
Graduate Theses, Dissertations, and Problem Reports

2019

Multimodal Approach for Malware Detection Multimodal Approach for Malware Detection

Jarilyn M. Hernandez Jimenez
West Virginia University, jhernan7@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Hernandez Jimenez, Jarilyn M., "Multimodal Approach for Malware Detection" (2019). Graduate Theses,
Dissertations, and Problem Reports. 3832.
https://researchrepository.wvu.edu/etd/3832

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F3832&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=researchrepository.wvu.edu%2Fetd%2F3832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/3832?utm_source=researchrepository.wvu.edu%2Fetd%2F3832&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Multimodal Approach for Malware

Detection

Jarilyn Marie Hernández Jiménez

Dissertation submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Computer Science

Katerina Goseva-Popstojanova, Ph.D., Chair
Vinod Kulathumani, Ph.D.

Roy S. Nutter, Ph.D.
Stacy Prowell, Ph.D.
Yanfang Ye, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2019

Keywords: malware detection, power consumption, network traffic data, system
logs, code-based static data, multimodal learning, feature level fusion, decision

level fusion

Copyright 2019 Jarilyn Marie Hernández Jiménez

Abstract

Multimodal Approach for Malware Detection

Jarilyn Marie Hernández Jiménez

Although malware detection is a very active area of research, few works were
focused on using physical properties (e.g., power consumption) and multimodal
features for malware detection. We designed an experimental testbed that allowed
us to run samples of malware and non-malicious software applications and to col-
lect power consumption, network traffic, and system logs data, and subsequently
to extract dynamic behavioral-based features. We also extracted code-based static
features of both malware and non-malicious software applications. These features
were used for malware detection based on: feature level fusion using power con-
sumption and network traffic data, feature level fusion using network traffic data
and system logs, and multimodal feature level and decision level fusion.

The contributions when using feature level fusion of power consumption and
network traffic data are: (1) We focused on detecting real malware using the ex-
tracted dynamic behavioral features (both power-based and network traffic-based)
and supervised machine learning algorithms, which has not been done by any of
the prior works. (2) We ran a large number of machine learning experiments,
which allowed us to identify the best performing learner, DC voltage rails that led
to the best malware detection performance, and the subset of features that are the
best predictors for malware detection. (3) The comparison of malware detection
performance was done using a comprehensive set of metrics that reflect different
aspects of the quality of malware detection.

In the case of the feature level fusion using network traffic data and system
logs, the contributions are: (1) Most of the previous works that have used network
flows-based features have done classification of the network traffic, while our focus
was on classifying the software running in a machine as malware and non-malicious
software using the extracted dynamic behavioral features. (2) We experimented
with different sizes of the training set (i.e., 90%, 75%, 50%, and 25% of the data)
and found that smaller training sets produced very good classification results. This
aspect of our work has a practical value because the manual labeling of the training
set is a tedious and time consuming process.

In this dissertation we present a multimodal deep learning neural network that
integrates different modalities (i.e., power consumption, system logs, network traf-
fic, and code-based static data) using decision level fusion. We evaluated the
performance of each modality individually, when using feature level fusion, and
when using decision level fusion. The contributions of our multimodal approach
are as follow: (1) Collecting data from different modalities allowed us to develop a
multimodal approach to malware detection, which has not been widely explored by
prior works. Even more, none of the previous works compared the performance of
feature level fusion with decision level fusion, which is explored in this dissertation.

(2) We proposed a multimodal decision level fusion malware detection approach
using a deep neural network and compared its performance with the performance of
feature level fusion approaches based on deep neural network and standard super-
vised machine learning algorithms (i.e., Random Forest, J48, JRip, PART, Naive
Bayes, and SMO).

iv

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor Dr. Katerina

Goseva-Popstojanova for her continuous support during my PhD journey and for

her patience, motivation, and immense knowledge. I could not have imagined

having a better advisor and mentor.

I would also like to thank the rest of my dissertation committee: Dr. Vinod

Kulathumani, Dr. Roy Nutter, Dr. Stacy Prowell, and Dr. Yanfang Ye for their

encouragement and for the hard questions which helped me to widen my research

from various perspectives.

My sincere thanks go to Dr. Jeffrey A. Nichols and again to Dr. Stacy Prowell

from Oak Ridge National Laboratory for their support with the initial hardware

and software configuration of the experimental machine. Also, I would like to

thanks my lab mates, Lingwei Chen, Mohammad Ahmad, and Yasser Alshehri, for

their valuable time when discussing ideas and for their comments which helped me

to strengthened the research.

Last but not the least, I would like to thank my family: my parents, my siblings,

and my grandparents for supporting me throughout writing this dissertation. I

will always be grateful for everything they have done for me. Specially, I want

to dedicate this dissertation to my grandma who sadly passed away while I was

writing it. This is for you my sweet angel!

This work was funded in part by the National Science Foundation under the

grant CNS-1618629 and by the Lane Graduate Fellowship.

v

Contents

List of Figures viii

List of Tables x

List of Abbreviations xii

1 Introduction 1
1.1 Background & Motivation . 1
1.2 Contributions . 4
1.3 Main Findings . 5
1.4 Dissertation Overview . 7

2 Background on Malware 8
2.1 What is Malware? . 8
2.2 Common Malware Types . 9
2.3 Why Cyber Criminals use Malware? 11
2.4 Cyber-attacks Caused by Malware 12

3 Literature Review 16
3.1 Malware Detection using Behavioral-based Features 17

3.1.1 Power-based Features . 18
3.1.2 Network Traffic-based Features 25
3.1.3 System logs-based Features 29

3.2 Malware Detection Using Code-Based Static Features 32
3.3 Multimodal Learning for Malware Detection 35

3.3.1 Feature Level Fusion . 35
3.3.2 Decision Level Fusion . 36

4 Preliminary Experimental Set-up & Proof of Concept Study 39
4.1 Initial Experimental Set-up . 39

4.1.1 Hardware Configuration . 39
4.1.2 Software Configuration . 45

4.2 Data Collection & Analysis . 47
4.3 Preliminary Results . 49

4.3.1 +3.3V Rails . 50
4.3.2 +5V Rails . 50

Contents vi

4.3.3 +12V Rails on the Motherboard 52
4.3.4 +12V CPU Rails . 55

5 Experimental Set-up & Data Collection 57
5.1 Testbed Design & Development . 57

5.1.1 Hardware & Software Configuration 57
5.2 Data Collection Set-up . 58

5.2.1 Dynamic Behavioral Data Collection 58
5.2.2 Code-based Static Data Collection 61

5.3 Malicious and Non-malicious Applications 61
5.3.1 Malicious Software Selection 61
5.3.2 Non-malicious Software Selection 63

6 Data Pre-processing & Feature Extraction 65
6.1 Dynamic Behavioral-based Features 65

6.1.1 Power Consumption . 66
6.1.2 Network Traffic . 67
6.1.3 System logs . 70

6.2 Code-based Static Features . 71

7 Machine Learning Algorithms & Performance Metrics 75
7.1 Background on Standard Machine Learning Algorithms 75
7.2 Performance Metrics . 77

8 Malware Detection Using Power & Network Traffic Data 79
8.1 Approach & Contributions . 79
8.2 Results . 81

8.2.1 RQ1: Learners Analysis Performance 81
8.2.2 RQ2: Voltage Rail Analysis 83
8.2.3 RQ3: Feature Level Fusion Using Power & Network Traffic

Data . 84
8.2.4 RQ4: Smallest Feature Set Without Performance Degradation 86

8.3 Summary of Findings . 88

9 Malware Detection using Network Traffic & System Logs 89
9.1 Approach & Contributions . 89
9.2 Results . 91

9.2.1 RQ1: Network Flows-based Features Performance 91
9.2.2 RQ2: Smallest Feature Set Without Performance Degradation 94
9.2.3 RQ3: Training Sets with Different Sizes 96

9.3 Summary of Findings . 97

10 Malware Detection Using All Modalities 98
10.1 Background on Artificial Neural Network 98
10.2 Background on Multimodal Learning 100

10.2.1 What is Multimodal Learning? 100

Contents vii

10.2.2 Multimodal Fusion . 101
10.2.3 Levels of Multimodal Fusion 101
10.2.4 Data Fusion Techniques . 103

10.3 Malware Detection Using Deep Neural Network with Decision Level
Fusion . 104
10.3.1 Approach & Contributions 104

10.4 Results . 108
10.4.1 RQ1: Results Using Each Modality Individually 108
10.4.2 RQ2: Results for Multimodal Feature Level Fusion 114
10.4.3 RQ3: Results for Multimodal Decision Level Fusion 117

10.5 Summary of Findings . 117

11 Threats to Validity 119

12 Conclusions & Future Work 121

List of Publications 124

References 126

Appendix A All features ranked using information gain 151

Appendix B Basic Statistics of F-score for each modality individu-
ally 158

Appendix C Basic Statistics for feature level and decision level fu-
sion 160

viii

List of Figures

2.1 System message after infecting the experimental machine with the
Locky ransomware . 11

4.1 USB-1608G DAQ . 41
4.2 Minigrabbers . 41
4.3 ATX connector . 42
4.4 First configuration . 42
4.5 Voltage and current sense PCB . 43
4.6 Second configuration . 43
4.7 +12V rails soldered on the same contact point in the PSU 44
4.8 Third configuration . 45
4.9 Wires attached to DAQ . 45
4.10 GUI for the “DAQ Monitoring Tool” software 46
4.11 Sequence of events during the data collection process 49
4.12 Power consumption for idle prior to infection vs. idle after infection

with Alureon for the +5V rails . 51
4.13 Power consumption for opening IE prior to infection vs. opening IE

after infection with Alureon for the +5V rails 52
4.14 Power consumption for booting prior to infection vs. booting after

infection with Alureon for the +12V rails on the motherboard . . . 53
4.15 Power consumption for idle prior to infection vs. idle after infection

and reboot with Alureon for the +12V rails on the motherboard . . 54
4.16 Power consumption for opening IE prior to infection vs. opening IE

after infection and reboot with Alureon for the +12V rails on the
motherboard . 54

4.17 Power consumption for opening IE prior to infection vs. opening IE
after infection with Alureon for the +12V CPU rails 56

5.1 Experimental set-up . 58

8.1 Mean F-score & mean G-score for each learner using only power-
based features for the +12V CPU rails 82

8.2 Mean F-score & mean G-score for each learner using only commonly
used network traffic-based features 82

List of Figures ix

8.3 Box plots of the Random Forest performance metrics for each of the
monitored voltage rails . 83

8.4 Box plots of Random Forest performance using only power-based
features from +12V CPU rails, only commonly used network traffic-
based features, and combined set of features 84

9.1 Box plots of the learners performance metrics for the baseline feature
vector . 92

9.2 Box plots of the learners performance metrics for all features 92

10.1 Deep neural network architecture for decision level fusion 105
10.2 Box plots of the learners performance metrics for the power-based

features . 110
10.3 Box plots of the learners performance metrics for the network traffic-

based features . 111
10.4 Box plots of the learners performance metrics for the system logs-

based features . 112
10.5 Box plots of the learners performance metrics for the code-based

static features . 113
10.6 Box plots of the learners performance when doing feature level fusion115

x

List of Tables

3.1 Most relevant works that used power-based features 20
3.2 Most relevant works that used network traffic-based features 28
3.3 Most relevant works that used system logs-based features 31

4.1 Voltage rail usage for a general-purpose computer 41

5.1 Malicious applications chosen for the experiments 62
5.2 Non-malicious applications chosen for the experiments 64

6.1 List of extracted power-based features 67
6.2 List of extracted commonly used network traffic-based features . . . 68
6.3 List of extracted network flows-based features 69
6.4 List of extracted system logs-based features 71
6.5 List of extracted headers-based features 73
6.6 List of extracted data directories-based features 73
6.7 List of extracted DLL dependencies-based features 74

7.1 Name and type of each learner used for this work 76

8.1 Basic statistics for power-based features 86
8.2 Basic statistics for network traffic-based features 86
8.3 Power-based and commonly used network traffic-based features

ranked using information gain . 87

9.1 Basics Statistics of G-score . 93
9.2 Basic Statistics of F-score . 93
9.3 Network traffic-based and system logs-based features ranked using

information gain . 95
9.4 J48 and PART performance on training sets with different sizes . . 96

10.1 Mean learners performance for each modality individually 109
10.2 Mean learners performance for feature level and decision level fusion 115

A.1 All features ranked using information gain 151

B.1 Basics Statistics of F-score using power-based features 158
B.2 Basics Statistics of F-score using network traffic-based features . . . 159

List of Tables xi

B.3 Basics Statistics of F-score using system logs-based features 159
B.4 Basics Statistics of F-score using code-based static features 159

C.1 Basics Statistics of Accuracy . 160
C.2 Basics Statistics of Recall . 161
C.3 Basics Statistics of Precision . 161
C.4 Basics Statistics of G-score . 161
C.5 Basic Statistics of F-score . 162
C.6 Basics Statistics of FPR . 162

xii

List of Abbreviations

AC Alternate Current

ACF Autocorrelation Function

AGP Accelerated Graphics Port

ANN Artificial Neural Network

API Application Programming Interface

ATX Advanced Technology eXtended

AV Anti-Virus

CFG Control Flow Graphs

COS Cosine Similarity

CNN Convolutional Neural Network

CPI Cycle Per Instruction

CPU Central Processing Unit

CSV Comma-Separated Value

DAQ Data Acquisition System

DC Direct Current

DDoS Distributed Denial of Service

DIMM Dual Inline Memory Module

DKOM Direct Kernel Object Manipulation

DLL Dynamically Linked Library

DNS Domain Name System

DoS Denial of Service

EPROM Erasable Programmable Read-Only

FN False Negatives

FP False Positives

FDR False Detection Rate

List of Abbreviations xiii

FPR False Positive Rate

GPU Graphics Processing Unit

HIDS Host-Based Intrusion Detection System

IAT Import Address Table

ICS Industrial Control System

IDS Intrusion Detection System

IQR Interquartile Range

IRC Internet Relay Chat

ISA Industry Standard Architecture

LDA Linear Discriminant Analysis

LKM Loadable Kernel Module

mA Milliampere

MBR Master Boot Record

MFCC Mel Frequency Cepstrum Coefficient

NIDS Network-Based Intrusion Detection System

OCP Overcurrent Protection

OS Operating System

P2P Peer-to-Peer

PC Personal Computer

PCA Principal Component Analysis

PCAP Packet Capture

PCB Print Circuit Board

PCI Peripheral Computer Interface

PCIe PCI Express

PDA Personal Digital Assistant

PE Portable Executable

PFP Power Fingerprinting

PLC Programmable Logic Controller

POS Point of Sales

PSU Power Supply Unit

ROM Read Only Memory

RBF Radial Basis Function

List of Abbreviations xiv

RNN Recurrent Neural Network

SCADA Supervisory Control and Data Acquisition

SDR Software Defined Radio

SIMM Single Inline Memory Module

SSD Sum of Square Distance

SSDT System Service Descriptor Table

SVM Support Vector Machine

TLS Thread Local Storage

TN True Negatives

TP True Positives

URL Uniform Resource Locator

WMI Windows Management Instrumentation

1

Chapter 1

Introduction

1.1 Background & Motivation

Malware is a malicious software that is developed and propagated by cyber crimi-

nals to launch a wide range of security attacks, such as stealing confidential data,

hijacking devices remotely to deliver massive spam emails, launching denial of

service attacks, identity theft, and so on [254]. A recent study [235] showed the

average time to resolve a malicious attack is fifty days and the average time to

resolve a ransomware attack is twenty three days. Moreover, the financial con-

sequences of cyber-attacks are worsening [235]. In order to protect the computer

systems against the evolving threat malware poses, malware detection is imperative

to both anti-malware industry and users.

Typically, malware uses polymorphic techniques to avoid detection. Polymor-

phic malware can bypass current detection methods by slightly changing the in-

structions of an existing malware sample. These new malware instances are called

variants. Although these variants appear to be different programs from the view-

point of anti-virus (AV) software, they exhibit similar functionality to their prede-

cessor. Consequently, these new malware variants can bypass traditional detection

methods until a pattern-matching for them can be identified and incorporated into

the detection system.

Today anti-malware industry uses data mining techniques to detect malware.

Chapter 1. Introduction 2

These techniques include two stages: feature extraction and classification. For

data collection and feature extraction, there are two methods used in the malware

detection research area: static and dynamic [300]. The static methods extract

features based on the analysis of the binary code of malware examples without

executing the malware. On the other side, dynamic methods require the execu-

tion of a given malware example, typically in a sandbox environment [305, 275],

and extract behavior-based features that represent the actions performed by the

malicious software.

Both static (code-based) and dynamic (behavioral-based) feature extraction

methods have their own advantages and disadvantages. Static methods contains

very useful information from the binary code and are easy to extract, but they

are prone to obfuscation techniques, which are commonly used by polymorphic

malware [270], and attacks based on packer-based encryption [116]. In the case of

dynamic methods, the main advantage is that they reflect the runtime behavior of

a program which is hard to obfuscate [286, 65], but the data collection process is

time and resource consuming [283, 143].

With respect to malware detection, nowadays it is typically conducted via the

implementation of machine learning methods. The basic idea behind machine

learning is to train a model based on a specific algorithm to perform the classifi-

cation (i.e., classify between malware and non-malicious software). The training

of the algorithm is done based on the input dataset, and the model that is built is

subsequently used to make classifications. The performance of malware detection

approaches depends critically on both the extracted features and the classification

techniques.

Considering the limitations of static and dynamic methods, in this dissertation

we explore the effectiveness of using different modalities for malware detection.

Our dataset was created by using features from multiple sources (i.e., code-based

static data, power consumption, system logs, and network traffic data). Each of

these sources is called a modality [79].

To collect the static data we used the PE Explorer software tool [51] and to

Chapter 1. Introduction 3

collect the dynamic behavioral data we used our testbed [171]. The power con-

sumption, system logs, and network traffic data were collected while the malware

and non-malicious applications ran separately, in a controlled sandbox environ-

ment, on the experimental machine. Thus, based on the place of analysis our

approach belongs to the commonly used remote server/cloud detection approach

(e.g., [305, 275, 300]). Power data was collected by using a Data Acquisition Sys-

tem (DAQ) which measured the power consumption from four different voltage

rails (+3.3V, +5V, +12V on the motherboard, and +12V CPU rails). System logs

were collected using CaptureBAT [32] and the network traffic data was collected

using Wireshark [42].

For our experiments we selected examples of recent malware with different

traits, such as viruses, worms, trojans, backdoors, rootkits, and ransomware. In

the case of the non-malicious software, we used some applications that are network

intensive and other that are CPU and memory usage intensive. Compared to

datasets from previous works [91, 201] which included power-based features for

malware detection, our dataset is the largest. Bridges et al. [91] used five malware

examples and Luckett et al. [201] used four malware examples, while here we are

using fifty one malware examples and twenty two non-malicious applications.

With respect to the classification stage of malware detection, we used the su-

pervised machine learning approach. To classify any unknown file, which could

be malicious or non-malicious, the classification process has two steps: model

construction (i.e., training) and model usage (i.e., testing). In the training step,

samples of labeled (i.e., known) malware and non-malicious software are provided

to the system and the feature vectors are extracted. Both the feature vectors and

the class label (i.e., malicious or non-malicious) are used to build a classification

model (or a classifier). During the model usage phase (i.e., testing), the classifier

generated in the training phase is used to classify a new collection of previously

not seen applications, which could be either malicious or non-malicious.

When multiple sources are integrated to perform an analysis the task is referred

to as multimodal fusion [74]. Two levels of multimodal fusion exist: feature level

Chapter 1. Introduction 4

and decision level. Feature level (also known as early fusion) is the most widely

used approach as it fuses all the extracted features into one feature vector, while

decision level fusion (also known as late fusion) fuses multiple modalities in the

semantic space [74].

1.2 Contributions

The contributions of this dissertation can be summarized as follows:

• We developed a testbed [171], which was used to collect power consump-

tion, network traffic data, and system logs when running samples of malware

and non-malicious software applications. Power data was collected by using

a Data Acquisition System (DAQ) which measured the power consumption

from four different voltage rails, while the system logs were collected using

CaptureBAT [32], and the network traffic data was collected using Wire-

shark [42].

• In addition to dynamic behavioral-based features (i.e., power-based features,

network traffic-based features, and system logs-based features) we extracted

code-based static features (i.e., headers-based, data directories-based, and

DLL dependencies-based features), which are typically used for malware de-

tection.

• With respect to power consumption-based features, we identified the best

performing DC voltage rails that led to the best malware detection per-

formance. Our dataset is the largest when we compared it to prior

works [91, 201] that used power-based features for malware detection.

• Most of the previous works that have used network flows-based fea-

tures [124, 120, 98, 61, 316, 73, 289, 117, 125, 84, 308, 204, 148, 149] have done

classification of the network traffic, while in this dissertation we focused on

classifying the software running in a machine as malware and non-malicious

Chapter 1. Introduction 5

software using the extracted code-based static and dynamic behavioral-based

features.

• We explored feature selection using information gain and identified the small-

est number of features sufficient to distinguish malware from non-malicious

software [156, 171]. We also experimented with different sizes of the train-

ing set (i.e., 90%, 75%, 50%, and 25% of the data) and found that smaller

training sets produced very good classification results [171]. This aspect of

our work has a practical value because the manual labeling of the training

set is a tedious and time consuming process.

• Collecting data from different sources allows us to develop a multimodal ap-

proach to malware detection, which has not been widely explored by the

prior works. Exceptions are [193, 184]. Kumar et al. [193] used two modal-

ities and Kim [184] divided the code-based static features into 7 feature

vectors, and used each of them as an individual modality. Both of the prior

works [193, 184] monitored mobile devices, while here we monitored a general-

purpose computer. None of these works compared the performance of feature

level with decision level fusion, which is explored in this dissertation.

• We proposed a multimodal decision level fusion malware detection approach

using a deep neural network. We compared its performance with the perfor-

mance of feature level fusion approaches based on deep neural network and

standard supervised machine learning algorithms (i.e., Random Forest, J48,

JRip, PART, Naive Bayes, and SMO). Kim et al. [184] used only code-based

static features, while we are combining behavioral-based with code-based

static features.

1.3 Main Findings

We first experimented with power consumption and network traffic data and used

ten supervised machine learning algorithms (i.e., J48, Random Forest, Random

Chapter 1. Introduction 6

Tree, OneR, Naive Bayes, JRip, PART, Multilayer Perceptron, SMO, and Decision

Table) for classification. The main findings include: (1) Among the best performing

learners, Random Forest had the highest F-score and close to the highest G-score.

(2) Power data extracted from the +12V CPU rails led to better performance than

power data from the other three voltage rails. (3) Using only power-based features

provided better performance than using only network traffic-based features; using

both types of features had the best performance. (4) Feature selection based on

information gain was used to identify the smallest numbers of features sufficient

to successfully distinguish malware from non-malicious software. The top eleven

features provided the same performance as using all 25 features. Five out of seven

power-based features were among the top eleven features.

We also experimented with network traffic data and system logs by evaluat-

ing four supervised machine learning algorithms (i.e., J48, Naive Bayes, Random

Forest, and PART) for malware detection and identified the best learner. Further-

more, we used feature selection on information gain to identify the smallest number

of features needed for classification and experimented with different training sets

of different sizes. The main findings include: (1) Adding network flows-based fea-

tures improved significantly the performance of malware detection. (2) J48 and

PART were the best performing learners, with the highest F-score and G-score

values. (3) Using J48, the top five features ranked by information gain attained

the same performance as when using all 88 features. In the case of PART, the top

fourteen features ranked by information gain led to the same performance as when

all 88 features were used. None of the system logs-based features were included in

these two models. (4) The classification performance when training on 75% of the

data was comparable to training on 90% of the data. As little as 25% of the data

can be used for training at an expense of somewhat higher, but not very signifi-

cant performance degradation (i.e., less than 7% for F-score and 6% for G-score

compared to when 90% of the data were used for training).

In addition, we explored the effectiveness of integrating all four modalities (i.e.,

power consumption, network traffic data, system logs, and code-based static data)

Chapter 1. Introduction 7

for malware detection by using a deep learning neural network. To evaluate the

performance of our multimodal approach, we conducted various experiments. We

compared the performance of our multimodal fusion approach with each modality

individually and to other learners (i.e., Random Forest, J48, JRip, PART, Näıve

Bayes, and SMO) when using feature level fusion. Furthermore, we compared

the performance of our deep learning neural network when using feature level and

decision level fusion. The main findings include: (1) When using multimodal

feature level fusion, the performance of the deep neural network was worse than

Random Forest, J48, JRip, PART, Naive Bayes, and SMO. (2) Using deep learning

neural network for multimodal decision level fusion outperformed these standard

supervised machine learning algorithms.

1.4 Dissertation Overview

The rest of this dissertation is organized as follows: Chapter 2 provides a detailed

background on malware. Chapter 3 presents a literature review on existing malware

detection methods that used similar code-based static and dynamic behavioral-

based features, and includes the state of the art with respect to multimodal fusion.

Chapter 4 describes the preliminary experimental set-up and presents a proof of

concept study that shows the feasibility of our testbed. Chapter 5 explains the

modifications done in the experimental set-up to collect simultaneously data from

multiple modalities and explains the malicious and non-malicious software selec-

tion. Chapter 6 explains the data pre-processing and feature extraction process.

A description of the used supervised machine learning experiments and perfor-

mance metrics is given in Chapter 7. The conducted machine learning experiments

when combining the power-based and network traffic-based features is described in

Chapter 8, while the experiments when combining network traffic-based and sys-

tem logs-based features is given in Chapter 9. Our multimodal malware detection

approach and results are described in Chapter 10. Threats to validity are given in

Chapter 11. The conclusion and future work are presented in Chapter 12.

8

Chapter 2

Background on Malware

This chapter defines what is malware, describes the common malware types,

explains why cyber criminals use malware, and provides several examples of cyber-

attacks that were caused by malware.

2.1 What is Malware?

The term malware is a combination of the words mal icious and software. Mali-

cious software is any software that is used to disrupt the operations of a machine,

to gather sensitive data, or gain access to private computer systems [50, 254].

Malware is created by cyber criminals with the objective of achieving particular

goals. These goals can include stealing confidential data, harvesting logins and

passwords, sending spam emails, launching denial of service attacks (DoS), and

extortion or identity theft [254]. An example is the malware called CryptoLocker,

which has been and is still used by cyber criminals to infect and encrypt all the

files on the computer, so that they can later ask for a ransom in order to decrypt

these files [34].

Chapter 2. Background on Malware 9

2.2 Common Malware Types

Malware can fall into many different categories, depending on the method of trans-

mission, its mechanism of operation and what actions are taken once it gains a

foothold [179]. Most common malware types are: viruses, worms, trojans, back-

doors, rootkits, and ransomware. A computer virus is a piece of code that typically

needs human action to spread itself into one or more files and then performs some

action [87].

A worm is a program that copies itself from one computer to another [87]. The

difference between a virus and a worm is that a worm spreads on its own through

the network, that is, a worm does not need human action to spread [41]. Most

of the time, worms cause at least some harm to the system network while viruses

typically corrupt or modify files on a targeted computer [45].

A trojan horse is a malicious computer program which has a hidden function-

ality and typically misrepresents itself as useful, routine, or interesting in order to

persuade a victim to install it [53]. A difference between a virus, a worm, and a

trojan is that trojans do not attempt to inject themselves into other files or oth-

erwise propagate themselves [1]. Typically, backdoors are left after using a trojan

or a worm. As the name implies, backdoors, open a “backdoor” into a computer

with the objective of leaving a network connection for the cyber criminal or other

malware to enter the system or to spread spam [36]. In other words, a backdoor is

a type of malware that consists of a method for bypassing normal authentication

or encryption in a computer system [44, 31]. Furthermore, many trojan’s payload

act as a backdoor by contacting a controller which can then have unauthorized

access to the affected system [53]. In the context of malware, a payload refers to

the portion of the malware which performs the malicious action(s) [39].

A well-known malware type are rootkits. Rootkits are a “kit” consisting of

small and useful programs that allow an attacker to escalate to maximum priv-

ileges [159]. Rootkits are designed to hide the existence of certain processes or

programs from normal methods of detection and enable continued privileged ac-

Chapter 2. Background on Malware 10

cess to a computer [206]. Typically, a rootkit has three goals: run, hide, and

act [274]. Rootkits run other malware on the target machine without restrictions

to avoid detection by an anti-virus (AV) or other security tools, and to get infor-

mation (e.g., user’s passwords) from the compromised computer. They work by

using a basic concept called modification. Essentially, a rootkit locates and modi-

fies the software with the purpose of changing the software behavior. An example

of a type of modification that can be made by a rootkit is patching, which is a

technique that modifies the data bytes encoded in a executable code [159].

While a rootkit hides from detection, a ransomware (also known as crypto-virus,

crypto-trojan or crypto-worm) threatens to publish the victim’s data or perpetually

block access to it unless a ransom is paid. Ransomware attacks are often carried out

by using trojans [53]. Typically, a ransomware encrypts all the files of the victim’s

system and then demands a ransom payment in return for the decryption key which

is required to decrypt the encrypted files [59]. Most of the time they are installed in

the system through a malicious email attachment, an infected software download,

or by visiting a malicious website or Uniform Resource Locator (URL). Once the

system is infected with ransomware, the user’s files are encrypted, and/or the

user is restricted from accessing the computer’s main features. Some ransomware-

based applications disguise themselves as an authority figure (e.g., a police or a

government agency such as the Federal Bureau of Investigation or the Department

of Defense) claiming that the user’s system was locked down for security reasons

and that a ransom or a fee is required to reactivate it [280]. The ransom message

usually includes instructions on how to pay the ransom (most of the time is either

through credit card or bitcoins). Ransom amounts range from one hundred dollars

to several thousand dollars [281]. Figure 2.1 shows the message that appeared

after we executed the Locky [49] ransomware on the experimental machine.

Chapter 2. Background on Malware 11

Figure 2.1: System message after infecting the experimental machine with the

Locky ransomware

2.3 Why Cyber Criminals use Malware?

There are many ways in which cyber criminals use malware. For instance, mal-

ware authors are increasingly taking advantage of the trust that exists between

users and software providers to inject malware on these updates, thus potentially

infecting the users through trusted official software distribution channels. A report

by FireEye iSIGHT Intelligence stated that at least there were five cases in which

malware authors compromised software providers [136].

Rootkits and ransomware are preferred among cyber criminals because of their

Chapter 2. Background on Malware 12

effectiveness in achieving their goal (e.g., gaining access to the system) and be-

cause, at least in the case of rootkits, they can hide to avoid detection by using

modification techniques that are hard to detect. Most of the time cyber criminals

installed the rootkits once they have obtained root or administrative access to the

system. Obtaining root or administrative access to a system is a result of a di-

rect attack on the system. An example of direct attack is when a cyber criminal

gains full control over a system by exploiting a known vulnerability or a password.

Full control over a system means that existing software can be modified, including

software that might be used to detect malware.

In the case of a ransomware, cyber criminals use them as a convenient payment

system because it is hard to trace. Hence, they use them to commit financial fraud

and extort money from computer users. However, not every type of ransomware

will demand a cryptocurrency (digital currency that uses encryption techniques

such as bitcoins) payment. For example, some types of ransomware demand a gift

card code or other anonymous online payment option [94]. Examples of the most

common payments methods for ransomware are wire transfers, premium-rate text

messages, pre-paid voucher services (e.g. Paysafecard), and bitcoins [40].

Overall, cyber criminals use malware to steal passwords or network bandwidth,

or to install other malicious software [274], and to gain and maintain unauthorized

access to a system. By gaining unauthorized access to a system, the cyber crim-

inals can obtain privileges to access sensitive data and conceal its own existence.

Furthermore, a cyber criminal could use any type of malware that has rootkit ca-

pabilities to hide other malware types. Malware hidden by rootkits often monitor,

filter, and steal data, or could abuse the computer’s resources [27].

2.4 Cyber-attacks Caused by Malware

A cyber-attack refers to any act or attempt, successful or unsuccessful, to gain

unauthorized access to, disrupt or misuse a Licensee’s electronic systems or infor-

mation stored on such systems [12]. Not all cyber-attacks are caused by malware,

Chapter 2. Background on Malware 13

they could also be caused by exploits (a vulnerability in the system) or by other

types of attacks such as a DoS (a type of attack in which the cyber criminal

seeks to make a machine or a network resource unavailable to its intended users

by temporarily or indefinitely disrupting services of a host that is connected to

the Internet). However, in this section we focus on those cyber-attacks that were

caused only by malware.

A well-known cyber-attack caused by malware is Stuxnet. Stuxnet is a worm

with rootkit capabilities that was first uncovered in 2010 [282]. Stuxnet has three

modules: a worm that executes all routines related to the main payload of the at-

tack; a link file that automatically executes the propagated copies of the worm; and

a rootkit component responsible for hiding all malicious files and processes [285].

It was introduced to the target environment via an infected USB flash drive. Once

the machine was infected, the malware spread across the network scanning for

Siemens Step-7 software on computers controlling a Programmable Logic Con-

troller (PLC) [282]. This worm subverts the Step-7 software application that was

used to reprogram these devices. This worm collected information on industrial

control systems (ICS) and caused the fast-spinning centrifuges to tear themselves

apart [195]. Siemens stated that the worm did not cause any damage to its cus-

tomers, but it is believed that the Iran nuclear program was damaged by this

cyber-attack [4, 203]. A report by Symantec showed that 60% of the infected

computers worldwide were located in Iran [102, 135, 83].

