
Graduate Theses, Dissertations, and Problem Reports 

2014 

Polylactic Acid-Based Polymer Blends for Durable Applications Polylactic Acid-Based Polymer Blends for Durable Applications 

Adam Finniss 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Finniss, Adam, "Polylactic Acid-Based Polymer Blends for Durable Applications" (2014). Graduate Theses, 
Dissertations, and Problem Reports. 596. 
https://researchrepository.wvu.edu/etd/596 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/596?utm_source=researchrepository.wvu.edu%2Fetd%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Polylactic Acid-Based Polymer Blends for Durable Applications 

 

Adam Finniss 

 

Dissertation submitted to the 

Benjamin M. Statler College of Engineering and Mineral Resources 

at West Virginia University 

in partial fulfillment of the requirements  

for the degree of 

 

Doctor of Philosophy  

in 

Chemical Engineering 

 

Rakesh K. Gupta, Ph.D., Chair 

Sushant Agarwal, Ph.D. 

Robin Hissam, Ph.D. 

Edward M. Sabolsky, Ph.D. 

X.Y. Li, Ph.D. 

 

Department of Chemical Engineering 

Morgantown, West Virginia 

2014 

Keywords: Biodegradable Polymers, Polymer Blends, Polymer Stability 

Copyright 2014 Adam Finniss 



ii 

ABSTRACT 

Polylactic Acid-Based Polymer Blends for Durable Applications 

Adam Finniss 

 

There has been considerable scientific interest in both research and commercial communities as 

of late in the area of biologically based or sourced plastics.  As the consumption of petroleum 

rises and concerns about climate change increase, this field is likely to grow even larger.  One 

bioplastic that has received a great deal of attention is polylactic acid (PLA).  In the past, this 

material was used mainly in medical or specialty applications, but advancements in 

manufacturing have led to a desire to use PLA more widely, especially in durable applications.  

Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as 

a durable item: it has low ductility and impact strength in bulk applications, along with poor 

stability in the face of heat, humidity or liquid media.  To combat these deficiencies, a number of 

techniques were investigated.  Samples were annealed to create crystalline domains that would 

improve mechanical properties and reduce diffusion, blended with graphene to create barriers to 

diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to 

protect the PLA phase and to enhance the mechanical properties of the blend.  If a material 

containing biologically sourced components with good mechanical properties can be created, it 

would be desirable for durable uses such as electronics components or as an automotive grade 

resin. 

Crystallization experiments were carried out in a differential scanning calorimeter to determine 

the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA 

polymer.  It was determined that the blending in of the PC phase did not significantly alter the 

kinetics or mechanism of crystal growth.  The addition of graphene to any PC/PLA formulation 

served as a nucleating agent which speeded up the crystallization kinetics markedly, in some 

cases by several orders of magnitude.  Results obtained from these experiments were internally 

consistent, showing that no matter the treatment or formulation, PLA achieved a maximum of 

30-35 percent crystallinity. 

Samples receiving no treatment as well as those with annealing, the addition of graphene, and in 

some cases annealing/graphene were subjected to both solvent and hydrolytic degradation in 

order to find the most stable blend or treatment.  Both pellets and molded parts of varying 

thicknesses were investigated to evaluate the effect of diffusional resistance on long term 

durability.  It was determined that while the addition of crystallinity or graphene platelets can 

provide a temporary barrier against diffusion of attacking species, PLA polymer itself is not 

dimensionally stable over the long lifecycle required for durable applications such as for 

automotive parts.  In fact, PLA-only molded panels aged in distilled water at 50°C for 42 days 

experienced over 99% viscosity loss regardless of which treatment was applied, and nearly all 



iii 

mechanical strength was lost during this time.  Furthermore, while the addition of graphene and 

the heat treatment produced diffusion barriers which could slightly enhance PLA’s degradation 

resistance, the treatments caused the already fragile polymer to become very brittle.  Solvent 

degradation experiments also showed that molded parts containing more than 40% PLA loading 

lost in excess of 75% of the original viscosity no matter what treatment was used.  This showed 

that these materials are likely to fail well before a sufficiently long lifecycle for durable goods is 

achieved. 

Polycarbonate rich blends with less than 30% PLA as the dispersed phase showed excellent 

property retention after the accelerated aging tests.  Formulations with up to 20% PLA content 

had degradation results that were nearly identical to those of 100% polycarbonate, which 

literature has shown to have useful lifecycles for durable applications of up to 20 years.  By 

completely encapsulating the PLA in the polycarbonate matrix, which occurred at about 30% 

PLA by maximum, it was fully protected by the more stable phase.  An investigation was 

undertaken to alter the morphology of the encapsulated PLA droplets by virtue of different 

mixing conditions; particle sizes ranging from about 1-6 microns could be created by changing 

the processing steps.  However, no great increase in degradation resistance was observed by 

minimizing the interfacial surface area.  It seemed likely that the effects of shear and thermal 

history experienced during the compounding step played a larger role in the durability of these 

formulations. 

Lastly, molded parts of differing thicknesses were hydrolytically degraded to examine the effects 

of diffusion resistance on the mechanical properties of untreated PC/PLA blends.  It was 

determined that, similar to the droplet morphology study, the effect of PC content was the most 

dominating factor in the durability of the formulations.  In fact, if molded parts reach a critical 

thickness, a transition from ductile to brittle failure modes can be observed.  The rate of diffusion 

through the materials was also determined to be much faster than the rate of PLA hydrolysis. 

It is concluded that the most effective way to create a durable material containing a significant 

bio-based content is to completely encapsulate PLA polymer with the more stable polycarbonate 

phase.  Materials containing up to about 30% PLA at maximum were shown to be sufficiently 

durable so that they may be employed in similar automotive and electrical applications as for 

pure polycarbonate.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Biologically Derived Chemicals and Plastics. 

Biologically based plastics have experienced considerable research and commercial interest in 

recent years.  Trends such as ever-increasing global consumption of petroleum for energy and 

transportation, coupled with concerns about anthropogenic climate change, as well as a growing 

“green” movement both domestically and abroad should see this area expand additionally in the 

short to medium term.  Therefore, a variety of biologically derived plastics such as 

polyhydroxyalkanoate (PHA), polytrimethylene terephthalate (PTT), polylactic acid (PLA), as 

well as starch and cellulosic polymers have become popular in industry and the literature (for 

example1,2,3).  In fact, a 2009 technical report suggested the 2007 global budget of 360,000 tons 

of annual bioplastic production could increase to up to 2.3 million tons in 2013, an increase of 

37% per annum4.  While ongoing economic forces and the explosive growth of shale gas 

production for feedstocks may alter these forecasts, these authors predicted fairly stable growth, 

as shown in Figure 1.1: 

 

Figure 1.1: Projection for bio-based plastic growth by 20204. 
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Recent reports have also suggested that this growth is continuing to expand, especially into 

rapidly growing economies such as those in South America and Asia, as shown in Figure 1.25: 

 

Figure 1.2: Projection for world bioplastic growth by 20165. 

In the United States, there are significant inroads to be had for naturally sourced feedstocks.  As 

of 2004, the U.S. budget for organic chemicals, lubricants, and plastics was nearly 90 million 

tonnes, the majority of which is conventional but could be augmented or replaced with green 

sources6.  This is not to suggest that swapping agriculturally derived plastics in for the 50 million 

tonnes of petroleum based ones produced yearly is a trivial undertaking.  For instance, some 

polymers such as polyether ether ketone (PEEK) have tremendous high temperature properties 

that simply cannot be matched by any natural organic materials.  Thus, target areas where 

biopolymers can successfully supplant conventional plastics would likely be for non-extreme 

condition applications such as packaging and fiber applications6.  Here, polylactic acid (PLA) 

has been shown to be an attractive plastic option that combines favorable properties of both 

natural fiber and synthetic polymer6.  PLA is a versatile semi-crystalline material that has been 

the subject of especially fervent interest as of late, and that shall likely continue into the future if 

the predictions of European Bioplastics and other pro-industry groups come to fruition. 

1.2 Polylactic Acid. 

As far back as 1932, Wallace Carothers and his team were able to create low molecular weight 

PLA at DuPont’s Experimental Station7.  For most of the 20th century, however, widespread 
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usage was both economically and technically unfeasible7,8.  The high cost of production and the 

primitive fermentation science available limited deployment of PLA to mostly the medical 

realm; it was commonly used for sutures, implants, and drug delivery systems.  Then, by around 

1990, a global research focus emerged on commoditizing PLA, with the Americans, Europeans 

and Japanese taking the lead1,6,8.  At present, companies like the American NatureWorks (the 

remnant of a Cargill-Dow joint venture) and Purac in the Netherlands are leading manufacturers.  

The material is still used biomedically, but has further been introduced into food and packaging 

roles due to its in vivo compatibility (e.g.9).  Current production is based on fermentation of a 

variety of biomass sugars, but expected future technological advances would allow waste 

products such as corn stover and cellulosic husks to serve as raw materials as well1,6.  This would 

obviously improve the overall efficiency in utilizing materials throughout their agricultural 

lifecycle, and likely serve to stabilize price uncertainties due to fluctuating fresh crop 

availability.  Ecologically, production of a unit of PLA has been estimated to save up to 50% in 

fossil resources and reduce GHG emissions over its lifecycle by 70% than a unit of competitive 

products like poly(ethylene terephthalate) (PET) or Nylon1,7,8,10.  However, there are still 

drawbacks in introducing these natural materials as wholesale replacements for conventional 

plastics.  PLA, in fact, has the following flaws that must be addressed in order to increase its 

usage in durable applications: 

 Low glass transition temperature and low thermal stability that prevent high temperature 

applications (e.g.1,9). 

 Rapid physical aging leads to brittleness for bulk PLA applications at room temperature.  

The period over which significant physical aging occurs has been reported to be as little 

as 3 to 8 hours11!   

 High susceptibility to degradation by attacking species or ions, such as acid and base 

(e.g.12). 

 Very poor impact strength, as noted by the manufacturer13. 

For these reasons, polylactic acid itself has been subject to a number of treatments in attempts to 

minimize those shortcomings. 
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1.2.1 Modification of the Polylactic Acid Component. 

The most simplistic technique for improving PLA properties that researchers have reported is 

enhancing the PLA crystallinity so that the mechanical properties and heat resistance are 

improved3,11,14,15.  A recent review showed that increased crystallinity is good for improving 

mechanical, thermal, and degradation properties16.  This is because crystalline polymer domains 

form a more ordered structure than amorphous domains, allowing additional hydrogen bonding 

which strengthen the material.  The degree of crystallinity can be enhanced in several ways, such 

as annealing (e.g.17), or with molecular manipulation of the structure such as by fiber spinning 

and drawing18, or with oriented injection molding19.  It has been shown that PLLA exists in a 

variety of crystalline structures which can appear based on processing conditions17.  Even more 

interesting than the number of crystal phases that appear in PLLA is the enantiomeric quality of 

lactic acid itself.  It is a chiral carboxylic acid in monomer form, and as such can take the L or D 

form.  The units can also dimerize into L,L, D,D or the meso form.  Figure 1.3 shows the 

chirality of the lactic acid monomer and a lactide unit16: 

 

Figure 1.3: Chirality of lactic acid and lactide give rise to chirality of PLA polymer16. 

In fact, Hirata et al. performed mechanical property analyses on blended PLLA/PDLA materials 

and found a variety of crystalline structures across compositions that could significantly improve 

melting temperature and DMA thermo-mechanical properties20.  Unfortunately, Kolstad found 

during his crystallization study of poly(L-lactide-co-meso-lactide) that the presence of a mere 

few percent of the meso component can badly retard crystalline kinetics and reduce the overall 

crystallization potential21. 



5 

One drawback to increasing crystallinity is that ductility is typically reduced, as the crystal lattice 

is stiff when compared to the amorphous phase17.  A simple way to increase ductility of a 

polymer is to introduce plasticizer into the matrix, which increases chain mobility and free 

volume, thus allowing the plastic additional flexibility.  Ning et al. blended PLA with 

poly(butylene adipate) and an ester control compound and found a remarkable increase in tensile 

elongation at break, as well as a reduction of the glass transition temperature22.  The groups of 

Ali et al.23 and Xu et al.24 both added epoxidized soybean oil (ESO) as plasticizer and discovered 

that viscous properties as well are reduced by this addition, so the material became more pliable 

as the concentration of plasticizer increased to around 30% in both studies.  In a similar vein, 

Okamoto et al. used various low molecular weight polyester-diols to achieve the same purpose; 

at 20% concentration of the appropriate plasticizer, the engineering strain at break in tension was 

improved from 0.01% to over 7%, but the glass transition temperature was reduced or in some 

cases appeared to be eliminated25.   However, the very significant drawback of plasticizing the 

PLA matrix is the severe reduction of all other mechanical properties, which is antethetical to the 

concept of deploying PLA-based structural plastics. Another, albeit less common, technique of 

enhancement of PLA properties is chain extension, where additional molecular weight is gained 

via further polymerization occurring in either a solid or liquid phase reaction.  Such a method 

can occur with a mixed sample26 or with the PLA itself27.  Gu et al.27 synthesized their own 

polylactic acid and extended the chain using hexamethylene diisocyanate (HDI) as one might do 

if making polyurethanes, and found that the molecular weight increased alongside the 

mechanical and rheological properties.  However, such methods are not commonly encountered, 

whereas the co-blending of various polymers as well as with fillers and additives is ubiquitous in 

the polymer industry. 

This has been a burgeoning and broad field of recent work by many research teams. PLA has 

been previously blended with acrylonitrile-butadiene-styrene (ABS)28, poly(butylene adipate-co-

terephthalate) (PBAT)29,30, poly(butylene succinate) (PBS)31, poly(ε-caprolactone) (PCL)32,33, 

poly(ethylene terephthalate) (PET)34, and poly(glycolic acid) (PGA)35,36,37,38,39 among others in a 

variety of ways in attempts to enhance properties such that PLA may be more fully integrated 

into the marketplace as a commodity plastic, both for medical and structural uses. 
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One such conventional polymer that may prove a good candidate for blending with PLA is 

polycarbonate, or PC.  Polycarbonate of bisphenol A has properties that one finds lacking with 

PLA; it has excellent thermal resistance and is ductile for thin-walled applications.  Additionally, 

amorphous PC is widely renowned for its optical clarity and impressive mechanical properties, 

including an unrivaled Izod impact strength (e.g40).  This physical integrity is the reason that 

automotive headlamps, laboratory eyewear and face-shields, bulletproof windows, as well as 

audiovisual media such as CDs and DVDs are common usages of polycarbonate.  Furthermore, it 

has excellent chemical stability when compared with PLA (e.g.41).  Thus, the PC/PLA system is 

perhaps capable to address the PLA drawbacks listed above; therefore we should review 

whatever information is available in the literature on this topic. 

1.3 Blends of Polylactic Acid and Polycarbonate. 

In the past decade alone, there has been a small but significant amount of investigation into 

blending together polycarbonate and polylactic acid to produce a new material with enhanced 

properties.  Since the new millennium began, there have been a number of patent applications 

filed, mostly with the European Patent Office, for a variety of co-blended PC/PLA 

materials42,43,44,45,46,47.  These patent filings cover conventional polycarbonate as well as some 

novel carbonate polymers, and were usually filed by large companies such as Sony, Shimadzu, 

and Bayer MaterialScience.  Lately, patents have been awarded to Cheil Industries (an affiliate of 

the Samsung Group) by both the United States and European Patent Offices (US 823234348 and 

EP 213339249).  Their US grant filing is for the compounding of traditional polycarbonate based 

on BPA with PLA with the addition of small amounts of PC-co-PLA compatibilizer produced in 

a separate reaction, optionally with the presence of impact modifier.  Improvements in 

mechanical properties are achieved, significantly so for the heat distortion temperature as 

measured by ASTM D648.  European Patent 2133392 covers the same blends which are instead 

treated with chain extender based on siloxane, along with optional rubbery modifiers and 

processing aids.  Improvement in properties and HDT are realized in this embodiment as well, 

though not as significant.  Both are suggested as being suitable compositions for molded durable 

parts. 

One point that is widely accepted about blends of PC/PLA is that the two condensation polymers 

are thermodynamically immiscible (e.g.50,51,52,53,54).  In fact, Lee et al. note in the review section 



7 

of their paper that PLA does not seem to be compatible with very many polymers50.  They 

further state this is usually a result of large interfacial tension gradient and that material 

properties are dependent on the quality of this interface.   

