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Abstract

Analysis Tools for Small and Big Data Problems

Juan Chen

The dissertation focuses on two separate problems. Each is informed by real-world appli-
cations. The first problem involves the assessment of an ordinal measurement system in
a manufacturing setting. A random-effects model is proposed that is applicable to this re-
peatability and reproducibility context, and a Bayesian framework is adopted to facilitate
inference. This first problem is an example of an analysis tool to solve a small data problem.

The second problem involves statistical machine learning applied to big data problems.
As more and more data become available, a need increases to automate the ability to iden-
tify particularly relevant features in a prediction or forecasting context. This often involves
expanding features using kernel functions to better facilitate predictive capabilities. Simulta-
neously, there are often manifolds embedded within big data structures that can be exploited
to improve predictive performance on real data sets. Bringing together manifold learning
with kernel methods provides a powerful and novel tool developed in this dissertation.

This dissertation has the advantage of contributing to a more-classical problem in statis-
tics involving ordinal data and to cutting edge machine learning techniques for the analysis
of big data. It is our contention that statisticians need to understand both problem types. The
novel tools developed here are demonstrated on practical applications with strong results.
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CHAPTER 1

INTRODUCTION

This dissertation investigates two challenging statistical problems. The first problem is the

assessment of ordinal measurement systems. An ordinal measurement system classifies pop-

ulation items into ordered groups, e.g., “poor,” “satisfactory,” or “good.” The ordinal re-

sponse model of de Mast and van Wieringen (2010) is the starting point for this effort, and

we extend this seminal work in two fundamental directions. First, we extend their mod-

eling framework to account for operators (i.e., the individuals classifying items on the or-

dinal scale) as random effects, and our proposed Bayesian framework makes this particu-

larly straightforward. Second, Vardeman and VanValkenburg (1999) surveyed the literature

on gauge repeatability and reproducibility (R&R) in the context of a linear random-effects

model for a continuous response, and we use the terminology from this work to define the

concept of R&R carefully for an ordinal response. Chapter 2 is a journal-ready paper ad-

dressing these ordinal R&R statistical challenges and is currently under review for publica-

tion.

The second problem involves statistical machine learning. Predictive performance as
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opposed to interpretation is often the application of a machine learner. A typical example

is the supervised learning problem of n complete data pairs (xxxi,yi) for i = 1, . . . ,n, i.e., a

feature data vector xxxi ∈ Rp and its corresponding response yi. This type of data source can

be organized in the familiar form of an n× p feature data matrix XXX and n× 1 response

vector yyy. The goal is then to predict the response y0 = NA of a new observation given

its corresponding feature vector xxx0. A challenge is that the ‘XXX’ matrix inputed to the user

may not directly be in the most useful form for prediction. This well-known concept is

presumably a point of emphasis in an introductory course on linear regression analysis. If

XXX represents a design matrix, additional columns (e.g., square terms for quadratic trends)

may need to be appended to XXX to form an adequate model matrix before applying a standard

linear regression subroutine.

In the modern era, there is still a need for the skilled analyst who can handle routine

regression analyses and provide interpretative value on smaller data sets, but the focus of the

machine learning portion of this dissertation is to automate elements of a prediction process.

Two competing schools of thought on processing the initially recorded feature information XXX

are dimensionality reduction and expansion. Dimensionality reduction includes kernel PCA

(Boser et al., 1992) and Laplacian approaches (Belkin and Niyogi, 2003). Such methods

ignore or marginalize irrelevant directions in XXX for the prediction task at hand (Kung, 2014).

This can be done on the rows and/or columns of XXX .

On the other hand, methods for dimensionality expansion include localized estimators.

The idea is to take a small p problem and capture the intrinsic local structure to improve per-

formance. Early examples of this type include k-Nearest Neighbors (k-NN), the Nadaraya-

Waston kernel, and LOWESS methods (Hastie et al., 2009). In this direction, kernel meth-

ods are established as having led to some of the most powerful machine learning techniques

(Kung, 2014).

Chapter 3 justifies a reproducing kernel Hilbert space (RKHS) setting as a dimensional-
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ity expansion approach that optimizes over a set of functions. As motivation for this RKHS

framework, a discussion of smoothing splines, a related dimensionality expansion technique,

is in Section 3.1. While splines have strong theoretical underpinnings when p = 1, they, un-

like the RKHS framework, neither extend naturally to larger p nor predict well on real data.

The presentation of the RKHS framework in Section 3.2 introduces the reader to the so-called

‘kernel trick,’ which provides a finite data kernel regression optimization that is equivalent to

the Hilbert space optimization of interest. In Section 3.3, the sequential minimal optimiza-

tion (SMO) is summarized (Platt, 1998). While this SMO heuristic gets around a quadratic

programming problem and enables the fitting of an SVM, Chapter 3 culminates in the neg-

ative result of Section 3.3.3. The related complications to the loss function fit by the SMO,

such as the so-called ε-sensitive loss function, underperform on real data benchmarks, and

this directs our search for practical methods in Chapter 4 on optimization problems with

standard loss functions such as square error loss for regression or logistic loss for classifi-

cation. Our novelty and contribution in Chapter 4 comes from developing penalty functions

that effectively boost performance on real data.

In this regard, Chapter 4 proposes two novel prediction methods: a Safe Semi-Supervised

Kernel Model (S3KM) and an anchor graph S3KM (AS3KM). Both methods are principled

on a RKHS via the ‘kernel trick.’ In addition, each can directly help assess the potential of

semi-supervised learning. Under a semi-supervised paradigm, a full feature matrix XXX may

be available, but some proper subset of the responses is missing, and this partitions the index

set i = 1, . . . ,n for the n observations into the labeled and unlabeled sets, where the unlabeled

set is defined as all observations with a missing response, i.e., {i : yi = NA} ⊂ {1, . . . ,n}.

There are a number of ways to motivate semi-supervised learning. For example, the xxx-

data may be readily available or cheaper than the response y. A example is credit scoring. All

potential customers who applied for a loan in the past submitted their application containing

the xxx-data, but suppose the bank now wants to start offering loans to a new customer segment.
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If this customer type was previously denied loans, then a default response on the loan yes

(y = 1) or no (y = 0) is not available for the new customer segment of interest.

Semi-supervised approaches hold the promise of using all the available information in

the labeled and unlabeled sets to improve performance, and there are number of approaches

in the literature for how one might go about this. One such concept is based on the cluster

assumption (Chapelle et al., 2006a). This uses the XXX data to implicitly find manifolds (i.e.,

clusters) and assumes that the manifolds have predictive value (Hein et al., 2005). In a

sense, much of this semi-supervised literature was created in a bubble. Simulations hand

picked the probability models (or tuning parameter values) to make a proposed technique

flourish, and restrictive semi-supervised smoothness assumptions reinforced the need for

these manifold or gap finding methods (Lafferty and Wasserman, 2008). Such activity was

extensive and included graph cutting (Wang et al., 2013), graph regularization (Zhou et al.,

2004; Belkin et al., 2006; Culp and Ryan, 2013), S3VM methods (Chapelle et al., 2006a,

2008), and several other approaches (Chapelle et al., 2006b), but did not necessarily translate

into methods ready to handle real data challenges.

On the other hand, a supervised learner computes a prediction rule from only the labeled

data, but these methods have a longer and more practical history. For example, supervised

packages such as caret (Kuhn, 2014) have computationally efficient and robust cross-

validation (CV) procedures and perform well on real (and noisy) data challenges. This helps

motivates the concept of safe semi-supervised approaches, i.e., semi-supervised approaches

that perform comparable to or better than a supervised counterpart. The proposed S3KM

and AS3KM have a built-in safety feature. Sections 4.3 and 4.4 include an analysis of the

turning parameter settings, some of which default to a safe and well-established supervised

baseline or alternative.

The type of gap finding semi-supervised approaches mentioned earlier perform poorly

when semi-supervised assumptions are even slightly perturbed on real data (Culp and Ryan,

4



2013; Singh et al., 2009). They often result in jagged classifications rules that are highly

sensitive to noise. The resulting degradation in performance is much worse than that for su-

pervised learning (Fernández-Delgado et al., 2014). In spite of this, the scale and availability

of unlabeled data makes the use of semi-supervised learning very appealing in applications

such as drug discovery, text analysis, and bioinformatics. The proposed S3KM and AS3KM

in Chapter 4 extend semi-supervised optimization paradigms for graph penalization (Zhou

et al., 2004; Belkin et al., 2006; Chapelle et al., 2006b) into the safe arena. This dissertation

conclusion with the summary and future research directions described in Chapter 5.
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CHAPTER 2

RANDOM EFFECTS MODELS FOR

REPEATABILITY AND

REPRODUCIBILITY OF ORDINAL

MEASUREMENTS

We use a Bayesian inferential approach to analyze ordinal repeatability and reproducibility

(R&R) data using the De Mast–Van Wieringen model (de Mast and van Wieringen, 2010).

We also consider a population of raters by extending the De Mast–Van Wieringen model

to random effects and define match-probability-based measures to decompose R&R into

contributions due to repeatability and due to reproducibility. These extensions are illustrated

with the De Mast–Van Wieringen R&R study data, although our motivation for this work

comes from a need to analyze ordinal data in a proprietary context.
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Keywords: Bayesian, Dirichlet distribution, fixed effects, Markov chain Monte Carlo.

2.1 Introduction

Ordinal data arise often in business and industry. For example, when visual inspection is

required to test for defects in a manufacturing context, the measurement scale of “poor,”

“fair,” “good,” “excellent” might be employed. As is the case with numerical measurements,

precision of ordinal measurements is important for quality control. Unlike the numerical

case, however, the state of the science for the assessment of repeatability and reproducibility

(R&R) in the context of ordinal data is not as well-developed. Standard methods for the

design and analysis of gauge R&R studies are well-known (see Burdick et al. (2005) for

a review); the lack of sufficient methods to carry out R&R analyses on ordinal data was

thoughtfully outlined by de Mast and van Wieringen (2010) in their seminal paper proposing

a latent variable model to assess R&R of ordinal measurements. Their frequentist inferential

approach provides estimates of R&R for a fixed group of operators. This paper offers an im-

portant extension to allow for random effects in the model, enabling us to treat the operators

as a sample from a larger population of operators, which likely is the case in many applica-

tions. Allowing for the inclusion of random effects will enable prediction of R&R for a new

operator for whom we currently do not have data. This implementation of this extension is

achieved through a novel application of a Bayesian inferential approach described in Section

2.3.

The random effects model presented in Section 2.3 also applies to situations where the

response is distributed over a finite set of numbers. For example, consider a manufacturing

setting where operators look for the presence or absence of H−1 features on units coming

off an assembly line. It may be more appropriate to model the distribution of the number

of features present on a unit 0,1, . . . ,H − 1 with a multinomial as opposed to a binomial

7



distribution because the trials corresponding to each feature are not necessarily identically

distributed.

Before defining the random effects modeling extension in Section 2.3, the fixed effects

model of de Mast and van Wieringen (2010) is briefly described in Section 2.2. Section

2.4 then looks at defining parametric functions to measure R&R in numerical and nominal

extremes. Data analyses based on the Section 2.3 model and Section 2.4 measures are given

in Section 2.5. The paper conclusions with a follow-up discussion in Section 2.6.

2.2 Latent Variable Model

When operators classify parts according to quality on an ordered scale, for example {1 =

poor,2 = fair,3 = good,4 = excellent}, the true value of the construct of quality is not di-

rectly measured in the classification process but falls somewhere along an underlying con-

tinuum. De Mast and van Wieringen (2010) considered the latent value for the quality of

a part and proposed a latent variable model conducive to the definition and computation of

R&R for ordinal measurements. That model is described here.

For now, assume a balanced design with I parts, J operators, K repeated measurements

for each operator/part. Also, let H be the number of categories for classification. Then

Yi jk ∈ {1,2, ...,H} is the category assigned to part i on the kth repetition by operator j. For

a fixed part i with a latent value of x, let q j(h|x) := P(Yi jk = h|Xi = x). Then q j(h|x) is a

function of x from R to [0,1] that specifies the probability operator j will label part i as being

in category h given the part’s true value of x. De Mast and van Wieringen (2010) proposed

q j(h|x) =
exp(∑h−1

m=1 α j(x−δ jm))

∑
H
n=1 exp(∑n−1

m=1 α j(x−δ jm))
. (2.1)

We model the cut-point parameters δδδ j = (δ j1, . . . ,δ j(H−1)) for operator j as ordered, i.e.,

8



δ j1 ≤ δ j2 ≤ ·· · ≤ δ j(H−1). In this case, functions q j(h|x) and q j(h+1|x) intersect at x = δ jh

for h = 1, . . . ,H − 1, e.g., see the upper left panel of Figure 2.1. The cut points define

operator j’s category boundaries such that part i is determined by operator j to most likely

be in category h if δ j(h−1)< xi < δ jh. The α j are positive scaling parameters such that smaller

(larger) values for α j correspond to flatter (steeper) curves for operator j. The steeper curves

resulting from the larger α j demonstrate an improved discrimination ability. That is, larger

α j are interpreted as better repeatabilities. Misaligned cut points between two operators

indicate problems with reproducibility.

The top four panels in Figure 2.1 are examples and demonstrate the effects of small versus

large α and aligned versus misaligned δδδ . In the upper two panels on the left, the probability

curves in Equation (2.1) are basically the same (i.e., aligned cut points resulting in stronger

reproducibility), whereas these curves are flat (i.e., small α resulting in weak repeatability).

In the panels on the right, the pattern is reversed. The curves are steep (i.e., higher α resulting

in stronger repeatability), but the curves are distinct across rows (i.e., misaligned cut points

resulting in weaker reproducibility). We revisit Figure 2.1 and its bottom row later in Section

2.4 after defining measures to decompose R&R into proportions.

To fit Model (2.1), de Mast and van Wieringen (2010) transform the response {Yi jk} into

{Ri jh} such that Ri jh = |{k|Yi jk = h}|, i.e., the number of repeats out of K for which the jth

operator assigns category h to part i. Note that ∑
H
h=1 q j(h|x) = 1, so if Ri j = (Ri j1, . . . ,Ri jH),

then

Ri j|δδδ j,α j,Xi = x ind∼ Multinomial(K,(q1(h|x), . . . ,qH(h|x))),

given an assumption of conditional independence. It is important to note that if the same

arbitrary scalar is added to the Xi and the cut points δδδ j, the multinomial probabilities defined

in Equation (2.1) do not change. That is, the model is unidentifiable. De Mast and van

Wieringen (2010) circumvented this identifiability problem by assuming the latent variables

9



were a random sample from the standard normal distribution, i.e.,

Xi
iid∼ Normal(0,1). (2.2)

Assuming complete data Ri jh = ri jh and Xi = xi are observed for all i = 1, . . . , I, j = 1, . . . ,J,

and h = 1, . . . ,H, the resulting likelihood is

LFixed(δδδ ,ααα) ∝

I

∏
i=1

[
φ(xi)

J

∏
j=1

H

∏
h=1

q j(h|xi)
ri jh

]
, (2.3)

where φ(·) is the probability density function of the standard normal distribution. De Mast

and van Wieringen (2010) used maximum likelihood estimation to estimate the α j and δ jm

parameters by integrating out the latent variables Xi with a Gauss-Hermite numerical integral

quadrature rule.

The subscript “Fixed” in LFixed(δδδ ,ααα) from Likelihood (2.3) reflects the fact that oper-

ators are treated as fixed effects in this estimation approach. However, in many contexts,

it is natural to want to model the operators as a random sample from some larger popula-

tion of operators; this is routinely done in R&R problems with continuous measurements.

However, authors who have tackled the more complex ordinal case, including de Mast and

van Wieringen (2010) and Deldossi and Zappa (2014), have thus far focused on establishing

R&R estimation approaches in the context of a fixed operator effect. In Section 2.3, we pro-

pose a random effects model based on the probability curves in Equation (2.1) and describe

our novel use of a Bayesian approach of parameter estimation that treats the latent variables

Xi for i = 1, . . . , I as additional parameters.

10
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Figure 2.1: The effects of small α = 1 with aligned cut points (column 1) versus large α = 3
with misaligned cut points (column 2) for two hypothetical pairs of operators. Rows 1 and
2 are the probability curves from Equation (2.1) for operators 1 and 2, respectively, with
dashed vertical lines at the cut points, and row 3 displays R&R measures. Each is plotted
against the latent part variable x.

2.3 Random Effects Model

In a design of experiments context, a factor is referred to as a random effect if its observed

levels are a subset of the levels of interest. The observed levels of a random effect are
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often modeled as a sample from some population with unknown parameters. In the R&R

context of the previous section, we propose to look at both the parts I and raters J as random

effects, whereas preceding work focused on treating only the parts as random effects. The

raters were treated as fixed effects making inference on the broader population of raters not

directly possible. For example, by also treating rater as a random effect, this work will

make a predictive inference concerning a new rater J + 1, for whom no data are available,

seamless. This predictive capability is revisited in the examples of Section 2.5. The purpose

of this section is to define the needed random effects extension. The likelihood and a general

use prior are defined in Sections 2.3.1 and 2.3.2.