In addition, a nuclear power plant in Russia was also infected by this worm.

However, since the power plant was not connected to the public network, the sys-

tem remained safe [267]. Like Stuxnet there are many malware that has targeted

and keep targeting industrial control systems. Some examples are Shamoon [115]

and Dragonfly [13, 257]. However, to this day the latter has not been used to

attack ICS. Rather it has been used for counterfeiting [13] and cyber espionage

purposes [257]. Even though these cases affected mainly countries that are not the

United States (US), is imperative to be aware of them since the critical infrastruc-

ture of the US could be affected by similar threats.

Chapter 2. Background on Malware 14

Furthermore, there have been cyber-attacks that targeted other systems as

well. Some of the biggest data breaches happened to companies such as Target,

The Home Depot, and Anthem. In the case of Target, cyber criminals installed

malicious software on the point of sales (POS) systems in the self-checkout lanes

from nearly 2,000 Target stores [255]. The objective of the cyber-attack was to gain

access to customer credit and debit card numbers. This malware compromised the

identities of 70 million customers and 40 million credit and debit cards [255, 276].

The same malware was later used to target The Home Depot [256]. On the other

hand, Anthem (a health insurance plan provider) was a victim of cyber criminals

when they stole approximately 80 million of medical records [276]. The attack

began with phishing emails that were sent to Anthem’s employees and it did not

became successful until some of these employees were tricked and downloaded a

trojan with a keylogger capability that enable the cyber criminals to acquire the

passwords for accessing the unencrypted data.

In addition, there has been malware that targeted regular users (people that

use general-purpose computers from the comfort of their home). Some examples of

these malware are Alureon and GameOver Zeus. Alureon, also known as TDL, is

a trojan with rootkit capabilities that was first discovered in 2008. It was created

to steal data by intercepting a system’s network traffic and whose objective was to

search for personal information such as banking usernames and passwords, credit

card data, social security numbers and other sensitive user data. It was not until

2012 in which a new variant of this malware was discovered. Like its predecessor,

it was used to steal personal information from its victims by redirecting them away

from trusted websites. The number of computers that probably were infected was

more than 277,000 worldwide, but the FBI believes that about 64,000 computers

were infected only in the United States [294].

Similarly, GameOver Zeus (GOZ), a variant from the Zeus trojan was used by

cyber criminals to send spam and phishing messages, to participate in Distributed

Denial of Service (DDoS) attacks, and harvest banking information, such as login

credentials, from a victim’s computer [292, 11]. As many as 1.2 million computers

Chapter 2. Background on Malware 15

were infected with this trojan prior to the takedown of the Zeus malware [186].

More examples of malware that targeted general-purpose computers can be found

in Chapter 5. Particularly, Table 5.1 lists the malware examples that were chosen

for our experiments.

16

Chapter 3

Literature Review

Malware is a malicious software that is developed by cyber criminals in or-

der to steal confidential data, hijack devices remotely to deliver massive spam

emails, launch denial of service attacks and so on. Typically, they avoid detection

by constantly changing the program’s appearance while keeping its functionality

the same. This malicious behavior is attained by manipulating the code using

multiple obfuscation techniques, such as inserting junk code and reordering in-

structions [247].

Lately, many authors of malware detection systems have attempted to address

this problem by using different detection approaches, such as byte frequency [312],

byte randomness [237], and behavioral patterns identified in the binary code of

malware examples (i.e., behavioral analysis) [229, 154, 65, 283, 133]. The byte

frequency of software refers to the frequency of the different unsigned bytes in

the corresponding file, byte randomness refers to the bytes distribution value of

the instruction sequences that are obtained from randomness tests, and behavioral

analysis refers to the type of analysis that identifies the actions performed by the

malware rather than their binary code patterns.

Next we provide an overview about previous works that have used code-based

static and dynamic behavioral-based features, as well as those previous works that

have used multimodal fusion techniques for their classification.

Chapter 3. Literature Review 17

3.1 Malware Detection using Behavioral-based

Features

The evolving evasion techniques being used by malware writers led to the usage

of dynamic behavioral-based features for detection of malicious software [143].

Extracting behavioral-based features involves the execution of the PE file in a

controlled environment (e.g., virtual machine and sandbox) [143]. Some types

of dynamic behavioral-based features include function call monitoring, function

parameter analysis, information flow tracking, and instruction traces [128, 143].

In addition, there are several online automated tools that helps to collect be-

havioral data from malware and non-malicious software. Some examples of such

tools are CWSandbox [293], TTAnalyzer [82], Cuckoo sandbox [30], and Payload

Security [26]. The behavioral reports generated by these tools helps malware an-

alysts to understand the malware behavior and provide valuable insight into the

actions performed by them. Some details to consider when extracting dynamic

behavioral-based features are: (1) each malware example should be executed within

a secure environment for a specific time to ensure malware examples behave as in-

tended [270]; (2) a secure environment is different from a real runtime environment

as the malware may behave differently on each of these environments, leading to

inaccurate behavior [128]; and (3) some actions of the malware example may only

be activated or triggered under certain conditions (e.g., system date and time or

direct input from the user) [167].

Compared to code-based static features, dynamic behavioral-based features

are more costly. However, dynamic behavioral-based features are more resilient

to obfuscation techniques because they extract behavior actions performed by the

malware rather than their binary code patterns. All dynamic behavioral-based

features vary in the execution environment for the malware and analysis granular-

ity. For example, a debugger (e.g., GDB [200] and WinDbg [244]) can be used for

fine-grained analysis of binary code at the instruction level and other tools, such

Chapter 3. Literature Review 18

as Detours [162], CWSandbox [293], TTAnalyzer [82], Cuckoo sandbox [30], and

Payload Security [26], run the malware example in a controlled environment and

monitor its behavior.

The behavior of a software application, including a malicious application, can

be characterized by its system and network activities, as well as by the analysis of

its physical properties (e.g., power consumption). Although malware detection is a

very active area of research [165, 275, 305] and dynamic behavioral-based features

has been used widely [229, 154, 65, 283, 133, 300], few works were focused on using

physical properties, such as power consumption. In this dissertation we extracted

dynamic behavioral-based features from the power consumption, network traffic

data, and system logs.

3.1.1 Power-based Features

Monitoring power consumption has been explored by previous works for the de-

velopment of new approaches to help with energy efficiency [164, 189, 134, 144,

147, 233, 219], energy theft [103, 207], and to help for integrity assessment [132].

However, for these approaches power consumption was monitored for a different

purpose than malware detection. For instance, power consumption was monitored

to help data centers understand how much power was used among the running ap-

plications across the network (in case of servers) [164, 189, 134, 144, 147], to extend

the life of the cellphone’s battery (in case of mobile devices) [233], to prevent en-

ergy theft on embedded devices [103, 207], and to improve the power consumption

on house appliances [219].

From these power-based approaches [164, 189, 134, 144, 147, 233, 219, 103, 207,

132], the work by Feng et al. [134] is the most relevant to our work as they used a

similar hardware configuration to collect power consumption data. Like us, they

used an ATX extender cable to attach the power supply unit (PSU) of the nodes to

a sensor resistor on the circuit board. Specifically, they used a RadioShack 46-range

digital multimeter (manufacturer part number 22-812) that led to a sampling rate

Chapter 3. Literature Review 19

of 0.25 (i.e., four samples per second). Similarly, the work by Dawson et al. [114]

used a multimeter and current clamp, which limited the sampling rate to 1Hz

for the collection of power consumption data on a general-purpose computer for

malware detection. While these works used a multimeter, our testbed used a data

acquisition system (DAQ) with a sampling rate of 0.01 second (i.e., one sample

every 10 milliseconds). Thus, in comparison to the work by Feng et al. [134] and

Dawson et al. [114], our testbed provides fine grain power consumption data.

The following subsections discusses related works that have used power-based

features for malware detection. These works focused on specific devices, such as

mobile devices [158, 313, 303, 77, 122, 123, 303, 169], embedded devices [108,

155, 107, 212], software defined radio [63, 64, 62, 62, 242], and general-purpose

computers [114, 91, 201].

A comparison of the most relevant works that have used power-based features is

given in Table 3.1. Note that the main difference among the prior works that used

power-based features is with respect to what was classified. Some works classified

sub-segments of the power consumption data as malicious or non-malicious [77, 63,

242, 62, 114], distinguished malicious from non-malicious operations (i.e., turning

the pump on/off [62, 108] or turning the lights of PLC on/off [155]), and carried

on malware detection (i.e., classified the unknown applications to malware and

non-malicious software) [158, 303, 91, 201].

C
h
ap

ter
3.

L
iteratu

re
R

ev
iew

20
Table 3.1: Most relevant works that used power-based features

Ref. # Device Prediction Technique Learners Classification Place of Analysis Features Performance Metrics

[158] M No O N/A malware vs. non-malicious

software

N/A N/A N/A

[303] M Yes St GMM malware vs. non-malicious

software

remote servers N/A NR, PR, A

[77] M Yes ML-S DTW, KNN malicious vs. non-malicious

sub-segments

remote servers N/A A, R, P, F

[169] M Yes St correlation malware vs. non-malicious

software

remote servers N/A Approach was not evaluated.

[108] ED Yes ML-S 3-NN, MLP, RF malware vs. normal operations remote servers mean, var, max, min,

skew, Kurt, RMS, IQR

mean of A, P, R

[155] ED No O N/A cyber-attacks vs. normal

operations

N/A N/A N/A

[212] ED O No N/A buffer overflow attacks

vs. normal operations

N/A N/A N/A

[63] SDR Yes St correlation malicious vs. non-malicious

sub-segments

remote servers N/A Approach was not evaluated.

[242] SDR No O correlation malicious vs. non-malicious

sub-segments

remote servers N/A Approach was not evaluated.

[62] SDR Yes AD spectral

periodogram

malicious vs. non-malicious

sub-segments

remote servers N/A Approach was not evaluated.

[114] PC Yes AD non-linear phase

space algorithm

malicious vs. non-malicious

sub-segments

remote servers max, min, mean Approach was not evaluated.

[91] PC Yes AD,ML-S ensemble learning,

SVM

malware vs. non-malicious

software

remote servers mean, var, DSD, skew,

L2Norm, Kurt, and

permutation entropy

R, FDR

[201] PC Yes ML-S nested network malware vs. non-malicious

software

remote servers N/A mean A, AUC

Table description for each column that has abbreviations:

•Device column: M = mobile; ED = embedded device; SDR = software-defined radio; and PC = general-purpose computer

•Technique column: O = observations; St = statistic-based ; ML-S = supervised machine learning; and AD = anomaly detection

• Performance Metrics column: A = Accuracy; P = Precision; R = Recall; F = F-score; FDR = False Detection Rate; NR = Negative Rate; PR = Positive Rate; and AUC = Area Under Curve

Chapter 3. Literature Review 21

Mobile Devices

Before smartphones arrived to the market, previous works explored if cyber-attacks

could be detected on personal digital assistants (PDAs) by monitoring its power

consumption [168, 182, 93]. Later, with the arrival, popularity, and usability

of smartphones they became the perfect target for cyber-attacks (e.g., malicious

code) [300].

Malware detection approaches based on power consumption for mobile devices

showed inconsistent results. The approach proposed by Hoffman et al. [158] was not

successful due to the noise caused by unpredictable factors, such as user interaction

and the strength of the mobile signal. On the other hand, the methods proposed by

Yang et al. [303] and Zefferer et al. [313] were able to detect malware by monitoring

the power consumption of smartphones. A recent work presented by Azmoodeh et

al. [77] demonstrated that a specific type of malware, ransomware, can be detected

on Android devices by monitoring only the power consumption.

Furthermore, the works by Dixon et al. [122, 123] explored the effectiveness

of detecting malicious code by combining the mobile power profiles with user’s

location [122], while an extended version of this work [123] integrated time as a

feature. Results on both works demonstrated the effectiveness of these features for

finding malware with a low false positive rate and a little impact to the battery

life of smartphones.

Even though these works [77, 122, 123, 158, 303, 313] were able to detect

malware by using power consumption as a feature, it is important to note that all

of them used software-based monitoring (i.e., the PowerTutor tool) to collect the

power consumption data, which may distort the power profiles and/or be affected

by successful malicious attacks. An exception is the work by Robin et al. [169]

which built their own testbed using a Monsoon power meter for the acquisition of

power consumption data. Although preliminary results were promising in detecting

malware from non-malicious applications, the development and validation process

were not completed.

Chapter 3. Literature Review 22

Embedded Systems

Several approaches have been proposed to detect malware targeting embedded de-

vices (i.e., devices with a dedicated function within a larger mechanical or electrical

system) [107, 108, 155, 212].

The work by Clark et al. [108] explored whether power consumption could

be used to detect the presence of malware on two embedded devices, an embed-

ded medical device and a pharmaceutical compounder (i.e., an industrial-control

workstation). They monitored the alternate current (AC) outlet and showed that

malware can be detected based on the power consumption of embedded devices us-

ing supervised machine learning algorithms. Same author (Clark et al.) presented

in [107] two case studies in which it was proved that AC power traces can be both

harmful to privacy and beneficial for malware detection, the latter of which may

be beneficial for embedded devices (i.e., medical devices). However, the main issue

when monitoring AC relies on periodic changes in the current direction, which leads

the voltage to reverse itself, making the analog circuits much more susceptible to

noise. To avoid this problem, we monitored the direct current (DC) channels, as

some other prior works [158, 303, 77, 63, 242, 62, 114, 155, 91, 201].

Similarly, our previous work [155] presented a proof of concept study which

demonstrated through observations based on illustrative examples that cyber-

attacks can be detected by monitoring the power consumption of a Programmable

Logic Controller (PLC). Power consumption data was collected using a data ac-

quisition system (DAQ), but the hardware configuration was different than the

one used in this dissertation. The main difference relies on the sensors that were

attached to the DAQ, since the maximum voltage for the PLC rails were +24V

and here our testbed monitored four voltage rails (i.e., +3.3V rails, the +5V rails,

the +12V rails on the motherboard and the +12V rails on the CPU) whose max-

imum value is +12V. Moreover, for the experiments in [155] we simulated three

SCADA-specific cyber-attacks (i.e., command injection, replay, and Denial of Ser-

vice), while here in our experiments we used real malware examples.

Chapter 3. Literature Review 23

Furthermore, another work that monitored the power consumption for an em-

bedded device was presented by Moore et al. [212]. While it is important to

mention that their objective was to detect buffer overflow attacks and not mal-

ware detection, this work is still related as they used power-based features for

anomaly detection. Power consumption data was collected by using an I-jet mod-

ule, a device capable of providing power to the target board and measuring its

power consumption during program execution in real time. Power segments were

analyzed and they demonstrated that it is possible to distinguish some cases of

buffer overflow attacks (i.e., a program crash and injection of executable code)

from normal operations.

Software Defined Radio

A software defined radio (SDR) is a radio communication system in which those

components that were typically implemented in hardware (e.g., mixers, filters, and

amplifiers) are instead implemented by means of software on a general-purpose

computer or embedded system [118]. Few works explored the usage of power

consumption for SDR [63, 64, 62, 242].

González et al. [63] proposed an approach that relies on a mechanism that en-

ables an integrity assessment on SDR by capturing fine-grained measurements of

the processor’s power consumption and comparing them against signatures from

trusted software. Their method collects fine-grained measurements from the power

consumption during the execution of trusted code. Later, different signal process-

ing techniques were applied to extract dissimilarity measures from the power seg-

ments. After the feature extraction, these power segments were passed through

a supervised classifier or detector that has been previously trained using power

segments from trusted software. Finally, a detector compares the test segments

against all known signatures, and if no single test is enough to determine that

authorized code was executed, then an intrusion is reported. This method was

adapted by the Power Fingerprinting (PFP) firm (http://pfpcyber.com/) and can

also be applicable to embedded systems [64, 62, 242]. Nonetheless, we must em-

Chapter 3. Literature Review 24

phasize that these works [212, 63, 64, 62, 242] used only power segments, while

in this dissertation we are using power-based features from the whole power sig-

nal and we are combining these features with other dynamic behavioral-based and

code-based static features.

General-Purpose Computers

With respect to general-purpose computers, power consumption has received little

attention as a feature for anomaly detection due to its noisiness which prevents fine-

grained analysis of power traces [107]. Nevertheless, literature shows there are a

few power-based approaches focused on general-purpose computers for identifying

web pages by tapping the electrical outlet [106], and for malware detection [239,

290, 114, 91, 201]. From these previous works, the most relevant to our research

are [114, 91, 201].

Dawson et al. [114] proved the algorithm developed in [157] can be used to

detect the presence of malware (i.e., rootkits) through the collection and analysis

of data from voltage measurements taken from one of the power supply rails. They

collected power consumption data using a multimeter and current clamp [114, 201],

which limited the sampling rate to 1Hz. While here we used a sampling rate of

100Hz to collect the power consumption data. Using hardware-based monitoring is

more accurate and, unlike software-based monitoring tools (i.e., software used on

mobile devices to collect power consumption data [158, 303, 77]), does not affect the

power consumption on the experimental machine and is harder to be manipulated

by successful malicious attacks. Similarly, Luckett et al. [201] extended the work

in [114] by proposing a model using nested neural networks. When compared

to traditional machine learning algorithms they demonstrated that the proposed

model outperformed previous methods.

Another relevant work related to this dissertation is our previous work [91] in

which we proposed an unsupervised anomaly detection ensemble using only the

+12V CPU rails and compared its performance with several supervised kernel-

based SVM classifiers (trained on clean and infected profiles) for detecting previ-

Chapter 3. Literature Review 25

ously unseen malware. While we used the same hardware configuration as in [91]

to collect the power consumption data, our software tools were different. In ad-

dition, our previous work used data only for the +12V CPU rails, while here we

evaluate which voltage rail leads to best performance.

While all these works [114, 91, 201] used only power-based features and very

small sets of malware (e.g., five [91] and four [201] malware examples), in this

dissertation we used a larger set of malware and non-malicious applications (i.e.

fifty one malware examples and twenty two non-malicious applications).

3.1.2 Network Traffic-based Features

Network traffic analysis is challenging due to the dynamic nature of network traffic.

However, prior works proposed solutions to address this problem by using statistics,

data mining, and machine learning techniques [166]. Anomalies in the network

traffic data can be due to cyber-attacks, but also because of malfunctioning devices

or network overloads. Thus, using reliable network traffic data is imperative.

In this dissertation, we used the dynamic behavioral data collected from our

experimental set-up and extracted network traffic-based features, which can be

divided into two categories: commonly used network traffic features and network

flows-based features. A comparison of the most relevant works that used network

traffic-based features is given in Table 3.2. Previous works that explored commonly

used network traffic-based features have focused on network traffic classification

for botnet detection [124, 61, 316, 98, 148, 204], detection for specific types of

cyber-attacks such as Denial of Service [253], detection of anomalies related to

specific protocols (e.g., HTTP) [229, 236], classification of the network traffic itself

to malicious and benign [84], and malware detection (i.e., malicious vs. non-

malicious software) [95, 210, 230].

Besides the commonly used network traffic-based features, we are also exploring

the usage of network flows-based features for malware detection as some previous

works [124, 120, 98, 61, 316, 148, 149, 73, 289, 117, 125, 308]. Network flows-based

Chapter 3. Literature Review 26

features have been mainly used for detection of botnets [124, 120, 98, 61, 316, 148,

149, 227], for detection of anomalous network traffic [80], and for classification of

malware families [240, 67]. With respect to malware detection, network flows-based

features have not been extensively explored, except for a few works that focused

on network traffic classification for malware detection in Android devices [73, 289],

detection of worms [117, 125], and detection of other types of malware, such as

trojans and viruses [84, 308]. From these approaches, we focused on those methods

that used similar network traffic-based features and malware types [95, 210, 230,

117, 125, 84, 308, 240, 67].

Some of these works [95, 210, 230] executed the malware examples in a con-

trolled environment to collect the dynamic behavioral-based features for the clas-

sification of malicious and non-malicious software [95] and for malware families

classification [210, 230]. Burnap et al. [95] used machine learning techniques with

behavioral-based features (i.e., CPU, RAM, processes and network traffic) derived

from the footprint that was left behind on a computer system after the execution of

a software to classify malware from non-malicious software. Mohaisen et al. [210]

described a technique that relies on the order and frequency with which malware

examples conduct specific actions on the system. Collected .pcap files were parsed

for relevant events and subsequently n-grams features were extracted and used

for malware classification. Radu et al. [230] proposed a malware classification ap-

proach based on features such as DNS-based, accessed files, mutexes, and Registry

keys-based. The integration of these features helped to maintain the Accuracy of

the used supervised machine learning algorithm.

With respect to network flows-based features, the most relevant prior works to

ours are [117, 125, 84, 67, 308, 240]. Dubendorfer et al. [117] proposed an approach

that used network flows from high speed Internet backbones demonstrating worms

can be detected by tracking the cardinality of sudden changes in the network

traffic. Dressler et al. [125] developed a pattern based on the correlation of flow-

based features with system logs data for worms detection. Bekerman et al. [84]

presented a malware detection approach that classified malicious and non-malicious

Chapter 3. Literature Review 27

network traffic recorded in sandbox environments and in real networks. AlAhmadi

et al. [67] proposed an approach that analyzed and classified network traffic of

malware variants based on their network flow sequence behavior. Yeo et al. [308]

classified network packets by botnets, trojans, and viruses using a convolutional

neural network (CNN), while Rahul et al. [240] presented a CNN for classifying

network traffic of malware families.

While prior works have integrated network flows-based features with system

logs-based features for botnet detection [204], worm detection [125], malware de-

tection [95], and malware families classification [210, 230], none of these works

integrated the network traffic data and system logs with code-based static and

power-based features for the classification of unknown applications to malware

and non-malware.

C
h
ap

ter
3.

L
iteratu

re
R

ev
iew

28
Table 3.2: Most relevant works that used network traffic-based features

Ref. # Device Prediction Technique Learners Classification Place of Analysis Features Performance Metrics

[117] PC No St N/A malicious vs. non-malicious

network traffic

N/A network flows-based N/A

[125] PC No O N/A malicious vs. non-malicious

network traffic

N/A network flows-based N/A

[84] PC Yes ML-S NB, RF, J48 malicious vs. non-malicious

network traffic

remote servers network traffic-based A, AUC

[308] PC Yes ML-S, DL CNN, MLP, RF,

SVM

malicious vs. non-malicious

network traffic

remote servers network flows-based A, P, R

[67] PC Yes ML-S KNN, RF malware families classification remote servers network flows-based P, R, F

[240] PC Yes DL CNN malware families classification remote servers network flows-based A

[95] PC Yes ML-S NB, RF, SVM,

ANN

malware vs. non-malicious remote servers network traffic-based,

CPU-based, RAM,

swap usage, and

processes-based

P, R, F

[210] PC Yes ML-S decision tree,

KNN, SVM

malware families classification remote servers network traffic-based A, P, R, F

[230] PC Yes ML-S RF malware families classification remote servers DNS-based, mutexes,

Registry keys, and

accessed files

R, P, F, FPR, AUC

Table description for each column that has abbreviations:

•Device column: M = mobile and PC = general-purpose computer

•Technique column: O = observations; St = statistical-based; ML-S = supervised machine learning; and DL = deep learning

• Performance Metrics column: A = Accuracy; P = Precision; R = Recall; F = F-score; FPR = False Positive Rate; and AUC = Area Under Curve

Chapter 3. Literature Review 29

3.1.3 System logs-based Features

Monitoring system’s behavior is of great importance for malware analysts because

it provides valuable information about the software, hardware, system processes

and system components as well as information such as error and warning events

related to the computer operating system. Previous works have used system logs-

based features for intrusion detection [72, 202, 211, 311, 133, 126], to classify mal-

ware from non-malicious software [251, 250, 113, 163, 279, 119, 197, 295, 99, 222],

for malware families classification [230, 131, 178], and for both malware detection

and malware families classification [170, 97].

From these previous works, we focused on those approaches that did malware

detection [251, 250, 113, 119, 197, 295, 170, 99, 97, 279, 163, 222]. These malware

detection approaches [251, 250, 113, 119, 197, 295, 170, 99, 97, 279, 163, 222] can

be divided based on the device being monitored (i.e., mobile devices [119, 197,

295, 170, 99, 97, 222] and general-purpose computers [251, 250, 113, 279, 163]).

A comparison of previous works that used system logs-based features for malware

detection is given in Table 3.3.

Salehi et al. [251] conducted several machine learning experiments using API

names and arguments for malware detection and for malware families classifica-

tion. For evaluation purposes, both API names and arguments were investigated

separately and then combined. Results demonstrated the Accuracy of the learners

improved by 6% when all features were used. Sainju [250] presented observations

about specific system events triggered after infecting the experimental machine

with different types of malware (e.g., trojans, worms). Dahl et al. [113] proposed

the used of random projections to further reduce the dimensionality of the original

input space before feeding the data to a neural network. This reduction technique

allowed to train the neural network with one or more hidden layers reducing the

two-class error rate by 43% when compared to Logistic Regression trained with all

features. Huynh et al. [163] proposed an online algorithm for malware detection

under concept drift when the behavior of malware changes over time. While a

Chapter 3. Literature Review 30

most recent work, Stiborek et al. [279], proposed a malware detection approach

using clustering techniques based on the behavior observed from system logs and

network traffic data focused on the HTTP protocol.

Data analysis was conducted via machine learning techniques for most of these

works [251, 113, 163, 279, 119, 197, 295, 170, 99, 97, 222], except for [250] which pre-

sented observations about the behavior of specific malware examples. Most of these

works used only system logs-based features [251, 113, 163, 250, 119, 295, 99, 97, 170]

or combined the system logs-based features with network traffic-based fea-

tures [279]. In the case of mobile devices, some works combined system logs-based

features with permissions [197] and with permissions and intent [222]. Interestingly,

none of these works combined the system logs-based features with code-based static

features or with other behavioral-based features like power consumption, which is

explored in this dissertation.

C
h
ap

ter
3.

L
iteratu

re
R

ev
iew

31
Table 3.3: Most relevant works that used system logs-based features

Ref. # Device Prediction Technique Learners Classification Place of Analysis Features Performance Metrics

[251] PC Yes ML-S RF, J48, FT, SMO,

NB, VFI, HyperPipes

malware vs. non-malicious

software

remote servers API names and API

arguments

A, P, R, AUC, RMS

[250] PC No O N/A malware vs. non-malicious

software

N/A system log events N/A

[113] PC Yes ML-S Logistic Regression

Neural Network

malware vs. non-malicious

software

remote servers API calls-based FPR, FNR

[279] PC Yes ML-S proposed approach malware vs. non-malicious

software

remote servers system logs and

network traffic data

A, R, FPR

[163] PC Yes ML-S proposed approach malware vs. non-malicious

software

remote servers API arguments, file

system, and Registry

MCAE

[119] M Yes ML-S RF, Ridge Regression,

SVM, Lasso

malware vs. non-malicious

software

remote servers API traces R, TNR

[197] M Yes ML-S Neural Network malware vs. non-malicious

software

remote servers API arguments

and permissions

A

[295] M Yes ML-S proposed approach malware vs. non-malicious

software

remote servers API arguments A, P, R, F, FPR, FNR

[99] M Yes ML-S RF, NB, SGD malware vs. non-malicious

software

remote servers API traces R, P, F, FPR

[97] M Yes ML-S SVM malware vs. non-malicious

software

remote servers API traces and

permissions

A, FPR, FNR

[222] M Yes ML-S SVM, ANN,

Logistic Regression

malware vs. non-malicious

software

remote servers system logs, intent

and permissions

A, P, R, F

[170] M Yes ML-S proposed approach malware vs. non-malicious

software

remote servers API arguments and

system logs

A, FPR, FNR

Table description for each column that has abbreviations:

•Device: M = mobile and PC = general-purpose computer

•Technique: O = observations; and ML-S = supervised machine learning

• Performance Metrics: A = Accuracy; P = Precision; R = Recall; F = F-score; FPR = False Positive Rate; TNR = True Negative Rate; FNR = False Negative Rate; and

MCAE = Mean Cumulative Absolute Error

Chapter 3. Literature Review 32

3.2 Malware Detection Using Code-Based Static

Features

Static analysis is the way to extract malicious features or bad code segments with-

out executing the PE file [305, 143]. Before conducting the static analysis, the PE

file has to be unpacked and decrypted. There are tools that are either a disas-

sembler (e.g., IDA Pro [35]) or a memory dumper (e.g., OllyDump [38]) that can

be used to reverse PE files. Disassembler tools display malware code as assembly

instructions, while memory dumper tools are used to obtain protected code located

in the main memory and dumps them into a file for further analysis [305, 143].

The main advantage of using code-based static features is that they help to

explore and investigate all possible execution paths in malware examples. In ad-

dition, the experimental machine cannot be infected by the malware under study.

However, a disadvantage of code-based static features relies on the fact that they

are susceptible to code obfuscation. Moser et al. [214] explored the limitations

of code-based static features and suggested that code-based static features alone

are not enough for malware detection and stated that dynamic behavioral-based

features can be a necessary and useful complement to code-based static features.

Most of the previous works that have used code-based static features for mal-

ware detection [262, 252, 191, 60, 177, 129, 205, 70, 260, 304, 301, 258, 209, 137,

181, 70, 192, 176, 68] focused on the detection of patterns using features extracted

from Windows API calls [262, 252], byte n-grams [191, 60, 177, 129, 205, 70, 260],

strings [262, 304], opcodes (operational codes) [301, 258, 209, 137, 181], and control

flow graphs (CFG) [70, 192, 176, 68].

Windows API calls are used by most of the programs to send specific requests

to the operating system. As such, these features are useful for malware detection

since they reflect the behavior of program code pieces [305]. These features are

commonly used by previous works in combination with other code-based static

features [307, 302]. For example, API calls-based features have been combined

Chapter 3. Literature Review 33

with headers-based features [307] and with control flow graphs [302].

Byte n-grams are substrings in the program code with a length of N [305].

These code-based static features can be extracted from malware examples and

are used as a signature for recognizing malicious software. Using byte n-grams

for malware detection is convenient because they yield high accuracy in detecting

unknown malware [241]. Hence, they have been well explored over the last decade

by previous works that focused on the binary code content [191, 60, 177, 129, 205,

70].

Strings features are based on encoded plain text and are typically a high-

level specification of malicious behavior considering they can show the attacker’s

intent [304]. However, they are not commonly used by prior works because they

can easily be manipulated by an attacker [241]. Operational code (opcode) refers to

the portion of a machine instruction that specifies the operation to be performed.

Literature on malware detection specifies that opcode-based features are more

efficient and successful for classification, since they reveal statistical diversities

between malicious and non-malicious applications [241]. Some prior works that

explored the usage of n-gram opcode sequence for malware detection are [86, 215,

264, 194].

Finally, CFG are graphs that represent the control flow of a PE file and are

commonly used in software analysis [70], malware detection [92, 68], and for both

malware detection and malware families classification [176]. The problem with

those approaches that use CFG-based features is that they require a database of

signatures, meaning that it can detect known malware but may not be able to

detect unknown malware [88]. Furthermore, maintaining this database is time and

resource consuming.

Another type of code-based static feature used by previous works are the

portable executable-based features. This type of code-based static features are

extracted using the structural information from an executable file [241]. By struc-

tural information, we refer to the following pieces of information from a PE file: (1)

file pointer; (2) import section; (3) export section; (4) PE header; and (5) resource

Chapter 3. Literature Review 34

directory.

File pointer is the pointer that denotes the position within the file as it is stored

on the hard disk drive. The import section include features, such as functions from

which DLLs and object files are used. The export section describes which functions

are exported. Header-based features describe the physical and logical structure of

a PE binary and may include features like code size and debug size. Resource

directory-based features are those features that are indexed by a multiple-level-

binary-sorted-tree structure. Examples of these resource directory-based features

are the dialogs and cursors which are used by a specific PE file. Resource directory-

based features are meaningful for malware analysts because they indicate if the

executable file was manipulated to perform malicious activity.

In this dissertation the extracted code-based static features can be grouped

into three categories: (1) headers-based features, (2) data directories-based fea-

tures, and (3) DLL dependencies-based features. Similar PE-based features were

extracted and used by prior works for malware detection [265, 261, 190, 81, 220],

malware families classification [299], and for both malware detection and malware

families classification [190].

The works by Bat-Erdene et al. [81] and Yan et al. [299] extracted and used

headers-based features, while the works by Saxe et al. [261] and Narouei et al. [220]

extracted and used DLL dependencies-based features. Similarly, Shafiq et al. [265]

extracted and combined the headers-based features, data directories-based fea-

tures, and DLL dependencies-based features into one feature vector for malware

detection. On the other hand, Kolosnjaji et al. [190] extracted and combined

headers-based features and DLL-based features for both malware detection and

malware families classification.

Although similar code-based static features have been explored by previous

works, none of these works [265, 261, 190, 81, 220, 299, 190] combined code-based

static features with dynamic behavioral-based features nor explored the perfor-

mance of using different modalities for malware detection, which is explored in

this dissertation.

