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ABSTRACT

Integer Flow and Petersen Minor

Taoye Zhang

Tutte [45] conjectured that every bridgeless Petersen-minor free graph admits a nowhere-

zero 4-flow. Let (P10)µ̄ be the graph obtained from the Petersen graph by contracting µ

edges from a perfect matching. In chapter 1 we prove that every bridgeless (P10)3̄-minor

free graph admits a nowhere-zero 4-flow.

Walton and Welsh [48] proved that if a coloopless regular matroid M does not have a

minor in {M(K3,3),M
∗(K5)}, then M admits a nowhere zero 4-flow. Lai et al [27] proved

that if M does not have a minor in {M(K5),M
∗(K5)}, then M admits a nowhere zero

4-flow. We prove in chapter 2 that if a coloopless regular matroid M does not have a

minor in {M((P10)3̄),M
∗(K5)}, then M admits a nowhere zero 4-flow. This result implies

Walton and Welsh [48] and Lai et al [27].

The odd-edge-connectivity of a graph G, denoted by λo(G), is the size of the smallest

odd edge-cut of G. In chapter 3, some methods are developed to deal with small even

edge-cuts and therefore, extending some earlier results from edge-connectivity to odd-

edge-connectivity. One of the main results in chapter 3 solves an open problem that every

odd-(2k + 1)-edge-connected graph has k edge-disjoint parity subgraphs. Another main

theorem in the chapter generalizes an earlier result by Galluccio and Goddyn (Combina-

torica 2002) that the flow index of every odd-7-edge-connected graph is strictly less than

4. It is also proved in this paper if λo(G) ≥ 4dlog2 |V (G)|e, then G admits a nowhere-zero

3-flow which is a partial result to the weak 3-flow conjecture by Jaeger and improves an

earlier result by Lai and Zhang[24].
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Chapter 1

Introduction

1.1 Nowhere-zero 4-flows of graphs

The concept of integer flow was introduced by Tutte as a generalization of map coloring

problem. For terms that are not defined here, readers can refer to textbooks [5] or [?] for

graphs, [54] for flows, and [30] or [50] for matroids.

A nontrivial 2-regular connected graph will be called a circuit, and a disjoint union

of circuits a cycle. Thus the empty set ∅ is the only independent cycle.

Let G = (V, E) be a graph with vertex set V and edge set E and let D be an orientation

of G. For a vertex v ∈ V (G), let E+(v) (or E−(v)) be the set of all arcs of D(G) with

their tails (or heads, respectively) at the vertex v. G is said to admit a nowhere-zero

k-flow if there exists an ordered pair (D, f), where f : E(G) → {±1,±2, · · · ± (k − 1)}
such that ∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e)

for every vertex v ∈ V (G).

Let G and H be two graphs. If G contains a subgraph which is contractible to H,

then H is a minor of G and we say G contains an H-mimor.

1



CHAPTER 1. INTRODUCTION 2

The following conjecture is one of the major open problems in graph theory.

Conjecture 1.1.1 (Tutte [45]) Every bridgeless graph without a Petersen minor admits

a nowhere-zero 4-flow.

For planar graphs, admitting a nowhere-zero 4-flow is equivalent to having a face 4-

coloring. Hence, by the 4-Color Theorem [1, 2, 3, 31], Conjecture 2.1.1 has been verified

for all planar graphs. Furthermore, it was also announced that Conjecture 2.1.1 was

verified for all cubic graphs [32, 33]. By Kuratowski Theorem, a graph is planar if and

only if it contains neither K5-minor nor K3,3-minor. By applying the 4-Color Theorem,

Conjecture 2.1.1 was further verified for K3,3-minor free graphs [48], K5-minor free graphs

[27], and P−
10-minor free graphs [39]. Each of these families contains the family of all planar

graphs and may not be necessarily cubic. Graphs K5, K3,3, P10 and P−
10 are illustrated in

the following figure.
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(P10)3̄ = P10/{e3, e4, e5}
Let P10 be the Petersen graph with the exterior pentagon 1′2′3′4′5′1′, interior pentagon

1′′3′′5′′2′′4′′1′′ and a perfect matching M = {ei = i′i′′ : i = 1, 2, 3, 4, 5}. Let (P10)µ̄ be the



CHAPTER 1. INTRODUCTION 3

graph obtained from P10 by contracting F , where F ⊆ M and |F | = µ.

Remark. It is not hard to see that if M and M ′ are two perfect matchings of P10,

F ⊆ M , F ′ ⊆ M ′ and |F | = |F ′|, then P10/F ∼= P10/F
′. Hence (P10)µ̄ is well defined.

The following is the main theorem of this section and will be proved in chapter 2.

Theorem 1.1.2 Let G be a bridgeless graph. If G does not have a (P10)3̄-minor, then G

admits a nowhere-zero 4-flow.

1.2 Nowhere-zero 4-flows of matroids

We shall assume familiarity with graph theory and matroid theory. For terms that are

not defined in this note, see Bondy and Murty [5] for graphs, and Oxley [30] or Welsh

[50] for matroids.

In this article, Z,Z+ and Zn denote the additive group of the integers, the set of all

positive integers, and the cyclic group of order n, respectively, and R denotes the family

of all regular matroids. As in [30], the set of all circuits of a matroid M is denoted by

C(M). We further denote the set of all cycles of a matroid M by C0(M). Note that

as we allow empty unions, the empty set is also a cycle (in both graphs and matroids).

For matroids N1, N2, · · · , Nk, let EX(N1, N2, · · · , Nk) denote the collection of matroids

such that a matroid M ∈ EX(N1, N2, · · · , Nk) if and only if M does not have a minor

isomorphic to any one in {N1, N2, · · · , Nk}. The Fano matroid F7 is the vector matroid

over GF(2) of the following matrix A:

A =




1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1




The definition of flow has a natural extension to regular matroids. Let M be a regular

matroid and DM be its incidence matrix of circuits against elements. An orientation
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(w(DM), w(DM∗)) is an assignment of +,− signs to the “1” entries of DM and DM∗ ,

respectively, so that the resulting matrices w(DM) and w(DM∗) satisfy

w(DM)w(DM∗)T = 0.

Let A be an abelian group. For an element a ∈ A, and for integers +1,−1, 0, we

adopt the convention to write (+1) · a = a, (−1) · a = −a and 0 · a = 0. Let F ∗(M,A) =

{f : E(M) 7→ A \ {0}} denote the set of all functions from E(M) into A \ {0}. A map

f ∈ F ∗(M,A) can be viewed as an |E(M)|-dimensional column vector. For a regular

matroid M with an orientation (w(DM), w(DM∗)), a map f ∈ F ∗(M,A) satisfying

w(DM∗) · f = 0

is a nowhere zero A-flow (A-NZF for short) of M . When A = Z, a Z-NZF f of M is

called a nowhere zero k-flow (k-NZF for short) of M if ∀e ∈ E(M), 0 < |f(e)| < k.

The matroid version of Conjecture 2.1.1 is as follows

Conjecture 1.2.1 If M is a coloopless regular matroid such that M ∈ EX(M(P10),M
∗(K5)),

then M admits a 4-NZF.

Applying the Four-Color theorem, and the duality between colorings and nowhere

zero flows, a result by Walton and Welsh implies the following.

Theorem 1.2.2 (Walton and Welsh [48]) If M ∈ EX(M(K3,3),M
∗(K5))∩R is a coloop-

less matroid, then M admits a 4-NZF.

Proving a conjecture of Jensen and Toft [22], Lai, Li and Poon applied the Four-Color

Theorem to prove the following Theorem 3.1.7, which is an approach to Conjecture 1.2.1.

Theorem 1.2.3 (Lai, Li and Poon, [27]) If M ∈ EX(M(K5),M
∗(K5))∩R is a coloop-

less matroid, then M admits a 4-NZF.
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The main objective of this chapter is to prove the following theorem, which generalizes

Theorem 3.1.7, and is also an approach to Conjecture 1.2.1.

Theorem 1.2.4 If M is a coloopless matroid such that M ∈ EX(M((P10)3̄),M
∗(K5))∩

R, then M admits a 4-NZF.

1.3 Odd-edge-connectivity of graphs

It is evident that odd-edge-connectivity (see Definition 4.2.1) plays a more important role

than edge-connectivity in the study of some flow and cycle cover related problems. In this

article, some earlier results in those areas are extended from λ-edge-connected graphs to

odd-λ-edge-connected graphs.

For graphs with large odd-edge-connectivity, small edge-cuts (of even size) may still

exist. However, there are not many results or methods developed yet to deal with small

even edge-cuts. For some integer flow problems and cycle cover problems, it is pointed

out in [36, 21] that 2-edge-cut does not exit in any smallest counterexample (to some

well-known flow conjectures and cycle cover conjectures). The 3-flow conjecture by Tutte

[?] was originally proposed for odd-5-edge-connected graphs. By excluding 4-edge-cut,

Kochol [23], with a sophisticated linear algebra approach, proved that 3-flow conjecture

is equivalent for 5-edge-connected graphs.

In this chapter, we are to develop some general approaches to deal with small even

cuts.

1.3.1 Parity Subgraphs

Definition 1.3.1 Let H be a subgraph of a bridgeless graph G = (V, E). H is a parity

subgraph of G if for every vertex v ∈ V (G), dG(v) ≡ dH(v)(mod 2).

It was proved by Tutte and Nash-Williams [43, 29] that every 2k-edge-connected graph
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contains at least k edge-disjoint spanning trees, and proved by Itai and Rodeh [18] that

every spanning tree of a graph G contains a parity subgraph. The combination of these

two theorems yields the following result as a direct corollary.

Theorem 1.3.2 Every 2k-edge-connected graph G contains at least k edge-disjoint parity

subgraphs of G.

It is well-known that the search of parity subgraphs plays a central role in the proofs

of some important theorems in integer flow areas. For example, the 4-flow theorem is

proved by Jaeger [19] with following approach: The 4-edge-connectivity guarantees the

existence of two edge-disjoint parity subgraphs (by Theorem 4.1.2) and therefore a 2-cycle

cover of G. The 8-flow theorem was proved by Jaeger [19] with following similar approach:

The 3-edge-connectivity guarantees the existence of three edge-disjoint parity subgraphs

in 2G and therefore, a 3-cycle cover of G.

