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ABSTRACT 
 

Seasonal Plasticity of A15 Dopaminergic Neurons in the Ewe 
 

Van L. Adams 
 
 

In the ewe, anestrus is caused by increased sensitivity to E2 negative feedback that 
is mediated by A15 dopaminergic neurons that are only responsive to E2 in anestrus.  
Experiment 1, tested the hypothesis that synaptic input on A15 neurons varies with 
season by examining synapsin-positive close contacts on A15 cells using 
immunofluorescence and confocal microscopy. The number of contacts on dendrites, but 
not somata, increased during anestrus.  There were also corresponding changes in 
dendritic morphology including an increase in dendritic length, surface area, and number 
of bifurcations.  Because thyroid hormones are necessary for the transition to anestrus, 
we next examined the role of T4 in these changes. An increase in dendrite mean length 
was found in thyroid-intact and T4-treated thyroidectomized ewes compared to 
thyroidectomized animals. Thus, seasonal changes in input to and, dendritic morphology 
of, A15 neurons may play a role in seasonal breeding, with the latter dependent on T4. 
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CHAPTER ONE: INTRODUCTION 
 
 The female reproductive axis consists of many organs and hormones.  The steroid 

hormones, estrogens, androgens, and progesterone, are synthesized in the gonads and 

adrenal cortex from cholesterol.  The estrogens (estradiol-17β being the most potent 

estrogen) are produced from androgen precursors, which were converted from 

progesterone, and progesterone is converted from cholesterol.  Gonadotropin-releasing 

hormone (GnRH) is released from neurons in the hypothalamus.  GnRH acts on the 

anterior pituitary gland to regulate release of two other hormones, follicle-stimulating 

hormone (FSH) and luteinizing hormone (LH).  FSH stimulates the development of 

ovarian follicles, and LH induces ovulation of the ovum along with inducing formation of 

the corpus luteum.  FSH and LH are synthesized and released from the anterior pituitary 

in response to GnRH, and both of these hormones act in the production and secretion of 

the steroid hormones.  The steroid hormones in turn exert negative feedback on the 

GnRH-secreting neurons of the hypothalamus and on the anterior pituitary endocrine 

cells that produce FSH and LH.  These negative feedback loops are an important part of 

the reproductive axis and are essential to female reproduction. 

 GnRH is released into hypothalamic-hypophyseal portal vessels from nerve 

terminals in the hypothalamus in bursts or pulses (Levine et al. 1982 and Clarke and 

Cummins 1982).  The mechanism producing the pulsing pattern of release of GnRH is 

unclear at this time.  There is some evidence that it may be an intrinsic property of GnRH 

neurons (Kokoris et al.  1988; Krsmanovic et al.  1992; Terasawa et al. 1999), or there 

may be a more complex interaction between many neurons.  The pulses of GnRH are 

stimulate the pulses of LH secretion from the anterior pituitary (Manter et al. 1991).  
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Changes in GnRH and LH pattern occur through the year determining the time of 

ovulation.   

 The steroid hormones from the ovaries modulate the output of GnRH and LH, and 

thus control the timing of the estrous cycle.  Ewes ovariectomized during the luteal phase 

show an increase in frequency and amplitude of LH pulses (Goodman and Karsch 1980).  

Replacement of progesterone causes a decreased frequency but does not decrease 

amplitude.  Conversely, replacement with estradiol causes a reduction in amplitude but 

no decrease in frequency.  Therefore, the frequency of LH during the estrous cycle is 

modulated through progesterone while the amplitude is modulated through estradiol.  

However, during the follicular phase of the estrous cycle there is an increase in frequency 

of LH pulses, and this increase in LH pulses is not caused solely by the removal of 

progesterone.  It was found that estradiol causes a further increase in LH frequency after 

the removal of progesterone (Karsch et al. 1983).   

 This all leads to a hypothesis of the way in which the feedback effects of the 

steroid hormones work to modulate the pulses of LH during the estrous cycle (Karsch et 

al 1984).  During the luteal phase of the cycle, elevated progesterone reduces the 

frequency of the release of GnRH, and of LH pulses, while the elevated level of estradiol 

keeps the amplitude of the LH pulses down (Karsch et al. 1984).  This serves to prevent 

ovulation by keeping the level of LH below that needed to support follicular maturation 

and cause the preovulatory estradiol rise.  During the follicular phase of the estrous cycle, 

progesterone is withdrawn and the LH pulses are allowed to increase in frequency (this is 

further increased by the actions of estradiol).  However, estradiol continues to keep the 

amplitude of the LH pulses low (Karsch et al. 1984).  Serum LH concentration now rises 
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because of the sustained increase in LH pulse frequency.  The rise in LH causes follicular 

maturation and a preovulatory increase in estradiol, which induces the LH surge leading 

to ovulation (Karsch et al. 1984). 

 The negative feedback effect of steroid hormones is also observed during the 

anestrous season.  During anestrus, estradiol acts to suppress LH pulse frequency, unlike 

in the breeding season when estradiol only suppressed LH pulse amplitude.  During the 

spring and summer, when estradiol is given to ovariectomized ewes, the level of LH in 

the serum is undetectable (Legan and Karsch 1979).  This demonstrates a marked 

increase in sensitivity of the estrogen negative feedback mechanism during the anestrus 

season.  This increased sensitivity decreases the GnRH and LH release and prevents the 

rise in LH pulse frequency required for the preovulatory estradiol rise and thus inhibits 

ovulation.    
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CHAPTER TWO: REVIEW OF LITERATURE 

General Overview of Seasonality in the Ewe 

 Many mammals have evolved seasonal breeding in order to maintain the survival 

of the species.  Because factors such as weather and food availability are important to 

determining the survival of the young it is important that they are born at a time of the 

year when these factors benefit them (Lincoln and Short 1980).  These are called ultimate 

factors and are the selective forces used by natural selection to develop the seasonal 

pattern of reproduction (Bronson 1989; Goodman 1999).     The offspring should be born, 

for example, when there is good weather and plentiful food, such as, the spring or 

summer.  Seasonal conditions are also important to ensure that the mother is able to 

maintain an energy reserve in order to feed and care for the young (Goodman 1999).   

 The timing of the birth season is not normally determined by ultimate factors but 

by what are called proximal factors.  The breeding season must also be timed correctly, 

since after conception there is a fixed gestation period (Lincoln and Short 1980).  For this 

reason the animal relies on proximal cues in determining the breeding season.  These 

proximal cues predict the time of year, and are most often environmental attributes, such 

as, photoperiod and nutrition, but they can be other signals, such as, hormonal and 

chemosensory cues (Lincoln and Short 1980; Bronson 1989; Goodman 1999).   

 The breeding season of the sheep is typical of many species.  They breed during 

the fall and winter months and go into a period of anestrus during the spring and summer 

months.  This is known as being a short day breeder, while species, such as, ferrets, voles, 

and horses are known as long day breeders because they breed during the long days of 

summer (Bittman, Karsch, and Hopkins 1983).    
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Photoperiod and Melatonin 

 The major proximal cue driving the seasonal change in breeding of the sheep is 

photoperiod (Goodman 1999).  Since length of day during a particular season is relatively 

constant from year to year, the duration of light can be a good indicator of the season.   

The photoperiodic signal controls the secretion of an important hormone, 

melatonin made in the pineal gland.  Anatomically, the pineal is indirectly linked to the 

retina. Light-dark signals are transmitted, via a series of neural pathways that include the 

suprachiasmatic nuclei and superior cervical ganglia, to the pineal (Karsch et al. 1984; 

Malpaux et al. 1996 ).  At the pineal those signals are transduced to the hormonal signal, 

melatonin.  Melatonin is only secreted in the dark so that changes in duration of 

melatonin secretion provide information about day length. 

Melatonin has been shown to be the hormone used by the animal to respond to 

day length.  In pinealectomized sheep, prior to the infusion of melatonin there is no 

reproductive response to photoperiod, and after systemic administration of melatonin, the 

reproductive response to photoperiod is restored.  This demonstrates that sheep use 

melatonin as the photoperiodic signal to drive reproduction, and that melatonin probably 

works from the pineal through the vasculature (Bittman, Dempsey, and Karsch 1983).  

There is also good evidence for melatonin, released from the pineal, controlling changes 

in estradiol inhibition of LH (Bittman, Karsch, and Hopkins 1983).  Exactly how 

melatonin mediates the effects of photoperiod on reproductive state is an important issue, 

and, through several studies, the complexity of this issue has been realized.   

   In an early study, melatonin was infused into sheep for a fixed duration to 

mimic the duration of melatonin naturally secreted by the pineal during the long-days.  
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These infusions were given either at night or in the middle of the day.  The reproductive 

responses to the infusions were the same; it was therefore hypothesized that duration is 

important and not the phase or time when melatonin is secreted (Wayne, Malpaux, and 

Karsch 1988).  However, it was also demonstrated that the response to duration was 

dependent on the previous melatonin pattern (Robinson and Karsch, 1987).  It is therefore 

possible to get an opposite response from the same duration of melatonin.  It was then 

hypothesized that photoperiodic information is conveyed through changes in nocturnal 

melatonin patterns (Wayne, Malpaux, and Karsch 1988).   

It has been demonstrated in the ewe that the pineal is an important regulator of 

seasonal changes.  It is not, however, essential for the transition from the breeding season 

to anestrus.  Instead the pineal is mainly involved in synchronizing the ovarian cycles; 

when the pineal is removed the animal still demonstrates changes in breeding condition 

but these are out of synchrony with other pinealectomized animals and with the season 

(Bittman et al., 1983).  A great deal of evidence has accumulated demonstrating that there 

is an endogenous reproductive rhythm, and that melatonin acts to regulate this rhythm.  

One of the most convincing of these studies was a five-year study (Karsch, Robinson, 

Woodfill, and Brown, 1989) in which ovariectomized ewes given estrogen replacement 

were maintained either outdoors in natural conditions or indoors in a fixed, short 

photoperiod.  Serum concentrations of luteinizing hormone and prolactin (PRL) were 

measured.  The results revealed that ewes maintained outdoors have normal cycles of LH 

and PRL with a period of 365 days, and animals housed indoors had cycles of LH and 

PRL with periods that differed from 365 days.  Also the animals maintained indoors were 

out of synchrony with each other and with animals maintained outdoors (Karsch, 
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Robinson, Woodfill, and Brown, 1989).  This demonstrates clearly there is an 

endogenous rhythm for regulation of reproduction.  In subsequent experiments it was 

demonstrated that melatonin patterns synchronizing the endogenous rhythms are season 

specific  (Wayne, Malpaux, Karsch 1990 and Woodfill, Robinson, Malpaux, Karsch 

1991).  Pinealectomy at different times of the year had different effects on both onset and 

duration of the subsequent breeding season.  At some times of the year, such as the 

summer solstice, pinealectomy had an effect within a short time (one to two months) 

while at other times of the year, such as the autumnal equinox, pinealectomy didn’t 

appear to have an effect until one year later (Wayne, Malpaux, Karsch 1990).  The 

pattern of melatonin administration is also important in determining the specific season.  

For example, patterns of melatonin infused into pinealectomized sheep that mimic the 

pattern of melatonin seen in pineal intact sheep during the spring equinox and the 

summer solstice are the most effective patterns for synchronizing the endogenous 

reproductive rhythm (Woodfill, Wayne, Moenter, and Karsch 1994).  It was thus 

hypothesized that synchronization in the spring and summer prepares the animal to mate 

in the autumn (Woodfill, Wayne, Moenter, and Karsch 1994). 

The site of action of melatonin is open to some controversy.  There are two 

proposed sites of action, one is the pars tuberalis and the second is the medial basal 

hypothalamus.  In an autoradiographic study, melatonin binding sites were found in the 

pars tuberalis portion of the pituitary stalk, but not in the nearby median eminence 

(Reviers, Ravault, Tillet and Pelletier 1989).  There was also an absence of labeling in the 

pineal gland showing that melatonin is probably not working back on the pineal itself.  
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Some low density binding was found in the mediabasal hypothalamus (MBH) using 

specific high-affinity binding of 2-[125I]iodomelatonin (Bittman and Weaver 1990). 

The proximity of the pars tuberalis (PT) to the pituitary and hypothalamus make it 

of particular interest in the role of melatonin.  Several experiments have implicated the 

pars tuberalis in regulation of prolactin, but not LH secretion (Malpaux, Daveau, 

Maurice, Locatelli, Thiery 1994; Malpaux, Skinner, Maurice 1995).  Melatonin implants 

cause a short day effect, and, thus, result in an increase in LH secretion.  Melatonin 

microimplants placed into the pars tuberalis had little effect on the stimulation of LH 

secretion but had significant effect on prolactin release (Malpaux, Skinner, Maurice 

1995).  Conversely, placement of implants in the MBH affected stimulation of LH 

secretion but not prolactin secretion (Malpaux, Skinner, Maurice 1995).  There is still the 

possibility that melatonin has either diffused from the MBH to the PT, in the MBH 

placement experiment, or it has diffused from the PT to the MBH, in the PT placement 

experiment. The limited spread of radiolabeled-melatonin placed into these areas 

provides evidence against this possibility (Lincoln, Maeda 1992; Malpaux et al. 1993; 

Malpaux, Skinner, Maurice 1995).  The mechanism that melatonin uses in the MBH to 

regulate LH secretion is largely unknown; the long delay (40-50 days) between melatonin 

treatment and LH response is indicative of a complex regulation (Malpaux et al. 1996). 

