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ABSTRACT 
 

Ozone Induces Nerve Growth Factor Release from Rat Tracheal Epithelial Cells during an 
Early Postnatal Critical Period 

 
Lynnsey A. Carrell-Jacks 

 

 

Ozone, one of the major air pollutants in urban areas, produces epithelial cell injury and 
inflammation in the airways upon exposure. Previous studies have shown that ozone 
exposure leads to increased substance P (SP) expression in nerves innervating the smooth 
muscle in the extrapulmonary airway. Nerve growth factor (NGF), a neurotrophin, is known 
to increase SP expression.  To determine the effect of ozone exposure on the release of NGF, 
a cell culture technique was developed for studying a homogenous rat tracheal epithelial cell 
population for analysis of NGF mRNA and protein expression.  Furthermore, to determine if 
this effect is age-dependent, a critical period exposure paradigm was used. Rat pups exposed 
to ozone at postnatal day (PD) 6 showed an increase in the level of NGF mRNA while pups 
exposed after PD 6 showed no change in NGF expression. When rat pups exposed to ozone 
on PD 6 were reexposed at a later date, an increase in NGF mRNA was observed. These data 
suggest that exposure to ozone has an effect on NGF expression in early postnatal life and 
that this exposure might play a role in ozone sensitivity later in life
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I.  INTRODUCTION 

Children are especially susceptible to airway pollutants. Early life exposure to inhaled 

environmental pollutants may play an important role in the pathogenesis of childhood asthma 

and other respiratory disorders. It has been shown that early postnatal exposure to passive 

cigarette smoke, allergens, and environmental pollution increases the incidence of respiratory 

illness and asthma later in life (Miller et al., 2009). Children are a susceptible population due to 

heightened sensitivity during early life and may be at risk of encountering high ozone levels 

while playing outside. West Virginia is ranked fourth overall for childhood asthma prevalence in 

the United States, with over 11% of the under-18 population suffering from asthma (Asthma 

Among West Virginia Children, 2006). Pediatric asthma is a national problem and a crisis in our 

local community. 

Previous studies have shown that neurotrophin levels in the airway increase significantly 

following exposure to airway irritants and that this increase is followed by an upregulation of SP 

expression in nerves innervating the airway (Kessler & Black, 1980; Otten et al., 1980; Schwartz 

et al., 1982; Wilfong & Dey, 2004). The role of neurotrophins released from tracheal epithelial 

cells that might contribute to the symptoms associated with asthma is not well understood. The 

neuropeptide SP is considered one of the major initiators of neurogenic inflammation and airway 

hyperresponsiveness in asthma (Lembeck & Holzer, 1979; Koto et al., 1995). Although tracheal 

epithelial cells are known to release the neurotrophins nerve growth factor (NGF) and brain 

derived neurotrophic factor (BDNF) and are especially sensitive to inhaled irritants (Hahn et al., 

2006; Dey, et al., 1999), more work needs to be done to elucidate the possible role of airway 

epithelial cells in the pathogenesis of asthma. It is important to understand the role of released 

neurotrophins from tracheal epithelial cells in response to early postnatal ozone exposure 
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because of the potential regulatory impact that neurotrophins have on airway sensory nerves, 

which regulate inflammatory responses associated with the pathogenesis of childhood asthma.  
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II. BACKGROUND 

A. Ozone and Pediatric Asthma 

Ozone (O3) exposures have a substantial negative impact on pulmonary health.  Exposure to 

O3 has been shown to decrease pulmonary function (Kim et al., 2010) and increase airway 

inflammation (Krishna et al., 1998) in healthy subjects. The effects are more severe in sensitive 

subjects, such as asthmatics or smokers (Frampton et al., 1997a; Frampton et al., 1997b). The 

effects of O3 exposure are especially significant in children. Pediatric asthma diagnoses, attacks, 

hospitalizations, and deaths have increased significantly in the last two decades (Downs et al., 

2001; Akinbami and Schoendorf, 2002; Babin et al., 2004). Pediatric respiratory disorders and 

infant mortality have been correlated to increased levels of inhaled environmental pollutants, 

including O3 (Loomis et al., 1999; Triche et al., 2006). Exposure of infants to O3 during 

development initiates drastic changes in the epithelial-mesenchymal trophic unit leading to 

compromised airway growth and development that persists or worsens, even without continued 

O3 exposure (Plopper et al., 2007). Lung function is decreased in children on days when there 

was a higher O3 concentration and children with physician-confirmed asthma experience the 

greatest decrease in lung function tests (Krzyzanowski et al., 1992; Schmitzberger et al., 1993; 

Lewis et al., 2005). Childhood asthma diagnoses and the prevalence of symptoms are increased 

in children living in areas with high ground-level O3 (Etzel et al., 2002; Sousa et al., 2009). 