Theorem 4.1.2 is to be generalized in this article by relaxing the edge-connectivity to

odd-edge-connectivity and therefore, solves an open problem proposed in [51, 12, 54].

We generalize the theorem and get the following

Theorem 1.3.3 Every odd-(2k + 1)-edge-connected graph G contains at least k edge-

disjoint parity subgraphs of G.

1.3.2 Flow Index

Circular flow, introduced in [16] as a real line extension of integer flow problem. The

following is one of the many equivalent definitions for circular flows and the corresponding

flow indices.

Definition 1.3.4 Let D be the set of all orientations of G, and (A,B) be any edge-cut

of G. The flow index of G is defined by

φ(G) = min
D∈D

{
max
(A,B)

|[A,B]D|
|[B, A]D|

}
+ 1.
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Theorem 1.3.5 (Galluccio and Goddyn, [15]) let G be a 6-edge-connected graph, then

the flow index φ(G) < 4.

We generalize the theorem above and get:

Theorem 1.3.6 Let G be an odd-7-edge-connected graph, then φ(G) < 4.

1.3.3 Nowhere-zero 3-flows

The following is an approach of Jaeger’s weak 3-flow conjecture [19]. Lai and Zhang

proved the following theorem

Theorem 1.3.7 ([24]) Every 4dlog2 ne-edge-connected multigraph with n vertices admits

a nowhere-zero 3-flow.

As a generalization, we prove

Theorem 1.3.8 Let G be a multigraph with n vertices. If its odd-edge-connectivity is

more than 4dlog2 ne, then G admits a nowhere-zero 3-flow.



Chapter 2

4-NZF in almost P10 minor free

graphs

2.1 Introduction

The concept of integer flow was introduced by Tutte as a generalization of map coloring

problem. The following conjecture is one of the major open problems in graph theory.

Conjecture 2.1.1 (Tutte [45]) Every bridgeless graph without a Petersen minor admits

a nowhere-zero 4-flow.

For planar graphs, admitting a nowhere-zero 4-flow is equivalent to having a face 4-

coloring. Hence, by the 4-Color Theorem [?, 2, 3, ?], Conjecture 2.1.1 has been verified

for all planar graphs. Furthermore, it was also announced that Conjecture 2.1.1 was

verified for all cubic graphs [32, 33]. By Kuratowski Theorem, a graph is planar if and

only if it contains neither K5-minor nor K3,3-minor. By applying the 4-Color Theorem,

Conjecture 2.1.1 was further verified for K3,3-minor free graphs [48], K5-minor free graphs

[27], and P−
10-minor free graphs [39]. Each of these families contains the family of all planar

graphs and may not be necessarily cubic. Graphs K5, K3,3, P10 and P−
10 are illustrated in

8
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the following figure.
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(P10)3̄ = P10/{e3, e4, e5}
Let P10 be the Petersen graph with the exterior pentagon 1′2′3′4′5′1′, interior pentagon

1′′3′′5′′2′′4′′1′′ and a perfect matching M = {ei = i′i′′ : i = 1, 2, 3, 4, 5}. Let (P10)µ̄ be the

graph obtained from P10 by contracting F , where F ⊆ M and |F | = µ.

Remark. It is not hard to see that if M and M ′ are two perfect matchings of P10,

F ⊆ M , F ′ ⊆ M ′ and |F | = |F ′|, then P10/F ∼= P10/F
′. Hence (P10)µ̄ is well defined.

The following is our main theorem.

Theorem 2.1.2 Let G be a bridgeless graph. If G does not have a (P10)3̄-minor, then G

admits a nowhere-zero 4-flow.
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2.2 Notations and terminologies

For terms that are not defined here, readers can refer to textbooks [5], [?], and [54] (for

flows).

Let G = (V, E) be a graph with vertex set V and edge set E and let D be an orientation

of G. For a vertex v ∈ V (G), let E+(v) (or E−(v)) be the set of all arcs of D(G) with

their tails (or heads, respectively) at the vertex v. G is said to admit a nowhere-zero

k-flow if there exists an ordered pair (D, f), where f : E(G) → {±1,±2, · · · ± (k − 1)}
such that ∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e)

for every vertex v ∈ V (G).

A graph G is a 4-flow snark if it is bridgeless and does not admit a nowhere-zero

4-flow. Let G and H be two graphs. If G contains a subgraph which is contractible to

H, then H is a minor of G and we say G contains an H-mimor. A 4-flow snark G is

minor-prime if every proper minor of G is not a 4-flow snark. With the definitions

above, Conecjture 2.1.1 can be restated as follows.

Conjecture 2.2.1 The Petersen graph is the only minor-prime 4-flow snark.

Let H be a minor of a connected graph G. Then there is an onto mapping f :

V (G) 7→ V (H) such that f−1(v) induces a connected subgraph G[f−1(v)] of G for every

v ∈ V (H) and H can be obtained from a spanning subgraph of G by contracting the

edges of G[f−1(v)] for all v ∈ V (H). Here f is called a minor-mapping and f−1(v) is

called a v-domain of f .

A k-separator of a graph G is an ordered triple (H1, H2; T ) such that H1 ∪H2 = G

and V (H1 ∩H2) = T , where T is a vertex subset of G and |T | = k. Sometimes we say T

is a k-separator if there is no confusion. A k-separator (H1, H2; T ) of G is trivial if one

of H1 and H2, say H1, is acyclic. G is quasi k-connected if G is 3-connected and every

t-separator of G with t ≤ k is trivial.
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Let x be a vertex of G. The vertex x separates G into q parts H1, · · · , Hq if G =

H1 ∪ · · · ∪Hq and V (Hi ∩Hj) = {x} for every pair of i 6= j.

Let X be a connected subgraph of G and Y1, Y2, Y3, Y4 be four disjoint connected

subgraphs of G−V (X) and X∩N(Yi) 6= ∅ for i = 1, 2, 3, 4 where N(Yi) denotes the set of

neighbors of Yi. Let J = {Y1, Y2, Y3, Y4}. For each 2× 2-partition P = {{a, b}, {c, d}} of

{1, 2, 3, 4}, X is P -splittable if X contains two disjoint paths Q and Q′ such that Q joins

X∩N(Ya) and X∩N(Yb), Q′ joins X∩N(Yc) and X∩N(Yd), i ∈ {a, b, c, d}. An example

of a {{1, 2}, {3, 4}}-splittable subgraph is illustrated in Figure 6. X is k-splittable with

respect to J if there are k distinct 2 × 2 partitions P1, · · · , Pk of {1, 2, 3, 4} such that

X is Pi-splittable for each i = 1, · · · , k. (Remark: k ≤ 3) An example of a 2-splittable

subgraph is illustrated in Figure 7.

&%

'$

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

Y1 Y2

Y3 Y4

X

Q

Q′

Figure 6:

X is {{1, 2}, {3, 4}}-splittable
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X is 2-splittable

2.3 Lemmas

Lemma 2.3.1 (Catlin [9]) If G is a minor-prime 4-flow snark, then the girth of G is at

least five.

Lemma 2.3.2 (Lai, Li and Poon [27]) If a bridgeless graph G does not admit a nowhere-

zero 4-flow, then G has a K5-minor.

Lemma 2.3.3 (Thomas and Thomson, Lemma 4.4 of [39]) If G is a minor-prime 4-flow



CHAPTER 2. 4-NZF IN ALMOST P10 MINOR FREE GRAPHS 12

snark, then G is quasi-4-connected (that is, every k-separator of G is trivial for each

k ≤ 3).

Obviously, Lemma 2.3.3 generalizes Lemma 2.3.1 and Theorem 3.7.15 of [54].

Proposition 2.3.4 Let X be a connected subgraph of G and Y1, Y2, Y3, Y4 be four disjoint

connected subgraphs of G− V (X) where V (X) ∩N(Yi) 6= ∅ for i = 1, 2, 3, 4. Let k be the

greatest integer that X is k-splittable with respect to J = {Y1, Y2, Y3, Y4}.

(i) If k ≤ 1, say, X is {{1,2},{3,4}}-splittable or 0-splittable, then X has a 1-separator

(H1, H2; {x}) such that V (X)∩ [N(Y1)∪N(Y2)] ⊆ V (H1) and V (X)∩ [N(Y3)∪N(Y4)] ⊆
V (H2);

(ii) If k = 0, then there exists a cut vertex x of X that separates X into four parts

H1, H2, H3, H4 such that V (X) ∩N(Yi) ⊆ V (Hi) for each i.

Proof. (i) Let G1 be the graph induced by X ∪ Y1 ∪ Y2 ∪ Y3 ∪ Y4. Let G2 be the graph

obtained from G1 by contracting each Yi into a single vertex yi for i = 1, 2, 3, 4, and

deleting all edges between yi and yj for all {i, j} ⊂ {1, 2, 3, 4}. Note that G2 is connected

since V (X) ∩N(Yi) 6= ∅ for i = 1, 2, 3, 4.

Since X is neither {{1,3},{2,4}}-splittable nor {{1,4},{2,3}}-splittable, it is impossi-

ble that there is a pair of disjoint paths joining {y1, y2} and {y3, y4}. By Menger theorem,

there is a cut vertex x ∈ V (G2) that separates {y1, y2} and {y3, y4}. It is obvious that

x ∈ V (X). That is, X has a 1-separator (H1, H2; x) that NG2(y1)∪NG2(y2) ⊆ V (H1) and

NG2(y3) ∪NG2(y4) ⊆ V (H2).

(ii) Continue from (i). Assume that there is a path P1 joining y1 and y2 in the

graph G2 − {x} (without passing through x). Note that x is a cut vertex that separates

{y1, y2} and {y3, y4}. Thus, this path P1 is contained in the induced subgraph G2[V (H1−
x) ∪ {y1, y2}] and there is another path P2 joining y3 and y4 in the induced subgraph

G2[H2 ∪ {y3, y4} since H2 is connected. This contradicts that X is 0-splittable. So every

path from y1 to y2 must go through x. Symmetrically, every path from y3 to y4 must go



CHAPTER 2. 4-NZF IN ALMOST P10 MINOR FREE GRAPHS 13

through x as well. That implies each component of X − x is adjacent to at most one of

{y1, y2, y3, y4}.

