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Abstract

Analysis of Structured and Un-Structured Network Protocols for
Data Aggregation Over Distributed Wireless Sensor Networks

Priyashraba Misra

The focus of this thesis is on design and evaluation of one-shot data aggregation pro-
tocols for static and mobile wireless sensor networks (WSNs). The goal in one-shot data
aggregation is to compute a statistical summary of sensor data such as max, average, sum,
count and min, when initiated by a special node such as the base station. WSNs have wide
range of applications in both static and mobile/dynamic systems. Static sensor networks
are especially useful when monitoring is required in harsh, inaccessible environments and
when the region to be monitored is really large. Examples of static sensor network appli-
cations include environmental monitoring systems, monitoring of industrial control systems,
monitoring of degradation in slagging gasifiers, distributed object detection and tracking.
Example of mobile applications include vehicular ad-hoc networks and networks of personal
radios used in emergency dispatch and battlefields.

For data aggregation in static networks with stable links, structured approaches such as
spanning trees are generally preferred. This is because, once a data aggregation structure has
been established, link topologies remain fixed and there is minimal need to actively maintain
and change the routing structures. In this thesis, one such tree based data aggregation
protocol has been designed and evaluated using simulations in networks ranging from 100-
1000 nodes. The protocol has also been implemented at a smaller scale in the context of
a smart refractory environment, where slag penetration in gasifiers is remotely monitored
using smart bricks that are embedded with sensors.

In mobile networks and networks with frequent link changes, topology driven structures
are likely to be unstable and to incur a high communication overhead. Therefore, self-
repelling random walks have been recently proposed as an attractive alternative for data
aggregation in mobile systems. In this thesis, a brief overview of random walk based data
aggregation has been presented and systematic evaluation of tree based and random walk
based data aggregation protocols in networks ranging from 100-1000 nodes under varying
degrees of node mobility has been done. The conditions under which unstructured protocols
become more attractive in terms of convergence time and messaging efficiency as compared
to tree based structured approaches have been quantified.
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Chapter 1

Introduction

1.1 Overview and objectives

Fueled by recent advances in MEMS technology, embedded systems and wireless net-

working, wireless sensor networks have emerged as an active area of research in the past

two decades [1][2][3] with applications in different areas such as environmental monitoring,

object tracking, smart agriculture, industrial process control, vehicular networks and surveil-

lance. In many of these applications, the nodes are static. Examples include environmental

monitoring and perimeter surveillance applications. Such systems are especially useful when

the regions to be monitored are inaccessible and remote, and the events that need to be

monitored have to be reported to a special node such as a base station with minimal delay.

Wireless sensor networks which self-configure themselves into a multi-hop network are well

suited for such applications. A key characteristic of static sensor networks is that the net-

work topology does not change much over time. It is possible that link quality can change

over time and occasionally some links may get worse or better, but the amount of link dy-

namics is pretty low. There are also applications in which the nodes are mobile. Examples

include vehicular ad-hoc networks (VANETs) in which data from sensors embedded inside

vehicles are exchanged with other vehicles. Another example consists of mobile radios used

in military scenarios for communicating between personnel. In such networks, the network

topology is constantly evolving. If the network is modeled as a graph, then the set of edges

of the graph is constantly changing. This makes it harder to design protocols for aggregating
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information.

A basic mode of operation for sensor networks is data collection from a large number

of sensors that self-configure themselves into a multi-hop network and transmit data to

a base station. Numerous protocols have been developed for various tasks such as data

collection, parameter broadcasts, wireless reprogramming, data-driven routing, querying,

unicast etc. The key focus in this research has been on maximizing data throughput, i.e.,

maximizing information communicated with minimal control overhead, and in improving

the energy efficiency of the system. Energy efficiency is critical because nodes are mostly

battery powered and radio communication consumes significant battery life. Hence the goal

is to reduce the amount of radio communication involved.

In this thesis, my focus is on data aggregation. This is slightly different from data ex-

filtration where one is interested in individual data from all sensors. On the other hand

data aggregation focuses on metrics such as max, average, sum, count that is computed over

data from all sensors over a given interval of time. These metrics are duplicate sensitive and

therefore data from each sensor can be aggregated only once.

A common approach to data aggregation in static networks is by using structures such

as trees. Examples of such protocols include directed diffusion, TAG and CTP (described

in greater detail in related work Section). The fundamental idea is to create a tree rooted

at the base-station which is used to send data back from all sensors. Note that although

we are only interested in aggregates, to ensure no duplicates one needs to include each

sensor’s information individually to the base station. Structured protocols such as this

either need to periodically refresh the tree or actively maintain the tree structure. When

the intervals between successive data aggregation is large, one prefers periodic refreshing of

the tree structure, which is what we pursue in this thesis. When data requirements are very

sparse, maintaining trees can have a high message overhead. The nodes need to continuously

transmit control beacons in order to keep the tree stable and fix link failures. On the other

hand, in periodic refreshing the network forms the tree when the base station requests

for data. Data requests from base stations are floods which contain essential information

for tree formation. As soon as a node has a parent it schedules its data transfer. After

data transfer is complete the node does not have to maintain the tree till the next data
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request comes in, unless the network is so dynamic that the topology has evolved before

data communication is finished (this is possible in mobile systems). In this thesis, We have

designed and implemented one such tree based protocol for data aggregation and we have

evaluated under simulations in ns-3.