Young children who have been diagnosed with asthma are particularly susceptible to small, 

short-term increases in O3 levels (Ko et al., 2007; Yamazaki et al., 2009; Dales et al., 2009) and 

an increase in emergency room admissions for asthma attacks has been noted on days with 

elevated O3 (Boutin-Forzano et al., 2004). Chronic exposure to current ambient O3 levels 

contributes to an increase risk of hospitalization for asthmatic children (Villeneuve et al., 2007; 
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Lin et al., 2008; Moore et al., 2008), especially for children under the age of five (Hernández-

Cadena et al., 2007). Asthmatic children using maintenance medication are particularly 

vulnerable to O3 (Gent et al., 2003). Furthermore, exposure to O3 reduces the bronchodilation 

response to short-acting β-agonist prescription medicine in children with asthma (Hernández-

Cadena et al., 2009). These results suggest an increased susceptibility to O3 exposure in early life 

and childhood.   

The Environmental Protection Agency is reconsidering the current national standard for 

ground-level O3 of 75ppb on the 8 hour average. However, exposure to O3 at levels far below the 

current national standard can be detrimental to pulmonary function. Exposure to 50ppb O3 

showed substantial decreases in pulmonary function in human subjects with cumulative effects 

of successive exposures (Hackney et al., 1975). In both control and asthmatic subjects, exposure 

to O3 can cause significant increases in bronchial responsiveness and airway obstruction (Kreit et 

al., 1989). O3 exposure also induces inflammation in human airways, even at levels that are not 

significant enough to reduce pulmonary function (Koren et al., 1989; Basha et al., 1994). 

Blunting the airway neutrophilic inflammatory response does not prevent the functional 

impairment of the airways following O3 exposure (Vagaggini et al., 2001). Airway 

hyperresponiveness associated with O3 exposure might occur prior to the influx of neutrophils in 

the airway and might be dependent upon local changes (Okazawa et al., 1989). Levels at or 

below the current EPA standard are detrimental to human health and this study aims to explore a 

novel mechanism of O3-induced pulmonary damage, which will provide additional evidence that 

stricter standards are needed. Furthermore, the mechanism by which O3 exposure leads to a 

decrease in pulmonary function remains poorly understood, but it is not a result of early 
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inflammatory responses (Blomberg et al., 1999). By exploring other mechanisms of action, this 

study will provide more information for potential clinical treatment.  

B. Tracheal Epithelial Cells 

Early childhood (6 to 8 years of age) is a critical period of lung development in humans 

(Burri, 1997). Differentiation of critical cell types and systems, among the most important being 

the respiratory epithelium and critical immune effector cell populations, occurs during this period 

(Finkelstein and Johnston, 2004). The airway epithelial cell is known to be particularly sensitive 

to many inhaled environmental irritants, including O3 (Bayram et al., 2002).  Epithelial cells 

respond to O3 exposure in a series of three stages: constitutive cell activation, synthesis and 

release of chemotactic factors, and eosinophil or monocyte infiltration (Leikauf et al., 1995).  

Acute O3 exposure causes epithelial cell injury and early epithelial necrosis in terminal 

bronchioles and the trachea (Mustafa et al., 1990; Hyde et al., 1992; Pino et al., 1992). 

Activation of the NK-1 receptor during acute O3 exposure contributes to epithelial injury and 

subsequent epithelial proliferation, but does not influence neutrophil emigration into airways 

(Oslund et al., 2008). Epithelial cell injury and regeneration is greatest when O3 exposure is 

combined with another airway irritant, such as dust (Adamson et al., 1999) or diesel exhaust 

particles (Kafoury & Kelley, 2005). O3 is thought to modulate airway responses by upregulating 

the release of inflammatory mediators from bronchial epithelial cells, a mechanism which may 

be more sensitive in asthmatic patients (Bayram et al., 2001).  