Researchers have taken essentially two competing avenues to resolve this problem.  In the first 

camp, Lee50 et al., several patent seekers44, 45, 46, 47, and Hung52 et al. have chosen to blend the 

two polymers together with compatibilizing agents.  They find that addition of only a few parts 

per hundred resin (phr) concentration of appropriate compatibilizers is enough to improve the 

sharp interface observed in SEM images of immiscible material50,51,52.  The alternate approach, 

somewhat more commonly practiced, is to fabricate a non-bisphenol A based carbonate and 

blend this with PLA42,43,51,53,54.  As is typical, there are both advantages and disadvantages to this 

approach.  These same citations show that if one opts to formulate a carbonate polymer, the 

properties of it may be tailorable as aliphatic carbonates can have a variety of properties.  In 

order to achieve those properties, these particular compositions do not contain the bisphenol A 

moiety.  BPA has been a controversial chemical in recent years in certain circles due to concerns 

of adverse health effects.  For some, then, the psychology of using a “green” plastic is of 

paramount importance and these novel carbonates should suffice in their applications.  On the 

other hand, PC owes its toughness and incredible impact strength to the bulky BPA component 

in its backbone, and thus materials without it simply cannot hope to maintain that strength.  A 

third manner of improving miscibility is reactive compatibilization.  PC and PLA both can 

undergo a so-called transesterification reaction54.  This method allows chemical integration of 

one polymer into the structure of the other.  The reaction, which takes place in the presence in 

multiple metal catalysts but favorably tin compounds, is integral to at least one patent 

application47 and the work of Nabar and Kale55 who worked with PC and PET at elevated 

temperature.  In doing so, they used rheological measurements and differential scanning 

calorimetry (DSC) to confirm that commercial PET contains enough residual catalyst to 

effectively transesterify the two materials into a random copolymer.  While the production of 

transesterifed random co-polymer is usually unfavorable due to the inconsistency and 

unpredictability of the reaction, the proof of concept was demonstrated. All of the above citations 

show that a variety of methods exist to obtain PC/PLA blended polymers with properties 

determinable by processing conditions, in order to achieve desirable properties in the final 

products. 
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1.4 Objectives of the Current Work. 

Our foremost goal is to show how one may create durable plastic materials with good 

mechanical properties and adequate chemical resistance that contain a significant portion of 

renewable PLA polymer.  We have identified several avenues to achieve this by addressing the 

issues listed in Section 1.2.  Our strategies were therefore: 

1. Alter the PLA crystallinity and/or add barrier materials in order to improve ductility and 

chemical resistance. 

2. Blend PLA together with the high strength, more durable PC polymer phase to achieve 

improvements in mechanical properties and chemical resistance. 

3. Fabricate a blend with relatively high PLA loading which is still completely encapsulated 

with PC.  This should protect the PLA and have the good properties of a PC matrix. 

4. By means of different compounding conditions, alter the interfacial morphology of the 

blends to minimize the exposure of the PLA phase to attacking species or ions. 

5. Investigate the effects of diffusion kinetics and resistance by altering sample thickness 

between pellets and molding parts of varied thickness. 

These compounds were fabricated by melt-blending in either a twin screw extruder or an internal 

mixer.  The effects of heat treatment and the inclusion of graphene were investigated on the 

chemical and hydrolytic resistance of either pellets or molded parts.  A complete composition 

range was studied to observe the effect of encapsulations.  We set out to determine which 

treatment or combination of treatments would prove most effective in generating durable 

materials. 
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 Scope of the Research. 

As stated in Chapter 1, the ultimate goal of this work was to determine a method to produce 

durable plastic goods containing significant renewable or green content.  To do so, we must 

answer a common question asked by materials scientists: Can we understand the processing-

structure-property relationships of the materials? Therefore, a literature search that covers the 

listed drawbacks of PLA polymer and previous attempts to improve the material properties is 

necessary. 

The major issues listed in Chapter 1 about PLA shortcomings can be considered binary; poor 

mechanical properties and poor chemical and hydrolytic stability.  Since it is much easier to 

address lacking mechanical properties, the first item to investigate will be the stability of PLA. 

2.2 Degradation of PLA and PLA-Based Materials. 

PLA has been developed as a biodegradable, renewable material to be environmentally friendly.  

However, this poses a problem in creating PLA-based durable goods.  Being a polyester 

material, it will degrade via the uptake of H2O which proceeds to hydrolyze ester bonds via the 

reverse Fischer esterification reaction56.  This may take place in the presence of acidic, neutral or 

basic media.  Differing mechanisms have been proposed for degradation depending on solution 

pH, as illustrated in Figure 2.1: 
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Figure 2.1: Possible mechanisms for PLA degradation56. 

The same authors degraded these oligomers over a pH range to determine if the degradation 

kinetics changed, as shown in Figure 2.2: 
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Figure 2.2: Effect of pH on degradation rate of PLA56. 

This study was performed at 37°C.  The diverging lines indicate that a different mechanism 

begins taking place around pH 4, as the rate passes through a minimum.  They posit that in the 

range above this point, the degradation is catalyzed by hydroxyl ion, and is proton catalyzed 

below, as shown in Figure 2.1.  Because the slopes of the lines are roughly unity, the reaction is 

first order with respect to the concentration of the attacking hydrogen or hydroxyl ions. 

Another set of studies used very small microspheres of PLA for drug delivery purposes57,58.  

Since these particles were roughly 1.5 µm in diameter, diffusional resistances would be 

negligible and would give a true picture of the stability of the spheres.  They found that as the pH 

moves further from neutral (highly acidic or basic), the rate of molecular weight loss increased, 

as shown in Figure 2.3: 
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Figure 2.3 pH dependence of PLA microsphere degradation57. 

pH values in this study ranged from 1.6 (black triangle) to 9.6 (open circle).  The specimens with 

pH around 3 (open triangle) and 5 (black circle) appeared to be the most stable, in agreement 

with the study above56.  The half-filled circles in the above figure are at pH 7.4.  Makino et al. 

also tested the solution media for lactic acid residue concentration, and found that essentially 

none is present except for the case of degradation near pH 10.  This was deemed to have been 

caused by the base catalyzed reaction “unzipping” the PLA backbone, and by the lactic acid units 

diffusing out of the bulk and into the liquid surroundings.  This data set also confirmed the 

findings of de Jong et al. above, where the degradation rate of the acid-based polymer was fastest 

in highly basic media.  Additional relevant findings from their 1985 paper were an Arrhenius 

style increase in degradation rate with temperature, and that poly(D,L-lactide) is slightly more 

susceptible to degradation than poly(L-lactide), presumably due to increased atacticity of the 

chain and hence lower crystallinity57.  In the subsequent article, they determined that acid and 

base preferentially degrade different segments of the polymer; acidic media go after smaller 

molecular weight fragments in the bulk, while alkaline solutions are able to attack all segments 

of the backbone58.  

These articles dealt with slow degradation of PLA material for drug delivery. For very 

aggressive hydrolysis conditions, however, Mohd-Adnan et al. carried out PLA hydrolysis in 
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high pressure steam at up to 130°C and showed the material could be recycled back into lactic 

acid oligomers in less than 24 hours59.  Figure 2.4 describes the molecular weight loss: 

 

Figure 2.4: High pressure steam degradation of PLA is quite rapid59. 

 Thus it is clear that PLA without treatment or blending is an unsuitable material for use in 

durable applications, and so we must investigate the literature for blended or treated materials. 

As was mentioned previously, polylactic acid has commonly been blended with PGA for 

biomedical applications, and several studies are available on the degradation properties of these 

blends.  While most were blended to have relatively poor durability so they could degrade more 

quickly, it is still worthwhile to examine the results.  Cohen et al. prepared 75/25 PLA/PGA drug 

delivery microspheres and degraded them under in vitro conditions, finding only small fragments 

remaining after about 76 days35.  The small spheres first underwent surface degradation until the 

interior was exposed and could diffuse away.  Dunne et al. used a PLGA copolymer at similar 

conditions and found the materials had degraded to less than 20% of the original mass after about 

100 days at 37°C and pH 7.436.  Fu et al. drew PLGA fibers to various crystallinities and 

degraded them at 40.9°C and pH 7.79 where they lost strength very rapidly, shown here in 

Figure 2.537: 
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Figure 2.5: Crystallinity and tensile strength of degraded PGLA fibers37. 

The effect of initial crystallinity did not seem significant in this study.  Li used blends of PGA 

with PLA of various (D,L) compositions for in vitro degradation testing38.  The parallelepiped-

shaped samples degraded in a hollowing out fashion if they were amorphous, indicating that the 

interiors were eroded first in a bulk manner.  X-ray diffraction (XRD) was used to confirm that 

samples became more crystalline as degradation proceeded, showing again that crystalline 

specimens resist attack.  Further, a bi-modal distribution of molecular weights was discovered 

with GPC, because chains of initially very high molecular weight are also quite resistant to 

attack, due to the lower concentration of vulnerable end groups.  The addition of PGA to PLA 

reduced the resistance to degradation in some cases quite severely; 100% PLLA had a 

degradation half-life of 110 weeks in this phosphate buffer, while that of 85/15 PLLA/PGA was 

only twenty weeks38.  A final study considering blended PGA and 50:50 poly(D,L-lactide) 

evaluated under what conditions this biodegradable composite would erode from the surface or 

the bulk60. It was determined that when the rate of diffusion into the matrix is fast with respect to 

the rate of ester bond scission, then attack will take place in the bulk; otherwise, if the reaction is 

much faster than diffusion, the surface will be the area of degradation.  This is plotted in Figure 

2.6: 
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Figure 2.6: Surface or bulk erosion may take place for a given material60. 

This turned out to be a highly unstable material; for the blended 50/50 PGA/PLA with molecular 

weight of 14000, more than 80% of the original mass had dissolved away within 24 hours.  It 

was also noted that the PGA/PLA blends were more susceptible to degradation than was PLA 

alone. 

Some of these studies also considered the effects of PLA or overall composite crystallinity on the 

rate of degradation.  Kim et al. processed PLA by fiber spinning at various speeds to provide 

molecular orientation which altered the crystallinity18.  Increasing the so-called take-up speed 

could make the material much more crystalline, shown in Figure 2.7: 
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Figure 2.7: Thermal properties change with molecular orientation18. 

The plots labeled A and B in the figure are DSC curves while C and D give the crystal melting 

and glass transition temperature. These materials were then subjected to hydrolysis in boiling 

water, after which the mechanical properties were measured in tension: 
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Figure 2.8: Changes in mechanical properties after boiling water exposure18. 

Figure 2.8 shows that the more crystalline materials retained ductility (or elongation at break, 

line b) and strength after hydrolytic degradation due to molecular orientation which reduced the 

capacity of water to diffuse into the bulk.  A study done by Zhang et al. investigated both 

amorphous and semi-crystalline PLA materials over a range of pH and time duration61.  They 

found that the materials undergo two-stage degradation with both surface and bulk erosion steps, 

with either mass or molecular weight loss as shown in Figure 2.9: 
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Figure 2.9: PLA degradation in acid, neutral and basic media61. 

Stage 1 is where bulk diffusion occurred and molecular weight was lost, followed by the material 

actually falling apart with mass loss taking place.  The effect of increased PLA crystallinity was 

not great in this study.  Zhou and Xanthos added nano-clays to amorphous, semi-crystalline and 

blended PLA samples and degraded the materials in base above and below the glass transition 

temperature62.  The addition of the clay into the PLA matrix adds a diffusion resistance which 

increases the time required for attacking species or ions to fully permeate into the material, 

enhancing the stability of the composites over short timescales.  They found reaction rates to 

increase with temperature and that while increasing crystallinity improved the resistance, the 

clays could act as nucleation sites for degradation and enhance the reaction rate.  Harris et al. 

performed hydrolysis experiments with highly crystalline (~45%) injection molded PLA 

specimens and found that after 8 weeks exposure to 50°C and 90% relative humidity, nearly all 

flexural integrity was gone63.  As they were Ford employees, they concluded that PLA even 
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when highly crystalline could not be used for durable applications like automotive parts on its 

own.  Tsuji and coworkers wrote several articles on degradation of amorphous and crystalline 

PLA samples at even higher temperatures64,65,66.  They showed that PLLA could be easily 

recycled by hydrolysis in the range of 120-190°C, and at 190°C this could occur in as little as 30 

minutes64.  As will be addressed in the next section, polycarbonate must be exposed to much 

more aggressive temperatures and humidity for significant hydrolysis to occur.  Okamoto et al. at 

Toyota added nano-clays and crystal growth accelerating agents to find improvements in 

mechanical properties, though they did not study degradation of the samples67.  Lastly, while not 

strictly a test of hydrolytic stability, Rhim et al. blended various nano-clays into PLA and 

showed a reduction in water vapor transmission through the film in Figure 2.1068: 

 

Figure 2.10: Addition of clay reduces H2O transmission of PLA films68. 

Based on the findings from the literature above, it should be possible to employ singular or a 

combination of treatments such as compounding, annealing and adding barrier materials to 

enhance the hydrolysis resistance and chemical stability of PLA-based materials.  Before moving 

to the mechanical properties of such materials, there is some literature available to confirm the 

assertion that blending PC with PLA would help this enhancement.  
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2.3 Degradation Behavior of Polycarbonate. 

While not as chemically unstable as polylactic acid, like any other condensation polymer PC can 

undergo hydrolytic degradation under appropriate conditions.  In a study looking for an 

environmentally friendly way to recycle PC, Watanabe et al. used bomb reactors to decompose 

the material in the presence of oxygen-free water and steam at 300°C41.  Under this extremely 

aggressive, high pressure environment, PC could be decomposed significantly in as little as 5 

minutes as depicted in Figure 2.11: 

 

Figure 2.11: Hydrolysis of PC in a 300°C water/steam bomb reactor41. 

They showed that the molecular weight loss was much more rapid in the steam phase, and 

suggested that the diffusion rate of the attacking steam was higher due to lower viscosity.  

Tagaya et al. performed a similar study using subcritical and supercritical water up to 430°C and 

found similar results69.  Zinbo et al. used commercially available Calibre® and Lexan® 

polycarbonate samples and performed hydrolytic aging between 65-93°C at several relative 

humidities between 56-100%70.  They determined that PC samples lose molecular weight by a 

first order reaction in this range that is of the common Arrhenius form: 

(𝑀𝑤̅̅ ̅̅ ̅)𝑡

(𝑀𝑤̅̅ ̅̅ ̅)0
= 𝑒−𝑘𝑡                                                          [2.1] 
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Where Mw is the weight-average molecular weight, k is a kinetic parameter and t is the exposure 

time.  Tabulations of the kinetics for various exposures and samples were listed: 

Table 2.1: Hydrolysis kinetics of polycarbonate70. 

 

While the effect of temperature is obviously important, the rate still increases in each column by 

about a factor of about five from the lowest to highest humidity.  They estimate that the half-life 

(based on Mw) at 50°C and 90% RH (the same conditions as Harris et al.63) to be 8.4 years for 

Lexan 141 and 19.9 years for Calibre 300-15.  It has been suggested that 10 years outdoor 

exposure is the minimum acceptable service lifetime for automotive grade plastics63; therefore 

both PC grades exceed the standard and are much more stable than PLA.  Therefore it seems that 

PC would be an excellent choice for a highly durable polymer phase to blend with PLA to 

enhance the hydrolytic stability of the composites.   

2.4 Mechanical Properties of the Materials. 

2.4.1 Mechanical Properties of PLA-Based Blended Materials. 

While it has been successfully applied for biodegradable and non-extreme condition durable 

goods, polylactic acid must be enhanced or modified in terms of its material properties for use as 

a structural component, and is often blended with other plastics and additives to do so.  Most of 

these are common engineering or industrial polymers, but some exotic materials can be found as 

well.  A number of rigorous review articles can be found to outline some of the information that 

may be addressed herein; Yu et al.2 and Rasal et al.7 are good examples listing the varieties of 

PLA based plastics available.  However, many of those described therein are for high renewable 

and biodegradable content applications, not durable ones. 
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PLA has long been mixed with other bio-sourced materials since it became popular for use in 

medicine.  One such example is PGA as was listed earlier, for degradation properties35,36,37,38,39, 

and is therefore certainly not durable, but physical integrity of the sutures or drug delivery 

capsules is paramount to achieving the correct dissolution profile.  Fu et al.37 drew fibers of 

PGA-co-lactide and tested them for thermo-physical properties as in vitro degradation took 

place.  They found that materials having the greatest initial crystallinity had the best strength 

over the course of degradation, and crystallinity tends to increase while strength is lost as 

degradation proceeds.  This shows that amorphous segments are preferentially eroded away.  

PCL has also been co-blended with PLA frequently.  Takayama showed that the two immiscible 

materials can be compatibilized together, and further that via annealing the flexural modulus can 

be improved; this of course reduces the flexural strength by way of inducing brittleness.  Fracture 

energy was greatly improved with the addition of their triisocyanate compatibilizing catalyst33.  

Viljanmaa et al.71 studied PCL/PLA blends as hot melt adhesives and found that while the 

properties are adequate, the samples degrade rapidly and are not shelf stable.  By chemically 

protecting the chain ends with peroxide modification and acetyl end-capping, this instability 

could be somewhat mitigated.  Broz et al.72 experimented at NIST with a full range of 

compositions of PCL/PLA, and found them to form a lower critical solution temperature system 

with limited miscibility.  Neither DSC nor SEM could confirm any substantial miscibility.  The 

PBS/PLA blend was investigated by Yokohara and though the polymers were totally immiscible, 

PBS was capable of nucleating the crystallization of PLA31. 

More durable conventional PLA blends have also been investigated.  Li added acrylonitrile-

butadiene-styrene (ABS) with PLLA to improve toughness, but they actually discovered the 

system to be antagonistic without compatibilization.  Once compatibilized with styrene-

acryonitrile (SAN)-grafted-maleic anhydride in the presence of a bromine catalyst, the system 

showed an improvement in mechanical and thermal properties, as shown in Figure 2.1228: 
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Figure 2.12: Compatibilization of PLLA/ABS blends enhances properties28. 