2.4 Proof of the main theorem

Let G be a minor-prime 4-flow snark. By Lemma 2.3.3, G is quasi 4-connected. By

Lemma 2.3.2, K5 is a minor of G. Let V (K5) = {v1, v2, v3, v4, v5}, and f : V (G) 7→ V (K5)

be a minor-mapping.

If G does not contain a (P10)4̄-minor, then va-domain f−1(va) is at most 0-splittable

with respect to {f−1(vij) : j = 1, 2, 3, 4} for every {a, i1, i2, i3, i4} = {1, 2, 3, 4, 5}. By

Lemma 2.3.4(ii), each f−1(va) has a cut vertex v∗a that separates N(f−1(vij)) for j =

1, 2, 3, 4. Hence {v∗i , v∗j} is a 2-separator of G. Since G 6= K5, there exist {i, j} ⊆
{1, 2, 3, 4, 5} such that {v∗i , v∗j} is a non-trivial 2-separator. This contradicts the fact that

G is quasi 4-connected. Hence G contains (P10)4̄ as a minor.

Let f : V (G) → (P10)4̄ be a minor mapping where the vertex set of (P10)4̄ is {v1′ , v1′′ ,

v2, v3, v4, v5}, the contraction of the edge v1′v1′′ yields a K5, v1′ is adjacent to v2 and

v5, and v1′′ is adjacent to v3 and v4. Let Ui = f−1(vi) for i ∈ {1′, 1′′, 2, 3, 4, 5} (see the

following figure). Denote U1 = U1′ ∪ U1′′ and choose a minor-mapping f such that |U1| is

as small as possible. Now assume that G does not contain a (P10)3̄-minor.

t t

t t

t

t1
′

2

34

5

1′′

(P10)4̄

Figure 8:
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Claim 1 |U1′| = |U1′′| = 1.

Proof. It is clear that |U1′| ≥ 1 and |U1′′| ≥ 1.

Let e = u1′u1′′ be an edge between U1′ and U1′′ where u1′ ∈ U1′ , u1′′ ∈ U1′′ . Since

each of U1′ and U1′′ is connected, there are spanning trees T1 and T2 of U1′ and U1′′ ,

respectively. Let T = T1 ∪ T2 ∪ {e}. T is a spanning tree of U1.

Assume there exist w2 ∈ N(U2)∩U1′ and w5 ∈ N(U5)∩U1′ such that w2 6= w5. Since

T1 is a spanning tree of U1′ , there is a unique path P2 from u1′ to w2 in T1, and a path P5

from u1′ to w5 in T1. Without loss of generality, we may assume P2 is no shorter than P5.

Since w2 6= w5, P5 does not contain w2. Let C2 be the set of vertices of the component of

T1 \P5 that contains w2. Now we define a new minor mapping f1 by f−1
1 (vi) = f−1(vi) for

i = 1′′, 3, 4, 5, f−1
1 (v1′) = f−1(v1′) \C2 and f−1

1 (v2) = f−1(v2)∪C2. We call this operation

moving w2 from U1′ to U2.

|f−1
1 (v1′) ∪ f−1

1 (v1′′)| = |f−1(v1′) ∪ f−1(v1′′)| − |C2| < |f−1(v1′) ∪ f−1(v1′′)|
That contradicts the choice of f . So we have N(U2) ∩ U1′ = N(U5) ∩ U1′ = {u} for some

u. Similarly, N(U3) ∩ U1′′ = N(U4) ∩ U1′′ = {v} for some v.

Since G is quasi 4-connected, if {u, v} is a 2-separator, then |U1| = 2. If |U1| ≥ 3,

then {u, v} is not a 2-separator and there exists w ∈ U1 \ {u, v} such that w ∈ N(Ui) for

some i = 2, 3, 4, 5. Without loss of generality, we can assume w ∈ N(U2).

Since N(U2) ∩ U1′ = {u}, w /∈ U1′ . If the path P from u to v in T passes through

w, then we can move w from U1′′ to U1′ , that contradicts w /∈ U1′ . If P does not pass

through w, then we can move w from U1′′ to U2, that contradicts the choice of f .

From Claim 1, we can let U1′ = {u1′} and U1′′ = {u1′′}.

Claim 2 U2 is at most 1-splittable with respect to J = {1′, 3, 4, 5} with a possible partition

{{1′, 5}, {3, 4}}.

Proof. U2 is neither {{1′, 3}, {4, 5}}-splittable nor {{1′, 4}, {3, 5}}-splittable. Otherwise

we can have (P10)3̄-minors illustrated in Figures 5 and 6, respectively.
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t t

tt t

t

t1
′

2′

34

5

1′′

2′′

U2 is {{1′, 3}, {4, 5}}-splittable

Figure 9:

t t

tt t

t

t1
′

2′

43

5

1′′

2′′

U2 is {{1′, 4}, {3, 5}}-splittable

Figure 10:

By Proposition 2.3.4(i), U2 has a 1-separator (A2, B2; x2) such that [N(U1′)∪N(U5)]∩
U2 ⊆ A2 and [N(U3) ∪N(U4)] ∩ U2 ⊆ B2, as we can see in Figure 11.

Symmetrically, we have the following conclusions (as shown in Figure 12):

(i) U5 is at most 1-splittable with respect to J = {1′, 2, 3, 4} with the only possible

(2× 2)-partition {{1′, 2}, {3, 4}} and it has a 1-separator (A5, B5; x5) such that [N(U1′)∪
N(U2)] ∩ U5 ⊆ A5, and [N(U3) ∪N(U4)] ∩ U5 ⊆ B5.

(ii) U3 is at most 1-splittable with respect to J = {1′′, 2, 4, 5} with the only possible

(2×2)-partition {{1′′, 4}, {2, 5}} and it has a 1-separator (A3, B3; x3) such that [N(U1′′)∪
N(U4)] ∩ U3 ⊆ A3, and [N(U2) ∪N(U5)] ∩ U3 ⊆ B3.

(iii) U4 is at most 1-splittable with respect to J = {1′′, 2, 3, 5} with the only possible

(2×2)-partition {{1′′, 3}, {2, 5}} and it has a 1-separator (A4, B4; x4) such that [N(U1′′)∪
N(U3)] ∩ U4 ⊆ A4, and [N(U2) ∪N(U5)] ∩ U4 ⊆ B4.
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h h
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34

5

1′′

U2 is at most 1-splittable

w.r.t. J = {1′, 3, 4, 5}
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t

¹¸
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¹¸
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¹¸
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B5

A5

B4 A4 A3 B3

1′

x2

x3x4

x5

1′′

Each Ui is at most 1-splittable

for i = 2, 3, 4, 5

Figure 11: Figure 12:

Claim 3 {N(u1′′) ∩ A2 − {x2}} ∪ {N(u1′′) ∩ A5 − {x5}} 6= ∅.

Proof. Otherwise, T = {u1′ , x2, x5} is a non-trivial 3-separator of G that separates G

with A2 ∪ A5 ∪ U1′ as one part. By Lemma 2.3.3, G is quasi 4-connected, therefore,

A2 ∪ A5 ∪ U1′ is trivial, but it is not acyclic.

Similarly, {N(u1′) ∩ A3 − {x3}} ∪ {N(u1′) ∩ A4 − {x4}} 6= ∅.

Without loss of generality, we assume that

{N(u1′) ∩ A3 − {x3}} 6= ∅, {N(u1′′) ∩ A2 − {x2}} 6= ∅. (2.1)

Claim 4 U2 is not {{1′′, 5}, {3, 4}}-splittable.

Proof. Otherwise G has a (P10)3̄-minor as in Figure 13 (note that the edge between U1′

and U3 is given by (2.1).

Symmetrically, U5 is not {{1′′, 2}, {3, 4}}-splittable.

Claim 5 U2 is at most 0-splittable with respect to J = {1′, 3, 4, 5}.
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Proof. By way of contradiction, assume U2 is not 0-splittable with respect to J =

{1′, 3, 4, 5}. By Claim 2, U2 is {{1′, 5}, {3, 4}}-splittable.

Let {P1′,5, P3,4} be a pair of vertex disjoint paths in U2 that Pij joins N(Ui)∩U2 and

N(Uj) ∩ U2 for i, j ∈ {1′, 3, 4, 5}.

It is obvious that P3,4 must contain the cut vertex x2 for otherwise A2 contains a path

joining N(u1′′) and N(U5). This contradicts Claim 4. Therefore, N(U1′)∩ (A2 − x2) 6= ∅,
N(U5)∩ (A2−x2) 6= ∅ and both of them are contained in the same component of A2−x2,

called C2, while N(U1′′) ∩ (A2 − x2) is contained in another component of A2 − x2.

Symmetrically, A5 − x5 has a component C5 that contains N(U1′) ∩ (A5 − x5) and

N(U2) ∩ (A5 − x5) and is disjoint with N(U1′′).

Here we have obtained a 3-separator (H1, H2; T ) with T = {u1′ , x2, x5} as the cut and

H1 = C2 ∪ C5 ∪ {u1′ , x2, x5}. Note that neither H1 nor H2 is trivial. This contradicts

Lemma 2.3.3.

Similarly, U3 is at most 0-splittable with respect to J = {1′′, 3, 4, 5}.

t t

tt t

t

t1
′′

2

53

4

1′

when U2 is {{1′′, 5}, {3, 4}}-splittable

Figure 13:

t t

tt t

t

t2

3

51

4

v

w

Figure 14:

Final Step:

By Claim 5 and Proposition 2.3.4(ii), x2 separates U2 into four parts U2(1
′), U2(5),

U2(4) and U2(3) such that N(Ui) ∩ U2 ⊆ U2(i) for i ∈ {1′, 3, 4, 5}.