C. Nerve Growth Factor (NGF) 

Neurotrophins are believed to play a role in the pathogenesis of asthma because serum levels 

of nerve growth factor (NGF; Bonini et al., 1996) and brain derived neurotrophic factor (BDNF;  
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Virchow et al., 2005) in serum, platelets, and plasma are significantly increased in patients with 

asthma. As several animal studies have shown, NGF and BDNF appear to play a part in the 

development of airway hyperresponsiveness (Renz et al., 2001; Bennedich et al., 2007) and in 

the increased sympathetic and sensory innervation of the lung (Hoyle et al., 1994). NGF and 

BDNF have also been shown to promote inflammation (Woolf et al., 1994) and symptoms 

associated with asthma (Nassenstein et al., 2003). Immune cells in the airway are thought to be 

particularly sensitive to the effect of neurotrophins (Nassenstein et al., 2003). Furthermore, the 

effect of neurotrophin release might vary across the lifespan.  For instance, there is a significant 

decrease in the expression of the NGF high affinity TrkA in postnatal day 21 old animal 

compared to earlier life (Molliver and Snider, 1997). Neurotrophins in the airway are released 

from many cell types, including inflammatory cells in the bronchial mucosa, fibroblasts, smooth 

muscle cells, and airway epithelial cells (Freund & Frossard, 2004). In the inflamed lung, airway 

epithelial cells are a major contributor of NGF and BDNF (Hahn et al., 2006). This study will 

examine the effect of O3 exposure on NGF production in a pure population of tracheal epithelial 

cells. 

D. Substance P (SP) 

NGF is known to stimulate SP expression in sensory neurons (Miller et al., 1992) and is 

necessary for SP production and neuronal survival in vitro (Adler et al., 1984). SP 

immunoreactive nerve fibers are increased in tracheal smooth muscle in cultured trachea treated 

with NGF (Wu and Dey, 2006). SP immunoreactive nerve fibers are also increased in the 

airways of asthmatic subjects (Ollerenshaw et al., 1991). The airway hyperresponsiveness 

associated with O3 exposure is thought to be the result of SP-enhanced acetylcholine release (Wu 

et al., 1997). SP appears to be released in response to stimulation of primary afferent C-fibers 
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(Barnes, 2001; Budai and Larson, 1995). SP is increased in lung homogenates and in nerve fibers 

innervating the airway following allergen challenge (Fischer et al., 1996) and O3 exposure (Wu 

et al., 2007; Dey et al., 2009). SP potentially plays a role in the development of neurogenic 

inflammation (Hsiue et al., 1992; Donkin et al., 2007).  O3 exposure increases the release of SP, 

suggesting that the mode of action of O3 results in increased activity of airway sensory nerves 

followed by an increase in the release of neuropeptides (Schierhor et al., 2002). Depletion of C-

fibers reduces the effect of O3 on increased responsiveness, confirming that O3 increases 

reactivity in part through the local effects of C-fibers (Joad et al., 1996).  The release of SP 

from sensory nerves can lead to airway submucosal glands mucus secretion (Khansaheb et al., 

2010), microvascular leakage, and bronchoconstriction (Lundberg et al., 1983; Tokuyama et al., 

1993) (See Figure 1). 
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Figure 1. The Role of NGF in O3 Response. A schematic showing the possible role of NGF 
release from tracheal epithelial cells in the regulation of O3 response. NGF released from the 
tracheal epithelial cells could stimulate the release of Substance P from the Nodose/Jugular 
ganglia and nucleus of the solitary tract. SP can then stimulate gland secretion, edema in blood 
vessels, and smooth muscle contraction in the airway. 

 

E. Statement of Problem 

When combined, these results suggest an increased sensitivity to O3 exposure at early 

postnatal ages leads to an increase in asthma diagnoses and symptoms in part due to SP 

expression and subsequent neurogenic inflammation. Neurotrophins are known to regulate the 

expression of SP in airway nerves, particularly those innervating the smooth muscle and blood 

vessels, which are sites of airway responsiveness and airway inflammation, respectively. 
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Epithelial cells, which are adjacent to the smooth muscle in the trachea, are the first cells 

contacted by inhaled O3 in the airway and one of the major contributors of neurotrophins in the 

challenged airway. Because NGF is increased in patients diagnosed with asthma and subjects 

exposed to O3, it is possible that the early life sensitivity to O3 exposure could be due to changes 

in the immediate release of neurotrophins from tracheal epithelial cells. 

F. Hypothesis 

 The central hypothesis of this study is that exposure to O3 will cause an increase in NGF 

production in rat tracheal epithelial cells. Furthermore, this increase will be age-dependent, such 

that O3 exposure at an earlier postnatal day will lead to an increase in neurotrophins while a later 

exposure will not. Finally, this study hypothesizes that an O3 exposure during the proposed 

critical period will increase sensitivity to later O3 exposures that occur outside of the proposed 

critical period. 

G. Rationale 

Previous studies have shown that SP NFD increases in the airway following an early postnatal 

O3 exposure. Knowing where the neurotrophins that guide this process are being produced could 

lead to interventions that eliminate or reduce the response to O3.  

H. Specific Aims 

1. Determine the effect of an early postnatal O3 exposure on the release of NGF 

from tracheal epithelial cells in an in vivo rat model. 