Curve A is PLLA, B is 50/50 PLLA/ABS, C and D are compatibilized blends and E is neat ABS.  

They included TEM images which confirmed that the compatibilization improved the 

morphology by allowing phase mixing.  Leclair investigated the HDPE/PC/PS system and found 

that very poor interfacial contact and phase inversion lead to these antagonistic behaviors73.  

Zhang found PLA and poly(methyl methacrylate) (PMMA) to exhibit similarly poor miscibility, 

when the PLA component was crystalline.  Apparently the crystals were capable of expelling the 

PMMA domain from the PLA matrix.  Amorphous DL-containing polylactic acid did not exhibit 

this phenomenon74. 

Some of the recent patents and patent applications listed in the introduction addressed the 

blending of PLA with conventional or unconventional polycarbonate materials.  Lee et al. found 

that differing types of compatibilizers gave improvements in the impact, flexural, and tensile 

strength of 70/30 PC/PLA, but at differing optima in the range of single parts per hundred resin 

(phr) concentrations45.  These agents also modestly helped the blends resist hydrolytic 

degradation.  Ikehara et al. used a biodegradable semi-crystalline polycarbonate they called PEC 

(polyester carbonate) to verify that spherulites of the two polymers can interpenetrate, which 
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could improve compatibility51.  Hung et al. blended PC and PLA with an epoxidizing catalyst, 

which eliminated the double glass transition hallmark of immiscibility and improved the storage 

modulus52.  Other researchers compounded varieties of PLA with aliphatic carbonate polymers, 

though with an unexpected research focus.  Zhou added a low molecular weight carbonate to 

plasticize (D,L)-lactide, nearly obliterating its strength and modulus while enhancing the 

elongation enough to make the copolymer suitable as a packaging material53. Another group used 

a polycarbonate-diol and chain extension scheme to achieve high ductility at the expense of 

strength26. 

Besides polymeric blends, high strength organic and inorganic additives have also been used to 

attempt to create durable PLA compositions.  Cellulose10, carbon nanotubes9,29, several types of 

clay75,76, and natural plant fibers77,78 have been integrated into the PLA matrix to improve the 

heat deflection temperature, ductility and barrier properties.  Clays and nanotubes have the added 

bonus of serving as nucleation agents for enhancing PLA crystallization, while the natural fibers 

add heat resistance and ductility.  However, a major caveat with certain additives is the tendency 

to aggregate rather than homogeneously disperse throughout the matrix, even at loadings as low 

as 3-5 weight percent (e.g.79).  This leads to zones of stress concentration, causing materials to 

become brittle.  The work of Rhim et al. presented earlier included mechanical property testing 

into the water vapor permeability study, which illustrated the embrittlement effect: 
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Figure 2.13: Inappropriate loading of clay causes properties to decrease68. 

In Figure 2.13 above, the tensile strength is represented by the circles and elongation at break by 

the triangles.  Narimissa et al. added up to 10% graphene platelets to PLA in a twin screw 

extruder and also noticed a decrease in mechanical properties such as tensile strength and 

modulus79: 

 

Figure 2.14: Loss of properties due to aggregation of nano-scale fillers79. 
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It appears that about 2-3% loading of nano-fillers produces the best effects, which is clear from 

the maximum modulus in Figure 2.14.  With these publications in mind, we know that by 

blending PLA into a composite with a more durable material or by judiciously adding high 

strength filler, it is possible to enhance the material properties.  The next item to address is the 

effect of polymer crystallinity on material properties. 

2.5 Crystalline/Thermal Properties of Polymeric Materials. 

Many polymeric blends contain individual components with divergent thermocrystalline 

properties.  PLA in most of forms is semi-crystalline while PC is amorphous.  Blended materials 

with an amorphous/crystalline character have been studied before, and we will address literature 

about these systems.  This section will cover the theory of crystallization and describe the 

crystalline properties of PLA and PLA-based blends. 

2.5.1 Theoretical Aspects of Crystallization. 

While polymer crystallization is the topic of this work, many other materials such as metals and 

minerals also undergo crystallization.  The theory that underpins the phenomena at play is 

fundamentally identical, being driven by thermodynamic means.  Much of this theory of 

crystallization is due to the work of Melvin Avrami, who lends his name to it80,81,82.   

Crystallization of polymeric materials occurs in order to lower the overall energy state of the 

material by packaging chains into a regularly structured lattice.  This rearrangement takes place 

whenever there is sufficient molecular mobility or free volume for chains to move into place in 

the lattice.  The temperature range over which this happens is between the glass transition 

temperature and the melting point83.  The process may be initiated spontaneously within a 

material (homogeneous) or be promoted by the presence of a second phase, impurity, or some 

other nucleation site (heterogeneous).  The mathematics involved can be found in materials or 

polymer textbooks (e.g.83). 

Avrami theory begins by assuming that in a rubbery polymer, there are �̅� nuclei from which 

crystals can grow from.  The number of nuclei is temperature and time dependent80.  The 

probability that a seed nucleus will become a growth nucleus is a thermally activated process: 

𝑛(𝑇) = 𝑘 ∗ exp(−𝑄 +
𝐴(𝑇)

𝑅𝑇
)                                               [2.1] 
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Here, k is the pre-exponential kinetic factor, Q is the activation energy, and A (a function also of 

temperature) is work required to spawn a growth nucleus.  Then, the above relation may be 

plotted in Figure 2.15 as the contribution of both terms: 

 

Figure 2.15: Contribution of energy terms in generation of possible crystal growth nuclei80. 

 Because the number of crystal nuclei may change by either exhaustion of growth or by 

impingement into another crystal, we may write the general differential balance on the quantity 

of nuclei: 

𝑑𝑁 = −𝑑𝑁′ − 𝑑𝑁′′                                                      [2.2] 

Where 𝑑𝑁′ = 𝑛𝑁𝑑𝑡 and 𝑑𝑁′′ = �̅�𝑑𝑉. The first term is representative of time dependent germ 

generation and the second the enveloping of nuclei into others.  During the beginning of 

crystallization the time term is dominant, so it can be integrated: 

𝑁′ = ∫ 𝑛𝑁𝑑𝑡
𝑡

0
= �̅�(1 − exp(−𝑛𝑡))                                         [2.3] 

Next, we can merge the time and n parameters together so we can be write: 

𝑛𝑑𝑡 = 𝑑𝜏, 𝑁(𝑡) = 𝑁(𝜏), 𝑉(𝑡) = 𝑉(𝜏)                                         [2.4] 

By changing from ordinary time to characteristic time, all crystallization times can be shifted 

onto a master curve80.  This allows the rewriting of [2.3] into: 
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𝑁(𝜏)

�̅�exp(−𝜏)
= 1 − 𝑉(𝜏)                                                         [2.5] 

Where V is the volume fraction of material that has crystallized by time τ.  At this point in the 

derivation, a new spatial coordinate α is introduced, which is related to the growth velocity of a 

crystal by: 

𝐺

𝑛
= 𝛼                                                                      [2.6] 

The purpose of defining α in this way is that for the so-called isokinetic range where the 

temperature of crystallization and the composition of the substance are constant, α is a constant.  

This provides another characteristic parameter to help in the generation of master curve for 

crystallization. 

For many crystallizable substances, as the growth velocity increases the dimensions of growth 

decrease81.  This introduces shape factors into the growth of crystals in the above equations.  

Regardless of shape or dimension, the following may be written arbitrarily for a region in which 

no material has yet crystallized: 

𝑣′

𝑣1𝑒𝑥
= 1 − 𝑉                                                               [2.7] 

Where v’ is the volume of that arbitrary region and v1ex is the extended volume of a randomly 

chosen, overlapped crystallized region.  The right hand side, assuming constant density between 

both solid phases, also gives the relative volume of untransformed material.  This may be 

integrated to give: 

𝑉 = 1 − exp(−𝑉1𝑒𝑥)                                                         [2.8] 

Under isokinetic conditions, this can be extended for three-dimensional growth81: 

𝑉1𝑒𝑥 = 𝜎𝛼3�̅� ∫ (𝜏 − 𝑧)3
𝑡

0
exp(−𝑧) 𝑑𝑧                                           [2.9] 

Here, σ is a shape factor, and the third order terms assume polyhedral growth and must be altered 

to account for growth in less than three dimensions.  Equation [2.9] may be integrated to obtain 

the terms relating to those growth dimensions, and expressed as a Taylor series: 
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𝑉1𝑒𝑥 =
6𝜎𝐺3�̅�

𝑛3
[exp(−𝜏) − 1 +

𝜏2

2!
−

𝜏3

3!
] =

6𝜎𝐺3�̅�

𝑛3
𝐸3(−𝜏)                         [2.10] 

Where the fraction outside the bracket is abbreviated β and the shape term Ei is tabulated.  If the 

assumption is made that n is large (otherwise crystallization is unlikely to occur), then τ is also 

large and the third order term will dominate.  We obtain, for three-dimensional growth: 

𝑉 = 1 − exp(−𝜎𝐺3�̅�𝑡3)                                                  [2.11] 

This can also be written in a more generic form: 

𝑉(𝑡) = 1 − exp(−𝑘𝑡𝑛)                                                   [2.12] 

This is the most commonly seen form of the Avrami expression, with k as a kinetic parameter 

and n is related to the crystalline shape.  Avrami plotted the possible forms of this expression in 

Figure 2.1681: 

 

Figure 2.16: General shape of transformation curve on time dependence81. 

From theoretical considerations80, the time dependence of the phase change is limited to t4.  The 

exponent is actually composed of two terms, 𝑛 = 𝑝 + 𝑞, where p is either 0 or 1 based on 

heterogeneous or homogeneous nucleation, and q represents the dimensionality of growth82.  

Finally, by taking the ratio of times required to achieve 75% and 25% phase transformation, we 

can estimate the shape of the crystals formed: 
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Table 2.2: Dimensional estimates for crystalline patterns81. 

 

These are of course, estimates; this theory was developed about 75 years ago as an improvement 

over what was current knowledge.  If one is concerned with crystalline shape, analysis with 

instruments such as XRD or polarized optical microscopy can give quantitative information.  

Some of the assumptions made to simplify the derivation introduce error into the results; for 

instance, Avrami noted that crystals that have been impinged upon in one growth direction likely 

do not immediately stop growth but may go in a different direction81.  Furthermore, the 

dimensionality of growth should be limited only to integers but this is commonly not the case.  

For instance, Sun et al. reviewed much data for crystallization primarily in metals and found 

non-integer exponents that also shift as a function of composition and of non-isothermal 

crystallization84.  It seems that the genesis of the inconsistency is the sometimes faulty 

assumption of random distribution of seed nuclei.  For an inhomogeneous distribution, 

crystallization occurs rather normally for low conversion, but as nuclei are exhausted the 

exponent tends to be lower.  This is likely due to extensive impingement at high relative 

transformation, but Sun et al. have not offered any speculation as if this were the case. 

It was previously stated that crystallization only occurs between the glass transition and melting 

temperature, due to chain and molecular mobility.  Pantani et al., among others, have done 

experiments with PLA and other materials to determine the kinetics of crystallization 

processes85,86,87.  Pantani et al. used a theory developed by Hoffman et al.88 to describe the effect 

of temperature on the kinetic parameter k for PLA that had undergone various treatments.  This 

expression was: 

𝑘(𝑇) = 𝐴1 exp (
−𝐴2

𝑇−𝑇∞
) exp(

−𝐴3(𝑇𝑚+𝑇)

2𝑇2(𝑇𝑚−𝑇)
)                                     [2.13] 
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Where the A’s are experimentally determined constants and T∞ is a temperature roughly 30°C 

below the glass transition temperature85.  All temperatures were reported in Kelvin.  The fit of 

this curve was quite good with the collected data, shown in Figure 2.17: 

 

Figure 2.17: Curve fit of kinetic parameter for various PLA specimens85. 

The materials were either virgin, extruded or injection molded PLA 2002D that had been 

isothermally crystallized from the molten or solid state.  The kinetic constant in this work was 

calculated as the inverse of the time required for a sample to achieve 50% of maximum 

crystallinity.  They found that crystallization from the melt was slower than crystallization from 

the solid, and the extruded material was capable of the fastest crystallization.  While there was no 

justification provided for the observation of faster crystallization from the glassy state, they 

explained that extruded samples experienced the most thermal degradation during processing, 

which created lower molecular weight fragments that could have acted as nucleation sites85.  

Data collected during this work can used for comparison of PLA-based materials. 

2.5.2 Crystallization of PLA-Based Materials. 

Because it is likely that PLA is unsuitable for durable use as a stand-alone material, it is more 

appropriate to review information on PLA-based blends.  Because PLA is chiral, it may exist in 

either the L or D isomer, or can dimerize into a meso lactide.  Kolstad studied formulations of 
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PLA with varying amounts of meso compound and in some samples talc was added21.  The 

crystallization half-time was found to increase by about 40% with the addition of every 1% of 

meso lactide, a severe retardation of the kinetics.  In addition, he noted that the melting 

temperature could be reduced by up to 50°C which would cause difficulty for one wanting to 

create a PLA-based material with good thermal stability.  The addition of talc was found to 

strongly nucleate crystallization21.  In terms of nucleation, Kawamoto et al. used two different 

dibenzoylhydrazide agents at low loadings and found much faster crystallization rates and 

resultant improvement in mechanical properties, especially heat distortion temperature14. 

Okamoto et al. blended several different low molecular weight plasticizers they referred to as 

polyester-diols with PLA and found them to increase the PLA crystallinity25.  Unfortunately, the 

plasticizers made the blends less strong but more ductile.  Yu et al. made PLA/aliphatic 

polycarbonate-diol copolymers and then performed chain extension using HDI26.  This treatment 

gave the PLA chains a slightly higher melting temperature which indicated the formation of 

larger crystals, but these materials too were highly plasticized.  For a more robust blend, Li and 

Shimizu fabricated compatibilized PLA/ABS materials which maintained most of the PLA 

crystallinity28.  While the blends lost stiffness, the addition of the ABS phase improved the 

ductility and imparted a large increase in impact strength.  Xiao et al. created fully biodegradable 

blends of PLA/PBAT and found that a 40/60 blend had the maximum crystal growth rate (at the 

optimum annealing temperature) and crystallinity30.  This point came with a change in the 

Avrami parameter, suggesting that once the phases inverted that crystal growth had been altered, 

perhaps due to different spatial dimensions of the different materials: 

Table 2.3: Crystallization experiments with PLA/PBAT blends at 128°C30. 

 

One of the more interesting crystallization studies was that of Chen et al. who performed non-

isothermal crystallization with PET/PLA blends34.  They proposed that rather than considering 
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the system as being a miscible two-phase blend, a three-phase blend in which mobile and rigid 

amorphous phases exist along with a crystalline phase.  The mixtures exhibited a single glass 

transitions across the composition range, but the crystallization behavior was quite different.  

They found that PET could undergo crystallization in all circumstances, but if the crystallinity of 

the PET phase exceeded 10% the PLA would not crystallize: 

Table 2.4: Composition and process dependent crystallization of PET/PLA blend34. 

 

The explanation given for these unusual circumstances was that PET would form a much greater 

proportion of the rigid amorphous domain than PLA, which could impinge on space into which 

PLA might normally crystallize. Similarly strange results were obtained by Zhang et al. who 

experimented with PLA/PMMA blends in order to create durable materials74.  Poly(D,L-

lactide)/PMMA blends were found to be miscible, but antagonistic, when prepared by 

solution/precipitation.  If the same compositions were solution-cast, then intermediate 

compositions showed immiscibility.  When PMMA was blended with PLLA and solution-cast, 

these blends had antagonism like the first blends, shown in Figure 2.18: 

 

Figure 2.18: PLA crystallinity and blending affect miscibility of PLA/PMMA blends74. 
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 This behavior was suggested to have occurred due to the higher optical purity of the PLLA 

blends; these are much more crystalline than the practically amorphous poly(D,L-lactide).  While 

the PLLA crystallization was hampered by the presence of PMMA as with the rigid amorphous 

PET/PLA blend above, there was still enough driving force created by the PLA to push the 

phases apart74.  A final polymer blend for examination is also three phase, in this case the 

PC/PTT/PBT system89.  Both PTT and PBT are aromatic polyesters with fast crystallization 

rates, compared to the amorphous PC phase.  The blend studied was 25/25/50 PTT/PBT/PC by 

weight and was prepared by twin-screw extrusion, and PC was found to retard the crystallization 

of the other phases, perhaps due to interference with chain rearrangement due to its bulkiness89. 