Estradiol Negative Feedback 

 During the anestrous season, the ability of estradiol to suppress GnRH secretion 

increases.  Estradiol plays two roles, one is the positive feedback induction of the LH 

surge during the breeding season and the other is the negative feedback suppression of 

LH pulse frequency in the anestrous season and LH pulse amplitude during the breeding 
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season.  During the breeding season, most suppression of LH is exerted by progesterone 

via endogenous opioid peptides (Ferin, Van Vugt, and Wardlaw 1984; Whisnant, Havern, 

and Goodman 1991).  

 It is well established that during the non-breeding season there is an estradiol 

negative feedback mechanism that decreases LH secretion.  In ovariectomized sheep 

without estradiol replacement, no decrease in LH pulse amplitude is seen (Legan, Karsch, 

and Foster 1977; Karsch, Goodman, and Legan 1980; Goodman and Karsch 1980).  In 

ovariectomized sheep given estradiol replacement, LH pulse frequency is decreased 

during the non-breeding season while the LH pulse amplitude is subdued during the 

breeding season.     

 Where estradiol acts is unclear at this point.  Short-term negative feedback effects 

have been shown to occur in the pituitary, but negative feedback that occurs during the 

anestrous season is thought to occur in the hypothalamus (Legan, Karsch and Foster 

1977; Karsch, Goodman, and Legan 1980; Clarke, 1987).  One explanation for E2 

inhibition of GnRH pulse frequency would be that estradiol acts via another neural 

pathway that then contacts GnRH neurons to inhibit their activity.  This is somewhat 

complicated because GnRH neurons appear to be scattered throughout the forebrain, from 

the olfactory bulb to the posterior hypothalamus (Lehman et al. 1997), raising the 

possibility of regional specificity.  For example, the medial basal hypothalamus has been 

isolated as an important region in GnRH regulation.  Using fos, an immediate early gene 

product, as an indicator of neuronal activity in GnRH neurons, it has been suggested that 

GnRH neurons in the MBH may be involved during pulsatile secretion of LH (Boukhliq, 

Goodman, Berriman, Adrian, and Lehman 1999).  When animals were given an 
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antagonist to endogenous opioid peptides during the luteal phase in order to increase LH 

pulse frequency, fos expression was increased only in GnRH neurons in the MBH.  

Similarly, when LH pulse frequency was induced in estrous ewes by exposure to rams, 

fos expression was again seen only in GnRH neurons in the MBH (Boukhliq, Goodman, 

Berriman, Adrian, and Lehman 1999).  This offers some evidence that GnRH neurons in 

the MBH may be responsible for episodic secretion of LH and, therefore, the system for 

the transition into anestrus may also be in this area.  Since GnRH neurons in this area 

(and other areas) do not contain estrogen receptors this leads to the examination of other 

afferent neural groups as being an important mediator of estradiol negative feedback 

(Herbison, Robinson, and Skinner 1993; Lehman and Karsch 1993).  One neural group 

that has received a lot of attention is the A15 dopaminergic neurons. 

Neural Systems Mediating Change in Response to Estradiol Negative Feedback 

 The decrease in LH pulse frequency that occurs in anestrus via estradiol negative 

feedback occurs through a decrease in GnRH neuron output (Karsch et al. 1984).  This 

suppression of GnRH neural activity occurs through a neural mechanism in the 

hypothalamus (Pau and Jackson 1985).  A treatment with pentobarbital anesthesia can 

inhibit the decrease in LH pulses that occur during anestrus, and this effect is not 

observed during the breeding season (Goodman and Meyer, 1984).  It then can be 

hypothesized that a set of neurons is acting during the non-breeding season that is not 

acting during the breeding season, and mediate the negative feedback effect of estrogen 

during the non-breeding season.   

   It is, thus, important to identify the potential neurotransmitters involved.  In 1985 

Goodman and Meyer performed an experiment where antagonists to several potential 
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neurotransmitters were administered.  Two of these antagonists were pimozide, a 

dopaminergic antagonist, and phenoxybenzamine, a α-adrenergic antagonist.  It was 

found that both of these increased pulsatile LH secretion during the non-breeding season, 

but neither increased pulsatile LH secretion during the breeding season.  This provided 

evidence for dopaminergic or adrenergic neurons as possible pathways for inhibition of 

GnRH.  Subsequent work provided conflicting data in the adrenergic system (Goodman 

et al. 1995), but consistent support for the DA system (Havern, Whisnant, and Goodman 

1994; Lehman et al. 1996; Goodman et al. 2000). 

 It is then important to identify the area of the hypothalamus where these 

inhibitory neurons may be located.  Frontal deafferentation in the hypothalamus near the 

optic chiasm can eliminate the seasonal effects on the suppression of LH pulses (Pau and 

Jackson 1985), and blocks the regular negative feedback actions of E2 in anestrus 

(Whisnant and Goodman 1994).  The retrochiasmatic area of the hypothalamus then 

becomes the region of main interest.  A study was performed where a neurotoxin was 

injected into the retrochiasmatic area of anestrus ewes (Thiery et al. 1989).  This 

neurotoxin was 6-hydroxydopamine, a neurotoxin against catecholaminergic neurons.  

When the neurotoxin was administered, estradiol did not decrease LH pulses to the level 

that was seen in control animals (Thiery et al. 1989).  This data supports the 

retrochiasmatic area as a site of interest and catecholaminergic neurons as possible 

components in the inhibitory machinery.   

The catecholaminergic group A15 is located in this region of the brain, and these 

A15 neurons contain dopamine-immunoreactive cell bodies (Tillet et al. 1990).  This was 

found by using antibodies against tyrosine hydroxylase, the rate-limiting enzyme in the 
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synthesis of dopamine, and antibodies against aromatic amino acid decarboxylase, and 

antibodies against dopamine.  The A15 neural group of the hypothalamus then becomes 

an obvious potential site of estradiol negative feedback.  The A15 nucleus is a small 

nucleus that lies medial to the optic tracts and is heavily stained with antibodies against 

tyrosine hydroxylase (Tillet and Thibault 1989).  

Havern et al. (1994) tested the role of the A15 and A14 (DA neurons located 

rostral to the A15) in seasonal changes in E2 negative feedback by destroying these cell 

groups with radiofrequency lesions.  After lesioning, the animals were given estradiol 

implants and the effect of a dopamine antagonist was examined.  It was found that 

estradiol inhibition of LH was partially decreased in ewes with lesions in either the A15 

or A14, and when an antagonist was given it did not stimulate LH pulse frequency.  This 

provides evidence specifically for the role of the A15 or the A14 cell dopaminergic 

neural groups.  There was no effect of similar lesions on estrogen negative feedback in 

the breeding season.  Interestingly, it was also found that there are catecholaminergic 

fibers apparently between the A15 and A14 cell groups (Havern, Whisnant, and 

Goodman 1994). 

 Evidence that E2 acts on these dopamine neurons was provided in an experiment 

where tyrosine hydroxylase activity was measured when estradiol was given to ewes 

during long days (Gayrard et al. 1994).  The levels of TH metabolites, produced from the 

activity of TH enzymes, were measured in two specific areas, the lateral retrochiasmatic 

area and the caudate nucleus.  It was found that E2 increased TH activity in the lateral 

retrochiasmatic area, while no effect was seen in the caudate nucleus.  They also 
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confirmed that metabolites from dopamine synthesis come from A15 dopamine neurons 

and not adrenergic afferents onto the dopamine neurons. 

Further evidence for actions of E2 in A15 and A14 groups came from a study 

using the immediate early gene product Fos (as well as Fos-related antigen) as a marker 

of cell activity (Lehman, Durham, Jansen, Adrian, and Goodman 1996).  There were four 

groups of ovariectomized ewes in this study: two in anestrus, one with estradiol implants 

and one without estradiol implants, and two during the breeding season, one with 

estradiol implants and one without estradiol implants.  It was found that the group with 

estradiol implants during anestrous had an increase in Fos and Fos related antigen 

expression in the A15 greater than the other groups lending support for the hypothesis 

that E2 activates the A15 group during the non-breeding season. 

 A different approach to assessing estradiol actions was performed by Beccavin, 

Malpauxs, and Tillet (1998) using the same experimental groups given in the previously 

discussed experiment by Lehman et al done in 1996.  In this experiment the level of TH 

mRNA in neurons from the A15 was measured using a cDNA probe and in situ 

hybridization.  Surprisingly, they found that the levels of TH mRNA increased in the 

breeding season estrogen treated group greater than all the other groups.  This indicates 

that the increase in activity of the enzyme observed previously (Gayrard et al. 1994) is 

probably not caused by an increase in transcription of the gene.  It is then most likely due 

to either an increase in translation or changes in phosphorylation of the enzyme itself. 

More evidence for the role of the A15 neural group was found in a study using 

recordings of multiunit electrical activity (Goodman, Thiery, Delaleu, and Malpaux 

2000).  In this study electrodes were chronically placed unilaterally in the A15 area of the 
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hypothalamus of ovariectomized ewes during the long days of summer.  Monitoring of 

electrical activity began 4 hours before the insertion of a subcutaneous E2 implant, and 

continued for another 24 hours after the start of E2 treatments.  Control ewes received 

blank implants.  The results indicated a gradual 24-hour long increase in electrical 

activity of the A15 in the ewes receiving the E2 implants, while the ewes receiving the 

blank implants showed no increase in electrical activity.  This provides more evidence 

that the neurons in the A15 area of the hypothalamus are stimulated by E2 during the 

anestrous season.  There is, thus, strong support for the hypothesis that the A15 nucleus is 

a key component for the system mediating E2 inhibition of LH during the non-breeding 

season. 

 These A15 neurons probably project to the median eminence (ME) since the 

dopaminergic terminals in the ME are implicated in the melatonin regulation of LH 

(Maplaux et al. 1996).  Short day exposure leads to decrease in TH content in the ME 

indicating a decrease in dopaminergic activity in the ME (Thiery et al. 1995).  Several 

studies link melatonin to this TH activity and subsequently to LH output.  Stimulation of 

LH secretion using melatonin implants (melatonin implants cause a short day effect, and, 

thus, result in an increase in LH secretion) causes a parallel decrease in TH activity, and 

blockade of TH in this area results in an increase in LH (Viguie 1995; Malpaux et al. 

1996).  This modulation of TH by melatonin occurs both in ovariectomized ewes and 

ovariectomized ewes treated with estradiol indicating this is an estrogen independent 

mechanism (Viguie 1995; Malpaux et al. 1996). 

When the antagonists phenyoxybenzamine and pimozide are administered to 

specific areas of the hypothalamus (the preoptic area [POA], retrochiasmatic area [RCh], 



 15 
 
 

and the median eminence [ME]), differences in LH patterns can be seen (Havern, 

Whisnant, and Goodman 1991).  The dopamine antagonist, when placed in either the 

RCh or the ME, increases LH pulse frequency, but the norepinepherine antagonist does 

not have this effect.  However, the norepinepherine antagonist, when placed in the POA, 

does stimulate GnRH pulse frequency (Havern, Whisnant, and Goodman 1991).  This is 

consistent with the hypothesis that dopaminergic neurons in the retrochiasmatic area may 

mediate the effects of estradiol on inhibition of GnRH secretion, and this supports the 

A15 dopaminergic neurons as possible mediators.  

A15 neurons themselves do not have estrogen receptors. Therefore, it becomes 

important to look at the afferent input onto these neurons (Lehman and Karsch 1993).  A 

study by Tillet and Thibault in 1994 examined this issue, primarily looking at adrenergic 

input on the A15.  Using antibodies against tyrosine hydroxylase and dopamine-β-

hydroxylase, an enzyme found in noradrenergic neurons, the relationship between these 

two sets of neurons was examined.  Using light microscopy, noradrenaline fibres were 

found close to the dopaminergic neurons and using electron microscopy both 

catecholaminergic and non-catecholaminergic inputs were found on A15 cells.  Since, 

when using electron microscopy, they only looked at tyrosine hydroxylase they did not 

show whether the inputs directly on A15 neurons were dopaminergic or adrenergic 

specifically. 

Tract tracing studies were done to identify potential afferent innervation of the 

A15, and also to identify potential efferent innervation (Jansen et al. 1997).  A mixture of 

cholera toxin-β subunit and biotinylated dextran amine were injected into anestrous ewes.  

Tract tracing revealed afferent input to the A15 from the following areas: lateral septum, 
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diagonal band, bed nucleus of stria terminalis, medial preoptic area, anterior 

hypothalamic area, suprachiasmatic nucleus, paraventricular nucleus of thalamus and the 

paraventricular, supraoptic, arcuate and dorsomedial hypothalamic nuclei.  Further tract 

tracing studies were done in which ER positive cells were also identified (Jansen et al. 

1999).  Neurons that both project to the A15 and are ER positive neurons were found in 

the medial preoptic area, anterior hypothalamic area, ventromedial hypothalamic nucleus, 

and arcuate nucleus.  These data all lend support to the POA being one area of interest for 

the regulation of the dopaminergic A15 nucleus. 