As an example application of the static data aggregation, in this thesis we have considered

a smart refractory system. Refractory is a temperature furnace in which temperatures can

reach upto 1400 degree Celsius. It is important to monitor in real-time if slag has penetrated

such furnaces so that timely maintenance can be carried out. Traditional methods use

thermo-couples to measure the temperature inside the furnace. Access ports on the wall

of the furnace are used to put the thermocouple in. This methods has drawbacks as high

temperature, harsh working conditions and also slag can cause the sensors to degrade very

fast. As part of a interdisciplinary project with the Mechanical Engineering Department

and Chemical Engineering Department at West Virginia University, our research group is

working on designing smart bricks with embedded temperature sensors to address the remote

monitoring of such furnaces (details are described in Chapter 3). In this thesis we have used

this as my focus application and have utilized the tree based protocol for data aggregation

in this project. Results from this case study are presented in Chapter 5.

But tree based protocols for data aggregation have problems in mobile networks or dy-

namic networks in which the links keep changing. The tree structure is the most important

aspect of such protocols. Link changes being frequent in mobile networks result in unstable

topology and high communication overheads. With increasing network size, the probability

of a path to fail is likely to increases. These problems are further aggravated by even small

node speeds, resulting in path failure and instability. When broken paths are detected they

have to be fixed, more importantly at a rate faster than the rate of breaking. This involves

high message overheads. So structure free approaches are desired for mobile systems.

Structure-free approaches for data aggregation have not received as much attention as

structured protocols. There are some popular ideas such as flooding and gossiping which

are un-structured. However, they are very inefficient when used for data aggregation. This

aspect is analyzed in more detail in Chapter 4. However, more recently, self-repelling random

walks have been proposed as an attractive alternative for structure based approaches in
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mobile networks [4]. The protocol is simple and efficient and requires very little overhead.

In this thesis, we have used self-repelling random walks as the example for unstructured data

aggregation protocol and used it to compare against tree based protocols.

The objective of this thesis is to systematically compare structured an non-
structured techniques for data aggregation in terms of latency, messages and
reliability under static and mobile network scenarios

1.2 Summary of contributions

1. We have developed a tree based protocol for one-shot data aggregation. When the

base station needs data from the nodes it initiates tree formation. When nodes have

a parent, they schedule their data transmission. In mobile networks, the topology can

constantly change. Hence periodically the trees are refreshed until the data aggregation

is complete. We have evaluated this protocol using simulations in ns-3.

2. We have utilized the tree-based protocol for data aggregation in smart refractories and

evaluated prototypes of this system in a refractory environment using Telos motes at

a small scale.

3. As an example of structure-less protocol we have chosen Push-pull self-repelling random

walk protocol. We have simulated it in ns-3 and used it as a benchmark for comparing

with structured protocols.

4. We evaluated the tree based protocol and push-pull self-repelling random walks proto-

cols systematically under varying mobility, density and network size. Parameters were

carefully chosen for impartial comparison of the two protocols.

1.3 Organization of rest of the thesis

The remaining part of this document is arranged as follows. Chapter 2 covers the back-

ground and related work on data aggregation protocols. Design of the tree based protocol

used in my thesis is discussed in Chapter 3. In chapter 4, the design of the structureless
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protocol based on self-repelling random walks is discussed. The 5th chapter talks about

results and analysis. The final chapter, summarizes the conclusion and possible future work.
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Chapter 2

Background work and existing

literature

In this chapter we talk about existing literature for both structured and unstructured

protocols. In the first section we try to understand how structured protocols work. Some

commonly used structured protocols like Directed diffusion[5], TAG[6] and CTP[7] are dis-

cussed here. We also consider one structured protocol, CTP and systematically analyse it to

learn how structured protocols are designed. Section 2, briefly talks about existing research

for structureless protocols.

2.1 Structured Protocols

In the last two decades extensive study has been done on designing protocols for data

aggregation for networks. As a result of improvement in hardware technology, we now have

low-cost sensor nodes which have high computing power, more memory, multiple sensing

ability and improved radio communication systems. Sensing motes are independent devices

and have limited source of power. So it is important to design protocols which can harness

high computing capabilities of the nodes and at the same time make them energy efficient.

Most structure based protocols follow similar design patters. The nodes arrange them-

selves into structures, like trees and maintain the tree. Nodes may send their data to the

base station periodically or when they receive data requests from base station. Now, let us
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see how some of the common structure based protocols work.

Directed Diffusion is a data centric protocol in which nodes request data by sending

interests for named data[5]. Data matching the interest are then routed towards the node.

Attribute-value pairs are used to name tasks. It uses a one hop at a time mechanism to

send the messages to sensor nodes. Datagrams, gradients, reinforcements and interests are

important concepts of directed diffusion. The queries from the base station are flooded across

the network as interest for named data. The process is called reinforcement. The flood helps

set up gradients in the network. This gradient is used by the nodes to route the data back

to the base station.