2.3.1 The Likelihood

To extend Model (2.1) to a random effects model, we first model the scale parameters as

α j|µα ,τα

iid∼ Log Normal(µα ,τα), (2.4)

where µα and σα = 1/
√

τα are the mean and standard deviation of normally distributed

log(α j) for j = 1, . . . ,J. This notation parameterizes the log normal distribution in terms of

its precision τα = 1/σ2
α in order to line up with that used by JAGS (Plummer, 2015) and

our Bayes model implementation to come. Larger σα (or equivalently smaller τα ) implies

more heterogeneity between the scale parameters of operators, and larger µα implies an

expectation of steeper curves (e.g., recall the top two panels on the right of Figure 2.1).

Next, a distribution over ordered cut points is defined. This will be accomplished in-

directly by putting a distribution on the probability π jh that a randomly selected operator

records category h on a randomly selected part. With πππ j = (π j1, . . . ,π jH), let

πππ j|λλλ
iid∼ Dirichlet(λλλ ) (2.5)
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for j = 1, . . . ,J and define the transforms

δ jm = Φ
−1

(
m

∑
n=1

π jn

)
(2.6)

for j = 1, . . . ,J and m = 1, . . . ,H−1, where Φ−1(·) is the inverse of the cumulative distribu-

tion function of a standard normal random variable. The support of Distribution (2.5) is non-

negative vectors of length H summing to one, and the positive parameters λλλ = (λ1, . . . ,λH)

control the mean and variance of the components of πππ j, i.e.,

E[π jh|λλλ ] =
λh

λ0
, where λ0 =

H

∑
h=1

λh,

Var(π jh|λλλ ) =
λh(λ0−λh)

λ 2
0 (λ0 +1)

,

by the known properties of the Dirichlet distribution. For example, all λh = λ for some pos-

itive scalar λ implies that the probability vector with equal components of 1/H is expected.

Large values for λ imply lower variance because the variance formula is a quadratic divided

by a cubic polynomial. The induced distribution on cut points is necessarily ordered because

of the cumulative sum of probabilities in the Transformations (2.6). If the components of

parameter vector λλλ are large (small), we expect the cut points of two randomly selected

operators j1 and j2 to be aligned (misaligned) and for these two operators to exhibit strong

(weak) reproducibility in some definable sense to come.

Applying the above distributions for the scale parameters and cut points, the random

effects likelihood can be written as

LRandom(δδδ ,ααα,λλλ ,µα ,σα) ∝ LFixed(δδδ ,ααα)×
J

∏
j=1

[
1

σα α j
φ

(
log(α j)−µα

σα

)
Γ(λ0)∏

H
h=1 π

λh−1
jh

∏
H
h=1 Γ(λh)

]
, (2.7)

13



where Γ(·) is the gamma function. The form of the Random Effects Likelihood (2.7) is

the Fixed Effects Likelihood times an adjustment. This adjustment promotes a data-based

compromise between fixed separate analyses by operator and a single pooled analysis where

all operators are assumed to have the same parameters.

2.3.2 A General Use Prior

The Random Effects Likelihood (2.7) is more complex than that for Fixed Effects (2.3), and

the numerical analysis required to compute maximum likelihood estimates (MLEs) for either

likelihood is non-trivial, is prone to numerical instabilities, and might as a convenience result

in the application of large-sample approximate confidence interval procedures. On the other

hand, non-linear models with latent variables and their random effects extensions often lend

themselves to seamless Bayes implementation with direct calculation of the posterior of any

parametric function to quantify its uncertainty. But the price for this ease of implementation

is the work needed to test and justify a prior for a Bayesian analysis. When little prior

information is available, the concept is to simply stabilize the analysis and in turn to not

shrink the Bayesian estimates far from the MLEs. In this regard, we use

µα ∼ Normal(µµα
,τµα

),

τα = 1/σ
2
α ∼ Log Normal(µτα

,ττα
),

λh
iid∼ Log Normal(µλ ,τλ ) for h = 1, . . . ,H,

and suggest hyperparameter values of µµα
= 0.8, τµα

= 0.4, µτα
= 4, ττα

= 0.4, µλ = 2,

and τλ = 0.2 for general purpose use. The rationale is based on setting far extremes of the

parameter space equal to µ±1.96σ and solving the resulting equations.

• The middle 0.95 prior probability is on exp(µα) ∈ (0.1,50), so the the true median

of the distribution α j|µα ,τα is somewhere between very flat α ≈ 0.1 and very steep
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curves α ≈ 50 (recall Figure 2.1).

• The middle 0.95 prior probability is on exp(2 ∗ 1.96σα) ∈ (1.1,10). These extremes

make the 0.975 quantile of α j|µα ,τα either 1.1 or 10 times that of the 0.025 quan-

tile, so the distribution of α j from operator-to-operator is either homogeneous (1.1

extreme) or heterogeneous (10 extreme).

• The middle 0.95 prior probability is on λk ∈ (0.1,500), so the prior distribution on cut

point distributions spans a range from an aligned (500 extreme) to a misaligned (0.1

extreme) cut point distribution.

Two approaches are used in Section 2.5 to validate the robustness to this prior choice. The

first is in the context of a real data analysis. The endpoints of the intervals (0.1,50), (1.1,10),

(0.1,500) used to define this prior are changed by an order of magnitude to (0.01,500),

(1.01,100), (0.01, 5000) to reset the prior and redo the analysis. This sensitivity analy-

sis demonstrates that inference on parametric functions of interest is unaffected by further

spreading out of the prior distribution. The second is a simulation study, based on the real

data, and is used to demonstrate the solid frequentist properties of the Bayes method with

the suggested general purpose prior. Simulation is further used to investigate ordinal R&R

from a design of experiments perspective in terms of choosing I,J,K under the constraint

of a fixed number of responses I ∗ J ∗K. Before these results are presented in Section 2.5,

Section 2.4 focuses on defining parametric functions that measure R&R.

2.4 R&R Measures

Defining measures for ordinal R&R turns out to be a challenging and subtle task. Deldossi

and Zappa (2014) called into question the measures proposed by de Mast and van Wieringen

(2010). De Mast et al. (2014) was critical of the use of the heavily cited and very often used
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kappa statistic. Our goal in this section is define measures for ordinal R&R that decompose

some sensible metric in the response such as a variance or a match probability into percent-

age components due to repeatability and reproducibility. It is desirable for these measures to

reflect the ordinal nature of the scale of the response, but it is seemingly of the utmost im-

portance to first clearly define what is meant by repeatability and reproducibility (R&R). For

this reason, Section 2.4.1 discusses a linear model with a continuous response to help clearly

define R&R before tackling our goal in Sections 2.4.2 and 2.4.3. Section 2.4.2 focuses on

what might be termed a “numerical extreme approach” where one is willing to assign num-

bers to the ordinal categories, whereas Section 2.4.3 is more of a “nominal extreme” that

allows for a number of ways to incorporate the ordered nature of the categories, where the

“best” way depends on the application.

2.4.1 Gauge R&R Measures for a Continuous Response

As in Section 2.2, let Yi jk be the kth measurement made by operator j on part i. A two-way

random effects linear model is

Yi jk = µ +αi +β j + εi jk, where (2.8)

αi
iid∼ Normal(0,1/σ

2
part),

β j
iid∼ Normal(0,1/σ

2
operator),

εi jk
iid∼ Normal(0,1/σ

2),

and all αi, β j, and εi jk are independent. These types of models, possibly also allowing for

interactions between parts and operators, are standard in the assessment of gauge R&R for a

continuous response (Vardeman and VanValkenburg, 1999).

Following Vardeman and VanValkenburg (1999), the repeatability variance is σ2, and

the reproducibility variance is σ2
operator. Each of these components of variance are better
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Example Univariate Data Set Expected Sample Variance
1 Yi j1,Yi j2, . . . ,Yi jn E[s2

1] = σ2

2 Yi11,Yi21, . . . ,Yin1 E[s2
2] = σ2

operator +σ2

Table 2.1: A pair of hypothetical univariate data sets of sample size n are listed along with
their expected sample variances under Linear Model (2.8).

understood through the two hypothetical data sets in Table 2.1. In the first, the same oper-

ator is asked to measure the same part n times, and the expected sample variance s2
1 is the

repeatability variance σ2. In the second, n randomly selected operators are asked to measure

the same part once each, but the expected sample variance s2
2 is σ2

operator +σ2, i.e., the sum

of the R&R variances. This is an important point that will be referred to while developing

ordinal measures. That is, we can directly construct/obtain easy-to-understand data sets that

can capture repeatability or R&R, but to capture the concept of reproducibility requires a

subtraction in the present context, i.e., E[s2
2− s2

1] = σ2
operator.

Another salient point is that the concept of R&R in the engineering literature has histor-

ically focused on a fixed part, i.e., consider µ +αi to be fixed. In this case,

Var(yi jk|µ +αi)︸ ︷︷ ︸ = Var(E[yi jk|µ +αi +β j]|µ +αi)︸ ︷︷ ︸ + E[Var(yi jk|µ +αi +β j)|µ +αi]︸ ︷︷ ︸
σ2

operator +σ2 = σ2
operator + σ2

relates the breakdown of variance components in the presented linear model to a well-known

variance identity, i.e., Var(Y ) = Var(E[Y |X ])+E[Var(Y |X)]. For the linear model currently

under consideration,

% of variance due to repeatability = 100×

(
σ2

σ2
operator +σ2

)
%

% of variance due to reproducibility = 100×

(
σ2

operator

σ2
operator +σ2

)
%

(2.9)

decomposes a meaningful total, i.e., the variance of Example 2 from Table 2.1, into mean-
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ingful percentages. We next look to extend such a breakdown to the context of the model

from Section 2.3.

2.4.2 Numerical-Based R&R Measures

Next, we use the model from Section 2.3, i.e., our random effects extension of de Mast and

van Wieringen (2010), and also assume that the subject matter expert is willing to assign

numbers to the categories of the ordinal response. The equally spaced values of 1,2, . . . ,H

for H = 4 categories will be used for simplicity, although this presentation extends to H ≥ 2

categories and any ordered (possibly non-equally spaced) values including 0,1, . . . ,H − 1

used in the motivating example of the previous paragraph.

Category Numerical Nominal
Operator j 1 2 3 4 Mean Variance (Repeatability) j (R&R)1,2

1 0 0.1 0.1 0.8 3.7 0.41 0.66 0.45
2 0 0.1 0.4 0.5 3.4 0.44 0.42 0.45

Table 2.2: Hypothetical distributions for a pair of operators on a fixed part. The additional
columns are used to compute the numerical-based measures from Section 2.4.2 given the
Likert scale 1-4 and the nominal-based measures from Section 2.4.3.

Decomposing the total variation in this way allows us to compute separately the variation

due to repeatability, the variation due to reproducibility, and the proportion of total variation

accounted for by each. Consider the example shown in Table 2.2 for a fixed part classified

as one of four ordinal categories labeled 1,2,3,4 by two operators according to the given

probability distributions. With this numerical Likert scale (i.e., 1-4) for each operator, we

can calculate the mean and the variance of the discrete probability distribution. Then the

repeatability variation can be calculated as the mean of the variances, while reproducibility

variation is the variance of the means. In this example, the repeatability variance is (0.41+

0.44)/2 = 0.425, and the reproducibility variance is 0.25 ∗ (3.7− 3.4)2 = 0.0225. Thus,

repeatability comprises 0.425/(0.425+ 0.0225) ≈ 95% of the total variance on the Likert
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scale for the part under consideration if operator 1 or 2 is selected at random by the flip

of a fair coin. The Table 2.2 example is revisited after defining nominal-based measures in

Section 2.4.3.

2.4.3 Nominal-Based R&R Measures

The purpose of this section is to define measures for normal R&R and then extend those

to reflect the ordered categories of ordinal data. The basic concept is built off of match

probabilities for a pair of responses on the same part, so throughout this development assume

a fixed part i with latent value Xi = x is under consideration. Let column vector ppp j = ppp j(x) =

(p j1, . . . , p jH)
>, where p jh = q j(h|x) are computed from Equation (2.1). The vectors of

probabilities ppp j for operator j on part i sum to one, i.e., ppp>j~1 = 1, for each j = 1,2, . . ..

A pair of repetitions from the same operator j will be used to define his/her repeatability

with the symmetric H ×H matrix of match probabilities ppp j ppp
>
j . Note this matrix satisfies

sum
(

ppp j ppp
>
j

)
= 1, and its row h and column h′ entry is P(Yi j1 = h∩Yi j2 = h′). Similarly, a

pair of repetitions one from each of a two randomly selected operators j and j′ 6= j will be

used to define the R&R between these operators. For this purpose, the H×H outer product

matrix ppp j ppp
>
j′ will be used. When for example H = 4, these matrices have the forms

ppp j ppp
>
j =



p j1 p j1 p j1 p j2 p j1 p j3 p j1 p j4

p j2 p j1 p j2 p j2 p j2 p j3 p j2 p j4

p j3 p j1 p j3 p j2 p j3 p j3 p j3 p j4

p j4 p j1 p j4 p j2 p j4 p j3 p j4 p j4


,

19



ppp j ppp
>
j′ =



p j1 p j′1 p j1 p j′2 p j1 p j′3 p j1 p j′4

p j2 p j′1 p j2 p j′2 p j2 p j′3 p j2 p j′4

p j3 p j′1 p j3 p j′2 p j3 p j′3 p j3 p j′4

p j4 p j′1 p j4 p j′2 p j4 p j′3 p j4 p j′4


.

Natural measures for repeatability and R&R are to compute match probabilities by simply

summing the main diagonals of these outer product matrices, i.e., define

(Repeatability) j = P(Yi j1 = Yi j2) =
H

∑
h=1

p2
jh = tr

(
ppp j ppp

>
j

)
= ppp>j ppp j and (2.10)

(R&R) j j′ = P(Yi j1 = Yi j′1) =
H

∑
h=1

p jh p j′h = tr
(

ppp j ppp
>
j′

)
= ppp>j ppp j′ (2.11)

as the repeatability for operator j and the R&R between operators j and j′. Unlike the linear

model discussion in Section 2.4.1, repeatability and R&R in the context of the model from

Section 2.3 as defined here in Displays (2.10) and (2.11) are operator dependent, so there

are distributions for repeatability and R&R across all operators or all pairs of operators.

While 0 ≤ (R&R) j j′ ≤ 1, it turns out that 1/H ≤ (Repeatability) j ≤ 1. The lowest possible

repeatability of 1/H occurs if and only if we have the “guessing distribution” that places

probability 1/H on each ordinal category. The lowest and highest possible R&R values of 0

and 1 occur with degenerate distributions that place probability 1 on different and the same

ordinal category.

In general, one might expect that the probability of a match (of 2 ordinal responses)

should degrade when more noise is injected into the data collection. Thus, R&R should have

a lower probability of a match than repeatability in some obvious sense. This can be shown

in the context of Measures (2.10) and (2.11) because the ratio

0≤ (Proportion) j j′ =
(R&R)2

j j′

(Repeatability) j× (Repeatability) j′
≤ 1 (2.12)
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is guaranteed to be a proportion by applying the Cauchy-Schwarz inequality to the inner

product representations on the right of Equations (2.10) and (2.11). The extremes of 0 and

1 in Inequalities (2.12) are achieved if and only if (i) the probability vectors are orthogonal

ppp j ⊥ ppp j′ , i.e., the probability distributions are completely misaligned and so mismatches can

be completely attributed to a lack of reproducibility, or (ii) ppp j = ppp j′ , i.e., the probability

distributions are completely aligned and so mismatches can be completely attributed to a

lack of repeatability. Therefore, Proportion (2.12) will be referred to as a proportion due to

repeatability. For an interpretation of Proportion (2.12) in terms of match probabilities, refer

to Table 2.3.

Repetition k
1 2

Operator
j Yi j1 Yi j2
j′ Yi j′1 Yi j′2

Table 2.3: A pair of responses from each of a pair of randomly selected operators on a fixed
part i. The probability of equal columns is the denominator of Proportion (2.12), and the
probability of equal rows is the numerator.

We now briefly revisit examples from previous sections. First, recall Figure 2.1, but now

focus of its bottom row of plots. There is low (R&R)1,2 from Display (2.11) in each pair of

operators, but for different reasons. The pair on the left has low repeatability (i.e., Proportion

(2.12) close to one), whereas the pair on the right has low reproducibility (i.e., Proportion

(2.12) close to zero). As for a numerical example, Proportion (2.12) due to repeatability is

0.452/(0.66∗0.42)≈ 0.73 for the pair of hypothetical operators in Table 2.2.