CHAPTER 2. 4-NZF IN ALMOST P10 MINOR FREE GRAPHS 18

By Claim 3, N(u1′′)∩A2−{x2} 6= ∅. Assume that N(u1′′)∩A2−{x2} ⊆ U2(1
′)− x2.

Then {u1′ , u1′′ , x2} is a 3-separator of G with U2(1
′) ∪ U1 as a part. Both parts of G

separated by {u1′ , u1′′ , x2} contain cycles. This contradicts Lemma 2.3.3. So, there exists

a vertex v ∈ U2(5) ∩N(u1′′)− {x2} since A2 = U2(1
′) ∪ U2(5).

Similarly, there is a vertex w ∈ N(u1′) ∩ A3 − {x3}, which deduces w ∈ U3(4). Now

we have a (P10)3̄-minor as in Figure 14.



Chapter 3

4-NZF in regular matroids

3.1 Introduction

We shall assume familiarity with graph theory and matroid theory. For terms that are

not defined in this note, see Bondy and Murty [5] for graphs, and Oxley [30] or Welsh

[50] for matroids.

In this chapter, Z,Z+ and Zn denote the additive group of the integers, the set of all

positive integers, and the cyclic group of order n, respectively, and R denotes the family

of all regular matroids. As in [30], the set of all circuits of a matroid M is denoted by

C(M). We further denote the set of all cycles of a matroid M by C0(M). Note that

as we allow empty unions, the empty set is also a cycle (in both graphs and matroids).

For matroids N1, N2, · · · , Nk, let EX(N1, N2, · · · , Nk) denote the collection of matroids

such that a matroid M ∈ EX(N1, N2, · · · , Nk) if and only if M does not have a minor

isomorphic to any one in {N1, N2, · · · , Nk}. The Fano matroid F7 is the vector matroid

over GF(2) of the following matrix A:

A =




1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1




19
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Flow was initially defined for graphs. For a discussion on flow and flow conjectures,

see Jaeger [20] or Zhang [54]. The definition of flow has a natural extension to regular

matroids. Let M be a regular matroid and DM be its incidence matrix of circuits against

elements. An orientation (w(DM), w(DM∗)) is an assignment of +,− signs to the “1”

entries of DM and DM∗ , respectively, so that the resulting matrices w(DM) and w(DM∗)

satisfy

w(DM)w(DM∗)T = 0.

Let A be an abelian group. For an element a ∈ A, and for integers +1,−1, 0, we

adopt the convention to write (+1) · a = a, (−1) · a = −a and 0 · a = 0. Let F ∗(M,A) =

{f : E(M) 7→ A \ {0}} denote the set of all functions from E(M) into A \ {0}. A map

f ∈ F ∗(M,A) can be viewed as an |E(M)|-dimensional column vector. For a regular

matroid M with an orientation (w(DM), w(DM∗)), a map f ∈ F ∗(M,A) satisfying

w(DM∗) · f = 0

is a nowhere zero A-flow (A-NZF for short) of M . When A = Z, a Z-NZF f of M is

called a nowhere zero k-flow (k-NZF for short) of M if ∀e ∈ E(M), 0 < |f(e)| < k.

For positive integers k and m, an m-cycle k-cover of a matroid M is a family of

cycles C1, C2, · · · , Cm of M such that every element of E(M) lies in exactly k members

of these Ci’s. It has been observed that a graph G admits a 4-NZF if and only if G has a

3-cycle 2-cover (for example, see Zhang [54]). The following fact will be needed, a formal

proof of it can be found in [27].

Proposition 3.1.1 (Proposition 1.1 of [27]) For a matroid M ∈ R, M admits a 4-NZF

if and only if M has a 3-cycle 2-cover.

Let P10 be the Petersen graph. Tutte proposed the famous 4-flow conjecture as follows.

Conjecture 3.1.2 (Tutte [45] and [46], Matthews [28]) Let G be a 2-edge-connected

graph. If G does not have a P10-minor, then G admits a 4-NZF.
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The matroid version of the conjecture is as follows

Conjecture 3.1.3 If M is a coloopless regular matroid such that M ∈ EX(M(P10),M
∗(K5)),

then M admits a 4-NZF.

The Four-Color theorem can be stated in terms of nowhere zero flows as follows.

Theorem 3.1.4 (Appel and Haken [1], Appel, Haken and Hoch [2], Robertson, Sanders,

Seymour and Thomas [31]) Every 2-edge-connected planar graph admits a 4-NZF.

Recently Robertson et. al. prove Conjecture 3.1.2 for cubic graphs.

Theorem 3.1.5 (Robertson, Sanders, Seymour and Thomas, [33]) Every 2-edge-connected

cubic graph without a minor isomorphic to the Petersen graph admits a 4-NZF.

Applying the Four-Color theorem, and the duality between colorings and nowhere

zero flows, a result by Walton and Welsh implies the following.

Theorem 3.1.6 (Walton and Welsh [48]) If M ∈ EX(M(K3,3),M
∗(K5))∩R is a coloop-

less matroid, then M admits a 4-NZF.

Proving a conjecture of Jensen and Toft [22], Lai, Li and Poon applied the Four-Color

Theorem to prove the following Theorem 3.1.7, which is an approach to Conjecture 3.1.3.

Theorem 3.1.7 (Lai, Li and Poon, [27]) If M ∈ EX(M(K5),M
∗(K5))∩R is a coloop-

less matroid, then M admits a 4-NZF.

The main objective of this chapter is to prove the following theorem, which generalizes

Theorem 3.1.7, and is also an approach to Conjecture 3.1.3.
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Theorem 3.1.8 If M is a coloopless matroid such that M ∈ EX(M((P10)3̄),M
∗(K5))∩

R, then M admits a 4-NZF.

The definition of flow has no natural extension to binary matroids whereas cycle

cover is defined for general matroids. In view of Proposition 3.1.1 and the excluded-

minor characterization of regular matroids, Theorem 3.1.8 is equivalent to saying that if

a coloopless binary matroid M ∈ EX(F7, F
∗
7 ,M((P10)3̄),M

∗(K5)), then M has a 3-cycle

2-cover. In Section 3 we will show that this result can be extended in the following form.

Corollary 3.1.9 Let M be a coloopless binary matroid. If M ∈ EX(F ∗
7 ,M((P10)3̄),M

∗(K5)),

M has a 3-cycle 2-cover.

As the matroid F ∗
7 does not have a 3-cycle 2-cover (to be shown in Section 3), Corol-

lary 3.1.9 does not hold if F ∗
7 is not excluded.

In Section 2, we extract a decomposition theorem for regular matroids without M(K5)

or M∗(K5) minors from the well known decomposition theorems of Seymour [35] and

Wagner [47]. In Section 3, this theorem will be employed to prove Theorem 3.1.8 and

Corollary 3.1.9.

3.2 Decomposition of Regular Matroids in EX(M(K5),M
∗(K5))

In this paper, we use 4 to denote both a set operator and a matroid operator. Given two

sets X and Y , the symmetric difference of X and Y is defined as

X 4 Y = (X ∪ Y )− (X ∩ Y ).

Definition 3.2.1 Suppose that M1,M2 are binary matroids on E1 and E2, respectively.

We follow Seymour [35] and define a new binary matroid M14M2 to be the matroid with

ground set equal to E1 4 E2 and with its set of cycles equal to

{C1 4 C2 ⊆ E1 4 E2 : Ci is a cycle of Mi, i = 1, 2}. (3.1)
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Definition 3.2.2 Three special cases of this operation are introduced by Seymour ([35]

and [37]) as follows.

(i) If E1 ∩ E2 = ∅ and |E1|, |E2| < |E1 4 E2|, M1 4M2 is a 1-sum of M1 and M2.

(ii) If |E1 ∩ E2| = 1 and E1 ∩ E2 = {z}, say, and z is not a loop or coloop of M1 or

M2, and |E1|, |E2| < |E1 4 E2|, M1 4M2 is a 2-sum of M1 and M2.

(iii) If |E1 ∩ E2| = 3 and E1 ∩ E2 = Z, say, and Z is a circuit of M1 and M2, and

Z includes no cocircuit of either M1 or M2, and |E1|, |E2| < |E1 4 E2|, M1 4 M2 is a

3-sum of M1 and M2.

For i = 1, 2, 3, an i-sum of M1,M2 is denoted as M1 ⊕i M2. The 1-sum M1 ⊕1 M2 is

also written as M1 ⊕M2. Let R10 denote the vector matroid of the following matrix over

GF (2):

R10 =




1 0 0 0 0 1 1 0 0 1

0 1 0 0 0 1 1 1 0 0

0 0 1 0 0 0 1 1 1 0

0 0 0 1 0 0 0 1 1 1

0 0 0 0 1 1 0 0 1 1




.

It is known that R∗
10 is isomorphic to R10. Based on the notion of matroid sums, Seymour

proved the following decomposition theorem for regular matroids.

Theorem 3.2.3 (Seymour [35]) Let M be a regular matroid. One of the following must

hold.

(i) M is graphic.

(ii) M is cographic.

(iii) M ∼= R10.

(iv) For some i ∈ {1, 2, 3}, M = M1 ⊕i M2 is the i-sum of two matroids M1 and M2,

each of which is isomorphic to a proper minor of M .

If a matroid M is isomorphic to the cycle matroid of a planar graph, then M is called

a planar matroid. Thus a matroid M is planar if and only if M∗ is planar. Let H8
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denote the graph depicted in the figure below.
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Figure 1: The graph H8

Wagner’s original statement of his decomposition theorem is in pure graph theory

terms. A matroidal version is given as follows (see Seymour [35] and [37]).

Theorem 3.2.4 (Wagner [47]) Let M be a graphic matroid that does not contain a minor

isomorphic to M(K5). One of the following must hold.

(i) M is a planar matroid.

(ii) M ∼= M(H8).

(iii) M ∼= M(K3,3).

(iv) For some i ∈ {1, 2, 3}, M = M1 ⊕i M2 is the i-sum of two matroids M1 and M2,

such that both M1 and M2 are proper minors of M .