2. Define a sensitive period of development during which an exposure to O3 has an 

effect on the production of NGF. 
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3. Examine the effect an O3 exposure during the proposed critical period has on later 

exposures to O3 outside of the critical period. 
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III. MATERIALS AND METHODS 

A.  Animal Use and Anesthetics 

Pregnant, late gestation Fischer 344 rats (Harlan Laboratories, Inc) were housed one per 

cage, under controlled light-cycle (12 hr. light/12 hr. dark) and temperature (22-24ºC) 

conditions, with access to food and water ad libitum in the West Virginia University animal 

facility. Rat pups were housed with their dam until sacrificed. Animals were sacrificed 12 or 24 

hours after O3/air exposure with a lethal intraperitoneal injection of sodium pentobarbital 

(Nembutal, 200 mg/kg).  All procedures were approved through ACUC review under Protocol 

#10-0401.  

B. O3 Exposure 

All in vivo O3 exposures were done at 2000 ppb in a 12x12 inch stainless steel and glass 

chamber for 3 hours.  O3 was produced by passing hospital-grade air through a drying and high-

efficiency particle (HEPA) filter and then through an ultraviolet light source.  The O3 

concentration in the chamber was measured by chemiluminescence with a calibrated O3 analyzer 

(OA 350-2R model; Forney Corporation; Carrolton, TX).  Air control animals were exposed to 

filtered air using procedures identical to those above, except O3 was not delivered to the mixing 

chamber.  The O3 exposure apparatus has been described in detail elsewhere (Wu et al., 2002).  

Rat pups were removed from their mother and exposed to O3/air on postnatal day (PD) 6, 

10, 15, 21, or 28. In some experiments, animals were exposed to O3/air twice to determine the 

effect of an early postnatal exposure (PD 6) on a second exposure outside of the critical period 

window (PD 28). See Figure 2 for the critical period experimental design. 
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Figure 2. Experimental design showing O3 exposure paradigm for critical period study. Rat pups 
were exposed to air or O3 initially on PD 6 (within the proposed critical period) or PD 21 
(outside of the proposed critical period). The pups were reexposed to air or O3 on PD 28. The 
animals were sacrificed 12 or 24 hours after the final exposure. 

C. Trachea Fixation and NGF Immunohistochemistry 

Immunohistochemical staining was used to determine NGF presence in the airway 

epithelium. Twelve or twenty-four hours after exposure, the tracheas were fixed with picric acid-

formaldehyde for three hours.  The tracheas were rinsed twice with a 0.1 M phosphate-buffered 

saline containing 0.15% Triton X-100 (PBS-Tx, pH 7.8) and remained in PBS-Tx overnight at 

4°C.  The next day, the tracheas were placed on corks, covered with Tissue Tek O.C.T. 

compound (Sakura, Torrance, CA), frozen in isopentane cooled with liquid nitrogen, and stored 

in airtight plastic bags at -80°C. 

 Cryostat sections (12 µm thick) of airway tissue were collected on gelatin-coated cover 

slips and dried briefly at room temperature. The sections were incubated with rabbit anti-NGF-β 

monoclonal (1:100) primary antiserum diluted in PBS-Tx + 1% bovine serum albumin (BSA) 

(PBS-Tx-BSA, pH 7.8) at 4°C overnight. The sections were rinsed three times for 5 minutes 
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each with PBS-Tx-BSA, covered with goat anti-rabbit Alexa 488 (1:100) in PBS-Tx-BSA, 

incubated at 37°C for 30 minutes, rinsed three times for 5 minutes each in PBS-Tx-BSA and 

mounted on glass slides in Fluoromount (Southern Biotechnology, Birmingham, AL). The 

sections were observed using an Olympus AX70 fluorescence microscope equipped with a 

fluorescein filter (excitation 495 nm and emission 520 nm). Controls consisted of testing the 

specificity of primary antiserum by absorption with 1µg/ml of the specific antigen.  Nonspecific 

background labeling was determined by omission of primary antiserum. Sections of airways 

were observed (40X magnification) on a Zeiss LSM 510 confocal microscope equipped with an 

argon laser (excitation 495 nm and emission 520 nm, Zeiss, Oberkochen, Germany). 