Nominal Measures (2.10)-(2.12) do not directly reflect the ordinal nature of the under-

lying response Y , but can be easily adapted to do so in a manner that is consistent with the

application. With this purpose in mind, let BBB be an H ×H symmetric matrix with binary
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entries and consider generalized measures of the form

(BBB Repeatability) j = sum
(

BBB� ppp j ppp
>
j

)
= tr

(
ppp j ppp

>
j BBB
)
= ppp>j BBBppp j and (2.13)

(BBB R&R) j j′ = sum
(

BBB� ppp j ppp
>
j′

)
= tr

(
ppp j ppp

>
j′BBB
)
= ppp>j BBBppp j′, (2.14)

where � represents the Hadamard product (i.e., elementwise multiplication) between matri-

ces of the same dimension. For example, first consider metrics based on a pair of ordinal

responses being off by at most m categories along the ordinal scale. These are

(BBBm Repeatability) j = P(|Yi j1−Yi j2| ≤ m) =
H

∑
h=1

min{H,h+m}

∑
h′=max{1,h−m}

p jh p jh′ and (2.15)

(BBBm R&R) j j′ = P(|Yi j1−Yi j′1| ≤ m) =
H

∑
h=1

min{H,h+m}

∑
h′=max{1,h−m}

p jh p j′h′, (2.16)

where binary matrices BBBm have an entry of 1 if and only if the row and column number differ

in absolute value by at most by m ∈ {0,1, . . . ,H−1}. If for example H = 4, then

BBB0 = III, BBB1 =



1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1


, BBB2 =



1 1 1 0

1 1 1 1

1 1 1 1

0 1 1 1


, BBB3 =~1~1>.

Clearly, Generalized Measures (2.13) and (2.14) with BBB = BBBm start at Measures (2.10) and

(2.11) when m = 0 and monotonically increase to 1 as m∈ {0,1, . . . ,H−1} increases. Look-

ing for the smallest value of m such the generalized measures are both close to 1 summarizes

the extent of the variation along the ordinal scale.

While we suggest Measures (2.15) and (2.16) with m ∈ {0,1, . . . ,H − 1} for general

purpose use, we note Generalized Measures (2.13) and (2.14) with a customized choice for
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BBB elicited from the application is preferred. In this regard, consider the partitioning of an

H = 5-point ordinal scale given by

BBBBlock =



1 1 0 0 0

1 1 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1


.

To make the choice of BBB = BBBBlock relevant, suppose ordinal categories 1 and 2 correspond

to parts that can be sold, whereas ordinal categories 3-5 correspond to parts that must be

retooled or scrapped altogether. Suppose further the company must supply only parts of level

1 to a customer requiring higher precision inputs, whereas the company can supply parts of

levels 1 or 2 to a different customer who does not require the same level of precision. If there

is low repeatability and R&R on the original 5-point ordinal scale BBB = III, this is necessarily

only a measurement problem for the customer requiring the higher level of precision, because

the other customer can still be satisfied if there is high repeatability and R&R on the coarser

collapsed scale defined by BBB = BBBBlock.

It is also worth noting the special case of BBB such that BBB = B̃BB>B̃BB is nonnegative definite.

In this case,

0≤
(BBB R&R)2

j j′

(BBB Repeatability) j× (BBB Repeatability) j′
≤ 1 (2.17)

follows by applying the Cauchy-Schwarz inequality to the quadratic forms on the right of

Equations (2.13) and (2.14). Thus, the generalized measures can admit to a proportion in-

terpretation, where Proportion (2.17) equals 1 if and only if 100% of the variability causing

mismatches is due to repeatability. A sufficient condition for BBB = B̃BB>B̃BB is satisfied when BBB is

a block matrix based on any partitioning of the ordinal categories into any number of subsets.

23



Table 2.4: De Mast–Van Wieringen Follow-up R&R Study (I = 30 Parts, J = 3 Raters, K = 2
Repeats, H = 4 Ordinal Categories)

Part i
Operator j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
3 4 2 2 4 1 2 3 3 2 2 3 1 2 2
3 4 2 2 4 1 2 3 3 2 3 3 1 3 2

2
2 4 2 2 4 1 3 3 3 2 3 3 1 3 2
3 4 2 2 4 1 3 3 3 3 4 3 1 3 2

3
3 4 2 2 4 1 2 3 3 2 3 3 1 2 2
3 4 2 2 4 1 2 4 3 2 3 3 1 3 2

Part i
Operator j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1
4 4 4 3 3 3 1 4 4 2 2 2 2 3 2
4 4 4 3 3 4 1 4 4 2 2 2 2 3 2

2
4 4 4 3 3 4 1 4 4 2 2 3 2 3 3
4 4 4 3 3 4 1 4 4 2 2 3 2 3 3

3
4 4 4 3 3 4 1 4 4 2 2 3 2 3 2
4 4 4 3 3 4 1 4 4 2 2 3 2 3 2

2.5 Demonstrations

This section focuses on bringing together the random effects Bayesian modeling from Sec-

tion 2.3 and the measures for ordinal R&R from Section 2.4 in order to present a practical

data analysis framework. This is done through examples. Section 2.5.1 analyzes a set of

ordinal R&R data from de Mast and van Wieringen (2010), listed here in Table 3.1. This

analysis is then used to investigate the operating characteristics of the Bayesian inference

technique with a related simulation study in Section 2.5.2.

2.5.1 A Real Data Analysis

Given the data in Table 3.1 and the random effects model from Section 2.3 with the gen-

eral use prior of Section 2.3.2, the Bayesian posterior distribution of the parameters were

approximated with Markov chain Monte Carlo (MCMC) sampling. The interested reader

is referred to Appendix 2.A for the necessary background information on using MCMC to

carry out a Bayesian data analysis. A chain of B = 104 posterior draws was retained after an
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Figure 2.2: Posterior distributions of the latent variables Xi for parts i = 1,2, . . . ,31. The
dark curves are for parts 29-31. Part 31 is the flatter dark curve, whereas the steeper dark
curve with the lower mode is part 30.

initial burn in-period of discarding the first 5∗103 draws. Time series plots of the parameters

indicated adequate mixing of the chain. This chain was initialized and generated with JAGS

(Plummer, 2015) in 13 seconds on a 4 GHz processor. The program, given in Appendix 2.B,

is surprisingly concise for such an involved modeling context.

The Bayesian approach directly quantifies the posterior uncertainty in the latent variables

Xi; see Figure 2.2. The clustering of the leftmost 3 grey curves with a mode of roughly −2

correspond to the parts rated in ordinal category 1 on each repeat from each rater, i.e., parts

i = 6,13,22 in Table 3.1. The minor differences in these 3 curves are due to MCMC error.

There are no data for some new part i = 31 > 30 = I selected at random from the broader

part population, so the posterior for X31 (e.g., the flattest of the plotted distributions) is the

standard normal by Assumption (2.2). Since the posterior distributions of each Xi is outputted

by the JAGS program, they can be used to help obtain the posterior distributions of any part-

dependent R&R measures, and this is done next for parts i = 29,30,31 highlighted by the

black curves in Figure 2.2.

In this regard, Figure 2.3 displays the posterior distributions of R&R measures for parts

i= 29,30,31 and operators j = 1,2. All ordinal responses for part i= 29 in the Table 3.1 data
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were category 3. As a result, the distributions in the left panel of Figure 2.3 are concentrated

on proportions close to 1. The grey repeatability curves are similar for operators j = 1,2.

The solid dark R&R curve is focused on lower values as expected by Inequality (2.12), but

only on slightly lower values. So, the Proportion (2.12) due to repeatability is especially

close to 1 in this boundary case of a part with a constant response.

The story is quite different in the center panel of Figure 2.3 for part i = 30. This part

was rated as in category 2 on each repeat by operator i = 1, but in category 3 for both

repeats from operator i = 2. So, there is much posterior uncertainty in Proportion (2.12),

which looks roughly like the continuous uniform distribution on the interval (0,1). This is

due presumably to the low value of K = 2 repeats. It is hard to determine the root cause

as repeatability versus reproducibility with such small sample sizes. It would, for example,

be more clear that the problem was solely due to repeatability if instead the design had say

K = 20 repeats with the data having the same pattern of constant (yet distinct) responses by

operator. Most parts in the data were like part i = 29 with a constant response, so it may not

be a surprise that the panel on the right for the R&R of a new part selected at random looks

more like the panel on the left. Do, however, notice the higher level of posterior uncertainty

for a new part given by longer tails in the skewed-left distributions in the panel on the right

when compared to the panel on the left.

Next, the concept of Figure 2.3 and the use of the R&R measures on individual parts is

used to define some informative, aggregate measures across all parts. This is done with a pair

of considerations in mind. First, we wanted to smooth over the volatility in the part-to-part

posterior uncertainty (due to small K) in order to pick up on the general pattern across all

parts. Second, we wanted these aggregate measures to be directly related to some easy-to-

understand statistics of the actual Table 3.1 data in terms of the conceptual understanding of

repeatability and reproducibility laid out in Section 2.4. These aggregate measures (across
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Figure 2.3: Posterior distributions of R&R measures for operators j = 1,2 on parts i = 29
(left), 30 (middle), and 31 (right). The grey curves are (Repeatability) j with j = 1,2. The
solid and dashed black curves are (R&R)1,2 and the Proportion (2.12) due to repeatability,
respectively.

all parts i = 1, . . . , I) are

(Repeatability) j =
I

∑
i=1

(Repeatability) j/I (2.18)

(R&R) j j′ =
I

∑
i=1

(R&R) j j′/I (2.19)

(Proportion) j j′ =
I

∑
i=1

(R&R)2
j j′

(Repeatability) j× (Repeatability) j′
/I. (2.20)

Although not reflected in this notation, it was previously emphasized in Section 2.4 that

summands on the right of Measures (2.18)-(2.20) do depend on the part i.

Related basic statistics are the sample proportions

̂(Repeatability) j =
∑

I
i=1 ∑1≤k<k′≤K I{Yi jk=Yi jk′}

I ∗
(K

2

) (2.21)

(̂R&R) j j′ =
∑

I
i=1 ∑

K
k=1 ∑

K
k′=1 I{Yi jk=Yi j′k′}

I ∗K2 (2.22)

of matching responses on a given part, where I{·} is the binary indicator variable. The
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Figure 2.4: Posterior distributions of R&R measures averaged over parts i = 1,2, . . . ,30:
repeatability (top), R&R (middle), and Proportion (2.20) due to repeatability (bottom). The
grey curves are for the operators j = 1,2,3 and j < j′ = 2,3, whereas the black curves are
the posterior predictive distributions for new operators j = 4 and j′ = 5.

color coding in Table 3.1 helps quickly see that Statistics (2.21) are 27/30,27/30,28/30 for

operators j = 1,2,3, and this is closely reflected with posterior uncertainty by the 3 grey

curves in the top panel of Figure 2.4. The related posterior predictive distribution for a new

operator i = 4 on the same I = 30 parts is given by the dark curve and is flatter as expected

to reflect a reduction in certainty during prediction of a new operator.

To three decimal places, Statistics (2.22) are 0.808,0.900,0.850 for the pairs of operators

( j, j′) = (1,2),(1,3),(2,3). So, the data suggest that operators ( j, j′) = (1,2) are a bit more

misaligned than the other pairs. This also shows up in the Bayesian analysis in the middle

panel of Figure 2.4. The leftmost grey curve corresponds to operators ( j, j′) = (1,2), al-

though there is uncertainty (i.e., overlapping posteriors). Again, as expected the flattest curve

is the dark one corresponding to a pair of new, randomly selected operators ( j, j′) = (4,5).
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The order of operations for Measure (2.20) is of special note. Proportions (2.12) are

first computed by part and then these are averaged because computing Measures (2.18) and

(2.19) first followed by taking the ratio does not always result in a proportion. Thus, unlike

Statistics (2.21) and (2.22), there is no simple estimate for (Proportion) j j′ due to divide by

zero issues. There is no such problem in the Bayesian modeling framework. The leftmost

grey curve in the bottom panel of Figure 2.4 corresponds to the pair of operators ( j, j′) =

(1,2) and indicates reproducibility as being in play more with the discrepancy between this

pair of operators. Prediction of Proportion (2.20) due repeatability for a new pair of operators

again has the most posterior uncertainty.

As previously mentioned in Section 2.3.2, a sensitivity analysis based on increasing the

prior uncertainty by an order of magnitude was conducted to demonstrate the robustness of

this data analysis to the general use prior. This looser prior is expected to shrink MLEs less,

and the Bayesian analysis of the Table 3.1 data was rerun with this second prior. The resulting

versions of Figure 2.2-2.4 based on this second analysis were effectively the same. Thus, the

ease of the Bayesian implementation through the concise, numerically stable, and fast JAGS

code in Appendix 2.B is justified for the analysis of the Table 3.1 data. This analysis also

demonstrated some novel inferences of interest in the nominal extreme developed in Section

2.4.3. A quick skim of Table 3.1 shows that pretty much all misalignments on a fixed part are

off by m =±1 category along the ordinal scale, so it may come as no surprise that producing

figures analogous to Figures 2.3 and 2.4 based on BBBm repeatability and R&R from Displays

(2.15) and (2.16) with m = 1 results in all posterior densities piling up mass very close to

one, suggesting problems in neither repeatability nor reproducibility if we were willing to

accept “being within a category” as “close enough.”

2.5.2 A Simulation Study

Simulation can be used to investigate the operating characteristics of an inference procedure

(Bayesian or frequentist). For a Bayes procedure, this might be done to validate that the

numerical stability due to the prior does not unduly over-shrink the estimates and affect
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performance. In this regard, an interesting simulation study is conducted to provide such

validation and to assist in a discussion of ordinal R&R studies from the design perspective of

picking I,J,K. This simulation study assumes a population of raters with µα = 2.6, σα = 0.2,

and λλλ = (11,44,29,40). This choice makes this study directly related to the data analysis

and application from Section 2.5.1 because µα = 2.6, σα = 0.2, and λλλ = (11,44,29,40) are

in fact the posterior medians, given the real data in Table 3.1.

To further constrain the design problem, assume a budget (of time or money) that only

allows for the collection of I ∗ J ∗K = 180 ordinal responses. For simplicity, designs are

further fixed to K = 2 repeats to focus on the tradeoff of picking: more parts and fewer

operators versus fewer parts with more operators. Since 180 only has 2 as a factor with

multiplicity 2, designs with J = 1,2,3,5 operators are compared. For each design, 10 data

sets were generated, and all 40 data sets were generated in a fraction of a second. The JAGS

code was then used to obtain a posterior MCMC sample given each simulated data set. These

40 MCMC chains finished in 533 seconds on a 4 GHz processor, and the needed computer

time was independent of the design.

Estimation of broader rater population parameters µα ,σα ,λλλ is possible because of the

Section 2.3 random effects model extension. These parameters are related prediction of a

new operator, and so they provide reasonable metrics to optimize the tradeoff of interest:

more accurately estimate the parameters of fewer operators with more parts per operator

versus investigate more operators with less precision on each operator due to fewer parts.

Bayesian posterior 95% credible intervals (see Appendix 2.A) were used to quantify this

tradeoff. It is known that such intervals when based on non-informative priors often hold

a frequentist coverage probability close to 0.95, and this occurred in this simulation with

our not-strongly-informative, general-use prior from Section 2.3.2. Observed coverage rates

for parameters µα ,σα ,λ1,λ2,λ3,λ4 were 1,1,0.975,0.9,0.95,0.95 over the 40 simulated data

sets. By design J = 1,2,3,5, there were only 10 generated data sets, and only parameter

λ1 with design J = 5 had the lowest observed coverage of 8/10, so coverage rates appeared

roughly independent of the design.

Because of the solid/constant coverage performance in the previous paragraph, it is thus
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Figure 2.5: Sampling distribution of lengths of 95% Bayesian posterior credible intervals
for µα (left), σα (middle), and λ1 (right). Designs had I ∗ J ∗K = 180 responses with K = 2
repeats. The number of parts I and operators J were varied. Each boxplot is based on 10 sim-
ulated data sets from a population of raters with µα = 2.6, σα = 0.2, and λλλ = (11,44,29,40).

sensible to compare designs J = 1,2,3,5 based on the lengths of the 95% credible intervals.

Figure 2.5 displays the results. (The results for parameters λ2,λ3,λ4 were not included

because they were similar to those for λ1.) The pattern is clear if you simply compare the

medians. The actual design used by de Mast and van Wieringen (2010) with J = 3 seems

optimal in terms of increasing precision by reducing credible interval length.

2.6 Discussion

The De Mast–Van Wiergin model was extended to a population of raters by specifying distri-

butions for the raters’ scaling and cut point parameters. A non-trivial aspect of this modeling

was that of defining a distribution over ordered cut points; a transformation of a Dirichlet

distribution was used to achieve this endpoint. A Bayesian framework, which treated the la-

tent variable for each part as an additional parameter, facilitated inference with a remarkably

concise JAGS program. In the example data sets we fit, this program was numerically stable
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and had short run times. An additional benefit of the Bayesian paradigm in general is that

uncertainty for any parametric function is easily obtained given a posterior MCMC sample.