Chapter 3. Literature Review 35

3.3 Multimodal Learning for Malware Detection

Feature level fusion is widely used by prior works for malware detection [205, 70,

259, 167, 306, 299, 277, 199, 315]. However, none of these works called it feature

level fusion. These prior works mentioned that “all features were combined into one

feature vector”, which is the definition of feature level fusion. While other prior

works mentioned that both code-based and dynamic behavioral-based features

were used for malware detection, which is the definition of multimodal (i.e., using

features from multiple sources).

Similarly, previous works [205, 269, 314, 310, 101, 111] have done decision level

fusion, but they were unimodal. Thus, we labeled these prior works as feature

level and decision level fusion, which are described in Sections 3.3.1 and 3.3.2,

respectively.

3.3.1 Feature Level Fusion

Many prior works have done feature level fusion for malware detection [205, 70, 259,

167, 306, 299, 277, 199, 315]. These works can be divided based on the device being

monitored (i.e., mobile devices [277, 199] and general-purpose computers [205, 70,

259, 167, 306, 299, 315]).

Both of the mobile devices approaches [277, 199] combined code-based static

and dynamic behavioral-based features (i.e., Spreitzenbarth et al. [277] used fea-

tures like API calls and network traffic data, while Lindorfer et al. [199] used fea-

tures like class structure, application names, file operations, and network activity)

to classify malware from non-malicious software. With respect to those approaches

that targeted general-purpose computers [205, 70, 259, 167, 306, 299, 315], some

did malware detection [205, 70, 259, 306], malware families classification [167, 315],

and both malware detection and malware families classification [299]. Furthermore,

the works in [70, 259, 167, 299, 315] used both code-based static and dynamic

behavioral-based features, while the works in [205] used only code-based static

Chapter 3. Literature Review 36

features and [306] used file relations. With respect to which learners were used,

most of the prior works used SVM [205, 70, 306, 277, 199]. While others explored

SVM with other learners like KNN and Decision Trees [259], Random Forest [167],

and KNN, Naive Bayes, and Decision Trees [299]. Besides SVM, the work by [315]

used K-means with hierarchical clustering.

In this dissertation, we focus on those approaches that used similar features as

ours for malware detection on a general-purpose computer [70, 259, 299]. Ander-

son et al. [70] described how to combine both code-based static (e.g., opcodes and

CFGs) and dynamic behavioral-based features (e.g., API traces) using multiple

kernel learning methods. Santos et al. [259] proposed a machine learning approach

that combined static (opcode sequences) and dynamic data (API traces), while

Yan et al. [299] conducted a systematic study using different feature types and

experimented with different combinations of feature selection algorithms and clas-

sifiers.

3.3.2 Decision Level Fusion

Prior works show two types of integration strategies: classifier fusion and decision

strategy. In classifier fusion (also known as multi-classifier system), the classifier

combination process involves merging the individual (weaker) classifier to obtain a

single (stronger) expert of superior performance [249, 234]. Examples of classifier

fusion methods include boosting [140], bagging [89], and some variations of bagging

like Random Forest [90]. Decision strategy combines information in a simple and

straightforward way. Let us assume a system that consists of multiple modalities

(M = {m1,m2,m3, ...,mn}), each of which uses a trait and makes the authentica-

tion decision independently. The decision level strategy is then used to combine

the decisions of the subsystem to produce the final decision.

Some previous works have done classifier fusion for malware detection [205,

269, 314, 310, 101, 111, 66, 78, 309, 291]. These works can be divided based on

the device being monitored (i.e., mobile devices [269, 310, 101, 111, 309, 291] and

Chapter 3. Literature Review 37

general-purpose computers [205, 314, 66, 78]). From those works that monitored

general purpose computers, some did malware detection [205, 78] and malware

families classification [314, 66]. The fusion techniques explored by these works

were boosting [205], ensemble selection [78], stacking [314], and both boosting and

bagging [66].

With respect to previous works that have done decision strategy for malware

detection [315, 287, 146, 213], they can also be divided based on the device being

monitored (i.e., mobile devices [315], and general-purpose computers [287, 146,

213]). Zhang et al. [315] proposed an unsupervised machine learning approach that

used different modalities (i.e., PE-based and API calls-based features) for malware

families classification. To combine the information from all modalities, a clustering

ensemble based on mixture model was used. Wang et al. [287] presented a malware

detection approach that used API calls-based features for malware detection using

a linear weighted fusion method. Guo et al. [146] designed a multiple classification

algorithm based on the Behavior Knowledge Space (BKS) algorithm using API

calls for malware detection. Extracted features were divided into seven subsets

(i.e., file I/O, DLL, network, memory, process, Registry, and socket), each subset

was classified using several machine learning algorithms, and the data was fused

using BKS. More et al. [213] presented a malware detection system consisting of

disassemble process, code-based static features extraction, and feature selection

using majority voting and veto voting.

Only two prior works have used multimodal learning for malware detection [193,

184]. Both works monitored mobile devices, but [193] focused on feature level

fusion, while [184] focused on decision level fusion.

Pramod et al. [193] proposed a machine learning approach that collected various

applications files from different sources and pre-processed these files into various

images format (i.e., grayscale, RGB, CMYK, and HSL). Extracted image-based

features were used to train three machine learning algorithms (i.e., Decision Tree,

Random Forest, and k Nearest Neighbor). The performance of each machine learn-

ing algorithm were evaluated on various metrics, such as Recall, Precision, F-score,

Chapter 3. Literature Review 38

and Accuracy. Results show Random Forest outperformed the other learners with

a detection Accuracy of 91%. Kim et al. [184] presented a multimodal deep learning

algorithm using different types of code-based static features (e.g., opcodes, API,

permissions, and component environmental). The proposed framework conducts

four major steps before doing the malware detection: raw data extraction pro-

cess, feature extraction process, feature vector generation process, and detection

process. Results show that the proposed approach attained an Accuracy rate of

98%.

From these prior works, the work by Kim et al. [184] is the most relevant to

our work as they used a multimodal deep learning neural network for malware

detection. However, there are several differences that distinguish our work from

theirs:

• Kim et al. [184] used only code-based static features, while we are combining

dynamic behavioral-based with code-based static features.

• Prior works [193, 184] monitored mobile devices, while here we monitored a

general-purpose computer.

• The structure of our deep neural network is different than the one presented

in [184]. For instance, [184] used ReLU as activation function, and this

function has the problem that turns all negative numbers to zero, which

decreases the ability of the model to fit or train the data properly. To avoid

this problem, in our multimodal approach we used the exponential linear unit

function (ELU) as activation function. Furthermore, the number of hidden

layers and neurons is distinct.

• None of these works compared the performance of feature level with decision

level fusion, which is explored in this dissertation.

39

Chapter 4

Preliminary Experimental Set-up

& Proof of Concept Study

This chapter describes the initial experimental set-up and explains how we

conducted a proof of concept study that explored the use of power consumption for

malware detection (i.e., rootkit) in a general-purpose computer. The contribution

here is the experimental design and unique solutions to the data collection. The

work presented in this Chapter has been published in the 17th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom) [91].

4.1 Initial Experimental Set-up

4.1.1 Hardware Configuration

Our experimental system is a Dell OptiPlex 755 computer with a clean installa-

tion of 32-bit Windows 7 Ultimate. The instrumentation for our experiments was

a Data Acquisition system (DAQ), Model Number: USB-1608G Series [20]. The

DAQ connects to the device’s motherboard power connector, and the voltage and

current are collected on each of the direct current (DC) power channels. The com-

munication between the experimental machine and the data repository machine

(i.e., machine that stores the power consumption data) was established through

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 40

USB port. The DAQ provides relatively high-resolution power data, is able to

sample at a rate of 250KHz, and can monitor up to sixteen channels. Besides the

DAQ, we also used an eight inch Advanced Technology eXtended (ATX) power ca-

ble that had one male and one female 24-pin connector. The 24-pin male connector

was attached to the motherboard, and the 24-pin female connector was attached to

the power supply unit (PSU). A PSU is an electronic device that supplies electric

energy to an electric load. Specifically, a PSU converts alternate current (AC) to

low-voltage regulated DC current for the internal components of a computer [18].

Power supplies are rated in terms of how many watts they generate. Most power

supplies have overcurrent protection (OCP) to protect the circuit when the cur-

rent reaches a value that will cause an excessive or dangerous temperature rise in

conductors [160].

Each group of wires on the PSU are connected to a single OCP circuit that is

called a rail. A PSU has three voltage rails: +3.3V, +5V, and +12V. The +3.3V

rails and +5V rails are used by the digital electronic components and circuits in

the system, such as adapter cards and disk drive logic boards [216]. The disk drive

motors, CPU voltage regulators, and cooling fans are used by the +12V rails on

the motherboard [216]. Table 4.1 provides a list of the devices that are typically

powered by these voltage rails.

To ensure the power consumption data was collected adequately, three hard-

ware configurations were tested. The first hardware configuration consisted of an

ATX power extender cable and several minigrabbers. A minigrabber is a micro-

hook test clip that allows analog discovery’s signal wires to be connected to com-

ponent leads, wires, and other circuit components [16, 17]. Before using the min-

igrabbers, we had to solder a wire on each micro clip manually. Figure 4.1 shows

the DAQ used for the data collection, and Figure 4.2 shows how the minigrabbers

looks like after the soldering process.

Using the first hardware configuration we monitored a total of eleven DC power

channels (four pins had a signal of +3.3V, five pins had a signal of +5V, and two

pins had a signal of +12V). Figure 4.3 shows the signal of each pin for version 2.0

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 41

of the ATX standard connectors and Figure 4.4 shows the first hardware configu-

ration.

Table 4.1: Voltage rail usage for a general-purpose computer

Rail Devices Powered

+3.3V chipsets, some DIMMs, PCI/AGP/PCIe cards, miscellaneous chips

+5V disk drive logic, low-voltage motors, SIMMs, PCI/AGP/ISA cards,

and voltage regulators

+12V motors, high-output voltage regulators, AGP/PCIe cards

+12V CPU CPU

Acronyms:

• SIMM = Single Inline Memory Module

•DIMM = Dual Inline Memory Module

• PCI = Peripheral Component Interconnect

• PCIe = PCI Express

•AGP = Accelerated Graphics Port

• ISA = Industry Standard Architecture

•CPU = Central Processing Unit

Figure 4.1: USB-1608G DAQ Figure 4.2: Minigrabbers

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 42

Figure 4.3: ATX connector Figure 4.4: First configuration

The issue with the first hardware configuration was that the DAQ by itself

collected only the voltage consumption, and since we were interested in power,

both the voltage and current were required. To address this challenge, several

options were studied in the second hardware configuration. The first option was

to use a DC current switch and transducers, while a second option was to use

a compact DC voltage and current sense print circuit board (PCB) with analog

output.

The problem with the DC current switch and transducers was that the output

for the samples were in milliampere (mA), while the DC voltage and current sense

PCB provides the samples in amperes (A). Since we wanted to establish a difference

between malicious and non-malicious behavior, having the samples in mA will be

challenging because an mA is just a decimal fraction of an ampere. Also, the DC

current switch and transducers were expensive in comparison with the compact

DC voltage and current sense PCB with analog output. For these reasons, we

decided to use the compact DC voltage and current sense PCB for collecting the

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 43

current consumption of the experimental machine.

The DC voltage and current sense PCB determines the DC current by mea-

suring the voltage drop across a shunt resistor, and then converts that current to

analog voltage output [6]. A shunt resistor is a device that allows electric current to

pass around another point in the circuit by creating a low resistance path [19, 21].

For the second hardware configuration, the PCBs were welded to those wires on

the ATX power extender cable that we were interested in monitoring (i.e., +3.3V,

+5V, and +12V rails). Figure 4.5 shows the voltage and current sense PCB that

was used for the second hardware configuration, while Figure 4.6 shows the second

hardware configuration.

Figure 4.5: Voltage and current

sense PCB Figure 4.6: Second configuration

Using the second hardware configuration left a total of fourteen DC power

channels to be monitored (eleven channels were used to measure the current and

the other three channels were used to measure the voltage). That is, one voltage

value for all the rails that were +3.3V, one value for all the rails that were +5V,

and one value for all the rails that were +12V. While testing this configuration,

we noticed that there were two +12V rails that were powering the CPU of the

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 44

experimental machine. These +12V rails were separate from the rails that we

were already monitoring on the ATX power extender cable. Specifically, the +12V

rails were connected from the PSU to a 4-pin ATX12V power connector on the

motherboard. Including these rails, we ended up monitoring a total of sixteen

channels. 1

Monitoring sixteen channels at the same time was challenging because, when

post-processing, we had to sum several measured currents together. To simplify the

hardware configuration, we evaluated other options that could help us to reduce

the number of channels to be monitored. After some exploring we found that all

wires from the same voltage value were soldered together on the same contact point

on the power supply. This means that all the +3.3V rails were connected to the

same contact point, and the same was true for the +5V rails, and the +12V rails.

Figure 4.7 shows the +12V rails soldered together on the same contact point in

the power supply.

Figure 4.7: +12V rails soldered on the same contact point in the PSU

The third hardware configuration emerged from this observation. We grouped

all the +3.3V rails on the same voltage and current sense PCB which was attached

to the ATX power extender cable; the same was done for the +5V rails and the

1A survey of other machines was made to verify that general-purpose computers have the
4-pin ATX12V power connector. More than twenty computers were verified and all of them had
the 4-pin ATX12V power connector.

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 45

+12V rails. Figure 4.8 shows the third hardware configuration used during the

experiments and Figure 4.9 shows how the wires from the ATX power extender

cable were attached to the DAQ.

Figure 4.8: Third configuration Figure 4.9: Wires attached to DAQ

Grouping the voltage rails reduced the numbers of channels to be monitored

to six—three channels for measuring the current, and the other three channels for

measuring the voltage. In addition, we also included the two +12V rails that power

the CPU. Overall, instead of monitoring fifteen channels, we reduced the number

to eight—four voltage channels and four corresponding current channels. This

hardware configuration was the one used for the experiments and data collection

described in this dissertation. It was chosen because it allowed us to obtain the

same power consumption data as the second configuration, but with less monitoring

channels.

4.1.2 Software Configuration

Initially, we used a tool called TracerDAQ Pro (version 2.3.1.0), which is an out-of-

the box virtual instrument that acquires and displays power consumption data [20].

This tool ran on a different machine (data collection repository machine) in order

to provide integrity during the data collection process. The acquired power con-

sumption data from the experimental machine was stored as a comma-separated

value (.csv) file on the data collection repository machine.

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 46

TracerDAQ Pro provides options such as strip chart, oscilloscope, function

generator, and rate generator. When testing the first and second hardware config-

uration, we used only the strip chart option since we were interested in monitoring

all eight channels simultaneously. For the first and second hardware configuration,

power consumption data was collected using a sampling rate of 100Hz, a sampling

interval of 0.01 seconds, and the data was collected for five minutes. At the end,

30,000 samples per channel were obtained.

As our experimental design evolved, we found that TracerDAQ Pro was not

suitable for obtaining precise power consumption data. To address this issue we

developed our own Visual Basic program. Our program was written in Visual Basic

since the libraries (.dll files) from the DAQ were compatible with the Microsoft

.NET framework. By using our software, the collected power consumption data

was stored as a comma-separated value (.csv) file on a different machine (the data

collection repository machine). The communication between the data collection

repository machine and the experimental machine was established through the

USB port. Figure 4.10 shows the graphical user interface (GUI) of our “DAQ

Monitoring Tool” software.

Figure 4.10: GUI for the “DAQ Monitoring Tool” software

To ensure the malware will not spread around the main network, we designed

a segregated network, which consisted of the experimental machine, the data col-

lection repository machine, a switch, and a cellular data connection. The data

collection repository machine was connected to the personal hotspot, and then

through a network switch the wireless connection was shared with the experi-

mental machine. The advantages from the use of a segregated network are: (1)

allowing the malware to behave normally, while avoiding the possibility of infect-

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 47

ing other machines on the network, and (2) allowing us to monitor and record the

experimental machine’s network traffic.

In addition to our “DAQ Monitoring Tool” software, Wireshark was used to

collect the network traffic of the experimental machine with the objective of vali-

dating that the experimental machine was successfully infected with the rootkits

being tested. As part of the network traffic analysis, we organized the protocols

on the .pcap file by alphabetical order and then focused only on the column for

the Domain Name System (DNS) protocol. From the domains that were cap-

tured, one of them got our attention (term0l5ter12.com). Interestingly, several

websites [29, 8] had this domain registered as malicious. After all these analyses,

we were certain that the experimental machine was successfully infected with the

chosen rootkits.

4.2 Data Collection & Analysis

The power consumption of the experimental machine was collected in two different

scenarios: non-malicious behavior (no rootkit running on the system) and mali-

cious behavior (a rootkit was running on the system). For the data collection

workflow, we assumed a clean installation of Windows, then power consumption

data was collected and labeled as non-malicious. Subsequently, the experimental

machine was infected and power consumption data was collected and labeled as

malicious. For this case study we infected the experimental machine with two

rootkits: Alureon and Pihar.

The first rootkit, Alureon, also known as TDL4 or TDSS, is a Trojan that allows

an attacker to intercept incoming and outgoing Internet traffic in order to gather

confidential information such as user names, passwords, and credit card data [10].

There are several generations of this type of malware, and for our experiments,

we used the fourth generation [28]. Typically, it infects a computer via drive-

by download through a questionable website, often a distributor of pornography

or pirated media [246]. Once Alureon is installed on the machine, the software

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 48

searches the system for any competitor’s malware and removes it. It also uses an

encryption algorithm to hide its communications from traffic analysis tools that are

sometimes used to detect suspicious transmissions [246]. Furthermore, this rootkit

can manipulate the master boot record (MBR) of the computer to ensure that it

is loaded early during the bootup process so that it can interfere with the loading

of the OS [9]. The second rootkit, which is a variant of Alureon, is a Trojan called

Purple Haze (also known as Pihar). Like Alureon, this rootkit can modify the

MBR of the machine, as well as changing system settings and reconfiguring the

Windows Registry. Its rootkit capabilities include disabling the anti-virus (AV)

software to keep itself hidden [24].

To initiate the data collection process, we wrote two scripts: a Python script

that executes a sequence of events, and a C++ program that inserted what we will

called a marker. The objective of the Python script was to ensure repeatability,

while the objective of the marker was to insert a signal into the measured power

consumption data to mark the start and end points for each sequence of events

(i.e., idle, opening IE, and booting/rebooting).

When the Python script is executed, it launches two markers before the ex-

perimental machine goes idle for a minute. Then, the Python script opens ten

windows of Internet Explorer (IE) each with five seconds delay. IE was chosen be-

cause the Alureon and Pihar rootkits affect the performance of browsers [15, 245].

Figure 4.11 shows the sequence of events during the data collection process for the

+12V CPU rails. The events (idle, opening IE, booting/rebooting) were recorded

during three states: (1) prior to infection, (2) after infection, and (3) after infec-

tion plus reboot. In order to segment these sections of the power profile, we used

the marker to stress the CPU of the experimental machine for five seconds. The

Python script places markers in the power consumption data before and after the

events were recorded. The advantage of using these markers is that they allow us

to understand when a particular event occurs and how long it takes to complete

its execution. This workflow was completed, for each rootkit, three times for the

four monitored voltage rails.

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 49

Figure 4.11: Sequence of events during the data collection process

After the data collection, the power consumption data was pre-processed by

multiplying the voltage and current for the monitored rails. Then, we wrote a

Matlab script to separate the events based on their start and end point for further

analysis. The MATLAB script returns the start and end point of all the markers

that appeared on the dataset. For this case study, there were a total of eighteen

markers. Once we had the start and end point for each event, the next step was

to compare those events that were related to each other. Specifically, we were

interested in the following comparisons: (1) when the machine was booting prior

to infection versus when the machine was rebooting after infection; (2) idle prior

to infection versus idle after infection; (3) idle prior to infection versus idle after

infection and reboot; (4) when opening IE windows prior to infection versus when

opening IE windows after infection; and (5) when opening IE windows prior to

infection versus when opening IE windows after infection and reboot.

4.3 Preliminary Results

The hypothesis under investigation in this proof of concept was if there is a dif-

ference in the power consumption of a general-purpose computer after malware

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 50

(i.e., rootkit) infection. To prove or disprove this hypothesis, several experiments

were conducted and power profiles were collected for specific events (i.e., idle,

opening IE, and booting/rebooting). This was done for the rootkits Alureon and

Pihar. For each rootkit there were three datasets. Each dataset contains the power

consumption obtained for each monitored voltage rail. The comparison between

the non-malicious and malicious state was done for each of the events that were

recorded on the four monitored voltage rails. Five graphs were generated for each

monitored voltage rail. The x axis for each of these graphs shows “Data Points”,

which refers to the total of power readings that were sampled every 10 millisec-

onds. For example, if a graph shows 3, 000 data points that would be equivalent

to thirty seconds.

4.3.1 +3.3V Rails

These rails are typically used by digital electronic components and circuits in the

system, such as memory. When comparing the power profiles of booting prior

to infection versus when it was rebooting after infection, we noticed that at the

beginning the power consumption was lower and subsequently both events kept

their power consumption similar to each other. Regarding the other events (i.e.,

idle and opening IE), results showed that the difference in the power consumption

cannot be established by the naked eye. After analyzing all six datasets (i.e., three

datasets per rootkit), we concluded that the +3.3V rails were not very useful for

detecting different behaviors between the non-malicious and malicious power pro-

files because these voltage rails are used to power up memory, and that component

does not consume as much power as the hard disk drive or CPU.

4.3.2 +5V Rails

For all datasets, when comparing booting prior to infection with the rebooting

after infection for the +5V rails, we noticed the same behavior as the +3.3V rails,

that is the power consumption after infection was lower at the beginning of the

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 51

initialization process, but later it kept the same pace as the non-malicious behavior.

Hence, comparing booting prior to infection versus booting after infection for the

+5V rails is not sufficient to distinguish between non-malicious and malicious

behavior.

When we compared idle prior to infection versus idle after infection with

Alureon we obtained an increment in the power consumption after the experimen-

tal machine was infected for two out of the three datasets (66.67% of the time),

while for Pihar we noticed an increment in the power consumption for all datasets

(100% of the time). However, when comparing idle prior to infection versus idle

after infection and reboot for both rootkits, we noticed that the power profiles

for both scenarios (malicious and non-malicious) were at the same level. In other

words, a distinguishable difference cannot be made by the naked eye. Furthermore,

when comparing all the graphs in which the experimental machine was idle we no-

ticed a delay in the power consumption data after the experimental machine was

infected. We believe this delay is because after the infection more processes are

running and this extra work consumes more power. Figure 4.12 shows the power

consumption after infecting the experimental machine with the Alureon rootkit.

As can be seen from Figure 4.12, the power consumption in the idle state was

higher after the infection than prior to infection. Hence, this comparison is a good

criterion for detecting malware through the power consumption.

Figure 4.12: Power consumption for idle prior to infection vs. idle after infection

with Alureon for the +5V rails

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 52

When IE was opened prior to infection versus after the infection with Alureon,

we noticed an increment in the power consumption after infection for two out of

three datasets (66.67% of the time). In the case of the Pihar rootkit, this behavior

was seen only in one out of three datasets (33.33% of the time). Figure 4.13 shows

the power consumption after opening IE prior to infection versus after infection

for the Alureon rootkit.

Figure 4.13: Power consumption for opening IE prior to infection vs. opening IE

after infection with Alureon for the +5V rails

From Figure 4.13 we can see an increment in the power consumption when

some IE windows were opened. Interestingly, this increment was seen when some

windows of IE were jammed. This was consistent with the behavior we saw during

the data collection process and later was confirmed when analyzing the .pcap file.

Based on network traffic data, we noticed that Alureon was trying to redirect the

search engine to advertisement websites. However, when IE was opened prior to

infection versus after the infection and reboot for both rootkits, a difference by the

naked eye could not be established.

4.3.3 +12V Rails on the Motherboard

The +12V rails on the motherboard are used to power up the hard disk drive

motors and the fans. For one of the Alureon datasets results showed that the

power consumption was higher after the infection compared to when it was booted

prior to infection (33.33% of the time). However for the other two datasets, we

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 53

saw similar behavior as in the case of +3.3V and +5V rails. Figure 4.14 shows an

increment in the power consumption after the experimental machine was infected

with Alureon during the initialization process. In the case of Pihar, an increment

in the power consumption was noticeable on two out of three datasets (66.67% of

the time).

Figure 4.14: Power consumption for booting prior to infection vs. booting after

infection with Alureon for the +12V rails on the motherboard

When comparing the idle state (idle prior to infection versus idle after infec-

tion and idle prior to infection versus idle after infection and reboot), results for

Alureon showed an increment in the power consumption after infection for two out

of the three datasets (66.67% of the time). Similar increment was seen in all three

datasets of Pihar (100% of the time). Figure 4.15 shows an increment in the power

consumption when comparing idle prior to infection versus idle after infection and

reboot for the Alureon rootkit.

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 54

Figure 4.15: Power consumption for idle prior to infection vs. idle after infection

and reboot with Alureon for the +12V rails on the motherboard

Nonetheless, when comparing IE (IE prior to infection versus after infection

and IE prior to infection versus after infection and reboot), results for Alureon

showed that an increment in the power consumption after infection can be seen in

only one of the datasets (33.33% of the time). Figure 4.16 shows an increment in

the power consumption when comparing IE prior to infection versus IE after the

Alureon infection and reboot.

Figure 4.16: Power consumption for opening IE prior to infection vs. opening IE

after infection and reboot with Alureon for the +12V rails on the motherboard

When comparing IE prior to infection versus IE after infection for Pihar, we

noticed an increment in the power consumption after infection for one out of the

three datasets (33.33% of the time). Interestingly, when comparing IE prior to

infection versus IE after infection and reboot we noticed the power consumption

of the experimental machine was higher after infection for all datasets (100% of

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 55

the time).

After analyzing the +12V rails on the motherboard, we concluded these rails

are useful when distinguishing the non-malicious and malicious power profiles.

4.3.4 +12V CPU Rails

The +12V CPU rails are separate from the +12V rails on the motherboard (mon-

itored in the PSU). They are used to power the CPU or graphics processing unit

(GPU) of a general-purpose computer. The +12V rails on the motherboard are

used to power hard disk drive motors and fans.

The comparison between the power consumption when the experimental ma-

chine was booting prior to infection versus when it was booting after infection

showed that at the beginning of the initialization process the power consumption

was higher prior to infection for both rootkits. However, at some point during

the initialization, an increment in the power consumption after infection was no-

ticeable. This comparison by itself does not provide information that can help us

to distinguish between non-malicious and malicious behavior because of the pres-

ence of noise. Noise is expected during the booting and rebooting process because

the system is executing several processes simultaneously, so even if the malware is

present, its challenging to differentiate between non-malicious and malicious states.

In the case of idle (idle prior to infection versus after infection and idle prior to

infection versus after infection and reboot), we noticed that the power consump-

tion for both rootkits in the non-malicious and malicious scenarios were similar.

However, there were some higher spikes after infection. We believe these spikes

were generated when the system was executing non-malicious processes. Similarly,

these spikes were also seen in the +5V rails.

A similar behavior was noticeable during IE execution (IE prior to infection

versus after infection and IE prior to infection versus after infection and reboot).

Results showed that for both non-malicious and malicious power profiles, the power

consumption was similar. In addition, some delays were seen on the experimen-

Chapter 4. Preliminary Experimental Set-up & Proof of Concept Study 56

tal machine after it was infected. Figure 4.17 shows the power consumption for

opening IE prior to infection versus opening IE after infection for the Alureon

rootkit.

Figure 4.17: Power consumption for opening IE prior to infection vs. opening IE

after infection with Alureon for the +12V CPU rails

After analyzing all six datasets (three datasets per rootkit), we concluded that

a distinguishable difference cannot be made by the naked eye when analyzing the

non-malicious and malicious power profiles for the +12V CPU rails. These results

are not the ones we expected, because by monitoring the CPU of the general-

purpose computer we thought these voltage rails would be more informative. How-

ever, we are aware that many processes are running and this extra work consumes

more power making it difficult to establish a difference by the naked eye. Fur-

thermore, using power consumption to distinguish malware from non-malicious

software can be done by using machine learning techniques, which is explored in

this dissertation.

57

Chapter 5

Experimental Set-up & Data

Collection

Based on what we learned from experiments presented in Chapter 4, in this

chapter we describe the software tools used in our testbed and explain the con-

ducted experiments when collecting data from multiple modalities (i.e., power

consumption, network traffic data, and system logs). Note that the data collected

in this Chapter was used for the experiments described in Chapters 8, 9, and 10.

5.1 Testbed Design & Development

5.1.1 Hardware & Software Configuration

Although we used the same hardware configuration that is described in Chapter 4,

the software configuration of our testbed was modified to collect the power con-

sumption, the network traffic data and system logs simultaneously. We designed a

segregated network (described in Subsection 4.1.2), which consisted of the exper-

imental machine, the data collection repository machine, a switch, and a cellular

data connection, as shown in Figure 5.1. The data collection repository machine

was connected to the personal hotspot, and then through a network switch the

wireless connection was shared with the experimental machine. The experimental

machine had unfiltered Internet access, which is crucial for the malware samples

Chapter 5. Experimental Set-up & Data Collection 58

to perform their full functionality, as most malware initiates network traffic (e.g.,

contacts the command and control servers).

Figure 5.1: Experimental set-up

Several software tools were used for the experimental design. We used

ClockSynchro [33] to synchronize the clocks of the experimental machine and the

data collection repository machine, Wireshark [42] to collect the network traffic

data, CaptureBAT [32] to collect the system logs, and the Clonezilla applica-

tion [14] to ensure that the hard disk drive of the experimental machine contained

a clean (i.e., uninfected) copy of the Windows OS.

5.2 Data Collection Set-up

5.2.1 Dynamic Behavioral Data Collection

To conduct the dynamic analysis, the executable files were launched manually

in a Dell OptiPlex 755 computer with a clean installation of 32-bit Windows 7

Ultimate. The objective of the dynamic analysis was to collect behavioral-based

features (i.e., power consumption, network traffic, and system logs), while running

different malware and non-malicious applications on a general-purpose computer.

Chapter 5. Experimental Set-up & Data Collection 59

The instrumentation used in our experiments to collect the power consumption

data was a DAQ, Model Number: USB-1608G Series [20]. The DAQ was attached

to the experimental machine through a 24-pin ATX-extender cable. The 24-pin

male connector from the ATX-extender cable was attached to the motherboard,

while the 24-pin female connector was attached to the PSU. Eight DC power chan-

nels—four voltage channels and four corresponding current channels were moni-

tored (+3.3V rails, the +5V rails, the +12V rails on the motherboard and the

+12V rails on the CPU). To collect precise power measurements, we developed a

program that directly accessed the DAQ to read the power consumption data and

stored them on a separate machine, used as data repository. A detailed description

about the hardware configuration used to collect the power consumption data can

be found in Chapter 4 and in our technical report [172].

We also used Wireshark [42], which ran on the data collection repository ma-

chine, to collect the network traffic data. In the case of the system logs, several

software applications (i.e., Event Viewer [208], RegFsNotify [112], Logstash [37],

and CaptureBAT) were evaluated.

Event Viewer [208] is a tool that allows the user to monitor the events that

occurred in the system, it maintains system logs about programs, security, and

system events on the computer, can be used to view and manage the system logs

and to gather specific information (e.g., hardware and software problems) [208].

Because the recorded events did not included the milliseconds on their timestamps,

this tool was discarded. Note that precise timestamps are essential since we are

interested in correlating the system logs with the power consumption and the

network traffic data.

Similarly, RegFsNotify [112] detects the changes that occurred in the Windows

Registry and file system in real time, but since no timestamp was recorded for

the collected events it was discarded. On the other hand, Logstash [37] (an open

source server-side tool for managing events and logs) was also discarded because

by having a client-server architecture additional software is required to run on

the background of the operating system (OS), which causes additional noisiness

Chapter 5. Experimental Set-up & Data Collection 60

in the power consumption data. Finally, we evaluated CaptureBAT [263, 32], a

lightweight open source tool that logs the changes that occurs in the OS when an

application is running. This tool allows to record changes that occur in the file

system, Registry, and system processes. The file system monitor captures system

details such as when an event occurs, the type of event (i.e., read and write), and

the name of the process that triggered that particular event. The Registry monitor

reports the time with a resolution in milliseconds, the process that triggered the

registry event, the path to the key where the action occurred, and the type of action

that was performed on the key (i.e., created and deleted). The process monitor

pays attention to the creation and destruction of processes but does not report on

the running processes. It captures the time, whether the process was created or

terminated, and the file name that represents that particular process. This tool

was chosen among the other tools, because it has an exclusion list mechanism that

allows to omit noise that occurs naturally in the system. Moreover, this tool has

also been recommended for conducting dynamic malware analysis [143] and has

been used by previous works for rootkit detection [273] and for malware analysis

in memory forensics [284].

To account for the randomness of different Windows OS background processes,

each malware and non-malicious software application was executed three times.

Each run lasted for thirty minutes. Other works that used behavioral charac-

teristics for malware detection have executed the malware in a controlled sand-

box environment for one minute and a half [178], two minutes [251], five min-

utes [95, 77, 303, 99] and twenty minutes [114]. We decided to run our malware

samples for thirty minutes because for these specific malware examples this was

sufficient time for them to perform malevolent actions. Note that for each thirty

minutes run, we collected one .csv file with the power consumption data, one .pcap

file with the network traffic data, and one text file (.txt) with the system log data.