By examining the available literature addressing the lacking properties of PLA and PLA-based 

blends, it should be possible to formulate solutions to them.  Therefore, we planned to examine 

the effects of PLA crystallinity, blending/encapsulating PLA with the more stable PC phase and 

introducing graphene into the composites as a barrier material to improve mechanical properties 

and hydrolytic stability.    
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CHAPTER 3 

 

3 MATERIALS AND EXPERIMENTAL PROCEDURES 

3.1 Materials. 

Polymeric materials for this study were obtained from the manufacturers and processed without 

further purification.  Polycarbonate was provided from Bayer MaterialScience in the form of 

Makrolon 2608, a transparent FDA-approved medical grade polycarbonate often used for 

cardiovascular devices, inhalers, and catheters.  Polylactic acid was purchased from 

NatureWorks in the form of PLA 2002D, an extrusion grade used alone or in formulations for 

food packaging and serviceware applications.  To test the effect of fillers with enhanced barrier 

properties, graphene nano-platelets xGnP-H from XG Sciences were employed.  This additive 

consists of graphite sheets with nominal thickness of 12-15 nm and width 25 µm, with a surface 

area of 60-80 m²/g.  No additional treatments were performed on the graphene additive. The PC, 

PLA and graphene were then blended together in compositions ranging from pure PC to pure 

PLA in 20 weight % increments.  If graphene particles were added, the amount was kept constant 

at 2 weight %; for instance, an unfilled system of 80/20 PC/PLA would translate to 79/19/2 when 

graphene filled.  The resultant blends were then used directly in pellet form for crystallization 

experiments, melt flow analysis or for hydrolytic degradation, or compression molded into 

ASTM standard sized pieces for mechanical testing and into plates used for viscosity and 

solution degradation tests.  The remainder of this section will outline how each mode of 

processing or data collection was undertaken.  

3.2 Experimental Procedures. 

3.2.1 Compounding of the Polycarbonate and Polylactic Acid. 

To create the PC/PLA blended polymers, the WVU Leistritz Micro-27 twin screw extruder 

(TSE) was utilized.  It is shown here with ancillary equipment in Figure 3.1: 
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Figure 3.1: Leistritz 27 TSE with feeders, control box and vacuum trunk. 

Prior to extrusion, the polymers were thoroughly dried to remove residual moisture which would 

cause degradation and molecular weight loss.  Polycarbonate was dried at 120°C in a standard 

oven without convection for at least 4 hours while PLA was dried at 90°C for 4 hours, as 

recommended on manufacturer’s data sheets.  The machine was then operated in co-rotational 

mode, with constant temperature profile across all blend compositions.  The thermal profile was 

selected based on advice from Bayer MaterialScience, and is a compromise between thermal 

degradation of the PLA and softening PC to a degree that allows adequate blending.  The profile 

used for the blends, from feed hopper to die, is 100-175-230-230-230-240-240-240-240-250°C.  

A vacuum of about 400 Torr was imposed near the extruder die in order to remove any possible 

moisture that remained in the melt. In order to achieve a constant but significant screw torque, 

vital to blending materials with a large viscosity ratio, the remaining extrusion parameters were 

varied.  The following combination of variables was used to maintain a screw torque of roughly 

70 percent of maximum: 
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Table 3.1: Further extrusion parameters. 

Sample % PLA (wt.) % PC (wt.) �̇� (kg/hr) Screw speed Ω (rpm) Die ΔP (psi) 

100NT 100 0 11 110 360 

80NT 80 20 11 125 400 

60NT 60 40 11 150 480 

40NT 40 60 10 150 530 

30NT 30 70 8 150 580 

20NT 20 80 8 150 660 

0NT 0 100 4 150 600 

 

The sample names describe the PLA content by weight and the suffix NT means no subsequent 

treatment has been performed; this will be expounded upon later. By adding food coloring to the 

samples of neat PLA and PC, the residence time was estimated to be between about 1-6 minutes 

depending on exact conditions.  The extrusion system was operated using a KSL Smart Line 

Control device, which oversaw two feed units, the K-Tron Soders K-CL-24-KQx4 and K-CL-24-

KT20.  After extrusion, the molten strands of polymer were collected on aluminum trays and left 

to cool to solidification in ambient conditions.  Conventionally, extrudate is passed through a 

water bath for cooling and then cut into pellets; however, exposing PC and PLA in the melt to 

H2O can cause de-polymerization and loss of molecular weight.  After these large blocks had 

cooled overnight, they were then fed into the Econogrind ESL180/430 for pelletizing.  As with 

all operations, proper safety attire such as steel toed shoes, heavy gloves and eyewear were worn 

during use.  After granulation, the pellets were collected in labeled bags for storage.  No post-

collection drying is necessary as all operations were carried out in the absence of moisture save 

for atmospheric conditions. 

3.2.2 Compounding of the Polycarbonate and Polylactic Acid with Graphene. 

While use of twin screw extrusion is extremely common for industrial scale production of all 

varieties of plastics, it is not the best option for lab scale formulation of the graphene-containing 

materials.  It is quite difficult to maintain consistent feeding of minute amounts of additives, 

especially since graphene is a light, fluffy powder which is prone to adhering to surfaces.  

Therefore, blends containing graphene were created using a Haake PolyDrive internal mixer in 

small batches.  Prior to blending, the PC and PLA were dried as above, with graphene dried 

using the same conditions as the polycarbonate.  The mixer is operated by accompanying 

software, and 50 gram samples of the appropriate compositions were mixed at 240°C for 5 
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minutes with roller rotor speed of 80 rpm as the standard condition.  The machine can be seen in 

Figure 3.2 as follows and compared in size to the much larger TSE: 

 

Figure 3.2: Internal mixer showing roller rotor blades. 

Upon completion of mixing, the molten blends were scraped from the components of the mixer 

and collected, and the mixer vigorously cleaned with brass implements.  Because sample sizes 

from the mixer were much smaller than those from the extruder, the bench scale Dynisco Mini 

granulator was used to create pellets.  The samples were then collected into labeled bags as 

before. 

3.2.3 Compression Molding. 

While the pellets were used for hydrolytic testing and part of the DSC evaluation, molded parts 

were required for flexural property and some degradation tests.  The PHI SQ-230H compression 

molder was utilized to create these pieces, shown in Figure 3.3: 
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Figure 3.3: Compression molder in open position. 

Pellets dried in the manner above were molded at 225°C between aluminum foil sheets coated 

with PTFE-based mold release for 10 minutes under a force of 10 tons.  For degradation testing a 

parallelepiped of width and length 127 mm and 3 mm thickness was molded.   After removal 

from the machine, the panel was left to cool fully in ambient lab conditions.  Next, each 

individual panel was cut into smaller squares of approximately 30 mm size using a band saw.  

These were the pieces for degradation and rheological tests.  Flexural bars were created at the 

same conditions using 7 cavity wells, producing pieces that were roughly 127 mm long and 12.5 

mm wide.  Two sets of molds having either 1/10th or 3/16th inches nominal thickness were used 

to investigate the effect of part thickness on hydrolytic stability. 

3.3 Data Collection and Analysis. 

3.3.1 Melt Flow Index. 

A simple yet powerful tool for quality control of polymeric materials is the melt flow index or 

MFI, performed according to ASTM D1238.  In our laboratory, the Dynisco LMI Series 4000 

Melt Indexer was used to carry out melt flow experiments in a manner similar to a capillary 

rheometer.  It is shown here in Figure 3.4: 
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Figure 3.4: Melt flow indexer with piston and weight during test. 

One charges a small mass (~4-5 g) of dried pellets into the heated barrel of the indexer, and 

allows the material to melt.  A load in the form of a piston and weight is added at the outset or 

during this melting period such that the test is ready to begin after 7±0.5 minutes.  Material then 

flows from the bottom orifice, which is collected while a demarcated region on the piston 

plunger is inside the capillary barrel.  The mass of extrudate and time to collect are used to 

convert the flow rate into the specified units of grams per 10 minutes.  While the technique is 

used to measure a flow rate, it is a proxy for the molecular weight and viscosity.  If a significant 

change in MFI is noted, one should expect that physical property changes will occur in the 

pellets or a subsequently molded part.  For accuracy and repeatability the testing was performed 

in triplicate at minimum.  

3.3.2 Mechanical Testing. 

The flexural specimens obtained from the compression molder were allowed to rest for at least 

40 hours and then were subjected to testing.  An Instron 5567 machine was used to obtain 

mechanical properties in accordance with ASTM D790.  Bars underwent the three point bending 

experiment with a cross head speed of 1.387 mm/min, and were performed at least 5 times for 

accuracy and repeatability. 
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3.3.3 Differential Scanning Calorimetry. 

To determine the crystalline and thermal properties of the blends, DSC was used in two modes; a 

“first heat” mode for basic thermal properties and the Avrami kinetic mode for crystallization 

behavior.   Each was performed using 6-9 mg samples pressed into aluminum pans in the TA 

Instruments Q100 DSC under nitrogen and helium flow.  The first heat procedure is given: 

 Load the sample into the DSC at 25°C. 

 Cool 10°C/min to 10°C and remain isothermal for 1 minute. 

 Heat 10°C/min to 250°C and remain for 5 minutes. 

 Cool 10°C/min to 25°C. 

From this experiment, the glass transition(s) and any residual crystallinity from previous 

processing could be evaluated.  Furthermore, this procedure was used to evaluate selected 

degraded and aged samples to find the effect of those processes on the thermal properties.  The 

Avrami experiments are isothermal annealing tests.  Using the same sample sizes and conditions 

as before, these tests were performed on both unfilled and graphene containing pellets..  The test 

procedure is as follows: 

 Load the sample into the DSC at 25°C. 

 Cool 10°C/min to 10°C and remain isothermal for 1 minute. 

 Heat at 10°C/min to 250°C to destroy any present crystals (Tm.eq,PLA~210°C14,90). 

 Remain isothermal for 5 minutes. 

 Cool at 40°C/min to the desired crystallization temperature Tc. 

 Remain at Tc for 3 hours. 

 Melt again at 10°C/min to 250°C, cool to room temperature and remove sample. 

This procedure gives information regarding time dependent crystallization from the melt, which 

is important considering that industrial processes such as injection molding cool from the melt.  

This series of experiments is similar to that of Pantani et al. who studied the crystallization 

behavior of pure PLA that was processed in a variety of ways85. These tests were performed on 

all blends except those without any PLA content, as PC is known to be fully amorphous under 

typical circumstances.  As a result, the crystallinity given for any calculation is based on the 

weight fraction of PLA.  For example, for an annealing experiment performed on a 60/40 

PC/PLA blend, the actual DSC value is divided by 0.4 to give the proper result. 
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3.3.4 Parallel Plate Rheology. 

Rheological measurements give an indication of how molten polymer will flow under varying 

conditions.  The Rheometrics RMS-800 rheometer with parallel plate fixture coupled to the 

associated RSI Orchestrator software package was used.  A 25.0 mm diameter plate was used at 

a gap set to 1.4 mm.  Samples were inserted into the rheometer, melted, and tests begun within 

10 minutes to reduce the chances for thermal degradation. To collect the data, a sample was 

loaded and tested to completion three times consecutively.  Each test takes roughly 10 minutes to 

sweep from 0.1 to 100 radians per second, meaning one polymer sample experiences slightly less 

than 40 minutes in the rheometer.  Tests were performed using 12% strain to assure the results 

were in the linear viscoelastic region for both materials. 

3.3.5 Degradation in Acid/Base Media. 

Part of the appeal of PLA is that it is a biodegradable material.  In Chapter 2, we detailed the 

many pertinent variables and phenomena that are involved in the dissolution of PLA.  While 

polycarbonate shares some chemical characteristics with polylactic acid, it is much more resilient 

in the face of hydrolytic or similar attack.  Here, we desire to evaluate the impact of degradation 

media and temperature on the materials.  The conditions of the degradation tests are: 

Table 3.2: Solution conditions and times for degradation tests. 

Condition Values 

Temperature 50°C 

pH 4.0,7,10.0 

Exposure Time 7,14,21,42 days 

  

The media were prepared in a manner similar to that of Ginde et al. where the acid or alkali was 

prepared as 0.25 molar buffer solution91.  The degradation temperature was chosen as 50°C.  The 

acid solution was the acetic acid/sodium trihydrate acetate system, while the base was 

Na2CO3/NaHCO3. Both of these are commonly encountered in biological studies, which are 

appropriate given the nature of PLA.  Neutral media of pH 7 is de-ionized water, changed out 

weekly in order to prevent pH swings due to formation and dissolution of acidic or basic 

breakdown by-products.  Further, the acid and base samples were tested weekly for pH drift and 

corrected by titration if necessary.  Samples were placed in 125 ml glass jars and checked for 

mass loss at each time interval.  After removal from the jars, samples were washed clean with 
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distilled water and vacuum dried at room temperature to remove any residual solution. Each 

week, pieces are collected for morphological, crystalline, and viscosity measurements. 

3.3.6 Hydrolytic Stability. 

In addition to testing the effects of liquid solvents of differing pH, a practice for evaluating the 

degradation resistance of plastics is exposure to high temperature and high humidity.  This test is 

inspired by ASTM D7444 for heat and humidity aging of oxidatively degradable plastics.  Large 

Pyrex desiccator jars are sealed into a watertight unit by smearing a thin layer of silicone grease 

on the lip of both the jar and lid.  They are then filled with approximately 500 mL of deionized 

water and placed into an oven with good temperature control.  After coming to equilibrium, 

either pellets or mechanical testing pieces are introduced into the jar and resealed.  The pots are 

held at 50°C and the duration of exposure is varied during this testing.  According to workers at 

Ford, samples that are aged for 1 week at 50°C/90% RH experience the equivalent of 2 months 

outdoor aging in Florida63. When testing is complete, the samples are evacuated into a room 

temperature vacuum oven (also containing desiccant) to remove moisture without altering the 

thermal properties.  Pellets are then subjected to DSC study for evaluation of thermal and 

crystalline properties, as well as MFI to determine a loss in viscosity or mechanical properties.  It 

is known from preliminary results that negligible weight change occurs during exposure.  

Flexural bars are tested in this manner to ascertain the loss of mechanical properties during 

exposure.  However, a standard does not exist for this particular type of degradation experiment.  

ASTM D3826 gives the brittle point for degradation of polyethylene and polypropylene as “the 

point in the history of a material when 75% of the specimens tested have a tensile elongation at 

break of 5% or less92”, but this is not an equivalent test.  Harris performed experiments very 

similar to those of this work and simply reported a point by which severe property damage or 

loss had occurred63.  Therefore, we will do as Harris did and deem that materials with obviously 

severe loss of mechanical properties are unfit for durable application; it would be up to a product 

designer with a specific target application to propose a criterion for unacceptable degradation.   

3.3.7 Morphological Studies. 

To probe the small scale structure of the blended material, the Hitachi S-4700 Scanning Electron 

Microscope (SEM) was operated by WVU staff.  All samples were first cryogenically fractured 

using liquid N2 in order to preserve the morphology.  They were then sputter coated with an 
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extremely thin layer of gold, necessary for non-conductive specimens such as plastics and 

ceramics. 

Using all of the above techniques, we can then evaluate the initial and final properties of the 

composites and blends to determine what set or combination of treatment provides a material 

with mechanical and physical integrity sufficient for durable applications. 
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CHAPTER 4 

 

4  RESULTS AND DISCUSSION 

4.1 Introduction to Results and Discussion. 

By using the techniques listed in Section 1.4, an evaluation of both compositions and available 

treatments was carried out in order to make materials that would contain both significant 

biobased content and be durable enough for exposure to harsh conditions.  The materials tested 

ranged from 0-100% PLA phase with the possibility of no treatment, annealing to increase 

crystallinity, the inclusion of a small graphene loading to provide a barrier to diffusion, and in 

some cases both annealing and graphene.  Blends that were PC-rich in which the PLA was fully 

encapsulated by PC were internally mixed with the goal of altering the interfacial morphology so 

as to reduce the diffusive flux of an attacking species into the PLA phase.  There was also a 

study on the effect of part thickness on retarding diffusion, ranging from small polymer pellets 

up to molded parts with thicknesses of about 4 mm.  These were tested in a variety of ways to 

collect initial mechanical, thermal and flow properties, then subsequently degraded either by 

solvent or in a heat/humidity chamber up to a maximum period of 1 year equivalent outdoor 

exposure.  The task is then to determine what combination of formulation and treatment options 

works best to provide a material suitable for use in durable goods with lifecycles long enough for 

use in valuable sectors such as consumer or commercial electronics or automotive. 

The results will be presented in the order of objectives listed in Section 1.4 to evaluate the 

outcomes of the least complex procedures first. 

4.2 Effect of Untreated vs. Treatments of PLA Polymer. 

We first evaluate PLA polymer with and without any subsequent treatments to determine the 

stability of this material.  The PLA specimens examined in this research are listed in Table 4.1: 
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Table 4.1 PLA experimental materials and method of production. 

Sample  %PLA %PC  % Graphene Method  Mixing Conditions 

100NT 100 0 0 extrusion see Table 3.1 

100A 100 0 0 extrusion see Table 3.1 

100G 98 0 2 int mix 240°C-80 rpm-5 min 

 

In this and all subsequent nomenclature, NT is for no treatment, A is for annealed and G for 

graphene containing.  The number preceding the lettering gives the nominal PLA content in 

weight percentage.  The extrusion conditions are not given in this Table; rather they are listed 

previously in Chapter 3 as these are not identical across all compositions. 