 The ventromedial preoptic area was also isolated as a potential region for the 

action of estradiol during the non-breeding season (Stefanovic, Adrian, Jansen, Lehman, 

and Goodman 2000).  This experiment also used Fos and Fos- related antigens as 

indicators of neural activity.  Low doses of estradiol were given to ewes to suppress LH, 

and Fos/ERα colocalization was examined through the entire hypothalamus.  It was 

found that when Fos activity increased in the A15 region there was also an increase in 

Fos/ERα colocalization in the ventromedial preoptic area.  Another experiment that 

examined whether seasonality changed this response, confirmed the E2-induced increase 

in Fos/ERα colocalization in anestrus, but there was no increase in 

Fos/ERα colocalization during the breeding season.  These data provide indirect support 

that the medial pre-optic area may contain the neurons that are the link, or part of the 

link, between estradiol and the increased activity of the A15 dopaminergic neurons that 

result in the inhibition of the release of GnRH.  

Further evidence for the role of the vmPOA came from a study in which estradiol 

implants were directly inserted in the ventromedial preoptic area (Anderson et al. 2001).  
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In this study ovariectomized ewes received either empty or estradiol-containing implants 

in the vmPOA or they received subcutaneous estrogen implants.  During anestrus LH 

pulse frequency was suppressed in ewes with either the subcutaneous implant or the 

implant containing estradiol directed at the vmPOA.  Sulpiride, a dopamine receptor 

antagonist, increased LH pulse frequency seen in the group with the estradiol implants 

directed to the vmPOA, but not in ewes with blank implants   During the breeding season 

this suppression of LH was not seen in either the groups with subcutaneous implants or 

the implants directed at the vmPOA.  The conclusion that can be drawn from this is that 

the vmPOA provides either the initial step in estrogen suppression of GnRH in anestrus 

or that it is at least a crucial step. 

In summary, A15 neurons apparently mediate the suppression of GnRH by 

estradiol during the anestrous season, but these neurons do not contain estrogen receptors.  

Neurons in the vmPOA may mediate the interaction of estrogen with the dopaminergic 

neurons of the A15.  The A15 neurons then contact GnRH neurons in the ME where 

GnRH secretion is inhibited.  

 

 

 

 

Thyroid Hormone in Reproduction 

 Thyroid hormones have long been recognized as playing an essential part in 

seasonal reproduction in birds.  It was first discovered that thyroid hormones are 

important in seasonal reproduction in Starlings in the 1940s by Woitkewitsch and this 
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was later expanded on in the 70’s and 80’s by other researchers.  More recently, evidence 

has developed that thyroid hormones are also essential to the sheep in seasonal 

reproduction. 

 Early work was done in ewes to determine the effect of thyroidectomy in 

reproduction (Nichols et al. 1988).  It was found that thyroidectomized ewes continuously 

cycled for very long periods of time or they enter anestrus at varied times.  In a later 

experiment (Follett and Potts 1990), animals were not thyroidectomized but were given 

methylthiouracil, a drug treatment that renders the animals hypothyroid.  In hypothyroid 

animals the duration of the reproductive period is significantly longer than in euthyroid 

animals.   

 Parkinson and Follett (1994) also examined the role of thyroid hormone in 

seasonal reproduction in rams.  In this experiment, rams were thyroidectomized in March 

and were maintained in natural photoperiods with intact rams.  In the thyroidectomized 

rams scrotal circumference increased more rapidly between April and August than in the 

thyroid-intact rams.  In another experiment, rams were thyroidectomized in September 

and maintained with intact rams in either short days or long days.  It was found that 

thyroidectomized rams had plasma FSH concentrations and scrotal circumference values 

similar to those that would be seen during the breeding season through the entire 

experiment, and intact rams had a pattern of FSH secretion typical of normal seasonal 

changes where values reached a nadir in December and January. These experiments gave 

some of the first indications that thyroid hormone might play a key role in seasonal 

reproduction.  It was also observed that, when rams are thyroidectomized, the normal 

suppression of reproduction during the non-breeding season is overcome. 



 19 
 
 

 Further evidence for the role of thyroid hormone was obtained in the ewe.  The 

effect of thyroidectomy on prolactin, melatonin, and LH secretion in OVX+E ewes was 

examined (Dahl et al. 1994).  It was found that thyroidectomy has no effect on prolactin 

or melatonin secretion.  However, when measuring LH it was found that, during the 

transition to long days, thyroidectomized ewes did not have the usual drop in LH seen in 

normal intact ewes.  This proved that thyroid hormone is probably a component involved 

somewhere between the pineal and the GnRH neurosecretory system, and is not involved 

in prolactin secretion indicating that thyroid hormone is not involved in all photoperiodic 

signal processes.   

 It was found that the reason LH is not suppressed during the long days in 

thyroidectomized ewes is not because of increased steroid metabolism, or related to an 

alteration in the secretion of thyrotropin-releasing hormone (Moenter et al. 1991; Dahl et 

al. 1994).  It was also found that thyroid hormone does not effect LH secretion during the 

breeding season (Nicholls et al. 1988).  All of this points to a direct action of thyroid 

hormone on the nervous system.  When T4 is infused directly into the cerebrospinal fluid 

of thyroidectomized ewes, a normal drop in LH is seen during the transition from 

breeding season to non-breeding season (Viguie et al. 1999).  However, when the same 

amount of T4 is given peripherally to thyroidectomized ewes the drop in LH is not seen.  

This provides evidence that T4 most likely acts in the brain to promote the seasonal 

transition of reproductive states. 

 The mechanism of thyroid hormone action in the transition from the breeding 

season to anestrous season is not completely clear at this time.  However, there are two 

important points that should be stressed: 1) thyroid hormone plays a permissive role in 
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seasonal reproduction, and 2) thyroid hormone appears to act in a specific window of 

time (Karsch et al. 1995).  Thyroidectomized ewes appear to maintain a breeding season 

level of LH all year round; the question would be then, is there a specific amount of 

thyroxine that promotes the transition into anestrous.  This question was answered by an 

experiment where the levels of thyroxine were varied in increments to determine if 

animals with low levels of thyroxine would not have a decline in LH during anestrous 

(Dahl et al. 1995).  The results show that LH does decline in winter in all animals 

receiving thyroxine, and animals that are thyroidectmized do not have a decline in LH in 

the winter, demonstrating that thyroid probably does work permissively in allowing the 

breeding season to anestrous transition.   

 The issue of the time when thyroid hormone acts in the seasonal transition was 

addressed in an experiment with thyroidectomized ewes given thyroxine replacement at 

different times in the year (Thrun et al. 1993).  In this experiment ewes were 

thyroidectomized early in the breeding season and given thyroxine either at the time of 

thyroidectomy, one month later, or two months later.  There were, thus, short periods of 

time when no thyroxine was present.  It was found that all experimental groups went into 

anestrous at the same time regardless of when the thyroxine treatment was given 

demonstrating that it is important for thyroxine to be present only at the end of the 

breeding season.  In other experiments it was found that thyroid hormone is required 

sometime in the last 3-4 months of the breeding season (Wayne et al. 1990, and Thrun et 

al.  1993).  This all leads to the conclusion that there must be a specific window of time 

when thyroid hormone is necessary for the transition from breeding season to non-
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breeding season, and that window is probably during the last 3-4 months of the breeding 

season. 

 Thyroid hormone exhibits an annual cycle of serum T4 concentration.  Circulating 

T4 was measured in thyroid-intact ewes over a 2-year period of time (Webster et al. 

1991).  The results indicate an increase in serum T4 concentration late in the breeding 

season (a peak value in the winter), and a decrease in late anestrus (a nadir in summer).  

However, this change has no apparent importance because low amounts of T4 are 

sufficient to permit the transition from the breeding season to the non-breeding season. 

 The exact site where thyroid hormone acts is unknown at this time, and the 

mechanisms of thyroid hormone action in seasonal reproduction is unclear.  It is 

speculated that thyroid hormone acts in the central nervous system, specifically on GnRH 

neurons, but there is not much evidence for this at this time (Karsh et al. 1995).  One 

possibility could be that thyroid hormone acts to regulate neural plasticity.  This 

regulation could occur either in GnRH neurons or, as examined in this work, in the A15 

dopaminergic neurons. 

 There is an accumulating body of evidence that thyroid hormone is a regulator of 

neural plasticity in many neural systems.  One experiment where thyroid hormone’s role 

in neural plasticity has been examined was done on the A10 dopaminergic neurons of the 

olfactory tubercle in the rat.  It was found in adult rats that when some of these neurons 

are lesioned, the remaining A10 neurons sprout collaterals, and it is speculated that this is 

a result of removal of a non-dopaminergic input (Gilad and Reis 1979).  This effect was 

examined in perinatal rats that were hypothyroid, and this sprouting is suppressed in 

animals that are hypothyroid prenatally or in the early postnatal period (Gottesfeld 
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Garcia, and Chronister 1987).  However, animals that are hypothyroid after maturity do 

not experience suppression in lesion-induced collateral sprouting.  There is also 

significant evidence that thyroid hormone can regulate expression of growth factors and 

other peptides that are potentially involved in regulating neural plasticity in the adult 

brain (Calza, Aloe, and Giardino 1997). 

Neural Plasticity in Reproduction 

 Neural plasticity contributes an important part in reproductive changes in many 

species.  Neural plasticity can be a change in number of synapses or a change in neural 

morphology itself.  Much of the work in neural plasticity in adults has been done in one 

species in particular, the songbird.  

 Singing in the songbird is predominantly a male activity.  It is a learned behavior 

that males do as part of a courtship behavior for females (Marler and Waser 1977).  This 

behavior that is unique to males gives researchers an opportunity to examine the sexually 

dimorphic nature of neurons in the robustus archistraitalis (RA), a nucleus in songbirds 

that is involved in controlling singing activity (DeVoogd and Nottebohm 1981).  

Dendrites in the neurons of this nucleus tend to be longer and branch more in the male 

than in the female (DeVoogd and Nottebohm 1981).   

 When female songbirds are given a testosterone treatment they can be induced to 

sing similar to the males and likewise a similar neuronal change is seen (DeVoogd and 

Nottebohm 1981).  When female songbirds are ovariectomized and given physiological 

doses of testosterone the dendritic trees of the neurons of the RA resemble those of the 

male.  Non-treated ovariectomized females have dendrites that are significantly shorter 

than those of intact females, and when ovariectomized females are given estradiol and 
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dihydrotestosterone they resemble intact females.  This provides evidence that not only 

are the neurons of the RA in songbirds sexually dimorphic but also that gonadal 

hormones can affect the morphology of these neurons; specifically gonadal hormones 

induce dendritic growth.  

 Not only can gonadal hormones affect neuronal morphology in the songbird, but 

they can also induce other plastic changes.  One such change is an actual increase in the 

size of the robustus archistriatalis seen in males compared to females, and this is also in 

testosterone treated females (DeVoogd, Nixdorf, and Nottebohm 1985).  There are also 

increases in the number of synapses formed on the neurons in the RA, and an increase in 

number of synaptic vesicles in these synapses.  These changes in synapses are not only 

induced by hormonal treatment but can also be caused by a change in season.  Spring-like 

conditions cause an increase in synapse formation and an increase in number of synaptic 

vesicles compared to fall-like conditions.  These seasonal changes are thought to occur 

through photoperiod.  Structural changes in the dendritic tree of male songbirds have 

been seen when changes in photoperiod occur (Hill and DeVoogd 1991).  Birds exposed 

to short day lighting have smaller denditic fields and fewer spines than birds exposed to 

long day lighting.  Theses changes are similar to those that are caused by testosterone 

administration.  Data shows that changes in behavior can be associated with changes in 

neural morphology.  The fact that both hormones and seasonal condition can be involved 

show that the seasonal changes in the songbird are a result of a complex system where 

neuronal morphology is dictated by hormone level in addition to other conditions.   

 It is not well resolved whether the seasonal changes as a result of photoperiod are 

mediated through testosterone or whether they are a result of a steroid-independent 
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mechanism (Smith, Benowitz, and Wingfield 1997).  Testosterone alone or photoperiod 

alone can change the size of the RA.  However, testosterone causes a greater increase in 

the size of the RA, and testosterone with photoperiod causes the greatest increase in RA 

size.  It was thus hypothesized that photoperiod either supplements testosterone or it 

modulates the effects of testosterone (Smith, Benowitz, and Wingfield 1997). 

 Changes in neural plasticity of the songbird have been seen in another nucleus 

called the hypoglossal nucleus (Clower, Nixdorf, and DeVoogd 1989).  This nucleus 

controls the syrinx in the songbird.  It was shown that seasonal changes and manipulation 

of testosterone could change the number of synapses and the synaptic vesicle content of 

these synapses.  These changes in synapse number and morphology are another example 

of the neural plasticity involved in the songbird induction of a singing behavior. 

 Synaptic plasticity during reproduction has also been observed in the rat arcuate 

nucleus.  The arcuate nucleus is a hypothalamic center involved in the feedback 

regulation of gonadotrophins.  During the rat estrous cycle the number of presynaptic 

terminals decreases in neurons in the arcuate nucleus in estrous (Olmos, Naftolin, Perez, 

Tranque, and Garcia-Segura 1989).  There is also a decrease in number of synapses and 

an increase in the amount of glia in close apposition to neuronal membranes.  This shows 

a decrease in contacts between proestrus and estrus with an increase in contacts between 

estrus and metestrus.  These contacts are thought to be most likely inhibitory.  It was also 

found that IGF-1 plays a role in synaptic remodeling and it is believed that both IGF-1 

and astroglia are an essential part in synaptic remodeling in the rat estrous cycle.  