Interest caches are maintained by nodes across the network. They have information

about the query and the one hop neighbour. They also maintains gradient fields for each of

its neighbours. A node may use the cache to reject duplicate interests.

When the base station needs a data message, it reinforces one of its neighbours, and it in

turn reinforces one of its neighbours in the next level. This continues till the reinforcement

message reaches a desired node. Reinforcement refers to flooding the data request down the

tree.

Madden et. al. in their paper on Tiny Aggregation Service for Ad-Hoc Network Service[6]

(TAG), talk about developing aggregating services for motes. They implemented TAG, a

declarative interface for data collection and aggregation. It tries to achieve power efficiency

by distributing and executing queries. It also uses a tree routed to the base station for

sending data back from the nodes. On its way up to the base station the data is aggregated

according to the aggregation function.

To understand how structured protocols are designed for static network we choose one

of the protocols, CTP (Collection Tree Protocol)[7] and do an in depth analysis of how the

protocol works.

2.1.1 Collection Tree Protocol

The Collection Tree Protocol[7], is a best effort datagram communication to a base

station. We dissect this protocol to understand how structured protocols are designed. It is
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a tree based collection protocol designed for relatively low traffic. We define certain nodes

as base stations and they advertise themselves. Rest of the nodes in the network from a

path/tree rooted to the base station. Data can be sent to any of the base stations. A nodes

selection of the next hop neighbour defines which base station is going to receive the node’s

data. Tree formation and tree maintenance are two main aspects of the protocol.

Expected Transmissions(ETX) is used as the routing gradient. Base stations or roots

have ETX of 0. ETX values are real numbers with a precision on tenths. If the ETX of a

node is 26, it is actually 2.6. The ETX of a node is defined as:

Node ETX = ETX of parent + ETX of its link to parent.

When nodes boot up all nodes have an ETX of infinite. Only roots have an ETX of

zero. All nodes in the network periodically announce a control packet or beacon, with their

ETX and node-ID. Nodes in the one hop range receive the beacon and update their ETX

and neighbour table. If on hearing a beacon a node updates its ETX, it schedules its beacon

in the near future. The ETX of nodes are represented on a scale of 10, i.e. a node can

have ETX between 10-19, 20-29, etc. depending on its efficiency of forwarding data packets.

Suppose a node X has ETX 20 and it forwards a packet without any retries then its ETX

remains 20. If it forwards the packets in more than 32 retries it bumps its own ETX to 29.

The calculations shown here do not exactly replicate the exact way of working but gives an

understanding of how ETX values are updated.

Unstable routes or links are not desirable as they may cause routing loops or packets

drops. They may be formed when a node leaves the network or when links fail. It is

important to fix a broken link as soon as possible. Ideally the rate of fixing a broken link

should be higher than the rate of link failure. A link can only be fixed when the node hears

a beacon and updates its ETX and neighbour table. This means that for faster link fixing

the beaconing rate has to be very fast. A smaller interval of becoming will help rectify flaky

links very fast but a large interval will help save bandwidth in the network. So while deciding

on the interval we have to make a trade-off.

The trade-off can be avoided to a certain extent by using Adaptive Beaconing. It con-

sumes low bandwidth over a longer period on time and also helps in faster network recovery.

Trickle[8] like beacon timings can be used for adaptive beaconing.
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Trickle transmits the current version of the code. Along with this it uses suppression

and adaptive timing. Suppression is the property by virtue of which a node suppresses

transmissions if it hears the same version number as its own. Trickle also maintains a timer

to maintain time intervals. It starts with a very low beaconing interval tl and doubles it

when the maintenance timer overflows till it reaches th, the highest beaconing interval. So

if all nodes have same version of the code the beaconing rate stays at th. The beaconing

interval is reset to tl under the following conditions.

1. When it receives a data packet from a node which has lower ETX. This

signifies that the node has got a data packet from it possible parent, which ideally

should not have happened. The node lowers it beaconing rates to update its neighbours.

2. Significantly reduced routing cost. When it has a parent who announces its ETX

as 1.5 times its own ETX, there is a possibility of finding a better parent. So the node

again lowers it beaconing rate.

3. A packet with P bit is received. Generally a new node coming into the network

advertises a P bit. In other words, the new nodes wants to listen from its candidate

neighbours as soon as possible. When nodes listen to the pull bit they lower their

beaconing interval.

Routing loops are a concern in tree bases protocols. It can cause multiple packet replicas

in the network which may flow up the tree. These duplicate packets can quickly multiply

with each hop. Some mechanisms used to avoid or rectify routing loops are:

1. Every control packet contains the gradient value of the transmitting node. If the

gradient value is significantly lower than its own then it senses an inconsistency in the

network and tries to resolve it. It broadcasts a beacon frame. The node listening to

the beacon may adjust its ETX and gradient accordingly to fix the loop.

2. If ETX are higher than a particular constant, node just ignores them. This is a brutal

way of managing loops but it works very well.
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Next we shall see how datagrams generated at nodes are routed to the base station. If

a node has multiple possible neighbours it selects the neighbour with the least ETX as its

next hop parent. Routing and forwarding engine takes care of forwarding data packets to

the next hop.