The structure of each of the samples was investigated by SEM as described in Chapter 3 to 

evaluate the morphology and dispersion of the blends.  Each of the images comes from a cryo-

fractured plaque that had been compression molded at 225°C for 10 minutes under 10 tons force; 

examination of the extruded or mixed pellets was infeasible due to small size and obvious 

artifacts of processing.  No annealed samples were imaged as it was deemed unlikely that heat 

treatment should affect the morphologies of the blends.  The surfaces shown in Figure 4.1 are the 

internal cross sections of unfilled (a) and graphene-containing (b) PLA plaques: 

Figure 4.1:Images of 100NT (a) and 100G (b) blends. 

Then, in Figure 4.2 there is a comparison of an untreated square compared to an annealed panel 

to verify this assertion: 



47 

 

Figure 4.2: Images of amorphous (a) 100% PLA square contrasted with annealed (b) 100% PLA square. 

At most, the untreated square actually appears to have fractured in a more ductile manner than 

the annealed sample; mechanical testing will later show this to be true.  In Figure 4.1(b), there 

are large, rough graphene plates protruding in and out of the image; it is known that total 

exfoliation and dispersion of nano-scale materials is difficult to achieve by conventional 

processing methods (e.g.93)  Particle size analysis is not necessary for these images and will be 

addressed later.  The next step is to address the annealing process itself and address the 

crystallization kinetics before finally comparing the effect of these treatments on the hydrolytic 

stability of the PLA formulations. 

4.2.1 Crystallization of the Extruded PLA and PLA/Graphene Composite.  

The procedure for performing time-dependent crystallization experiments was given in Section 

3.3.3.  Raw data from the DSC experiments is used for calculation of the crystallization kinetics.  

The linked Universal Analysis software is used to plot the heat flow into the sample to obtain the 

crystallinity, as in Figure 4.3: 
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Figure 4.3: Heat flow from sample during isothermal crystallization experiment. 

This sample was 100% PLA annealed at 90°C without the addition of graphene. It must also be 

mentioned that the above case shows a flat baseline of integration; this is not always the case and 

then it must be corrected for.  The value from the software is then used to guide the numerical 

integration of this curve to obtain the characteristic S-shaped time-transformation curves that 

were shown as Figure 2.16.  Any method such as the trapezoid rule or Simpson’s rule may be 

utilized.  For instance, the time-transformation curve generated from the data in Figure 4.3 is 

plotted in Figure 4.4: 
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Figure 4.4: Time-transformation curve for the data presented in Figure 4.3. 

Here the calculation must take into account the published infinite heat of fusion of PLA (93.6 

J/g) and the weight equivalent of PLA must be considered.  We then can normalize the plot from 

0-100% achievable crystallinity, though this makes the implicit assumption that the amorphous 

and crystalline domains have the same density.  From the normalized curves generated in this 

manner, we may start to collect kinetic data.  The Avrami theory for crystallizable materials was 

previously described in Section 2.4.1.  In order to apply the theory, we begin with Equation 

[2.12]: 

𝑉(𝑡) = 1 − exp(−𝑘𝑡𝑛)                                                  [2.12] 

This describes the shape of Figure 4.4.  We can rewrite this expression in a more usable form for 

crystallization analysis by taking the double logarithm of both sides and rearranging the terms: 

ln(− ln[1 − 𝑉]) = 𝑛 ln(𝑡) + ln(𝑘)                                           [4.1] 

We should also note at this point that Figure 4.4 presents a non-linear curve which indicates that 

several mechanisms are at play over the crystallization period, and that Equation 4.1 is double 

logarithmic.  These factors can cause significant variations in calculated values depending upon 



50 

where the data lie on the transformation curve.  For this reason, the work of Lorenzo et al. was 

consulted and the period between 5-20% relative crystallization was considered.  Their 

suggestion is that the underpinning theory behind the equation is most accurate in this region 

where only primary crystallization occurs without impingement of crystals upon each other or 

the termination of crystal growth94. Plotting Equation 4.1 for the above sample over this region 

gives a highly linear plot as seen in Figure 4.5:   
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Figure 4.5: Avrami plot of previous sample over 5-20% conversion range. 

The very high r² value confirms that this is an accurate portion of the curve to select.  For both 

the unfilled and graphene-containing compositions, 3 replicates were analyzed at 90-100-110-

120°C to generate the Avrami parameters.  These are plotted in Figures 4.6 and 4.7: 
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Figure 4.6: Avrami exponent for primary crystallization of 100A and 100G blends. 
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Figure 4.7: Kinetic parameter for primary crystallization of 100A and 100G blends. 
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We note that lines are added not to suggest trends, but to connect data points within a set for 

clarity.  A comparison can be made with the data presented in Figure 2.17, the works of Pantani 

et al. with a variety of processed PLA materials.  They determined the Avrami exponent for their 

PLA samples to be 2.7-2.9 depending on which processing was performed; here within 90-110°C 

it is about 3, and closer to 2 at 120°C for the unfilled sample.  The sample that contains graphene 

has a marginally lower exponent of 2.4 at 90°C which increases to about 3 at 120°C.  It should 

be noted that the extrusion processing was much less severe in their work, only reaching 

200°C/40 rpm as compared to 240°C/110 rpm in the current research; this different thermal 

history could cause a change in material properties which would affect the crystallization.  

However, comparing this data to theirs shows a degree of internal consistency; they measured or 

modeled maximum PLA crystallinity also using PLA2002D to be about 25% whereas this value 

in nearly all cases is around 30% in the current work85. 

Since the samples showed exponents ranging from about 2-3 from 90-120°C, this suggests 

dimensionality of crystallinity was between plate-like and polyhedral, with spontaneous 

nucleation. In terms of the kinetic parameter, Pantani et al. measured considerably higher values 

than this work.  Their calculation was based on taking the inverse of the calculated crystallization 

half-time whereas here it was determined by the intercept of the data presented in Figure 4.5.  

Therefore, examining their data again in Figure 2.17, the values of k for the extruded material 

crystallized from the melt (open squares) over the 90-120°C range are approximately 10-4 

seconds-1. Inverting this we obtain a half-time on the order of 104 seconds, which can be 

compared to the fastest (~130 seconds for graphene-filled at 110°C) to the slowest (~4000-5000 

seconds for unfilled at 120°C) volume-transformation half-times in this work. Due to the 

inherent sensitivity of the data range selected for analysis, it is unsurprising to find some 

discrepancies in this area; this is especially true considering they selected the half time at 50% 

crystallization compared to tabulating it from data using 5-20% crystallinity for this work.  

Furthermore, the slightly modified Avrami equation from their work (which includes a –ln(2) 

factor) may also add to this difference. 

What is quite clear from Figure 4.7 is there is a strong nucleating and crystal growth-accelerating 

effect that comes from the addition of 2% graphene by weight into the PLA phase.  The increase 

in kinetics in this figure is about 1-3 orders of magnitude.  This is easily observable from a 
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simple dynamic DSC test on the PLA/graphene blend, which exhibited crystallization during 

cooling from the melt at 10°C/minute as shown in Figure 4.8: 

 

 

Figure 4.8: Crystallization on cooling for sample containing 98/2 PLA/graphene. 

This effect is not present for unfilled PLA, nor any other sample.  Next, if the ratio of the time 

for 75% conversion to 25% conversion as suggested by Avrami in Table 2.2 is taken, the data for 

these PLA compositions and temperatures is on the order of 1.6-1.9, suggesting plate-like to 

polyhedral growth81.  However, since the values for both the unfilled and filled composition are 

all in this range, it would not seem that the graphene affects the shape of crystal growth, only the 

kinetics. 

These experiments have shown that the crystallization of PLA is describable by the traditional 

Avrami theory during primary crystallization.  While the crystallization is slow, it can be 

accelerated by orders of magnitude with the inclusion of a nucleating agent such as graphene; 

this has been previously noted (e.g.95).  However, the graphene does not appear to alter the 
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crystal growth shape.  The next step is to determine the effect of crystallinity and other 

treatments on chemical stability. 

4.2.2 Effect of Treatment on Initial Crystallinity of PLA and PLA/Graphene Composite.  

In spite of collecting the crystallization kinetic data, heat treatment was not performed according 

to an Avrami-style protocol.  This is because of inherent error in calculating those kinetics and 

that initial experiments showed that molded parts (especially the large flexural bars) tended to 

warp if heat-treated for significant times above 90°C.  Therefore, any annealed pellets, panels or 

flexural bars were all treated in the same manner to eliminate variation in exposure time.  Heat 

treatment was carried out at 80°C for 48 hours in an oven without convection.  The pellets were 

arranged in aluminum trays in roughly 30 gram batches, while molded parts were sandwiched 

between metal trays that were in turn covered with aluminum foil to prevent warping.  After 

removal from the oven, the samples were placed on a large metal table at room temperature to 

quickly remove heat from the material to halt any further thermal effects.   

After cooling, a few milligrams of the pellets or small pieces snipped from the molded parts were 

analyzed in the DSC for dynamic analysis.  The initial crystallinities of the materials in both 

pellet and molded part form are given in Figure 4.9: 
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Figure 4.9: Initial crystallinity of 98-100% PLA parts and pellets by treatment option. 

Here it is clear that annealing the materials is the best way to achieve appreciable crystallinity 

within either the pellets or molded pieces.  It is also internally consistent with previous results 

where the maximum PLA crystallinity achieved is on the order of 30-35%.  We also note that in 

spite of the ability of the graphene to accelerate crystallization from the melt, there is not much 

crystallinity formed due to the overall slow crystallization rate.  Both the untreated and 

graphene-containing PLA samples are for all intents and purposes totally amorphous while the 

annealed samples are at maximum crystallinity; this should provide conclusive evidence as to the 

crystallinity effect on the stability of PLA in the face of solvent or hydrolytic degradation. 

4.2.3 Solvent Degradation of PLA and PLA/Graphene Composites. 

Degradation in various media was carried out to understand the stability of the materials that 

would come in contact with real-world situations that may be acidic or basic.  Compression 

molded parts in the form of 30 mm*30 mm*3 mm squares were measured for weight, 

crystallinity, and viscosity changes as a result of exposure at 50°C over a period of 42 days.  The 
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effect of solvent degradation on the weight change of 98-100% PLA materials is shown in 

Figures 4.10-12: 
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Figure 4.10: Weight loss of PLA and PLA/graphene samples during exposure to acetic acid buffer. 
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Figure 4.11: Weight loss of PLA and PLA/graphene samples during exposure to distilled water. 
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Figure 4.12: Weight loss of PLA and PLA/graphene samples during exposure to carbonate buffer. 

In both the acetic acid buffer and distilled water solution, the weight change over 6 weeks 

degradation is essentially neglible.  Recalling Figure 2.2, it was observed that PLA was most 

stable around pH 4 and the rate of degradation increased as the pH moved further in either 

direction.  It is also clear here that the basic solution was highly aggressive to the untreated PLA, 

causing around 15% mass loss after 42 days exposure.  This too was suggested in Figure 2.2, that 

hydroxyl attack which cleaves off a lactide molecule is a likely mechanism for the degradation of 

PLA polymer.  Since mass was lost only during long duration attack by base, it also seems likely 

that bulk erosion is the more prominent mechanism of degradation, where species diffuse into 

the material and attack the polymer chains.  Then, after significant damage is done to allow pores 

or channels to open through the bulk of the sample, the degraded portions can diffuse out and 

finally the material begins to fall apart.  This also suggests that incorporating barriers to diffusion 

either by imparting crystalline domains or adding the graphene platelets should retard the bulk 

degradation process.  However, the untreated sample shows that after diffusional resistance is 

overcome, the PLA will begin to break down. 
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The untreated compression molded samples were also analyzed by DSC to determine the effects 

of initial crystallinity and if the crystalline properties changed with exposure to the liquid media. 

The crystallinity changes for the PLA materials in each solvent are presented in Figures 4.13-15: 
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Figure 4.13: Development of crystallinity in PLA and PLA/graphene during exposure to acetic acid buffer. 
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Figure 4.14: Development of crystallinity in PLA and PLA/graphene during exposure to distilled water. 
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Figure 4.15: Development of crystallinity in PLA and PLA/graphene during exposure to carbonate buffer. 
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Earlier, Fu et al. showed an increase in crystallinity as their PLGA fibers were degraded in a 

phosphate-type buffer37.  This has been attributed to two processes: amorphous sections of the 

bulk can be preferentially degraded away and then diffuse out of the material, leaving behind a 

smaller mass that contains a higher mass of crystalline domains, or a slightly different process 

sometimes called chemicrystallization can take place.  An explanation for this phenomenon is 

that as the polymer backbone is broken down, the smaller fragments and oligomers that are 

generated are capable of reforming into smaller crystallites, perhaps due to enhanced mobility 

which may allow easier formation of hydrogen bonding96.  

For the untreated and graphene-filled samples, a monotonic rise in crystallinity was observed as 

expected.  The annealed samples experienced a slight increase in crystallinity. The development 

of final crystallinity increased as the media became more basic, again confirming that PLA is 

most susceptible to attacking hydroxyl ion.  Further, because neither the annealed nor the 

graphene sample lost any appreciable amount of weight, we can likely say this was a result of 

species diffusing into the bulk, scissioning the polymer backbone and causing 

chemicrystallization to take place.  However, since there was mass lost for the untreated sample, 

we cannot say for certain whether chemicrystallization or the preferential surface degradation of 

amorphous regions lead to the increase in crystallinity; likely it is some combination of both.  

Another method used to characterize the extent of solvent degradation was by the change in 

viscosity.  These samples were tested with the parallel-plate rheometer at 170°C in oscillatory 

mode under 12% strain.  The effects of solvent exposure on the viscosity loss on untreated PLA 

samples is shown in Figures 4.16-18: 
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Figure 4.16: Viscosity change of untreated PLA after exposure to acetic acid buffer. 
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Figure 4.17: Viscosity change of untreated PLA after exposure to distilled water. 
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Figure 4.18: Viscosity change of untreated PLA after exposure to carbonate buffer. 

From Figures 4.16-18, it is clear that significant viscosity loss has occurred by about 14 days 

exposure in all of the media, and after 42 days exposure the material has very little viscosity 

remaining.  Samples degraded in the acidic solution have slightly higher viscosities during 

degradation, which again shows that PLA is more stable around the pH 4 mark as shown in 

Figure 2.2.  However, after 42 days of exposure (a comparable situation to 1 year outdoor 

aging63) these materials have negligible viscosity regardless of the attacking solution.  In any 

case since the PLA-only blends undergo tremendous degradation in all media therefore we will 

show the results of degradation in distilled water hereon.  To confirm this is true, now the 

annealed and graphene viscosity loss curves are also shown as Figures 4.19-20 for distilled water 

degradation: 
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Figure 4.19: Viscosity change of annealed PLA after exposure to distilled water. 

Shear Frequency (rad/s)
0.1 1 10 100

C
o

m
p

le
x
 V

is
c
o

s
it
y
 (

P
a

-s
)

10

100

1000

10000

no exposure

7 days exposure

14 days exposure

21 days exposure

42 days exposure

100G 170°C
distilled H

2
O

 

Figure 4.20: Viscosity change of PLA/graphene after exposure to distilled water. 
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Like the previous samples, there is significant viscosity loss by 14 days exposure in all cases.  

However, by the end of degradation there is slightly more residual viscosity in both the annealed 

and graphene-containing samples but this effect is mostly insignificant.  Another way to plot a 

comparison between the materials is to choose a shear frequency and show the effect of exposure 

time and treatments.  Figure 4.21 is shown for distilled water exposure: 
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Figure 4.21: Comparison of viscosity loss between varying PLA treatments. 

Here again we can see that all the samples undergo tremendous loss of viscosity (and hence 

molecular weight) over the simulated one year exposure.  From this graph, we can see that the 

initial data point for all samples (at 1 rad/s shear frequency) is about 2500 Pa-s whereas at the 

end of degradation it is roughly 10 Pa-s, a reduction of over 99%.  Clearly, none of these 98-

100% PLA materials with any treatment have the required hydrolytic stability for a durable 

application at elevated temperature and exposure to attacking media. 
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In conjunction with solvent degradation, hydrolytic degradation in the presence of humidity was 

carried out on pellet samples as well as compression molded flexural bars as described in Section 

3.3.6.  Those results are the next to address for the PLA and PLA/graphene composites. 

4.2.4 Hydrolytic Degradation of PLA and PLA/Graphene Composites. 

4.2.4.1 Effect of Hydrolytic Degradation on Mechanical Properties. 

Besides maintaining molecular weight, any material used for a durable application must also 

maintain its physical integrity during use.  Flexural bars created by compression molding were 

aged in a humidity chamber at 50°C and roughly 100% relative humidity for up to 42 days, or 1 

year of equivalent outdoor exposure to test the change in mechanical properties.  Ideally, parts 

would be fabricated by injection molding to keep pieces as consistent and within the tightest 

tolerances, but as graphene samples could not be produced reliably by extrusion and batches 

large enough for injection molding were infeasible to make, the parts were compression molded 

and each piece was checked carefully for its dimensions.  To perform the aging, a custom rack 

was built out of steel mesh plates that were connected by stainless steel bolts and set apart with 

PVC spacers, shown here in Figure 4.22: 

 

Figure 4.22: Metal rack for hydrolytic aging of flexural bars. 
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This was done so as to allow the humidity access to all surfaces of the bars and to ensure that no 

additional stresses were placed on the parts during aging.  These were then aged up to 42 days 

(in some cases) in the humidity chamber, which under the example given by Harris et al. would 

be equivalent to about one year outdoor exposure in Florida63.  The initial flexural modulus, 

strength and ductility as measured by the Instron 5567 are shown in Figures 4.23-25: 
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Figure 4.23: Initial flexural modulus of untreated, annealed and PLA/graphene materials. 
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Figure 4.24: Initial flexural strength of untreated, annealed and PLA/graphene materials. 
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Figure 4.25 Initial flexural ductility of untreated, annealed and PLA/graphene materials. 
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Here it is clear that the additional treatments to the PLA polymer impart slight stiffening by 

increasing the flexural modulus, but this benefit is lessened somewhat as the materials become 

more brittle.  The crystalline domains of the annealed sample are formed by enhanced hydrogen 

bonding between adjacent polymer chains which make the material less ductile, and the fact that 

it is difficult to fully disperse nano-fillers into polymer matrices means that aggregates of filler 

exist which can act as stress concentrators.  The data are not dissimilar to those measured by 

Harris et al., though they used a slightly more crystalline grade of PLA63. 