 In the adult female rhesus monkey, plasticity has been observed in GnRH neurons 

in the medial basal hypothalamus and the pre-optic area.  Ovariectomized monkeys 
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exhibit a decrease in innervation in both the MBH and the POA, and an increase in glial 

ensheathment in both areas (Witkin, Ferin, Popilskis, and Silverman 1991).  After ovarian 

steroids are replaced there is an increase in innervation and a decrease in the amount of 

glial ensheathment.  There also is an observable difference in innervation of neurons in 

the two areas with GnRH neurons in the MBH having more innervation than those in the 

POA.  

 There is also synaptic plasticity in the infundibular nucleus of the African green 

monkey.  The infundibular nucleus (arcuate nucleus) in the monkey is also involved in 

reproduction.  It contains GnRH neurons and electrical activity of this nucleus changes 

during the ovarian cycle.  Estradiol replacement in ovariectomized monkeys causes a 

decrease in synaptic inputs and an increase in glial ensheathment of neurons in the 

infindibular nucleus (Naftolin, Leranth, Perez, and Garcia-Segura 1993).  Thus, estradiol 

can cause synaptic plasticity and changes in glial orientation in the hypothalamus of both 

rats and monkeys. 

 There is also some evidence that neural plasticity may be involved in the onset of 

puberty in monkey, since there is an increase in synaptic density on GnRH neurons in the 

MBH in juveniles compared to adults (Plant and Perera 1997).  

  Finally, neural plasticity has been observed in the sheep pre-optic area.  There is 

a change in input onto GnRH neurons in this area between the anestrous and breeding 

seasons (Xiong, Karsch, and Lehman 1997).  An increase in number of synaptic inputs 

onto GnRH neurons during the breeding season has been observed providing evidence for 

seasonal plasticity in this system.  There is also a difference in the number of contacts on 

GnRH neurons in the rostral preoptic area when comparing male and female sheep.  
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Female lambs have twice the number of contacts that male lambs have, and androgenized 

female lambs have the same number of synapses as male lambs (Kim, Foster, and Wood 

1999), demonstrating that steroids can play a role in controlling synaptic inputs during 

development. 

 A glycoprotein called PSA-NCAM, the polysialyated form of a neural adhesion 

molecule, can be used as a marker for neuroplasticity.  In the sheep this molecule has 

been used to examine GnRH neurons in the preoptic area for changes in neural structure 

between the breeding season and non-breeding season (Viguie et al. 2001).  During the 

breeding season there is an increased amount of PSA-NCAM labeling compared to the 

non-breeding season.  This demonstrates that these GnRH neurons may be altered in 

some way in conjunction with the change in breeding season.   

 Summary 

 The sheep breeds during the short days of winter and goes into a seasonal 

anestrous during the long days of summer.  This change is elicited through external cues 

such as photoperiod (the most widely studied cue).  Melatonin is secreted from the pineal 

gland, and is a hormone that transduces photoperiod into a signal that determines the 

seasonal status of the animal.  The means by which melatonin does this is not yet well 

understood. 

 The anestrous season is characterized by an increased sensitivity to estrogen 

negative feedback causing LH pulses that occur with less frequency than during the 

normal estrous cycle.  The decreased LH prevents normal ovulation until the breeding 

season begins when a normal LH pattern begins.  The change in LH pattern between the 

two breeding states is brought about by a change in estradiol negative feedback.  During 
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the non-breeding season estradiol causes a decrease in the frequency of LH.  The 

mechanism behind the estradiol negative feedback during the non-breeding season is not 

completely understood.  

 The A15 dopaminergic cell group of the hypothalamus is considered to mediate 

the estrogen negative feedback during the anestrous season.  The A15 nucleus is medial 

to the optic tracts in the medial basal hypothalamus.  There is various pharmacological 

and anatomical evidence to support the A15 as a key component in the mechanisms 

behind the estrogen inhibition of luteinizing hormone in the non-breeding season.  The 

indication is that the A15 group inhibits GnRH release from the median eminence.  It 

would be intuitive to believe that estrogen works directly on the A15 neurons that then 

suppress the GnRH neurons.  However, estrogen receptors have not been found on A15 

neurons.  Therefore it is important to look at input onto these neurons.  The POA is a 

particular site of interest when looking at potential sites where estrogen is acting and 

where neural input from the POA may eventually reach the A15 nucleus. 

 Thyroid hormone has also been implicated in seasonal reproduction.  It is 

necessary for thyroid hormone to be present in the breeding season for the animal to go 

into the non-breeding season.  The action of thyroid hormone is most likely on the central 

nervous system.  Three potential sites are GnRH neurons, the A15 neurons, or neurons 

that act on the A15 neurons.  Thyroid hormone is implicated in neural plasticity as well. 

 Neural plasticity has been seen in many species including the sheep.  It is not 

unusual for the number of contacts and synapses to change on a neuron.  This is observed 

in GnRH neurons of the sheep during the change in breeding season.  However, neural 

plasticity has not been studied extensively in the A15 nucleus.  The role of thyroid 
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hormone in the A15 or in mediating a plastic change in the A15 has also not been 

examined closely. 

Statement of Purpose 

  The decrease in LH during anestrus is due to an increase in sensitivity to estradiol 

and this increased sensitivity to estradiol is mediated through the A15 dopaminergic 

nucleus of the hypothalamus.  Since the A15 neurons do not contain estrogen receptors it 

is then important to look at the input onto these neurons.  The hypothesis tested in the 

studies included in this thesis is that the neural input onto the A15 neurons changes with 

reproductive season mediating the change in inhibition of GnRH neurons.  Additionally, 

thyroid hormones allow or modulate this alteration in input to A15 neurons.  The 

objective of the research in this thesis was to examine differences in neural morphology 

and synaptic contacts on these A15 neurons. In experiment 1, I examined these neurons 

during the breeding season and non-breeding season.  Specifically, I counted synaptic 

contacts on the A15 neurons, and determined if any other seasonal changes in neural 

structure occurred.  In experiment 2, these parameters were also examined in 

thyroidectomized and T4 replaced ewes to determine if any changes in neural morphology 

might be dependent on thyroid hormone. 
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CHAPTER TWO: MATERIALS AND METHODS 

Animals: 

Experiment 1:  Fourteen adult blackfaced ewes of mixed breeds were used in this study.  

Animals were housed at the West Virginia University livestock farm sheep facility in an 

open barn where they were exposed to natural lighting and temperature.  Surgeries and 

tissue collection were performed in an indoor facility.  Ewes were moved indoors 2-3 

days prior to any procedures, with lighting adjusted to simulate the natural photoperiod.  

Animals were fed a maintenance diet of silage, hay, and grain with free access to water.  

Animals were ovariectomized in either breeding season (n=8) or anestrus (n=6) via 

midventral laparotomy, using sterile procedures and pentobarbital anesthesia, and 0.5 cm-

long implants containing estradiol were inserted subcutaneously (sc) three weeks later. 

The animals were sacrificed one week later and tissue was collected.   The West Virginia 

University Animal Care and Use Committee approved all procedures. 

Experiment 2:  The tissue used in this experiment was collected at the University of 

Michigan from an earlier study that examined the effects of T4 administered into the 

lateral ventricles (Viguie et al.  1999).  Seventeen adult Suffolk ewes were maintained at 

the Sheep Research Facility in Ann Arbor, Michigan, and fed hey with free access to 

water and mineral licks.  Animals for the thyroid intact group (n=6) were ovariectomized 

via midventral laparotomy, using sterile procedures and pentobarbital anesthesia in 

August or September of 1995.  They were immediately treated with constant release, 3-

cm sc estradiol implants.  In December of 1996 animals from the thyroidectomized group 

(n=11) were ovariectomized and received constant release 3-cm sc estradiol implants.  

Between November 14 and December 12, 1996 animals were thyroidectomized using 
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sterile procedures and pentobarbital anesthesia followed by halothane adjusted during 

surgery, and some of the thyroidectomized animals (n=5) received T4 replacement (9.6 

µg/day; 100µg/ml solution) via canulation of the lateral ventricles infused by a pump.  

Estrogen treatment continued in all animals until April 10, 1997 when all estrogen 

implants were removed.  On May 28, 1997 estrogen was replaced through constant 

release 1-cm sc estradiol implants in half the animals of each group.  This results in 6 

thyroid intact animals, in which 3 receive estrogen treatment, 6 thyroidectomized 

animals, in which 3 receive estrogen treatment, and 5 T4 treated animals, in which 3 

receive estrogen treatment  (figure 1; table 1).  Animals were sacrificed on June 4 and 

June 5, 1997 when brains were collected.  All procedures were approved by the 

University of Michigan Committee on the Use and Care of Animals. 

 

Tissue Preparation:  Animals were heparinzed (two iv injections of 25,000 U heparin 10 

min. apart), killed with an overdose of pentobarbital, and their heads were then 

immediately removed.  The heads were perfused via both internal carotid arteries with 6L 

of 4% paraformaldehyde in 0.1M phosphate buffer containing, 10 IU heparin/ml and 

0.1% NaNO3.  Brains were removed from the head, and a tissue block containing the 

mediobasal hypothalamus and preoptic area was excised.  The tissue block was post-

fixed for 24 hours at 4°C, and then infiltrated with 30% sucrose in phosphate buffer.  The 

tissue block was frozen and coronal sections of the hypothalami were cut at 50 µm using 

a microtome and stored in cryopreservative at –20°C until sections were stained. 
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Double Immunofluorescence Staining Procedure (Coolen 7-2000):  Three sections per 

animal were selected to stain using a dual fluorescence procedure for tyrosine 

hydroxylase (TH) and synapsin.  The sections were selected based on gross anatomical 

landmarks to examine TH-positive neurons in the A15 dopaminergic nucleus.  TH 

containing cells were labeled using mouse monoclonal antibodies against mouse tyrosine 

hydroxylase (Boehringer Manheim), and synapsin was identified with rabbit polyclonal 

antibody against bovine brain synapsin I (Molecular Probes). 

 All procedures were done on a shaker table.  Sections were first washed in 

phosphate buffer for 3 hours, and then incubateded in phosphate buffer with 0.2% Triton-

X and 4% normal donkey serum for 1 hour at room temperature to decrease non-specific 

binding.  Sections were then coincubated for 48 hours at 4°C on a shaker table with 

mouse TH antibodies (1:200) and rabbit synapsin antibodies (1:800) in phosphate buffer 

containing 0.2% Triton-X and 4% normal donkey serum.  After three 15 minute washes 

in phosphate buffer, the tyrosine hydroxylase antibodies were conjugated to biotinylated 

donkey anti mouse (1:200) diluted in phosphate buffer with 0.2% Triton-X and 4% 

normal donkey serum during a 1 hour incubation at room temperature.  Tissues were 

washed three times at 15 minutes, and rabbit synapsin antibodies were conjugated to 

donkey anti-rabbit-CY2 (a green fluorescent dye tagged to secondary antibody diluted to 

1:100) during a 30-minute incubation at room temperature.  After 3 more 15 minute 

washes in phosphate buffer, mouse TH antibodies conjugated to biotinylated donkey 

antimouse were labeled with CY3-conjugated streptavidin (a red fluorescent dye tagged 

to secondary antibody diluted to 1:200) during a 30-minute incubation at room 

temperature.  The sections were washed 3 times at 15 minutes before mounting.   
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Sections were mounted onto gelatin-coated microscope slides using a 50% 

phosphate buffer and 50% glycerol mixture.  Coverslips were held in place using 

fingernail polish placed around the edges of the coverslips.  Sections were not allowed to 

dehydrate before mounting on slides.  Tissues from all treatment groups in each 

experiment were processed simultaneously over several days.  

 

Tissue Analysis:  Images of immunostained sections (Figures 24-28) were acquired 

using a Carl Zeiss Laser Scanning Microscope (confocal microscope).  In experiment 1, 

images were taken of 10-12 neurons per animal at 63X magnification to count synapsin 

positive contacts, and images were taken at 40X magnification to examine neural 

morphology.  In experiment 2, images were taken of 6-12 neurons per animal at 40X 

magnification for both counting synapsin positive contacts and examining neural 

morphology.  Neurons were selected based on whether the somata were complete.  

