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Appendix Z.  Regression tree analysis to identify invertebrate metrics associated with trends in the early phases (< 224 d) of decomposition.  Decomposition was 

measured over 2 years in 3 mitigated and 3 reference wetlands in the Mid-Atlantic Highlands region, USA, December 2007 to December 2009.  Divisions in the 

regression tree explain 70.2% of variance in decomposition rates. 

 
Taxonomic Groups (mg per bag)     Functional Feeding Groups (mg dry mass) 

Ase = Asellidae, Isopoda (Collector/gatherer)   HB - Herbivore 

Car = Carabidae, Coleoptera, adult (Predator) 

Con = Conotylidae, Chordeumatida (Herbivore)   Invertebrate Metrics 

Dyt = Dytiscidae, Coleoptera, larvae (Predator)    Abun = Abundance (no. individuals) 

Hyd = Hydrophilidae, Coleoptera, larvae (Predator)   Mass = Total Biomass (mg dry mass) 

Lim = Limnephilidae, Trichoptera (Shredder, Filterer) 

Lyc = Lycosidae, Araneae (Predator) 

Pis = Pisauridae, Araneae (Predator) 

Pod = Poduridae, Collembola (Collector/gatherer, detritivore) 

Sta = Staphylinidae, Coleoptera, adult (Predator) 

Sty = Stylommatophora (Order, omnivore, detritivore) 
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Appendix AA.  Regression tree analysis to identify invertebrate metrics associated with trends in the late phase (≥ 224 d) of decomposition.  Decomposition was 

measured over 2 years in 3 mitigated and 3 reference wetlands in the Mid-Atlantic Highlands region, USA, December 2007 to December 2009.  Divisions in the 

regression tree explain 55.7% of variance in decomposition rates. 

 
Taxonomic Groups (mg dry mass)      Functional Feeding Groups (mg dry mass) 

Hyd (a) = Hydrophilidae, Coleoptera, adult (Predator)   CG = Collector/gatherers 

Hyd (l) = Hydrophilidae, Coleoptera, larvae (Collector/gatherer)   

Lin = Linyphiidae, Araneae (Predator)     Invertebrate Metrics 

Oli = Oligochaeta (Subclass, Collector/gatherer)    Abun = Abundance (no. individuals) 

Tip = Tipulidae, Diptera, larvae (Collector/gatherer, shredder)   Mass = Total Biomass (mg dry mass) 

         Rich = Richness (no. taxa) 
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Appendix AA.  Continued. 

 
Taxonomic Groups (mg dry mass)      Functional Feeding Groups (mg dry mass)  

Chi = Chironomidae, Diptera, larvae (Collector/gatherer)   FC = Filterer/collectors 

Con = Conotylidae, Chordeumatida (Herbivore)    P = Predators 

Oli = Oligochaeta (Subclass, Collector/gatherer) 

Sty = Stylommatophora (Order, omnivore, detritivore)   Invertebrate Metrics 

         Abun = Abundance (no. individuals) 

         Mass = Total Biomass (mg dry mass) 

         Rich = Richness (no. taxa) 
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Appendix BB.  Mean, standard error (S.E.), minimum, and maximum fungal biomass (μg ergosterol mg
-1

 litter dry 

mass) isolated from plant litter bags decomposing in 3 mitigated (M) and 3 reference (R) wetlands in West Virginia, 

USA, December 2007 to December 2009. 

 

Wetland Type Mean S.E. Min Max 

Leading Creek M 0.059 0.006 0.001 0.160 

Sugar Creek M 0.065 0.007 0.002 0.174 

Hazelton M 0.072 0.005 0.003 0.156 

Meadowville R 0.065 0.006 0.000 0.155 

Upper Deckers Creek R 0.062 0.006 0.000 0.156 

Bruceton Mills R 0.074 0.007 0.000 0.171 
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