D. Tracheal Epithelial Cell Extraction 

Tracheas were excised and immersed in ice cold Hank’s Buffered Salt Solution (HBSS) 

while excess tissue was removed. Next, the tracheas were placed in 10 mL of pre-warmed (37°C) 

dissociation medium (0.5% protease in Dulbecco’s Modified Eagle Medium (DMEM)-

F12/5%Pen-Strep) and incubated at 37°C with agitation for 1 hour. Fetal bovine serum (1ml, 

FBS) was added to the stop the protease digestion and the tissues was removed and rinsed in 10 

mL of culture medium (5% FBS and 4% DNase I in DMEM-F12/5%Pen-Strep). The tracheal 

pieces were discarded and the culture and dissociation media cell suspensions were pooled. The 

cell suspension was incubated on anti-IgG antibody coated 100 mm dishes at 37°C for 1 hour to 

remove immune cells, predominately neutrophils. The cell suspension was decanted and the cells 

were collected by centrifugation (1,000 rpm/10 minutes).  

 

 



14 
 

E. Tracheal Epithelial Cell Immunocytochemistry 

 To determine the efficiency of the tracheal epithelial cell extraction, 

immunocytochemistry was performed. Epithelial cells were extracted from adult rats exposed to 

O3 (2000 ppb) for three hours. The density of the extracted cell population was calculated and 

the appropriate amount of suspension was placed on a subbed slip using a cytospin (400 rpm for 

four minutes). The slips were dried at room temperature for 30 minutes and placed in a pre-

chilled 1:1 methanol/acetone solution for 10 minutes at -20˚C. The slips were dried at room 

temperature for two minutes and the primary antibody was added. The slips were incubated at 

4˚C overnight and washed three times for 5 minutes each in PBS-Tx-BSA. The secondary 

antibody was added and the slips were incubated at 37˚C for 30 minutes. After incubation the 

slips were washed three times for 5 minutes each in PBS-Tx-BSA and mounted on slides using 

Flouromount-G. Slides were analyzed (40X magnification) by a Zeiss LSM 510 confocal 

microscope equipped with an argon laser (excitation 495 nm and emission 520 nm, Zeiss, 

Oberkochen, Germany). To confirm that the cells in the population were epithelial cells, the 

primary antibody used was mouse monoclonal anti-Pan cytokeratin (1:100) with a secondary 

goat anti-mouse FITC (1:100) antibody. To determine the population of immune cells in the 

extracted suspension, cells that were treated with IgG antibody coated plates were compared to 

cells that were not treated with the IgG antibody coated plates. The primary antibody was mouse 

anti-rat CD45 antibody (1:100) and the secondary antibody was goat anti-mouse FITC-

conjugated antibody (1:100). The number of total cells and immune positive cells were counted 

by two independent researchers. 
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F. Trypan Blue Exclusion Assay 

A Trypan Blue Exclusion Assay was used to determine the viability of the cells following 

tracheal epithelial cell extraction. The cell density of the cell suspension was determined using a 

hemacytometer. Immediately following cell extraction and purification, 0.1 mL of 0.4% trypan 

blue in PBS was added to 1 mL of cell suspension. The cell suspension was loaded on a 

hemacytometer and examined under a microscope at low magnification. The number of blue 

stained cells and the number of total cells were counted. 

G. Real-Time PCR 
 

Total RNA was extracted from the cells according to the manufacturer’s instructions 

(RNeasy Plus Micro Kit, Qiagen,Valencia, CA). Briefly, cells were lysed and homogenized in a 

buffer that inactivates RNases. The lysate was passed through a gDNA eliminator column to 

reduce the risk of genomic DNA contamination. Ethanol was added to the flow-through to 

promote RNA binding and total RNA was bound by passing the sample through an RNeasy 

MinElute spin column. Contaminants were washed away and the RNA was eluted in RNase free 

water. A Nanodrop was used to measure the purity and concentration of the RNA in the sample 

by determining A260/A280. Total RNA was transcribed into cDNA using the High Capacity 

cDNA Kit (Applied Biosystems, Foster City, CA) according to the manufacturer’s instructions. 

The cDNA was then amplified in the 7500 RT-PCR System using the NGF Taq Man gene 

expression assays (Applied Biosystems). The Relative Quantification Method (2-ΔΔCt) was used 

to determine the NGF mRNA levels. NGF expression levels were normalized using β-actin 

expression as an internal control. 
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H. Rat Tracheal Epithelial Cell Protein Extraction 

 Following rat tracheal epithelial cell isolation, the cells were washed twice in ice cold 