As the materials age, we expect the mechanical properties to worsen, and therefore the properties 

are plotted as a percentage of the initial value in Figures 4.26-28: 
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Figure 4.26: Flexural modulus of untreated, annealed and PLA/graphene flexural bars after hydrolysis. 
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Figure 4.27: Flexural strength of untreated, annealed and PLA/graphene flexural bars after hydrolysis. 
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Figure 4.28: Flexural ductility of untreated, annealed and PLA/graphene flexural bars after hydrolysis. 
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From these figures, we can see that the modulus is not greatly influenced by the aging process, as 

it is a low strain property.  However, the flexural strength and ductility are by their definition 

measured at high strain near the failure point and therefore can give a more accurate 

representation of the damage done during hydrolysis.  Here, the treated materials experience 

greater strength and ductility loss than the untreated; this is likely due to the fact that the treated 

samples were more brittle to begin with.  Because the untreated sample had an amorphous 

character without the addition of possibly aggregated graphene clusters, it could undergo some 

degree of hydrolysis before becoming unacceptably brittle.  Another interesting result appears if 

a comparison is made between the viscosity and flexural property losses; by 14 days exposure, 

the panel’s viscosity been reduced by roughly 90% but the reduction in strength and ductility is 

about 75% in the worst case.  This seems to suggest that about 14 days exposure (or 4 months 

outdoor equivalent) is sufficient to damage the molded PLA-only specimens to an unacceptable 

degree. 

However, by testing molded parts we have actually provided a conservative estimate of the 

materials’ hydrolytic stability by adding a thickness-based diffusion resistance.  The next step in 

the investigation is to remove this resistance by testing pellets of the blends under the same 

hydrolysis conditions. 

4.2.4.2 Effect of Hydrolytic Degradation on PLA and PLA/Graphene Composites.   

Because pellets of the composites and blends are smaller and thinner than molded pieces, they 

have a larger specific surface area.  This allows attacking media to move more quickly into the 

bulk of the material without much diffusive resistance, providing a worst-case scenario in terms 

of degradation.  The pellets were degraded like the flexural bars, only in 30 gram batches in 

aluminum trays laid out in a single level inside the hydrolysis pots rather than in the metal rack.  

The pellets were then aged for up to 7 days (2 months equivalent outdoors) and the melt flow 

index was measured over this period.  Figure 4.29 shows the effect of aging on the absolute 

value of the MFI, as measured at 250°C with 2.16 kg load for all treatment options: 
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Figure 4.29: Increase in MFI of untreated, annealed, and PLA/graphene materials after hydrolysis. 

It is clear from this figure that each material has an initial MFI of roughly 70 g/10min which then 

increases to about 120 g/10min.  We can then plot the increase in melt flow as a percentage in 

Figure 4.30: 
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Figure 4.30: Normalized change in MFI for untreated, annealed, and PLA/graphene materials after hydrolysis. 

This chart clarifies that in this case, the act of annealing the unfilled PLA pellets creates the best 

barrier to humidity diffusion.  It shows about a 40% increase in MFI over 7 days exposure 

compared to about 90% for the graphene composite and nearly 120% for the untreated PLA.  

However, since this only corresponds to 2 months outdoor equivalent aging it would be 

preferable to see very small increases in the melt flow index.  Indeed, if we extrapolate these 

fairly linear increases (noting that extrapolation outside a data range is dangerous territory!) then 

by 42 days aging time each sample would experience between a 240-720% increase in melt flow 

index depending on the treatment.  We next examine some molecular weight measurements that 

were taken externally at Bayer MaterialScience to quantify the extent to which the materials 

degraded. 

4.3 Gel Permeation Chromatography (GPC) Results for PLA-only Materials. 

GPC was performed using a Waters Alliance Gel Permeation Chromatograph.  Samples were 

dissolved in methylene chloride, then diluted 50:50 by volume in tetrahydrofuran (THF) and then 

analyzed in THF at 35°C with a flow rate of 1.0 mL/min.  Molecular weights were determined 
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using a calibration curve relative to polystyrene standards.  Samples that have not been degraded, 

along with several that have are shown in the following table: 

Table 4.2: GPC results of various PLA and PLA/graphene samples. 

Sample Mn Mw Mw/Mn 

PLA extruded 95,200  174,250  1.83 

PLA/graphene 82,980  155,710  1.88 

Graphene,  1 

day hydrolysis 

77,380 150,070 1.94 

No treatment , 

1 day 

hydrolysis 

90,390  166,580  1.84 

Annealed, 1 

day hydrolysis 

81,660 151,890 1.86 

3mm pH 7, 1 

week 

hydrolysis 

50,880  102,400 2.01 

 

The first two samples are extruded pellets and internally mixed PLA/grapheme pellets with no 

exposure, therefore these are the initial molecular weights of the materials; as the graphene-

containing samples had a longer mixing time and thermal history the initial molecular weight is 

slightly lower than the extruded batch.  Communications with NatureWorks staff suggest that the 

initial weight average-molecular weight of PLA 2002D is about 210,000 g/mole so there has not 

been significant degradation by the chosen processing methods.  The next three are pellets of 

each treatment that were exposed to the hydrolytic chamber for 1 day.  The untreated sample had 

a molecular weight loss of about 8000 g/mole over this period, while the graphene was slightly 

lower, indicating that the barrier effect improved stability over this short duration.  The final 

sample was from an untreated 3 mm thick plaque submerged in distilled water at 50°C for one 

week, so there is molecular weight loss from both the exposure and the second thermal history 

from molding the plaque. Using the extruded PLA pellet as a benchmark, the plaque had a loss 

of roughly 70,000 g/mole after 1 week, equivalent to about 7000 g/mole/day which is similar to 

the degradation experienced by the pellets after one day.  Harris et al. degraded PLA 3001D-

molded flexural bars in their study and observed a molecular weight loss of roughly 6000 
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g/mole/week, for comparison63.  They also observed that the critical molecular weight below 

which strength and integrity are lost is about 10,000 g/mole.  This information along with the 

degradation results leads us to a simple conclusion. 

4.4 Commentary on PLA and PLA/Graphene Durability. 

A high molecular weight, semi-crystalline grade of PLA was employed to test the material’s 

inherent stability for possible usage in the creation of durable engineering plastic goods. 

Untreated, annealed and graphene-composite samples were fabricated and subjected to a variety 

of degradation tests.  It was determined that the addition of graphene can greatly accelerate the 

slow crystallization of the PLA, but the dimensions of the crystals formed do not appear to be 

altered.  Both the addition of crystalline domains created by heat treatment and the inclusion of 

graphene nano-platelets to add diffusion barriers were capable of slowing the rate of degradation.  

However, long duration tests both in solvents and in a humidity chamber showed the materials to 

undergo extreme degradation by the equivalent of 1 year outdoor aging in southern Florida.  It is 

logical that the lactic acid monomer contains too high a concentration of vulnerable ester groups 

to be inherently stable.  It is also likely that the rate of diffusion is fast with respect to the rate of 

the degradation reaction for attacking species through the PLA bulk, which would explain the 

lack of a significant enhancement in durability by way of retarding diffusion; later we will 

investigate this claim in more detail.  Therefore, the addition of a second, more stable polymer 

phase in the form of polycarbonate will be investigated by the same techniques. 

4.5 Blends of Polylactic Acid and Polycarbonate. 

We previously mentioned that one of the most common ways to improve a lacking characteristic 

of a chosen polymer was to blend it with another phase which can make up for that deficiency.  

In this case, polycarbonate has better mechanical properties and is much more thermally and 

hydrolytically stable than PLA; therefore, a suite of blends ranging from 20-80% polycarbonate 

(including 100% PC as well) was created and evaluated as before to ascertain the material 

durability. 

4.5.1 Fabrication of the PC/PLA and PC/PLA/Graphene Composites. 

As was listed in Table 4.1, these blends and composites were compounded in either a twin-screw 

extruder or an internal mixer for graphene-filled composites.  The compounding conditions in 

either case are listed in Table 4.3: 
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Table 4.3: PC/PLA and PC/PLA/Graphene experimental materials and method of production. 

Sample  %PLA %PC  % Graphene Method  Mixing Conditions 

80NT 80 20 0 extrusion see Table 3.1 

80A 80 20 0 extrusion see Table 3.1 

80G 79 19 2 int mix 240°C-80 rpm-5 min 

60NT 60 40 0 extrusion see Table 3.1 

60A 60 40 0 extrusion see Table 3.1 

60G 59 39 2 int mix 240°C-80 rpm-5 min 

40NT 40 60 0 extrusion see Table 3.1 

40A 40 60 0 extrusion see Table 3.1 

40G 39 59 2 int mix 240°C-80 rpm-5 min 

40AG 39 59 2 int mix 240°C-80 rpm-5 min 

30NT 30 70 0 extrusion see Table 3.1 

30A 30 70 0 extrusion see Table 3.1 

30G 29 69 2 int mix 240°C-80 rpm-5 min 

30AG 29 69 2 int mix 240°C-80 rpm-5 min 

20NT 20 80 0 extrusion see Table 3.1 

20A 20 80 0 extrusion see Table 3.1 

20G 19 79 2 int mix 240°C-80 rpm-5 min 

20AG 19 79 2 int mix 240°C-80 rpm-5 min 

0NT 0 100 0 extrusion see Table 3.1 

0G 0 98 2 int mix 240°C-80 rpm-5 min 

 

Here, the same nomenclature applies as it did with Table 4.1.  In this case, samples that were PC-

rich had an additional treatment of annealing with grapheme and were labeled as AG; this was 

not performed with PLA-rich samples as these were extremely brittle.  Once more, the extrusion 

conditions are listed in Chapter 3 for each composition to achieve a roughly constant 70% torque 

for each. 

Cryo-fractured plaques of each of these multi-phase materials was investigated with SEM to 

discern if the processing methods produced morphologies with acceptable distribution and 

dispersion of the minor phase and additives.  In this case as before, samples that have been 

annealed have not been included as this is not expected to alter the droplet shape or dispersion.  

These pictures are listed as Figures 4.31-4.36: 
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Figure 4.31: Images of blends 80NT (a) and 80G (b). 

 

Figure 4.32: Images of blends 60NT (a) and 60G (b). 

 

Figure 4.33: Images of blends 40NT (a) and 40G (b). 
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Figure 4.34: Images of blends 30NT (a) and 30G (b). 

 

Figure 4.35: Images of blends 20NT (a) and 20G (b). 

 

Figure 4.36: Images of blends 0NT (a) and 0G (b). 

All images are shown at 2500 times magnification, where the scale bar denotes a 20.0 µm length.  

There are different structures present in the two-phase polymer blends, where the PLA-rich 
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blends have needle-like and droplet images moving but only droplets are present for blends that 

are rich in polycarbonate; the needles may be some type of long-range crystalline PLA domains.  

It is also clear that the two polymers are immiscible, as there is a pull-away at the interface.  In 

terms of composition, images 4.32-33 seem to form roughly co-continuous matrices; this is not 

uncommon for blends with two phases that are roughly equal in weight (e.g.97).  The clearly 

matrix-dispersed images with 80, 30, and 20% weight PLA are slightly different from each other 

in that the PC-rich materials have very fine morphologies but the 20/80 PC/PLA blend does not; 

this is likely a function of the viscosity ratio, where the highly viscous PC matrix can easily 

transfer stress and mechanical energy to the low viscosity dispersed phase PLA to break it up, 

but the reverse may not hold true.  Whatever the case, image analysis was performed on the 

above images to quantify the particle sizes when possible; the ImageJ software originally 

developed by NIH researchers was used.  At least 100 particles were sized wherever possible and 

varying particle size calculations were performed using the following equation98: 

�̅�𝑝𝑞
(𝑝−𝑞)

=
∑ 𝐷𝑖

𝑝
𝑖

∑ 𝐷
𝑖
𝑞

𝑖
                                                              [4.2] 

In this case, the number average d10 and the so-called DeBroukere average d43 particle diameters 

were of interest.  The DeBroukere or Herdan diameter has been described in the literature as the 

mean diameter over volume98. The particles sizes are listed in Table 4.4: 

Table 4.4: Particle size analysis of PC/PLA and PC/PLA/graphene composites. 

Sample dB avg diam. d43 (µm) num. avg diam. d10 (µm) 

80NT 2.98 1.96 

80G 2.10 1.21 

60NT 4.51 1.85 

60G* 4.32 1.22 

40NT 2.88 1.27 

40G 1.77 0.89 

30NT 1.31 0.93 

30G 4.53 2.22 

20NT 2.35 1.60 

20G 1.52 1.14 

 

The sample 60G did not have 100 easily discernable particles to size, so only 94 were included in 

that calculation.  It appears in most cases there is a slight decrease in particle sizes between a 



79 

given composition and the graphene-containing version; this is probably due to extra shearing 

and mixing action due to the additive.  However, the large, almost blade-like graphene structures 

present seem to confirm that these are aggregates rather than fully exfoliated platelets; this again 

is common for polymer nano-composites as conventional processing does not seem to be 

adequate to break up the graphene layers.  Lastly, these numbers are in no way perfectly 

indicative of the actual particle sizes and size distributions of the morphology of a molded part 

but only a qualitative estimate.  For all intents and purposes, however, it seems that the 

morphologies of all blends and composites studied have particles on the order of 1-5 microns 

with good dispersion and that the graphene remains in a somewhat aggregated state.   

We will now address the crystallization of the PC/PLA blends and composites to determine if the 

addition of another polymer phase alters the kinetics or dimensionality of crystal growth. 

4.5.2 Crystallization of the PC/PLA and PC/PLA/Graphene Composites. 

The blends were subjected to the same crystallization procedure as the PLA-only materials to 

obtain the crystallization kinetics.  The Avrami exponent and kinetic parameters are now plotted 

in Figures 4.37-38, again from the primary crystallization regime over which 5-20% conversion 

has taken place: 
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Figure 4.37: Avrami exponent for primary crystallization of PC/PLA and PC/PLA/graphene blends. 
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Figure 4.38: Kinetic parameter for primary crystallization of PC/PLA and PC/PLA/graphene blends. 
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Samples containing less than ~40% PLA content gave crystallization data that was inconsistent 

and very difficult to analyze, although dynamic DSC thermograms were still of use.  

Additionally, the data for sample 40G crystallized at 120°C were also essentially noise even after 

multiple replications; the data at lower temperatures were normal so it is not clear why this result 

was obtained.  However, we can see from the figures that as graphene is added to the mixture, 

the Avrami exponent shifts lower from about 3 for the unfilled samples to 2.5 or lower still for 

the 40% PLA sample with graphene.  This is sensible as theory tells us that an imperfection or 

additive that acts as a nucleation site would decrease the exponent as it is comprised of both a 

shape and nucleation term, and the nucleation term is 0 for heterogeneous and 1 if homogeneous.  

The exponent is also roughly constant across the temperature range for each composition until 

120°C, where it again decreases.  This means that crystals grown at the higher temperature have 

a different shape than those grown between 90-110°C; unpublished preliminary results showed 

that no discernable crystallization occurred during experiments at 130°C so this may be near the 

upper temperature limit where PLA crystals can exist.  From Figure 4.38, comparing the open 

marks to the filled, one can observe the increase in the kinetic parameter when graphene is 

present, though the effect is not quite as profound as for the PLA-only materials (see Figure 4.7).  

In spite of the effects of graphene, it does not appear that the presence of polycarbonate in these 

compositions affects the crystal growth or kinetics.  This may not be universally true, however; 

as mentioned above, the highly PC-rich samples gave inconsistent data which may be due to 

interference by the PC matrix. 

With the effects of graphene and the inclusion of polycarbonate on PLA crystallization known, it 

is again time to examine the effects of these variables on the properties of the composites. 

4.5.3 Initial Crystallinity of PC/PLA and PC/PLA/Graphene Composites. 

As before, the samples were heat treated at 80°C for 48 hours in an oven without convection to 

produce crystallinity and to have the same thermal history.  The initial crystallinities of the 

PC/PLA and PC/PLA/graphene blends in both pellet and molded part form are shown in Figures 

4.39-40: 
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Figure 4.39: Initial crystallinity of PC/PLA and PC/PLA/graphene pellet samples. 