Proposition 3.2.5 (Propositions 4.2.11, 8.3.1 and 12.4.16 of [30]) Each of the following

holds:

(i) The matroid M is not 2-connected, if and only if for some proper non-empty subset

T of E(M), M = (M |T )⊕ (M |(E \ T )). Note that M |T and M |(E \ T ) are both proper

minors of M .
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(ii) The matroid M is 2-connected but not 3-connected if and only if M = M1 ⊕2 M2

for some matroids M1 and M2, each of which is isomorphic to a proper minor of M .

(iii) If M is a 3-connected binary matroid and a 3-sum of M1 and M2, then M1 and

M2 are isomorphic to proper minors of M .

3.3 The Proofs of Theorem 3.1.8 and Corollary 3.1.9

In view of Proposition 3.1.1, we will prove Theorem 3.1.8 by showing that M has a 3-cycle

2-cover given the assumption of the theorem. We first establish some lemmas.

Proposition 3.3.1 Each of the following holds.

(i) Each of M(H8), M∗(H8), M(K3,3), M∗(K3,3), R10, F7 has a 3-cycle 2-cover.

(ii) F ∗
7 cannot have a 3-cycle 2-cover.

These results follow from known facts about tangential 2-block. See for example the

discussion on Tutte’s tangential 2-block conjecture in [7]. The results can also be verified

directly in a straightforward way.

Lemma 3.3.2 Suppose that M,M1,M2 are binary matroids and that each of M1 and M2

has a 3-cycle 2-cover. Then each of the following holds.

(i) If M = M1 ⊕M2 is a 1-sum of M1 and M2, then M also has a 3-cycle 2-cover.

(ii) If M = M1 ⊕2 M2 is a 2-sum of M1 and M2, then M also has a 3-cycle 2-cover.

Proof. (i) Suppose that M = M1 ⊕M2. For k = 1, 2, we assume that Mk has a 3-cycle

2-cover, denoted as Ck,1, Ck,2, Ck,3. It follows that {C1,i ∪ C2,i : i = 1, 2, 3} is a 3-cycle

2-cover of M .
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(ii) Now assume that M = M1 ⊕2 M2. Denote E(M1) ∩ E(M2) = {e}. For each

k ∈ {1, 2}, assume that Mk has a 3-cycle 2-cover, denoted as Ck1, Ck2, Ck3. Note that by

the definition of a 2-cover, e appears exactly twice in each set of 3 cycles. Without loss

of generality, we may assume that e ∈ Cki, k, i ∈ {1, 2}. Now it is easy to verify that

{C11 4 C22, C12 4 C23, C13 4 C21} is a 3-cycle 2-cover of M .

Definition 3.3.3 Suppose that M1,M2 are binary matroids and that each of Z = {e1, e2, e3} =

E(M1)∩E(M2) is a circuit in both M1 and M2. Let L = M(K4) with E(L) = {e1, e2, e3, f1, f2, f3}
such that Z = {e1, e2, e3} is a circuit of L and Z ′ = {f1, f2, f3} is a cocircuit of L, and

such that {ej, fj} is a perfect matching of K4, for each j ∈ {1, 2, 3}. Define Ni = Mi⊕3 L,

for i ∈ {1, 2}.

With the same notation in Definition 3.3.3, we observe that for each i ∈ {1, 2}, if Z =

E(Mi) ∩ E(L), then E(Ni) ∩ E(L) = Z ′. Moreover, for each i ∈ {1, 2},

Mi ⊕3 L = Ni and Ni∆L = Mi. (3.2)

By Definition 3.3.3, if M1 and M2 are coloopless, then N1 and N2 are also coloopless. The

following is known (need reference).

Lemma 3.3.4 Let N be a connected binary matroid with r(N) ≥ 4, and let Z = {e1, e2, e3}
be a 3-circuit of N . Then for some disjoint subsets T1, T2 ⊆ E(N)−Z, (N−T1)/T2

∼= K4,

where Z is a 3-circuit of (N − T1)/T2.

Lemma 3.3.5 M1 ⊕3 M2 = N1∆N2.

Proof. We shall show that both sides have the same set of cycles. By Definition 2.1, for

any C ∈ C(M1⊕3M2), C = C1∆C2 with C1 ∈ C0(M1), C2 ∈ C0(M2) and C1∩Z = C2∩Z =

W . If W = ∅, then C ∈ C0(N1∆N2), by (1) in Definition 2.1. Similarly, if W = Z, then

C1∆C2 = (C1∆Z)∆(C2∆Z) ∈ C0(N1∆N2). Thus we assume that 2 ≥ |W | ≥ 1.
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If |W | = 1, then without loss of generality, we assume that W = {e1}. Thus C ′ =

{e1, f2, f3} is a circuit of L = M(K4), and so by (1), C ′
1 = C1∆C ′ ∈ C0(M1⊕3L) = C0(N1),

Similarly, C ′
2 = C2∆C ′ ∈ C0(N2). It follows by (1) that C ′

1∆C ′
2 ∈ C0(N1∆N2). Since

C ′
1∆C ′

2 = C1∆C ′∆C2∆C ′ = C1∆C2,

it follows that C1∆C2 ∈ C0(N1∆N2).

Now suppose |W | = 2. Then without loss of generality, we assume that W = {e1, e2}.
Thus C ′′ = {e1, e2, f2, f3} is a circuit of L = M(K4), and so by (1), C ′′

1 = C1∆C ′′ ∈
C0(M1⊕3 L) = C0(N1), Similarly, C ′′

2 = C2∆C ′′ ∈ C0(N2). It follows by (1) that C ′′
1 ∆C ′′

2 ∈
C0(N1∆N2). Since

C ′′
1 ∆C ′′

2 = C1∆C ′∆C2∆C ′ = C1∆C2,

it follows that C1∆C2 ∈ C0(N1∆N2). This proves that C0(M1 ⊕3 M2) ⊆ C0(N1∆N2).

Conversely, pick an arbitrary D = D1∆D2 ∈ C0(N1∆N2), with Di ∈ C0(Ni), i ∈ {1, 2}.
Then D1 ∩ Z ′ = D2 ∩ Z ′ = W ′. Since Di is a circuit and Z ′ is a cocircuit, and since Ni

is binary, |W ′| ∈ {0, 2}. If W ′ = ∅, then for each i, Di ∈ C0(Mi − Z) and so by (1), Di ∈
C0(M1⊕3M2). As D1∆D2 is a disjoint union of D1 and D2, D1∆D2 ∈ C0(M1⊕3M2). Thus

we assume that |W ′| = 2. Without loss of generality, we may assume that W ′ = {f1, f2}.
Let D′ = {f1, f2, e3}. Then for i ∈ {1, 2}, D′ is a circuit in L such that D′Z ′ = W ′ = D〉Z ′.

It follows by (2) that Ci = D′∆Di is a cycle of Mi. Moreover, as

C1∆C2 = (D′∆D1)∆(D′∆D2) = D1∆D2,

we conclude that D1∆D2 ∈ C0(M1⊕3 M2). This proves that C0(N1∆N2) ⊆ C0(M1⊕3 M2),

and so it completes the proof for this lemma.

Lemma 3.3.6 Let M = M1⊕3 M2 be a 3-connected matroid. With the same notation in

Definition 3.3.3, for each i ∈ {1, 2}, Ni is a minor of M .

Proof. By symmetry, it suffices to show that N1 is a minor of M . Since M = M1⊕3 M2,

and since M is 3-connected, M2 is also 3-connected (need some modifications, use Seymour

[35]). By Lemma 3.4, M2 has a minor L ∼= M(K4) such that Z = E(M1) ∩ E(M2) is a

3-circuit of L. It follows that N1 = M1 ⊕3 L is a minor of M = M1 ⊕3 M2.
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Lemma 3.3.7 Let M = M1⊕3 M2 be a 3-connected matroid. With the same notation in

Definition 3.3.3, if each of N1 and N2 has a 3-cycle 2-cover, then M also has a 3-cycle

2-cover.

Proof. For any C ∈ C(N1), C = C1∆C0 and C1 ∩ Z = C0 ∩ Z where C1 ∈ C(M1) and

C0 ∈ C(L). Therefore, C ∩Z ′ = C0∩Z ′. Since Z ′ is a cocircuit of L, C0∩Z ′ ≡ 0(mod 2),

and so C ∩Z ′ ≡ 0(mod 2). This implies Z ′ is a cocircuit of N1. Similarly, Z ′ is a cocircuit

of N2. Z ′ ∈ C(N∗
1 ) ∩ C(N∗

2 ).

Let {Ci
j : j = 1, 2, 3} be a 3-cycle 2-cover of Ni, for i = 1, 2. Since Z ′ ∈ C(N∗

i ),

|Cj
i ∩ Z ′| = 2. Without loss of generality, we can assume that fi 6∈ Cj

i , then {C1
i ∆C2

i :

i = 1, 2, 3} is a 3-cycle 2-cover of M .

proof of Theorem 3.1.8: By way of contradiction, assume Theorem 3.1.8 does not

hold. Then there is a matroid M ∈ EX(M((P10)3̄),M
∗(K5)) ∩ R which does not admit

a 4-NZF, and |E(M)| is minimum.

Claim 6 M is 3-connected.

Otherwise, by proposition 3.2.5, for i ∈ {1, 2}, M = M1 ⊕i M2 for some proper

minors M1 and M2. By the minimality of M , both M1 and M2 have 3-cycle 2-covers. By

Lemma 3.3.2, M has a 3-cycle 2-cover, which contradicts to the choice of M .

By Claim 6, M can’t be 1- or 2-sums. M is not graphic. Otherwise since M is

(P10)3̄-minor free, by theorem 2.1.2, M admits a 4-NZF, a contradiction. M 6∼= R10 by

Proposition 3.3.1. If M is cographic, then M ∈ EX(M(K5)), and by Theorem 3.1.7, M

has a 3-cycle 2-cover.

By Lemma 3.2.3, M is graphic, cographic, R10 or M = M1 ⊕i M2 for i = 1, 2, 3.

Therefore, M has to be a 3-sum. Suppose M = M1 ⊕3 M2. Follow definition 3.3.3 and

Lemma 3.3.6, we get Ni is a minor of M for i = 1, 2 and so Ni ∈ EX(M((P10)3̄),M
∗(K5)).