PBS. The cell extraction buffer was supplemented with 1 mM PMSF and protease inhibitor 

cocktail (Sigma) added just before use. The supernatant was removed and discarded. The cells 

were lysed in 250 µL of Cell Extraction Buffer (Invitrogen) for 30 minutes, on ice, with 

vortexing for 1 minute at 10 minute intervals. The extract was transferred to microcentrifuge 

tubes and centrifuged at 13,000 rpm for 10 minutes at 4˚C. The clear lysate was at -80˚C until 

ready for assay. The total protein level was measured using a nanodrop and was controlled for 

each sample in the ELISA 

 
I. NGF Enzyme-Linked Immunoassay 

 The concentration of NGF was assayed using the NGF Emax ImmunoAssay System 

(Promega, Madison, WI).  NGF was detected using an antibody sandwich format in 96 well 

plates (Figure 2).  Each well was initially coated with 100 µl of anti-NGF pAb and incubated 

overnight followed by 1 hour incubation with blocking buffer (200 µl/well) to prevent non-

specific binding.  Either 100 µl of cell lysate or 100 µl of NGF standard (7.8-1000 pg/ml) was 

added to each well.  The plate was incubated for 6 hours with agitation followed by an overnight 

incubation with anti-NGF mAb (100 µl/well).  For color development an anti-rat IgG, 

horseradish peroxidase conjugate antibody was added to each well (100 µl) followed by TMB 

solution, which reacts with the peroxidase-labeled conjugates.  The reaction was stopped after 10 

minutes with 1N hydrochloric acid (100 µl/well).  The absorbance of each well was measured at 

450 nm on a Spectra Max 340pc plate reader (Molecular Devices, Sunnyvale, CA).  The 

concentration of NGF in each lysate sample was calculated from a standard curve.  All samples 
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were run in duplicate, and as a negative control, a cell extraction buffer sample was run with 

each assay. 

J.  Statistical Methods 

 Differences between groups were determined using a two-tailed Student’s T-Test using 

Microsoft Excel software.  Animals exposed to O3 were compared to age or time matched air 

exposed controls. In the critical period experiment, an ANOVA was performed to compare each 

group to all other groups. In all studies, a p-value less than or equal to 0.05 was considered 

significantly different. Mean and standard error is reported for each value.  
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VI. Results 

1. NGF Localization in Tracheal Epithelium 

A series of experiments was conducted to first determine if NGF is present in rat pup 

tracheal epithelial cells and to validate the tracheal epithelial cell extraction technique. Rat pups 

were exposed to air or O3 (2000ppb) for 3 hours and sacrificed 12 or 24 hours after exposure. 

The tracheas were fixed, frozen, and sectioned onto cover slips. The sections were treated with 

rabbit anti-NGF-β monoclonal (1:100) and goat anti-rabbit Alexa 488 (1:100). When viewed 

under a confocal microscope, NGF fluorescence was observed in the tracheal epithelial layer 

(see Figure 3). Other studies have also shown that NGF is located in tracheal epithelial cells 

(Hahn et al., 2006; Pons et al., 2001; Fox et al., 2001). 

 

  

Figure 3. Immunohistochemical staining showing NGF in tracheal epithelial cells from PD 10 
rat pups exposed to either air or O3 (2000 ppb) for three hours. Tracheas were isolated and fixed 
using PAF 12 or 24 hours after exposure. The primary antibody was rabbit anti-NGF-β 
monoclonal (1:100). The secondary antibody was goat anti-rabbit Alexa 488 (1:100). The 
epithelial layer has been outlined in white.  
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2. Epithelial Cell Extraction 

To test the validity of the cell extraction technique, adult Fisher 344 female rats were 

exposed to O3 (2000 ppb) for 3 hours and sacrificed 24 hours later. The tracheal epithelial cells 

were extracted as described and cytospins of the cells were collected on glass slides. The cells 

were stained with mouse monoclonal anti-pan cytokeratin (1:100) and a goat anti-mouse FITC 

secondary (1:100) and imaged under a confocal microscope. Fluorescence was observed in the 

cell population, confirming the presence of epithelial cells.  A control sample that was treated 

with the secondary antibody only showed no staining. (See Figure 4). 

 

Figure 4. Cytokeratin staining of cells isolated from adult rat trachea showing tracheal epithelial 
cells. (A) Mouse Monoclonal anti-Pan Cytokeratin; 1:100/Goat anti-Mouse FITC; 1:100. (B) No 
primary control. These images show that cells isolated from the trachea are epithelial cells. 

 The treatment of the cells with an anti-IgG antibody was tested to determine the effect 

this treatment had on the population of immune cells in the cell culture. The cells extracted from 

adult Fisher 344 female rats that were treated with O3 were either plated on tissue culture treated 

plates with an anti-IgG antibody or were plated on plates that had no antibody for one hour. The 

purpose of this procedure is to remove immune cells from the population by adherence to the 

antibody on the plate. Cells that were plated with anti-IgG antibody showed a reduction in the 

number of immune cells in the final population count (See Figure 5). The population that was 

(B) (A) 
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treated with the antibody was 96.0% (±1.02632%) pure epithelial cells, while the population that 

was not treated was 93.8% (0.49497%) pure epithelial cells (p≤0.05; Figure 5c). 