Polylactic Acid Content (%)
20 30 40 50 60 70 80

In
it
ia

l 
P

L
A

 C
ry

s
ta

lli
n

it
y
 (

%
)

0

10

20

30

40

no treatment

annealed

graphene

annealed graphene

molded parts

 

Figure 4.40: Initial crystallinity of PC/PLA and PC/PLA/graphene molded parts. 
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As listed in Table 4.3, the samples that contained nominally 20-40% PLA phase had the 

additional treatment of annealing plus graphene.  Here, the pellets without any heat treatment 

were essentially amorphous and those that were annealed had near the maximum of 30% 

crystallinity.  For annealed/graphene pellets, the crystallinity increased as the PLA content 

increased rather than being a constant near 30%; the nucleating effect of graphene in the PLA 

phase may explain this observation.  For the molded parts, the annealed samples act as expected, 

though other compositions are a bit different.  The graphene-containing samples that are PC-rich 

have a much higher crystallinity than the pellets, which may come about from nucleating effects 

or from the second thermal history required to mold the parts.  The untreated and the 

annealed/graphene samples have similar crystallinities to the pellets. 

Now that the initial crystalline properties are known, that effect on hydrolytic stability may be 

observed. 

4.5.4 Solvent Degradation of PC/PLA and PC/PLA/Graphene Composites. 

The untreated, annealed, and graphene-containing blends of varying PC/PLA compositions were 

subjected to the solvent degradation regime at 50°C.  The change in weight of the untreated 

PC/PLA molded panels after exposure to the pH 10 carbonate buffer is given in Figure 4.41:  
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Figure 4.41: Weight loss of untreated PC/PLA molded panels during exposure to carbonate buffer. 

Here, it is clear that the parts that were increasingly PLA-rich lost increasing amounts of mass, as 

the PC phase is much more stable; we can recall Figure 4.12 and see that sample 100NT lost 

about 16% of its mass for comparison.  Further, this set of data is the only one besides the 98-

100% PLA panels to show any weight loss; this seems to suggest that the heat and graphene 

treatments provided enough of a barrier to diffusion that only bulk degradation took place.  This 

also confirms the PLA phase is susceptible to highly basic solutions and that even with 

polycarbonate present, there must be enough PC phase so that the vulnerable PLA is 

encapsulated to protect it. 

The next step in evaluating the durability of the PC/PLA blends and composites is to observe the 

change in viscosity after degradation has taken place. The rheological plots in Figures 4.42-44 

are for plaques of all treatment options of the blend containing 79-80% PLA content: 



85 

Shear Frequency (rad/s)

0.1 1 10 100

C
o

m
p

le
x
 V

is
c
o

s
it
y
 (

P
a

-s
)

100

1000

10000

no exposure

7 days exposure

14 days exposure

21 days exposure

42 days exposure

80NT 170°C
distilled H

2
O

 

Figure 4.42: Viscosity change of untreated 80% PLA panels after exposure to distilled water. 
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Figure 4.43: Viscosity change of untreated 80% PLA panels after exposure to distilled water. 
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Figure 4.44: Viscosity change of 79% PLA/graphene panels after exposure to distilled water. 

Unlike the viscosity loss curves shown for the 98-100% PLA blends with different treatments, 

these materials have retained the shear-thinning characteristic of polymeric melts.  Further, we 

can see that while appreciable degradation has taken place over the 42 days of aging, the 

materials have not been completely destroyed like those containing only PLA.  The next step is 

to again show the plots of each treatment at 1 rad/second to compare the effect of each treatment 

option in Figure 4.45: 
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Figure 4.45: Comparison of viscosity loss between 79-80% PLA blends with varying treatments. 

Here, the untreated panel lost about 85% viscosity compared to roughly 75% for both the 

annealed and graphene-containing materials.  This shows that the treatments have a tangible 

effect but are definitely insufficient protection against solvent degradation.  Therefore, the best 

technique is to continue to increase the amount of polycarbonate present.  Figures 4.46-49 show 

the complex viscosity as above for the remaining compositions with increasing PC content: 
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Figure 4.46: Comparison of viscosity loss between 59-60% PLA blends with varying treatments. 
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Figure 4.47: Comparison of viscosity loss between 39-40% PLA blends with varying treatments. 
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Figure 4.48: Comparison of viscosity loss between 29-30% PLA blends with varying treatments. 
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Figure 4.49: Comparison of viscosity loss between 19-20% PLA blends with varying treatments. 
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Figure 4.50 Comparison of viscosity loss between 0% PLA blends with varying treatments. 

The omitted total viscosity curves may be found in Appendix A.  As the PC content increases, 

there is a demonstrably better retention of viscosity for the materials.  The percentage viscosity 

loss for each material and treatment is listed here in Table 4.5, including the values for the PLA-

only samples previously described: 

Table 4.5: Viscosity loss at 1 rad/s after 42 days aging for the PC/PLA and PC/PLA/graphene composites. 

PLA content (%) no treatment annealed graphene annealed/graphene 

98-100 -99.9 -99.4 -99.5 N/A 

79-80 -86.7 -75.0 -74.6 N/A 

59-60 -94.0 -73.0 -94.1 N/A 

39-40 -94.5 -98.3 -97.9 -88.0 

29-30 -62.8 -22.4 -67.9 -87.8 

19-20 -84.6 -72.2 -66.4 -63.8 

0 +60.8 N/A -15.1 N/A 

 



91 

From these data it becomes very clear that any material that is PLA-rich is unsuitable for any 

durable application and that about 30% PLA content is the maximum desirable loading.  The 

increase in viscosity for sample 0NT is unusual but is supported by several replications.  

Depending on the treatment, one can minimize viscosity loss to about 15-30% at compositions 

containing 30% PLA or less.  Interestingly, these data suggest that materials that are both 

annealed and that contain graphene do not have an improved resistance.  The next step is to again 

observe the behavior of the PC/PLA and PC/PLA/graphene composites after aging in the 

environmental chamber. 

4.5.5 Hydrolytic Degradation of PC/PLA and PLA/Graphene Composites. 

4.5.5.1 Effect of Hydrolytic Degradation on Mechanical Properties. 

The initial flexural properties of the PC/PLA blends and composites are given here in Figures 

4.51-53: 
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Figure 4.51: Initial flexural modulus of the PC/PLA and PC/PLA/graphene materials with various treatments. 
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Figure 4.52: Initial flexural strength of the PC/PLA and PC/PLA/graphene materials with various treatments. 
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Figure 4.53: Initial flexural ductility of the PC/PLA and PC/PLA/graphene materials with various treatments. 
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Figure 4.51 shows an expected result, but not for the strength and ductility; there may be a 

composition-based antagonism occurring in some formulations.  Materials that are PLA-rich 

with any treatment are brittle and have low flexural strength as a result, but as the amount of 

highly ductile PC increases the materials become more ductile; we can also see that PLA has a 

higher modulus than PC.  Annealing the PLA-rich samples improves the modulus and strength 

slightly as expected, but these materials are very brittle as well.  As before, the change in flexural 

strength with aging is reported in Figure 4.54-57: 
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Figure 4.54: Flexural strength loss of untreated PC/PLA bars after hydrolysis. 
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Figure 4.55: Flexural strength loss of annealed PC/PLA bars after hydrolysis. 
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Figure 4.56: Flexural strength loss of PC/PLA/graphene bars after hydrolysis. 
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Figure 4.57: Flexural strength loss of annealed PC/PLA/graphene bars after hydrolysis. 

Samples without treatment that are PLA-rich lose flexural strength and ductility very rapidly and 

are again shown to be too dimensionally unstable for use in durable applications.  In terms of 

treatment options, both the annealing and graphene samples that are only 40% PLA content (that 

is, still PC-rich!) are unsuitable for durable use as they are simply too brittle.  Figure 4.56 shows 

that annealed/graphene samples with 30% PLA content or less should be sturdy and sufficiently 

ductile for harsh environment applications. 

The final examination of the PC/PLA and PC/PLA/graphene materials will come in the form of 

hydrolysis experiments carried out on pellets, again to remove any effect of diffusion resistance 

and give the worst-case data. 

4.5.5.2 Effect of Hydrolytic Degradation on PC/PLA and PC/PLA/Graphene Composites.  

The absolute values of the melt flow indices after varying exposure to the hydrolysis 

environment are plotted in Figures 4.58-61: 
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Figure 4.58: Increase in MFI of untreated PC/PLA pellets after hydrolysis. 
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Figure 4.59: Increase in MFI of annealed PC/PLA pellets after hydrolysis. 
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Figure 4.60: Increase in MFI of PC/PLA/graphene pellets after hydrolysis. 
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Figure 4.61: Increase in MFI of annealed PC/PLA/graphene pellets after hydrolysis. 
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At first glance, the values for the different treatment options do not seem to indicate any 

discernable differences apart from the profound effect of composition.  The annealed/graphene 

pellets also show this trend, where there is not much change in MFI with exposure but rather the 

difference lies in the formulation.  We may now re-plot these figures and show the percent 

change of MFI to see if trends emerge in Figures 4.62-65: 
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Figure 4.62: Normalized change in MFI for untreated PC/PLA pellets. 
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Figure 4.63: Normalized change in MFI for annealed PC/PLA pellets. 
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Figure 4.64: Normalized change in MFI for PC/PLA/graphene pellets. 
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Figure 4.65: Normalized change in MFI for annealed PC/PLA/graphene pellets. 

For the untreated, annealed and graphene-containing samples, any composition above 30% PLA 

loading shows a significant increase in MFI after the 7 day exposure; the annealed/graphene 

pellets all give more satisfactory results.  It is noted that both the untreated PC and the 

PC/graphene samples have essentially zero change in MFI, so it is likely in the other 

compositions that all of the increase comes from the degradation of the PLA phase.  Therefore it 

is easy to generate an overall theme based on this set of results. 

4.6 Commentary on PC/PLA and PC/PLA/Graphene Durability. 

The same set of initial characterization and degradation experiments performed on PLA-only 

materials was reproduced using binary (PC/PLA) and ternary (PC/PLA/graphene) formulations 

to attempt to improve the very poor durability.  It was shown that the presence of moderate to 

high polycarbonate loading does not significantly alter the crystallization of the PLA phase, but 

60% or higher PC concentrations interfere with the kinetics.  The effects of annealing, graphene 

addition and the combination of both on material durability were investigated; it was again 

shown that both treatments create a transient diffusion barrier which can slightly increase the 

usable lifetime of materials, but the complete encapsulation of PLA by PC is shown to have a 
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tremendous effect on durability, as the PC is much more hydrolytically stable.  Samples with 

30% PLA phase or less are much more stable than any PLA-rich composition with any treatment 

option. 

The last processing objective to investigate is to alter the interfacial morphology of a fully 

encapsulated blend.  If the droplet structure can be affected by different mixing conditions, then 

it may be possible to create morphologies that minimize interfacial surface area which could 

create another diffusion barrier and increase the service life cycle of the PC/PLA blends.  

4.7 Fully Encapsulated 70/30 PC/PLA Blends. 

This set of fully encapsulated blends was examined to ascertain if any changes in processing 

conditions could affect the morphology in a significant way that could improve hydrolytic 

stability.  The following table describes the internal mixing conditions used to fabricate these 

compositions: 

Table 4.6: Mixing conditions for encapsulated 70/30 PC/PLA blends. 

Sample Mixing Conditions 

30B 240°C-40 rpm-5 minutes 

30C 240°C-80 rpm-5 minutes 

30D 240°C-40 rpm-3 minutes 

30E 240°C-80 rpm-15 minutes 

 

The extruded composition 30NT was used as a reference material.  The morphologies of these 

blends were collected in the same manner as all previous materials using the SEM and are shown 

in Figure 4.66: 
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Figure 4.66: Images of internally mixed 70/30 PC/PLA blends 30B-E. 

The small letter at the bottom right of each image denotes which blend is shown.  Droplet sizes 

were calculated as before, and here sample 30NT is included as well in Table 4.7: 

Table 4.7: Particle sizes for the 70/30 PC/PLA blends. 

Sample dB avg diam. d43 (µm) num. avg diam. d10 (µm) 

30NT 1.30 0.93 

30B 3.46 1.25 

30C 5.90 1.70 

30D 1.54 0.75 

30E 2.83 1.30 

 

Comparing these results to those from the previous blends, the sizes are similar to those of the 20 

and 30% PLA materials; it seems that the PC-rich blends provide morphologies with smaller 

dispersed phase droplets than those that are PLA-rich. Knowing the composition of these blends, 



103 

one can show through a mass balance that in a highly theoretical sample of perfect mono-

disperse spheres, a morphology that contains only particles that are d10 size will have an 

interfacial surface area that is d43/d10 times larger than a morphology that consists of spheres that 

are d43 in size.  This is sensible because for a given volume of dispersed phase particles, a large 

number of smaller droplets will have a larger surface area than a small number of large particles. 

For another highly stylized representation of these morphologies, if the d43 and d10 particle sizes 

for material 30NT are used as a benchmark, then the internally mixed samples would have the 

following normalized interfacial areas in Table 4.8: 

Table 4.8: Theoretical interfacial surface areas of internally mixed 70/30 blends with respect to extruded blend. 

Sample d43 surface area relative to 30NT (%) d10 surface area relative to 30NT (%) 

30NT 100 100 

30B 37.5 74.4 

30C 22.0 54.7 

30D 84.4 124 

30E 45.9 71.5 

 

If there is an effect of morphology on the degradation resistance of these blends, one should 

logically expect that the internally mixed samples with the smaller particle sizes should be 

slightly less resistant than material 30NT with the larger particles. 

These samples were not analyzed for any crystalline domains as this was not the focus of the 

investigation; the only effect of interest was that of the particle size.  Further, as we have shown 

in the previous sections, the influence of crystallinity is dramatically overshadowed by the effect 

of polycarbonate loading.  We again examine the results of solvent and hydrolytic degradation 

for these materials. 

4.7.1 Solvent Degradation of Fully Encapsulated PC/PLA Blends. 

Compression molded panels of these blends were exposed to distilled water at 50°C for up to 42 

days aging.  None of the panels lost any appreciable mass during this time; because the PLA was 

encased by the much more stable PC phase this was not unexpected.  The viscosity changes for 

the various morphologies are shown as the following Figures 4.67-71: 
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Figure 4.67: Viscosity change of sample 30NT after distilled water degradation. 
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Figure 4.68: Viscosity change of sample 30B after distilled water degradation. 
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Figure 4.69: Viscosity change of sample 30C after distilled water degradation. 
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Figure 4.70: Viscosity change of sample 30D after distilled water degradation. 
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Figure 4.71: Viscosity change of sample 30E after distilled water degradation. 

From these figures it is not clear which material has the best viscosity retention, so we plot again 

the viscosity of all at 1 rad/s shear frequency in Figure 4.72: 
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Figure 4.72: Comparison of viscosity loss between 30% PLA blends of different internal morphologies. 

Here we can see that there is not a great deal of difference between any of the blends, but it is 

clear that sample 30B and D have the best viscosity retention by the end of 42 days aging and 

sample 30E has performed the worst.  Recalling Table 4.7, we observe while 30B has the 2nd 

largest droplets and 2nd smallest relative area, the next best performing materials 30D have the 

2nd smallest drops and 30NT has the smallest droplets.  The viscosity loss is tabulated here as it 

was in Table 4.4 for the blended materials: 

Table 4.9: Viscosity loss at 1 rad/s after 42 days aging for the 30% PLA blends of different internal morphologies. 

Sample Viscosity loss (%) 

30NT -62.8 

30B -32.0 

30C -69.1 

30D -63.2 

30E -69.5 
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Since these results are clearly counterintuitive, it may be the case that the particle sizes are either 

too similar to have a profound difference in stability or that the particle size does not in fact 

matter; compiling the additional data will help explain these observations.  A speculation could 

be made at this point that the materials with the best viscosity have been those that were 

processed the least.  It is well known that excessive shear and thermal histories can degrade 

polymers, but more data need to be examined to verify this claim. 

The next data to examine is the effect of hydrolysis on flexural properties and melt flow. 

4.7.2 Hydrolytic Degradation of Fully Encapsulated PC/PLA Blends. 

The initial mechanical properties of the encased PLA blends are given in Figures 4.73-75: 
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Figure 4.73: Initial flexural modulus of the encapsulated 70/30 PC/PLA blends. 
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Figure 4.74: Initial flexural strength of the encapsulated 70/30 PC/PLA blends. 
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Figure 4.75: Initial flexural ductility of the encapsulated 70/30 PC/PLA blends. 
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It is clear from the error bars that those materials internally mixed are statistically no different 

from each other.  Single-factor ANOVA was performed on this data using a built-in Excel toolkit 

and showed that only the ductility of the extruded material 30NT was statistically different from 

the other data.  Therefore, we can say the materials have roughly identical initial properties. 

These molded bars were aged for up to 42 days to simulate 1 year of outdoor exposure.  The 

flexural strength retention of the materials is given here in Figure 4.76: 
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Figure 4.76: Flexural strength loss of encapsulated 70/30 PC/PLA blends of different internal morphologies. 