Chapter 5. Experimental Set-up & Data Collection 61

5.2.2 Code-based Static Data Collection

Static data can be collected without executing the portable executable file. Specif-

ically, the portable executable files has to be decompiled first. To decom-

pile Windows executables, disassembler and memory dumper tools can be used.

Some examples of tools commonly used to disassemble Windows executables are:

IDAPro [35], OllyDbg [38], ExifTool [152], and PE Explorer [51]. From these

tools, we used a disassembler tool called PE Explorer [51]. PE Explorer is an

integrated collection of tools that provide a framework for working with several

executable formats that run on Windows 32-bit platforms. After unpacking the

executable file, information such as headers, data directories, and dynamic linked

libraries (DLL) dependencies were collected from each malicious and non-malicious

software application.

5.3 Malicious and Non-malicious Applications

5.3.1 Malicious Software Selection

Malware examples were obtained from two malware repositories: (1) Con-

tagio (http://contagiodump.blogspot.com/) and (2) VirusShare (https://

virusshare.com/). To download the malware examples from the former website

(Contagio), no account was needed. However, in the case of the latter (virusShare),

we had to contact the website administrator and request access to the malicious

software. Table 5.1 lists the fifty one malware examples chosen for our experiments.

Note that those malware examples shown in bold in Table 5.1 are variants from

another malware that was also chosen for our experiments. For example, Carberp

V1 is a variant of Carberp and so on.

Chapter 5. Experimental Set-up & Data Collection 62

Table 5.1: Malicious applications chosen for the experiments

Malware Examples

1 Alureon

2 Avatar

3 Bangat

4 Biscuit

5 Carberp

6 Carberp V1

7 Citadel-Atmos

8 Cookiebag

9 CryptoLocker

10 CryptoLocker V1

11 Dairy

12 DarkMegi

13 Dexter

14 Emotet-K

15 Emotet-Conficker trojan

16 Filecoder

17 Greencat

18 Kovter-Zcryptor

19 Locky

20 MaxRootkit

21 Miniasp

22 Necurs

23 Newsreel

24 Pihar

25 Crisis

26 Rustock

Malware Examples

27 Satan

28 Satan V1

29 Satan V2

30 Sirefef

31 Tabsgsql

32 Tarsip-Eclipse

33 Tarsip-Moon

34 Teerac-A

35 Tescrypt-A

36 Tescrypt-A V1

37 Tescrypt-D

38 Tescrypt-J

39 Warp

40 Web-C2-AUSOV

41 Web-C2-BOLID

42 Web-C2-CSON

43 Web-C2-DIV

44 Web-C2-HEAD

45 Web-C2-KT3

46 Web-C2-QBP

47 Web-C2-RAVE

48 Xpaj

49 Zbot

50 Zbot V1

51 Zbot V2

Each malicious software was executed in a virtual machine to ensure that it

was not corrupted and that it was functional for the Windows OS. We also used

a malware analysis service [26] to generate a behavioral report for each malicious

file. These behavioral reports were used to ensure the malware chosen for our

experiments was entirely removed from the hard disk drive after formatting the

Chapter 5. Experimental Set-up & Data Collection 63

experimental machine using the Clonezilla tool.

Malware was executed manually to infect the experimental machine. We used

great care to allow malware to behave as intended. For each malware example,

we ensured that it was active by monitoring the network traffic and by observing

events such as files being encrypted, pop-ups with adult content, etc. The malware

selected for our experiments have traits of of viruses (e.g., Dexter [23]), worms

(e.g., Gamarue [22]), backdoors (e.g., Greencat [25]), rootkits (e.g., Alureon [294]),

and ransomware (e.g., Locky [49]). Different types of malware were used in our

experiments to have a representative, diverse malware sample. Distinguishing

among different malware types and/or malware families are beyond the scope of

this dissertation.

5.3.2 Non-malicious Software Selection

We used different types of non-malicious applications (some network intensive,

other CPU and memory usage intensive). We launched each non-malicious software

manually and ensured that it was provided with adequate inputs/workloads. For

example, we used Firefox [46] to navigate the Internet which generated network

traffic while IntelBurnTest [48] and HeavyLoad [47] were used to stress the CPU

of the experimental machine.

During the data collection process, six out of the twenty eight non-malicious

software applications (i.e., benchmark tools) were discarded because the duration

of the benchmarking test was less than a minute. Therefore, the remaining twenty

two non-malicious applications were chosen for the data analysis. A list of the

twenty two non-malicious software applications is given in Table 5.2. Note that

the discarded non-malicious software applications are shown in bold.

Chapter 5. Experimental Set-up & Data Collection 64

Table 5.2: Non-malicious applications chosen for the experiments

Non-malicious Applications

1 Adobe Reader

2 ATTO-Disk

3 BlackHole-B1

4 BlackHole-B2

5 BlackHole-B3

6 CPUID-CPU-Z

7 CPUStress

8 Firefox

9 FurMark-CPUBurner

10 GeekBench

11 HeavyLoad-StressCPU

12 HeavyLoad-StressMemory

13 HeavyLoad-TreeSize

14 HeavyLoad-WriteTempFile

Non-malicious Applications

15 HyperPi

16 IntelBurnTest

17 KLite

18 MaxMemm

19 Notepad

20 Opera

21 ParticleFury

22 Spotify

23 StressMyPC

24 UserBenchmark

25 VLC

26 WebServerStress

27 Windows Media Player

28 XtremeBenchmark

65

Chapter 6

Data Pre-processing & Feature

Extraction

This chapter explains the data pre-processing and how the dynamic behavioral-

based and code-based static features were extracted for the malicious and non-

malicious software applications.

6.1 Dynamic Behavioral-based Features

Dynamic methods require the execution of a given malware example, typically

in a sandbox environment [305, 275], and extract behavioral-based features that

represent the actions performed by the malware. Although the usage of dynamic

behavioral-based features is more costly, they are more resilient to obfuscation

because they extract behavior actions performed by the malware, rather than

binary code patterns. Therefore, using dynamic behavioral-based features is suit-

able for detecting new malware examples and variants of existing malware. In

this dissertation, the extracted dynamic behavioral-based features are divided into

three categories: (1) power-based features, (2) network traffic-based features, and

(3) system logs-based features. A total of three hundred and forty five dynamic

behavioral-based features (i.e., one hundred and thirty two power-based features,

ten system logs-based features, and two hundred and three network traffic-based

Chapter 6. Data Pre-processing & Feature Extraction 66

features) were extracted.

After the data was collected, the power consumption, system logs, and the

network traffic data were pre-processed. To extract the desired behavioral features

from the power consumption, system logs, and network traffic data, we developed

our own Python script. With respect to the system logs and network traffic data,

each .txt file and .pcap file were converted to the .csv format for further analysis.

In the case of the power consumption data, a data conversion was not necessary

because the data was already in the .csv format. Furthermore, we developed

another Python script to calculate the autocorrelation function (ACF) for the

power consumption and network traffic data. In the case of the system logs, we

could not calculate the autocorrelation function because CaptureBAT collects only

the changes that occurs in the system after the execution of the malicious and non-

malicious software. Meaning there was not a specific time interval when collecting

the system logs, unlike with the power consumption and network traffic data.

The autocorrelation function is the coefficient of correlation between

two values in a time series [43]. Informally, autocorrelation can be de-

fined as the similarity between observations as a function of the time

lag between them. The ACF for a time series yt can be defined as:

Corr(yt, yt-k), k = 1, 2, ... n

where k refers to the time gap being considered as the lag. A lag whose k = 1

refers that the autocorrelation between the values is one time period apart. The

analysis of autocorrelation is helpful for finding repeating patterns, such as the

presence of a periodic signal obscured by noise. In our Python script we calculated

the autocorrelation function for different lags (i.e., when k = 5, 10, 15, 20, 25, and

50).

6.1.1 Power Consumption

Power consumption data was pre-processed by multiplying the voltage and current

for each of the monitored voltage rails to obtain the power consumption in Watts.

Chapter 6. Data Pre-processing & Feature Extraction 67

To this end, we used a bash script that multiplies the current and voltage for each

of the monitored voltage rails. The extracted power-based features are given in

Table 6.1. Note that for the autocorrelation-based features in Tables 6.1 and 6.2,

if k = n, we would have a total of n values for k. For example, if k = 5, we have 5

values that were used as an autocorrelation-based feature. This is why we have a

total of 125 autocorrelation-based features (5 + 10 + 15 + 20 + 25 + 50 = 125) for

each modality (i.e., power consumption and network traffic data).

Table 6.1: List of extracted power-based features

Feature name Description

PwrMinimum Minimum power measurement

PwrMaximum Largest power measurement

PwrMean Average power measurement

PwrMedian Median power measurement

PwrVariance Variance power measurement

PwrSkewness Skewness power measurement

PwrKurtosis Kurtosis power measurement

AC Pwr 5 Autocorrelation values for k = 5

AC Pwr 10 Autocorrelation values for k = 10

AC Pwr 15 Autocorrelation values for k = 15

AC Pwr 20 Autocorrelation values for k = 20

AC Pwr 25 Autocorrelation values for k = 25

AC Pwr 50 Autocorrelation values for k = 50

6.1.2 Network Traffic

Analyzing network traffic data helps us to understand about what is happening on

the network. Network traffic-based features are convenient for malware detection,

since unusual amount of traffic in a network is a possible sign of a cyber-attack. In

this dissertation, the extracted network traffic-based features can be divided into

two categories: (1) commonly used network traffic-based features (e.g., number

of received packets, number of unique source IP address, etc.); and (2) network

flows-based features. The extracted commonly used network traffic-based features

are listed in Table 6.2, while the extracted network flows-based features with their

corresponding aggregation levels are given in Table 6.3.

Chapter 6. Data Pre-processing & Feature Extraction 68

Table 6.2: List of extracted commonly used network traffic-based features

Feature name Description

Packets # of received packets

PktsLength Packets length in bytes

UniqueSourceIP IP address of the device sending the packet

UniqueDestIP IP address of the device receiving the packet

LLMNR # of packets related to LLMNR protocol

UDP # of UDP protocol packets

ARP # of ARP protocol packets

BROWSER # of BROWSER service packets

NBNS # of NBNS service packets

DHCP # of DHCP protocol packets

DHCPV6 # of DHCPV6 protocol packets

DNS # of DNS protocol packets

HTTP # of HTTP protocol packets

ICMP # of ICMP protocol packets

ICMPV6 # of ICMPV6 protocol packets

IGMPV3 # of IGMPV3 protocol packets

SSDP # of SSDP protocol packets

TCP # of TCP protocol packets

AC Ntwk 5 Autocorrelation values for k = 5

AC Ntwk 10 Autocorrelation values for k = 10

AC Ntwk 15 Autocorrelation values for k = 15

AC Ntwk 20 Autocorrelation values for k = 20

AC Ntwk 25 Autocorrelation values for k = 25

AC Ntwk 50 Autocorrelation values for k = 50

Chapter 6. Data Pre-processing & Feature Extraction 69

Table 6.3: List of extracted network flows-based features

Feature name Description Aggregation levels

Flows # of flows None

Duration Time communication lasted Max, Avg

L4ProtoUDP # of flows related to UDP None

L4protoIGMP # of flows related to IGMP None

L4ProtoTCP # of flows related to TCP None

L4ProtoICMP # of flows related to ICMP None

PktsSent # of transmitted packets Sum, Max, Avg

PktsRcvd # of received packets Sum, Max, Avg

BytesSnt # of transmitted bytes Sum, Min, Max, Avg

BytesRcvd # of received bytes Sum, Max, Avg

MinPktSize Minimum layer 3 packet size Min

MaxPktSize Maximum layer 3 packet size Max

AvgPktSize Average packet load ratio Avg, Median

StdPktSz Standard deviation packet load ratio Std

Pktps Packets sent per second Max, Avg

Bytps Bytes sent per second Max, Avg

PktAsm Packet stream asymmetry Min, Avg

BytAsm Byte stream asymmetry Min, Avg

TcpPSeqCnt TCP packet sequence count Max, Avg

TcpSeqSntBytes TCP sent sequence diff bytes Max, Avg

TcpSeqFaultCnt TCP sequence # fault count Max, Avg

TcpPAckCnt TCP packet ack count Max, Avg

TcpFlLAcRcByt TCP flawless ack received bytes Max, Avg

TcpAckFaultCnt TCP ack # fault count Max, Avg

TcpInitWinSz TCP initial window size Max, Avg

TcpAveWinSz TCP average window size Avg, Median

TcpWinSzDwCn TCP window size change down count Max, Avg

TcpWiSzUpCnt TCP window size change down count Max, Avg

TcpWiSzChDiCn TCP window size direction change count Max, Avg

FlowDirA Flows direction is clnt to srvr None

FlowDirB Flows direction is srvr to clnt None

AvgIAT Average of IAT Avg, Median

StdIAT Standard deviation of IAT Std

Literature shows several definitions for network flows [104, 105, 198].

In this dissertation we follow the definition given by Claise [105], which

describes a network flow as “a set of IP packets passing an observa-

Chapter 6. Data Pre-processing & Feature Extraction 70

tion point in the network during a certain time interval, such that all

packets belonging to a particular flow have a set of common proper-

ties”. Specifically, a network flow is defined using the following 5-tuple:

(ip src, ip dest, port src, port dst, and proto)

where ip src refers to the source IP address, ip dest refers to the destination IP

address, port src refers to the source port number, port dst refers to the destination

port number, and proto refers to the used protocol.

There exists a variety of tools that can be used to extract network flows from

a .pcap file. Some examples of these tools are FlowScan [2, 232], NetFlow [104],

NetViewer [183], Netpy [130], Softflowd [7], TCPflow [3], SpliCap [5], and Trana-

lyzer [52], which extends Cisco NetFlow’s [104] functionality. In this dissertation

we used Tranalyzer [52, 96], a lightweight unidirectional flow exporter that collects

packet information with common characteristics, such as IP addresses and port

numbers, to obtain the network flows. This tool was chosen over the others for

three reasons: (1) It is an extension of NetFlow [104] which has been widely used

by the research community as a flow exporter (aggregates packets into flows and

export flow records) and as a flow collector (storage and pre-process flow data); (2)

It supports features that can be categorized into groups (e.g., time, inter-arrival,

packets, etc.); (3) It has been used by previous works [148, 149] for detection of

botnets.

Since multiple flows (e.g., > 100) were generated for each individual .pcap file,

we performed aggregation of the network flow-based features to achieve our final

network flows-based features. Aggregation is commonly used to get additional

information about particular groups based on specific characteristics. In addition,

it also helps to achieve a coarser granularity in the data.

6.1.3 System logs

System logs or syslogs are files that contain events that are logged by compo-

nents from the OS. Extracting system logs-based features is useful because they

Chapter 6. Data Pre-processing & Feature Extraction 71

contain information about the software, hardware, system processes and system

components as well as information, such as error and warning events related to

the computer OS. The extracted system logs-based features (given in Table 6.4)

were based on the changes that occurred in the file system, Registry, and system

processes while the malicious and non-malicious software were executed.

Table 6.4: List of extracted system logs-based features

Feature name Description

Changes # of changes that occurred in the system

FileChgs # of changes in the file system

RegistryChgs # of changes in the Registry

ProcessesChgs # of changes in the process manager

FlsWrite # of written files

FlsDelete # of deleted files

CreatedPrcs # of created processes

TerminatedPrcs # of terminated processes

SetValueKeyChgs # of times the value entry under the open key was replaced/created

DelValueKeyChgs # of times a method deleted a value entry under the open key

6.2 Code-based Static Features

Common malware analysis techniques initiate by conducting static analysis. Static

analysis describes the process of analyzing the code or structure of a program to

determine what it does without the need of executing it. These methods can be

applied to detect known malware with high accuracy and speed, but they are

susceptible to code obfuscation which is a common practice of malware creators.

In order to conduct static malware analysis, the portable executable (PE) file

format is used. A PE file consist of a number of headers and sections that tell the

dynamic linker how to map the file into memory, while the PE file format is a data

structure that encapsulates the information necessary for the Windows OS loader

to manage the wrapped executable code [271]. Typically, every file with executable

code that is loaded by the Windows OS is in the PE file format. The structure of

these files begin with a header that includes information about the code, the type

Chapter 6. Data Pre-processing & Feature Extraction 72

of application and dynamic library references for linking, application programming

interface (API), export and import tables, resource management data and thread-

local storage (TLS) data.

In this dissertation, we extracted the code-based static features using the PE

Explorer tool [51]. The extracted code-based static features were in the .txt format,

so we converted them to the .csv format for further analysis. To pre-process the

data, we used a bash script to remove punctuation marks (i.e., the apostrophes

and semicolons) and redundant information (i.e., the name of the computer used

to collect the data and the timestamp in which the file was created).

After the data pre-processing, we developed our own Python script to extract

the code-based static features. The extracted code-based static features can be

divided into three categories: (1) headers-based features, (2) data directories-based

features, and (3) DLL dependencies-based features. Since some of our code-based

static features were in hexadecimal, we developed another Python script to convert

these hexadecimal values to decimal before the data analysis. A total of forty

eight code-based static features (i.e., fourteen header-based features, eight data

directories-based features, and twenty six DLL dependencies-based features) were

extracted.

The extracted headers-based features contains information about the number

of sections, the size of the stack and heap, and so on. This type of information is

of great value to the malware analyst since it can be obtained easily without the

need of executing the malicious file [271]. A list of the extracted headers-based

features is given in Table 6.5.

Data directories indicates how a specific section body’s data is structured on

the executable file. The data directories contain references to various tables (e.g.,

import, export, resource, etc.). These references (if appropriately analyzed) can

provide valuable insight to malware analysts, since they provide a summary of the

contents of the PE file [265]. Specifically, each data directory structure specifies

the size and relative virtual address of the directory. The data directories contain

information such as the resources, debugging information, base relocations and

Chapter 6. Data Pre-processing & Feature Extraction 73

other OS specific data. Table 6.6 lists the extracted data directories-based features.

Table 6.5: List of extracted headers-based features

Feature name Description

Sections Size of the section table

Magic Integer identifying the sate of the image file

CodeSz Size of the executable code

InitializedDataSz Size of the initialized data

EntryPointAddr Address of entry point when an executable file is loaded into memory

BaseOfCode Offset of the executable code

BaseOfData Offset of the initialized data

ImageSz Amount of memory the image file will need

HeaderSz Length of all headers including the data directories and the section headers

StackReserveSz Stack commit size

StackCommitSz Size of initially committed stack

HeapReserveSz Size of the local heap space reserve

HeapCommitSz Size of the committed heap

DataDirectories # of valid entries in the data directories

Table 6.6: List of extracted data directories-based features

Feature name Description

ExportTblSz Directory of the exported symbols

ImportTblSz Directory of the imported symbols

ResourceTblSz Directory of the resources

RelocationTblSz Directory of the base relocation table

TLSTblSz Directory of the Thread Local Storage (TLS)

LoadConfigTblSz Directory of the load configuration

IAT-TblSz Directory of the Import Address Table (IAT)

DelayImportDescriptors Address and size of the delay import descriptor

A program’s DLL contain valuable information about its functionality [271].

Using the Dependency Scanner option from the PE Explorer tool, we extracted

the DLL dependencies for each malicious and non-malicious software application.

Software dependencies are modules or pieces of code that are required by an appli-

cation to load and run correctly. Specifically, the DLL dependencies-based features

consists from the information extracted from the program’s libraries and functions.

The extracted DLL dependencies-based features are given in Table 6.7.

Chapter 6. Data Pre-processing & Feature Extraction 74

Table 6.7: List of extracted DLL dependencies-based features

Feature name Description

Parameters # of unique function call parameters

kernel32 # of kernel32.dll

advapi32 # of advapi32.dll

gdi32 # of gdi32.dll

ole32 # of ole32.dll

user32 # of user32.dll

glu32 # of glu32.dll

opengl32 # of opengl32.dll

shell32 # of shell32.dll

comctl32 # of comctl32.dll

comdlg32 # of comdlg32.dll

oleaut32 # of oleaut32.dll

version # of version.dll

winspool # of winspool.drv

wininet # of wininet.dll

wintrust # of wintrust.dll

mpr # of mpr.dll

urlmon # of urlmon.dll

rasapi32 # of rasapi32.dll

msimg32 # of msimg32.dll

imm32 # of imm32.dll

winmm # of winmm.dll

lz32 # of lz32.dll

indexMax Maximum # of the function in the ordinal export table

indexMin Minimum # of the function in the ordinal export table

indexAvg Average # of the function in the ordinal export table

Some of these DLL dependencies-based features are known to be useful for

distinguishing malware among non-malicious software. For example, the work by

Kolosnjaji et al. [190] stated that functions imported from kernel32.dll entail that

malware opens and manipulates processes. Similarly, functions imported from

the shell32.dll suggests that malware launches other programs. In addition, the

work by Salehi et al. [251] mentioned the user32.dll, kernel32.dll, advapi32.dll, and

wininet.dll as some of the most important DLLs to consider for malware detection.

75

Chapter 7

Machine Learning Algorithms &

Performance Metrics

This chapter explains the conducted experiments to classify between malicious

and non-malicious software. Furthermore, it provides a description of the super-

vised machine learning algorithms and performance metrics used for the experi-

ments in Chapters 8, 9, and 10.

7.1 Background on Standard Machine Learning

Algorithms

Through our work we used standard supervised machine learning algorithms for

malware and non-malicious software classification. We used ten supervised ma-

chine learning algorithms (i.e., J48, Random Forest, Random Tree, OneR, Naive

Bayes, JRip, PART, Multilayer Perceptron, SMO, and Decision Table) of different

types, with a goal to identify the best performing learner(s). Table 7.1 lists the

names and types of the ten learners used in this work.

Chapter 7. Machine Learning Algorithms & Performance Metrics 76

Table 7.1: Name and type of each learner used for this work

Learner Type

J48 [238] Tree

Random Forest (RF) [90] Ensemble Tree

Random Tree [69] Tree

One R [161] Rule

Naive Bayes (NB) [173] Bayes Theorem

JRip [110] Rule

PART [138] Rule + Tree

Multilayer Perceptron (MLP) [218] Artificial Neural Network

SMO [231] Support Vector Machine

Decision Table [187] Rule

The J48 learner is an open source Java implementation of the C4.5 decision tree

algorithm developed by Ross Quinlan [238]. Random Forest is an ensemble learn-

ing method that operates by constructing a multitude of decision trees and outputs

the average prediction of the individual trees [90]. Random trees is a collection

(ensemble) of tree predictors that is called forest. The classification works as fol-

lows: the random trees classifier takes the input feature vector, classifies it with

every tree in the forest, and outputs the class label that received the majority of

“votes” [174]. One R (1R) is a simple classification algorithm that ranks attributes

according to error rate (on the training set) by treating all numerically-valued at-

tributes as continuous and using a straightforward method to divide the range

of values into several disjoint intervals [161]. Naive Bayes is an algorithm based

on the Bayesian theorem in which numeric estimator precision values are chosen

based on analysis of the training data [173]. JRip is a direct rule learner that

outputs learned knowledge as rules by using a separate and-conquer technique to

identify rules covering instances from a specific class, separate them out, and con-

tinue on the remaining instances [110]. PART is a hybrid rule-and-tree algorithm

that builds a partial C4.5 decision tree in each iteration and makes the “best” leaf

into a rule [138]. MLP is a class of feed forward artificial neural network (ANN)

that identify non-linear decision boundaries of data by including many perceptrons

Chapter 7. Machine Learning Algorithms & Performance Metrics 77

(i.e., nodes) that are organized into multiple layers in the network [218]. SMO is

a type of support vector machine (SVM) that implements the sequential minimal

optimization algorithm for the training of the support vector classifier [231]. Deci-

sion Table builds a decision table majority classifier by evaluating feature subsets

using best-first search and can also use cross-validation for evaluation [187]. We

used the implementations of these ten learners provided in Weka [150].

Besides the classification algorithms, we also used a feature selection method

on all features (i.e., the combined set of power-based, network traffic-based, system

logs-based, and code-based static features). Specifically, we used a feature selection

method called information gain [180], which ranks the features from the most

descriptive to the least descriptive using information gain as a measure. All features

by their ranking order can be found in Appendix A.

7.2 Performance Metrics

To evaluate the supervised machine learning algorithms performance, we used

several metrics computed from the confusion matrix:

Actual:

Non-malicious

Actual:

Malware

Predicted:

Non-malicious
TN FN

Predicted:

Malware
FP TP

where TN, FN, FP, and TP refer to the numbers of true negatives, false nega-

tives, false positives, and true positives, respectively. We computed the following

performance metrics that assess different aspects of the classification:

Accuracy =
TP + TN

TP + TN + FP + FN
(7.1)

Recall =
TP

TP + FN
(7.2)

Chapter 7. Machine Learning Algorithms & Performance Metrics 78

Precision =
TP

TP + FP
(7.3)

False Positive Rate (FPR) =
FP

FP + TN
(7.4)

F-score =
2 · Precision ·Recall
Precision+Recall

(7.5)

G-score =
2 ·Recall · (1− FPR)

Recall + (1− FPR)
(7.6)

The accuracy (see Equation (7.1)) provides the percentage of instances that

were detected correctly. The Recall, defined by Equation (7.2), is the ratio of

detected malware to all malware instances. Precision (see Equation (7.3)) deter-

mines the fraction of instances correctly classified as malware out of all instances

classified as malware. False Positive Rate (FPR), defined by Equation (7.4), is

the ratio of non-malicious software applications misclassified as malware to the

number of all non-malicious applications. Values of all metrics are in the interval

[0, 1]. Ideally, a good classifier would have Accuracy, Recall, and Precision of 1

and FPR of 0.

In addition to these metrics, we used two composite metrics: F-score and G-

score. The F-score, defined by Equation (7.5), is the harmonic mean of the Recall

and Precision. Similarly, G-score, given by Equation (7.6), is the harmonic mean

of Recall and (1 − FPR). Larger values of F-score and G-score correspond to

better learner performance. An ideal learner would have both F-score and G-score

of 1.

79

Chapter 8

Malware Detection Using Power

& Network Traffic Data

In this Chapter we discuss using power consumption and network traffic data

for malware detection. The results in this Chapter will be presented at the Inter-

national Conference on Data Intelligence and Security (ICDIS) in June 2019 [156].

8.1 Approach & Contributions

We used the data collected from our experimental set-up (See Chapter 5) to ex-

tract the features. First, both the power consumption and network traffic data

of malware and non-malicious software were pre-processed. For the power data,

we multiplied the voltage and current for each of the four monitored DC rails to

obtain the power consumption in Watts. In the case of the network traffic data,

each .pcap file was exported as a .csv file.

Using these features, we conducted a series of machine learning experiments for

malware detection, that is, used classification to attribute each run to a malware or

non-malicious software. Specifically, we experimented with ten supervised machine

learning algorithms (i.e., J48, Random Forest, Random Tree, OneR, Naive Bayes,

JRip, PART, Multilayer Perceptron, SMO, and Decision Table) by using their

implementations provided in Weka [150]. For each learner, we used ten-fold cross

Chapter 8. Malware Detection Using Power & Network Traffic Data 80

validation, using nine folds of the labeled malware and non-malicious software

instances for training and the tenth fold (of unseen) malware and non-malicious

instances for testing. This was repeated ten times, each time using a different fold

for testing. The learners performance was evaluated using the performance metrics

described in Chapter 7.

Specifically, we explore the following research questions:

RQ1: Do some learners perform consistently better than other using power-based

and/or network traffic-based features?

RQ2: Which of the monitored voltage rails is the best predictor for malware detec-

tion on a general-purpose computer?

RQ3: Does the combination of power-based features and network traffic-based fea-

tures provide better malware detection performance than each set of features

individually?

RQ4: What is the smallest number of features that can be used for malware detec-

tion without performance degradation?

The contributions of the research work presented in this Chapter are as follows:

• Using our testbed [171], we conducted experiments to collect power con-

sumption and network traffic data when running samples of malware and

non-malicious software applications. Power data was collected by using a

Data Acquisition System (DAQ) which measured the power consumption

from four different voltage rails, while the network traffic data was collected

using Wireshark [42].

• The study is focused on detecting real malware using the extracted dynamic

behavioral features (both power-based and network traffic-based) and super-

vised machine learning algorithms, which has not been done by any of the

previous works.

Chapter 8. Malware Detection Using Power & Network Traffic Data 81

• We ran a large number of machine learning experiments, which allowed us

to identify the best performing learner, DC voltage rails that led to the best

malware detection performance, and the subset of features that are the best

predictors for malware detection. Even more, the comparison of malware

detection performance was done using a comprehensive set of metrics that

reflect different aspects of the quality of malware detection.

8.2 Results

8.2.1 RQ1: Learners Analysis Performance

To answer RQ1, we explored which learners perform consistently better than others

for power-based and/or commonly used network traffic-based features. We used

ten supervised machine learning algorithms (i.e., J48, Random Forest, Random

Tree, OneR, Naive Bayes, JRip, PART, Multilayer Perceptron, SMO, and Decision

Table). Learners performance were evaluated in terms of the mean F-score and

G-score over the ten folds, using only the power-based features (given in Table 6.1)

extracted from the +12V CPU rails and for using only commonly used network

traffic-based features (given in Table 6.2). Note that for this machine learning

experiment we did not used the autocorrelation-based features nor the network

flows-based features. Figure 8.1 shows the learners performance for the power-

based features, while Figure 8.2 shows the learners performance for the commonly

used network traffic-based features. Also, note that in Figure 8.2 the mean values

for F-score and G-score of Naive Bayes were very close (i.e., 0.641 and 0.642,

respectively), which explains why only the G-score is shown.

Random Forest had the highest F-score for both the power-based features and

commonly used network traffic-based features (0.971 and 0.946, respectively). Ran-

dom Tree, led to the same F-score as Random Forest and had the highest G-score

(0.949) when using only power-based features, while J48 had the highest G-score

when using only the commonly used network traffic-based features (0.890). Naive

Chapter 8. Malware Detection Using Power & Network Traffic Data 82

Bayes and SMO performed significantly worse than the other learners, both when

using only power-based features and when using only commonly used network

traffic-based features. Since Random Forest had the best F-scores and close to

the best G-scores for both power-based and commonly used network traffic-based

features, we use it as a learner of choice in the rest of Chapter 8.

Figure 8.1: Mean F-score & mean G-score for each learner using only power-based

features for the +12V CPU rails

Figure 8.2: Mean F-score & mean G-score for each learner using only commonly

used network traffic-based features

Chapter 8. Malware Detection Using Power & Network Traffic Data 83

8.2.2 RQ2: Voltage Rail Analysis

As described in Chapter 5, four DC voltage channels and four corresponding cur-

rent channels were monitored. To address RQ2, we evaluated the performance

using only the power-based features extracted from power data collected on each

of the monitored voltage rails, using the Random Forest classifier. The box plots

of the performance metrics, for each of the voltage rails, are shown in Figure 8.3.

Note that in Figure 8.3 the performance range is from 0.70 to 1 and instead of

FPR we show (1-FPR). Therefore, the results for all performance metrics shown

in Figure 8.3 are better when they are closer to 1.

Figure 8.3: Box plots of the Random Forest performance metrics for each of the

monitored voltage rails

With respect to all performance metrics, as can be seen in Figure 8.3, the

features extracted from the +12V CPU rails led to the best classification results,

followed by the +3.3V rails, +5V rails, and +12V rails of the motherboard. The

G-scores were 0.945, 0.912, 0.873, and 0.857, respectively. Based on these results

Chapter 8. Malware Detection Using Power & Network Traffic Data 84

we use the power-based features extracted from the +12V CPU rails in the rest of

Chapter 8.

8.2.3 RQ3: Feature Level Fusion Using Power & Network

Traffic Data

To answer RQ3, we explored if the combination of power-based features and net-

work traffic-based features (i.e., commonly used network traffic-based features) pro-

vide better malware detection performance than each set of features individually.

We first used the power-based features and commonly used network traffic-based

features separately, then combined into one feature vector. Results presented in

Figure 8.4 show that using only power-based features provided significantly better

performance than using only commonly used network traffic-based features, with

respect to all performance metrics.

Figure 8.4: Box plots of Random Forest performance using only power-based fea-

tures from +12V CPU rails, only commonly used network traffic-based features,

and combined set of features

Chapter 8. Malware Detection Using Power & Network Traffic Data 85

Specifically, using only power-based features achieved mean G-score of 0.945

and mean F-score of 0.971, while when using only commonly used network traffic-

based features led to mean G-score of 0.891 and mean F-score of 0.946. Note that

when using only commonly used network traffic-based features the FPR was con-

siderably higher than when using only power-based features (i.e., 0.169 compared

to 0.084).

The performance was the best when the combined set of power-based and com-

monly used network traffic-based features were used. Adding the commonly used

network traffic-based features to the power-based features noticeably improved

the malware detection performance (i.e., the mean G-score improved from 0.945 to

0.964 and the mean F-score improved from 0.971 to 0.983). Furthermore, the com-

bined set of features (as in the case of using only power-based features) exhibited

much smaller variability of the performance metrics over the 10 fold cross-validation

runs than when only commonly used network traffic-based features were used.