  

 

 

 

 

 

 

 

Figure 5.  CD45 staining of cells isolated from adult rat trachea showing immune cells (n=3 per 
group).  Mouse anti-Rat CD45;1:100/Goat anti-Mouse FITC;1:00.  (A) No IgG treatment was 
used in the isolation of tracheal epithelial cells.  (B) IgG treatment was used to remove immune 
cells from the cell culture. (C) Percentage of epithelial cells as compared to immune cells for IgG 
and no IgG treatments (p<0.05). Values are means  SE, n=3 for each group and *p<0.05 is 
significant. 
 

 Finally, a Trypan Blue Exclusion Assay was performed on extracted cells to determine 

the viability of cells that have been through the extraction procedure. The purpose of this 

experiment was to evaluate the potential degradation of RNA during the extraction process, as 
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compromised cells will take up the blue staining. The cells were treated with Trypan Blue and 

viewed on a hemocytometer. The number of total cells and the cells that took up the dye were 

counted. Less than 1% of cells showed Trypan Blue staining (see Figure 6). Beating ciliated 

epithelial cells were also observed in this experiment.  

 

Figure 6. A Trypan Blue exclusion assay was used to determine cell survival following tracheal 
epithelial cell isolation. Over 99% of the cells did not show Trypan Blue staining, which 
suggests that the cells are viable following isolation. Moving ciliated epithelial cells were 
observed during this experiment. 

3. NGF Expression in Rat Tracheal Epithelial Cells Following Early Life O3 Exposure 

 Rat pups were exposed to either air or O3 (2000 ppb) for three hours. The rat pups were 

sacrificed 1, 6, 12, 18, or 24 hours after exposure. The tracheal epithelial cells were extracted and 

total RNA was collected and transcribed into cDNA. RT-PCR was performed using an NGF Taq 

man assay. Rat pups exposed to O3 and sacrificed 12 hours later showed a significant increase in 

the amount of NGF mRNA (2.24 ± 0.35) compared to air controls (1 ± 0.252, p≤0.05). Each 
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integer represents a fold change in the level of NGF mRNA. Significant differences in the level 

of NGF mRNA were not observed at any other time point following exposure. (See Figure 7). 

 

Figure 7.  NGF mRNA expression relative to β-actin mRNA expression in PD 6 rat pups 1, 6, 
12, 18, and 24 hours following exposure to air or O3, 2000 ppb (n=3 per group).  There was a 
significant increase in NGF mRNA expression between air and O3 12 hours post-exposure 
(p≤0.05). Values are means ±SE, n=3 for each group and *p<0.05 is significant. 
 

 To determine the effect of age at exposure on the level of NGF mRNA in tracheal 

epithelial cells, rat pups were exposed to air or O3 (2000 ppb) on PD 6, 10, 15, 21, or 28 for 3 

hours and sacrificed 12 hours later. The level of NGF mRNA was measured as in the previous 

experiment. No significant changes were observed at any other age point. A substantial increase 

in the total level of NGF mRNA was observed at PD 10 and PD 15 relative to all other ages for 

both air and O3 exposed animals. (See Figure 8). 
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Figure 8.  The effect of O3 exposure on NGF mRNA expression in tracheal epithelial cells over 
a period of development. NGF mRNA expression relative to β-actin mRNA expression in rat 
pups exposed to air or O3 (2000 ppb) for three hours and sacrificed 12 hours later.  PD 6 showed 
a significant difference in NGF mRNA expression between air and O3 (p≤0.05). Values are 
means ±SE, n=6 for each group and *p<0.05 is significant. 
 
 The amount of NGF protein in the isolated rat tracheal epithelial cells was also measured 

using ELISA to determine the effect of an early postnatal O3 exposure. NGF protein level was 

not significantly different from air controls for animals exposed on PD 6, PD 10, or PD 28. NGF 

protein was significantly different for rat pups exposed on PD 15 (34.11642 ± 6.075263 pg/mL) 

compared to air control (17.78675 ± 2.396285 pg/mL) and for PD 21 (49.57736 ± 5.933555 

pg/mL) compared to control (18.1799 ± 6.962812 pg/mL), p≤0.05. 
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Figure 9. The effect of early postnatal O3 exposure on the amount of NGF protein in rat tracheal 
epithelial cells. NGF protein was measured in isolated rat tracheal epithelial cells 24 hours after 
exposure to determine if O3 exposure (2000 ppb, 3 hours) had an effect on the level of NGF in 
the cells. NGF protein was measured by ELISA. Values are means ±SE, n=6 for each group and 
*p<0.05 is significant compared to air control. 
 