By the minimality of M , both N1 and N2 have 3-cycle 2-covers. By Lemma 3.3.7, M has

a 3-cycle 2-cover. A contradiction.
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For binary matroids without F ∗
7 minor, Seymour has established the following decom-

position theorem.

Theorem 3.3.8 (Seymour [37]) Every binary matroid without F ∗
7 minor may be obtained

by means of proper 1-sums or 2-sums from regular matroids and copies of F7.

Proof of Corollary 3.1.9: This follows from Proposition 3.3.1, Lemma 3.3.2, Theo-

rem 3.3.8 and Theorem 3.1.8.



Chapter 4

Odd edge connectivity

4.1 Introduction

It is evident that odd-edge-connectivity (see Definition 4.2.1) plays a more important role

than edge-connectivity in the study of some flow and cycle cover related problems. In

this paper, some earlier results in those areas are extended from λ-edge-connected graphs

to odd-λ-edge-connected graphs.

For graphs with large odd-edge-connectivity, small edge-cuts (of even size) may still

exist. However, there are not many results or methods developed yet to deal with small

even edge-cuts. For some integer flow problems and cycle cover problems, it is pointed

out in [36, 21] that 2-edge-cut does not exit in any smallest counterexample (to some

well-known flow conjectures and cycle cover conjectures). The 3-flow conjecture by Tutte

[?] was originally proposed for odd-5-edge-connected graphs. By excluding 4-edge-cut,

Kochol [23], with a sophisticated linear algebra approach, proved that 3-flow conjecture

is equivalent for 5-edge-connected graphs.

In this chapter, we are to develop some general approaches to deal with small even

cuts. For small even degree vertices, the vertex splitting method is to be applied and

the odd-edge-connectivity is to be preserved. For non-trivial small even cuts, contrac-

30
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tions of internal highly connected k-tree blocks (as contractible configuration) are to be

applied. Note that the determination and verification of contractible configurations (see

Definition 4.2.8) differ significantly from each other if the corresponding graph theory

properties are different. In this paper, k-tree blocks (see Definition 4.2.3) is to be verified

as contractible configurations for some graph properties. The contractibility is either to

be verified independently for each problem, or to be proved by applying some existing

results (such as, a recent theorem by Barát and Thomassen [6]).

4.1.1 Parity Subgraphs

Definition 4.1.1 Let H be a subgraph of a bridgeless graph G = (V, E). H is a parity

subgraph of G if for every vertex v ∈ V (G), dG(v) ≡ dH(v)(mod 2).

It was proved by Tutte and Nash-Williams [43, 29] that every 2k-edge-connected graph

contains at least k edge-disjoint spanning trees, and proved by Itai and Rodeh [18] that

every spanning tree of a graph G contains a parity subgraph. The combination of these

two theorems yields the following result as a direct corollary.

Theorem 4.1.2 Every 2k-edge-connected graph G contains at least k edge-disjoint parity

subgraphs of G.

It is well-known that the search of parity subgraphs plays a central role in the proofs

of some important theorems in integer flow areas. For example, the 4-flow theorem is

proved by Jaeger [19] with following approach: The 4-edge-connectivity guarantees the

existence of two edge-disjoint parity subgraphs (by Theorem 4.1.2) and therefore a 2-cycle

cover of G. The 8-flow theorem was proved by Jaeger [19] with following similar approach:

The 3-edge-connectivity guarantees the existence of three edge-disjoint parity subgraphs

in 2G and therefore, a 3-cycle cover of G.

Theorem 4.1.2 is to be generalized in this paper by relaxing the edge-connectivity to

odd-edge-connectivity and therefore, solves an open problem proposed in [51, 12, 54].
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We generalize the theorem and get the following

Theorem 4.1.3 Every odd-(2k + 1)-edge-connected graph G contains at least k edge-

disjoint parity subgraphs of G.

4.1.2 Flow Index

Integer flow was originally introduced by Tutte [40, 41] as a generalization of map coloring

problems.

Definition 4.1.4 Let G = (V, E) be a graph. An ordered pair (D, f) is called an integer

flow of G if D is an orientation of E(G) and f : E(G) → Z, the set of integers, such

that the total in-flow equals the total out-flow at every vertex. An integer flow (D, f) is a

k-flow if |f(e)| ≤ k− 1 for every edge e of G. It is nowhere-zero if f(e) 6= 0 for every

edge e of G.

Circular flow, introduced in [16] as a real line extension of integer flow problem. The

following is one of the many equivalent definitions for circular flows and the corresponding

flow indices.

Definition 4.1.5 Let D be the set of all orientations of G, and (A,B) be any edge-cut

of G. The flow index of G is defined by

φ(G) = min
D∈D

{
max
(A,B)

|[A,B]D|
|[B, A]D|

}
+ 1.

Theorem 4.1.6 (Galluccio and Goddyn, [15]) let G be a 6-edge-connected graph, then

the flow index φ(G) < 4.

We generalize the theorem above and get:

Theorem 4.1.7 Let G be an odd-7-edge-connected graph, then φ(G) < 4.
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4.1.3 Nowhere-zero 3-flows

The following is an approach of Jaeger’s weak 3-flow conjecture [19]. Lai and Zhang

proved the following theorem

Theorem 4.1.8 ([24]) Every 4dlog2 ne-edge-connected multigraph with n vertices admits

a nowhere-zero 3-flow.

As a generalization, we prove

Theorem 4.1.9 Let G be a multigraph with n vertices. If its odd-edge-connectivity is

more than 4dlog2 ne, then G admits a nowhere-zero 3-flow.

4.2 Notations and Lemmas

Note: For notations not defined here, see [?] or [14].

A circuit is a connected 2-regular subgraph, while a cycle is the union of edge-disjoint

circuits.

Let G be a an undirected graph. Let X ⊆ V (G), the set of all edges between X and

Y = V (G) −X, denoted by (X,Y ), is an edge-cut of G. If G is a directed graph under

an orientation, then the set of arcs from X to Y is denoted by [X,Y ]D.

Definition 4.2.1 A graph G is said to be odd-(2k + 1)-edge-connected provided the

size of every odd edge cut is at least 2k + 1. The odd-edge-connectivity of G, denoted

by λo(G), is the size of the smallest odd edge-cut of G.

Tutte proposed the 3-flow conjecture [?] that every odd-5-connected graph admits a

nowhere-zero 3-flow. Later Jaeger([19]) weakened the conjecture and proposed the weak
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3-flow conjecture that there is an integer k such that every k-edge-connected graph admits

a nowhere-zero 3-flow. Also, Jaeger proved the 4-flow theorem, which is the best approach

to the 3-flow conjecture so far.

Definition 4.2.2 Let D be an orientation of a graph G, let Γ be an Abelian group and

let f : D → Γ ba a map. The boundary of f is the map ∂f : V (G) → Γ where

∂f(v) =
∑

e∈E+(v) f(e) − ∑
e∈E−(v) f(e) for each vertex v ∈ V (G). G is said to be Γ-

connected if for every b : V (G) → Γ with
∑

v∈V (G) b(v) = 0, there exists a nowhere-zero

map f : D → Γ with boundary ∂f = b.

Definition 4.2.3 Let H be a subgraph of a graph G = (V, E). H is said to be a k-tree

block provided H is a maximal subgraph with k edge-disjoint spanning trees.

The following is the key lemma of this paper and will be used in the proof of theo-

rems 4.1.3, 4.1.7 and 4.1.9.

Lemma 4.2.4 [14, 52] Let {T1, T2, · · · , Tk} be a set of edge-disjoint spanning forests of

a graph G of maximum total size. If there is an edge e ∈ E(G)−∪k
i=1E(Ti), then there is

a k-tree block H of G containing e.

By counting the numbers of edges needed for k edge-disjoint spanning trees, we can

easily get the following corllary.

Corollary 4.2.5 If δ(G) ≥ 2k, then there is a non-trivial k-tree block of G.

A polynomial algorithm was obtained in [52] for the detection of all k-tree-blocks of

a graphs.

Lemma 4.2.6 [52] Let G be a graph without k edge-disjoint spanning trees, and let H1,

H2, · · · , Ht be all k-tree blocks of G. Then

(i). Hi and Hj are disjoint if i 6= j;

(ii). G′ = G/{H1, H2, · · · , Ht} does not have k edge-disjoint spanning trees.
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Lemma 4.2.7 [53] Let G = (V, E) be a graph with odd edge connectivity λo. Assume

that there is a vertex v ∈ V (G) with degree d such that d(v) /∈ {2, λo}. Arbitrarily label

the edges incident with v as {e1, e2, · · · , ed} , then there is an integer i ∈ {1, 2, · · · , d}
such that the odd edge connectivity of the new graph G′ obtained from G by splitting ei

and ei+1 (mod b) away from v remains λo.

Definition 4.2.8 A graph H is a contractible configuration for property P if for

any graph G containing H as a subgraph, G has property P if and only if G/H has the

property.

4.3 Proof of Theorem 4.1.3

The following lemma is straightforward.

Lemma 4.3.1 A k-tree block is a contractible configuration for having k edge-disjoint

spanning trees.

Here, we can go further to generalize Lemma 4.3.1 for the packing problem of parity

subgraphs.

Lemma 4.3.2 A k-tree block is a contractible configuration for having k edge-disjoint

parity subgraphs.

The following definition and lemma are needed in the proof of Lemma 4.3.2.

Definition 4.3.3 Let ~T : V (G) → Zk
2 be a zero-sum mapping. A ~T -subgraph packing

is a set of edge-disjoint subgraphs {P1, P2, · · · , Pk} such that dPi
(v) ≡ Ti(v) (mod 2) where

Ti(v) is the ith component of the vector ~T (v).