The Bayesian framework did not, however, remove the complication in an ordinal R&R

context of defining parametric functions that accurately convey the meaning of R&R and

decompose the distribution of an ordinal response into these two fundamental sources in

some meaningful sense. For some initial guidance on this challenge, gauge R&R (with

a continuous response and a linear model) helped define measures of ordinal R&R in a

numerical extreme. If a subject matter expert is willing to assign numbers to each category,

then the variance of the response can be decomposed into percentages due to repeatability

and reproducibility. With this background in mind, measures of ordinal R&R were defined

through a nominal extreme using match probabilities of two responses on the same part,

and the Cauchy-Schwarz inequality was used to define a proportion measure for a pair of

operators on a given part that is 0 or 1 if and only if the probability of a match is 0 or the

operators have the exact same distribution. Thus, the extreme values for this proportion

measure of 0 and 1 suggest that the root cause of mismatches in the ordinal response is due

solely to reproducibility or repeatability, respectively.

With the ordinal metrics in hand, the Bayesian method was tested on real and simu-

lated data sets to assess the quality of the estimation procedure and to showcase the value

added by these new metrics. The estimation procedure was demonstrated to be robust to

prior specification for a real data analysis and was demonstrated to have strong frequentist

properties in a related simulation context. The simulations were also used to study ordinal

R&R from a design of experiments perspective. One might imagine a fixed budget on the

number of responses and want to pick an optimal design in terms of the number of parts,

raters, and repeats. Minimizing posterior uncertainty in the parameters for the population

of raters provided a natural design of experiments objective and was made possible because

of the unified random effects modeling extension from this work. In addition, the extended

modeling framework made a number of novel inferences possible. These included infer-

ence on a particular part involved in the R&R study or selected at random from the broader

part population and inference on a rater or pair of raters from the R&R study or selected at
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random from the broader rater population.

2.A Bayesian Data Analysis

Here we briefly summarize the Bayesian approach. A Bayesian analysis combines prior

information with observed data y to produce a posterior distribution for the parameters θθθ

using Bayes’ theorem that takes the form

π(θθθ |y) =
L(y|θθθ) π(θθθ)∫

Θ
L(y|θθθ)π(θθθ)dθθθ

, (2.23)

where ΘΘΘ denotes the range of values for the parameters θθθ . In the context of the Section 2.3

model,

θθθ = (δδδ ,ααα,λλλ ,µα ,σα ,X1, . . . ,XI), (2.24)

and the unobserved latent variables Xi as well as the random effects δδδ ,ααα are simply treated

as additional parameters from the Bayesian perspective.

The likelihood function denoted by L(y|θθθ) describes the probability mass function of y

given the model parameters θθθ , where y denotes the vector of observed data y (here, the counts

ri jh). The available information about θθθ is initially summarized by the prior distribution

π(θθθ).

Bayes’ Theorem (2.23) shows how the data and prior information are combined to ob-

tain the posterior distribution of θθθ denoted by π(θθθ |y). In many applications, an analytical

expression for the integral in Equation (2.23) does not exist. Instead, Markov chain Monte

Carlo (MCMC) is used to simulate samples {θθθ (b) , b = 1, . . . ,B} from the posterior distribu-

tion π(θθθ |y). Such samples with large B (say B = 104) can be used to accurately reflect the

posterior distribution for any parametric function g(θθθ) of interest. One can simply make a

histogram (or kernel density estimate) of the posterior draws g
(

θθθ
(1)
)
, . . . ,g

(
θθθ
(B)
)

or for

example compute the 0.025 and 0.975 quantiles to obtained an equal-tailed 95% posterior

credible interval for g(θθθ). See Casella and George (1992), Chib and Greenberg (1995) and

Gelman et al. (2013) for discussions of popular MCMC algorithms.
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A parametric function studied in this manner back in Section 2.5 was

g(θθθ) =
I

∑
i=1

(Repeatability) j/I

built from Equation (2.10) with j ≤ J = 3 (see the grey curves in the top panel of Figure

2.4). Another example is this same parametric function, but for a new operator j > J = 3.

The related black curve in the top panel of Figure 2.4, however, requires the concept of the

posterior predictive distribution. There were no data directly obtained from operator j = 4,

so his/her parameters are not directly listed in Vector (2.24). In spite of this, predictions for

operator j = 4 are still directly possible with our random effects model. Operators j = 1,2,3

are used to estimate the parameters µα ,τα ,λλλ of the rater population and in turn predict

plausible outcomes for operator j = 4 as follows. Given µ
(b)
α ,τ

(b)
α , the posterior predictive

distribution for α
(b)
4 is simulated with independent draws from Distributions (2.4) for each

b = 1, . . . ,B. Similarly, the posterior predictive distribution for a new operator’s cut points is

simulated by using the λλλ
(b) with Displays (2.5) and (2.6).

2.B JAGS Code

The Bayesian random effects model from Section 2.3 is specified by the JAGS code given

below in this appendix. This code was used to obtain the posterior samples in Section 2.5

to demonstrate the effectiveness of this approach. This code was called from R (R Core

Team, 2016) with RJAGS (Plummer, 2016) so that posterior samples were readily available

in R to facilitate our Bayesian data analyses and for example construct Figures 2.2-2.5 with

the density function in R. Parameter nomenclature lines up in a straightforward manner,

e.g., alpha[j] in the code is α j back in the mathematical presentation of Section 2.3. A

Bayesian fixed effects version of the model from Section 2.3 results if the three lines of code

marked #PRIOR are removed, so the effort required to extend the Bayesian paradigm from

fixed to random effects makes this approach quite advantageous. As previously mentioned

in Section 2.3, log normal densities represented by function dlnorm(µ,τ) in the code were
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parameterized in terms of the mean µ and precision τ = 1/σ2 on the log scale. See the JAGS

manual for more details concerning syntax.

model{

for(j in 1:J){

alpha[j]˜dlnorm(mu.alpha,tau.alpha)

pi[j,1:H]˜ddirch(lambda)

for(h in 1:(H-1)){delta[j,h]<-qnorm(sum(pi[j,1:h]),0,1)}

}

for(i in 1:I){

X[i]˜dnorm(0,1)

for(j in 1:J){

p[i,j,1]<-1

for(h in 2:H){p[i,j,h]<-exp(sum(alpha[j]*

(X[i]-delta[j,1:(h-1)])))}

R[i,j,1:H]˜dmulti(p[i,j,1:H]/sum(p[i,j,1:H]),K)

}

}

mu.alpha ˜dnorm( mu.mu.alpha, tau.mu.alpha) #PRIOR

tau.alpha˜dlnorm(mu.tau.alpha,tau.tau.alpha) #PRIOR

for(h in 1:H){lambda[h]˜dlnorm(mu.lambda,tau.lambda)} #PRIOR

}
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CHAPTER 3

LEARNING WITH REPRODUCING

KERNEL HILBERT SPACES

Prediction is a fundamental practical problem in (statistical) machine learning. This often

involves a large number of feature or predictor variables for some response of interest and

a fairly large number of cases upon which to build a prediction rule, i.e., a function of the

predictors used to approximate the response.

Let xxxi ∈ Rp be the feature vector and yi ∈ R be the response for observation i = 1, . . . ,n.

These cases can be concisely represented in a matrix form. In this regard, let XXX be the n× p

matrix of feature data, which stacks the xxxi as its rows and yyy = (yi, ...,yn)
> be the response

vector. The object under this supervised setup is to create an effective prediction rule, i.e.,

estimate a function f : Rp → R to approximate an arbitrary response y0 corresponding to

feature vector xxx0. In practice, mathematical frameworks for defining and computing learners

are often based on algorithms or optimization problems.

In general, supervised learning involves the use of n complete cases or observations, pos-

sibly organized into feature matrix XXX and response vector yyy to compute an estimate of f . On

the other hand, semi-supervised learning involves situations were the full feature matrix XXX
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is available, but some proper subset of the components of the response vector yyy are missing.

A concept for semi-supervised learning is to have the data determine if the additional infor-

mation contained in the feature observations xxxi corresponding to missing responses yi = NA

can lead to an improved estimate for f . To begin, this Chapter investigates prediction rules

from a supervised perspective before proposing semi-supervised generalizations in Chapter

4. The focus of this Chapter will involve an optimization problem based on Reproducing

Kernel Hilbert Spaces (RKHS).

3.1 Euclidean Space Prediction Rules

In regression with a continuous response, one might use the all-purpose square error loss

function

L(y0, f (xxx0)) = (y0− f (xxx0))
2

to help define the sought after function f . In this context, the conditional expected value of

y0|xxx0 minimizes the expected loss or risk, i.e.,

f (xxx0) = E[y0|xxx0] = argmin
Functions f̃ :Rp→R

E[L(y0, f̃ (xxx0))].

Then data analysis amounts to using XXX and yyy to compute an estimate f̂ of E[y0|xxx0], but how

exactly one proceeds might be premised on some model-based assumptions.

For example, take the classical linear regression model with E[yyy|XXX ] = XXXβββ with het-

eroscedastic error terms Var(yyy|XXX) = σ2III. An estimate for the required function f (xxx0) = xxx>0 β

might be based on the concept of least squares

β̂ββ
(LS)

= argmin
βββ∈Rp

(yyy−XXXβββ )>(yyy−XXXβββ ) (3.1)

to produce the estimate f̂ (xxx0) = xxx>0 β̂ββ
(LS)

A method to solve Optimization (3.1) is to simply solve the βββ -score of the objective
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function (i.e., take the derivative of the objective function with respect to βββ , set it equal to a

vector of zeros, and solve). If XXX>XXX is nonsingular, then the unique solution is given by

β̂ββ
(LS)

= (XXX>XXX)−1XXX>yyy

and motivates the well-known prediction rule f̂ (xxx0) = xxx0β̂ββ
(LS)

. Let rank(XXX) = r. Then XXX

has a singular value decomposition

XXX =UUUDDDVVV>,

where the n×n matrix UUU has orthonormal columns spanning the column space of XXX (denoted

by C (XXX)), the p× p matrix VVV has orthonormal columns spanning columns of C (XXX>), and

the n× p rectangular diagonal matrix DDD = [diag(d1,d2, ...,dp)|000] where d1 ≥ d2 ≥ ·· · ≥ dr >

dr+1 = · · ·= dp = 0. The d j are the square roots of eigenvalues of XXX>XXX . This decomposition

is useful for projecting the response vector yyy onto C (XXX) as

f̂ff
(OLS)

= f̂ff (XXX) =


f̂ (xxx1)

...

f̂ (xxxn)

=UUUDDDVVV>(VVV DDDUUU>UUUDDDVVV>)−1VVV DDDUUU>yyy =UUUUUU>yyy.

For the linear inner product, we have

〈uuu,vvv〉 ≡
n

∑
i=1

uuuivvvi = uuu>vvv,

so the least squares prediction rule in the Euclidean space Rn is given by

f̂ff
(OLS)

=UUUUUU>yyy =
r

∑
j=1
〈uuu j,yyy〉uuu j,

where uuu j is the jth column of UUU . This presentation leads into the Hilbert space generalization

to come in Section 3.2.
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A shortcoming of least squares estimation under the linear regression model arises when

there is so-called multicollinearity, i.e., the feature variables (or columns of XXX) are correlated.

When there is multicollinearity, the matrix XXX>XXX may be close to singular matrix, and as a

result, the least-squares estimates becomes highly sensitive to random errors in the observed

responses. One way out of this situation is ridge regression, which stabilizes the estimated

regression coefficients by shrinking them towards zero. The ridge regression optimization is

β̂ββ
(Ridge)

= argmin
βββ∈Rp

(yyy−XXXβββ )>(yyy−XXXβββ )+λβββ
>

βββ , (3.2)

where λ ≥ 0 is a tuning parameter that controls the strength of the shrinking. When λ =

0, Optimization Problem (3.2) equals Linear Regression (3.1), whereas when λ → ∞, an

estimate of β̂ββ
(Ridge)

=~0 results. Compromise values of λ ∈ (0,∞) balance (i) fitting a linear

model of yyy on XXX with (ii) coefficient shrinking as seen in the closed-formula

β̂ββ
(Ridge)

=
(

XXX>XXX +λ III
)−1

XXX>yyy.

The vector of fits under this prediction rule is f̂ff = XXX β̂ββ
(Ridge)

= XXX
(
XXX>XXX +λ III

)−1
XXX>yyy, and

with the use of the singular value decomposition of XXX , we get

f̂ff
(Ridge)

= UUUDDDVVV>
(

VVV DDDUUU>UUUDDDVVV>+λ I
)−1

VVV DDDUUU>yyy

= UUUDDD
(

VVV>
(

VVV DDDUUU>UUUDDDVVV>+λ I
)

VVV
)−1

DDDUUU>yyy

= UUUDDD
(
DDD2 +λ III

)−1
DDDUUU>yyy

=
r

∑
j=1

(
d2

j

d2
j +λ

)
〈uuu j,yyy〉uuu j. (3.3)

Because 0 <
d2

j+1

d2
j+1+λ

≤ d2
j

d2
j+λ

< 1, the coefficients of the orthonormal basis vectors uuu j used to

decompose f̂ff
(Ridge)

are a shrunken version of the coefficients of f̂ff
(OLS)

, and the most severe

shrinking is enforced along the lower order principal components of XXX .

A way of moving beyond the linear model assumption of fff = XXXβββ is to transform to
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feature variables and then a use a linear model in this new space of derived feature data say

h(xxxi)
> = (h1(xxxi),h2(xxxi), ...,hp(xxxi)). This results in a prediction rule of the form

f̂ (xxx0) =
p

∑
j=1

β̂ jh j(xxx0) = h(xxx0)
>

β̂ββ .

Instead of restricting the set of functions to a minimizer of an empirical loss function

(like OLS), many techniques (like ridge regression) are motivated by adding a penalty term

to the objective function to be minimized. Let J( f )≥ 0 be a term penalizing the “roughness”

of the function f . This concept of penalty in some contexts simplifies to a finite data penalty

Jn( fff ) on the vector fff of n function evaluations fff i = f (xxxi) for i = 1, . . . ,n. A generic version

of this latter option is

f̂ff = argmin
fff∈Rn

(yyy− fff )>(yyy− fff )+ Jn( fff ), (3.4)

whereas an example of the former in the context of p = 1 is smoothing splines

fλ (x) = argmin
f with 2 derivatives

(yyy− fff )>(yyy− fff )+λ

∫ b

a
( f ′′(x))2dx (3.5)

with a function-based penalty term J( f ) = λ
∫ b

a ( f ′′(x))2dx and smoothing parameter λ > 0.

The solution to Optimization (3.5) is known to be a natural cubic spline

fλ (x) =
n

∑
j=1

β jN j(x)

with a second derivative of f ′′(x) =
n
∑
j=1

β jN′′j (x), and so

( f ′′(x))2 =
n

∑
j=1

n

∑
l=1

β jβlN′′j (x)N
′′
l (x), (3.6)

which is just a quadratic form written in summation notation. With a goal of representing

the integral of Quadratic Form (3.6) in a matrix representation, let βββ = (β1,β2, ...,βn)
> and

HHH = [N j(xi))] and ΩΩΩ = [
∫ b

a N′′i (t)N
′′
i (t)dt] be n×n matrices with i = 1, . . . ,n and j = 1, . . . ,n
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indexing their rows and columns. Thus, smoothing splines defined by Optimization (3.5)

have the finite data representation

argmin
βββ∈Rn

(yyy−HHHβββ )>(yyy−HHHβββ )+λβββ
>

ΩΩΩβββ (3.7)

where penalty J( f ) on the function f has the finite data representation Jn( fff ) = λβββ
>

ΩΩΩβββ on

the function evaluations fff . The optimal solution of

β̂ββ = (HHH>HHH +λΩΩΩ)−1HHH>yyy

to Optimization (3.7) and its corresponding prediction rule of

f̂ff λ = HHH(HHH>HHH +λΩΩΩ)−1HHH>yyy

follow by the method used to derive Ridge Regression (3.2). The n×n nonnegative definite

matrix SSSλ = HHH(HHH>HHH +λΩΩΩ)−1HHH> is often called a smoother matrix.

In general, suppose Jn( fff ) = fff>KKK fff , where KKK is a known n× n nonnegative definite

penalty matrix. Then the n×n nonnegative definite smoother SSSλ = (III +λKKK)−1 solves

f̂ff λ = SSSλ yyy = argmin
fff

(yyy− fff )>(yyy− fff )+λ fff>KKK fff . (3.8)

This symmetric smoother SSSλ also has a spectral decomposition

SSSλ =UUUDDDUUU> =
n

∑
j=1

d jUUU jUUU>j ,

where d j ≥ 0 are the eigenvalues with corresponding eigenvectors UUU j as the columns of UUU .

From this, the representation

f̂ff λ = SSSλ yyy =

(
n

∑
j=1

d jUUU jUUU>j

)
yyy =

n

∑
j=1

d j〈UUU j,yyy〉UUU j,
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makes it clear that the resulting prediction rule satisfies f̂ff λ ∈ C (UUU).