We also analyzed the extracted features separately for the two groups (i.e.,

malware and non-malicious applications). The basic statistics for the power-based

features and network traffic-based features are given in Tables 8.1 and 8.2, respec-

tively. We used the non-parametric Mann-Whitney test to explore if the features of

the two groups (i.e., malware and non-malicious applications) differ. We used 5%

level of significance (i.e., α = 0.05). If for a specific feature the p-value is less than

α, it follows that there is a statistically significant difference of the values of that

feature for malware and non-malicious applications. Statistically significant refers

to the likelihood that the differences between the feature values for malware and

non-malicious applications are caused by something more than a random chance.

Results presented in Table 8.1 show that all power-based features are significantly

different for the malware and non-malicious software groups. As shown in Ta-

ble 8.2, most of the network-based features are also significantly different between

malware and non-malicious software groups. The only exceptions are the number

of packets related to the LLMNR, UDP, DHCP, and DHCPv6 protocols.

Chapter 8. Malware Detection Using Power & Network Traffic Data 86

Table 8.1: Basic statistics for power-based features

Non-malicious Malware Mann-Whitney

Power-based features Min Max Mean Median SD Min Max Mean Median SD p-value

PwrMinimum 5.013 42.15 13.22 5.78 12.17 4.95 25.58 5.31 5.11 1.72 p < 2.2e−16

PwrMaximum 34.010 57.61 41.02 39.45 4.71 33.13 43.99 38.35 37.96 2.56 p < 0.001

PwrMean 6.11 51.13 23.76 24.73 14.25 5.63 28.96 6.69 5.83 3.16 p < 2.2e−16

PwrMedian 5.65 54.89 23.58 24.87 15.12 5.53 28.92 6.11 5.66 3.11 p < 2.2e−16

PwrVariance 0.07 97.83 23.66 13.01 27.28 0.30 66.56 11.94 1.76 18.67 0.0019

PwrSkewness −28.41 8.35 0.76 0.61 5.00 1.38 21.90 11.83 12.84 5.94 p < 2.2e−16

PwrKurtosis −1.58 841.33 32.20 7.65 102.67 −0.12 564.60 204.26 195.48 158.50 p < 2.2e−16

Table 8.2: Basic statistics for network traffic-based features

Non-malicious Malware Mann-Whitney

Network traffic-based features Min Max Mean Median SD Min Max Mean Median SD p-value

Packets 5.91e2 2.97e5 2.52e4 3.22e3 5.75e4 1.51e3 2.22e5 7.97e3 3.46e3 2.65e4 p < 0.001

PktsLength 1.91e5 2.63e8 2.16e7 4.8e5 5.41e7 3.34e5 1.91e8 3.86e6 5.06e5 2.30e7 p < 0.052

UniqueSourceIP 6.00 35.00 9.07 6.00 5.91 6.00 53.00 9.75 7.00 8.55 0.0185

UniqueDestIP 14.00 49.00 17.55 14.00 7.10 14.00 571.00 32.39 15.00 65.58 p < 0.001

LLMNR 0.00 376.00 55.10 48.00 46.28 28.00 526.00 100.03 48.00 121.88 0.6195

UDP 0.00 142.00 110.49 120.00 32.73 94.00 1921.00 175.86 120.00 294.01 0.1821

ARP 56.00 707.00 538.23 581.00 154.63 131.00 659.00 489.39 535.00 136.37 p < 0.001

BROWSER 1.00 15.00 8.26 8.00 2.89 6.00 19.00 10.08 9.00 2.52 p < 0.001

NBNS 4.6e1 1.53e3 1.17e3 1.22e3 3.31e2 0.00 6.40e3 1.40e3 1.42e3 1.16e3 3.54e−2

DHCP 0.00 54.00 13.51 12.00 8.87 10.00 24.00 12.33 12.00 1.15 0.3299

DHCPV6 0.00 102.00 58.29 56.00 14.28 49.00 70.00 58.92 58.00 3.18 0.45

DNS 19.00 282.00 50.83 30.00 55.05 0.00 1.08e4 189.30 36.00 1.11e3 p < 0.001

HTTP 0.00 1.73e3 89.41 0.00 358.12 0.00 1.73e4 350.99 0.00 2246.15 0.04988

ICMP 0.00 21.00 16.58 18.00 5.07 13.00 656.00 41.75 18.00 79.22 p < 0.001

ICMPV6 0.00 61.00 36.12 40.00 11.71 30.00 56.00 43.87 41.00 5.25 p < 0.001

IGMPV3 0.00 61.00 36.01 39.00 11.70 30.00 56.00 43.86 41.00 5.33 p < 0.001

SSDP 12.00 1.13e3 887.36 969.00 260.35 360.00 1.5e3 909.18 913.00 90.32 p < 0.001

TCP 0.00 2.38e5 1.95e4 0.00 4.87e4 0.00 2.01e5 3.81e3 53.00 2.41e4 0.0019

•Note that in Table 8.2 some of the network traffic-based features (i.e., Packets,

PktsLength, NBNS, HTTP, SSDP, and TCP) were converted to scientific notation.

8.2.4 RQ4: Smallest Feature Set Without Performance

Degradation

To answer RQ4, we analyzed the smallest number of features that can be used

for malware detection using the information gain feature selection method [180].

To determine the smallest number of features that can be used for classification

without performance degradation we started building the model with the highest

ranked feature and included one feature at a time until reaching less than or equal

to 1% difference of the Recall compared to when all 25 features were used. Table 8.3

shows the features by their ranking order. Note that the features in gray are the

power-based features.

Chapter 8. Malware Detection Using Power & Network Traffic Data 87

The top eleven features ranked by information gain provided similar perfor-

mance as using all 25 features (i.e., Recall of 0.981). Five out of seven power-based

features were among the top eleven features.

Table 8.3: Power-based and commonly used network traffic-based features ranked

using information gain

Ranking Feature

1 PwrMedian

2 PwrSkewness

3 PwrAverage

4 PwrMinimum

5 PwrKurtosis

6 Packets

7 SSDP

8 NBNS

9 ARP

10 UDP

11 IGMPV3

12 PwrVariance

13 ICMPV6

14 TCP

15 PwrMaximum

16 PktsLength

17 LLMNR

18 ICMP

19 UniqueSourceIP

20 BROWSER

21 UniqueDestIP

22 DNS

23 DHCP

24 DHCPV6

25 HTTP

Chapter 8. Malware Detection Using Power & Network Traffic Data 88

8.3 Summary of Findings

The main findings of the work presented in this Chapter are as follows: (1) Random

Forest had the highest F-scores and close to the highest G-scores. (2) The power

data extracted from the +12V CPU rails led to significantly better performance

than power data from the other three voltage rails. (3) Using only power-based

features provided better performance than using only network traffic-based fea-

tures; using combined features led to the best malware detection performance. (4)

The top eleven features ranked by information gain provided same performance as

using all 25 features. Note that the proposed solution and the used features are

only repeatable in this type of environment, since the machine learning algorithms

may perform differently depending on the type of malware and used features.

89

Chapter 9

Malware Detection using Network

Traffic & System Logs

This Chapter presents our findings when using network traffic data and system

logs to classify malware from non-malicious software. The results presented in

this Chapter has been published in the 18th IEEE International Symposium on

Network Computing and Applications (NCA) [171].

9.1 Approach & Contributions

In this Chapter, we conducted a series of machine learning experiments for malware

detection. The baseline feature vector was created by combining the system logs-

based features and the commonly used network traffic-based features. Then, we

added the network flows-based features to the baseline feature vector to study

their effect on the malware detection. Note that any feature (regardless of the

type) which had all instances equal to 0 was removed from the learning process.

For classification, we used four supervised machine learning algorithms (i.e.,

J48, Random Forest, Naive Bayes, and PART) of different types, with a goal to

identify the best performing learner(s). With respect to the malware detection

experiments, we used ten-fold cross validation, which consists of using nine folds

of the labeled malware and non-malicious software instances for training (i.e., 90%

Chapter 9. Malware Detection using Network Traffic & System Logs 90

of the data) and the tenth fold (of unseen) malware and non-malicious instances for

testing. We also experimented with smaller training set sizes (i.e., 75%, 50%, and

25% of the data). The learners performance was evaluated using the performance

metrics described in Chapter 7.

Specifically, we explore the following research questions:

RQ1: Does the network flows-based features improve the performance of malware

detection? What is (are) the best performing learner(s)?

RQ2: What is the smallest number of features sufficient to successfully distinguish

malware from non-malicious software? What are the types of the best pre-

dictor features?

RQ3: How much data must be set aside for training in order to attain acceptable

detection results?

The contributions of the research work presented in this Chapter are as follow:

• Most of the previous works that have used network flows-based fea-

tures [124, 120, 98, 61, 316, 73, 289, 117, 125, 84, 308, 204, 148, 149] have done

classification of the network traffic, while our study is focused on classifying

the software running in a machine as malware and non-malicious software

using the extracted dynamic behavioral features (i.e., network traffic-based

features and system logs-based features).

• Feature selection methods were not commonly used by previous works on

malware detection, with an exception of [84]. Determining a small subset of

features that can provide predictions as good as when all features are used

has a practical usefulness and importance because it allows building more

efficient models.

• We experimented with different sizes of the training set (i.e., 90%, 75%, 50%,

and 25% of the data) and found that smaller training sets produced very

good classification results. Specifically, using 75% of the data for training

Chapter 9. Malware Detection using Network Traffic & System Logs 91

has only slightly worse performance compared to when using 90% of the

data for training (which is the standard ten-fold cross validation approach).

Somewhat worse, but still very good classification performance was achieved

with as little as 25% of the data used for training. This aspect of our work

has a practical value because the manual labeling of the training set is a

tedious and time consuming process.

9.2 Results

9.2.1 RQ1: Network Flows-based Features Performance

To answer RQ1, we compared the learners performance when the baseline features

were used (see Figure 9.1) and when the network flows-based features were used

(see Figure 9.2). The baseline feature vector was created by combining the system

logs-based features (given in Table 6.4) and the commonly used network traffic-

based features (given in Table 6.2). Then, we added the network flows-based

features (given in Table 6.3) to the baseline feature vector to study their effect

on the malware detection. Note that the autocorrelation-based features were not

included in this experiment.

For classification, we used four supervised machine learning algorithms (i.e.,

J48, Random Forest, Naive Bayes, and PART) of different types, with a goal

to identify the best performing learner(s). Because low FPR indicates better

performance, 1−FPR is shown in Figures 9.1 and 9.2. The range of performance

metrics for both Figures 9.1 and 9.2 is from 0.5 to 1. Note that since 1−FPR for

Naive Bayes was below 0.5, it is not shown in Figure 9.2.

Chapter 9. Malware Detection using Network Traffic & System Logs 92

Figure 9.1: Box plots of the learners performance metrics for the baseline feature

vector

Figure 9.2: Box plots of the learners performance metrics for all features

In addition to box plots shown in Figures 9.1 and 9.2, we used the basic statis-

tics (i.e, mean, median, variance, and interquartile range (IQR)) for the G-score

(given in Table 9.1) and F-score (shown in Table 9.2). Note that IQR is a mea-

Chapter 9. Malware Detection using Network Traffic & System Logs 93

sure of statistical dispersion, being equal to the difference between 75th and 25th

percentiles.

Table 9.1: Basics Statistics of G-score

Baseline All Features

Learners Mean Median Variance IQR Mean Median Variance IQR

J48 0.886 0.888 3.12 · 10−4 0.014 0.941 0.941 1.21 · 10−4 0.013

RF 0.888 0.889 3.94 · 10−4 0.019 0.908 0.911 5.25 · 10−5 0.008

NB 0.738 0.740 5.23 · 10−5 0.019 0.545 0.550 2.17 · 10−4 0.029

PART 0.866 0.872 5.70 · 10−4 0.037 0.947 0.950 1.83 · 10−4 0.016

Table 9.2: Basic Statistics of F-score

Baseline All Features

Learners Mean Median Variance IQR Mean Median Variance IQR

J48 0.939 0.942 1.25 · 10−4 0.015 0.973 0.972 3.69 · 10−5 0.005

RF 0.951 0.951 6.10 · 10−5 0.008 0.965 0.965 7.40 · 10−6 0.002

NB 0.747 0.748 4.11 · 10−5 0.011 0.871 0.871 6.21 · 10−6 0.002

PART 0.923 0.924 1.97 · 10−4 0.018 0.972 0.973 5.78 · 10−5 0.011

In case of G-score, when network flows-based features were added to the base-

line feature vector, J48, Random Forest, and PART showed a significant improve-

ment of the mean and median G-score, as well as smaller variance and IQR. On

the other side, the Naive Bayes algorithm experienced degradation of the G-score

when all features were used. This was due to the increased FPR, which likely

was a result of the fact that this learner assumes that features are conditionally

independent from one another.

In the case of F-score, the performance of all learners was improved when using

all features compared to when the baseline feature vector was used, that is, they

had significantly higher mean and median F-scores and smaller variance and IQR.

Note that the F-score of the Naive Bayes algorithm had significantly smaller mean

and median values than the other three algorithms.

In summary, when all features were used for classification, J48 and PART were

the best performing learners. PART had sightly higher median G-score than J48

Chapter 9. Malware Detection using Network Traffic & System Logs 94

(0.950 compared to 0.941), while they had similar median F-score values (0.973

and 0.972, respectively). Since J48 and PART were the best performing learners,

we used them as learners of choice in the rest of Chapter 9.

9.2.2 RQ2: Smallest Feature Set Without Performance

Degradation

To address RQ2, we used feature selection method on all features (i.e., the com-

bined set of baseline features and network flows-based features). Specifically, we

used a feature selection method called information gain [180], which ranks the fea-

tures from the most descriptive to the least descriptive using the information gain

as a measure.

To determine the smallest number of features that can be used for malware

detection without performance degradation we used the following approach. We

started building the model with the highest ranked feature and included one feature

at a time until reaching less than or equal to 1% difference of the Recall compared

to when all 88 features were used. Table 9.3 shows all features by their ranking

order. Note that in Table 9.3 the network flows-based features are shown in gray,

while the system logs-based features are shown in bold.

For J48, the top five features ranked by information gain provided similar

performance as when using all 88 features. Four out of the five features were

network flows-based features. In the case of PART, the first fourteen features

ranked by information gain led to similar performance as when using all 88 features.

Six out of the fourteen features were network flows-based features.

Chapter 9. Malware Detection using Network Traffic & System Logs 95

Table 9.3: Network traffic-based and system logs-based features ranked using in-

formation gain

Rank Feature

1 BytesSntMax

2 PktsSentSum

3 PktsSentMax

4 Packets

5 BytesSntSum

6 L4ProtoIGMP

7 SSDP

8 NBNS

9 ARP

10 UDP

11 BytesSntAvg

12 IGMPV3

13 ICMPV6

14 TCP

15 PktsRcvdSum

16 DurationAvg

17 BytesTransferred

18 AvgPktSizeAvg

19 TcpAckFaultCntMax

20 PktsSentAvg

21 LLMNR

22 BytesRcvdSum

23 ICMP

24 UniqueSourceIP

25 TcpAckFaultCntAvg

26 PktsRcvdMax

27 FlowDirA

28 BytesRcvdMax

29 BROWSER

30 TcpInitWinSzAvg

31 L4ProtoTCP

32 Flows

33 AvgPktSizeMedian

34 TcpInitWinSzMax

35 BytpsAvg

36 BytesRcvdAvg

37 BytesSntMin

38 PktsRcvdAvg

39 StdPktSzStd

40 TcpFlLAcRcBytAvg

41 RegistryChgs

42 SetValueKeyChgs

43 UniqueDestIP

44 TcpPSeqCntMax

Rank Feature

45 TcpWinSzDwnCntMax

46 TcpPAckCntMax

47 FlowDirB

48 TcpFlLAcRcBytMax

49 TcpAveWinSzAvg

50 MinPktSizeMin

51 DNS

52 PktpsMax

53 BytAsmAvg

54 TcpWinSzUpCntMax

55 FileChgs

56 FlsWrite

57 TcpSeqFaultCntMax

58 PktpsAvg

59 L4ProtoUDP

60 TcpPSeqCntAvg

61 TcpWnSzChgDiCnMax

62 TcpPAckCntAvg

63 Changes

64 L4ProtoICMP

65 AvgIATAvg

66 AvgIATMedian

67 TerminatedPrcs

68 ProcessesChgs

69 CreatedPrcs

70 DHCPV6

71 DHCP

72 StdIATStd

73 FlsDelete

74 HTTP

75 MaxPktSizeMax

76 TcpWnSzChDiCnAvg

77 TcpSeqSntBytesMax

78 PktAsmAvg

79 PktAsmMin

80 BytpsMax

81 BytAsmMin

82 TcpSeqSntBytesAvg

83 TcpWinSzUpCntAvg

84 TcpSeqFaultCntAvg

85 TcpWnSzDwCnAvg

86 DurationMax

87 TcpAveWinSzMedian

88 DelValueKeyChgs

Chapter 9. Malware Detection using Network Traffic & System Logs 96

9.2.3 RQ3: Training Sets with Different Sizes

To address RQ3, we explored how much data must be set aside for training in order

to attain acceptable detection results. For this part of our study, we restricted

the experiments to the best performing learners J48 and PART, using all features.

Table 9.4 shows the performance of J48 and PART using training sets with different

sizes (i.e., 90%, 75%, 50%, and 25% of the data).

Table 9.4: J48 and PART performance on training sets with different sizes

Learner Performance Metrics % of data used for training

90% 75% 50% 25%

J48

Accuracy 96.11% 94.74% 92.56% 92.13%

Precision 95.94% 94.91% 93.82% 91.25%

Recall 98.67% 97.82% 95.88% 90.15%

FPR 10.00% 12.61% 15.36% 10.23%

F-score 97.28% 96.32% 94.80% 90.63%

G-score 94.13% 92.26% 89.69% 89.43%

PART

Accuracy 96.03% 94.15% 92.74% 91.90%

Precision 96.72% 94.35% 93.98% 91.85%

Recall 97.70% 97.58% 95.88% 89.55%

FPR 8.00% 14.06% 14.78% 9.93%

F-score 97.20% 95.92% 94.90% 90.60%

G-score 94.75% 91.33% 90.15% 89.20%

The results showed that the learners were able to produce similar performance

with 75% of the data used for training as in the case when 90% of data were used

for training, which is the commonly used 10-fold cross validation machine learning

approach. The performance of the learners was more significantly affected when

50% of the data were used for training, with less than 3% degradation of the F-

score and 5% degradation of the G-score compared to when 90% of the data were

used for training.

Even when only 25% of the data were used for training the malware detection

performance was still satisfactory, with Accuracy, Precision, Recall, F-score, and

G-score all around or above 90% and less than 7% degradation of the F-score and

Chapter 9. Malware Detection using Network Traffic & System Logs 97

6% degradation of the G-score compared to when 90% of the data were used for

training. It should be noted that the FPR was significantly more affected by the

smaller sizes of the training set than any other performance metric.

It appears that the amount of data used for training is a trade-off between

somewhat better results at an expense of significantly more effort invested in la-

beling more data. The fact that smaller training sizes led to successful malware

detection is an important result of our study, with a significant practical value

because the manual labeling of the training set is a tedious and time consuming

process. In addition, to the best of our knowledge, none of related works have

experimented with different sizes of training sets.

9.3 Summary of Findings

The main findings of the work presented in this Chapter are as follows: (1) Adding

network flows-based features improved significantly the performance of malware

detection. (2) J48 and PART were the best performing learners, with the highest

F-score and G-score values. (3) Using J48, the first five features ranked by in-

formation gain attained the same performance as when using the all 88 features,

while in the case of PART the first fourteen features ranked by information led

to same performance as when the all 88 features were used. None of the system

logs-based features were included in these two models. (4) The classification per-

formance when training on 75% of the data was comparable to training on 90% of

the data. Using as little as 25% of the data for training led to somewhat worse,

but still very good classification performance, with Accuracy, Precision, Recall,

F-score, and G-score all around or above 90% and less than 7% degradation of the

F-score and and 6% degradation of the G-score compared to when 90% of the data

were used for training.

98

Chapter 10

Malware Detection Using All

Modalities

In Chapters 8 and 9 we evaluated the performance of malware detection using

power consumption with network traffic data and network traffic data with sys-

tem logs, respectively. In this Chapter we are using four modalities, that is, all

the extracted features. Specifically, in this Chapter we present a multimodal deep

learning neural network that integrates different modalities (i.e., power consump-

tion, system logs, network traffic, and code-based static data) at decision level for

malware detection. We evaluate the performance of malware detection for each of

the modalities, and when using both feature level and decision level fusion.

10.1 Background on Artificial Neural Network

An artificial neural network (ANN) is an information processing system which

is inspired by the models of biological neural networks [272]. The basic unit of

computation in a neural network is the neuron, often called a node or unit. A

neural network consists of an input layer, one or more hidden layers, and an output

layer. The input layer receives various forms of information from the outside world

that the network will attempt to learn about, recognize, or otherwise process. The

goal of the hidden layer is to transform the inputs into something that the output

Chapter 10. Malware Detection Using All Modalities 99

layer can use, while the output layer signals how the model responds to the learned

information.

Artificial neural networks are widely used in many areas because of its capacity

of nonlinear mapping, high accuracy for learning, and good robustness [268]. Six

commonly used artificial neural networks in machine learning are: feed forward

neural network [145], radial basis function (RBF) neural network [224], Kohonen

self organizing neural network [188], recurrent neural network (RNN) [153], con-

volutional neural network (CNN) [153], and modular neural network [76]. From

these types of ANN, we implemented a deep feed forward neural network.

A deep feed forward neural network (also called feed forward network or multi-

layer perceptron) is an artificial neural network in which the connections between

the nodes do not form a cycle. In this network the information moves in one direc-

tion, forward, starting from the input nodes and moving onward the hidden layers

and output layer [139]. The goal of a feed forward neural network is to approximate

some function f ∗. For example, for a classifier, y = f ∗(x) maps an input x to a cat-

egory y. A feed forward neural network defines a mapping y = f(x; θ) and learns

the value of the parameters θ that result in the best function approximation [196].

Feed forward neural networks are called networks because they are typically

represented by composing together many distinct functions. For example let us

assume we have three functions (f (1), f (2), and f (3)) connected in a chain to form

f(x) = f (3)(f (2)(f (1)(x))). These chain structures are the most commonly used

structure for neural networks, in this case f (1) is the first layer of the network, f (2)

is the second layer, and so on. The overall length of the chain provide us with an

idea of the depth of the model. During the training process, the idea is to lead

f(x) to match f ∗(x). The training data provides us with approximate examples of

f ∗(x) evaluated at different training points. Each example x is followed by a label

y ≈ f ∗(x). Since the training data does not show the desired output for these

layers, they are called hidden layers. The last layer of the feed forward neural

network is the output layer. Using hidden layers require the usage of activation

functions. The activation function of a neuron defines the output of that neuron

Chapter 10. Malware Detection Using All Modalities 100

given an input or set of inputs. This output is then used as input for the next

neuron and so on, until a desired solution to the original problem is found [54].

This function maps the resulting values into the desired range, such as between 0

to 1.

The process in which a feed forward neural networks learns is called back-

propagation (also known as BackProp). BackProp is a supervised training scheme,

which means it learns from labeled training data. The learning process in deep

neural networks is achievable through the usage of optimization algorithms. The

objective of optimization algorithms is to search for a parameter vector w∗, in

which the loss function f takes a minimum value. A loss function is a measure of

how good a prediction model does in terms of being able to predict the expected

result. It uses two parameters: bias and weights. The bias are constants attached

to neurons and added to the weights input before the activation function is applied,

while the weights represents the strength of the connection between the neurons.

For example, if the weight from neuron a to b has greater magnitude, it means

that neuron a has greater influence over neuron b. In other words, weights decide

how much influence the input will have on the output.

Optimization is done through the calculation of gradients. A gradient mea-

sures how much the output of a function changes after modifying the inputs grad-

ually [55]. After computing the gradients, the optimization algorithm goes back

to adjust the weights and biases in the input and hidden layers to reduce the er-

ror. This process is repeated until the difference between the desired and expected

output is below some threshold value.

10.2 Background on Multimodal Learning

10.2.1 What is Multimodal Learning?

Multimodal learning involves relating information from multiple sources [221].

Each of these sources is known as a modality [79]. The objective of multimodal

Chapter 10. Malware Detection Using All Modalities 101

learning is to build models that can process and relate information from multiple

modalities. However, the research field of multimodal learning brings some unique

challenges given the heterogeneity of the data.

Baltrušaitis et al. [79] identified and explored five challenges related to mul-

timodal learning: (1) representation; (2) translation; (3) alignment; (4) fusion;

and (5) co-learning. Representation refers to how represent and summarize multi-

modal data in a way that exploits the complementarity and redundancy of multiple

modalities. Translation answers how to map data from one modality to another.

Alignment is to identify the direct relations between sub-elements from two or

more different modalities. Fusion refers to combine information from two or more

modalities to perform a prediction. Co-learning explores how knowledge learning

from one modality can help a computational model trained on a different modality.

From these multimodal challenges, in this dissertation we explore multimodal

fusion for malware detection.

10.2.2 Multimodal Fusion

Multimodal data fusion is the process of integrating information from multiple

modalities with the goal of predicting an outcome (e.g., malware versus non-

malicious software) through classification or regression [79, 74]. The interest in

multimodal fusion arises due to several advantages: (1) Having access to multiple

modalities that observe the same event may allow robust predictions and might

also allows us to capture complementary information; (2) A multimodal approach

can still operate when one of the modalities is missing or has been compromised

(e.g., an attacker modifies a modality). Next, we describe two multimodal fusion

levels: feature level and decision level fusion.

10.2.3 Levels of Multimodal Fusion

There exists two levels of multimodal fusion: feature level and decision level. Fea-

ture level (also known as early fusion) is the most widely used approach as it fuses

Chapter 10. Malware Detection Using All Modalities 102

all the extracted features into one feature vector. Feature level fusion is accom-

plished by simply combining the feature sets from different modalities. Let us

suppose that X = {x1, x2, x3, ..., xn} and Y = {y1, y2, y3, ..., yn} are feature vectors

(X ∈ Rm and Y ∈ Rm) representing the information extracted from two different

modalities. The objective is to combine these two feature sets in order to obtain a

new feature vector Z that would be used for classification. An advantage of feature

level fusion is that it uses the correlation between multiple features from different

modalities at an early stage, which helps to perform tasks better. However, when

doing feature level fusion is hard to represent the time synchronization between

the multimodal features [296]. To avoid this issue, features should be represented

in the same format before performing the fusion.

Decision level fusion (also known as late fusion) fuses multiple modalities in the

semantic space [74]. Here, decisions are combined using a decision fusion unit to

make a fused decision vector that is analyzed further to obtain a final decision D

about the task or hypothesis. Unlike feature level fusion, the decisions usually have

the same format representation. Furthermore, decision level fusion offers scalability

in terms of the modalities used during the fusion process, which is difficult to

achieve in the feature level fusion [75]. Another advantage of decision level fusion,

is that it allows us to use the most suitable methods for analyzing each modality.

However, a disadvantage of decision level fusion is that as different learners are

used to obtain the local decisions, the learning process for them becomes time

consuming. Besides feature level and decision level fusion, some prior works have

also used a hybrid approach by performing fusion on both feature level and decision

level. The idea behind the hybrid fusion approach is to use the advantages of both

early and late fusion strategies. Some prior works that used hybrid fusion focused

on multimedia analysis [85, 223, 298].

The fusion of multiple modalities provides complementary information and it is

recognized by prior works in multimedia analysis [74] and pattern recognition [79]

to increase the classification performance. We used the findings from previous mul-

timodal approaches on multimedia analysis and pattern recognition as motivation

Chapter 10. Malware Detection Using All Modalities 103

to explore the effectiveness of multimodal data fusion for malware detection.

10.2.4 Data Fusion Techniques

Some previous works have categorized distinct multimodal data fusion tech-

niques [79, 127, 74]. Baltrušaitis et al. [79] divided the multimodal fusion

techniques into two categories: model-agnostic approaches and model-based ap-

proaches. Model agnostic approaches include fusion techniques, such as averag-

ing, voting schemes, weighting-based, or a learned model; while model-based ap-

proaches include fusion techniques like kernel-based methods, graphical models,

and neural networks.

Durrant-Whyte et al. [127] described some probabilistic methods that are com-

monly employed for data fusion in robotics. Most of these methods were based

on the Bayes rule for combining prior and observation information. Typically, the

Bayes rule can be implemented by using the Kalman and extended Kalman filters

through sequential Monte Carlo methods or through the use of functional density

estimates. However, there are several limitations when using probabilistic tech-

niques: (1) complexity; (2) inconsistency; and (3) precision of models. To address

these limitations in multimodal data fusion, they recommended using techniques

like interval calculus, fuzzy logic and/or Dempster-Shafer methods.

Atrey et al. [74] presented three categories for multimodal data fusion tech-

niques: rule-based methods, classification-based methods, and estimation-based

methods. Rule-based fusion methods includes a variety of statistical rule-based

methods like linear weighted fusion and majority voting. Linear weighted fusion is

one of the simplest and widely used method, in which the information is combined

in a linear fashion. Some previous works used the linear fusion strategy at the

feature level (i.e., for video surveillance and traffic monitoring [175, 288]) and deci-

sion level (i.e., for speaker recognition and speech event detection [100]) to perform

multimedia analysis tasks. In the case of majority voting, the final decision is the

one where the majority of the learners reach a similar decision [228]. Some fusion

Chapter 10. Malware Detection Using All Modalities 104

methods under the classification-based category are the support vector machine,

Bayesian inference, Dempster Shafer theory, dynamic Bayesian networks, neural

networks, and the maximum entropy model. While the estimation category in-

cludes fusion techniques, such as the Kalman filter, extended Kalman filter, and

particle filter fusion methods.

From these data fusion techniques, we decided to used a deep neural network

because they are a commonly used in the multimodal domain. For instance, mul-

timodal neural networks have been explored for multimedia analysis tasks [142].

10.3 Malware Detection Using Deep Neural Net-

work with Decision Level Fusion

10.3.1 Approach & Contributions

Only a few works on malware detection used multimodal fusion [193, 184]. How-

ever, these works monitored mobile devices and none of them compared the per-

formance of feature level with decision level fusion, which is explored in this dis-

sertation. In this Section we present a multimodal deep learning neural network

that integrates different modalities (i.e., power consumption, network traffic data,

system logs, and code-based static data). We evaluated the performance of each

modality individually, when doing feature level fusion, and when doing decision

level fusion.

To construct a multimodal representation using neural networks each modal-

ity starts with several individual neural layers followed by a hidden layer that

projects the modalities into a joint space [71, 217, 225, 297]. The joint multimodal

representation is then passed through multiple hidden layers [79].

Our multimodal deep learning method is a feed forward network and was im-

plemented using Keras [58]. Each modality is inputted individually to the initial

networks, which are not connected to each other. The last layers of these networks

are connected to the merging layer. The merging layer, which is the first layer

Chapter 10. Malware Detection Using All Modalities 105

of the final network, concatenates the last hidden layers of the initial networks

and outputs the classification results. Figure 10.1 shows the deep neural network

architecture for decision level fusion.

Each modality on the initial network consists of an input layer and two hidden

layers. The number of used neurons (nodes) for the input layer varies per modality,

in particular the static data uses 48 neurons, the power consumption uses 132

neurons, the system logs 10 neurons, and the network traffic data 203 neurons,

which it is equal to the number of features extracted for each modality. Note that

the number of neurons comprising the input layer must be equal to the number of

features in the data [57].

Figure 10.1: Deep neural network architecture for decision level fusion

While ReLU is the most used activation function [196], it has the problem

that turns all negative numbers to zeros, which decreases the ability of the model

to fit or train the data properly. To avoid this problem we used the exponential

linear unit function (ELU) [109] as activation function. Unlike ReLU, ELU al-

lows negative values to push mean unit activations closer to zero speeding up the

learning. Furthermore, to avoid overfitting in our multimodal approach we used

Chapter 10. Malware Detection Using All Modalities 106

dropout regularization [278]. Dropout is a technique that helps to prevent overfit-

ting and provides a way of approximately combining exponentially many different

neural network architectures efficiently [278]. For our multimodal fusion approach

we used a dropout rate of 0.20. This rate is commonly used among deep neural

network-based models to prevent overfitting [141].

The structure of the final network is similar to the initial network. It consists

of the merging layer (which is the input layer of the final network), two hidden

layers, and the output layer which produces the classification results (i.e., classify

between malware and non-malicious software). The classification is done using

the Sigmoid activation function [151] and the Adam optimization algorithm [185]

with 100 epochs, a batch size of 25, and a learning rate of 0.001. The reason

why the Sigmoid activation function was chosen is because we are solving a two-

class problem and the output for this function ranges between 0 and 1. In the

case of the optimization algorithm, Adam was chosen because it is an extension of

the stochastic gradient descent, which has been popular among prior works [248].

Furthermore, Adam combines the advantages of two other extensions of stochastic

gradient descent: Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square

Propagation (RMSProp) [185]. We used the default Keras parameters for the

Adam optimization algorithm which are: α (learning rate) = 0.001, β1 =0.9, and

β2 =0.999. The learning rate refers to the proportion in which the weights are

updated, β1 is the exponential decay rate for the first moment estimates, and β2

is the exponential decay rate for the second moment estimates. In addition, using

a batch size of 25 with epochs equal to 100 is a common practice among smaller

datasets [56].