Lemma 4.3.4 If G contains k edge-disjoint spanning trees T1, · · · , Tk, then for any zero-

sum mapping ~T : V (G) → Zk
2 , G has a ~T -subgraph packing {P1, · · · , Pk} such that Pi ⊆ Ti.
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Proof. Let T1, · · · , Tk be k edge-disjoint spanning trees. For every i, let

Si = {v ∈ V (G) | ~Ti(v) ≡ 1}( mod 2 )

Note that |Si| is even. Partition Si into pairs. For each pair of vertices, there is a path in

Ti. Let Pi be the symmetric difference of these paths, then {P1, · · · , Pk} is a ~T -subgraph

packing that Pi ⊆ Ti.

Proof of Lemma 4.3.2. Suppose a subgraph H of G is a k-tree block. If G has k edge-

disjoint parity subgraphs P1, P2, · · · , Pk, then P1/H, P2/H, · · · , Pk/H are k edge-disjoint

parity subgraphs of G/H.

Suppose G/H has k edge-disjoint parity subgraphs P ′
1, P ′

2, · · · , P ′
k. For each i ∈

{1, 2, · · · , k}, let Si = {v ∈ V (G) : dG\E(P ′i )(v) is odd } and Ti(v) = 1 if v ∈ Si and 0

otherwise. By Lemma 4.3.4, there is a ~T -subgraph packing P ′′
1 , · · · , P ′′

k of H. Now P ′
1∪P ′′

1 ,

P ′
2 ∪ P ′′

2 , · · · , P ′
k ∪ P ′′

k are k edge-disjoint parity subgraphs of G.

Proof of Theorem 4.1.3:

By way of contradiction, we assume G is the minimum counter example with respect

to the cardinality of edges, and then the cardinality of vertices.

If G itself is a k-tree-block, then, by an observation in [18] (Itai and Rodeh), each

spanning tree contains a parity subgraph. So, the minimum counterexample G is not a

k-tree-block.

We claim that

δ(G) ≥ 2k (4.1)

Otherwise, there is a vertex v with even degree at most 2k − 1. By Lemma 4.2.7, we can

split a pair of edges away from v, and the resulting graph G′ remains odd-(2k + 1)-edge-

connected. By the minimality of G, G′ has k edge-disjoint parity subgraphs P1, P2, · · · ,
Pk. They are also parity subgraphs of G, which contradicts the choice of G.

By the inequality (4.1) and Corollary 4.2.5, there is a nontrivial k-tree block H of

G. Since G/H has less edges and satisfies the conditions of the theorem, G/H has k
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edge-disjoint parity subgraphs P ′
1, P ′

2, · · · , P ′
k. By Lemma 4.3.2, G has k edge-disjoint

parity subgraphs. This is a contradiction and completes the proof of the theorem.

Corollary 4.3.5 Every odd-(2k + 1)-connected graph G has a (2bk
2
c+ 1) parity subgraph

decomposition.

Proof. Let P1, P2, · · · , Pk be edge-disjoint parity subgraphs and P = G \ ∪k
i=1E(Pi). If

k is even, then P is also a parity subgraph of G, thus we have k + 1 edge-disjoint parity

subgraphs.

4.4 Proof of Theorem 4.1.7

The following lemma describes the relation between integer-valued flows and orientations.

Lemma 4.4.1 [17]) Let G be a bridgeless graph and D be an orientation of G and a, b

be two positive integers (a < b). The following statements are equivalent.

(1)
a

b
≤ |[A,B]D|
|[B, A]D| ≤

b

a

for every edge-cut (A,B) of G;

(2) G admits a nowhere-zero integer flow (D, f1) such that a ≤ f1(e) ≤ b for every

e ∈ E(G).

Before the proof of Theorem 4.1.7, we are to obtain some structural characterizations

about graphs G with φ(G) = 4.

Definition 4.4.2 For an edge-cut Q = {e1, e2, · · · , eq} = (X,Y ) and a nowhere-zero 4-

flow (D, f) of G. A balanced partition of Q is a partition Q = P1 ∪ · · · ∪ Pt such
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that ∑

e∈[X,Y ]D∩Pi

f(e) =
∑

e∈[Y,X]D∩Pi

f(e), ∀Pi.

If a balanced partition of Q has the most number of parts among all balanced partitions,

it is called a finest balanced partition. The cut Q is bad with respect to (D, f) if

every part Pi of a finest balanced partition is of size 4.

Lemma 4.4.3 For a positive 4-flow (D, f), an edge-cut (X,Y ) is bad with respect to

(D, f) if and only if
|[X,Y ]D|
|[Y, X]D| = 3 or

1

3
.

Proof. The proof is straightforward since (D, f) is a positive flow and [X,Y ]D ∩ Pi 6= ∅
and [Y, X]D ∩ Pi 6= ∅ for every part Pi of a finest balanced partition of (X,Y ).

Lemma 4.4.4 Let G be a graph admitting a nowhere-zero 4-flow. Then φ(G) = 4 if and

only if, for every nowhere-zero 4-flow (D, f) of G, there is a bad cut with respect to (D, f).

Proof. I. Note that every nowhere-zero 4-flow can be converted to a positive 4-flow

by changing signs and reversing orientations of some edges. Hence, we are to prove the

lemma for positive flows since the operation described above does not affect finest balanced

partition of any edge-cut.

II. “⇒”: Let (D1, f1) be a nowhere-zero 4-flow, and (D, f) be the corresponding positive

4-flow. By Lemma 4.4.1,
|[B, A]D|
|[A,B]D| ≤ 3

for every edge-cut (A,B).

If φ(G) = 4, then φ(G) 6< 4. By Definition 4.1.5, there must be an edge cut Q = (X,Y )

with |[Y, X]D|
|[X,Y ]D| ≥ 3.
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Therefore, the equality must hold for Q = (X,Y ). Since (D, f) is a positive 4-flow of

G, by Lemma 4.4.3, (X,Y ) is a bad cut with respect to (D, f).

III. “⇐”: Prove by contradiction. Assume that φ(G) < 4. Then, by Definition 4.1.5,

1

3
<
|[X,Y ]D2|
|[Y, X]D2|

< 3 (4.2)

for every edge-cut (X,Y ) of G under some orientation D2. Furthermore, by Lemma 4.4.1,

there is a positive 4-flow (D2, f2) that agrees with the orientation D2. Because of (4.2),

G has no bad-cut with respect to (D2, f2) (by Lemma 4.4.3). This is a contradiction and

completes the proof.

By Definition 4.4.2, we notice that if an edge cut Q = (X,Y ) is not bad with respect

to a nowhere-zero 4-flow (D, f), then some part Pi of a finest balanced partition of (X,Y )

is of size less than 4. Therefore, either there is an edge e ∈ Pi with f(e) = 2 (if |Pi| = 3)

or there are a pair of edges e1, e2 ∈ Pi with f(e1) = f(e2) (if |Pi| = 2). Some of these

observations are to be use very frequently in later studies.

Lemma 4.4.5 A cut Q is not bad with respect to a nowhere-zero 4-flow (D, f) if one of

the following holds:

(1). Q ∩ Ef=±2 6= ∅;
(2). |Q| 6≡ 0 (mod 4)

The following lemma is an immediate corollary of Lemma 4.4.4 and is to used in the

proof of the main theorem whenever a vertex splitting occurs.

Lemma 4.4.6 If G′ is a graph obtained from G by splitting a pair of incident edges, then

φ(G′) < 4 implies that φ(G) < 4.

Proof of Theorem 4.1.7:

I. By way of contradiction, let G be an odd-7-edge-connected graph such that φ(G) ≥ 4

with least number of edges and vertices. By Corollary 4.3.5, G has three edge-disjoint
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parity subgraphs. Therefore, by a theorem of Jaeger [19], it admits a nowhere-zero 4-flow

(D, f). That is, φ(G) = 4.

II. We claim that the graph G itself is not a 3-tree-block. For otherwise, let T1, T2, T3 be

three edge-disjoint spanning trees of G. Let Ce,Tj
be the circuit contained in Tj + e for

each edge e /∈ Tj. Let C1,2 = 4e/∈T3 Ce,T3 and C3 = 4e∈T3 Ce,T2 . It is easy to see that

T1 ∪ T2 ⊆ C1,2 and T3 ⊆ C3 and T1 ∩ C3 = ∅.

For an arbitrary orientation D, let (D, f1,2) be a 2-flow of G with support C1,2 and

(D, f3) be a 2-flow of G with support C3. Here, (D, f = 2f1,2 + f3) is a nowhere-zero

4-flow with T1 ⊆ Ef=±2. By Lemma 4.4.5, φ(G) < 4. This contradicts that G is a

conterexample.

III. We claim that δ(G) ≥ 7. Assume that there is a vertex v with degree at most 6.

By Lemma 4.2.7, we can split a pair of edges away from v to get a smaller odd-7-edge-

connected graph G′. By the minimality of G, φ(G′) < 4. By Lemma 4.4.6, φ(G) < 4 as

well.

IV. By II, III and by Corollary 4.2.5, G contains some non-trivial k-tree blocks. Let

{H1, H2, · · · , Ha} be the collection of all k-tree blocks of G. By Lemma 4.2.6, G? =

G/{H1, · · · , Ha} does not contain k edge-disjoint spanning trees. By Corollary 4.2.5,

δ(G?) = 2 or 4.
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V. By IV, let v1 be a vertex in G? with degree either 2 or 4. Let H1 be the nontrivial k-tree

block of G corresponding to v1 (the small degree vertex v1 is created by contraction of H1

since δ(G) ≥ 6). Since the smaller graph G?? = G/H1 remains odd-7-edge-connected, its
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flow index is less than 4. Let (D0, f0) be a positive 4-flow of G/H1 with no bad cuts. It is

easy to see that the size of each part of a finest balanced partition of E(v1) is 2 since the

edge-cut E(v1) is of size 2 or 4. Without loss of generality, suppose e1, e3 ∈ E+(v1), e2,

e4 ∈ E−(v1) under the orientation D0. And let ui be the endvertex of ei in H1, for every

i = 1, 2, 3, 4. Also, suppose f0(e1) = f0(e2) = w1, f0(e3) = f0(e4) = w2 with w1 ≥ w2 ≥ 0.

(For technical reasons, if |(V (H1), V (G) − V (H1)| = 2, then w2 = 0 since e3, e4 do not

exist.)