When selecting neurons, if the somata were cut by the microtome when sections were 

sliced, then those neurons were not used.  However, the neurons analyzed did not have 

complete dendrites because analysis of dendrites was restricted by the field of view of 

the confocal microscope.  The confocal microscope allowed both red TH positive 

staining and green synapsin positive staining to be visualized at the same time.  A stack 

of images taken along the z-plane (z-stack) was made for each neuron.  The stack 

consisted of 22 images slicing the neuron from top to bottom at intervals of 1-1.5 µm 

determined by the confocal software based on the size of the neuron.  These z-stacks 

were then converted to a series of tif file type images that could be analyzed using other 

software. 
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 MicroBrightfield’s neurolucida software was used to recreate a z-stack from the 

confocal images of each neuron.  A tracing was made of each neuron by first tracing 

around the cell body of each layer of the stack from top to bottom, and then tracing over 

the dendrites by matching the cursor size to the width of the dendrite and then following 

the dendrite through the stack (Figure 29).  This created a 3-D reconstruction of the 

neuron (Figures 29-33).  After tracing the neuron an asterisk marker was placed over 

each green immunstained synapsin dot in contact with the cell body or dendrite.  This 

asterisks was sized once at the beginning of the study, by randomly selecting a green 

synapsin-labeled dot and matching the size of the asterisk to that dot.  Also, when 

multiple terminals were close together creating what looked like one long terminal, 

markers were placed close together until all of the green-synpasin positive staining was 

covered.   This allowed a count of the number of contacts of synapsin-labeled terminals 

either on the cell body or the dendrites to be made.  The 3-D reconstructed neuron was 

rotated in 360° and terminals that were not touching the neuron in all dimensions were 

eliminated, this procedure also ensured that each terminal was only being counted once.  

Asterisks appeared as small spheres in the 3-D reconstructed neuron.  Once a 

reconstruction was complete the neurolucida software also automatically calculated 

dendrite mean length, quantity of primary dendrites, surface area of cell body, surface 

area of dendrites, volume of cell body, and number of dendritic nodes (bifurcations).  The 

investigator was unaware of the particular treatment when analyzing all neurons. 

 

Statistical Analysis:  Results from all neurons per animal (6-12) were averaged together 

for each animal and these numbers were used in statistical analyses.  All data from 
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experiment 1 were evaluated for the effect of season by unpaired t-tests using Graphpad’s 

Prism software.  All data from experiment 2 were evaluated by two-way ANOVA using 

Jandel’s SigmaStat software.  Statistical significance was set at P<0.05 for all analyses. 

  

                           

         

 

Table 1:  Treatment Groups for Animals in Experiment 2 

Animals Estrogen 
Treatment 

T4 
Treatment 

THX 
animals 

Intact 
Animals 

N=3 + - - + 
N=3 - - - + 
N=3 + + + - 
N=2 - + + - 
N=3 + - + - 
N=3 - - + - 

   +  Received treatment 
-   Did not receive treatment 
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Figure 1.  Timeline of treatments given to animals in experiment 2 
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CHAPTER THREE: RESULTS 

Experiment 1:  Breeding Season vs. Non-Breeding Season 

Cell Body 
 No significant change (P>0.05) in cell body volume occurred between the 

breeding season and the non-breeding season (Figure 2).  The mean volume for cell 

bodies of neurons in the breeding season was 7725 ± 859 µm3, and the mean volume for 

cell bodies of neurons in the non-breeding season was 7538 ± 663 µm3. 

Dendrites  
 A significant difference (P<0.0001) in dendrite mean length was found (Figure 3).  

The dendrite mean length increased from a mean of 53.3 ± 5.1 µm in the breeding season 

to a mean of 127.2 ± 7.5 during the non-breeding season.  A similar change in mean 

surface area of dendrites was seen (P<0.001; Figure 5).  The mean surface area increased 

from 693 ± 47 µm2 to 1566 ± 149 µm2 with the transition from breeding season to non-

breeding season.  Also with the increase in mean length and mean surface area of 

dendrites a significant change (P<0.0028) in mean bifurcation number occurred (Figure 

4).  The mean number of bifurcations increased from 0.32 ± 0.15 during the breeding 

season to 1.3 ± 0.21 during the non-breeding season.  However, no change in primary 

dendrite number was observed (P>0.05; Figure 6).  The mean number of primary 

dendrites per neuron in the breeding season was 2.5 ± 0.24 while the mean number of 

primary dendrites per neuron in the non-breeding season was 2.9 ± 0.15. 

Contacts on Neurons  
 The total number of terminals on the neurons did change significantly 

(P<0.0377) between the breeding season and non-breeding season (Figure 7).  The 

terminals on the breeding season neurons, 45.2 ± 2.3, were significantly less than the 
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terminals on the non-breeding season neurons, 56.6 ± 4.7.  This increase in contacts on 

the neurons was observed on the dendrites (P<0.012; Figure 8), but not on the somas 

(P<0.05; Figure 9).  The terminals increased on the dendrites from 18.2 ± 2.0 during the 

breeding season to 28.0 ± 2.7 during the non-breeding season, and the contacts on the 

somas were 26.9 ± 1.78 during the breeding season and 28.6 ± 2.9 during the non-

breeding season.  Density of terminals on neurons was also measured by dividing the 

number of contacts by the surface area of either the dendrites or the cell bodies.  No 

significant change was found in either the density on the soma (P>0.05; Figure 10) or 

the density on the dendrites (P>0.05; Figure 11)  
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Experiment 2: Changes in Thyroid Hormone 

Cell Body  
 No significant change (P>0.05) in cell body surface area occurred when animals 

were thyroidectomized, treated with T4, or left intact (Figure 14).   

Dendrites 

 Mean lengths of dendrites were significantly (P<0.05) longer in intact and T4-

treated animals than in thyroidectomized animals regardless of the estrogen treatment 

(Figure 15).  Estrogen treatment had no significant effect on dendrite mean length.  The 

mean for intact animals was 99.3 ± 7.9 µm and for T4 treated animals was 120 ± 8.9 µm 

verses 68.2 ± 7.9 µm for thyroidectomized animals.  There was not a significant 

difference between T4 treated animals and intact animals (P>0.05).  There was an 

increase in mean surface area of dendrites seen in T4 treated animals compared to the 

thyroidectomized group (P<0.05), but this increase was not seen in the intact group 

compared to the thyroidectomized group (P>0.05) (Figure 16).  The mean for the T4 

group was 1117 ± 103 µm2 compared to 954.4 ± 103 µm2 for the THX group.  The 

presence of estrogen had no significant effect (P>0.05) on mean surface area of the 

dendrites.  The mean number of bifurcations did not significantly change (P>0.05) 

regardless of thyroid treatment or estrogen treatment (Figure 17).  The mean number of 

primary dendrites also did not significantly change (P>0.05) with thyroid treatment or 

estrogen treatment (Figure 18). 

Contacts on Neurons   

 There was not a significant change (P>0.05) in total contact number on neurons 

(both dendrites and somata) with changes in thyroid hormone or changes in estrogen 

treatment (Figure 19).  There was a significant change (P<0.05) in contacts on dendrites 
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when comparing the intact group verses the thyroidectomized group in the absence of 

estrogen, and there was a difference mean of 21.5 contacts (Figure 20).  However, there 

was no significant change (P>0.05) in contacts on the cell body with thyroid treatment or 

estrogen treatment (Figure 21).  There was also not a significant change (P>0.05) in 

density of contacts on dendrites or cell body with changes in thyroid hormone or estrogen 

treatment (Figure 22 and Figure 23). 
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Figure 2.  Volumes of Cell Body Breeding Season Vs. Non-Breeding Season (P>0.05) 

 
Figure 3.  Mean Length of Dendrites Breeding Season vs. Non-breeding Season 
(P<0.0001) 
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Figure 4.  Mean Number of Bifurcations in Dendrites Breeding Season vs. Non-Breeding 
Season (P<0.001) 

Figure 5.  Mean Surface Area of Dendrites Breeding Season vs. Non-Breeding Season 
(P<0.0028) 
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Figure 6.  Number of Primary Dendrites on Neurons in Breeding Season vs. Non-
Breeding Season (P>0.05) 

Figure 7.  Number of Total Terminals on Neurons in the Breeding Season vs. Non-
Breeding Season (P<0.037) 
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Figure 8.  Number of Terminals on Dendrites during Breeding Season vs. Non-Breeding 
Season (P<0.012) 
 

Figure 9.  Number of Terminals on Cell Body in Breeding Season vs. Non-Breeding 
Season (P>0.05) 
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Figure 10.  Terminal Density on Cell Body in Breeding Season vs. Non-Breeding Season 
(P>0.05) 
 

Figure 11.  Terminal Density on Dendrite in Breeding Season vs. Non-Breeding Season 
(P>0.05) 
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Figure 12.  The Average of the Total Number of Endings of Dendrites that were counted 
at the Top and Bottom of the z-stacks (P>0.05) 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13.  The Average of the Number of Endings of Dendrites when Subtracting the 
Number Taken from the Top Section from the Number Taken from the Bottom Section of 
the z-stacks (P>0.05) 
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Figure 14.  Cell Body Surface Area in Thyroid and Estrogen Treated Animals (P>0.05) 
 
 

 
Figure 15. Mean Length of Dendrites in Thyroid and Estrogen Treated Animals (P<0.05) 
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Figure 16.  Mean Surface Area of Dendrites in Thyroid and Estrogen Treated Animals 
(P<0.05 in T4 vs. THX) 
 

 
Figure 17.  Mean Number of Bifurcations in Thyroid and Estrogen Treated Animals 
(P>0.05) 
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Figure 18.  Mean Number of Primary Dendrites per Neuron in Thyroid and Estrogen 
Treated Animals (P>0.05) 

Figure 19.  Total Number of Contacts on Neurons in Thyroid and Estrogen Treated 
Animals (P>0.05) 
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Figure 20.  Number of Contacts on Cell Body of Neurons in Thyroid and Estrogen 
Treated Animals (P<0.05 in THI-E vs. THX-E) 
 

 
Figure 21.  Number of Contacts on Dendrites of Neurons in Thyroid and Estrogen 
Treated Animals (P>0.05) 

Number of Contacts on Cell Body

N
um

be
r o

f C
on

ta
ct

s

0

10

20

30

40

50

�
�
�
�
�
�
�
�

��
��
��
��
��
��

�
�
�
�
�

Intact T4-treated THX

with Estrogen
without Estrogen

��

Number of Contacts on Dendrites

N
um

be
r o

f C
on

ta
ct

s

0

10

20

30

40

50

60

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

Intact T4-treated THX

with Estrogen
without Estrogen�



 49 
 
 

Figure 22.  Density of Contacts on Cell Body of Neurons in Thyroid and Estrogen 
Treated Animals (P>0.05) 
 

 
Figure 23.  Density of Contacts on Dendrites of Neurons in Thyroid and Estrogen Treated 
Animals (P>0.05) 
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Figure 22.  Neuron from a Noon-Breeding Season Animal  
 
 
 
 
 
 
 
 
 
 

50 µm 
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Figure 23.  Neuron with Synapsin Staining from a Non-Breeding Season Animal 
 
 
 
 
 
 
 
 
 
 

50 µm 
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Figure 24.   Neuron from a Breeding Season Animal 
 
 
 
 
 
 
 
 
 
 

50 µm 



 53 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25.  Neuron from a Breeding Season Animal with Synapsin Staining 
 
 
 
 
 
 
 
 
 
 
 

50 µm 
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Figure 26.  A15 Dopaminergic Nucleus and Synapsin at 20X Magnification 
  
 
 
 
 
 
 
 
 
 

150 µm 
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Figure 27.  Neurolucida Tracing of A15 Neuron from an Anestrous Animal, (Green dots 
represent synapsin) 
 
 
 
 
 
 
 
 
 
 
 

50 µm 
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Figure 28.  Neurolucida 3-D Reconstruction of Neuron from Anestrous Animal (Tilted at 
a 45° angle)  
 
 
 
 
 
 
 
 

50 µm 
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Figure 29.  Neurolucida 3-D Reconstruction of a Neuron from an Anestrous Animal at a 
Side View (Tilted at 90° angle) 
 
 
 
 
 
 
 
 
 

50 µm 



 58 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30.  Neurolucida 3-D Reconstruction of a Neuron from an Anestrous Animal at a 
Top View (Tilted at 180° angle) 
 
 
 

50 µm 
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Figure 31.  Neurolucida 3-D Reconstruction of a Neuron from an Anestrous Animal at a 
Side View (Tilted at 270° angle) 
 
 
 
 
 
 
 
 
 
 
 

50 µm 
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CHAPTER FIVE: DISCUSSION 

  The decrease in LH output during the anestrous season is brought about by an 

increase in sensitivity to estrogen negative feedback.  Estradiol decreases frequency of 

LH pulses during the anestrous season due to the actions of the A15 dopaminergic neural 

group.  One possible mechanism (a change in input on A15 neurons during the breeding 

season to non-breading season transition) by which changes in activity if this neural 

group might occur was examined by analyzing the synaptic contacts and neural 

morphology of these neurons during the breeding season and non-breeding season. 

 The studies in this work show that there likely is a change in synaptic contacts on 

the A15 neurons along with a change in neural morphology between the breeding season 

to non-breeding season transition.  The total number of synpasin-positive contacts 

increases between the breeding season and the non-breeding season.  However, this 

increase appeared to occur on dendrites not on the soma.  