To evaluate the performance of our multimodal approach we conducted sev-

eral experiments. We evaluated the performance of each modality individually,

when doing feature level fusion, and when doing decision level fusion. We com-

pared its performance to standard supervised machine learning algorithms (i.e.,

Random Forest, J48, JRip, PART, Naive Bayes, and SMO). For these six learners

we used the implementation provided in Weka [150]. For the malware detection

Chapter 10. Malware Detection Using All Modalities 107

experiments, we used five-fold cross validation, which consists of using four folds

of the labeled malware and non-malicious software instances for training (i.e., 80%

of the data) and the fifth fold of unseen malware and non-malicious instances for

testing. In the case of our deep learning neural network we also used five fold

cross validation, but we used 10% of the data for the validation set, 70% of the

data for training, and the remaining 20% of the data for testing. The validation

set provides an unbiased evaluation of a model fit on the training dataset while

tuning the model’s hyperparameters (e.g., the number of hidden units in a neural

network) [243]. We used the validation set as well as the training set to tune the

neural network model. While the training set is used to fit the model, the classifi-

cation accuracy using the validation set is also measured together. It is important

to emphasize that the validation set does not update the weights and the biases

of the model, but by monitoring the trends of the accuracies of both the training

set and the validation set, we can verify whether the model fitting was done cor-

rectly by avoiding the overffiting problem. We used the same performance metrics

described in Chapter 7.

Specifically, we explore the following research questions:

RQ1: Is each modality a good malware predictor when it is used individually?

RQ2: Does the malware detection performance improve when using multimodal

feature level fusion?

RQ3: Does multimodal decision level fusion performs better than using multimodal

feature level fusion?

The contributions of the research work presented in this Chapter are as follow:

• Collecting data from different sources allows us to develop a multimodal ap-

proach to malware detection, which has not been widely explored by the

prior works. Exceptions are [193, 184]. Kumar et al. [193] used two modal-

ities and Kim et al. [184] used only code-based static features, while we are

combining behavioral-based with code-based static features. Both of the

Chapter 10. Malware Detection Using All Modalities 108

prior works [193, 184] monitored mobile devices, while here we monitored a

general-purpose computer. None of these works compared the performance of

feature level with decision level fusion, which is explored in this dissertation.

• We proposed a multimodal decision level fusion malware detection approach

using a deep neural network. We compared its performance with the per-

formance of feature level fusion approaches based on deep neural network

and standard supervised machine learning algorithms (i.e., Random Forest,

J48, JRip, PART, Naive Bayes, and SMO). Kim et al. [184] used only code-

based static features, while we are combining dynamic behavioral-based with

code-based static features.

10.4 Results

10.4.1 RQ1: Results Using Each Modality Individually

Each modality was evaluated using our deep learning neural network and six stan-

dard supervised machine learning algorithms (i.e., Random Forest, J48, JRip,

PART, Naive Bayes, and SMO). For the feature level fusion and for each modality,

our deep neural network consisted of the input layer, two hidden layers and the out-

put layer. We used ELU as activation function for the hidden layers, the Sigmoid

activation function for the output layer, and the Adam optimization algorithm with

100 epochs, a batch size of 25, and a learning rate of 0.001. Figures 10.2, 10.3, 10.4,

and 10.5 show the box plots of the learners performance for each modality individ-

ually (i.e., power consumption, network traffic, system logs, and code-based static

data, respectively). Because low FPR indicates better performance, 1 − FPR is

shown in these Figures. The range of performance metrics for all these Figures

is from 0.0 to 1.0. Values of all metrics are in the interval [0, 1]. Ideally, a good

classifier would have Accuracy, Recall, Precision, 1 − FPR, F-score, and G-score

of 1.

In addition to box plots we also used the basic statistics (i.e, mean, me-

Chapter 10. Malware Detection Using All Modalities 109

dian, variance, and interquartile range (IQR)) based on the F-scores (given in

Tables B.1, B.2, B.3, and B.4) for each modality individually. Note that IQR is

a measure of statistical dispersion, being equal to the difference between 75th and

25th percentiles. Note that in Tables 10.1, B.1, B.2, B.3, and B.4, highest values

are inside a box and lowest values are shown in bold.

Table 10.1: Mean learners performance for each modality individually

Modality Learners Performance Metrics

Accuracy Recall Precision 1-FPR G-score F-score

P
o
w

e
r

c
o
n

su
m

p
ti

o
n RF 0.968 0.994 0.962 0.909 0.950 0.978

J48 0.953 0.971 0.962 0.912 0.940 0.966

JRip 0.961 0.982 0.963 0.912 0.946 0.973

PART 0.950 0.968 0.961 0.909 0.938 0.964

NB 0.911 0.942 0.931 0.838 0.887 0.936

SMO 0.932 1.00 0.911 0.773 0.872 0.953

Deep NN 0.934 0.970 0.936 0.857 0.910 0.952

N
e
tw

o
rk

tr
a
ffi

c

RF 0.919 0.990 0.904 0.755 0.856 0.945

J48 0.944 0.964 0.957 0.898 0.930 0.960

JRip 0.937 0.971 0.941 0.859 0.911 0.956

PART 0.935 0.959 0.949 0.879 0.917 0.954

NB 0.715 0.918 0.738 0.244 0.385 0.818

SMO 0.898 0.966 0.896 0.741 0.839 0.930

Deep NN 0.791 0.887 0.822 0.586 0.701 0.853

S
y
st

e
m

lo
g
s

RF 0.756 0.890 0.788 0.445 0.593 0.836

J48 0.771 0.961 0.769 0.330 0.491 0.854

JRip 0.747 0.940 0.757 0.300 0.453 0.838

PART 0.699 1.00 0.674 0.189 0.312 0.805

NB 0.541 0.429 0.832 0.798 0.558 0.566

SMO 0.726 1.00 0.718 0.091 0.167 0.836

Deep NN 0.805 0.993 0.781 0.400 0.559 0.874

C
o
d

e
-b

a
se

d
S

ta
ti

c

RF 0.728 1.00 0.720 0.098 0.179 0.837

J48 0.706 0.996 0.705 0.033 0.064 0.826

JRip 0.719 0.948 0.730 0.188 0.311 0.825

PART 0.711 0.992 0.710 0.061 0.113 0.828

NB 0.727 0.948 0.737 0.217 0.352 0.829

SMO 0.738 0.980 0.734 0.177 0.300 0.839

Deep NN 0.655 0.937 0.679 0.050 0.093 0.787

Chapter 10. Malware Detection Using All Modalities 110

Figure 10.2: Box plots of the learners performance metrics for the power-based

features

Results in Figure 10.2 show that Random Forest provides better performance

than the other learners with respect to most of the performance metrics, except

for 1−FPR (with mean G-score of 0.950 and mean F-score of 0.978), followed by

JRip (with mean G-score of 0.946 and mean F-score of 0.973) and the deep learning

neural network (with mean G-score of 0.910 and mean F-score of 0.952). Lowest

FPR was achieved by J48 and JRip (both with mean FPR of 0.088), followed by

Random Forest and PART (both with mean FPR of 0.091). Random Forest and

JRip had highest G-score and F-score because both Recall were highest (with mean

Recall of 0.994 vs. 0.982), while both learners had similar mean Precision values

(0.962 vs. 0.963). Naive Bayes and SMO performed significantly worse than the

other learners. G-score for Naive Bayes was affected due to higher FPR (mean

FPR of 0.162), while F-score (mean F-score of 0.936) was fairly high because of

both Recall (mean Recall of 0.942) and Precision (mean Precision of 0.931). With

Chapter 10. Malware Detection Using All Modalities 111

respect to SMO, we concluded that our results are unreliable because for each

repetition in the 5-folds, the results were the same for all performance metrics.

Figure 10.3: Box plots of the learners performance metrics for the network traffic-

based features

Results in Figure 10.3 show that lowest FPR was achieved by both J48 and

JRip (both with mean FPR of 0.088), followed by Random Forest and PART (both

with mean FPR of 0.091). Random Forest and JRip had highest G-score and F-

score because both Recall were highest (with mean Recall of 0.994 vs. 0.982), while

both learners had similar mean Precision values (0.962 vs. 0.963). Naive Bayes

and SMO performed significantly worse than the other learners. G-score for Naive

Bayes was affected due to higher FPR (mean FPR of 0.162), while F-score (mean

F-score of 0.936) was fairly high because of both Recall (mean Recall of 0.942) and

Precision (mean Precision of 0.931).

Chapter 10. Malware Detection Using All Modalities 112

Figure 10.4: Box plots of the learners performance metrics for the system logs-

based features

In comparison to power-based and network traffic-based features, system logs-

based features did not provide a good performance on their own (see Figure 10.4).

However, when comparing the learners performance the deep learning neural net-

work was the best with mean G-score of 0.559 and mean F-score of 0.874. Worse

performance was attained for SMO (with mean G-score of 0.167 and mean F-score

of 0.836), Naive Bayes (with mean G-score of 0.558 and mean F-score of 0.566),

and PART (with mean G-score of 0.312 and mean F-score of 0.805). The perfor-

mance of SMO was affected by the high FPR (mean FPR of 0.909), while Naive

Bayes had lowest Recall (mean Recall of 0.449), and PART was affected due to a

lowest Precision (mean Precision of 0.674).

Chapter 10. Malware Detection Using All Modalities 113

Figure 10.5: Box plots of the learners performance metrics for the code-based static

features

As seen in Figure 10.5, the code-based static features did not perform well

on their own. While J48 had fairly high F-score, its G-score was lowest among

all learners (mean G-score of 0.064). Highest F-score was achieved with Random

Forest (mean F-score of 0.837), while the lowest F-score was attained by the deep

learning neural network (mean F-score of 0.787). The performance of J48 and the

deep learning neural network were affected mostly because of a higher FPR (mean

FPR of 0.967 and 0.950) and a lower Precision (mean Precision of 0.705 and 0.679,

respectively).

Using different performance metrics is of great importance because it reflects

the quality of malware detection. For instance, in Figure 10.5 the Recall is very

good (close to 1), and Precision fairly good (higher than 0.70) for all learners,

which lead to good F-score. However, the FPR is bad, which led to a bad G-score.

With respect to RQ1 (Is each modality a good malware predictor when it is

used individually?), we conclude that power-based features did very good on their

own, followed by network traffic-based features. System logs-based and code-based

Chapter 10. Malware Detection Using All Modalities 114

static features had lowest performance when evaluated individually. Specifically,

the statistical means in Table 10.1 shows that Random Forest was the best learner

with respect to Recall, F-score and G-score. In the case of the network traffic-

based features, J48 (in terms of F-score and G-score) and Random Forest (in

terms of Recall) were the best learners. When using system logs-based features

and code-based static features, the performance was significantly worse for all

learners. Furthermore, the performance of the deep neural network was worse

when using power-based, network traffic-based, and code-based static features,

that is, it had significantly lowest mean Precision, Recall, F-score, and G-score.

Additional basic statistics with respect to F-score for each of the modalities can

be found in Appendix B.

10.4.2 RQ2: Results for Multimodal Feature Level Fusion

To evaluate the feature level fusion, we combined all features into one feature vector

for all learners. In the case of decision level fusion, all modalities were evaluated

individually and their results were fused before making the classification. See

Figure 10.6 for the learners performance of both feature level and decision level

fusion. The range of performance metrics for Figure 10.6 is from 0.50 to 1.0.

In addition to box plots, we also used Table 10.2 to evaluate the mean learners

performance for feature level and decision level fusion. Note that in Table 10.2,

the results for the standard supervised algorithms are for feature level fusion, Deep

NN-FL refers to the deep neural network for feature level fusion, and Deep NN-DL

is the deep neural network for decision level fusion.

We used Figure 10.6 and Table 10.2 to answer RQ2 (Does the malware detection

performance improve when using multimodal feature level fusion?) and RQ3 (Does

multimodal decision level fusion performs better than using multimodal feature

level fusion?).

Chapter 10. Malware Detection Using All Modalities 115

Figure 10.6: Box plots of the learners performance when doing feature level fusion

Table 10.2: Mean learners performance for feature level and decision level fusion

Learners Performance Metrics

Accuracy Recall Precision 1-FPR G-score F-score

RF-FL 0.967 1.00 0.955 0.889 0.941 0.977

J48-FL 0.967 0.982 0.971 0.932 0.956 0.976

JRip-FL 0.958 0.978 0.963 0.912 0.944 0.970

PART-FL 0.958 0.975 0.966 0.920 0.946 0.970

NB-FL 0.942 0.942 0.974 0.941 0.942 0.958

SMO-FL 0.963 0.986 0.963 0.912 0.947 0.974

Deep NN-FL 0.830 0.923 0.842 0.629 0.746 0.881

Deep NN-DL 0.970 0.963 0.993 0.986 0.974 0.978

When doing feature level fusion the best performance was obtained for J48 with

respect to G-score (mean G-score of 0.956), while the F-score values for both J48

and Random Forest were very close (mean F-score of 0.976 and 0.977, respectively).

The second best learners were PART and JRip (with mean G-scores of 0.946 and

0.944 and mean F-scores of 0.970 for both learners). The deep learning neural

network had the worst performance for feature level fusion, with respect to all

Chapter 10. Malware Detection Using All Modalities 116

metrics (mean G-score of 0.746 and mean F-score of 0.881). Its performance was

affected by relatively high FPR (with mean FPR of 0.371) and lowest Recall and

Precision (mean Recall of 0.923 and mean Precision of 0.842).

To answer RQ2 (Does the malware detection performance improve when using

multimodal feature level fusion?), the performance of all learners was compared

after we did feature level fusion. Results from Figure 10.6 and Table 10.2 showed

that feature level fusion improves the performance of the learners compared to

when each modality was evaluated individually, with the exception of the power-

based features, which did very good on its own. Note that the malware detection

based only on power-based features had the closest performance (See Table 10.1)

to the performance of the feature level fusion.

Interestingly, the deep learning neural network had the worse performance for

feature level fusion when compared to standard supervised algorithms. This be-

havior could be explained due to several reasons. First, deep neural networks are

proven to work best for bigger datasets [226, 266]. Also, most of the used su-

pervised algorithms are either tree-based or rule-based algorithms, which tend to

perform relatively well without considering the dataset size. Second, the deep neu-

ral network architecture for the feature level fusion has only the input layer, two

hidden layers, and the output layer. Hence, when compared to the architecture

for the decision level fusion it has two hidden layers less which might be affect-

ing the ability of the model to learn. Third, the performance of the deep neural

network could be affected when dealing with unbalanced data. While we do not

consider our data as unbalanced, this possibility is contemplated since we have 153

instances labeled as malware and 66 instances labeled as non-malicious. Meaning

we have twice the amount of malware instances when compared to the number of

non-malicious instances.

Chapter 10. Malware Detection Using All Modalities 117

10.4.3 RQ3: Results for Multimodal Decision Level Fusion

Here we are comparing the performance of the deep learning neural network feature

level fusion with the deep learning neural network decision level fusion. To address

RQ3 (Does multimodal decision level fusion performs better than using multimodal

feature level fusion?) we used Figure 10.6 and Tables 10.2.

The performance of the deep learning neural network decision level fusion works

best when compared to the deep learning neural network fusion level for all per-

formance metrics. We believe the behavior of the feature level fusion in the deep

neural network is due to the size of our dataset. While we are using the same

dataset, multimodal decision level fusion offers scalability in terms of the modal-

ities used in the fusion process, which is difficult to achieve in the feature level

fusion [74, 75].

When the deep learning neural network decision level fusion was compared with

the feature level fusion of standard supervised algorithms, the deep learning neural

network decision level fusion works best for most of the performance metrics, with

the exception of Recall and F-score (see Tables 10.2). In the case of Recall, both

Random Forest and J48 feature level fusion had highest values in comparison to

deep learning neural network decision level fusion, which justifies why their mean

F-scores were very close to the deep learning neural network decision level fusion.

While Recall for the deep learning neural network decision level fusion was not

among the highest, its mean F-score was similar to the mean F-scores of both

Random Forest and J48 feature level fusion due to higher Precision.

10.5 Summary of Findings

The main findings of the work presented in this Chapter are as follows:

• From the four evaluated modalities, malware detection based on power con-

sumption was the only one that performed well on its own, that is, power-

based features are good as malware predictors.

Chapter 10. Malware Detection Using All Modalities 118

• Some of the learners (e.g., J48) did well for network traffic-based features.

• When using system logs-based or code-based static features, the performance

of malware detection was significantly worse for all learners.

• When doing feature level fusion, the performance of Random Forest, J48,

JRip, PART, Naive Bayes, and SMO was better when compared to the deep

neural network feature level fusion. In terms of F-score, the best performance

for feature level fusion was attained by Random Forest.

• When compared to Random Forest, J48, JRip, PART, Naive Bayes, and

SMO, the multimodal decision level fusion for the deep neural network works

best for most of the performance metrics, with the exception of Recall and

F-score.

• The performance of the deep learning neural network decision level fusion

works better when compared to the deep learning neural network feature

level fusion.

119

Chapter 11

Threats to Validity

While we took the necessary precautions to prevent threats to validity, these

cannot be avoid completely. A threat to the construct validity is the fact that

power consumption may vary depending on what type of application is used. For

example, there are applications that affect a particular component (e.g., CPU or

memory) of the general-purpose computer. To address this issue, we used different

types of malware and non-malicious applications.

Another threat to construct of validity with respect to our experimental set-

up is that we did not consider evaluating different sampling rates on the hardware

configuration when collecting the power consumption data. Nevertheless, the work

by [121] stated that a high sampling rate is not always necessary to understand

the behavior of the power consumption during the execution of an application soft-

ware. Furthermore, to prevent construct factors, different hardware configurations

were evaluated during the testbed design and development. Evaluating different

hardware configurations is of great importance because each configurations may

yield different results.

An internal threat to validity is with respect to the number of malware examples

that belong to a specific malware type (e.g., trojans, viruses, rootkit, ransomware).

Since we used a small representation of each malware type, their behavior may

not be representative enough to conclude that all malware types will behave the

same way. Furthermore, we also took into consideration the fact that Windows

Chapter 11. Threats to Validity 120

OS executes actions in the background that could increase the false positive rate

when using only power-based features. Thus, to prevent an internal threat to

validity we integrated the power-based features with other types of behavioral-

based features (network traffic-based and system logs-based features) and code-

based static features.

With respect to the conclusion validity we used multiple performance met-

rics, because doing so helps to reflect different aspects of the quality of malware

detection.

A threat to external validity is that while our dataset is largest in comparison

to prior works that have used power-based features, it is still small when compared

to other works that have done malware detection. For the external validity, it is

important to mention that machine learning algorithms may perform differently

on different datasets, and when different features are used.

121

Chapter 12

Conclusions & Future Work

Although malware detection is a very active area of research, few works were

focused on using physical properties, such as power consumption. In this disserta-

tion we presented a malware detection approach based on using dynamic features

extracted from the power consumption, network traffic data and system logs, which

were collected while running malware samples and non-malicious software applica-

tions on our experimental testbed. In addition, we also collected code-based static

features. We used the extracted features for multimodal malware detection, using

both feature level fusion and decision level fusion. Specifically, our malware de-

tection approaches are based on: (1) feature level fusion using power consumption

and network traffic data; (2) feature level fusion using network traffic data (i.e.,

commonly used network traffic-based and network flow-based features) and system

logs; and (3) multimodal feature level and decision level fusion.

For the feature level fusion using power consumption and network traffic data,

we conducted several machine learning experiments for malware detection. Seven

power-based and eighteen network traffic-based features were extracted and ten

supervised machine learning algorithms were used for classification. The main

findings include: (1) Among the best performing learners, Random Forest had the

highest F-score and close to the highest G-score. (2) Power data extracted from the

+12V CPU rails led to better performance than power data from the other three

voltage rails. (3) Using only power-based features provided better performance

Chapter 12. Conclusions & Future Work 122

than using only network traffic-based features; using both types of features had

the best performance. (4) Feature selection based on information gain was used

to identify the smallest numbers of features sufficient to successfully distinguish

malware from non-malicious software. The top eleven features provided the same

performance as using all 25 features. Five out of seven power-based features were

among the top eleven features.

For feature level fusion using network traffic data and system logs, the baseline

feature vector was created by combining the system logs-based features and the

commonly used network traffic-based features. Then, we added the network flows-

based features to the baseline feature vector to study their effect on the malware

detection. We evaluated the performance of four supervised machine learning algo-

rithms (i.e., J48, Random Forest, Naive Bayes, and PART) for malware detection

and identified the best learner. Furthermore, we used feature selection based on

information gain to identify the smallest number of features needed for classifica-

tion. In addition, we experimented with training sets of different sizes. The main

findings include: (1) Adding network flows-based features improved significantly

the performance of malware detection. (2) J48 and PART were the best perform-

ing learners, with the highest F-score and G-score values. (3) Using J48, the top

five features ranked by information gain attained the same performance as when

using all 88 features. In the case of PART, the top fourteen features ranked by

information gain led to the same performance as when all 88 features were used.

None of the system logs-based features were included in these two models. (4) The

classification performance when training on 75% of the data was comparable to

training on 90% of the data. As little as 25% of the data can be used for training at

an expense of somewhat higher, but not very significant performance degradation

(i.e., less than 7% for F-score and 6% for G-score compared to when 90% of the

data were used for training).

We also presented a multimodal deep learning neural network that integrates

different modalities (i.e., power consumption, system logs, network traffic, and

code-based static data). We evaluated the performance of each modality indi-

Chapter 12. Conclusions & Future Work 123

vidually, when doing feature level fusion, and when doing decision level fusion.

We compared its performance to standard supervised machine learning algorithms

(i.e., Random Forest, J48, JRip, PART, Naive Bayes, and SMO). The main find-

ings for the multimodal approach include: (1) Power-based features did very well

on their own for all learners, while some of the learners did well for network traffic-

based features (e.g., J48), and system logs-based and code-based static features

performed significantly worse for all learners. (2) Deep neural network feature

level fusion performs worst compared to feature level fusion for standard super-

vised algorithms. (3) Deep neural network decision level fusion performs slightly

better compared to feature level fusion for standard supervised algorithms.

As part of our future work we would like to increase the sample size for the

experiments. Furthermore, instead of hand picking the features given to the mul-

timodal approach, we plan as future work to let the algorithm extract features

for both malware and non-malicious software to explore if doing so improves the

performance of the model. In addition, we would like to explore the performance

of malware detection per malware type and/or malware families and to evaluate

other methods for multimodal fusion.

124

List of Publications

1. Hernández Jiménez, J., Nichols, J. A., Goseva-Popstojanova, K., and Prowell,

S. (2016, March). A malware detection framework based on power consumption

monitoring. In 3rd Women in Cybersecurity Conference (WiCys). [Poster]

2. Hernández Jiménez, J., Bridges, R., Nichols, J., Goseva-Popstojanova, K., and

Prowell, S. (2016, May). Towards malware detection framework based on power

consumption monitoring. In 37th IEEE Symposium in Security and Privacy (IEEE

SSP). [Poster]

3. Hernández Jiménez, J., Chen, Q., Nichols, J., Calhoun, C., and Sykes, S. (2017,

January). Towards a cyber defense framework for SCADA systems based on power

consumption monitoring. In 50th Hawaii International Conference on System Sci-

ences (HICSS), pp. 2915-2921. [47% acceptance rate]

4. Hernández Jiménez, J., Nichols, J. A., Goseva-Popstojanova, K., Prowell, S.,

and Bridges, R. A. (2017, May). Malware detection on general-purpose computers

using power consumption monitoring: A proof of concept and case study. arXiv

preprint arXiv:1705.01977. [Technical Report]

5. Prowell, S., Nichols, J., Hernández Jiménez, J. (2018, May). System and

method for monitoring power consumption to detect malware. Provisional Patent

Application No. 62/506,114. [Patent]

6. Bridges, R., Hernández Jiménez, J., Nichols, J., Goseva-Popstojanova, K.,

and Prowell, S. (2018, August). Towards malware detection via CPU power

consumption: Data collection design and analytics. In 17th IEEE International

Conference On Trust, Security and Privacy in Computing and Communications

(IEEE TrustCom), pp. 1680-1684.

List of Publications 125

7. Hernández Jiménez, J., and Goseva-Popstojanova, K. (2018, November). The

effect on network flows-based features and training set sizes on malware detection.

In 17th IEEE International Symposium on Network Computing and Applications

(IEEE NCA), pp. 1-9. [26% acceptance rate]

8. Hernández Jiménez, J., and Goseva-Popstojanova, K. (2019, June). Malware

detection using power consumption and network traffic data. In 2nd IEEE Inter-

national Conference on Data Intelligence and Security (IEEE ICDIS).

126

References

[1] (1995) Frequently Asked Questions on virus-L/comp.virus. [Online].
Available: http://www.faqs.org/faqs/computer-virus/faq/

[2] (2001) FlowScan - Network traffic flow visualization and reporting tool.
[Online]. Available: https://www.caida.org/tools/utilities/flowscan/

[3] (2003) TCPflow – A TCP flow recorder. [Online]. Available: https:
//bit.ly/2FWrBgv

[4] (2010) Iran confirms Stuxnet worm halted centrifuges. [Online]. Available:
https://cbsn.ws/2U2V5OK

[5] (2010) SplitCap. [Online]. Available: https://bit.ly/2D0RbjH

[6] (2011) Compact DC voltage and current sense PCB with analog output.
[Online]. Available: https://bit.ly/2IjBkAy

[7] (2011) Softflowd. [Online]. Available: http://www.mindrot.org/projects/
softflowd/

[8] (2012) Malware Domains. [Online]. Available: https://bit.ly/2U2pfBU

[9] (2013) Backdoor.Tidserv. [Online]. Available: https://www.symantec.com/
security response/writeup.jsp?docid=2008-091809-0911-99

[10] (2013) Trojan:Win32/Alureon.FE. [Online]. Available: https://bit.ly/
2KdXrLi

[11] (2014) Alert (ta14-150a) gameover Zeus P2P malware. [Online]. Available:
https://www.us-cert.gov/ncas/alerts/TA14-150A

[12] (2014) Cyber security event. [Online]. Available: https://definedterm.com/
cyber security event

[13] (2014) How Dragonfly hackers and RAT malware threaten ICS security.
[Online]. Available: https://bit.ly/2uRrjlS

[14] (2015) Clonezilla. [Online]. Available: http://clonezilla.org/

References 127

[15] (2015) How to remove TDL4 (Tidserv. [Online]. Available: https:
//www.solvusoft.com/en/malware/rootkits/tdl4-tidserv/

[16] (2015) Minigrabber test clips. [Online]. Available: https://shop.
trenz-electronic.de/en/24645-Mini-Grabber-Test-Clips-6-pack

[17] (2015) Model 3780 minigrabber test clip, one end only. [Online]. Available:
http://www.pomonaelectronics.com/pdf/d3780 1 01.pdf

[18] (2015) Power supply unit (PSU). [Online]. Available: https://en.wikipedia.
org/wiki/Power supply unit (computer)

[19] (2015) Shunt Resistor. [Online]. Available: http://www.resistorguide.com/
shunt-resistor/

[20] (2015) TracerDAQPro. [Online]. Available: https://www.mccdaq.com/
daq-software/tracerdaq-series.aspx

[21] (2015) What is a Shunt? [Online]. Available: http://www.reuk.co.uk/
wordpress/electric-circuit/what-is-a-shunt/

[22] (2015) Win32/Gamarue. [Online]. Available: https://malwarefixes.com/
threats/win32gamarue/

[23] (2016) Dexter. [Online]. Available: https://www.cyber.nj.gov/
threat-profiles/pos-malware-variants/dexter

[24] (2016) Get rid of rootkit.Boot.Pihar.B trojan. [Online]. Available:
https://bit.ly/2OWiFvz

[25] (2016) How to remove GREENCAT-2. [Online]. Available: https:
//www.solvusoft.com/en/malware/trojans/greencat-2/

[26] (2016) Payload Security. [Online]. Available: https://www.hybrid-analysis.
com/

[27] (2016) Rootkits. [Online]. Available: https://docs.microsoft.com/en-us/
windows/security/threat-protection/intelligence/rootkits-malware

[28] (2016) TDL4 Carrier to Glupteba. [Online]. Available: https://bit.ly/
2FUnP7m

[29] (2016) Term0l5ter12.com. [Online]. Available: http://www.urlvoid.com/
scan/term0l5ter12.com/

[30] (2017) 10 evil user tricks for bypassing anti-virus. [Online]. Available:
https://cuckoosandbox.org/

[31] (2017) Backdoor attacks: What is a backdoor? [Online]. Available:
https://bit.ly/2TYnBB3

References 128

[32] (2017) Capture-BAT. [Online]. Available: https://www.honeynet.org/node/
315

[33] (2017) ClockSynchro. [Online]. Available: http://clocksynchro.com/

[34] (2017) Cryptolocker. [Online]. Available: https://en.wikipedia.org/wiki/
CryptoLocker

[35] (2017) IDA: About. [Online]. Available: https://www.hex-rays.com/
products/ida/index.shtml

[36] (2017) The list of malware types. [Online]. Available: http://www.
malwaretruth.com/the-list-of-malware-types/

[37] (2017) Logstash. [Online]. Available: https://www.elastic.co/products/
logstash

[38] (2017) OllyDbg. [Online]. Available: http://www.ollydbg.de/download.htm

[39] (2017) Payload (computing). [Online]. Available: https://en.wikipedia.org/
wiki/Payload (computing)

[40] (2017) What is ransomware? [Online]. Available: https://virutec.com/
what-is-ransomware/

[41] (2017) What is the difference: viruses, worms, trojans, and bots?
[Online]. Available: https://www.cisco.com/c/en/us/about/security-center/
virus-differences.html

[42] (2017) Wireshark. [Online]. Available: https://www.wireshark.org/

[43] (2018) Autocorrelation and time series methods. [Online]. Available:
https://onlinecourses.science.psu.edu/stat462/node/188/

[44] (2018) Backdoor. [Online]. Available: https://en.wikipedia.org/wiki/
Backdoor (computing)

[45] (2018) Computer worm. [Online]. Available: https://en.wikipedia.org/wiki/
Computer worm

[46] (2018) Firefox. [Online]. Available: https://www.mozilla.org/en-US/firefox/
new/

[47] (2018) HeavyLoad. [Online]. Available: https://www.jam-software.com/
heavyload/

[48] (2018) IntelBurnTest. [Online]. Available: https://www.majorgeeks.com/
files/details/intelburntest.html

[49] (2018) Locky. [Online]. Available: https://nakedsecurity.sophos.com/2016/
02/17/locky-ransomware-what-you-need-to-know/

References 129

[50] (2018) Malware. [Online]. Available: https://en.wikipedia.org/wiki/Malware

[51] (2018) PE Explorer. [Online]. Available: http://www.heaventools.com/
overview.htm

[52] (2018) Tranalyzer. [Online]. Available: https://tranalyzer.com/

[53] (2018) Trojan horse (computing). [Online]. Available: https://en.wikipedia.
org/wiki/Trojan horse (computing)

[54] (2019) Activation function. [Online]. Available: https://deepai.org/
machine-learning-glossary-and-terms/activation-function

[55] (2019) Gradient descent in a nutshell. [Online]. Available: https:
//towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0

[56] (2019) How big should batch size and number of epochs be when fitting a
model in keras? [Online]. Available: https://bit.ly/2VIgkqX

[57] (2019) How to choose the number of hidden layers and nodes in a
feedforward neural network? [Online]. Available: https://bit.ly/2jrD2l5

[58] (2019) Keras: The Python deep learning library. [Online]. Available:
https://keras.io/

[59] G. K. A. and P. V. K. D., “Survey on ransomware: A new era of cyber
attack,” International Journal of Computer Applications, vol. 168, no. 3, pp.
38–41, 2017.

[60] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-gram-based
detection of new malicious code,” in 28th IEEE Annual International Com-
puter Software and Applications Conference (COMPSAC), vol. 2, 2004, pp.
41–42.

[61] D. Acarali, M. Rajarajan, N. Komninos, and I. Herwono, “Event graphs for
the observation of botnet traffic,” in 8th IEEE Annual Information Technol-
ogy, Electronics and Mobile Communication Conference (IEMCON), 2017,
pp. 628–634.

[62] C. Aguayo González and A. Hinton, “Detecting malicious software execution
in Programmable Logic Controllers using power fingerprinting,” in Interna-
tional Conference on Critical Infrastructure Protection. Springer, 2014, pp.
15–27.

[63] C. Aguayo González and J. H. Reed, “Power fingerprinting in SDR & CR
integrity assessment,” in IEEE Military Communications Conference (MIL-
COM), 2009, pp. 1–7.

References 130

[64] C. Aguayo González and J. H. Reed, “Power fingerprinting in SDR integrity
assessment for security and regulatory compliance,” Analog Integrated Cir-
cuits and Signal Processing Journal, vol. 69, no. 2-3, p. 307, 2011.

[65] M. Ahmadi, A. Sami, H. Rahimi, and B. Yadegari, “Malware detection by
behavioural sequential patterns,” Computer Fraud & Security Journal, vol.
2013, no. 8, pp. 11–19, 2013.

[66] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto, “Novel
feature extraction, selection and fusion for effective malware family classi-
fication,” in 6th ACM Conference on Data and Application Security and
Privacy. ACM, 2016, pp. 183–194.

[67] B. A. AlAhmadi and I. Martinovic, “MalClassifier: Malware family classi-
fication using network flow sequence behaviour,” in APWG Symposium on
Electronic Crime Research (eCrime). IEEE, 2018, pp. 1–13.