Let H ′ be the graph obtained from H1 by adding two arcs a1 and a2 that a1 joins u2

to u1 and a2 joins u4 to u3. Let

A1 = {ai

∣∣wi is odd, i = 1, 2} and A2 = {ai

∣∣wi ≥ 2, i = 1, 2}.

VI. This is the final step of the proof. In this part, we are to extend the flow (D0, f0) of

G?? = G/H1 to the entire graph G by finding a 4-flow (D′, f ′) of H ′ that agrees with a1

and a2 in both orientations and weights. Certainly, the 4-flow (D′, f ′) of H ′ should not

have any bad cut in H ′.

Since H1 is a 3-tree block, it has three spanning trees T 1, T 2 and T 3. For every edge

e ∈ (E(H)− E(T 1)− E(T 3)) ∪ A1 = B, there is a circuit Ce,T 3 in T 3 ∪ e. Let C2 be the

symmetric difference of these circuits, that is,

C2 = ∆e∈BCe,T 3

Here E(C2) ⊇ E(T 2) ∪ A1 and E(C2) ∩ E(T 1) = ∅.

Let M = (T 3 − C2) ∪ A2. For every edge e ∈ M ∪ T 1, there is a fundamental circuit

Ce,T 2 ⊆ T 2 ∪ e. Let C1 be the symmetric difference of these circuits

C1 = ∆e∈T 1∪MCe,T 2

Here E(C1) ⊇ E(T 1) ∪ A2, and C1 ∪ C2 = E(H ′).

Since Ci (i = 1, 2) contains a spanning tree T i of H, Ci \ {a1, a2} is connected and,

therefore, Ci has a circuit decomposition that a1 and a2 are in different circuits if both

a1, a2 ∈ Ci. Therefore, we are able to extend the orientation of {a1, a2} to all edges of
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E(Ci) so that each member of the circuit decomposition of Ci is oriented independently as

a directed circuit (and agrees with ai if it contains ai). Let Di be this eulerian orientation

of the cycle Ci. We further notice that D1 and D2 may disagree with each other in the

intersection of C1 and C2 (however, D1 and D2 agree with each other on a1 and a2 if any

of them is contained in the intersection of C1 and C2).

Let (Di, f i) be a non-negative 2-flow of H ′ with support Ci for each i = 1, 2.

Let D3 be the orientation of H ′ obtained from D1 and D2 that preserves the orientation

on C1 and C2 \ C1. Note that the orientation of a1, a2 remain the same since each Di

agrees with each aj if it is in Ci. Let (D3, f 2) be the 2-flow obtained from (D2, f 2) by

reversing orientations and changing signs for negative edges in the intersection of C1 and

C2.

Then (D3, f 3 = 2f 1 + f 2) is a positive 4-flow and the weight of every edge in T 1 is 2

since C2 ∩ T 1 = ∅.

Now, the positive 4-flow (D0, f0) of G?? = G/H1 can be extended to a positive 4-flow

(D, f) of the entire graph G that agrees with both (D0, f0) in G′ and (D3, f 3) in H1.

We only need to show G does not have any bad cut with respect to (D, f) (by

Lemma 4.4.4). For any cut Q of G, if Q ∩ E(H1) = ∅, then it is an edge cut of G??,

so it is not bad. If Q ∩ E(H) 6= ∅, then Q ∩ H1 is an edge-cut of H1. Note that T 1 is

a spanning tree of H1 and T 1 ⊆ Ef=2. Hence, there is an edge e ∈ Q ∩ T 1 ⊆ Ef=2. By

Lemma 4.4.5, the flow index of G is less than 4.That contradicts the choice of G.

4.5 Proof of Theorem 4.1.9

Lemma 4.5.1 [13, 25] Let H be a Z3-connected subgraph of a graph G. Then H is a

contractible configuration for having a nowhere-zero 3-flow.

The following two theorems was proved by Barát and Thomassen, and we will use

the second one in our proof. Note these two theorems are also generalizations of Theo-



CHAPTER 4. ODD EDGE CONNECTIVITY 43

rem 4.1.8.

Theorem 4.5.2 [6] Every 4dlog2 ne-edge-connected multigraph with n vertices is Z3-connected.

Theorem 4.5.3 [6] Let G be a multigraph with n vertices. If G has 2dlog2 ne edge-disjoint

spanning trees, then G is Z3-connected.

Proof of Theorem 4.1.9:

By way of contradiction, suppose G is the minimum counterexample with respect to

order and size. Let λo(G) = 2k + 1.

Claim: δ(G) > 2k.

Otherwise, suppose dG(v) ≤ 2k. By Lemma 4.2.7, we can split 2 edges away from G

to get G′ where G′ is still odd-(2k + 1)-connected. By the minimality of G, G′ admits a

nowhere-zero 3-flow, so does G.

By the Claim above and Corollary 4.2.5, there is a nontrivial k-tree block H of G.

Note that G/H is still odd-(2k + 1)-connected, so it admits a nowhere-zero 3-flow.

Since H has k edge-disjoint spanning trees where k > 2dlog2 ne ≥ 2dlog2 |V (H)|e, by

Theorem 4.5.3, H is Z3 connected. By Lemma 4.5.1, G admits a nowhere-zero 3-flow. A

contradiction.

4.6 Remarks

Note that both Theorems 4.1.7 and 4.1.9 were proved by verifying that k-tree-blocks are

contractible configurations for these two problems. But we proved Theorem 4.1.7 without

proving a similar lemma that every 3-tree-block is a contractible configuration for φ < 4

problem. We took the advantage of a small value δ(G′) and paid attention only on (at

most) two extra edges of a 3-tree-block H1 instead of all possible zero-sum boundary. This
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approach does simplify the proof of Theorem 4.1.7. However, the problem that every 3-

tree-block is a contractible configuration for φ < 4 flows remains a very interesting open

problem.
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[17] A. J. Hoffman, in Théorie des Graph by C. Berge, Paris (1958) p. 80.

[18] A. Itai and M. Rodeh, Covering a graph by circuits,in Automata, Languages and

Programming, Lecture Notes in Computer Science 62, Springer-Verlag, Berlin, (1978)

289-299.

[19] F. Jaeger, Flows and generalized coloring theorems in graphs. J. Combinatorial The-

ory, Ser. B, 26 (1979), 205-216.

[20] F. Jaeger, Nowhere-zero Flow Problems, in ”Selected Topics in Graph Theory” (L.

Beineke and R. Wilson, Eds), Vol. 3 pp71-95. Academic Press, London/New York,

1988.

[21] F. Jaeger, A survey of the cycle double cover conjecture, in Cycles in Graphs (B.

Alspach and C. Godsil, eds.), Ann. Discrete Math. 27 (1985) 1-12.

[22] Jensen and Toft, ”Graph Coloring Problems”, pp210-211. Wiley and Sons, New York,

1995.



BIBLIOGRAPHY 47

[23] M. Kochol, An equivalent version of the 3-flow conjecture. J. Combin. Theory Ser.

B 83 (2001) 258-261.

[24] H.-J. Lai and C.-Q. Zhang, Nowhere-zero 3-flows of highly connected graphs, Discrete

Math, 110 (1992), 179-183.

[25] H.-J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs Combin.

16, (2000) 165-176.

[26] H.-J. Lai, Matroid Theory (in Chinese), Chinese Higher Education Press, (2002),

(ISBN: 7-04-010563-2).

[27] H.-J. Lai, X. Li and H. Poon, Nowhere zero 4-flow in regular matroids, J. Graph

theory, 49(2005), 196-204.

[28] K. R. Matthews, On the eulericity of a graph. J. Graph Theory, 2 (1978), 143-148.

[29] C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London

Math. Soc. 36 (1961) 445-450.

[30] J. G. Oxley, ”Matroid Theory”. Oxford University Press, New York, 1992.

[31] N. Robertson, D. Sanders, P. Seymour and R. Thomas, The Four-Color Theorem. J.

Combin. Theory, Ser. B 70 (1997), 2-44.

[32] N. Robertson, D. Sanders, P.D. Seymour and R. Thomas, Tutte’s edge-colouring

conjecture, J. Combin. Theory Ser. B 70 (1997), no. 1, 166–183.

[33] N. Robertson, D. Sanders, P. Seymour and R. Thomas, to appear.

[34] P. D. Seymour, Sums of circuits, in ”Graph Theory and Related Topics”, (Proc.

Waterloo, 1977). Academic Press (1979), 341-355.

[35] P. D. Seymour, Decomposition of regular matroids. J. Combin. Theory Ser. B 28

(1980), 305-359.

[36] P. D. Seymour, Nowhere-zero 6-flows, J. Comb. Theory, B, 30 (1981) 130-135.



BIBLIOGRAPHY 48

[37] P. D. Seymour, Matroids and multicommodity flows. European J. Combin. Theory

Ser. B. 2 (1981), 257-290.

[38] G. Szekeres, Polyhedral decompositions of cubic graphs. Bull. Austral. Math. Soc.,

8 (1973), 367-387.

[39] R. Thomas and J. M. Thomson, Excluding minors in nonplanar graphs of girth at

least five, Combi. Probab. Comput. 9 (2000), 573-585.

[40] W. T. Tutte, On the imbedding of linear graphs in surfaces, Proc. London Math. Soc.

Ser. 2, 51 (1949) 474-483.

[41] W. T. Tutte, A contribution on the theory of chromatic polynomial, Canad. J. Math.

6 (1954) 80-91.

[42] W. T. Tutte, A homotopy theorem for matroids, I, II. Trans. Amer. Math. Soc. 88

(1958), 144-174.

[43] W. T. Tutte, On the problem of decompositing a graph into n connected factors, J.

London Math. Soc. 36 (1961) 221-230.

[44] W. T. Tutte, Lectures on matroids. J. Res. Nat. Bur. Standards Sect. 69B. 1-47.

[45] W. T. Tutte, On the algebraic theory of graph colorings. J. Combinatorial Theory,

1 (1966),15-50.

[46] W. T. Tutte, A geometrical version of the four color problem. Proc. Chapel Hill Conf.

University of N. Carolina Press, Chapel Hill (1969) 553-560.
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