Likewise, there is not a change in density of contacts on either the dendrite or cell 

body with the density of contacts being a measure of the number of contacts per unit area 

(µm2).  This suggests that there must be an increase in size of the dendrites in order to 

accommodate an increase in contact number without a change in density.  This is found 

to occur; the mean lengths of the dendrites in anestrous animals are longer than the mean 

length of dendrites in the breeding season animals.  Concurrent with the increase in 

length, there is also an increase in mean surface area of the dendrites, and an increase in 

the average number of bifurcations between the breeding season and non-breeding season 

ewes.  However, no changes in neural morphology of the soma occur which is in accord 

with the contact data above. 
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 The method used in these studies to examine neural contacts onto A15 neurons 

was a procedure where synapsin I protein was labeled and counted when found in close 

apposition to tyrosine hydroxylase-positive neurons.  Synapsin I is an actin-binding 

protein that is found exclusively in pre-synaptic vesicles.  It is a phosphoprotein that is 

thought to regulate the availability of vesicles for neurotransmitter release (Mandell, 

Czernik, De Camilli, Greengard, Townes-Anderson 1992).    This is a somewhat different 

approach to analyzing contacts on neurons than the typical approach, which is to use 

electron microscopy studies.  An electron microscopic study possibly would give a more 

precise indication of whether a bouton is actually in contact with a neuron soma or 

dendrite.  In an electron microscopy study done on sheep GnRH neurons, there was found 

a change in contacts was found on both the somata and the dendrites when comparing 

breeding season and anestrous animals (Xiong, Karsch, and Lehmna 1997).  This was not 

the case in the A15 dopaminergic neurons studied here at the light microscopic level, 

where only a difference was found on the dendrites and not on the somata.  However, the 

seasonal differences in GnRH neuronal input have recently been demonstrated using 

synapsin I staining and confocal analysis (Jansen HT, personal communication).  

Moreover, in the developing suprachiasmatic nucleus of the rat, synapsin I 

immunohistochemistry was found to be a reliable marker of synapse formation.  The 

positive identification of synapsin I immunoreactivity correlated very precisely with the 

development of synapses in the SCN as seen in ultrastructural analysis (Moore and 

Bernstein 1989).  Therefore staining for synapsin is probably a useful method for 

determining changes in synaptic contact. 
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 Another issue of concern is the penetration of the synapsin antibody into the 

tissue sections during staining.  It was observed during the analysis of sections that the 

amount of synapsin staining appeared to be the densest at the top and bottom of the 

section with a progressive decrease moving towards the middle.  This raises the 

possibility that the changes in contacts observed could have been a result of an artifact.  

An additional possibility is that no change in contacts on the soma was observed because 

a lack of antibody binding decreased the sensitivity of the analysis.  However, as the 

staining procedure used was identical for every section, antibody penetration should be 

similar in every tissue section, this problem unlikely to account for the observed 

differences.  Because of this limitation, the staining may not necessarily give a complete 

count of contacts, but should still provide a good estimation of change in contacts. 

 The changes in morphology observed were found by staining tissue using an 

antibody against the tyrosine hydroxylase (TH) enzyme and using the Neurolucida 

program to analyze the stained neurons.  This raises the question of whether the increase 

in length, surface area, and bifurcations during anestrus is caused by an actual change in 

neural morphology or by an increase in the amount of TH enzyme resulting in increased 

staining.  Beccavin, Malpaux, and Tillet (1998) provide a possible answer to this when 

they found that there is an increase in TH mRNA during the breeding season compared to 

the non-breeding season.  This indicates that the increase in dendritic arbors found during 

anestrus is probably not caused by an increase in synthesis of TH enzyme because TH 

mRNA levels are highest during the breeding season when dendrite length, number of 

bifurcations, and surface area are the lowest.  Also there are more TH-positive neurons in 

the A15 during the breeding season than during the non-breeding season (Lehman et al.  
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1996).  This data indicates that there may be an overall increase in the amount of TH 

proteins in A15 neurons during the breeding season compared to the non-breeding 

season. 

 Another explanation for the observed change in dendrite length could be that the 

orientation of the dendrites are changing, and because of this the dendrites were cut close 

to the soma when the tissue slices were made.  To address this issue, the confocal stacks 

were examined to see if there was a difference in dendrites ending in the top or bottom of 

the stack during the breeding season or non-breeding season (figure 12,13).  This would 

indicate that the dendrites are being cut by the microtome and the orientation is changing, 

and not that there is a decrease in length of the dendrites.  However, it was found that this 

was not the case.  The results indicate that the number of endings at the top and bottom of 

the stack are not statistically different between the breeding season and non-breeding 

season, thus, there probably is a decrease in dendrite mean length and not a change in 

orientation.   

 In the robustus archistriatalis, a nucleus that is involved in singing in the canary, 

a difference in neuronal morphology is observed between neurons in the nucleus based 

on location (DeVoogd and Nottebohm 1981).  Neurons at the margin of the nucleus have 

more spines than neurons found elsewhere.  However, these may represent two different 

neuronal phenotypes, and only dopaminergic A15 neurons were examined in the present 

studies.   The neurons that were selected to be analyzed in this study were chosen based 

on whether the cell bodies were complete or not.  The selection was random, and in the 

first experiment there should not have been any bias based on neuron location. 
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 The change in contacts on the A15 neurons may represent a change in activity of 

the neurons.  Previous studies have provided anatomical and functional evidence of 

innervation from the vmPOA to the A15 (Jansen et al.  1997; Jansen et al. 1999; and 

Anderson et al.  2001). Neurons in the vmPOA that project to the A15 have estrogen 

receptors (Jansen et al.  1999).  Also when estradiol is implanted in this area during the 

anestrous season in ovariectomized ewes a drop in LH pulse frequency is seen, which is 

reversed by a dopamine receptor antagonist (Anderson et al.  2001).  These results are 

consistent with the hypothesis that the vmPOA neurons are contacting the A15 neurons 

and activating them. 

  In previous work it was also shown that A15 neurons are inhibitory (Havern, 

Whisnant, and Goodman 1994; Lehman et al.  1996; Goodman et al.  2000) to LH pulse 

frequency and stimulated by estradiol in anestrus.  A hypothesis could then be formed 

that, during anestrus, estrogen is acting on neurons in the vmPOA, which are stimulating 

dopaminergic neurons in the A15, and these A15 neurons are then inhibiting GnRH 

neurons decreasing the release of LH.  During the breeding season the connection 

between the vmPOA and the A15 neurons is severed preventing any inhibitory actions of 

estrogen.  Based on the results of experiment 1 it could be speculated that some system 

during the transition into anestrus causes the dendrites to increase in size and recieve 

axodendritic synapses from other neurons (possibly from the vmPOA), resulting in 

activation of the A15 and inhibition of GnRH.  However, this is fairly speculative 

because it is impossible from this study to tell whether the synaptic connections formed 

are inhibitory or stimulatory, and it is impossible to tell the origin of neurons making 

synaptic contact with the A15 neurons. 



 65 
 
 

The role of thyroid hormone was examined in experiment 2.  It has been 

established that thyroid hormone is necessary for the transition from the breeding season 

into anestrus (Nichols et al.  1988a; Nichols, Follett, Golsmith and Pearson 1988b; Follett 

and Potts 1990).  Therefore A15 neurons were studied to determine whether thyroid 

hormones were necessary for the seasonal effects on neural contacts and morphology.  

The results indicate no change in total contacts in thyroidectomized, T4 treated, or intact 

animals.  There was also no change in density of contacts.  However, there were two 

changes in neural morphology.  Thyroid intact and T4 treated animals had an increase in 

mean length of dendrites compared to thyroidectomized animals.  The second was an 

increase in surface area seen in T4 treated animals compared to the intact and 

thyroidectomized animals.  It seems counterintuitive that the number of total contacts 

does not change when density stays the same over a greater length, but when looking at 

the results, the mean value for the number of contacts is greater in the intact and T4 

treated animals compared to the thyroidectomized animals.  However, these changes 

were not statistacly significant.    

In this study most of the neurons used for analysis were selected from the caudal 

portion of the A15 nucleus.  This was not intentional and was a result of a limited pool of 

tissue sections that were further caudal in the hypothalamus than normally selected for 

study of A15 neurons.  This may explain some of the discrepancies seen in this 

experiment compared to experiment 1 such as no decrease in contacts seen in 

thyroidectomized ewes, which should be equivalent to a breeding season ewe. 

Another possible explanation for a lack of effect of T4 is that T4 replacement in 

this experiment was given via cannulas in the lateral ventricle.  This may have impacted 
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the results of the T4 replacement group, because only a limited portion of the brain would 

have been exposed to this hormone.  Results of animals receiving thyroid replacement 

peripherally may have differed from those receiving thyroid replacement centrally.   

The last thing to consider is that all animals used in this experiment were 

sacrificed during the anestrus season (June).  This may have an impact when comparing 

results from the thyroidectomized animals to thyroid intact animals in the breeding 

season (used in experiment 1).  Since the thyroidectomized animals do not show a change 

in contacts, and the thyroid intact breeding season animals used in experiment 1 had a 

decrease in contacts on dendrites  (figure 19). 

Thyroid hormone is involved in neural morphology of the developing central 

nervous system (Slotkin and Slepetis 1984), and thyroid hormone has been found to 

influence neurochemical organization of the adult rat brain (Calza, Aloe, and Giardino 

1997).  The results of experiment 2 indicate changes in neural morphology that are 

dependent on thyroid hormone.  Thyroid hormone may then be involved in the system 

that increases dendritic length and axodendritic contacts on A15 neurons during the 

breeding season to non-breeding season transition.     

The most work in neural plasticity in the ewe has been done on GnRH neurons.  

In GnRH neurons in the preoptic area examined at the EM level there are more contacts 

on both dendrites and soma during the breeding season than during the non-breeding 

season (Xiong et al.  1997), which is opposite the results found in the A15 in this study.  

The results of Xiong et al. were seen in ovariectomized animals receiving constant 

release estradiol implants indicating that it is not an effect caused by changing levels of 

estradiol treatment.  This was true for the studies done in this work as well.  The animals 
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used in these experiments were ovariectomized ewes receiving implants that released 

estradiol at a constant level.  This contrasts with the songbird where changes in neural 

morphology have been associated with changes in gonadal hormones.   Testosterone 

given to female birds can cause an increase in dendrite length, an increase in the size of 

the RA nucleus, increases in synaptic contacts on neurons in the RA, and an increase in 

synaptic vesicles in those synapses (DeVoogd and Nottebohm 1981; DeVoogd, Nixdorf, 

and Nottebohm 1984).  

Changes in neuronal morphology have also been seen in preoptic GnRH neurons 

in the ewe that resemble the changes in A15 neuron morphology found in these studies 

(Lehman et al. 1986).  At the light microscopic level GnRH neurons have fewer and 

shorter dendrites during the breeding season than during anestrous.  The somas of GnRH 

neurons do not appear to change in breeding season or non-breeding season animals 

(Xiong et al.  1997).  Changes in neural morphology of songbird neurons also can occur 

with season when given a constant level of testosterone (Hill and DeVoogd 1991).  Birds 

exposed to short day lighting have smaller dendritic fields and fewer spines than birds 

exposed to long day lighting.  This demonstrates that season and photoperiod can have an 

effect on neurons in another species similar to those found in this work in sheep. 

The role of thyroid hormone in changing neural morphology of A15 neurons 

found in experiment 2 adds additional possibilities to the changes in the action of A15 

neurons.  A hypothesis could be formed that thyroid hormone is part of a system that 

allows an increase in dendritic length during anestrus.  This increased dendrite length 

allows stimulatory axodendritic contacts to form on A15 neurons (possibly from the 

vmPOA).  The stimulated A15 neurons then inhibit GnRH neurons decreasing the output 
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of LH maintaining the low level of LH characteristic of the non-breeding season.  Late in 

anestrus a system involving thyroid hormone induces the transition back to the breeding 

season.  Thyroid hormone may allow a decrease in the length of A15 neuron dendrites 

breaking the stimulatory axodendritic connections formed during anestrus.  The A15 

neurons are no longer stimulated, and this releases the inhibition of GnRH neurons 

allowing the return of breeding season levels of GnRH and LH. 

Possible future directions for research include the following.   Studying the A15 

neurons at the EM level to confirm an increase in contacts during anestrus. Do another 

study looking at morphology of A15 neurons at the light microscope level using Golgi 

stain.  Stain neurons in hypothalamus with Golgi staining during anestrus.  Find the 

general region of the A15 using anatomical landmarks locating neurons that are active 

with fos labeling.  Examine only the Golgi stained neurons that are also labeled with fos 

in the A15 area using Neurolucida to elucidate their structure.  Then repeat with breeding 

season animals examining Golgi stained neurons in the general A15 area.  This addresses 

the issue of whether the change in morphology is due to a change in TH level.  Also 

using fos labeled cells allows morphology to be analyzed in cells that are active during 

anestrus.  Studies to determine what types of synapses are being formed on the A15 

neurons would also be worth doing.  

In summary, during the non-breeding season estrogen inhibits LH pulse frequency 

preventing the preovulatory estradiol rise and thus inhibiting ovulation.  This increased 

estrogen sensitivity during the non-breeding season is mediated through the A15 

dopaminergic neurons, which do not contain estrogen receptors.  Estrogen acts on the 

neurons in the vmPOA that may then act on the A15 neurons.  These experiments tested 
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whether there is a change in contacts and neuronal morphology during the breeding 

season to non-breeding season transition.  There was an increase in contacts on dendrites 

during the non-breeding season and increases in dendrite mean length, mean surface area, 

and mean number of bifurcations.  It could be hypothesized that this increase in dendrite 

length that causes an increase in contacts results in an increase innervation of the A15 

from the vmPOA, which activates the A15.  This then induces the inhibition of GnRH 

neurons in the ME.  Thyroid hormone is essential to the reproductive transition from the 

non-breeding season to the breeding season.  Therefore, thyroid hormone was examined 

in experiment 2 to determine if it played a role in the plastic changes seen in experiment 

1.  There was an increase in mean dendrite length in thyroid intact and T4 treated animals 

compared to the thyroidectomized animals.  There was also an increase in mean surface 

area of the dendrites in the T4 treated group compared to the thyroid intact and 

thyroidectomized groups.  The hypothesis then becomes that thyroid hormones allow or 

modulate the alteration in A15 neurons that result in the increase in contacts.        