3.2 Reproducing Kernel Hilbert Spaces with Splines

The Reproducing Kernel Hilbert Space (RKHS) concept is illustrated by extending the smooth-

ing spline case into the more general RKHS function space paradigm when p= 1. The under-

lying rationale for Hilbert space construction is to enforce the notion of smoothness through

penalization of functions. This was observed with the smoothing spline in Optimization (3.5)

by restricting the function space under examination to twice differentiable functions. This

was equivalent to Optimization (3.4), which penalized the function evaluations fff ∈ Rn. The

conventional wisdom is that optimization over the Euclidean space is ‘overburdensome’ due

to many bad choices for the sought after function f while the restriction to twice differen-

tiable functions leads to a more desirable solution set. Precisely, we aim to optimally choose

an f ∈H , where

H =

{
h : [a,b]→ R : h and h′ are absolutely continuous and

∫ b

a
(h′′(x))2dx < ∞

}
.

Optimization (3.5) is to be extended to operate on functions from space H .

The Euclidean optimization problem for smoothing splines operated on a vector space

with the `2-norm as its inner product. In order to optimize over space H , an inner product

on functions must be constructed. Let h1,h2,h3 ∈H , and define constants a,b ∈ R. In

general, an inner product 〈·, ·〉 must satisfy the following 3 properties.

1. Symmetry: 〈h1,h2〉= 〈h2,h1〉.

2. Linearity: 〈a∗h1 +b∗h2,h3〉= a∗ 〈h1,h3〉+b∗ 〈h2,h3〉.

3. Nonnegative Definiteness: 〈h1,h2〉 ≥ 0 and 〈h1,h2〉= 0⇔ h1 = h2.

A quick analysis of Optimization (3.5) might initially suggest 〈h1,h2〉1 =
∫ b

a h′′1(x)h
′′
2(x)dx as

a good candidate for an inner product on functions, but this is not valid because it does not
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satisfy the nonnegative definite criterion, e.g., 〈x,2x〉1 = 0 while x 6= 2x. So, the following

well-defined inner-product adjusts 〈·, ·〉1 to

〈h1,h2〉 ≡ h1(a)h2(a)+h′1(a)h
′
2(a)+

∫ b

a
h′′1(x)h

′′
2(x)dx,

which does indeed satisfy the definition. The space H together with inner product 〈·, ·〉 is

an example of an RKHS.

Next, Optimization (3.5) is to be fully recast in terms of the RKHS construct. First,

define the continuous functional Ft( f )= f (t) and linear differential operator L[ f ](x)= f ′′(x).

Optimization (3.5) is directly extended to

min
f∈H

n

∑
i=1

(yyyi−Fxi[ f ])
2 +λ

∫ b

a
(L[ f ](x))2 dx. (3.9)

The Riesz Representation Theorem (Heckman, 2012) provides the key step necessary to

solve Optimization (3.9). The result establishes that there exists a function Rx(·) ∈ H ,

called a representer such that

Fx[ f ] = 〈Rx, f 〉= f (x), ∀ f ∈H .

It turns out that

Rx(z) = 1+(x−a)(z−a)+R1x(z)

with

R1x(z) = xz(min(x,z)−a)− x+ z
2
(
min(x,z)2−a2)+ 1

3
(
min(x,z)3−a3)

is in-fact a representer for our particular Hilbert Space H with corresponding inner product

〈·, ·〉. It can also be shown (Heckman, 2012) that the solution to Optimization (3.9) has the

form

f (x) = α0 +α1x+
n

∑
i=1

βββ iR1xi(x), (3.10)
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with α0, α1 ∈ R. The so-called ‘kernel trick’ incorporates Representation (3.10) into Opti-

mization (3.9) to produce the equivalent finite data version

min
ααα∈R2,βββ∈Rn

(yyy−TTT ααα−KKKβββ )> (yyy−TTT ααα−KKKβββ )+λβββ
>KKKβββ ,

where TTT is the n×2 simple linear regression model matrix, and KKK is the Gram matrix of R1x,

i.e., KKKi j = R1xi(x j). This is in-fact a generalized ridge regression problem and can be solved

in a similar manner as Optimization (3.7) above.

The result presented here can be directly computed on a p = 1 data set. Indeed, the con-

struction can generalize to m-differentiable functions. The challenge, however, in practice is

to identify the representer of more general Hilbert spaces and inner products for higher order

functions. Extending this to larger p is also possible using additive models or tensor splines

(Hastie et al., 2009), but has additional practical challenges. A more fruitful expedition for

extending this work to larger p is pursued next using Mercer Kernels. This exposition is

well-known, and the ideas presented next have had a significant influence on machine learn-

ing leading to some of the best techniques in the field.

3.2.1 Mercer Kernels and Hilbert Space Construction

The exposition for the smoothing spline using RKHS is natural and intuitive. One starts by

contemplating the type of function sought and then defines the Hilbert space with an inner

product to achieve this goal. The challenge is to determine the exact representer necessary

to solve the ensuing penalized regression problem. This step is absolutely necessary and

non-trivial. An alternative is to start with the representer and construct a Hilbert space and

corresponding inner product using this function. It turns out that this approach is much more

powerful in practice, but is not as intuitive. The representer is known in this literature as a

kernel function. The elegance of this is to bypass the need to find a representer. The final

result of this section provides the supervised kernel regression problem which is a general-

ization of the Smoothing Spline Optimization (3.5) to this setting.
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Let C be a compact (closed and bounded) support, i.e., C ⊆ Rp. To begin, define the

general function space of all squared integrable functions

L2(C) =

{
f : C→ R :

∫
C
( f (t))2 < ∞

}

with corresponding inner product

〈 f ,g〉L2(C) =
∫

C
f (t)g(t)dt < ∞. (3.11)

This function space and inner product do not form a RKHS. The goal in this construction is

to find a subspace of L2(C) that restricts to functions in such a way that this subspace with

a corresponding norm is indeed a RKHS. Precisely, let {ψi}∞
i=1 be an orthonormal basis of

functions that span L2(C) and project f ∈ L2(C) onto this basis, i.e.,

f (x) =
∞

∑
i=1

ciψi(x)

with ci = 〈ψi, f 〉L2(C). It is easily seen that ∑
∞
i=1 c2

i < ∞ for any function f . The general

concept pursued here is that the basis functions {ψi}∞
i=1 and a corresponding sequence a1 ≥

a2 ≥ ·· · ≥ 0 are chosen so that the set of functions under examinations satisfy the more

stringent condition

f (x) =
∞

∑
i=1

ciψi(x) and
n

∑
i=1

c2
i

ai
< ∞. (3.12)

To do this, we require a kernel function.

Define the kernel function K : C×C→ R as a symmetric function. The function K is

assumed to be nonnegative definite, i.e., for any sequence {xi}n
i=1 the Gram matrix generated

from this kernel onto the sequence is nonnegative definite. Examples of commonly used

kernels include those listed below.

• Linear Kernel: 〈xxx,yyy〉= xxx>yyy.
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• Polynomial Kernel: 〈xxx,yyy〉=
(
axxx>yyy+b

)d .

• Gaussian Kernel: 〈xxx,yyy〉= exp
(
− ||xxx−yyy‖|22

σ

)
.

Define a orthonormal basis of L2(C) using a kernel such that

∫
C

φi(z)k(x,z)dz = γiφi(x),

with γ1 ≥ γ2 ≥ ·· · ≥ 0. The function sequence φi(x) are referred to as eigenfunctions with

corresponding eigenvalue γi. Some intuition for this sequence is that large eigenvalue typi-

cally correspond to more ‘wiggle’ functions φi(x) with respect to kernel K, i.e., we wish to

restrict attention by forcing more weight on higher order eigenfunctions which will have a

similar effect as ridge regression from Equation (3.3). At any rate, define a function space

such that HK ⊆ L2(C) by

HK =

{
f (x) =

∞

∑
i=1

ciφi(x) ∈ L2(C) |
n

∑
i=1

c2
i

γi
< ∞

}
, (3.13)

which is analogous to Condition (3.12). The corresponding inner product

〈 f1, f2〉HK = 〈
∞

∑
i=1

ciφi,
∞

∑
i=1

diφi〉HK ≡
∞

∑
i=1

cidi

γi

and || f ||2HK
= 〈 f , f 〉HK = ∑

∞
i=1

c2
i

γi
are given. This is in-fact a RKHS. The projection f (x) =

∑
∞
i=1 ciφi(x) ∈HK onto this basis is called the primal form of the function f

It remains to be shown that K is indeed the representer of RKHS HK with inner product

〈·, ·〉HK . Mercer’s theorem establishes that K(x, ·) =
∞

∑
i=1

γiφi(·)φi(x) =
∞

∑
i=1

ciφi(x) with ci =

γiφi(·) and
∞

∑
i=1

c2
i

γi
=

∞

∑
i=1

γ2
i φi(·)2

γi
=

∞

∑
i=1

γiφi(·)φi(·) = K(·, ·) < ∞, so it is verified that K(x, ·) ∈

HK . Finally, K(x, ·) is indeed the representer of evaluation at x in space HK since

〈 f ,K(x, ·)〉HK =

〈
∞

∑
i=1

ciφi,
∞

∑
i=1

γiφi(x)φi

〉
HK

=
∞

∑
i=1

ciγiφi(x)
γi

=
∞

∑
i=1

ciφi(x) = f (x).
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Further,

〈K(z, ·),K(x, ·)〉HK = 〈
∞

∑
i=1

γiφi(z)φi,
∞

∑
i=1

γiφi(x)φi〉HK =
∞

∑
i=1

γ2
i φi(x)φi(z)

γi
= K(x,z)

which is the reproducing property of the RKHS.

The dual form of a function f ∈HK is given with

f (x) =
∞

∑
i=1

ααα iK(zi,x), where
∞

∑
i=1

ααα i < ∞.

It is unclear that the primal and dual forms of a function f ∈HK are indeed equivalent. To

see that they are, choose {zi}∞
i=1 and {bi}∞

i=1, so then it follows that

f (x) =
∞

∑
i=1

biK(zi,x)

=
∞

∑
i=1

∞

∑
`=1

biγ`φ`(zi)φ`(x)

=
∞

∑
`=1

∞

∑
i=1

biγ`φ`(zi)φ`(x)

=
∞

∑
`=1

c`φ`(x),

where c` =
∞

∑
i=1

biγ`φ`(zi) and
∞

∑
`=1

c2
`

γ`
=

∞

∑
`=1

∞

∑
i=1

b2
i γ2

` φ 2
` (zi)

γ`
=

∞

∑
i=1

b2
i K(zi,zi)< ∞. From this result,

the norm of f ∈HK can be compactly written as

|| f ||2HK
= 〈 f , f 〉HK = 〈

n

∑
i=1

ααα IK(zi, .),
n

∑
i=1

ααα iK(zi, .)〉HK

=
n

∑
i=1

n

∑
j=1

ααα iααα jK(zi,z j)

= ααα
>KKKααα. (3.14)

The Representation (3.14) for finite data is the basis of the term the ‘kernel trick’ because it

puts practical mathematical machinery in place for Hilbert space optimization.
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An RKHS adaptation of Optimization (3.4) to kernel regression is

min
f∈HK

n

∑
i=1

(yyyi− f (xi))
2 +λ || f ||2HK

. (3.15)

As with the smoothing splines from Section 3.1 above, it turns out that the solution to Opti-

mization (3.15) on finite data is the kernel evaluated at the rows of XXX , i.e.,

f (xxx) =
n

∑
i=1

ααα iK(xxxi,xxx) = KKKα,

where the KKK is n×n kernel Gram matrix for n× p training data matrix XXX . This result together

with Kernel Trick (3.14) gives the equivalent optimization

min
ααα∈Rn

(yyy−KKKααα)>(yyy−KKKααα)+λααα
>KKKααα

having solution ŷyy=KKK(KKK+λ III)−1yyy. For classification, one can extend an RKHS optimization

to logistic regression and solve this extension with iterative weighted least squares using

Bernoulli probability weights.

3.3 Loss Function Mechanics for Kernel Based Approaches

Machine learning often involves an optimization of a generic objective function

Loss+λ ∗Penalty.

The loss function is a non-decreasing function of both the response and learning function. In

Section 3.1, Optimization (3.4) had this form with a squared error loss functional L(yyy, fff ) =

(yyy− fff )T (yyy− fff ) and general penalty function J( fff ) for regression problems. A logistic loss

version uses the logistic loss functional L(yyy, fff ) = ∑
n
i=1 log

(
1+ e−2yyyi fff i

)
for classification

problems. The advent of powerful machine learning techniques using kernel functions has

lead to new loss functions. These functions typically require powerful algorithms to fit. The
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general idea is to breakdown the optimization problem into ‘primal’ and ‘dual’ forms. The

dual form is directly solved. In this Section, we develop two common loss functions typically

used with kernel methods. The main goal is to test optimizing these loss functions against

the solutions using the classical squared error loss and logistic loss functions. Our goal is

to determine the efficacy of these functions on predictive performance. To this endpoint,

the benchmark comparison in Section 3.3.3 fully optimized all tuning parameters for both

versions.

3.3.1 Support Vector Machines in Classification

Classification is a common problem under examination in machine learning. The Support

Vector Machine (SVM) is a well-known kernel approach applied to classification problems

and is presented next. Assume 2-level classification with coding yyyi ∈ {−1,1}. The goal is to

ultimately predict

ŷyyi =

 1 f (xxxi)≥ 0

−1 otherwise.

This requires estimating the prediction rule f .

Geometrically, the SVM attempts to find a hyperplane that separates the response classes.

Ideally, the hyperplane is as far away as possible from each classification group, but this is

only truly possible when the classes are linearly separable. Assume for now that the classes

are separable. A hyperplane is the set of points
{

xxx ∈ Rp : ωωω>xxx+b =~0
}

. It clearly follows

that ωωω is orthogonal to any element in this set. The true linear prediction rule is assumed to

have form f (xxx) = ωωω>xxx+b. The main idea is to choose f in a way to maximize the margin

M between the two classes, i.e.,

maximize
ω̃ωω,b∈R

M

subject to: yyyi

(
ω̃ωω
>xxxi +b

)
≥M ∀i,∥∥ω̃ωω

∥∥2
2 = 1.
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This problem can be reformulated to the more convenient and equivalent version

min
ωωω,b∈R

1
2 ||ωωω||

2 subject to yyyi

(
ωωω
>xxxi +b

)
≥ 1 ∀ i.

This convex optimization problem can be re-expressed in terms of a Lagrangian multiplier

to obtain the so-called primal functional corresponding to

F(α,b,w) =
1
2
||ωωω||2−

n

∑
i=1

ααα i

(
yyyi(ωωω

>xxxi +b)−1
)
∀ αi ≥ 0.

Taking derivative of F with respect to b and ωωω , the primal form can be converted into a

so-called dual form functional

G(ααα) =
n

∑
i=1

ααα i−
n

∑
i=1

n

∑
j=1

yyyiyyy jxxx
>
i xxx jααα iααα j

= ~1>ααα− 1
2

ααα
>HHHααα. (3.16)

Maximizing G(ααα) subject to the constraint that ααα>yyy = 0 and ααα ≥~0 gives solutions b =

yyyi−ωωω>xxxi for some i and ωωω = ∑
n
i=1 yyyiααα ixxxi. In the case when the classes are linearly non-

separable, the above derivation requires a modification using slack variables and a cost pa-

rameter (Cortes and Vapnik, 1995).

The SVM is easily generalized to a non-linear classifier associated with the RKHS pre-

viously developed (Scholkopf & Smola, 2002) using a kernel function K. First, define

k(xxx) =


K(xxx,xxx1)

K(xxx,xxx2)
...

K(xxx,xxxn)

= K(xxx, ·).

Replacing xxxi in the above derivation with k(xxxi) leads to a dual form problem that is now non-

linear in the optimization functional, i.e., in Equation (3.16) replace ωωω with ωωω =
n
∑

i=1
ααα iyyyik(xxxi)

and set HHH =
(
yyyiyyy jK(xxxi,xxx j)

)
. The prediction rule f (x) = 〈ωωω,k(xxx)〉HK +b is given with inner-
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product

〈ωωω,k(xxx)〉HK = 〈
n

∑
i=1

ααα iyyyik(xxxi),k(xxx)〉HK =
n

∑
i=1

ααα iyyyi〈k(xxxi),k(xxx)〉HK =
n

∑
i=1

ααα iyyyiK(xxx,xxxi).

So, the prediction rule is f (xxx) =
n
∑

i=1
ααα iyyyiK(xxx,xxxi)+b, with b = yyyi−

n
∑

i=1
ααα iyyyiK(xxxi,xxx j) for some

i. Alternatively, this optimization problem can be formulated in terms of a hinge loss op-

timization problem where (1− yyyi f (xxxi))+ = max (0,1− yyyi f (xxxi)) is the hinge loss function.

The SVM solves

min
f∈HK

1
n

n

∑
i=1

(1− yyyi f (xxxi))++λ || f ||2HK

for a prediction rule f (xxx). Multi-class regression and ordinal regression are both possible

generalizations of this framework and have been considered (Hill and Doucet, 2007; Shashua

and Levin, 2002).

3.3.2 Sensitive Loss Functions for Regression

The SVM has had a profound impact on the literature (Lin et al., 2002; Hastie et al., 2009).