[68] S. Alam, I. Traore, and I. Sogukpinar, “Annotated control flow graph for
metamorphic malware detection,” The Computer Journal, vol. 58, no. 10,
pp. 2608–2621, 2015.

[69] D. Aldous, “The continuum random tree. I,” The Annals of Probability, pp.
1–28, 1991.

[70] B. Anderson, C. Storlie, and T. Lane, “Improving malware classification:
Bridging the static/dynamic gap,” in Proceedings of the 5th ACM Workshop
on Security and Artificial Intelligence, 2012, pp. 3–14.

[71] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick,
and D. Parikh, “VQA: Visual question answering,” in IEEE International
Conference on Computer Vision, 2015, pp. 2425–2433.

[72] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. Stolfo, “Detecting mali-
cious software by monitoring anomalous windows registry accesses,” in In-
ternational Workshop on Recent Advances in Intrusion Detection. Springer,
2002, pp. 36–53.

[73] A. Arora, S. Garg, and S. K. Peddoju, “Malware detection using network
traffic analysis in Android based mobile devices,” in 8th IEEE Conference
on Next Generation Mobile Applications, Security and Technologies (NG-
MAST), 2014, pp. 66–71.

[74] M. A. Atrey, Pradeep K.and Hossain, A. El Saddik, and M. S. Kankanhalli,
“Multimodal fusion for multimedia analysis: A survey,” Multimedia Systems,
vol. 16, no. 6, pp. 345–379, 2010.

[75] P. K. Atrey, M. S. Kankanhalli, and J. B. Oommen, “Goal-oriented optimal
subset selection of correlated multimedia streams,” ACM Transactions on

References 131

Multimedia Computing, Communications, and Applications (TOMM), vol. 3,
no. 1, p. 2, 2007.

[76] F. Azam, “Biologically inspired modular neural networks,” Ph.D. disserta-
tion, Virginia Tech, 2000.

[77] A. Azmoodeh, A. Dehghantanha, M. Conti, and K.-K. R. Choo, “Detecting
crypto-ransomware in IoT networks based on energy consumption footprint,”
Journal of Ambient Intelligence and Humanized Computing, pp. 1–12, 2017.

[78] J. Bai and J. Wang, “Improving malware detection using multi-view en-
semble learning,” Security and Communication Networks, vol. 9, no. 17, pp.
4227–4241, 2016.

[79] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, “Multimodal machine learn-
ing: A survey and taxonomy,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 41, no. 2, pp. 423–443, 2019.

[80] P. Barford and D. Plonka, “Characteristics of network traffic flow anomalies,”
in Internet Measurement Workshop. Citeseer, 2001, pp. 69–73.

[81] M. Bat-Erdene, H. Park, H. Li, H. Lee, and M.-S. Choi, “Entropy analysis to
classify unknown packing algorithms for malware detection,” International
Journal of Information Security, vol. 16, no. 3, pp. 227–248, 2017.

[82] U. Bayer, C. Kruegel, and E. Kirda, TTAnalyze: A tool for analyzing mal-
ware, 2006.

[83] C. Beaumont. (2010) Stuxnet virus: Worm “could be aimed at high-profile
Iranian targets”. [Online]. Available: https://bit.ly/2WNzw6E

[84] D. Bekerman, B. Shapira, L. Rokach, and A. Bar, “Unknown malware de-
tection using network traffic classification,” in IEEE Conference on Commu-
nications and Network Security (CNS), 2015, pp. 134–142.

[85] A. Bendjebbour, Y. Delignon, L. Fouque, V. Samson, and W. Pieczynski,
“Multisensor image segmentation using Dempster-Shafer fusion in Markov
fields context,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 39, no. 8, pp. 1789–1798, 2001.

[86] D. Bilar, “Opcodes as predictor for malware,” International Journal of Elec-
tronic Security and Digital Forensics, vol. 1, no. 2, pp. 156–168, 2007.

[87] M. Bishop, Introduction to Computer Security. Pearson Addison-Wesley
Professional, 2004.

[88] G. Bonfante, M. Kaczmarek, and J.-Y. Marion, “Control Flow Graphs as
Malware Signatures,” in International Workshop on the Theory of Com-
puter Viruses, ser. TCV’07, E. Filiol, J.-Y. Marion, and G. Bonfante, Eds.
Matthieu Kaczmarek; Guillaume Bonfante, 2007.

References 132

[89] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–
140, 1996.

[90] ——, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[91] R. Bridges, J. H. Jiménez, J. Nichols, K. Goseva-Popstojanova, and S. Prow-
ell, “Towards malware detection via CPU power consumption: Data col-
lection design and analytics,” in 17th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications (Trust-
Com), 2018, pp. 1680–1684.

[92] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating malware
using control-flow graph matching,” in Detection of Intrusions and Malware
& Vulnerability Assessment, R. Büschkes and P. Laskov, Eds. Springer
Berlin Heidelberg, 2006, pp. 129–143.

[93] T. K. Buennemeyer, T. M. Nelson, L. M. Clagett, J. P. Dunning, R. C.
Marchany, and J. G. Tront, “Mobile device profiling and Intrusion Detection
using smart batteries,” in 41st IEEE Hawaii International Conference on
System Sciences (HICSS), 2008, pp. 296–296.

[94] J. Buntinx. (2017) Malware vs. ransomware. [Online]. Available: https:
//themerkle.com/malware-vs-ransomware/

[95] P. Burnap, R. French, F. Turner, and K. Jones, “Malware classification us-
ing self organising feature maps and machine activity data,” Computers &
Security Journal, vol. 73, pp. 399–410, 2018.

[96] S. Burschka and B. Dupasquier, “Tranalyzer: Versatile high performance
network traffic analyser,” in IEEE Symposium Series on Computational In-
telligence (SSCI). IEEE, 2016, pp. 1–8.

[97] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Detecting Android
malware using sequences of system calls,” in 3rd International Workshop on
Software Development Lifecycle for Mobile, ser. DeMobile 2015. ACM, 2015,
pp. 13–20.

[98] Z. B. Celik, J. Raghuram, G. Kesidis, and D. J. Miller, “Salting public
traces with attack traffic to test flow classifiers,” in 4th USENIX Workshop
on Cyber Security Experimentation and Test (CSET), 2011, pp. 3–3.

[99] S. Chaba, R. Kumar, R. Pant, and M. Dave, “Malware detection approach for
Android systems using system call logs,” arXiv preprint arXiv:1709.08805,
2017.

[100] L. S.-H. Chen, “Joint processing of audio-visual information for the recog-
nition of emotional expressions in human-computer interaction,” Ph.D. dis-
sertation, Champaign, IL, USA, 2000, aAI9971046.

References 133

[101] L. Chen, S. Hou, and Y. Ye, “SecureDroid: Enhancing security of machine
learning-based detection against adversarial android malware attacks,” in
33rd Annual Computer Security Applications Conference. ACM, 2017, pp.
362–372.

[102] S. Cherry. (2010) How Stuxnet is rewriting the cyberterrorism playbook.
[Online]. Available: https://spectrum.ieee.org/podcast/telecom/security/
how-stuxnet-is-rewriting-the-cyberterrorism-playbook

[103] D.-H. Choi and L. Xie, “Malicious ramp-induced temporal data attack in
power market with look-ahead dispatch,” in 3rd IEEE International Confer-
ence on Smart Grid Communications (SmartGridComm), 2012, pp. 330–335.

[104] B. Claise, “Cisco systems NetFlow services export Version 9,” Tech. Rep.,
2004.

[105] ——, “Specification of the IP flow information export (IPFIX) protocol for
the exchange of IP traffic flow information,” Tech. Rep., 2008.

[106] S. S. Clark, H. Mustafa, B. Ransford, J. Sorber, K. Fu, and W. Xu, “Current
events: Identifying webpages by tapping the electrical outlet,” in European
Symposium on Research in Computer Security. Springer, 2013, pp. 700–717.

[107] S. S. Clark, B. Ransford, and K. Fu, “Potentia est scientia: Security and pri-
vacy implications of energy-proportional computing,” in 7th USENIX Con-
ference on Hot Topics in Security (HotSec), 2012, pp. 3–3.

[108] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, K. Fu, and
W. Xu, “WattsUpDoc: Power side channels to nonintrusively discover un-
targeted malware on embedded medical devices,” in USENIX Conference on
Safety, Security, Privacy and Interoperability of Health Information Tech-
nologies (HealthTech), 2013, pp. 9–9.

[109] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (ELUs),” arXiv preprint
arXiv:1511.07289, 2015.

[110] W. W. Cohen, “Fast effective rule induction,” in Machine Learning Proceed-
ings 1995. Elsevier, 1995, pp. 115–123.

[111] L. D. Coronado-De-Alba, A. Rodŕıguez-Mota, and P. J. Escamilla-Ambrosio,
“Feature selection and ensemble of classifiers for Android malware detec-
tion,” in 8th IEEE Latin-American Conference on Communications (LAT-
INCOM). IEEE, 2016, pp. 1–6.

[112] CyberHades. (2017) Malware analyst’s DVD. [Online]. Available: https:
//www.cyberhades.com/2011/03/31/malware-analysts-dvd/

References 134

[113] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware classi-
fication using random projections and neural networks,” in 2013 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing. IEEE,
2013, pp. 3422–3426.

[114] J. A. Dawson, J. T. McDonald, J. Shropshire, T. R. Andel, P. Luckett,
and L. Hively, “Rootkit detection through phase-space analysis of power
voltage measurements,” in 12th International Conference on Malicious and
Unwanted Software (MALWARE), 2017, pp. 19–27.

[115] Z. Dehlawi and N. Abokhodair, “Saudi Arabia’s response to cyber conflict:
A case study of the Shamoon malware incident,” in IEEE International Con-
ference on Intelligence and Security Informatics (ISI), 2013, pp. 73–75.

[116] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona,
G. Giacinto, and F. Roli, “Yes, machine learning can be more secure! A case
study on Android malware detection,” IEEE Transactions on Dependable
and Secure Computing, 2017.

[117] T. Diibendorfer and B. Plattner, “Host behaviour based early detection of
worm outbreaks in Internet backbones,” in 14th IEEE International Confer-
ence on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), 2005, pp. 166–171.

[118] M. Dillinger, K. Madani, and N. Alonistioti, Software defined radio: Archi-
tectures, systems and functions. John Wiley & Sons, 2005.

[119] M. Dimjašević, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Evaluation of An-
droid malware detection based on system calls,” in ACM International Work-
shop on Security And Privacy Analytics, 2016, pp. 1–8.

[120] S. Ding, “Machine learning for cybersecurity: Network-based botnet detec-
tion using time-limited flows,” 2017, unpublished.

[121] M. E. Diouri, M. F. Dolz, O. Glück, L. Lefèvre, P. Alonso, S. Catalán,
R. Mayo, and E. S. Quintana-Ort́ı, “Solving some mysteries in power moni-
toring of servers: Take care of your wattmeters!” in European Conference on
Energy Efficiency in Large Scale Distributed Systems, ser. EE-LSDS 2013.
Springer-Verlag, 2013, pp. 3–18.

[122] B. Dixon, Y. Jiang, A. Jaiantilal, and S. Mishra, “Location based power
analysis to detect malicious code in smartphones,” in 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, 2011, pp. 27–32.

[123] B. Dixon, S. Mishra, and J. Pepin, “Time and location power based ma-
licious code detection techniques for smartphones,” in 13th IEEE Interna-
tional Symposium on Network Computing and Applications (NCA), 2014,
pp. 261–268.

References 135

[124] R. F. M. Dollah, M. Faizal, F. Arif, M. Z. Mas’ud, and L. K. Xin, “Machine
learning for HTTP botnet detection using classifier algorithms,” Journal of
Telecommunication, Electronic and Computer Engineering, vol. 10, no. 1-7,
pp. 27–30, 2018.

[125] F. Dressler, W. Jaegers, and R. German, “Flow-based worm detection us-
ing correlated honeypot logs,” in ITG-GI Conference in Communication in
Distributed Systems, 2007, pp. 1–6.

[126] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,” in ACM Conference
on Computer and Communications Security (CCS). ACM, 2017, pp. 1285–
1298.

[127] H. Durrant-Whyte and T. C. Henderson, “Multisensor data fusion,” Springer
handbook of Robotics, pp. 585–610, 2008.

[128] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Computing Surveys
(CSUR), vol. 44, no. 2, p. 6, 2012.

[129] Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan, and C. Glezer, “Applying
machine learning techniques for detection of malicious code in network traf-
fic,” in Annual Conference on Artificial Intelligence. Springer, 2007, pp.
44–50.

[130] C. Estan and G. Magin, “Interactive traffic analysis and visualization with
Wisconsin Netpy,” in Large Installation System Administration Conference
(LISA), vol. 5, 2005, pp. 17–17.

[131] Y. Fang, B. Yu, Y. Tang, L. Liu, Z. Lu, Y. Wang, and Q. Yang, “A new
malware classification approach based on malware dynamic analysis,” in Aus-
tralasian Conference on Information Security and Privacy. Springer, 2017,
pp. 173–189.

[132] A. M. Fawaz, M. Noureddine, and W. H. Sanders, “PowerAlert: An integrity
checker using power measurement,” arXiv preprint arXiv:1702.02907, 2017.

[133] A. M. Fawaz and W. H. Sanders, “Learning process behavioral baselines for
anomaly detection,” in 22nd IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC), 2017, pp. 145–154.

[134] X. Feng, R. Ge, and K. W. Cameron, “Power and energy profiling of sci-
entific applications on distributed systems,” in 19th International Parallel
and Distributed Processing Symposium (IPDPS). IEEE Computer Society,
2005, pp. 34–44.

[135] J. Fildes. (2010) Stuxnet worm “targeted high-value Iranian assets”.
[Online]. Available: http://www.bbc.com/news/technology-11388018

References 136

[136] FireEye. (2017) Looking ahead: Cybersecurity in 2018. [Online]. Available:
https://www.fireeye.com/current-threats/annual-threat-report.html

[137] J. B. Fraley and M. Figueroa, “Polymorphic malware detection using topo-
logical feature extraction with data mining,” in SoutheastCon. IEEE, 2016,
pp. 1–7.

[138] E. Frank and I. H. Witten, “Generating accurate rule sets without global
optimization,” in 15th International Conference on Machine Learning, 1998,
pp. 144–151.

[139] J. A. Freeman, Simulating neural networks with Mathematica. Addison-
Wesley Reading (Mass.) etc, 1994.

[140] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,”
Journal-Japanese Society For Artificial Intelligence, vol. 14, no. 771-780, p.
1612, 1999.

[141] A. Gajbhiye, S. Jaf, N. Al Moubayed, A. S. McGough, and S. Bradley,
“An exploration of dropout with rnns for natural language inference,” in
International Conference on Artificial Neural Networks. Springer, 2018,
pp. 157–167.

[142] M. Gandetto, L. Marchesooti, S. Sciutto, D. Negroni, and C. S. Regazzoni,
“From multi-sensor surveillance towards smart interactive spaces,” in Inter-
national Conference on Multimedia and Expo. (ICME), vol. 1. IEEE, 2003,
pp. I–641.

[143] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification:
A survey,” Journal of Information Security, vol. 5, no. 02, p. 56, 2014.

[144] R. Ge, X. Feng, and S. Shuaiwen, “Powerpack: Energy profiling and analysis
of high-performance systems and applications,” in IEEE Transactions on
Parallel and Distributed Systems. IEEE, 2010, pp. 658–671.

[145] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[146] S. Guo, Q. Yuan, F. Lin, F. Wang, and T. Ban, “A malware detection al-
gorithm based on multi-view fusion,” in International Conference on Neural
Information Processing. Springer, 2010, pp. 259–266.

[147] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt, and W. E. Nagel,
“Power measurement techniques on standard compute nodes: A quantitative
comparison,” IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 194–204, 2013.

References 137

[148] F. Haddadi, D. Le Cong, L. Porter, and A. N. Zincir-Heywood, “On the ef-
fectiveness of different botnet detection approaches,” in Information Security
Practice and Experience. Springer, 2015, pp. 121–135.

[149] F. Haddadi and A. N. Zincir-Heywood, “Benchmarking the effect of flow
exporters and protocol filters on botnet traffic classification,” IEEE Systems
Journal, vol. 10, no. 4, pp. 1390–1401, 2016.

[150] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten, “The weka data mining software: An update,” ACM (SIGKDD) Explo-
rations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[151] J. Han and C. Moraga, “The influence of the Sigmoid function parameters
on the speed of backpropagation learning,” in International Workshop on
Artificial Neural Networks. Springer, 1995, pp. 195–201.

[152] P. Harvey. (2017) ExifTool. [Online]. Available: https://sno.phy.queensu.
ca/∼phil/exiftool/

[153] S. S. Haykin et al., Neural networks and learning machines. New York:
Prentice Hall,, 2009.

[154] J. M. Hernández, A. Ferber, S. Prowell, and L. Hively, “Phase-space detec-
tion of cyber events,” in 10th ACM Annual Cyber Security and Information
Intelligence Research Workshop (CSIIRW), 2015, p. 13.

[155] J. Hernández Jiménez, Q. Chen, J. Nichols, C. Calhoun, and S. Sykes, “To-
wards a cyber defense framework for SCADA systems based on power con-
sumption monitoring,” in 50th Hawaii International Conference on System
Sciences (HICSS), 2017, pp. 2915–2921.

[156] J. Hernández Jiménez and K. Goseva-Popstojanova, “Malware detection us-
ing power consumption and network traffic data,” in 2nd International Con-
ference on Data Intelligence and Security, 2019.

[157] L. M. Hively and J. T. McDonald, “Theorem-based, data-driven, cyber event
detection,” in 8th ACM Annual Cyber Security and Information Intelligence
Research Workshop, 2013, pp. 58:1–58:4.

[158] J. Hoffmann, S. Neumann, and T. Holz, “Mobile malware detection based
on energy fingerprints—A dead end?” in Research in Attacks, Intrusions,
and Defenses (RAID). Springer, 2013, pp. 348–368.

[159] G. Hoglund and J. Butler, Rootkits Subverting the Windows Kernel. Addison
Wesley, 2008.

[160] M. Holt. (2002) Back to basics-overcurrent protection-incomplete. [On-
line]. Available: https://www.mikeholt.com/mojonewsarchive/ET-HTML/
HTML/Back2BasicsOvercurrentProtection∼20020510.htm

References 138

[161] R. C. Holte, “Very simple classification rules perform well on most commonly
used datasets,” Machine Learning, vol. 11, no. 1, pp. 63–90, Apr 1993.

[162] G. Hunt and D. Brubacher, “Detours: Binary interception of Win3 2 func-
tions,” in 3rd USENIX Windows NT Symposium, 1999.

[163] N. A. Huynh, W. K. Ng, and K. Ariyapala, “A new adaptive learning al-
gorithm and its application to online malware detection,” in International
Conference on Discovery Science. Springer, 2017, pp. 18–32.

[164] A. Hylick, R. Sohan, A. C. Rice, and B. Jones, “An analysis of hard drive
energy consumption,” IEEE International Symposium on Modeling, Analysis
and Simulation of Computers and Telecommunication Systems, pp. 1–10,
2008.

[165] N. Idika and A. P. Mathur, “A survey of malware detection techniques,”
Purdue University, vol. 48, 2007.

[166] F. Iglesias and T. Zseby, “Analysis of network traffic features for anomaly
detection,” Machine Learning, vol. 101, no. 1, pp. 59–84, Oct 2015.

[167] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification of malware
based on integrated static and dynamic features,” Journal of Network and
Computer Applications, vol. 36, no. 2, pp. 646–656, 2013.

[168] G. A. Jacoby, R. Marchany, and N. J. Davis, “Battery-based intrusion detec-
tion a first line of defense,” in 5th IEEE Annual SMC Information Assurance
Workshop, 2004, pp. 272–279.

[169] R. J. P. S. R. James, A. Albasir, K. Naik, M.-Y. Dabbagh, P. Dash, M. Za-
man, and N. Goel, “Detection of unknown applications in smartphones: A
signal processing perspective,” in IEEE 30th Canadian Conference on Elec-
trical and Computer Engineering (CCECE), 2017, pp. 1–6.

[170] J.-w. Jang, J. Yun, A. Mohaisen, J. Woo, and H. K. Kim, “Detecting and
classifying method based on similarity matching of Android malware behav-
ior with profile,” SpringerPlus, vol. 5, no. 1, p. 273, 2016.

[171] J. M. H. Jiménez and K. Goseva-Popstojanova, “The effect on network flows-
based features and training set size on malware detection,” in 17th IEEE
International Symposium on Network Computing and Applications (NCA),
2018, pp. 1–9.

[172] J. M. H. Jiménez, J. A. Nichols, K. Goseva-Popstojanova, S. Prowell, and
R. A. Bridges, “Malware detection on general-purpose computers using
power consumption monitoring: A proof of concept and case study,” arXiv
preprint arXiv:1705.01977, 2017.

References 139

[173] G. H. John and P. Langley, “Estimating continuous distributions in bayesian
classifiers,” in 11th Conference on Uncertainty in Artificial Intelligence
(UAI), 1995, pp. 338–345.

[174] S. R. Kalmegh, “Comparative analysis of weka data mining algorithm ran-
domforest, randomtree and ladtree for classification of indigenous news
data,” International Journal of Emerging Technology and Advanced Engi-
neering, vol. 5, no. 1, pp. 507–517, 2015.

[175] M. S. Kankanhalli, J. Wang, and R. Jain, “Experiential sampling in mul-
timedia systems,” Transactions on Multimedia, vol. 8, no. 5, pp. 937–946,
2006.

[176] A. Kapoor and S. Dhavale, “Control flow graph based multiclass malware de-
tection using bi-normal separation,” Defence Science Journal, vol. 66, no. 2,
pp. 138–145, 2016.

[177] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware phy-
logeny generation using permutations of code,” Journal in Computer Virol-
ogy, vol. 1, no. 1-2, pp. 13–23, 2005.

[178] N. Kawaguchi and K. Omote, “Malware function classification using APIs
in initial behavior,” in 10th Asia Joint Conference on Information Security.
IEEE, 2015, pp. 138–144.

[179] M. Kazmeyer. (2007) Rootkit vs. viruses or worms. [Online]. Available:
https://bit.ly/2uVr753

[180] J. T. Kent, “Information gain and a general measure of correlation,”
Biometrika, vol. 70, no. 1, pp. 163–173, 1983.

[181] R. U. Khan, X. Zhang, and R. Kumar, “Analysis of ResNet and GoogleNet
models for malware detection,” Journal of Computer Virology and Hacking
Techniques, pp. 1–9, 2018.

[182] H. Kim, J. Smith, and K. G. Shin, “Detecting energy-greedy anomalies and
mobile malware variants,” in 6th ACM International Conference on Mobile
systems, Applications, and Services (MobiSys), 2008, pp. 239–252.

[183] S. S. Kim and A. L. N. Reddy, “NetViewer: A network traffic visualization
and analysis tool,” in 19th Conference on Large Installation System Admin-
istration Conference (LISA), 2005, pp. 18–18.

[184] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep learn-
ing method for Android malware detection using various features,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 3, pp. 773–
788, 2019.

References 140

[185] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[186] M. Kjaersgaard. (2014) Everything you need to know about the notorious
zeus gameover malware. [Online]. Available: https://bit.ly/2emBaKU

[187] R. Kohavi, “The power of decision tables,” in 8th European Conference on
Machine Learning. Springer, 1995, pp. 174–189.

[188] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[189] R. Koller, A. Verma, and A. Neogi, “Wattapp: An application aware power
meter for shared data centers,” in 7th ACM International Conference on
Autonomic Computing (ICAC), 2010, pp. 31–40.

[190] B. Kolosnjaji, G. Eraisha, G. Webster, A. Zarras, and C. Eckert, “Empow-
ering convolutional networks for malware classification and analysis,” in In-
ternational Joint Conference on Neural Networks (IJCNN). IEEE, 2017,
pp. 3838–3845.

[191] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables in
the wild,” in 10th ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD), 2004, pp. 470–478.

[192] D. Kong and G. Yan, “Discriminant malware distance learning on structural
information for automated malware classification,” in 19th ACM Interna-
tional Conference on Knowledge Discovery and Data Mining (SIGKDD),
2013, pp. 1357–1365.

[193] A. Kumar, K. P. Sagar, K. Kuppusamy, and G. Aghila, “Machine learning
based malware classification for Android applications using multimodal im-
age representations,” in 2016 10th International Conference on Intelligent
Systems and Control (ISCO). IEEE, 2016, pp. 1–6.

[194] J. Kuriakose and P. Vinod, “Ranked linear discriminant analysis features for
metamorphic malware detection,” in IEEE International Advance Comput-
ing Conference (IACC), 2014, pp. 112–117.

[195] D. Kushner. (2014) The real story of Stuxnet. [Online]. Available:
https://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet/

[196] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.
7553, p. 436, 2015.

[197] M. Leeds, M. Keffeler, and T. Atkison, “A comparison of features for Android
malware detection,” in ACM SouthEast Conference, 2017, pp. 63–68.

References 141

[198] B. Li, J. Springer, G. Bebis, and M. H. Gunes, “A survey of network flow
applications,” Journal of Network and Computer Applications, vol. 36, no. 2,
pp. 567–581, 2013.

[199] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “MARVIN: Efficient and
comprehensive mobile app classification through static and dynamic analy-
sis,” in 39th Annual Computer Software and Applications Conference, vol. 2.
IEEE, 2015, pp. 422–433.

[200] M. Loukides and A. Oram, “Getting to know GDB,” Linux Journal, vol. 29,
1996.

[201] P. Luckett, J. T. McDonald, W. B. Glisson, R. Benton, J. Dawson, and
B. A. Doyle, “Identifying stealth malware using CPU power consumption
and learning algorithms,” Journal of Computer Security, no. Preprint, pp.
1–25.

[202] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through sys-
tem call sequence and argument analysis,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 4, pp. 381–395, 2010.

[203] J. Markoof and D. Sanger. (2010) In a computer worm, a possible
biblical clue. [Online]. Available: https://www.nytimes.com/2010/09/30/
world/middleeast/30worm.html? r=3&pagewanted=2&hpw

[204] M. M. Masud, T. Al-Khateeb, L. Khan, B. Thuraisingham, and K. W.
Hamlen, “Flow-based identification of botnet traffic by mining multiple log
files,” in IEEE International Distributed Framework and Applications Con-
ference, 2008, pp. 200–206.

[205] M. M. Masud, L. Khan, and B. Thuraisingham, “A scalable multi-level fea-
ture extraction technique to detect malicious executables,” Information Sys-
tems Frontiers, vol. 10, no. 1, pp. 33–45, 2008.

[206] McAfee. (2006) Rootkits, part 1 of 3: The growing threat. [Online]. Available:
http://web.archive.org/web/20060823090948/http://www.mcafee.com/us/
local content/white papers/threat center/wp akapoor rootkits1 en.pdf

[207] S. McLaughlin, B. Holbert, S. Zonouz, and R. Berthier, “AMIDS: A multi-
sensor energy theft detection framework for advanced metering infrastruc-
tures,” in 3rd International Conference on Smart Grid Communications
(SmartGridComm), 2012, pp. 354–359.

[208] Microsoft-TechNet. (2017) Event Viewer. [Online]. Available: https:
//technet.microsoft.com/en-us/library/cc938674.aspx

[209] R. Mirzazadeh, M. H. Moattar, and M. V. Jahan, “Metamorphic malware
detection using linear discriminant analysis and graph similarity,” in 5th

References 142

IEEE International Conference on Computer and Knowledge Engineering
(ICCKE), 2015, pp. 61–66.

[210] A. Mohaisen, A. G. West, A. Mankin, and O. Alrawi, “Chatter: Classifying
malware families using system event ordering,” in Conference on Communi-
cations and Network Security. IEEE, 2014, pp. 283–291.

[211] D. Moon, H. Im, I. Kim, and J. H. Park, “DTB-IDS: An intrusion detection
system based on decision tree using behavior analysis for preventing apt
attacks,” The Journal of Supercomputing, vol. 73, no. 7, pp. 2881–2895,
2017.

[212] S. Moore, M. Yampolskiy, J. Gatlin, J. T. McDonald, and T. R. Andel,
“Buffer overflow attack’s power consumption signatures,” in 6th ACM Work-
shop on Software Security, Protection, and Reverse Engineering, 2016, p. 6.

[213] S. S. More and P. P. Gaikwad, “Trust-based voting method for efficient
malware detection,” Procedia Computer Science, vol. 79, pp. 657–667, 2016.

[214] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware
detection,” in 23rd IEEE Computer security Applications Conference (AC-
SAC), 2007, pp. 421–430.

[215] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, and Y. Elovici, “Unknown
malcode detection via text categorization and the imbalance problem,” in
IEEE International Conference on Intelligence and Security Informatics
(ISI), 2008, pp. 156–161.

[216] A. Mpitziopoulos. (2015) PSU 101: A detailed look into power
supplies. [Online]. Available: https://www.tomshardware.com/reviews/
power-supplies-101,4193.html

[217] Y. Mroueh, E. Marcheret, and V. Goel, “Deep multimodal learning for audio-
visual speech recognition,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 2130–2134.

[218] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,
2012.

[219] P. Nandy, “Hidden Markov model based non-intrusive load monitoring using
active and reactive power consumption,” Tech. Rep., 2016.

[220] M. Narouei, M. Ahmadi, G. Giacinto, H. Takabi, and A. Sami, “DLLMiner:
structural mining for malware detection,” Security and Communication Net-
works, vol. 8, no. 18, pp. 3311–3322, 2015.

[221] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multi-
modal deep learning,” in 28th International Conference on Machine Learning
(ICML), 2011, pp. 689–696.

References 143

[222] G. Nguyen, B. M. Nguyen, D. Tran, and L. Hluchy, “A heuristics approach
to mine behavioural data logs in mobile malware detection system,” Data &
Knowledge Engineering, vol. 115, pp. 129–151, 2018.

[223] J. Ni, X. Ma, L. Xu, and J. Wang, “An image recognition method based on
multiple bp neural networks fusion,” in International Conference on Infor-
mation Acquisition. IEEE, 2004, pp. 323–326.

[224] M. J. Orr et al., “Introduction to radial basis function networks,” 1996.

[225] W. Ouyang, X. Chu, and X. Wang, “Multi-source deep learning for hu-
man pose estimation,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 2329–2336.

[226] A. Pasini, “Artificial neural networks for small dataset analysis,” Journal of
Thoracic Disease, vol. 7, no. 5, p. 953, 2015.

[227] A. Pektaş and T. Acarman, “Effective feature selection for botnet detection
based on network flow analysis,” 2017.

[228] L. S. Penrose, “The elementary statistics of majority voting,” Journal of the
Royal Statistical Society, vol. 109, no. 1, pp. 53–57, 1946.

[229] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of HTTP-
based malware and signature generation using malicious network traces,” in
Proceedings of the 7th USENIX Conference on Networked Systems Design
and Implementation (NSDI), 2010, pp. 26–26.

[230] R. S. Pirscoveanu, S. S. Hansen, T. M. Larsen, M. Stevanovic, J. M. Peder-
sen, and A. Czech, “Analysis of malware behavior: Type classification using
machine learning,” in International Conference on Cyber Situational Aware-
ness, Data Analytics and Assessment (CyberSA). IEEE, 2015, pp. 1–7.

[231] J. C. Platt, “Advances in kernel methods,” B. Schölkopf, C. J. C. Burges,
and A. J. Smola, Eds., 1999, ch. Fast Training of Support Vector Machines
Using Sequential Minimal Optimization, pp. 185–208.

[232] D. Plonka, “FlowScan: A network traffic flow reporting and visualization
tool,” in 14th USENIX Conference on System Administration (LISA), 2000,
pp. 305–318.

[233] I. Polakis, M. Diamantaris, T. Petsas, F. Maggi, and S. Ioannidis, “Pow-
erslave: Analyzing the energy consumption of mobile antivirus software,”
in International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA). Springer, 2015, pp. 165–184.

[234] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits
and systems magazine, vol. 6, no. 3, pp. 21–45, 2006.

References 144

[235] Ponemon-Institue, “Cost of cyber crime study: Insights on the security
investments that make a difference,” Tech. Rep., 2017. [Online]. Available:
https://accntu.re/2wZ25Rh

[236] P. Prasse, L. Machlica, T. Pevnỳ, J. Havelka, and T. Scheffer, “Malware
detection by analysing encrypted network traffic with neural networks,” in
Joint European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2017, pp. 73–88.

[237] S. Qi, M. Xu, and N. Zheng, “A malware variant detection method based on
byte randomness test,” Journal of Computers, vol. 8, no. 10, pp. 2469–2477,
2013.

[238] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1993.

[239] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic, “Power supply
signal calibration techniques for improving detection resolution to hardware
trojans,” in International Conference on Computer-Aided Design (ICCAD).
IEEE Press, 2008, pp. 632–639.

[240] R. Rahul, T. Anjali, V. K. Menon, and K. Soman, “Deep learning for network
flow analysis and malware classification,” in International Symposium on
Security in Computing and Communication. Springer, 2017, pp. 226–235.

[241] S. Ranveer and S. Hiray, “Comparative analysis of feature extraction meth-
ods of malware detection,” International Journal of Computer Applications,
vol. 120, no. 5, 2015.