     

 

 

 

 

 

 

 

 



 70 
 
 

LITURATURE CITED 

Anderson GM, Connors JM, Hardy SL, Miroslav V, Goodman RL.  2001.  Oestradiol 
microimplants in the ventromedial preoptic area inhibit secretion of luteinizing hormone 
via dopaminergic neurons in anoestrous ewes.  Unplublished. 
 
Beccavin C, Malpaux B, Tillet Y.  1998.  Effect of oestradiol and photoperiod on TH 
mRNA concentrations in A15 and A12 dopamine cell groups in the ewe.  Journal of 
Neuroendocrinology. 10:59-66. 
 
Bertrand F, Thiery J-C, Picard S, Malpaux B. 1999.  Implication of D2-like dopaminergic 
receptors in the median eminence during the establishment of long-day inhibtion of LH 
secretion in the ewe.  Journal of Endocrinology 163: 243-254. 
 
Bittman EL, Dempsey RJ, Karsch FJ. 1983. Pineal melatonin secretion drives the 
reproductive response to daylength in the ewe.  Endocrinology. 113: 2276-2283. 
 
Bittman EL, Karsch FJ, Hopkins JW. 1983. Role of the pineal gland in ovine 
photoperiodism: regulation of seasonal breeding and negative feedback effects of 
estradiol upon luteinizing hormone secretion. Endocrinology. 113: 329-336. 
 
Bittman EL, Weaver DR. 1990. The distribution of melatonin binding sites in 
neuroendocrine tissues of the ewe.  Bio of Rep. 43: 986-993. 
 
Boukhliq R, Goodman RL, Berriman SJ, Adrian B, Lehman MN. 1999.  A subset of 
gonadotropin-releasing hormone neurons in the ovine medial basal hypothalamus is 
activated during increased pulsatile luteinizing hormone secretion.  Endocrinology.  140: 
5929-5935. 
 
Bronson FH.  1989.  Mammals: strategies and perspectives In Mammalian Reproductive 
Biology .  pg. 1-7. 
 
Calza L, Aloe L, Giardino L.  1997.  Thyroid hormone-induced plasticity in the adult rat 
brain.  Brain Research Bulletin.  44: 549-557. 
 
Clarke IJ, Cummins JT. 1982.  The temporal relationship between gonadotropin releasing 
hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. 
Endocrinology. 111: 1737-9. 
 
Clarke IJ, Lincoln GA. 1994. Photoperiodically-induced cycles in the secretion of 
prolactin in hypothalamo-pituitary disconnected rams: evidence for translation of the 
melatonin signal in the pituitary gland. Journal of Neuroendocrinology. 6: 251-260. 
 
Clarke IJ.  1987.  Control of GnRH secretion.  J. Reprod. Fert.  34:1-8 
 



 71 
 
 

Clower RP, Nixdorf BE, DeVoogd TJ.  1989.  Synaptic plasticity in the hypoglossal 
nucleus of female canaries: structural correlates of season, hemisphere, and testosterone 
treatment.  Behavioral and Neural Biology.  52:  63-77. 
 
Dahl GE, Evans NP, Suzanne MM, Karsch FJ.  1994.  The thyroid gland is required for 
reproductice neuroendocrine responses to photoperiod in the ewe.  Endocrinology. 
135:10-15. 
 
Dahl GE, Evans NP, Thrun LA, Karsch FJ.  1995.  Thyroxine is permissive to seasonal 
transitions in reproductive neuroendocrine activity in the ewe.  Biology of Reproduction.  
52: 690-696. 
 
DeVoogd T, Nottebohm F.  1981.  Gonadal hormones induce dendritic growth in the 
adult avian brain.  Science.  214: 202-204. 
 
DeVoogd TJ, Nixdorf B, Nottebohm F.  1985.  Synaptogenesis and changes in synaptic 
morphology related to acquisition of a new behavior.  Brain Research.  329: 304-308. 
 
DeVoogd TJ, Nottebohm F.  1981.  Sex differences in dendritic morphology of a song 
control nucleus in the canary: a quantitative golgi study.  The Journal of Comparative 
Neurology.  196: 309-316.  
 
Ferin M, VanVugt D, Wardlow S.  1984.  The hypothalamic control of the menstrual 
cycle and the role of endogenous opioid peptides.  Recent Prog Horm Res.  40:  441-85  
 
Fernandez-Galaz MC, Morschl E, Chowen JA, Torres-Aleman I, Naftolin F, Garcia-
Segura LM.  1997. Role of astroglia and insulin-like growth factor-I in gonadal hormone-
dependent synaptic plasticity.  Brain Research Bulletin.  44:525-531. 
 
Follett BK, Potts C.  1990.  Hypothyroidism affects reproductive refractoriness and the 
seasonal oestrous period inWelsh Mountain ewes.  Journal of Endocrinology.  127: 103-
109. 
 
Gayrard V., Malpaux B, Tillet Y, Thiery JC.  1994.  Estradiol increases tyrosine 
hydroxylase activity of the A15 nucleus dopaminergic neurons during long days in the 
ewe.  Bio of Rep.  50: 1168-1174. 
 
Gilad GM, Reis DJ.  1979.  Collateral sprouting in central mesolimbic dopamine neurons; 
biochemical and immunocytochemical evidence of changes in the activity and 
distribution of tyrosine hydroxylase in terminal fields and in cell bodies of A10 neurons.  
Brain Research.  160:17-36. 
 
Goodman RL, Karsch FJ. 1980. Pulsatile secretion of luteinizing hormone; differential 
suppression by ovarion steroids. Endocrinology. 107: 1286-90. 
 



 72 
 
 

Goodman RL, Knobil E.  1981.  The sites of ovarian steroids in the regulation of LH 
secretion.  Neuroendocrinology.  32: 57-63. 
 
Goodman RL, Meyer SL.  1984.  Effects of pentobarbital anesthesia on tonic luteinizing 
hormone secretion in the ewe: evidence for active inhibition of luteinizing hormone in 
anestrus.  Bio of Rep. 30: 374-381. 
 
Goodman RL, Robinson JE, Kendrick KM, Dyer RG.  1995.  Is the inhibitory action of 
estradiol on luteinizing hormone pulse frequency in anestrous ewes mediated by 
noradrenergic neurons in the preoptic area?  Neuroendocrinology.  61: 284-92. 
 
Goodman RL, Thiery J-C, Delaleu B, Malpaux B.  2000.  Estradiol increases multiunit 
electrical activity in the A15 area of ewes exposed to inhibitory photoperiods. Bio of Rep. 
63: 1352-1357. 
 
Goodman RL.  1999. Seaonal Reproduction, Mammals In Enyclopedia of Reproduction.  
4:341-351. 
 
Gottesfeld Z, Garcia CJ, Chronister RB.  1987.  Perinatal, not adult, hypothyroidism 
suppresses dopaminergic axon sprouting in the deafferented olfactory tubercle of adult 
rat.  Journal of Neuroscience Research.  18: 568-573. 
 
Havern RL, Whisnant CS, Goodman RL.  1994. Dopaminergic structures in the ovine 
hypothalamus mediating estradiol negative feedback in anestrous ewes.  Endocrinology.  
134: 1905-13. 
 
Havern RL, Whisnant CS, Goodman RL. 1991. Hypothalamic sites of catecholamine 
inhibtion of luteinizing hormone in the anestrous ewe.  Bio of Rep.  44: 476-482. 
. 
Herbison AE, Robinson JE, Skinner DC.  1993.  Distribution of Estrogen Receptor-
immunoreactive cells in the preoptic area of the ewe: Co-localization with glutamic acid 
decarboxylase but not luteinizing horomone-releasing hormone.  Neuroendocrinology.  
57: 751-759. 
 
Hill KM, DeVoogd TJ.  1991.  Altered daylength affects dendritic structure in a song 
related brain region in red-winged blackbirds.  Behavioral and neural biology.  56:  240-
250. 
 
Jansen HT, Auyung E, Stefanovic I, Lehman MN, Goodman RL.  1997. The neural 
afferents and efferents of the hypothalamic A15 region in the ewe: combined anterograde 
and retrograde tract-tracing.  Annual Meeting of the Society for Neuroscience. 
 
Jansen HT, Cutter CT, Anderson GM, Hardy SL, Lehman MN, Goodman RL.  1999.  
Restricted distribution of estrogen receptor-α containing afferents to the hypothalamic 
A15 region in the ewe.  Annual Meeting of the Society for Neuroscience. 
 



 73 
 
 

Karsch FJ, Bittman EL, Foster DL, Goodman RL, Legan SJ, Robinson JE.  1984.  
Neuroendocrine basis of seasonal reproduction.  Recent Prog Horm Res.  40: 185-252. 
 
Karsch FJ, Dahl GE, Hachigan TM, Thrun LA.  1995.  Involvement of thyroid hormones 
in seasonal reproduction.  Journal of Reproduction and Fertility Supplement.  49: 409-
422. 
 
Karsch FJ, Foster DL, Bittman EL, Goodman RL. 1983. A role for estradiol in enhancing 
luteinizing hormone pulse frequency during the follicular phase of the estrous cycle of 
sheep. Endocrinology. 113: 1333-9 
. 
Karsch FJ, Goodman RL, Legan SJ. 1980. Feedback basis of seasonal breeding: test of an 
hypothesis. J. Reprod. Fert. 58: 521-535. 
 
Karsch FJ, Robinson JE, Woodfill CJ, Brown MB.  1989.  Circannual cycles of 
luteinizing hormone and prolactin secretion in ewes during prolonged exposure to a fixed 
photoperiod: evidence for an endogenous reproductive rhythm.  Bio of Rep.  41: 1034-
1046. 
 
Kim S-J, Foster DL, Wood RI.  1999.  Prenatal testosterone masculinizes synaptic input 
to gonadotropin-releasing hormone neurons in sheep.  Bio of Rep.  61: 599-605. 
 
Kokoris GJ, Lam NY, Michel F, Silverman A, Gibson MJ. 1988. Translated 
gonadotropin-releasing hormone neurons promote pulsatile luteinizing hormone secretion 
in congenitally hypogonadal (hpg) male mice. Neuroendocrinology. 48: 45-52. 
 
Krsmanovic LZ, Stanko SS, Merelli F, Dufour SM, Virmani MA, Catt KJ.  1992.  
Calcium signaling and episodic secretion of gonadotropin-releasing hormone in 
hypothalamic neurons. Proc. Natl. Acad. Sci. 89: 8462-66. 
 
Legan SJ, Karsch FJ, Foster DL. 1977. The endocrine control of seasonal reproductive 
function in the ewe: marked change in response to the negative feedback action of 
estradiol in luteinizing hormone secretion. Endocrinology. 101: 818-824. 
 
Legan SJ, Karsch FJ. 1979. Neuroendocrine regulation of the estrous cycle and seasonal 
breeding in the ewe. Biol Reprod. 20: 74-85. 
 
Lehman MN, Durham DM, Jansen HT, Adrian B, Goodman RL. 1996. Dopaminergic 
A14/A15 neurons are activated during estradiol negative feedback in anestrous, but not 
breeding season, ewes. Endocrinology. 137: 4443-50. 
 
Lehman MN, Goodman RL, Karsch FJ, Jackson GL, Berriman SJ, Jansen HT.  The 
GnRH system of seasonal breeders: anatomy and plasticity.  Brain Research Bulletin.  44: 
445-457. 
 



 74 
 
 

Lehman MN, Karsch FJ.  1993.  Do gonadotropin-releasing hormone, tyrosine 
hydroyxylase-, and β-endorphin-immunoreactive neurons contain estrogen receptors? A 
double-label immunocytochemical study in the Suffolk ewe.  Endocrinology.  133: 887-
895. 
 
Lehman MN, Robinson JE, Karsch FJ, Silverman AJ.  1986.  Immunocytochemical 
localization of luteinizing hormone-releasing hormone (LHRH) pathways in the sheep 
brain during anestrus and the mid-luteal phase of the estrous cycle.  J Comp Neurol.  244: 
14-35. 
 
Levine JE, Pau KY, Ramirez VD, Jackson GL. 1982. Simultaneous measurement of 
luteinizing hormone-releasing hormone and luteinizing hormone release in 
unanesthetized, ovariectomized sheep. Endocrinology. 111: 1449-55. 
 
Lincoln GA, Maeda KI. 1992. Reproductive effects of placing micro-implants of 
melatonin in the mediobasal hypothalamus and preoptic area in rams. Journal of Endo. 
132: 201-215. 
 
Lincoln GA, Short RV.  1980.  Seasonal breeding: nature’s contraceptive.  Recent Prog 
Horm Res.  36: 1-52. 
 