One by-product is the development of hinge loss as an optimization function. This approach

and loss function make sense in classification, but are not naturally applicable to regression.

One attempt to bridge this gap is the so-called ε-insensitive loss function

|yyy− f (xxx)|ε =
n

∑
i=1

(|yyyi− f (xxxi)|− ε)111{|yyyi− f (xxxi)|>ε}.

The learning function is a hyperplane parameterized as f (xxx) = 〈ωωω,xxx〉+ b. The SVM opti-

mization problem adjusted to regression has form

minimize
ωωω,b

1
2 ||w||

2 +C ∑
n
i=1 (ξi +ξ ?

i )

subject to: yyyi− f (xxxi)≤ ε−ξi,

f (xxxi)− yyyi ≤ ε−ξ ?
i ,
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where ξi,ξ
?
i ≥ 0 are the slack variables and C is the cost parameter. The solution to this

problem is referred to as Support Vector Regression (SVR).

The SVR methods is extended to kernel function K whose objective has the form

f (xxx,ααα?,ααα) =
n

∑
i=1

(ααα?
i −ααα i)K(xxxi,xxx)+b.

The vector ααα? are the ‘positive’ Lagrange multipliers while the vector ααα are the ‘negative’

Lagrange multipliers. Additional non-negative multipliers νi and ν?
i are also defined. The

primal function is given

F = ||ωωω||2 +C
n

∑
i=1

(ξi +ξ
?
i )−

n

∑
i=1

ααα i (ε +ξi− yyyi + 〈ωωω,xxxi〉+b)−

n

∑
i=1

ααα
?
i (ε +ξ

?
i + yyyi−〈ωωω,xxxi〉−b)−

n

∑
i=1

(νiξi +ν
?
i ξ

?
i ) .

Proceeding as with the SVM, take derivatives of the objective with respect to ωωω,b,ξi,ξ
?
i and

then reformulate into a corresponding dual functional

G(ααα?,ααα) =
1
2
(ααα−ααα

?)>KKK(ααα−ααα
?)+ ε~1>(ααα +ααα

?)− yyy>(ααα−ααα
?)

subject to
n

∑
i=1

ααα i =
n

∑
i=1

ααα
?
i and 0≤ ααα,ααα? ≤C.

From this, the SMO algorithm of Platt (1998) can be used to estimate the ωωω and b. The

parameters C and ε are to be estimated by cross-validation (CV).

3.3.3 Empirical Demonstrations

Regression and classification benchmarks results are described in this section. The ε-sensitive

loss and hinge loss kernel based optimization problems were fit using the kernlab pack-

age (Karatzoglou et al., 2004) in R. In each example, the corresponding square error loss

and logistic loss functions were also fit using in-house software. The goal was to assess how
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Table 3.1: Benchmark Data Sets.

Data Set (n, p) Type Response Reference
Blood (208,134) Regress log(BBB) Kuhn (2014)
Eye (120,200) Regress

√
Express Scheetz et al. (2006)

U.S. News & World Report (1004,20) Regress SAT.ACT ASA Data Expo ’95
Votes (435,16) Class House Vote Lichman (2013)
Flare (1066,9) Class Solar Flare Lichman (2013)
German Credit (1000,20) Class Credit Score Lichman (2013)

real the bottom-line contribution of each complex loss function is to the much simpler loss

function. Table 3.1 summarizes each data set used.

For this experiment, the polynomial kernel was fit, K(xxx,yyy) = (axxx>yyy+ b)d . Three-fold

CV was used to estimate the parameters on the finite grid

(a,b,d,ε) ∈ {0.01,0.1,1.0,1.5}×{0.0,0.05,1.0,2.5}×{1.0,2.0,3.0}×{0.05,0.1},

and the C parameter was chosen over a fine grid of length 27 between 0.05 and 10.0. In

each case, the data sets were broken up into training and testing. The training percentages

used were 10%, 30%, and 50%. The process was repeated 25 times per training size, and the

testing error was recorded.

The results are presented in Figure 4.1. It was somewhat surprising that the complex

loss functions made no appreciable difference. In some cases, the performance was actually

worse. These result focus our direction in the next chapter. Squared error loss and logistic

loss are used to fit our main contribution in that chapter. This study justifies this decision in

Chapter 4 to avoid overly complicated loss functions that require additional computational

time while not improving performance.
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Figure 3.1: Testing Performance on Real Data Sets.
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CHAPTER 4

A SAFE MANIFOLD APPROACH TO

SEMI-SUPERVISED LEARNING

4.1 Introduction

The main contribution of this chapter is a novel safe semi-supervised kernel-based modeling

(S3KM) approach. As discussed in Chapter 1, the safety feature of the S3KM is its ability to

tradeoff between a semi-supervised learning manifold-based approach and a well-established

supervised alternative. First, notational conventions are given in Section 4.2, and a general

relationship between ridge and kernel regression is proven in Section 4.3. Then the S3KM

for regression with a square error loss is defined in Section 4.4. Next, the S3KM is extended

to classification problems in Section 4.5 with a logistic labeled loss, and the resulting op-

timization is solved by an iterative algorithm based on the square error version in Section

4.4. The S3KM is then extended to an anchor graph S3KM or AS3KM for computation ef-

ficiency in Section 4.6. Our novel S3KM and AS3KM methods are compared to the related

method of manifold regularization in Section 4.7. All methods are benchmarked on real data

in Section 4.8, and these empirical results demonstrate the effectiveness of the S3KM and
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AS3KM.

There are many semi-supervised approaches, but few are safe in the manner described

here, i.e., they tradeoff between a semi-supervised learning manifold-based approach and a

well-established supervised alternative. A safe example is Culp et al. (2009), which pro-

moted safety by preferring the less-wiggly, supervised fit of non-parametric local kernel

regression over a more complicated semi-supervised fit unless overruled by a stepwise cri-

terion. Recent work involved non-noisy structured data problems (Li and Zhou, 2011) or a

kernel density approach (Kawakita and Jun’ichi, 2014; Culp and Ryan, 2013; Azizyan et al.,

2013). In addition, few of the semi-supervised approaches in the literature are actually im-

plemented, robust, and practical for real data problems. These shortcomings justify why our

safe method is advantageous during the practical applications in Section 4.8.

4.2 Mathematical Problem Setup and Notation

This section outlines the notational conventions used to define the S3KM later in Section

4.4. Let L and U partition the index set {1, . . . ,n} for the n observations into the sets of

labeled and unlabeled observations. The technical setup requires that the m = |L| labeled

observations (yi,xxxi) for i ∈ L are independent and identically distributed, where yi ∈ R and

xxxi ∈ Rp. An additional n−m = |U | unlabeled observations xxxi are also independent and

identically distributed (and independent of the labeled data), but their responses yi for i ∈U

are not available for training. Based on stacking the xxxi as row vectors for i = 1, . . . ,n, the full

data are represented by an n× p model matrix XXX with the row-wise partition

XXX =

 XXXL

XXXU

 ,

and we tacitly assume a sorting of the data, i.e., with loss of generality the labeled observa-

tions come first.

Localized structures within model matrix XXX can be exploited with a kernel regression
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setup. This requires choosing a kernel function K : Rp×Rp→ R, which is used to convert

XXX to an n×n nonnegative definite kernel matrix

KKK =

 KKKLL KKKLU

KKKUL KKKUU

 . (4.1)

The entries of kernel matrix KKK are K(xxxi,xxx j), i.e., simply apply the kernel function K to the

ith and jth rows of XXX .

Global manifold structures within model matrix XXX can be exploited with a graph-based

operator such as a graph Laplacian. To induce sparsity, we use a k-nearest neighbors (k-NN)

graph. Let Nk(xxx0)⊂ {xxx0, . . . ,xxxn} such that |Nk(xxx0)|= k be the neighborhood of any xxx0 ∈Rp.

Then the n×n distance matrix D̃DD = [d̃i j] with entries

d̃i j =


∥∥xxxi− xxx j

∥∥2
2 if xxx j ∈ Nk(xxxi) or xxxi ∈ Nk(xxx j)

∞ otherwise

is well-defined. This in turn is used to obtain an n×n adjacency matrix ωωω = [ωi j] with entries

ωi j = exp
(
−di j/σ

2) (4.2)

and then its corresponding graph Laplacian

∆∆∆ = diag
(

ωωω~1
)
−ωωω =

 ∆∆∆LL ∆∆∆LU

∆∆∆UL ∆∆∆UU

 . (4.3)

At least hypothetically, there is also an n× 1 response vector yyy = [yi] corresponding

to XXX . This response also partitions into the m observed responses yyyL and n−m latent (or

unobserved) variables yyyU , and we adopt the notation

yyy(yyyU) =

 yyyL

yyyU

 ,
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to emphasize that we don’t have yyyU (in spite of the fact that goal of a study may be to predict

yyyU ). We will also use the diagonal matrix

www = diag(w1, . . . ,wn)

=

 wwwLL 000

000 wwwUU


comprised of positive observation case-weights wi > 0 for i = 1, . . . ,n.

4.3 Supervised Ridge and Kernel Regression Connections

This section culminates in Theorem 1. This result establishes an equivalence between kernel

and ridge regression and is also referenced later in Sections 4.4 and 4.6 to interpret of our

of novel S3KM and AS3KM methods as induced ridge regressions based on a sort of kernel

transformed model matrix.

Supervised approaches only use the labeled data: XXXL,yyyL (and possibly the m×m non-

negative definite kernel matrix KKKLL computed from XXXL). Start with supervised least squares

(LS) regression

β̂ββ
(LS)

= argmin
βββ∈Rp

∥∥∥www1/2
LL (yyyL−XXXLβββ )

∥∥∥2

2
.

For ease of exposition, assume model matrix XXXL is of full column rank, so then β̂ββ
(LS)

=(
XXX>L wwwLLXXXL

)−1
XXX>L wwwLLyyyL. Also let {λi,ννν i}p

i=1 be the eigen or spectral decomposition of the

symmetric matrix XXX>L wwwLLXXXL.

Supervised ridge regression

β̂ββ
(Ridge)

= argmin
βββ∈Rp

∥∥∥www1/2
LL (yyyL−XXXLβββ )

∥∥∥2

2
+λβββ

>
βββ (4.4)
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and has the representation

β̂ββ
(Ridge)

=
(

XXX>L wwwLLXXXL +λ III
)−1(

XXX>L wwwLLXXXL

)
β̂ββ
(LS)

=
p

∑
i=1

λi

λi +λ
ciννν i,

where β̂ββ
(LS)

= c1ννν1+· · ·+cpννν p is projected onto the eigen decomposition of XXX>L wwwLLXXXL, and

so shrinking is proportionally more concentrated on the lower order principal components or

eigenvectors ννν i with the smaller eigenvalues λi. The corresponding labeled fits are

XXXLβ̂ββ
(Ridge)

= XXXL

(
XXX>L wwwLLXXXL +λ III

)−1(
XXX>L wwwLLXXXL

)
β̂ββ
(LS)

(4.5)

=
p

∑
i=1

λi

λi +λ
ciXXXLννν i.

Next, we turn attention to supervised kernel regression

̂̃
ααα = argmin

α̃αα∈Rm

∥∥∥www1/2
LL (yyyL−KKKLLα̃αα)

∥∥∥2

2
+λα̃αα

>KKKLLα̃αα. (4.6)

for some choice of nonnegative definite kernel function K(·, ·). This yields labeled fits of

η̂ηηL = KKKLL
̂̃
ααα

= (KKKLLwwwLL +λ III)−1 KKKLLwwwLLyyyL.

An example of Kernel Regression (4.6) is based on the linear kernel function K(xxxi,xxx j) =

xxx>i xxx j implying KKK = XXXLXXX>L is the outer product matrix of XXXL and labeled fits vector

η̂ηηL =
(

XXXLXXX>L wwwLL +λ III
)−1

XXXLXXX>L wwwLLyyyL,

whereas the Labeled Fits (4.5) from ridge regression directly involve the inner product ma-

trix XXX>L wwwLLXXXL. Kernel Regression Optimization (4.6) is equivalent to Ridge Regression

Optimization (4.4) with the constraint of picking an optimal β̂ββ
(Ridge)

in the row space of XXXL.
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This is easily seen after substitutions βββ 7→XXX>L α̃αα followed by XXXLXXX>L 7→KKKLL into Optimization

(4.4). Theorem 2 states this equivalence in terms of the fits and uses a direct proof.

Theorem 1. The labeled fits (KKKLLwwwLL +λ III)−1 KKKLLwwwLLyyyL of kernel regression with the linear

kernel KKKLL = XXXLXXX>L equal the labeled ridge regression fits XXXLβ̂ββ
(Ridge)

for any λ ≥ 0.

Proof. We need to show that

(
XXXLXXX>L wwwLL +λ III

)−1
XXXLXXX>L wwwLLyyyL = XXXL

(
XXX>L wwwLLXXXL +λ III

)−1
XXX>L wwwLLyyyL. (4.7)

This direct proof hinges on the observation that www1/2
LL XXXLννν i is an eigenvector of the outer

product matrix www1/2
LL XXXLXXX>L www1/2

LL for i = 1, . . . , p, i.e.,

XXX>L wwwLLXXXLννν i = λiννν i⇒ www1/2
LL XXXLXXX>L www1/2

LL (www1/2
LL XXXLννν i) = www1/2

LL XXXLλiννν i.

With this in mind, the left hand side of Equation (4.7) is

Kernel Fits =
(

XXXLXXX>L wwwLL +λ III
)−1

XXXLXXX>L wwwLLyyyL

=
(

XXXLXXX>L wwwLL +λ III
)−1

XXXL

(
XXX>L wwwLLXXXL

)(
XXX>L wwwLLXXXL

)−1
XXX>L wwwLLyyyL

= www−1/2
LL

(
www1/2

LL XXXLXXX>L www1/2
LL +λ III

)−1
www1/2

LL XXXLXXX>L www1/2
LL

(
www1/2

LL XXXLβ̂ββ
(LS)
)

=
[
www−1/2

LL

](
www1/2

LL XXXLXXX>L www1/2
LL +λ III

)−1
www1/2

LL XXXLXXX>L www1/2
LL

(
p

∑
i=1

ciwww
1/2
LL XXXLννν i

)

=
[
www−1/2

LL

]
www1/2

LL XXXL

p

∑
i=1

λi

λi +λ
ciννν i,
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whereas the right hand side of Equation (4.7) is

Ridge Fits = XXXL

(
XXX>L wwwLLXXXL +λ III

)−1
XXX>L wwwLLyyyL

= XXXL

(
XXX>L wwwLLXXXL +λ III

)−1
XXX>L wwwLLXXXLβ̂ββ

(LS)

= XXXL

(
XXX>L wwwLLXXXL +λ III

)−1
XXX>L wwwLLXXXL

p

∑
i=1

ciννν i

= XXXL

p

∑
i=1

λi

λi +λ
ciννν i

= Kernel Fits.

Theorem 1 is easily generalized to an arbitrary nonnegative definite kernel function and

its resulting m×m Gram matrix KKKLL (computed from XXXL). This follows by taking the eigen-

value decomposition of KKKLL = ΦΦΦLLΛΛΛLLΦΦΦ
>
LL where the top r ≤ m eigenvalues are nonzero.

The m× r matrix ÃAAL is constructed from the top r eigenvalues and eigenvectors so that

KKKLL = ÃAALÃAA
>
L . So, Theorem 1 establishes that kernel regression reduces to ridge regression

with an kernel-based induced model matrix substitution of ÃAAL in place of XXXL.

4.4 A Safe Semi-Supervised Kernel Model: S3KM

Joint training is a general semi-supervised framework that treats the unknown components

of yyyU as additional decision variables during optimization. Our focus is the joint training

optimization problem

(
α̂αα, f̂ff , ŷyyU

)
= argmin

ααα, fff ,yyyU

∥∥∥www1/2 (yyy(yyyU)− fff −KKKααα)
∥∥∥2

2
+λ1ααα

>KKKααα +λ2 fff>∆∆∆ fff + γyyy>U yyyU (4.8)

for some λ1 ≥ 0, λ2 ≥ 0, and γ ≥ 0 with corresponding fits of

η̂ηη = f̂ff +KKKα̂αα. (4.9)
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The solution to Optimization (4.8) is henceforth referred to as the Safe Semi-Supervised

Kernel Model (S3KM). A data analysis involving Optimization (4.8) might be boiled down

to a choice of kernel function k(·, ·) to produce KKK as well as estimation of the tuning param-

eters λ1,λ2,γ,σ
2, where σ2 from Equation (4.2) is used to construct Laplacian (4.3). This

endpoint might be achieved by using Cross-Validation (CV) to estimate λ1,λ2,γ,σ
2 for a

number of kernel functions k(·, ·). While our focus will often default to the linear kernel

function k(xxxi,xxx j) = xxx>i xxx j for ease of presentation, results extend in a natural manner to other

kernel functions such as those listed in Section 3.2.1.