The routing engine has the following tasks:

1. To pick a time to transmit packets to next hop.

2. Retransmit packets to next hop when needed(No ACK situations).

3. If there are routing inconsistencies, initiate a fix.

4. Manage the transmit cache for local and forwarded packets.

5. Manage the receive cache and avoid duplicate packets.

The forwarding engine maintains a busy state when it is transmitting packets. When

a transmission process is complete it looks in to the transmit cache for pending packets.

In the process of transmitting a packet if it does not receive an ACK it follows a rigorous

retransmission policy by trying to re-transmit up to 32 times before giving up and marking

the packet as dropped. The size of the transmit and receive cache play a crucial role in

determining the efficiency of a network.

Duplicate packets can be received at a node when the parent sends an ACK to the sender

but the sender misses the ACK. Protocols implementing rigorous retransmission schemes pose

more danger of duplication. When ACK is lost the sender re transmits the packet and the

receiver has a duplicate packet to deal with. Packet duplication can be dangerous as it can

aggregate over the network. On every hop the number of duplicated packets are multiplied

by a factor of 2(approx.). So one duplicate packet multiplies to 2, then 4 and then 8 and 16

on subsequent hops.

To deal with this problem a cache of datagram signatures(Originating address, Seq No) is

maintained. Whenever a node receives a new datagram it compares with all the signatures in

the cache and drops the packet if it detects a duplicate. But sometimes, when routing loops

are formed, duplicate suppression becomes a difficult task. In a loop originating address will
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be consistent but seq. no will be incremental, exactly like in normal situation. To deal with

this data frames can have a Time Has Lived(THL) field. It is incremented by 1 on each hop.

When a node receives a datagram it adds it to the receive cache. But before adding to

the receive cache it checks weather the received packet is a unique packet or a duplicate.

Duplicate packets are identified by comparing the packet instance, which can consist of the

origin, seqno, collectid and THL of the received packet with all the packets in the receive

cache. If duplicate packets are received they are not added to the cache and are dropped. This

helps prevent duplicate packets from flooding the network and congesting it unnecessarily.

Similarly a transmission cache is used to store data to be transmitted. Transmissions

are randomized to avoid collision. As only one packet is transmitted at a given instance,

there can be more than one outstanding packets in the tx-cache. The size of the tx-cache

is critical for maintaining high reliability. When a new datagram is generated by a node or

when a node receives a datagram from its child to be forwarded, it checks for duplicates and

puts it into the transmit cache. When the transmit timer overflows it picks up the top the

cache and transmits it to its parent.

Nodes may have physical memory limitations. Choosing the cache sizes are a trade-off

between available memory and reliability of the network.

2.2 Structureless Protocols

Relatively less work has been done for structureless protocols. Ideas based on random

walk are seen as a viable method for designing such protocols. Structureless protocols reduce

the overheads for maintaining tress. Such protocols are helpful in mobile scenarios where

maintaining links are difficult. When nodes are mobile, even at small speeds, path failure

and inconsistency in networks are expected to be significant.

Flooding and Gossiping[9] based protocols can be used for data accumulation. In gos-

siping based protocols nodes may forward data packets with certain probability. This helps

in reducing the message overhead.
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2.2.1 Flooding and Gossiping

Flooding data using structure free approach from all nodes to every other node has a

messaging cost of O(N2). For calculating average consensus multiple rounds of local gossip

can be used by a node to calculate the average of its neighbours. This can be repeated till

convergence.

A diffusion like approach can be used as a variant for flooding and gossip. In this case

the initiating node broadcasts a group of registers one for each of its neighbours. When a

node gets a register it adds its own data if it has not been added. It then rebroadcasts the

register if it knows about any new nodes. It continues till all nodes have copies of all the

registers. Message size here is O(N) and hence messaging cost is Ω(N2). This technique

assumes that node ids are known beforehand.

Flooding and Gossiping are not very efficient for aggregation related work. Recently, work

has been done in WVU’s wireless networks lab on push-pull based random walk protocols,

with mobile networks as a motivation. We have used this protocol as a benchmark for

evaluating against structured tree based protocols. Details about this protocol is discussed

in chapter 4.
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Chapter 3

Structured Protocol Design

In this chapter we discuss about the tree based protocol that we developed in WVUs’s

wireless networking lab. The protocol was developed for one-shot data aggregation. When

the base station needs data, it initiates a flood. The nodes in the network use the flood

to arrange themselves into a tree. The nodes transmit their data once they have a parent.

Some features of the protocol are:

1. Gradient-less ETX. Child’s ETX is 10 more than parent’s ETX. Gradients do not

exist.

2. ACK Packets. Packet level ACK for acknowledging datagram reception.

3. Tx-spread. Transmission spread for collision avoidance and latency control.

4. No-Tree maintenance. This protocol does not rigorously maintain trees. It uses

periodic refreshing.

5. Local Aggregation of data at nodes. If multiple data packets are available in the

tx-queue, the node aggregates all the packets into one and transmits them.