After the 42 day exposure, the materials had about 85% at worst and 92% at best of the initial 

flexural strength remaining, a very good result if compared to any PLA-rich composition.  In the 

worst case, samples 30NT, 30C and 30D had ductility reduction to about 75% of initial after the 

42 day period.  These results also do not comport with the hypothesis about interfacial surface 

area as 30NT had the smallest particles and 30C had the largest.  Therefore, it cannot be said 

based on these results that the droplet morphology has played a role on the degradation 

resistance thus far.  However, all the samples had superior resistance compared to any PLA-rich 
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composition and even the worst performing blends still retained properties fairly well after 1 year 

equivalent aging. 

Next, pellets of the fully encapsulated blends were subjected to hydrolysis for up to 7 days.  The 

absolute value of the melt flow indices is plotted in Figure 4.77: 
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Figure 4.77: Increase in MFI of extruded and internally mixed encapsulated 70/30 PC/PLA blends. 

While it is clear that sample 30E processed at the most aggressive conditions has the largest MFI 

(and hence lowest viscosity), the remaining materials are similar with initial values of roughly 7 

g/10 minutes increasing up to about 10 after 7 days exposure time.  The percentage change will 

give additional information, shown in Figure 4.78: 
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Figure 4.78: Normalized change in MFI for extruded and internally mixed encapsulated 70/30 PC/PLA blends. 

Viewed in this light, the extruded material has the lowest increase followed by samples 30D and 

30B, which are similar results obtained from the viscosity reduction plots.  This seems to suggest 

strongly that in the circumstances investigated here, the effect of thermal and shear history from 

the compounding step has outweighed the effect of internal droplet morphology. 

4.8 Commentary on Fully Encapsulated 70/30 PC/PLA Blend Durability. 

In this section we have compared a number of blends in which 70% polycarbonate phase was 

used to completely encase 30% PLA into discontinuous droplets throughout the PC matrix.  It 

was hypothesized that alteration of the droplet structure to minimize their total area would be an 

avenue to increase the blends’ durability.  Investigation of the structure showed volume average 

particle sizes to range between about 1.3 to about 5.9 µm in diameter, which would correlate to a 

sizable difference in interfacial area.  However, degradation experiments did not show clear 

evidence that morphology played a role in increasing diffusion resistance or minimizing 

degradation.  While it may be possible that there was not a significant enough difference in 

morphologies to realize any effect, there is stronger evidence that in this regime the effect of 
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thermal and shear history plays a larger role than structure, so long as the PLA remains totally 

encapsulated by the more stable polycarbonate phase. 

The final analysis is to examine the effect of increasing diffusion resistance by creating 

specimens of varying thickness.  Like the annealing treatment and inclusion of graphene 

previously, increasing the part thickness to retard diffusion will only be a transient effect.  

However, it is one we wish to quantify. 

4.9 Effect of Specimen Thickness on PC/PLA Blend Durability. 

Diffusion can be thought of most simply as the action of mass transfer through molecular 

movement rather than by means of velocity such as with advection.  This action is known to 

occur fairly rapidly in either gases or liquids but is slower in solids.  Thus, by increasing the 

dimensions of a solid specimen, there is additional material present through which attacking 

species or media must diffuse through in order to reach the centerline of the object. 

Let us consider a flexural bar exposed to the humidity chamber as an example.  A representation 

of this situation is given in Figure 4.79: 
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Figure 4.79: Representation of flexural bar exposed to humidity chamber. 

There is some concentration of water vapor Cw that the surface of the bar is exposed to, which 

will gradually penetrate into the body of the bar in the x-direction as time goes on.  In this case, 

the aspect ratio of the bar is large so we can make an approximation that the surface is the 

dominant area over which diffusion takes place and we can ignore the ends and sides.  There will 

be a concentration profile inside the bar that is a function of time and position.  The boundary 

conditions for this situation are: 
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𝐶(𝑥, 𝑡 = 0) = 0                                                             [4.3] 

𝐶(𝑥 = 𝐿, 𝑡) = 𝐶𝑤                                                           [4.4] 

𝜕𝐶

𝜕𝑥
(𝑥 = 0, 𝑡) = 0                                                           [4.5] 

Which describe that initially there is no moisture inside the bar, the surface concentration is 

always equal to that of the humidity chamber (making the assumption that whatever moisture 

that penetrates into the bar does not reduce the concentration of moisture in the air) and that the 

concentration profile inside the bar is symmetric.  The concentration profile for similar cases has 

been solved previously (e.g99, and is given below): 

𝐶

𝐶𝑤
= 2∑ (−1𝑛)∞

0 𝑒𝑟𝑓𝑐(
𝑥(2𝑛+1)

√4𝐷𝑡
)                                              [4.6] 

Where x is the thickness of the bar, D is the diffusion coefficient of water in the polymer and the 

complementary error function can be found in any mathematics textbook.  Literature suggests 

that the diffusion coefficient for moisture in 95/5 L/D PLA is approximately100 0.2*10-6 cm²/sec 

and is about the same for PC101 at 50°C and 90-100% relative humidity.  Using these values, we 

can calculate that the time required for the centerline of the bars (0.127 cm for thin, 0.238 cm for 

thick) to reach 50% of the moisture concentration of the air/water vapor would be about 8.5 

hours for the thin bar and 29.7 hours for the thick bar.  Thus, there is a theoretical advantage in 

retarding diffusion by increasing the thickness of the bars, which was investigated 

experimentally. 

4.9.1 Comparison of Thin-Walled and Thick-Walled Flexural Bars. 

As mentioned in Chapter 3, two thicknesses of flexural bars were compression molded.  Steel 

molds of nominal thickness 1/10 and 3/16 inches (2.54 and 4.76 mm, respectively) were used to 

cast these bars, which were then subjected to hydrolysis for up to 42 days exposure.  The initial 

properties of the thin and thick bars are given in Figures 4.80-82: 
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Figure 4.80: Initial flexural moduli of the thin and thick molded untreated PC/PLA blends. 
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Figure 4.81: Initial flexural strength of the thin and thick molded untreated PC/PLA blends. 
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Figure 4.82: Initial flexural ductility of the thin and thick molded untreated PC/PLA blends. 

Like previous samples, the flexural modulus appears to be linearly proportional with 

composition for both thin and thick samples, while the strength and ductility suffer at 60-80% 

PLA concentration.  It is likely in these cases that the PC phase for these formulations are acting 

as impurities or stress concentrators (much like large aggregates of graphene would) which 

damage the mechanical properties.  Comparing Figure 4.81 with 4.82, the thicker materials have 

slightly higher flexural strength and slightly lower ductility than the thinner bars; it is known that 

part thickness can have an effect on mechanical properties.  It is also possible that once parts 

reach a critical thickness, the failure mode can change from ductile to brittle (e.g.102). This is 

related both to sample thickness and rate of mechanical loading, which suggests this critical 

point is where the material can no longer deform as rapidly as stress is applied and therefore 

brittle fracture occurs.  In this work, however, that limit has not been reached.  

In the following plots, bars made from materials 100NT and 80NT are omitted as these 

underwent severe degradation so rapidly that long-duration analysis was not performed.  
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Therefore, the change in flexural strength and ductility are shown for untreated flexural bars 

containing 60% PLA phase or less in Figures 4.83-84: 
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Figure 4.83: Flexural strength loss of thin and thick molded untreated PC/PLA blends. 
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Figure 4.84: Flexural ductility loss of thin and thick molded untreated PC/PLA blends. 
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The 60NT samples in both cases showed tremendous property losses by the end of 42 days 

degradation, which confirms that any PLA-rich composition is too unstable for a durable 

application.  Here, there only appears to be an improvement visible with the ductility loss of the 

thin vs. thick 30NT composition after 42 days; as the amount of PLA is decreased the effect of 

thickness should be reduced.  In the other cases the effect of increasing thickness appears to be 

negligible.  It is entirely plausible that by using a wider range of dimensions some significant 

effect of diffusion resistance may appear, but across this thickness range from roughly 2.5 to 4.5 

mm no appreciable difference was observed, as the exposure times were much longer than the 

calculated time for significant diffusion to occur.  Therefore, our previous speculation that the 

rate of diffusion is much faster than the hydrolysis reaction seems to hold true; furthermore, 

since the diffusion coefficient for both PC and PLA has been published to be the same, this 

would also explain why the effect of interfacial areas for the fully encapsulated blends was 

minimal.  Therefore, if one wishes to attempt this avenue of creating more durable composites 

two caveats must be addressed, as parts would need to become exceedingly thick: materials will 

behave unexpectedly if the critical ductile-to-brittle transition is exceeded and since both PC and 

PLA are fairly dense polymers (density around 1200 kg/m³), part weight would quickly become 

a negative factor. 

Having completed the degradation research across a large range of formulations and treatment 

options, we may now make conclusions and recommendations based on the findings. 
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CHAPTER 5 

5 CONCLUSIONS AND RECOMMENDATIONS. 

5.1 Conclusions. 

The research focus of this work was to create durable plastic materials and composites that 

contained significant renewable and ecologically friendly polylactic acid polymer.  To complete 

the study, several techniques were employed; exploiting the crystalline nature of the PLA 

polymer to enhance properties and chemical resistance, adding barrier materials to retard 

diffusion and strengthen the material, blending in a sturdier plastic phase, and attempting to alter 

the interfacial morphology of PC/PLA blended material to provide more chemical resistance.  As 

a result of undertaking these studies, we can make the following conclusions: 

 Polylactic acid polymer by itself is simply not durable enough to withstand our tests 

aimed at replicating up to 1 year outdoor exposure.  Because the material is derived from a 

low molecular weight ester monomer, the overall concentration of ester bonds in the 

backbone is quite high which leads to extensive hydrolysis over time. 

 By annealing the PLA polymer or otherwise enhancing the crystallinity, the material 

becomes slightly more mechanically stable but less ductile.  This is due to rearrangement 

of polymer chains into a more regular structure, which enhances intermolecular hydrogen 

bonding.  These crystal structures provide better resistance to chemical attack than do 

amorphous segments by virtue of excluding species and ions from the crystal gallery 

spacing.  However, as PLA polymer is fundamentally prone to hydrolysis and even the 

crystalline regions will break down over relatively short timescales, improving the 

crystallinity is a short-term solution and ceases to be effective once diffusion resistances 

are overcome.  Additionally, annealing the materials either in the mold or post-molding 

creates a higher cost for the materials and therefore may be impractical. 

 The addition of graphene nano-platelets at 2% weight loading also serves to slightly 

improve mechanical properties at the expense of ductility.  Furthermore, we have shown 

that graphene can act as a nucleating agent for PLA crystallization which improves the 

crystallization kinetics but does not alter the amount of crystal growth or the dimensions 
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of crystals that are formed.  Then, unlike the crystalline PLA domains, the graphene sheets 

will not erode over hydrolytic exposure, providing a permanent barrier within the plastic 

composite.  Unfortunately, species will still eventually diffuse around these barrier plates, 

and then the PLA phase will ultimately degrade.  As such, the addition of graphene is also 

a short-term solution. 

 By compounding the PLA polymer with polycarbonate, a wide variety of compositions 

were created.  As was previously determined, the two phases are found to be 

thermodynamically immiscible.  Image analysis showed that depending on composition, 

either phase could become the matrix or dispersed phase, or when blended in roughly 

equal proportions a co-continuous phase would form.  Addition of the PC phase was not 

shown to have an effect on the crystallization of PLA-rich blends, but difficulty was 

encountered when attempting to analyze the kinetics of materials containing less than 40% 

PLA. Degradation experiments showed that once the blended materials became PC-rich, 

they were much more stable over time.  Ideal blends are created with the polycarbonate 

totally encapsulating the less stable PLA phase, which occur at PLA concentrations of 30 

weight percent or less.  Aging experiments up to 1 year outdoor equivalent showed these 

materials to have promising hydrolysis resistance and maintenance of physical properties. 

 PC/PLA blends were compounded together in an internal mixer at constant 70/30 

composition in order to evaluate the effect of droplet size and interfacial surface areas.  

Five different processing conditions were used which gave number average particle sizes 

ranging from about 0.8 to 1.7 m, and volume average sizes from about 1.3 to 5.9 m.  

The effect of morphology was not clear-cut based on evaluation of degradation results.  It 

may be that the morphologies were not significantly different enough to observe any 

effects, or that since the diffusion coefficient for water moving through both PC and PLA 

is the same there may be no advantage in altering the morphology. The results seem to 

suggest that thermal and mechanical shear history play a more important role.  Samples 

that received the most aggressive mixing history tended to be less durable in the face of 

degradation, likely due to molecular weight loss. 

 By increasing the thickness of molded samples, a diffusional resistance can be added.  

While this does not alter the inherent stability of the material, it can provide a transient 
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barrier which can enhance the usable lifetime of the formulations.  In this work, we have 

found that the rate of diffusion into the polymer bulk is much faster than rate of PLA 

hydrolysis.  For instance, the viscosity of all treatments of 98-100% PLA was reduced to 

nearly zero after 42 days of exposure to solvents and distilled water at 50°C.  By using the 

complementary error function solution, it was determined that the time required for the 

concentration of moisture at the centerline of a 3 mm thick plaque to reach half the outside 

concentration was about 11.8 hours.  Therefore, we can be confident in claiming that 

diffusion into the PLA bulk by water or other species is very fast with respect to the 

hydrolysis reaction.  

 Based on these findings, it is recommended that materials must contain at minimum 70% 

polycarbonate matrix phase in order to maintain chemical and dimensional stability.  

These materials should also be compounded in a processing space which can adequately 

blend and disperse the PLA phase while minimizing thermal history and degradation.  

Lastly, since the PLA phase is dispersed in the ideal compositions, annealing and adding 

graphene in these composites can add an extra short-term boost in degradation resistance 

without causing unwanted embrittlement, but this effect is very small compared to total 

encapsulation by polycarbonate.  Once this occurs, the material takes on the properties of 

the matrix phase. 

We may also make a few recommendations for additional studies based on the information we 

have obtained. 

5.2 Recommended or Plausible Further Studies. 

The following concepts or topics may be of interest for future workers: 

 Determine if a precise composition exists for maximum PLA content that is still fully 

encapsulated by the PC phase.  Polycarbonate is a great deal more stable and has favorable 

mechanical properties as the matrix phase, especially ductility.  Based on our findings with 

these particular raw materials, a maximum concentration could consist of between 30%-

40% polylactic acid by weight.  This would likely be a difficult endeavor with the available 

extruder based on throughput and metering capability and therefore should be considered 

as an internal mixing project. 
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 While it is likely a goal of industrial research, investigate if an accurate processing-

structure-property relationship can be found for these materials.  If so, one could 

presumably decouple the effects of material morphology from differing thermal and 

processing histories required to generate those structures. 

 An unquestionably important role of industrial polymer scientists is to create optimized 

formulations depending on manufacturers’ and customers’ desired end applications.  In this 

case, we know that PLA is much less chemically resistant and stable than polycarbonate.  

Therefore, while it may prove challenging in an academic setting, one may be interested in 

the effects of compounding in any number of (for example) thermal, hydrolytic, or even 

photo-oxidative stabilizing agents in an effort to enhance the PLA stability.  Given the 

normal sub-percentage additions of these additives, this would almost certainly require use 

of the internal mixer for making precise formulations as metering capability with the 

current extruder and control systems is not sufficient.  

 In the past few years, many publications have been written attempting to incorporate 

graphene and graphite sheets into composite materials.  Authors often employ pre-

processing steps on the inorganic additives; it has become conventional knowledge that 

polymer processing typically does not provide adequate energy input to fully exfoliate 

these materials.  One could then attempt a study which links processing of a composite 

with subsequent analysis of the degree of dispersion of the graphene phase, and then to 

correlate the graphene structure with changes in physical and/or barrier properties.  This 

could be especially interesting if performed in a multi-phase polymer blend. 
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Appendix A: Viscosity Curves for Solvent Degradation 
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Figure A 1: Viscosity change of sample 60NT after distilled water degradation. 
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Figure A 2: Viscosity change of sample 60A after distilled water degradation. 
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Figure A 3: Viscosity change of sample 60G after distilled water degradation. 
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Figure A 4: Viscosity change of sample 40NT after distilled water degradation. 
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Figure A 5: Viscosity change of sample 40A after distilled water degradation. 

Shear Frequency (rad/s)
0.1 1 10 100

C
o

m
p

le
x
 V

is
c
o

s
it
y
 (

P
a

-s
)

10

100

1000

10000

no exposure

21 days exposure

42 days exposure

40G 200°C
distilled H

2
O

 

Figure A 6: Viscosity change of sample 40G after distilled water degradation. 
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Figure A 7: Viscosity change of sample 40AG after distilled water degradation. 
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Figure A 8: Viscosity change of sample 30A after distilled water degradation. 
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Figure A 9: Viscosity change of sample 30G after distilled water degradation. 
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Figure A 10: Viscosity change of sample 30AG after distilled water degradation. 
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Figure A 11: Viscosity change of sample 20NT after distilled water degradation. 
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Figure A 12: Viscosity change of sample 20A after distilled water degradation. 
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Figure A 13: Viscosity change of sample 20G after distilled water degradation. 
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Figure A 14: Viscosity change of sample 20AG after distilled water degradation. 
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Figure A 15: Viscosity change of sample 0NT after distilled water degradation. 
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Figure A 16: Viscosity change of sample 0G after distilled water degradation. 
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