[242] J. Reed and C. Aguayo González, “Enhancing smart grid cyber security
using power fingerprinting: Integrity assessment and intrusion detection,” in
Future of Instrumentation International Workshop (FIIW). IEEE, 2012,
pp. 1–3.

[243] B. D. Ripley, Pattern recognition and neural networks. Cambridge university
press, 2007.

[244] J. Robbins, “Debugging windows based applications using WinDbg,” Mis-
crosoft Systems Journal, 1999.

[245] E. Rodionov and A. Matrosov. The evolution of TDL: Conquering
x64. [Online]. Available: http://go.eset.com/resources/white-papers/The
Evolution of TDL.pdf

[246] M. Rouse. TDL-4 (TDSS or Alureon) definition. [Online]. Available:
https://bit.ly/2YUxofh

[247] ——. (2011) Metamorphic Malware. [Online]. Available: https://
searchsecurity.techtarget.com/definition/Metamorphic-virus

References 145

[248] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiv:1609.04747, 2016.

[249] D. Ruta and B. Gabrys, “An overview of classifier fusion methods,” Com-
puting and Information systems, vol. 7, no. 1, pp. 1–10, 2000.

[250] A. M. Sainju and T. Atkison, “An experimental analysis of Windows log
events triggered by malware,” in ACM SouthEast Conference, 2017, pp. 195–
198.

[251] Z. Salehi, M. Ghiasi, and A. Sami, “A miner for malware detection based on
API function calls and their arguments,” in 16th International Symposium
on Artificial Intelligence and Signal Processing (AISP). IEEE, 2012, pp.
563–568.

[252] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamze,
“Malware detection based on mining API calls,” in Proceedings of the ACM
Symposium on Applied Computing. ACM, 2010, pp. 1020–1025.

[253] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo, “Practical
real time intrusion detection using machine learning approaches,” Computer
Communications, vol. 34, pp. 2227–2235, 2011.

[254] SANS. Ouch! What is malware. [Online]. Available: https://bit.ly/
2N1EAUG

[255] ——, “Case study: Critical controls that could have prevented target
breach,” Available: https://www.sans.org/reading-room/whitepapers/
casestudies/case-study-critical-controls-prevented-target-breach-35412,
Tech. Rep., 2014.

[256] ——, “Case study: The Home Depot data breach,” Available: https://bit.
ly/1N9y7zk, Tech. Rep., 2015.

[257] ——, “The impact of Dragonfly malware on Industrial Control Sys-
tems,” Available: https://www.sans.org/reading-room/whitepapers/ICS/
impact-dragonfly-malware-industrial-control-systems-36672, Tech. Rep.,
2016.

[258] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode se-
quences as representation of executables for data-mining-based unknown
malware detection,” Information Sciences, vol. 231, pp. 64–82, 2013.

[259] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas, “OPEM: A
static-dynamic approach for machine-learning-based malware detection,” in
International Joint Conference Special Sessions. Springer, 2013, pp. 271–
280.

References 146

[260] I. Santos, J. Nieves, and P. G. Bringas, “Semi-supervised learning for un-
known malware detection,” in International Symposium on Distributed Com-
puting and Artificial Intelligence. Springer, 2011, pp. 415–422.

[261] J. Saxe and K. Berlin, “Deep neural network based malware detection us-
ing two dimensional binary program features,” in 10th IEEE International
Conference on Malicious and Unwanted Software (MALWARE), 2015, pp.
11–20.

[262] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining methods
for detection of new malicious executables,” in IEEE Symposium on Security
and Privacy (S&P), 2001, pp. 38–49.

[263] C. Seifert, R. Steenson, I. Welch, P. Komisarczuk, and B. Endicott-Popovsky,
“Capture: A behavioral analysis tool for applications and documents,” digital
investigation, vol. 4, pp. 23–30, 2007.

[264] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici, “Detect-
ing unknown malicious code by applying classification techniques on opcode
patterns,” Security Informatics Journal, vol. 1, no. 1, p. 1, 2012.

[265] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “PE-Miner: Mining
structural information to detect malicious executables in realtime,” in Inter-
national Workshop on Recent Advances in Intrusion Detection. Springer,
2009, pp. 121–141.

[266] T. Shaikhina and N. A. Khovanova, “Handling limited datasets with neural
networks in medical applications: A small-data approach,” Artificial Intelli-
gence in Medicine, vol. 75, pp. 51–63, 2017.

[267] D. Shamah. (2013) Stuxnet, gone rogue, hit Russian nuke plant,
space station. [Online]. Available: http://www.timesofisrael.com/
stuxnet-gone-rogue-hit-russian-nuke-plant-space-station/

[268] K. G. Sheela and S. N. Deepa, “Review on methods to fix number of hidden
neurons in neural networks,” Mathematical Problems in Engineering, vol.
2013, 2013.

[269] S. Sheen, R. Anitha, and V. Natarajan, “Android based malware detection
using a multifeature collaborative decision fusion approach,” Neurocomput-
ing, vol. 151, pp. 905–912, 2015.

[270] P. Shijo and A. Salim, “Integrated static and dynamic analysis for malware
detection,” Procedia Computer Science, vol. 46, pp. 804–811, 2015.

[271] M. Sikorski and A. Honig, Practical malware analysis: The hands-on guide
to dissecting malicious software. No Starch Press, 2012.

References 147

[272] S. Sivanandam and S. Deepa, Introduction to neural networks using Matlab
6.0. Tata McGraw-Hill Education, 2006.

[273] M. Skrzewski, “Monitoring system’s network activity for rootkit malware
detection,” in International Conference on Computer Networks. Springer,
2013, pp. 157–165.

[274] S. Smith and S. Harrison, “Rookits,” Available: http://www.symantec.com/
content/en/us/enterprise/media/security response/whitepapers/rootkits.
pdf, Tech. Rep., 2012.

[275] A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection
approaches using data mining techniques,” Human-centric Computing and
Information Sciences (HCIS), vol. 8, no. 1, p. 3, 2018.

[276] L. Sporck. (2017) 11 of the largest data breaches of all time. [Online].
Available: https://bit.ly/2LyjWWx

[277] M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp, and J. Hoffmann,
“Mobile-Sandbox: Combining static and dynamic analysis with machine-
learning techniques,” International Journal of Information Security, vol. 14,
no. 2, pp. 141–153, 2015.

[278] N. Srivastava et al., “Dropout: A simple way to prevent neural networks
from overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[279] J. Stiborek, T. Pevnỳ, and M. Rehák, “Multiple instance learning for mal-
ware classification,” Expert Systems with Applications, vol. 93, pp. 346–357,
2018.

[280] Techopedia. (2017) Ransomware. [Online]. Available: https://www.
techopedia.com/definition/4337/ransomware

[281] TechTerms. (2017) Ransomware Definition. [Online]. Available: https:
//techterms.com/definition/ransomware

[282] A. Thabet, “Stuxnet malware analysis paper,” Freelancer Malware Re-
searcher Report, 2011.

[283] R. Tian, R. Islam, L. Batten, and S. Versteeg, “Differentiating malware from
cleanware using behavioural analysis,” in 5th IEEE International Conference
on Malicious and Unwanted Software (MALWARE), 2010, pp. 23–30.

[284] C.-W. Tien, J.-W. Liao, S.-C. Chang, and S.-Y. Kuo, “Memory forensics us-
ing virtual machine introspection for malware analysis,” in IEEE Conference
on Dependable and Secure Computing, 2017, pp. 518–519.

References 148

[285] D. Veluz. (2010) STUXNET malware targets SCADA systems. [Online].
Available: https://www.trendmicro.com/vinfo/us/threat-encyclopedia/
web-attack/54/stuxnet-malware-targets-scada-systems

[286] C. Wang, J. Pang, R. Zhao, W. Fu, and X. Liu, “Malware detection based
on suspicious behavior identification,” in 1st IEEE International Workshop
on Education Technology and Computer Science, 2009, pp. 198–202.

[287] C. Wang, J. Ding, T. Guo, and B. Cui, “A malware detection method based
on sandbox, binary instrumentation and multidimensional feature extrac-
tion,” in International Conference on Broadband and Wireless Computing,
Communication and Applications. Springer, 2017, pp. 427–438.

[288] J. Wang, M. S. Kankanhalli, W. Yan, and R. Jain, “Experiential sampling for
video surveillance,” in 1st ACM SIGMM International Workshop on Video
Surveillance. ACM, 2003, pp. 77–86.

[289] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti, “Detecting
Android malware leveraging text semantics of network flows,” IEEE Trans-
actions on Information Forensics and Security, vol. 13, pp. 1096–1109, 2018.

[290] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic, “Hardware tro-
jan detection and isolation using current integration and localized current
analysis,” in IEEE International Symposium on Defect and Fault Tolerance
of VLSI Systems (DFTVS), 2008, pp. 87–95.

[291] X. Wang, D. Zhang, X. Su, and W. Li, “Mlifdect: Android malware detection
based on parallel machine learning and information fusion,” Security and
Communication Networks, vol. 2017, 2017.

[292] W. Wei. (2014) Zeus botnet updating infected systems with rootkit-
equipped trojan. [Online]. Available: https://thehackernews.com/2014/04/
zeus-banking-trojan-botnet-rootkit-malware.html

[293] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware
analysis using CWSandbox,” IEEE Security & Privacy, vol. 5, no. 2, 2007.

[294] E. Wrenn. (2012) Warning from FBI: If you have ‘Alureon’ virus on your
PC, you WILL get kicked off Internet on Monday. [Online]. Available:
https://dailym.ai/2WRRZ26

[295] W.-C. Wu and S.-H. Hung, “DroidDolphin: A dynamic Android malware de-
tection framework using big data and machine learning,” in ACM Conference
on Research in Adaptive and Convergent Systems, 2014, pp. 247–252.

[296] Z. Wu, L. Cai, and H. Meng, “Multi-level fusion of audio and visual fea-
tures for speaker identification,” in International Conference on Biometrics.
Springer, 2006, pp. 493–499.

References 149

[297] Z. Wu, Y.-G. Jiang, J. Wang, J. Pu, and X. Xue, “Exploring inter-feature and
inter-class relationships with deep neural networks for video classification,”
in 22nd ACM International Conference on Multimedia. ACM, 2014, pp.
167–176.

[298] H. Xu and T.-S. Chua, “Fusion of AV features and external information
sources for event detection in team sports video,” ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM), vol. 2,
no. 1, pp. 44–67, 2006.

[299] G. Yan, N. Brown, and D. Kong, “Exploring discriminatory features for
automated malware classification,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer, 2013,
pp. 41–61.

[300] P. Yan and Z. Yan, “A survey on dynamic mobile malware detection,” Soft-
ware Quality Journal, vol. 26, pp. 891––919, 2018.

[301] Y. Yanfang, “Research on intelligent malware detection methods and their
application,” Ph.D. dissertation, Department of Computer Science, Xiamen
University, 2010.

[302] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “DroidMiner: Au-
tomated mining and characterization of fine-grained malicious behaviors in
Android applications,” in European Symposium on Research in Computer
Security. Springer, 2014, pp. 163–182.

[303] H. Yang and R. Tang, “Power consumption based Android malware detec-
tion,” Journal of Electrical and Computer Engineering, vol. 2016, 2016.

[304] Y. Ye, L. Chen, D. Wang, T. Li, Q. Jiang, and M. Zhao, “SBMDS: An
interpretable string based malware detection system using SVM ensemble
with bagging,” Journal in Computer Virology, vol. 5, no. 4, p. 283, 2009.

[305] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on malware detection
using data mining techniques,” ACM Computing Surveys (CSUR), vol. 50,
no. 3, p. 41, 2017.

[306] Y. Ye, T. Li, S. Zhu, W. Zhuang, E. Tas, U. Gupta, and M. Abdulhayoglu,
“Combining file content and file relations for cloud based malware detection,”
in 17th ACM International Conference on Knowledge Discovery and Data
Mining. ACM, 2011, pp. 222–230.

[307] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, “An intelligent PE-malware de-
tection system based on association mining,” Journal in Computer Virology,
vol. 4, no. 4, pp. 323–334, 2008.

References 150

[308] M. Yeo, Y. Koo, Y. Yoon, T. Hwang, J. Ryu, J. Song, and C. Park, “Flow-
based malware detection using convolutional neural network,” in IEEE In-
ternational Conference on Information Networking (ICOIN), 2018, pp. 910–
913.

[309] S. Y. Yerima and S. Sezer, “DroidFusion: A novel multilevel classifier fusion
approach for Android malware detection,” IEEE Transactions on Cybernet-
ics, no. 99, pp. 1–14, 2018.

[310] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy Android malware
detection using ensemble learning,” IET Information Security, vol. 9, no. 6,
pp. 313–320, 2015.

[311] E. N. Yolacan, J. G. Dy, and D. R. Kaeli, “System call anomaly detection
using multi-HMMs,” in 8th IEEE International Conference on Software Se-
curity and Reliability-Companion, 2014, pp. 25–30.

[312] S. Yu, S. Zhou, and R. Yang, “Detecting malware variants by byte fre-
quency,” Journal of Networks, vol. 6, no. 4, pp. 638–645, Apr. 2011.

[313] T. Zefferer, P. Teufl, D. Derler, K. Potzmader, A. Oprisnik, H. Gasparitz, and
A. Hoeller, “Power consumption-based application classification and malware
detection on Android using machine-learning techniques,” Future Comput-
ing, pp. 26–31, 2013.

[314] Y. Zhang, Q. Huang, X. Ma, Z. Yang, and J. Jiang, “Using multi-features and
ensemble learning method for imbalanced malware classification,” in IEEE
International Conference On Trust, Security And Privacy In Computing And
Communications (TrustCom). IEEE, 2016, pp. 965–973.

[315] Y. Zhang, C. Rong, Q. Huang, Y. Wu, Z. Yang, and J. Jiang, “Based on
multi-features and clustering ensemble method for automatic malware cate-
gorization,” in IEEE Trustcom/BigDataSE/ICESS. IEEE, 2017, pp. 73–82.

[316] D. Zhao, I. Traore, A. Ghorbani, B. Sayed, S. Saad, and W. Lu, “Peer to peer
botnet detection based on flow intervals,” in IFIP International Information
Security Conference (SEC). Springer, 2012, pp. 87–102.

151

Appendix A

All features ranked using

information gain

Table A.1: All features ranked using information gain

Rank Feature

1 PwrMedian

2 PwrMean

3 PwrMinimum

4 PwrSkewness

5 BytesSntSum

6 PwrKurtosis

7 PktsLength

8 L4ProtoIGMP

9 PktsSentSum

10 BytesSntMax

11 PktSentMax

12 SSDP

13 AC Pwr 50 32

14 ARP

15 AC Pwr 50 30

Rank Feature

16 AC Pwr 5 48

17 NBNS

18 AC Pwr 50 47

19 AC Pwr 50 49

20 AC Pwr 50 50

21 UDP

22 BytesSntAvg

23 PwrVariance

24 AC Pwr 50 40

25 DurationAvg

26 AC Pwr 20 1

27 AC Pwr 50 1

28 AC Pwr 15 1

29 AC Pwr 25 1

30 AC Pwr 10 1

Appendix A. All features ranked using information gain 152

Rank Feature

31 AC Pwr 5 1

32 IGMPV3

33 ICMPV6

34 PktsRcvdSum

35 TCP

36 AvgPktSzAvg

37 AC Pwr 50 43

38 PwrMaximum

39 BytesRcvdSum

40 PktSentAvg

41 PktAsmAvg

42 No bytes transferred

43 LLMNR

44 No of ICMP

45 UniqueSourceIP

46 FlowDirA

47 TcpAckFaultCntMax

48 AC Pwr 5 2

49 AC Pwr 20 2

50 AC Pwr 50 2

51 AC Pwr 15 2

52 AC Pwr 25 2

53 AC Pwr 10 2

54 AC Pwr 50 44

55 AC Pwr 25 4

56 AC Pwr 50 4

57 AC Pwr 10 4

58 AC Pwr 15 4

59 AC Pwr 5 4

60 AC Pwr 20 4

Rank Feature

61 Flows

62 BROWSER

63 TcpInitWinSzAvg

64 AC Pwr 50 34

65 AC Pwr 50 28

66 AC Pwr 25 19

67 AC Pwr 50 19

68 AC Pwr 20 19

69 TcpAckFaultCntAvg

70 AC Pwr 25 14

71 AC Pwr 20 14

72 AC Pwr 50 14

73 AC Pwr 15 14

74 TcpInitWinSzMax

75 AC Pwr 5 3

76 AC Pwr 20 3

77 AC Pwr 25 3

78 AC Pwr 15 3

79 AC Pwr 50 3

80 AC Pwr 10 3

81 AC Pwr 50 46

82 BytesSntMin

83 AC Pwr 50 35

84 AC Pwr 50 33

85 PktsRcvdMax

86 AC Pwr 50 31

87 AC Pwr 50 36

88 AC Pwr 10 6

89 AC Pwr 50 6

90 AC Pwr 20 6

Appendix A. All features ranked using information gain 153

Rank Feature

91 AC Pwr 15 6

92 AC Pwr 25 6

93 BytAsmAvg

94 AC Pwr 15 7

95 AC Pwr 50 7

96 AC Pwr 10 7

97 AC Pwr 25 7

98 AC Pwr 20 7

99 BytpsAvg

100 AC Pwr 25 12

101 AC Pwr 20 12

102 AC Pwr 50 39

103 AC Pwr 15 12

104 AC Pwr 50 12

105 AvgPktSzMedian

106 FlowDirB

107 AC Pwr 50 9

108 AC Pwr 25 9

109 AC Pwr 10 9

110 AC Pwr 20 9

111 BytesRcvdMax

112 AC Pwr 15 9

113 AC Pwr 50 41

114 UniqueDestIP

115 BytesRcvdAvg

116 AC Pwr 50 10

117 AC Pwr 15 10

118 AC Pwr 10 10

119 AC Pwr 25 10

120 AC Pwr 20 10

Rank Feature

121 RegistryChgs

122 SetValueKeyChgs

123 StdPktSzStd

124 AC Pwr 50 18

125 AC Pwr 20 18

126 AC Pwr 25 18

127 AC Pwr 50 29

128 AC Pwr 50 42

129 TcpAveWinSzAvg

130 L4ProtoTCP

131 MinPktSizeMin

132 PktsRcvdAvg

133 AC Pwr 50 38

134 AC Pwr 20 13

135 AC Pwr 50 13

136 AC Pwr 25 13

137 AC Pwr 15 13

138 DNS

139 AC Pwr 50 5

140 AC Pwr 20 5

141 AC Pwr 5 5

142 AC Pwr 25 5

143 AC Pwr 15 5

144 AC Pwr 10 5

145 AC Pwr 10 8

146 AC Pwr 50 8

147 AC Pwr 50 27

148 AC Pwr 50 45

149 AC Pwr 15 8

150 AC Pwr 25 8

Appendix A. All features ranked using information gain 154

Rank Feature

151 AC Pwr 20 8

152 TcpSeqFaultCntMax

153 AC Pwr 15 15

154 AC Pwr 25 15

155 AC Pwr 50 26

156 AC Pwr 20 15

157 AC Pwr 50 15

158 L4ProtoUDP

159 PktpsMax

160 AC Pwr 50 25

161 AC Pwr 50 20

162 TcpWinSzDwCnMax

163 AC Pwr 25 20

164 AC Ntwk 25 11

165 TcpPAckCntMax

166 AC Pwr 20 20

167 TcpPSeqCntMax

168 AC Pwr 25 25

169 AC Ntwk 20 11

170 AC Ntwk 50 11

171 AC Ntwk 15 11

172 AC Pwr 50 11

173 AC Pwr 20 17

174 AC Pwr 25 11

175 AC Ntwk 25 17

176 AC Pwr 20 11

177 AC Ntwk 50 17

178 AC Ntwk 20 17

179 AC Pwr 25 17

180 AC Pwr 15 11

Rank Feature

181 AC Pwr 50 17

182 PktpsAvg

183 AC Pwr 50 21

184 AC Pwr 25 21

185 Changes

186 FlsWrite

187 AC Pwr 50 37

188 FileChgs

189 L4ProtoICMP

190 TcpWiSzUpCntMax

191 ResourceTblSz

192 StackCommitSz

193 ImportTblSz

194 indexMin

195 Sections

196 TLSTblSz

197 oleaut32

198 comctl32

199 wininet

200 DelayImportDescriptors

201 urlmon

202 comdlg32

203 mpr

204 StackReserveSz

205 version

206 wintrust

207 winspool

208 IAT-TblSz

209 rasapi32

210 HeaderSz

Appendix A. All features ranked using information gain 155

Rank Feature

211 DHCP

212 DHCPV6

213 indexMax

214 lz32

215 winmm

216 BaseOfCode

217 ImageSz

218 BaseOfData

219 imm32

220 msimg32

221 opengl32

222 HeapReserveSz

223 AC Pwr 25 23

224 kernel32

225 LoadConfigTblSz

226 advapi32

227 EntryPointAddr

228 Parameters

229 AC Pwr 50 16

230 AC Pwr 50 24

231 AC Pwr 50 23

232 AC Pwr 50 22

233 AC Pwr 25 24

234 RelocationTblSz

235 shell32

236 AC Pwr 25 22

237 AC Pwr 20 16

238 HeapCommitSz

239 glu32

240 DataDirectories

Rank Feature

241 ExportTblSz

242 user32

243 AC Pwr 25 16

244 gdi32

245 ole32

246 HTTP

247 AC Ntwk 50 45

248 InitializedDataSz

249 AC Ntwk 25 18

250 AC Ntwk 25 20

251 AC Ntwk 25 19

252 AC Ntwk 25 16

253 AC Ntwk 50 6

254 AC Ntwk 25 15

255 AC Ntwk 25 14

256 AC Ntwk 25 21

257 AC Ntwk 25 22

258 AC Ntwk 25 23

259 AC Ntwk 25 24

260 AC Ntwk 50 4

261 AC Ntwk 50 3

262 AC Ntwk 50 2

263 AC Ntwk 50 1

264 AC Ntwk 25 25

265 AC Ntwk 25 13

266 AC Ntwk 25 12

267 AC Ntwk 25 10

268 AC Ntwk 25 1

299 AC Ntwk 20 19

270 AC Ntwk 20 18

Appendix A. All features ranked using information gain 156

Rank Feature

271 AC Ntwk 20 16

272 AC Ntwk 20 15

273 AC Ntwk 20 14

274 AC Ntwk 20 20

275 AC Ntwk 25 2

276 AC Ntwk 25 9

277 AC Ntwk 25 3

278 AC Ntwk 25 8

279 AC Ntwk 25 7

280 AC Ntwk 25 6

281 AC Ntwk 25 5

282 AC Ntwk 25 4

283 AC Ntwk 50 5

284 AC Ntwk 50 7

285 CodeSz

286 AC Ntwk 50 32

287 AC Ntwk 50 34

288 AC Ntwk 50 33

289 AC Ntwk 50 31

290 AC Ntwk 50 8

291 AC Ntwk 50 30

292 AC Ntwk 50 29

293 AC Ntwk 50 35

294 AC Ntwk 50 36

295 AC Ntwk 50 37

296 AC Ntwk 50 38

297 AC Ntwk 50 43

298 AC Ntwk 50 42

299 AC Ntwk 50 41

300 AC Ntwk 50 40

Rank Feature

301 AC Ntwk 50 39

302 AC Ntwk 50 28

303 AC Ntwk 50 27

304 AC Ntwk 50 26

305 AC Ntwk 50 16

306 AC Ntwk 50 14

307 AC Ntwk 50 13

308 AC Ntwk 50 12

309 AC Ntwk 50 10

310 AC Ntwk 50 9

311 AC Ntwk 50 15

312 AC Ntwk 50 18

313 AC Ntwk 50 25

314 AC Ntwk 50 19

315 AC Ntwk 50 24

316 AC Ntwk 50 23

317 AC Ntwk 50 22

318 AC Ntwk 50 21

319 AC Ntwk 50 20

320 AC Ntwk 20 13

321 AC Ntwk 20 12

322 AC Ntwk 20 10

323 TcpFlLAcRcBytAvg

324 TcpAveWinSzMedian

325 AC Ntwk 50 47

326 TcpFlLAcRcBytMax

327 AC Ntwk 20 9

328 TcpPAckCntAvg

329 TcpSeqFaultCntAvg

330 TcpWinSzDwCnAvg

Appendix A. All features ranked using information gain 157

Rank Feature

331 TcpWinSzUpCntAvg

332 TcpWiSzChDiCnMax

333 TcpWinSzChDiCnAvg

334 AC Ntwk 5 1

335 StdIATStd

336 AvgIATMedian

337 AvgIATAvg

338 AC Ntwk 50 46

339 TcpSeqSntBytesAvg

340 TcpSeqSntBytesMax

341 TcpPSeqCntAvg

342 ProcessesChgs

343 CreatedPrcs

344 TerminatedPrcs

345 DurationMax

346 DelValueKeyChgs

347 Magic

348 FlsDelete

349 AC Ntwk 50 44

350 BytAsmMin

351 AC Ntwk 50 50

352 AC Ntwk 50 48

353 PktAsmMin

354 BytpsMax

355 AC Ntwk 50 49

356 MaxPktSizeMax

357 AC Ntwk 5 2

358 AC Ntwk 5 3

359 AC Ntwk 5 4

360 AC Ntwk 20 1

361 AC Ntwk 15 14

362 AC Ntwk 15 13

Rank Feature

363 AC Ntwk 15 12

364 AC Ntwk 15 10

365 AC Ntwk 15 9

366 AC Ntwk 15 15

367 AC Ntwk 20 2

368 AC Ntwk 15 7

369 AC Ntwk 20 3

370 AC Ntwk 20 8

371 AC Ntwk 20 7

372 AC Ntwk 20 6

373 AC Ntwk 20 5

374 AC Ntwk 20 4

375 AC Ntwk 15 8

376 AC Ntwk 15 6

377 AC Ntwk 5 5

378 AC Ntwk 10 7

379 AC Ntwk 10 5

380 AC Ntwk 10 4

381 AC Ntwk 10 3

382 AC Ntwk 10 2

383 AC Ntwk 10 1

384 AC Ntwk 10 6

385 AC Ntwk 10 8

386 AC Ntwk 15 5

387 AC Ntwk 10 9

388 AC Ntwk 15 4

389 AC Ntwk 15 3

390 AC Ntwk 15 2

391 AC Ntwk 15 1

392 AC Ntwk 10 10

393 indexAvg

158

Appendix B

Basic Statistics of F-score for

each modality individually

This Appendix includes the basic statistics of F-score when using each modality

individually (i.e., power consumption, network traffic data, system logs, and code-

based static data). Note that the learners in bold are the ones who attained highest

performance for that particular modality.

Table B.1: Basics Statistics of F-score using power-based features

Learners Mean Median Variance IQR

RF 0.978 0.978 1.503 · 10−5 0.006

J48 0.966 0.968 3.024 · 10−5 0.006

JRip 0.973 0.974 9.651 · 10−6 0.003

PART 0.964 0.964 3.333 · 10−5 0.003

NB 0.936 0.939 6.652 · 10−5 0.008

SMO 0.953 0.953 1.370 · 10−32 0.000

Deep NN 0.952 0.959 5.185 · 10−4 0.017

Appendix B. Basic Statistics of F-score for each modality individually 159

Table B.2: Basics Statistics of F-score using network traffic-based features

Learners Mean Median Variance IQR

RF 0.945 0.947 8.355 · 10−5 0.005

J48 0.960 0.961 9.854 · 10−5 0.008

JRip 0.956 0.960 7.825 · 10−5 0.013

PART 0.954 0.951 8.674 · 10−5 0.013

NB 0.818 0.821 1.882 · 10−4 0.009

SMO 0.930 0.937 1.525 · 10−4 0.018

Deep NN 0.853 0.862 4.690 · 10−4 0.035

Table B.3: Basics Statistics of F-score using system logs-based features

Learners Mean Median Variance IQR

RF 0.836 0.835 7.318 · 10−5 0.010

J48 0.854 0.857 9.258 · 10−5 0.015

JRip 0.838 0.843 1.638 · 10−4 0.017

PART 0.805 0.805 2.924 · 10−4 0.027

NB 0.566 0.565 8.930 · 10−5 0.008

SMO 0.836 0.836 0.000 · 100 0.000

Deep NN 0.874 0.882 3.658 · 10−4 0.003

Table B.4: Basics Statistics of F-score using code-based static features

Learners Mean Median Variance IQR

RF 0.837 0.836 4.965 · 10−6 0.002

J48 0.826 0.825 6.249 · 10−6 0.003

JRip 0.825 0.822 1.167 · 10−4 0.014

PART 0.828 0.828 1.791 · 10−5 0.005

NB 0.829 0.830 3.134 · 10−5 0.007

SMO 0.839 0.840 1.496 · 10−5 0.005

Deep NN 0.767 0.789 2.750 · 10−5 0.000

160

Appendix C

Basic Statistics for feature level

and decision level fusion

This Appendix shows the basic statistics for all learners when all features

were combined in one feature vector (feature level fusion). Note that in Ta-

bles C.1, C.2, C.3, C.4, C.5, and C.6, FL refers to feature level fusion, while DL

refers to decision level fusion.

Table C.1: Basics Statistics of Accuracy

Learners Mean Median Variance IQR

Random Forest-FL 0.967 0.968 3.267 · 10−5 0.008

J48-FL 0.967 0.963 9.290 · 10−5 0.011

JRip-FL 0.958 0.957 3.151 · 10−5 0.008

PART-FL 0.958 0.961 9.174 · 10−5 0.011

Naive Bayes-FL 0.942 0.943 5.120 · 10−5 0.009

SMO-FL 0.963 0.963 9.267 · 10−5 0.015

Deep NN-FL 0.830 0.830 3.730 · 10−4 0.023

Deep NN-DL 0.970 0.977 1.205 · 10−4 0.017

Appendix C. Basic Statistics for feature level and decision level fusion 161

Table C.2: Basics Statistics of Recall

Learners Mean Median Variance IQR

Random Forest-FL 1.00 1.00 0.000 · 100 0.000

J48-FL 0.982 0.980 5.506 · 10−5 0.007

JRip-FL 0.978 0.974 4.936 · 10−5 0.011

PART-FL 0.975 0.974 9.920 · 10−5 0.011

Naive Bayes-FL 0.942 0.941 8.354 · 10−5 0.015

SMO-FL 0.986 0.987 2.658 · 10−5 0.000

Deep NN-FL 0.923 0.933 5.062 · 10−4 0.000

Deep NN-DL 0.963 0.967 1.111 · 10−4 0.000

Table C.3: Basics Statistics of Precision

Learners Mean Median Variance IQR

Random Forest-FL 0.955 0.956 5.488 · 10−5 0.010

J48-FL 0.971 0.968 9.02 · 10−5 0.011

JRip-FL 0.963 0.965 5.585 · 10−5 0.011

PART-FL 0.966 0.968 1.102 · 10−4 0.010

Naive Bayes-FL 0.974 0.976 7.00 · 10−5 0.013

SMO-FL 0.963 0.965 1.406 · 10−4 0.017

Deep NN-FL 0.842 0.848 3.838 · 10−4 0.025

Deep NN-DL 0.993 1.000 1.975 · 10−4 0.000

Table C.4: Basics Statistics of G-score

Learners Mean Median Variance IQR

Random Forest-FL 0.941 0.944 1.148 · 10−4 0.015

J48-FL 0.956 0.953 1.792 · 10−4 0.015

JRip-FL 0.944 0.946 8.25 · 10−5 0.012

PART-FL 0.946 0.952 1.933 · 10−4 0.018

Naive Bayes-FL 0.942 0.940 8.798 · 10−5 0.009

SMO-FL 0.947 0.949 2.592 · 10−4 0.026

Deep NN-FL 0.746 0.761 1.407 · 10−3 0.052

Deep NN-DL 0.974 0.983 2.309 · 10−4 0.013

Appendix C. Basic Statistics for feature level and decision level fusion 162

Table C.5: Basic Statistics of F-score

Learners Mean Median Variance IQR

Random Forest-FL 0.977 0.978 1.513 · 10−5 0.005

J48-FL 0.976 0.974 4.670 · 10−5 0.008

JRip-FL 0.970 0.969 1.567 · 10−4 0.005

PART-FL 0.970 0.972 4.61 · 10−5 0.008

Naive Bayes-FL 0.958 0.958 2.740 · 10−4 0.007

SMO-FL 0.974 0.974 4.475 · 10−5 0.010

Deep NN-FL 0.881 0.882 4.475 · 10−5 0.010

Deep NN-DL 0.978 0.983 6.570 · 10−5 0.012

Table C.6: Basics Statistics of FPR

Learners Mean Median Variance IQR

Random Forest-FL 0.111 0.106 3.597 · 10−4 0.027

J48-FL 0.068 0.076 5.229 · 10−4 0.027

JRip-FL 0.088 0.083 3.469 · 10−4 0.027

PART-FL 0.080 0.076 6.657 · 10−4 0.023

Naive Bayes-FL 0.059 0.053 3.801 · 10−4 0.030

SMO-FL 0.088 0.083 8.571 · 10−4 0.042

Deep NN-FL 0.371 0.357 3.175 · 10−3 0.071

Deep NN-DL 0.014 0.000 9.070 · 10−4 0.000

	Multimodal Approach for Malware Detection
	Recommended Citation

	tmp.1556169789.pdf.dBI3c