6. Virtual Synchronization. Virtually synchronize the entire network using the flood-

ID. This is different from clock synchronization.

7. Tx-Buffer and Rx-Buffer. A transmission buffer which can handle larger number

of packets and a receive buffer to check for duplicates.
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8. No Trickle Beaconing. Beaconing is done at a constant rate. No trickle timers are

involved.

Some aspects of the protocol which need more explanation are discussed in the following

section.

3.1 Design Aspects

3.1.1 Beaconing

Creation of a tree is always initiated by one of the base stations. When the nodes boot

up, all the nodes set their ETX and parent values to infinite. Only the base station sets

its ETX to zero. The base station announces its ETX periodically to notify its one hop

neighbours that it is a base station. Let us call this the control beacon. The beacon contains

the node’s ETX, nodeID and a beacon sequence number. The base station stops beaconing

when it has at least one data packet from all the nodes in the network.

3.1.2 ETX and Parent Update

Nodes hearing the control beacon can update its ETX and parent if needed. They

maintain a lastHeardBeaconId, which stores the beaconID of the last beacon the node heard.

When it hears a beacon with an incoming beaconID > lastHeardBeaconId, it reacts to the

control beacons the the following way:

• It updates its ETX if the beacon ETX is smaller than its own ETX by atleast 10.

• It also updates its parent and ETX if the incoming beaconID is greater than lastHeard-

BeaconId.

• Updates its lastHeardBeaconId.

• Forwards the beacon ,i.e. it announces a control packet with its own ETX and last-

HeardBeaconId.

• May schedule a data transfer with respect to the beacon-id.



Priyashraba Misra Chapter 3.Structured Protocol Design 15

3.1.3 Pushing Datagrams

Datagram originating from the node are pushed into transmitting buffer, called the tx-

queue. The pushData thread keeps checking the queue for data to be transmitted. If a

single packet is available in the queue, it simply transmits the packet. If multiple packets are

available the nodes perform local aggregation. The aggreagation process is described later

in this chapter.

The data packets are unicasts and are directed to the parent node. After transmitting

data packets the node waits for the ACKCheckTimer to overflow. On overflow it checks if

an ACK for the previous packet was received. In case an ACK was not received, the node

retires up to 32 times before giving up and marking the packet as dropped.

It is important to notice that a dropped packet is not completely forgotten. The data

packet is pushed back into the tx-queue. The node also sets its ETX to infinite and forgets

its current parent. When the node hears a new control beacon, it updates its ETX and

parent and tries to send the packet again. Dropped packets do not have any priority in the

queue. When they are pushed back in the queue again, they will be processed on a FIFO

basis. This process of pushing dropped data packets back to the queue continues till the

packet is successfully delivered to the parent node.

Transmission Spread

This is a small randomness introduced while transmitting a datagram. A tx-spread(δt)

of 3 seconds was selected for the protocol. The nodes select a random number in the range

[0, δt] and adds it to the scheduled transmission time t. The data packets are transmitted at

t+ δt time. This helps in avoiding collisions, hence reducing number of retransmissions.

3.1.4 Local Aggregation

When nodes have multiple outstanding packets in the transmission queue, instead of

transmitting them one after another, the nodes aggregate them in to a single datagram.

Let us consider n outstanding packets in the tx-queue, size of data packets as Sd bytes

and size of data headers as Sh. If data packets were transmitted sequentially the total
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amount of data transmitted would be n ∗ (Sd + Sh) bytes. Where as if we aggregate the

data packets the amount of data transmitted would be (n ∗ Sd) + Sh bytes. The amount of

bandwidth saved was (n− 1)∗Sh bytes. Considering that headers contain significantly large

amount of information, like originating address, parent’s id, packet type etc, we save a lot

of bandwidth.

Aggregation has its own trade-offs. The positives about aggregation being:

1. It reduces the number of data packet transmitted over the entire network.

2. Less bandwidth is used for routing similar amount of information at the base station.

Most of the bandwidth is saved because of eliminated headers.

Some possible disadvantages of aggregation and how they can be handled are:

1. It may be difficult to trace the origin of the packet. This can be avoided by adding the

origin field to the data packet.

2. Adding additional field to the data packet, increases the size of the datagram. But the

entire bandwidth consumed is still less as the number of headers decrease significantly.

3. The biggest drawback is, when a datagram is lost, we lose data from multiple nodes.

3.1.5 Duplicate Packets

Data aggregation in a network, gives us an overall idea of the current state of the system.

While performing mathematical operations like summation, average, count, etc it is essential

to make sure that packets are not duplicated. In this protocol duplicate datagrams may be

generated because of the following reasons

• Nodes retransmitting datagram due to lost ACK packets.

• Although nodes maintain a fixed size rx-buffer to check for duplicates with recently

received packets, if duplicated packets are received at large time intervals the buffer

may have been over written.



Priyashraba Misra Chapter 3.Structured Protocol Design 17

• The ETX or parent of a node or its parent has changed before the ACKCheck timer

overflows.

If duplicate packets are not detected by intermediate nodes in the network, the base

station processes all the incoming data and makes sure that it has only one copy form all

the nodes. The base station needs data about the origin of the data packets to successfully

eliminate duplicate packets.