Malpaux B, Daveau A, Maurice F, Gayrard V, Thiery J. 1993. Short-day effects of 
melatonin on luteinizing hormone secretion in the ewe: evidence for central sites of 
action in the mediobasal hypothalamus. Bio of Rep. 48: 752-760. 
 
Malpaux B, Daveau A, Maurice F, Locatelli A, Thiery J-C. 1994. Evidence that 
melatonin bininding sites in the pars tuberalis do not mediate the photoperiodic actions of 
melatonin on LH and prolactin secretion in the ewes.  Journal of Reproduction and 
Fertility. 101: 625-632. 
 
Malpaux B, Deveau A, Maurice-Mandon F, Duarte G, Chemineau P. 1998. Evidence that 
melatonin acts in the premammillary hypothalamic area to control reproduction in the 
ewe: presence of binding sites  and stimulation of luteinizing horomone secretion by in 
situ microimplant delivery. Endocrinology. 139: 1508-1516. 
 
Malpaux B, Robinson JE, Wayne NL, and Karsch FJ. 1989. Regulation of the onset of 
the breeding season of the ewe: importance of long days and of an endogenous 
reproductive rhythm.  Journal of Endocrinology. 122: 269-278. 
 
Malpaux B, Skinner DC, Maurice F.  1995. The ovine pars tuberalis does not appear to be 
targeted by melatonin to modulate luteinizing hormone secretion, but may be important 
for prolactin release.  Journal of Neuroendocrinology.  7: 199-206. 
 
Malpaux B, Viguie C, Skinner DC, Thiery JC, Pelletier J, Chemineaau P. 1996. Seasonal 
breeding in sheep: mechanism of action of melatonin. Animal Reproduction Science. 42: 
109-117.   



 75 
 
 

 
Malpaux B, Wayne NL, Karsch FJ. 1988. Termination of the breeding season in the 
Suffolk ewe: involvement of an endogenous rhythm of reproduction. Bio of Rep. 39: 
254-263 
. 
Mandell JW, Czernik AJ, DeCamilli P, Greegard P, Townes-Anderson E. 1992.  
Differential expression of synapsin I and II among rat retinal synapses.  Journal 
Neuroscience. 12: 1736-49. 
 
Marler P, Waser MS.  1977.  Role of auditory feedback in canary song development.  J 
Comp Physiol Psychol. 91: 8-16. 
 
Meyer SL, Goodman RL.  1985.  Neurotransmitters involved in mediating the steroid-
dependent suppression of pulsatile luteinizing hormone secretion in anestrous ewes: 
effects of receptor antagonists.  Endocrinology.  116: 2054-2061. 
 
Moenter SM, Caraty A, Locatelli A, Karsch FJ.  1991.  Pattern of gonatropin-releasing 
hormone (GnRH) secretion leading up to ovulation in the ewe: existence of a 
preovulatory GnRH surge.  Endocrinology 192: 1375-1384. 
 
Moeneter SM, Woodfill CJ, Karsch FJ.  1991.  Role of the thyroid gland in seasonal 
reproduction: thyroidectomy blocks seasonal suppression of reproduction neuroendocrine 
activity in ewes.  Endocrinology. 128:  1337-44. 
 
Moore RY, Bernstein ME.  1989.  Synaptogenesis in the rat suprachiasmatic nucleus 
demonstrated by electron microscopy and synapsin I immunorectivity.  Journal 
Neuroscience.  9: 2151-62. 
 
Naftolin F, Leranth C, Perez J, Garcia-Segura LM. 1993.  Estrogen induces synaptic 
plasticity in adult primate neurons.  Neuroendocrinology.  57: 935-939. 
 
Nicholls TJ, Follett BK, Goldsmith AR, Pearson H. 1988b.  Possible homologies between 
photorefractoriness in sheep and birds: the effect of thyroidectomy on the length of the 
ewe’s breeding seaon.  Reproduction, Nutrition, Development.  28: 375-385. 
 
Olmos G, Naftolin F, Perez J, Tranque PA.  1989.  Synaptic remodeling in the rat arcuate 
nucleus during the estrous cycle.  Neuroscience.  32: 663-667. 
 
Parkinson TJ,  Follet BK. 1994.  Effect of thyroidectomy upon seasonality in rams.  
Journal of Reproduction and Fertility.  101: 51-58. 
 
Plant TM, Perera AD.  1997.  Ultrastructural studies of neuronal correlates of the pubertal 
reaugmentation of hypothalamis gonadotropin-releasing hormone (GnRH) release in the 
Rhesus Monkey.  The Journal of Comparative Neurology.  385: 71-82. 
 



 76 
 
 

Pau KJ, Jackson GL.  1985.  Effect of frontal hypothalamic deafferentation on 
photoperiodic induced changes of luteinizing hormone secretion in the ewe.  
Neuroendocrinology.  41: 72-8. 
 
Reviers MM, Ravault J, Tillet Y, Pelletier J. 1989. Melatonin binding sites in the sheep 
pars tuberalis.  Neuroscience Letters. 100: 89-93. 
 
Robinson JE, Karsch FJ.  1987.  Photoperiodic history and a changing melatonin pattern 
can determine the neuroendocrine response of the ewe to day length.  J Reprod Fertil.  80: 
159-65. 
 
Robinson JE, Wayne NL, Karsch FJ. 1985. Refractoriness to inhibitory day length 
initiates the breeding season of the Suffolk ewe. Bio of Rep. 32: 1024-1030. 
 
Skinner DC, Malpaux B, Delaleu B, Caraty A. 1995. Luteinizing hormone (LH)-r 
eleasing hormone in third ventricular cerebrospinal fluid of the ewe: correlation with LH 
pulses and the LH surge. Endocrinology. 136: 3230-37. 
 
Slotkin TA, Slepetis RJ.  1984.  Obligatory role of thyroid hormones in development of 
peripheral sympathetic and central nervous system catecholaminergic neurons: effects of 
propylthiouracil-induced hypothyroidism on transmitter levels, turnover, and release.  J 
Pharmacol Exp Ther. 230: 53-61. 
 
Smith GT, Brenowitz EA, Wingfield JC.  1997.  Roles of photoperiod and testosterone in 
seasonal plasticity of the avian song control system.  J Neurobiol.  32: 426-442. 
 
Stefanovic I, Adrian B, Jansen HT, Lehman MN, Goodman RL.  2000.  The ability of 
estradiol to induce fos expression in a subset of estrogen receptor-α-containing neurons 
in the preoptic area of the ewe depends on reproductive status.  Endocrinology.  141: 
190-196. 
 
Terasawa EI, Keen KL, Mogi K, Claude P. 1999. Pulsatile release of luteinizing hormone 
releasing hormone (LHRH) in cultured LHRH neurons derived from the embryonic 
olfactory placode of the Rhesus Monkey. Endocrinology. 140: 1432-41. 
 
Thiery JC, Gayrard V, Le Corre S, Viguie C, Martin GB, Cheminaeu P, Malpaux B.  
1995. Dopaminergic control of LH secretion by the A15 nucleus in anestrous ewes. J. 
Reprod. Fertil., Suppl., 49:285-296. 
 
Thiery JC, Martin GB, Tillet Y, Caldani M, Quentin M, Jamain C, Ravault JP.  1989.  
Role of hypothalamic catecholamines in the regulation of luteinizing hormone and 
prolactin secretion in the ewe during seasonal anestrus.  Neuroendocrinology.  49: 80-87. 
 
Thrun LA, Dahl GE, Evans NP, Karsch FJ.  1993.  Involvement of thyroid hormone in 
the transition to anestrus in the ewe: Is there a ‘window’ of time that thyroid hormone act 



 77 
 
 

on the reproductive neuroendocrine axis?  Journal of Reproduction and Fertility Abstract 
Series 11 Abstract 11 
 
 Tillet Y, Batailler M, Krieger-Poullet M, Thibault J. 1990.  Presence of dopamine-
immunoreactive cell bodies in the catecholaminergic A15 of the sheep brain.  
Histochemistry. 93: 327-333. 
 
Tillet Y, Thibault J.  1993.  Morphological relationships between tyrosine hydroxylase-
immunoreactive neurons and dopamine-β−hydroxylase-immunoreactive fibres in 
dopamine cell group A15 of the sheep.  Journal of Chemical Neuroanatomy.  6:69-78. 
 
Tillet Y, Thibault J.  1989.  Catecholamine-containing neurons in the sheep brainstem 
and ciencephalon:  immunohistochemical study with tyrosine hydroxylase (TH) and 
dopamine beta-hydroxylase (DBH) antibodies.  J Comp Neurol.  290: 69-104.  
 
Tortonese DJ, Lincoln GA. 1994.  Photoperiodic modulation of the dopaminergic control 
of pulsatile LH secretion in sheep.  Journal of Endocrinology. 143: 25-32. 
 
Tortonese DJ, Lincoln GA. 1995. Effects of melatonin in the mediobasal hypothalamus 
on the secretion of gonadotrophins in sheep: role of dopaminergic pathways.  Journal of 
Endocrinology. 146: 543-552. 
 
Viguie C, Battaglia DF, Krasa HB, Thrun LA, Karsch FJ. 1999.  Thyroid hormones act 
primarily within the brain to promote the seasonal inhibtion of luteinizing hormone 
secretion in the ewe.  Endocrinology.  140: 1111-1117. 
 
Viguie C, Caraty A, Locatelli A, and Malpaux B. 1995. Regulation of LHRH secretion 
by melatonin in the ewe. I. Simultaneous delayed increase in LHRH and LH pulsatile 
secretion. Biol. Reprod. 52: 1114-1120. 
 
Viguie C, Jansen HT, Glass JD, Watanabe M, Billings HJ, Coolen L, Lehman MN, and 
Karsch FJ.  2001.  Potential for polysialylated form of neural cell adhesion molecule-
mediated neuroplasticity within the gonadotropin-releasing hormone neurosecretory 
system of the ewe.  Endocrinology.  142: 1317-1324. 
 
Wayne NL, Malpaux B, Karsch FJ.  1990.  Photoperiodic requirements for timing onset 
and duration of the breeding season in the ewe.  Journal of Comparative Physiology.  
166:835-842. 
 
Wayne NL, Malpaux B, Karsch FJ. 1988. How does melatonin code for day length in the 
ewe: duration of nocturnal melatonin release or coincidence of melatonin with a light-
entrained sensitive period. Bio of Rep. 39:66-75. 
 
Wayne NL, Malpaux B, Karsch FJ. 1990. Photoperiodic requirements for timing onset 
and duration of the breeding season of the ewe: synchronization of an endogenous 
rhythm of reproduction. J Comp Physiol. 166: 835-842. 



 78 
 
 

 
Webster JR, Moenter SM, Barrell GK, Lehman MN, and Karsch FJ.  1991.  Role of the 
thyroid gland in seasonal reproduction: III. Thyroidectomy blocks seasonal suppression 
of GnRH secretion in sheep.  Endocrinology. 129. 1635-1643. 
 
Whisnant CS, Goodman RL. 1994.  Effect of anterior hypothalamic deafferentation on 
the negative feedback of gonadal steroids on luteinizing hormone pulse frequency in the 
ewe.  Domestic Animal Endocrinology.  11:151-159. 
 
Whisnant CS,  Havern RL, Goodman RL.  1991.  Endogenous opioid suppression of 
luteinizing hormone pulse frequency and amplitude in the ewe:  hypothalamic sites of 
action.  Neuroendocrinology.  54: 587-593. 
 
Witkin JW, Ferin M, Popilskis SJ, Silverman AN.  1991.  Effects of gonadal steroids on 
the ultrastructure of GnRH neurons in the Rhesus Monkey: synaptic input and glial 
apposition.  Endocrinology.  129: 1083-1092. 
 
Woodfill C, Wayne NL, Moenter SM, Karsch FJ. 1994. Photoperiodic synchronization of 
a circannual reproductive rhythm in sheep: identification of season-specific time cues. 
Bio of Rep. 50: 965-976. 
 
Woodfill CJ, Robinson JE, Malpaux B, Karsch FJ. 1991. Synchronization of the 
circannual reproductive rhythm of the ewe by discrete photoperiodic signals.  Bio of Rep. 
45: 110-121. 
 
Xiong J-J, Karsch FJ, Lehman MN.  1997.  Evidence for seasonal plasticity in the 
gonadotropin-releasing hormone (GnRH) system of the ewe: changes in synaptic inputs 
onto GnRH neurons.  Endocrinology.  138:1240-50. 
 
 
 
 
       
         

  

 
 
 
 
 
 
 
 
 



 79 
 
 

 
 
 
 
 

Curriculum Vita 
 

Van Lee Adams 
 
Date and Place of Birth: 
 
May 15, 1977.  Dearborn, MI. 
 
 
 
 
Education: 
 
Bachelors of Art in Biology.  West Virginia University, Morgantown, WV.  1999. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Seasonal plasticity of A15 dopaminergic neurons in the ewe
	Recommended Citation

	Cell Body
	Dendrites
	Contacts on Neurons
	Cell Body
	Dendrites
	Contacts on Neurons
	There was not a significant change (P>0.05) in total contact number on neurons (both dendrites and somata) with changes in thyroid hormone or changes in estrogen treatment (Figure 19).  There was a significant change (P<0.05) in contacts on dendrites whe