Next, we analytically investigate the extremes of the compromise or tradeoff spanned by

Optimization (4.8) in the limits as its tuning parameters λ1,λ2,γ are set to boundary values of

0 or ∞. This is done to better understand and motivate the need for each term in the objective

function of Optimization (4.8). This discussion is broken into Section 4.4.1 for λ1 = ∞ and

Section 4.4.2 for λ2 = ∞.

4.4.1 The S3KM when λ1 = ∞λ1 = ∞λ1 = ∞

The limit of λ1 → ∞ implies ααα>KKKααα → 0. This is equivalent to a limit of KKKααα =~0 when

λ1 = ∞ because KKK is nonnegative definite. This follows since KKK = AAAAAA> for some matrix AAA

and hence

ααα
>KKKααα = 0 ⇒ ααα

>AAAAAA>ααα = 0

⇒ AAA>ααα =~0

⇒ KKKααα =~0

⇒ ααα
>KKKααα = 0.

So, when λ1 = ∞, Optimization (4.8) simplifies to a well-understood graph-based opti-

mization (
f̂ff , ŷyyU

)
= argmin

fff ,yyyU

∥∥∥www1/2 (yyy(yyyU)− fff )
∥∥∥2

2
+λ2 fff>∆∆∆ fff + γyyy>U yyyU ; (4.10)

for example, see Culp and Ryan (2013) for an in-depth study of a similar graph-based prob-
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lem. In the objective function of Optimization (4.10), the vector of decision variables yyyU can

be easily profiled out as it is only involved in the unlabeled loss and its penalty, i.e.,

(yyyU − fffU)
>wwwUU (yyyU − fffU)+ γyyy>U yyyU , (4.11)

solving the yyyU -score yields of Objective (4.11) yields

wwwUU (yyyU − fffU)+ γyyyU = ~0

yyyU = (wwwUU + γIII)−1 wwwUU fffU . (4.12)

Solution (4.12) is the optimal yyyU at a given fffU , and plugging this into Objective (4.11) can

be used to show that

(yyyU − fffU)
>wwwUU (yyyU − fffU)+ γyyy>U yyyU =

(
~0− fffU

)>
[VVVUU ]

(
~0− fffU

)
, where

VVV =

 VVV LL 000

000 VVVUU


=

 wwwLL 000

000 γwwwUU (wwwUU + γIII)−1

 .

Thus, the fits

η̂ηη = f̂ff = argmin
fff

(
yyy(~0)− fff

)>
VVV
(

yyy(~0)− fff
)
+λ2 fff>∆∆∆ fff (4.13)

equal the fits η̂ηη = f̂ff from Optimization (4.10). Solving the fff -score of the objective from

Optimization (4.13) results in the closed-formula

−VVV
(

yyy(~0)− f̂ff
)
+λ2∆∆∆ f̂ff = ~0

(VVV +λ2∆∆∆) f̂ff = VVV yyy(~0) (4.14)

f̂ff = (VVV +λ2∆∆∆)−1VVV yyy(~0).

When γ = ∞, VVVUU = wwwUU , so VVV = www. In this context with γ = ∞, the fits f̂ff are a manifold
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averaging with 0 imputations for the missing unlabeled responses.

As for γ = 0, partitioning the Equations (4.14) to wwwLL +λ2∆∆∆LL λ2∆∆∆LU

λ2∆∆∆UL VVVUU +λ2∆∆∆UU

 f̂ff L

f̂ffU

=

 wwwLLyyyL

~0


by the labeled and unlabeled sets is particularly informative. When γ = 0, VVVUU = 000, and the

unlabeled fits

−∆∆∆UU f̂ffU = ∆∆∆UL f̂ff L.

satisfy a harmonic property. If for example the labeled responses are constant on a (possi-

bly non-elliptical) manifold, this harmonic property uses that particular observed constant

response value as the predicted value throughout the manifold on both the labeled and unla-

beled cases (Culp and Ryan, 2013).

4.4.2 The S3KM when λ2 = ∞λ2 = ∞λ2 = ∞

More insight into the varied types of possible predictions obtained from Optimization (4.8)

is gleaned when λ2 = ∞. Then the vector fff is in the null space of the graph Laplacian ∆∆∆

from Equation (4.3). Null vectors indicate the connected components of the graph ωωω used

to compute ∆∆∆, and these null vectors represent the manifolds in the feature space (Culp and

Ryan, 2013). In the context of a fully connected graph ωωω , the all ones vectors ~1 ∈ Rn is

a basis for the null space of ∆∆∆. In particular, penalty λ2 fff>∆∆∆ fff = 0 whenever fff = c~1 for

some scalar c ∈R, so when λ2 = ∞, there is no penalty for centering the response with say a

weighted mean of yyyL. In this section, we thus consider

(
α̂αα, ŷyyU

)
= argmin

ααα,yyyU

∥∥∥www1/2 (yyy(yyyU)−KKKααα)
∥∥∥2

2
+λ1ααα

>KKKααα + γyyy>U yyyU (4.15)
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with no graph term and its fits of

η̂ηη = KKKα̂αα =

 KKKLLα̂ααL +KKKLU α̂ααU

KKKULα̂ααL +KKKUU α̂ααU

 (4.16)

as a proxy of Optimization (4.8) when λ2 = ∞.

A Supervised Safety Parameter Setting: In the special case of γ = 0, Optimization

(4.15) reduces to

α̂αα0 = argmin
ααα∈Rn

∥∥∥www1/2
LL (yyyL−KKKLLαααL−KKKLU αααU)

∥∥∥2

2
+λ1ααα

>KKKααα. (4.17)

with corresponding fits of

η̂ηη0 = KKKα̂αα0 =

 KKKLLα̂αα0L +KKKLU α̂αα0U

KKKULα̂αα0L +KKKUU α̂αα0U

 . (4.18)

Optimization (4.17) appears to depend on the unlabeled portions of the full kernel matrix KKK

given in Equation (4.1). In spite of this, we establish (later in this section in Theorem 2) that

Optimization (4.17) and its Fits (4.18) are equivalent to supervised kernel regression

̂̃
ααα = argmin

α̃αα∈Rm

∥∥∥www1/2
LL (yyyL−KKKLLα̃αα)

∥∥∥2

2
+λα̃αα

>KKKLLα̃αα (4.19)

and its fits

η̂ηη =

 KKKLL

KKKUL

 ̂̃ααα. (4.20)

While we do not contend that solution ̂̃ααα is unique, we do provide a concise matrix represen-

tation for Fits (4.20) in Lemma 2 that is guaranteed to be unique for any λ > 0. The proof to

Lemma 2 relies on the well-known matrix identity established in Lemma 1.

Lemma 1. If KKK is a nonnegative definite matrix with Partition (4.1), then KKKUL =KKKULKKK−LLKKKLL

for any choice of generalized inverse KKK−LL of KKKLL such that KKKLL = KKKLLKKK−LLKKKLL.
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Proof. If

BBB =

 III−KKK−LLKKKLL

000

 ,

then

BBB>KKKBBB = BBB>

 000

KKKUL−KKKULKKK−LLKKKLL

= 000.

Since KKK nonnegative definite implies KKK = AAA>AAA for some matrix AAA,

BBB>KKKBBB = BBB>AAA>AAABBB = 000⇒ AAABBB = 000⇒ AAA>AAABBB = 000⇒ KKKBBB = 000.

So, with KKKBBB = 000, we must have

KKKBBB =

 000

KKKUL−KKKULKKK−LLKKKLL

= 000⇒ KKKUL = KKKULKKK−LLKKKLL.

Lemma 2. The full n×1 Fits (4.20) based on Supervised Optimization (4.19) is

η̂ηη =

 KKKLL

KKKUL

 ̂̃ααα =

 KKKLL

KKKUL

wwwLL (KKKLLwwwLL +λ III)−1 yyyL. (4.21)

Proof. We start by finding the labeled portion of the fits vector η̂ηηL. To do this, we take the

α̃αα-score of the objective function and solve for KKKLL
̂̃
ααα , i.e.,

−KKKLLwwwLL(yyyL−KKKLL
̂̃
ααα)+λKKKLL

̂̃
ααα = ~0 (4.22)

(KKKLLwwwLL +λ III)KKKLL
̂̃
ααα = KKKLLwwwLLyyyL

KKKLL
̂̃
ααα = (KKKLLwwwLL +λ III)−1KKKLLwwwLLyyyL

KKKLL
̂̃
ααα = KKKLLwwwLL(KKKLLwwwLL +λ III)−1yyyL. (4.23)
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A matrix multiplication in Equation (4.23) is commutative because

(KKKLLwwwLL +λ III)−1KKKLLwwwLL = www−1/2
LL (www1/2

LL KKKLLwww1/2
LL +λ III)−1www1/2

LL KKKLLwww1/2
LL www1/2

LL

= www−1/2
LL

[
(www1/2

LL KKKLLwww1/2
LL +λ III)−1

][
www1/2

LL KKKLLwww1/2
LL

]
www1/2

LL

= www−1/2
LL

[
www1/2

LL KKKLLwww1/2
LL

][
(www1/2

LL KKKLLwww1/2
LL +λ III)−1

]
www1/2

LL

= KKKLLwwwLL(KKKLLwwwLL +λ III)−1

since the pair of symmetric matrices in the square brackets have the same eigenvectors. With

the labeled fits of ̂̃ηηηL = KKKLL
̂̃
ααα in Equation (4.23), the unlabeled fits of

̂̃
ηηηU = KKKUL

̂̃
ααα

= KKKULKKK−LLKKKLL
̂̃
ααα

= KKKULKKK−LL
̂̃
ηηηL

follow by Lemma 1, so Fits (4.21) are established on the labeled and unlabeled sets.

Theorem 2. Setting γ = 0 in Optimization (4.15) results in a supervised approach. (In

particular, Optimization (4.15) with γ = 0 results in Optimization (4.17), and the Fits (4.18)

of Optimization (4.17) equal the Supervised Fits (4.20) of Optimization (4.19), i.e., ̂̃ηηη = η̂ηη0.)

Proof. In the theorem statement, the first sentence is a logical consequence of the second

sentence. With this in mind, the proof is similar to that of Lemma 2, and we start by solving

the αααL-score of the objective from Optimization (4.17) for η̂ηη0L = KKKLLα̂αα0L +KKKLU α̂αα0U , i.e.,

−KKKLLwwwLL(yyyL− η̂ηη0L)+λη̂ηη0L = ~0

(KKKLLwwwLL +λ III)η̂ηη0L = KKKLLwwwLLyyyL

η̂ηη0L = (KKKLLwwwLL +λ III)−1KKKLLwwwLLyyyL

η̂ηη0L = KKKLLwwwLL(KKKLLwwwLL +λ III)−1yyyL

η̂ηη0L = ̂̃
ηηηL. (4.24)
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As for the unlabeled fits, these are obtained by solving the αααU -score of the objective from

Optimization (4.17) for η̂ηηU = KKKULα̂ααL +KKKUU α̂ααU , i.e.,

−KKKULwwwLL(yyyL− η̂ηη0L)+λη̂ηη0U = ~0

η̂ηη0U = KKKUL
(
wwwLL−wwwLL(KKKLLwwwLL +λ III)−1KKKLLwwwLL

)
yyyL/λ

η̂ηη0U = KKKUL

[
wwwLL−

(
KKKLL +λwww−1

LL
)−1

KKKLLwwwLL

]
yyyL/λ

η̂ηη0U = KKKUL
(
KKKLL +λwww−1

LL
)−1 [

λwww−1
LL wwwLL

]
yyyL/λ

η̂ηη0U = ̂̃
ηηηU . (4.25)

Equations (4.24) and (4.25) complete the proof of ̂̃ηηη = η̂ηη0.

Theorem 2 establishes the effect of setting γ = 0 as being supervised, and this provides

a built in safety of the S3KM in the following sense. Data analysis can as needed default

to a near supervised approach if during CV parameter estimates of λ̂2 = ∞ and γ̂ = 0 are

obtained.

Connections to Generalized Ridge Regression: The γ parameter of Optimization (4.8)

shrinks the latent unlabeled response estimates ŷyyU . For example, in the positive extreme of

γ = ∞, Optimization (4.15) reduces to

α̂αα = argmin
ααα

∥∥∥www1/2
(

yyy(~0)−KKKααα

)∥∥∥2

2
+λ1ααα

>KKKααα. (4.26)

As before, use the spectral decomposition KKK = ΦΦΦΛΛΛΦΦΦ
> to get an n× r matrix AAA such that

KKK = AAAAAA>. Then the induced ridge regression problem

β̂ββ = argmin
βββ

∥∥∥www1/2
(

yyy(~0)−AAAβββ

)∥∥∥2

2
+λ1βββ

>
βββ

results in the same fits

η̂ηη = KKKα̂αα = AAAβ̂ββ
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as the Kernel-Based Optimization (4.26). A further equivalent simplification of

β̂ββ = argmin
βββ

∥∥∥www1/2
LL (yyyL−AAALβββ )

∥∥∥2

2
+βββ

> (AAAT
U wwwUU AAAU +λ1III

)
βββ (4.27)

follows. This is a generalized ridge regression problem, but in this case, the form of the

penalty depends on the unlabeled data.

Deeper insight into the unlabeled influence of this penalty follows for a special set-

ting of the case weights. Let γ1 > 0 be a new tuning parameter and suppose that wwwi =

1+(γ1−1)111{i∈U} for i = 1, . . . ,n. Then the solution to Optimization (4.27) is

β̂ββ = (III + γ1MMM)−1
β̂ββ AAAL

,

where MMM =
(

AAA>L AAAL +λ1III
)−1

AAA>U AAAU , and β̂ββ AAAL
=
(
AAAT

L AAAL +λ1III
)−1

AAA>L yyyL. This results in a

kernel-based generalization of the semi-supervised extreme for ridge regression as defined in

Ryan and Culp (2015). Specifically, projecting β̂ββ AAAL
onto the eigen-decomposition {τi,φφφ i}r

i=1

of matrix MMM yields β̂ββ AAAL
= ∑

r
i=1 ciφφφ i which in-turn yields

β̂ββ =

(
c1

1+ γ1τ1

)
φφφ 1 + · · ·+

(
cr

1+ γ1τr

)
φφφ r.

Vector AAAU φφφ 1 will receive the most shrinking for larger γ1 while AAAU φφφ r receives the least

amount of shrinking. Ryan and Culp (2015) called AAAU φφφ 1 the direction of largest unla-

beled extrapolation. Finite positive γ in Optimization (4.15) has the effect of forcing MMM −→(
AAA>L AAAL +λ1III

)−1
. This leads to the corresponding ααα solutions α̂αα to this optimization to

behave more like the supervised kernel regression estimate, because the γ = 0 case of Opti-

mization (4.15) is a supervised kernel regression by Theorem 2.
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4.5 S3KM Extensions to Classification

The S3KM approach is extended to classification problems. For classification, now assume

that yyyi ∈{±1} for each i∈ L. The goal is to define a prediction rule to obtain class probability

estimates for any new observation xxx0, i.e., estimate the probability yyy0 = 1 given xxx0. The

proposed Optimization (4.8) is extended to logistic regression for this purpose.

The S3KM under a logistic loss function extends Optimization (4.8) to

(
α̂αα, f̂ff , ŷyyU

)
= argmin

ααα, fff ,yyyU

∑
i∈L

log
(
1+ e−2yyyiηηη i

)
+‖(yyyU −ηηηU)‖

2
2 +

λ1ααα>KKKααα +λ2 fff>∆∆∆ fff + γyyy>U yyyU (4.28)

with ηηη = fff +KKKααα . As established above in Section 4.4.1, the positive semi-definite kernel

matrix KKK has the representation KKK = AAAAAA> for some n× r matrix AAA with r ≤ n. From this,

Optimization (4.8) with βββ = AAA>ααα reduces to

(
β̂ββ , f̂ff , ŷyyU

)
= argmin

βββ , fff ,yyyU

∑
i∈L

log
(
1+ e−2yyyiηηη i

)
+‖(yyyU −ηηηU)‖

2
2 +

λ1βββ
>

βββ +λ2 fff>∆∆∆ fff + γyyy>U yyyU (4.29)

with ηηη = fff +AAAβββ . Theorem 3 simplifies the joint optimization problem to an equivalent

problem in decision variables fff L and βββ by profiling out decision variables fffU and yyyU .

Theorem 3. There exists a (r+ |L|)× (r+ |L|) positive semi-definite matrix

ΓΓΓ =

 ΓΓΓ11 ΓΓΓ12

ΓΓΓ
>
12 ΓΓΓ22


such that

(
β̂ββ , f̂ff L

)
= argmin

βββ , fff L

∑
i∈L

log
(
1+ e−2yyyiηηη i

)
+
(

fff>L βββ
>
)

ΓΓΓ

 fff L

βββ

 (4.30)
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if and only if
(

β̂ββ , f̂ff , ŷyyU

)
solves (4.29) for any

(
ŷyyU , f̂ffU

)
satisfying

(
λ2∆∆∆UU +

γ

1+ γ
III
)

f̂ffU = −
(

∆∆∆UL fff L +
γ

1+γ
AAAU βββ

)
ŷyyU =

γ

1+ γ
η̂ηηU .