3.2 Differences with CTP

The collection tree protocol can also be used for data aggregation. But it is not optimized

for one shot aggregation. Some differences in the design of my protocol when compared to

CTP are:

1. It uses periodic beaconing instead of Trickle.

2. Unlike CTP it does not use ETX gradients.

3. ACKs are packet level, whereas CTP uses link level ACKs.

4. Performs data aggregation at nodes, which CTP does not.

5. Nodes can by virtually synchronized up to a certain extend by using beacon-IDs.

3.3 Smart Refractory System

In this section we discuss about an application where the structured network protocol was

implemented in real time. West Virginia University(WVU) in collaboration with Harbison

Walker International Technology Center(HWI), is working on demonstrating the use high

temperature sensor concepts for monitoring the health degradation of slagging gasifiers.

The results of the research will help in development of smart refractories with features like

embedded temperature and stress/strain sensors.

The refractory walls are made of high-chromia bricks. Current technology used thermo-

couples for measuring temperatures inside furnaces. Due to high temperatures of upto 1400
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Celsius and corrosion limitations of sensors materials , the sensors degrade in a short time.

Moreover these sensors are put into the furnace through access ports, which are prone to

slag penetrations, hence affecting the performance of the sensors.

The idea of using smart brick with embedded sensors is being tested as a part of the

research. Embedding the sensor into a brick will ensure maintaining the integrity of the

sensor for a longer time under harsh operating conditions.

Interconnecting the sensors in the smart bricks to an external system, where the sensor

signal will be processed by low power electronics and transmitted wirelessly to a centralized

data processing center, can help in monitoring the health of the furnace. The data collected

over the wireless network can be used for model based prediction of refractory health. An

overview of such a system is shown in figure 3.1

Figure 3.1: Wireless Network overview for data collection form smart bricks.

A tree-based protocol was used to collect data from the smart bricks. The performance

and analysis of the implementation is discussed in chapter 5.
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Chapter 4

Structureless Protocol Design

In this chapter, we discuss the design of data aggregation protocol that does not create or

maintain a tree structure in the network. The protocol is based on biased random walks[4].

In this thesis, we have used this protocol as an example of unstructured protocol and used

it for comparing against the tree based protocol described in Chapter 3. In this Chapter, we

discuss the design and key ideas behind this protocol.

4.1 Self-repelling random walks

As described before, in static networks with stable links, data aggregation can be realized

by traversing fixed routing structures such as trees or network backbones. However, in mobile

networks and networks with frequent link changes, topology driven structures are likely to

be unstable and to incur a high communication overhead for maintenance. Random walks

are attractive alternative for MANETs because they are inherently stable in the presence

of network dynamics, have no critical points of failure, avoid structure maintenance, and

have very little state overhead. The resulting protocol is also quite simple. One or more

tokens can be initiated in the network. A node that holds a token picks a random node in

its neighborhood and transfers the token to that node. The first time that any token visits

a node, it can be used by the node to add its state into the token for the aggregate being

computed. This process is repeated until all nodes have been visited.

Unfortunately, the cover time for random walks (time to visit all nodes) is typically high
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because of wasted exploration when a token repeatedly encounters already visited nodes.

In order to expedite the cover time, an idea that we have previously explored is that of

partially guiding random walks towards unvisited nodes [4] using a self-repelling strategy.

In such a biased random walk, if there are one or more unvisited nodes in the direct one-

hop neighborhood (i.e., within the communication range) of a token, the token is passed

to one of the unvisited nodes chosen at random. If all the nodes are visited, the token is

passed to a node that is visited least often (with ties broken randomly). It has been shown

analytically that such a local bias self-repelling strategy, by itself, achieves significant speed

up and a cover time of O(N.log(N)). It has also been shown that by just using local bias,

a significant portion of the network can be covered without much wasted exploration at

already visited nodes. However, when the fraction of already visited nodes in the network

rises beyond a certain threshold, self-repelling random walks exhibit a slowdown. This is

because when all the nodes within the communication range of a token holder are already

visited, the scheme reduces to a canonical random walk until an unvisited node becomes a

neighbor. While the order of convergence in relation to N remains O(Nlog(N)), the slowdown

creates a long tail in the convergence and significantly increases cover time. To redress this

shortcoming, a push-phase can be prepended before the random walk. We describe this in

the next subsection.

4.2 Push-pull biased random walks

The key idea here is that each node advertises its own data to all its neighbors. This

incurs an O(N) complexity. However, the push phase ensures that each node now carries

information about all its one-hop neighbors. As a result, the random walk (pull phase)

now does not have to traverse each node to complete data aggregation. By doing so, the

expectation is that data aggregation using the random walk can finish before the slowdown

starts (due to all neighbors already being visited). Thus even the pull phase can finish within

O(N) time.
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4.3 Protocol design

Each node fist advertises its data to its neighbors using a single hop broadcast. The pull

phase (self-repelling random walk) then begins. For self-repelling random walks, a token

holder announces that it has a token. Nodes that hear this message and have not been

visited, start a timer to send a request at a random slot within a chosen interval [0, ..,Tr].

A timer Tr is started at the token holder to accept requests for the token. The token holder

picks a random unvisited node if at least one unvisited node sends a request. Otherwise, the

token holder picks the node that has been least visited. The token is transferred to the chosen

node. The node that receives the token marks itself as visited if it was unvisited so far. If

the token is used for data aggregation, an already visited node may not add its information

again to a token. This concludes the procedure for token passing using self-repelling random

walks. The token is continued to pass iteratively using this procedure. Once the token fails

to visit new nodes for a threshold amount of time, the data aggregation is assumed to have

terminated. The result is then flooded to all nodes which again incurs only O(N) message

complexity. We have evaluated the above protocol in ns-3 and used it to compare against

the tree based protocol.
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Chapter 5

Results: Comparison of Structured

and Unstructured Protocols

The discussions in this chapters are divided in to two parts. The first part focuses on the

performance analysis and comparison of structured and unstructured protocols on networks

with varying degrees of mobility. The second part shows the results of the implementation

of static protocols for data collection in smart refractory environment.

5.1 Structured Versus Unstructured Protocol

Network Simulator 3(ns-3) was used to simulate the protocols. Ns-3 is a discrete event

simulator. It is widely used by researchers working in wireless communication. It allows users

to define network topology, use its in-build models(UDP, IPv4, point to point, etc.), define

node and link configurations, execute discrete evens, log data and also supports graphical

visualization.

Static Sensor Network Model

For the static sensor network, nodes were laid out in a rectangular grid at uniform

distances. We considered two different network densities, i.e. number of nodes per given

area. In the first one, the radio range was adjusted such that each node has exactly 4

neighbors on the grid. In the other, the radio range was adjusted such that each node has 8
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neighbors on the grid. The network sizes used were 100,200,300,400,500,750 and 1000.

Mobility sensor network model

For the mobile network, the nodes are deployed uniformly over a square area. It has been

shown that a node degree proportional to log(N) is critical to ensure with high probability

that the network remains connected. Hence, the radio range is adjusted such that in every

unit communication range area (i.e. πR2 where R is the communication range), the average

number of nodes is 4log(N). A random walk mobility model is used. In this mobility model,

at each interval a node picks a random direction uniformly in the range [0, 2π] and moves

with a constant speed that is randomly chosen in the range [vl, vh]. At the end of each

interval, a new direction and speed are calculated. If the node hits a boundary, the direction

is reversed. Motion of the nodes is independent of each other. An important characteristic

of this mobility model is that it preserves the uniformity of node distribution: given that at

time t = 0 the position and orientation of users are independent and uniform, they remain

uniformly distributed for all times t > 0 provided the users move independently of each

other. Average node speeds that were considered are from 3 m/s to 21 m/s in steps of 6. A

speed of 3 m/s would mean that all nodes in the network have an average speed of 3 but

the individual speeds of all the nodes are uniformly distributed between 2 m/s and 4 m/s.

Both the protocols were run under static and mobility models at least 5 times with different

random seeds. The average of the five runs was used as final data for analysis.

Nodes in both the models are simulated to have a link failure rate to 2% every 30 Seconds.

Failing nodes recover within the next 5 seconds with a 95% chance. The exact recovery time

is uniformly distributed over the 5 seconds.

Metrics

The following metrics were chosen to evaluate the two protocols.

• Aggregation time: In the case of the tree based protocol, this measures the time

between the issuing of the aggregation request from the base station to the receipt

of the data from the last node in the network. For the self-repelling random walk,
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this is the time between the start of the push-phase and the time when the token has

aggregated all the information.

• Messages: For the tree-based protocol, this is the sum of the flood packets and the data

packets that are generated. Re-transmissions (when acks are not received)is included

in this metric . Also, when packets are opportunistically aggregated at intermediate

nodes, we count the individual node records that are transmitted. This is because,

even though the messages are aggregated into one packet, the size of the message is

proportional to the amount of data that is aggregated.

5.1.1 Results for Static Network

Total Packets Transmitted

For the structured tree, the number of packets is the sum of control packets and data

packets. For the random walk total packets is the sum of token transfers and token requests.

As the size of the network increases we expect the total number of packets to increase. Figure

5.1 shows the number of packets transmitted over the entire network. We see that the number

of packets in a degree 8 network is less than the number of packets in a degree 4 network.

That is because a node has more neighbours and lesser hops to the base station. The total

packets transferred irrespective of the the degree is more for random walk as compared to

the static tree.

Packets Per Node

Total packets in the network do not explain if the number of packets linearly increases

with increasing number of nodes. To analyse this we consider the packets per node. Figure

5.2, shows the packets transmitted per node. A plot parallel to X axis would signify a linear

increase in the number of packets. But we see that the trend is rather super linear. It can

also be seen that for random walk load per node is O(nlog(n). For the structured tree we

expect the order be to O(np), where1 < p < 1.5.
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Figure 5.1: Total packets transmitted in a static network.