Proof. To begin, differentiating Objective (4.29) with respect to yyyU yields

yyyU =
1

1+ γ
ηηηU . (4.31)

Plugging Constraint (4.31) into the terms involving yyyU reduces Objective (4.29) to

‖(yyyU −ηηηU)‖
2
2 + γyyy>U yyyU =

((
1− γ

1+γ

)2
+ γ

(1+γ)2

)
ηηη
>
U ηηηU = γ

1+γ
ηηη
>
U ηηηU .

Parameter yyyU is then profiled out of Objective (4.29) leading to optimization

(
α̂αα, f̂ff

)
= argmin

ααα, fff
∑
i∈L

log
(
1+ e−yyyiηηη i

)
+λ1ααα

>KKKααα +λ2 fff>∆∆∆ fff + γ

1+γ
ηηη
>
U ηηηU . (4.32)

Taking the gradient of Objective (4.32) with respect to fffU results in score

λ2∆∆∆UU fffU +λ2∆∆∆UL fff L +
γ

1+γ
fffU + γ

1+γ
AAAU βββ =~0,

solving for fffU produces

fffU =−
(

λ2∆∆∆UU + γ

1+γ
III
)−1(

∆∆∆UL fff L +
γ

1+γ
AAAU βββ

)
.
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Algorithm 1 Logistic Version of the S3KM

1: Input yyyL ∈ {−1,1}|L|, AAA, ∆∆∆, and (λ1,λ2,γ).
2: Initialize η̂ηη =~0.
3: Repeat
4: Set the weights vector with components

µµµ i =
exp
(
2η̂ηη i
)(

1+ exp
(
2η̂ηη i
)) .

5: Compute the linearized response

zi = ηηη i +
yyyi+1

2 −µµµ i

µµµ i (1−µµµ i)
.

6: Solve(
β̂ββ , f̂ff L

)
= argmin

βββ , fff L

∑
i∈L

µµµ i (1−µµµ i)(zi−ηηη i)
2 +
(

fff>L βββ
>
)

ΓΓΓ

(
fff L
βββ

)
.

7: Update η̂ηηL = AAALβ̂ββ + f̂ff L.
8: Until η̂ηη converges.
9: Compute η̂ηηU and ŷyyU as described in Theorem 3.

Plugging this fffU into Equation (4.32) identifies the partitions of ΓΓΓ as

ΓΓΓ11 = λ1∆∆∆LL−λ
2
1 ∆∆∆LU

(
λ2∆∆∆UU + γ

1+γ

)−1
∆∆∆UL

ΓΓΓ12 = − γ

1+γ
λ1∆∆∆LU

(
λ2∆∆∆UU + γ

1+γ

)−1
AAAU

ΓΓΓ22 = λ2III + γ

1+γ
AAA>U AAAU −

(
γ

1+γ

)2
AAA>U
(

λ2∆∆∆UU + γ

1+γ
III
)−1

AAAU .

Theorem 3 establishes that Joint Optimization (4.28) can be re-expressed as a penalized

semi-parametric model (Hastie et al., 2009). As such, Logistic Regression Algorithm 1

provides the solution to this optimization problem.
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4.6 S3KM Extensions to Anchor Graphs

6

-

h1
h2

h3
h4

cs
x2

x1

A computationally-efficient, sparse version of Optimization (4.8) is sought in or-

der to extend the viability of the proposed method to practical big data problems.

The anchor point approximation is ideally suited for this. Let QQQ denote an a× p

matrix of a anchor points in Rp. The initial objective is to find a matrix ZZZ so that

XXX is close to ZZZQQQ. Precisely, each row of ZZZ is restricted to be on a simplex, so the ith row of

ZZZQQQ is constrained to the convex polytope of the s closest anchor points to the ith row of XXX .

Refer to the example on right with p = 2, k = 4, s = 3, ◦ is an arbitrary vector xxx ∈ Rp, and

• is the corresponding projection ∑
a
i=1 ZZZiQQQi. The vector zzz is the simplex projection of xxx onto

the convex polygon consisting of the closest s = 3 of k = 4 anchor points. The Local Anchor

Embedding algorithm of Liu et al. (2010) solves for each row of ZZZ by simplex projecting the

corresponding row of XXX in this manner. From this, adjacency matrix ZZZdiag
(

ZZZT~1
)

ZZZ> is the

anchor graph with Laplacian ∆∆∆ = III−ZZZdiag
(

ZZZT~1
)

ZZZ> and reduced Laplacian ∆̃∆∆ = ZZZ>∆∆∆ZZZ.

Given an n× n kernel matrix KKK = AAAAAA> of rank r, substituting anchor graphs and lin-

earized functions fff = ZZZααα into Optimization (4.8) results in

(
θ̂θθ , ŷyyU

)
= argmin

θθθ ,yyyU

∥∥∥www1/2
(

yyy(yyyU)− X̃XXθθθ

)∥∥∥2

2
+λ1θθθ

>PPPθθθ + γyyy>U yyyU , (4.33)

where decision variables θθθ =
(

βββ
>,ααα>

)>
such that βββ ∈ Rr and ααα ∈ Ra, induced model

matrix X̃XX = [AAA|ZZZ] is an n× (r+a) columnwise concatenation, and penalty matrix

PPP =

 λ2
λ1

III 000

000 ∆̃∆∆

 .

Optimization (4.33) has linear fits

η̂ηη = X̃XX θ̂θθ = AAAβ̂ββ +ZZZα̂αα.

We call the solution to Optimization (4.33) the Anchor Safe Semi-Supervised Kernel Model
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(AS3KM). The logistic version for classification can be solved in a similar manner.

The complexity of solving the Optimization (4.8) is overshadowed by the need to first

carry out a quadratic in n graph construction phase. On the other hand, solving (4.33) only

requires an initial linear in n anchor graph construction phase. Computing matrix AAA from

kernel KKK is an n3 operation that both techniques require. The anchor graph simplification

requires one a + r inverse which is of order (a + r)3. Moreover, local kernel parameter

σ2 is eliminated from the anchor graph method, which leads to fewer parameters for CV.

A comparison of Optimizations (4.8) and (4.33) brings into focus a familiar performance

versus speed tradeoff: (a) get the best performance by optimizing a computationally intense

problem versus (b) get (hopefully) comparable performance results faster by optimizing a

problem requiring substantially less computation. This tradeoff is investigated empirically

in Section 4.8

4.7 Manifold Regularization: An S3KM Competitor

Many supervised approaches such as those discussed in Chapter 3 including ridge regression,

smoothing splines, and SVMs are penalized regression problems. The main competitor for

the proposed S3KM is manifold regularization (Belkin et al., 2006). Manifold regularization

works in a similar manner, but the regularizer is more complex than the ones discussed in

Chapter 3. Manifold regularization is semi-supervised RKHS approach. The RKHS space

paradigm is the same as previously established, i.e., denote HK as the RKHS with corre-

sponding inner product norm || f ||2HK
= αααT KKKααα where KKK is the kernel Gram matrix con-

structed on all observations in L∪U . The optimization problem posits a dual functional that

penalizes in both an intrinsic and ambient fashion. The geometric penalty uses the intrinsic

information in the marginal density of XXX denoted as PXXX . This is the semi-supervised compo-

nent of the optimization since the usage of this information relies on the cluster assumption.

The authors of Belkin et al. (2006) offer insight from a physics perspective into the geo-

metric penalty for the case when the marginal density of XXX is unknown. The main result

is that
∫

xxx∈M 〈∇M f ,∇M f 〉dPXXX(xxx) approximates || f ||2I , where M is a compact sub-manifold
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of XXX and ∇M f is the gradient of f with respect to M . The ambient penalty assumes that

the desired function should be sufficiently smooth with respect to the RKHS norm || f ||HK .

Putting these ideas together, Manifold Regularization proposes

f ? = argmin
f∈HK

∑
i∈L

V (xxxi,yyyi, f )+λ1|| f ||2HK
+λ2 f T

∆∆∆ f , (4.34)

where V is a loss function in their notation. Proceeding as before, the minimizer was proven

to be of the form

f ?(xxx) = ∑
i∈L∪U

ααα iK(xxx,xxxi).

The α̂αα can be estimated using the dual form of this optimization problem. The manifold reg-

ularization method is defined as the solution to Optimization (4.34) with λ1,λ2 ≥ 0. Special

cases are of note. In particular λ1 ≥ 0,λ2 = 0 results in supervised kernel ridge regression

and the SVM depending on the loss. Labeled loss graph regularization results in the case of

λ1 = 0,λ2 ≥ 0 (Culp and Ryan, 2013). It is of note that the graph term only influences the ααα

coefficient, and thus if a prediction xxx0 is to be performed then the prediction is independent

of the proximity graph associated with xxx0.

The proposed S3KM (4.8) offers more flexibility than manifold regularization. In this

case, a model ηηη = fff +KKKααα is estimated, but the form of the optimization has similar penalty

terms. The fff component is optimized to account for the intrinsic geometry using the graph

Laplacian. The ambient smoothness penalty associated with the Hilbert norm is accounted

for separately by ααα . The prediction function differs in that the residual from the graph term

is fit within the kernel framework. An interpolation routine over the graph is incorporated to

fit this structure for a new point xxx0 and hence prediction depends on both the intrinsic and

ambient information associated with xxx0. The γ parameter adds a new novelty over the mani-

fold regularization framework in general allowing for the approach to adapt to extrapolations

within the manifolds. These flexibilities although subtle in presentation offer a significant

difference between the two frameworks. The empirical results in Section 4.8 favor the pro-

posed S3KM over its more rigid manifold regularization competitor.
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Table 4.1: Benchmark Data Sets.

Data Set (n, p) Type Response Reference
Meat Spec (215,100) Regress Fat Faraway (2016)
Thyroid (215,5) Class Disease Lichman (2013)
Ionosphere (351,33) Class Radar Lichman (2013)
Navy (11933,16) Regress GT Decay Lichman (2013)
Image (2310,18) Class Type Lichman (2013)
Solubility (5631,72) Class Solubility Culp et al. (2006)

4.8 Empirical Demonstrations

Semi-supervised performance tests on are performed to assess the main contributions of this

Chapter, i.e., the proposed AS3KM and S3KM are compared against manifold regularization

(MREG) and a supervised SVM. The results were fit in R (R Core Team, 2016) for the six

data sets summarized in Table 4.1.

For this experiment, both the Gaussian kernel (RBF) and Linear kernel were fit. Three-

fold CV was used to estimate the parameters on a finite grid. For the AS3KM, parameter

settings s = 5, cn = 4 and a = d0.15× ne111{n≤1000} + 200111{n>1000} were used, where k-

means centroids were defined as the anchor points. For the S3KM, a k-NN graph with k = 6

was fit. The associated σ2 parameter was estimated using the 0.05,0.50, and 0.95 quantiles

on a random sample of 50% of the distances between labeled observations (Karatzoglou

et al., 2004), and the value 0.12 was also included in each grid search for σ2. The tuning

parameter for the RBF kernel was estimated using the sig.est function from the kernlab

package (Karatzoglou et al., 2004). MREG used the same k-NN graph, σ2, and RBF tuning

parameter estimation approach. For all three of these techniques, the grid

(λ1,λ2) ∈ {0.1,1.0,2.0,10.0}×{0.01,0.1,1.0,2.0,10.0}

was used. The γ parameter was estimated over gird {0.0,0.001,0.01} for the AS3KM and

S3KM, whereas parameter γ = 0 for MREG. For the SVM, the RBF tuning parameter was

estimated in same fashion as above, and λ1 was optimized over the grid as above. However,
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Figure 4.1: Unlabeled Performance on Real Data Sets.

constraints λ2 = 0 and γ = 0 were used to fit a supervised SVM. Fifteen percent was used

for labeled training percentage. The process was repeated 100 times per kernel, and the

unlabeled error was recorded.

The results in Figure 4.1 come out very strongly in favor of the proposed approaches:

S3KM and AS3KM. In all cases, they were as good or better than MREG and a supervised

SVM. The proposed kernel based approaches optimize two functions separately for the graph

and kernel part of Optimization (4.8), while MREG offers one function with two regularizers.

This idea is less flexible in practice and does not perform as strongly on bottom-line metrics

as presented here.
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CHAPTER 5

DISCUSSION AND FUTURE

DIRECTIONS

5.1 General Discussion

The need to assess ordinal measurement systems motivated the work in Chapter 2. With this

in mind, a random effects model was developed in Section 2.3, and the surprisingly simple

Bayesian jags program in Section 2.B made this all work. The portion of this effort in Sec-

tion 2.4 necessarily concentrated on defining parametric functions that adequately measured

repeatability and reproducibility (R&R), and the approach used leaned on the definition of

R&R traditionally used for gauge R&R with a continuous response. In this sense, the pro-

posed modeling and terminology extended the literature in a logical fashion for practical

use.

A Reproducing Kernel Hilbert Space (RKHS) framework for machine learning problems

was carefully outlined and motivated in Chapter 3. Classical Euclidean spaced prediction

approaches were initially motivated for machine learning problems including ridge regres-

sion and smoothing splines in Chapter 3.1. The smoothing spline approach was directly
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extended to an RKHS in Section 3.2 as a first step. Practical shortcomings of this technique

were noted, so a more useful Hilbert space construction using Mercer kernels was presented

in Section 3.2.1. This led to the main framework used for the machine learning contribu-

tions in this dissertation. However, before we proceeded, a negative result was presented

regarding the practical use of complex loss functions. As noted, the use of kernel techniques

in machine learning has led to these more complex loss functions as potentially powerful

learning methods. Two such popular approaches were presented in Section 3.3, but they did

not facilitate improvements. This informed the direction of the more substantial contribution

in Chapter 4 and justified our usage of squared error loss and logistic loss.

In Chapter 4, a kernel based semi-supervised method was developed for real-data pre-

diction problems. It was established that most semi-supervised techniques are motivated

with the requirement of strong smoothness assumptions holding for real data sets. Practi-

cally, this is not feasible or likely, and as such, many techniques are known to subsequently

fail. To improve upon this, the proposed work optimized for an additive function with two

smooth terms each accounting for different components of smoothness. The first smooth

term accounts for the intrinsic geometry by taking advantage of manifolds within the data.

The second accounts for smoothness with respect to the Hilbert norm. The problem was

carefully setup in Section 4.2, and a detailed, yet informative, presentation of kernel ridge

regression was given in Section 4.3. The main result was presented Section 4.4, and im-

portant connections to special cases was also provided. This included a novel connection to

semi-supervised shrinking involving directions of unlabeled extrapolation in Section 4.4.2.

A classification extension was provided in Section 4.5, and a computationally efficient an-

chor graph version was provided in Section 4.6. The connection to manifold regularization,

our closest competitor, was provided in Section 4.7, and it is clearly stated how the proposed

approach is designed to be more flexible than this prior work. Empirically, the proposed ap-

proach dominated the prior work in Section 4.8 and thus extended the literature with a novel

contribution.

79



5.2 Future Research Directions

The work on ordinal R&R in Chapter 2 is not the final word. Future directions in this

area should stem from the practical use of our methods, although we provide two possible

extensions here that complicate the context entertained in Chapter 2. A first extension might

look at how ordinal R&R changes if the quality of the part distribution shifts. The parts

in the actual R&R experiment might be easier or harder to consistently place in the same

category if compared to the parts coming off of an assembly line. An example comes from

grading papers as a teacher. It may be really easy to rate papers as A’s or F’s, but much

harder to consistently rate papers in the B versus C categories of an ordinal grading scale.

As a second extension, one could imagine a gold standard, i.e., the existence of a super

operator or trainer who can always place an item in its true ordinal class (by some agreed

upon standard). This second extension might look at incorporating such information into the

assessment of operators in training.

In the case of the machine learning work presented in Chapters 3 and 4, GPU processing

has become ever more relevant in this field, and the proposed approach could take advantage

of such massively parallel systems. Tools such as snow, snowfall, foreach , Hadoop,

and Apache Spark is to be incorporated to improve computational speed. Also, the cross-

validation (CV) search is less than ideal for practical problems and improvements in this

directions are always under examination. An R package for general wide-spread use is to be

developed as part of this future work.

In Chapter 3, a negative result involving complex loss functions was presented. This

research is not done. The mechanics for these optimization problems makes sense, and there

may be some justification for them. Simply stated, the burden of optimizing loss function

parameters along with penalty parameters is too much to make these practically useful. A

middle ground involves better CV methods. One fruitful idea is to break the CV method into

stages. The penalty tuning parameter are optimized using a simple loss function. Then a

more complex loss function is fit with those parameters fixed to optimize the loss functions

parameters separately. This type of estimation approach may have some real promise for
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improving the practical usage of these more complex functions.

The work in Chapter 4 establishes a state-of-the-art kernel-based semi-supervised tool.

This idea has many practical extensions involving multi-view learning, active learning, and

also applications in reinforcement learning. These extensions will offer their own challenges

for this work to progress.
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