Figure 5.2: Packets per node in a static network.
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Coverage Time

Coverage time for an aggregating network can be defined as the time taken to aggregate a

single aggregation request from all the nodes. Figure 5.3 shows the coverage time for random

walk is much higher as compared to tree based protocols. For 1000 nodes random walk takes

more than twice the time.

Figure 5.3: Coverage time for static network.

5.1.2 Results for Mobile Network

We discussed earlier that in mobile networks it becomes difficult to maintain tree like

structures. This is due to moving nodes and radios which results in frequent node changes.

The table below shows the link change rate per node per second in a network of density

4ln(n).
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3 m/s 9m/s 15 m/s 21 m/s

100 1 5 7 9

200 2 6 9 12

300 2 7 10 14

400 2 8 12 16

500 3 8 12 16

750 3 9 13 17

1000 3 9 14 18

Table 5.1: Link changes per node per second

Total Packets Transferred

We saw in static networks that total packets over the network was less for tree based

protocol. But in a mobile network random walk performs very well. Although, for very small

network sizes of less than 100 nodes structured protocol performs marginally better for all

speeds but for higher network sizes random walk is a distant winner. Figure 5.4 shows the

total packets transferred over the network.

Packets Per Node

We see in Figure 5.5 that the total packets transferred per node is almost linear for

random walk, i.e. order is O(n). This means even thought the network size and speed

increases it has little impact on the load on each node. Structured protocol on the other

hand has a slight advantage for very slow speeds and low density, but for the most part does

not do really well. The increase of load per node is super-linear with increasing number of

nodes. With increasing speed the packets per node also increases. We expect the order of

packets per node to be O(nlog(n)).

Coverage Time

Figure 5.6 shows the coverage time for the network at different speeds and network size.

With increase in speed it shows a very interesting trend. For a given network size with

increasing speed the coverage time decreases significantly. This behaviour can be related to
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Figure 5.4: Total packets in mobile network.

Figure 5.5: Packets per node in mobile network.
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the fact that at higher speeds, randomness of more. Hence more nodes may come in to the

one hop range of a given node. Figure 5.7 shows the coverage time for 750 nodes at various

speeds. Structured protocol’s coverage time is not very encouraging. With increase in speed

its efficiency reduces drastically.

Figure 5.6: Coverage time in mobile netowrks.
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Figure 5.7: Coverage time for 750 nodes at different speeds.

5.2 Performance of Tree Based Protocol on Real Motes

The smart refractory system was used for performance evaluation on real motes. A team

from WVU’s Department of Mechanical and Aerospace Engineering has designed bricks with

embedded thermistor based temperature sensors for use in refractory walls. Each brick has

one sensor in it. It is connected to the ADC of a TelosB mote. An analog amplifier is used

to amplify the output of the sensor to match the working range of the ADC. The motes were

programmed using TinyOS.

A graphical user interface(GUI), developed in Python was used for easy visualization.

It Plots the sensor data in real time and acts as a control unit at the base station. All the

incoming data is logged into text files. Figure 5.8 shows how the GUI is organized.

The main challenge was to make sure that proper data was being transmitted over wire-

less. To verify this a self evaluation test was done. Instead of using the smart bricks, a

dummy signal was generated. The signal was recorded both on LabView R© and over the

wireless network. The results of the self test can be seen in Figure 5.9. We see that the
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Figure 5.8: GUI for visualizing data and managing motes.

Wireless data is consistent with the LabView R© data.

Figure 5.9: Self Test Results for WSN

Once the self test proved the reliability of wireless data collection, the nodes were con-

nected to actual smart bricks to read sensor data. Figure 5.10 shows how the analog amplifier
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Figure 5.10: Wireless Mote and amplifier setup for data collection

and motes were connected in real-time.

Figure 5.11(a) shows the setup for high temperature furnace. The setup for the smart

brick inside the furnace is shown in Figure 5.11(b).

(a) High temperature furncace

(b) Smart brick setup in furnace

Figure 5.11: Furnace and smart brick setup

The data was collected from the smart bricks. Again, to validate the data collected
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Figure 5.12: Comparison of smart brick data on wireless and Labview

over wireless, it was compared with the LabView R© data. Figure 5.12 shows that data was

accurately collected on wireless.
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Chapter 6

Conclusion and Future Work

6.1 Summary

By comparing and analyzing the results we conclude that, in a static network, struc-

tured protocols perform better than random walks. They have lower number of packets

transmitted, lower packets per node ratio and faster coverage time for bigger network size.

In mobile network, at very low speed and network size structured protocol performs

reasonably well. With increasing speed and size its performance degrades rapidly. Scalability

of structured protocols in mobile networks did now show encouraging results. Packets per

nodes show a super linear trend with increasing network size and mobility. The coverage

time also increases. Random Walk in mobile networks, maintained an almost linear packets

per node ratio even with increasing mobility and size. Decreasing coverage time of random

walk with increasing speed of the nodes reinstates its performance capabilities in mobile

networks.

6.2 Future Work

We would like to evaluate performance of both the protocols at even higher scales of up

to 5000 nodes and at higher speeds. This would help us understand the possibility of such

protocols being used in real-time scenarios.

For the Smart Refractory System, we intend to test the system in a industrial refractory.
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