4. NGF mRNA Expression during a Critical Period of Development 

 To determine the effect of an early O3 exposure on subsequent exposures, a critical 

period paradigm was developed (see Figure 2). Rat pups were exposed to air or O3 on PD 6 or 

PD 21. The pups were reexposed to either air or O3 on PD 28 and sacrificed 12 hours later. 

Control animals were exposed to air or O3 only on PD 28. The tracheal epithelial cells were 

extracted as described and NGF mRNA was measured using RT-PCR. NGF mRNA content in 

the PD 6 and PD 28 O3 group (2.02 ± 0.10) was significantly higher than the PD 6 O3 group not 

re-exposed at PD 28 (1.14 ± 0.19) and the PD 21 and PD 28 O3 group ((1.04 ± 0.24).  The NGF 
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different from the control ambient air group (1.00 ± 0.14) and the PD 28 only exposure group 

(0.78 ± 0.11). 

 

 

Figure 10. The effect of O3 exposure on relative NGF mRNA expression in 
tracheal epithelial cells during a critical period of development. NGF was measured to 
determine if O3 exposure (2000 ppb, 3 hours) during a critical period (PD 6) would result in 
prolonged changes of NGF message upon a second O3 exposure (PD 28) in comparison to 
controls and exposures outside the critical period (PD 21). NGF mRNA was measured by 
real-time PCR relative to β-actin mRNA expression. Values are means ± SE, n=6 for 
each group and *p<0.05 is significant compared to all groups, #p<0.05 is significant compared to 
all groups. 
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V. Discussion 

Exposure to ground-level O3 has been shown to decrease lung function, particularly in 

vulnerable populations, such as children (Tager et al., 2006). There are increasing concerns that 

the current EPA standard level of ambient O3 (75 ppb) is too high to prevent negative human 

health outcomes (Kim et al., 2011; Schelegle et al., 2009; World Health Organization, 2005). 

The epithelial cells that line the airway are the first point of contact for inhaled irritants, making 

the epithelium an important target for O3 injury. O3 is thought to modulate airway responses by 

upregulating the release of inflammatory mediators from airway epithelial cells (Bayram et al., 

2001) which in turn alter epithelial cell function (Leikauf et al., 1995). NGF levels are increased 

in asthmatics (Bonini et al., 1996) and it is thought to play an important role in mediating asthma 

symptoms. Airway epithelial cells have been shown to produce NGF in response to inflammation 

(Fox et al., 2001). Increased NGF expression has been observed in patients with allergic 

inflammatory disease (Bresciani et al., 2009; Sanico et al., 2000) and asthma (Nassenstein et al., 

2003; Bonini et al., 1996). NGF has also been shown to upregulate SP expression in C fiber 

neuronal cell bodies (Malcangio, 1997), increase airway innervation in mice (Hoyle et al., 1998) 

and induce airway hyperresponsiveness, a hallmark symptom of asthma (Quarcoo et al., 2004; 

Braun et al., 2001; Braun et al., 1999). Airway epithelial cells have been shown to produce and 

release NGF in response to inflammatory mediators (Hahn et al., 2006; Fox et al., 2001; Pons et 

al., 2001). The purpose of this study was to examine the production and release of NGF from 

tracheal epithelial cells following an acute O3 exposure during early postnatal life. O3 exposure is 

also known to cause an inflammatory response (Hernandez et al., 2010; Aris et al., 1993) and 

immune cells also produce NGF (Solomon et al., 1998; Noga et al., 2003; Rost et al., 2005).  

This study developed a novel method for measuring mRNA and protein levels in a population of 
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isolated tracheal epithelial cells. The experiments used cells in which the immune cells were 

removed via anti-IgG antibody, resulting in a population of pure epithelial cells. The presence of 

epithelial cells was confirmed using fluorescent staining for cytokeratin. The presence of 

immune cells in cell populations with and without the anti-IgG antibody treatment was examined 

using a fluorescent CD45 antigen antibody. The cells treated with anti-IgG antibody showed a 

significant reduction in immune cells and enrichment of epithelial cells. Therefore, the results 

obtained show the effect of O3 exposure on the production of NGF in tracheal epithelial cells. 

 Because children appear to be a population that is especially susceptible to inhaled 

irritants, this study used an early postnatal O3 exposure model. Previous studies in our lab have 

shown an increase in SP nerve fiber density in the extrapulmonary epithelium and the 

intrapulmonary and extrapulmonary smooth muscle in rat pups exposed to O3 at PD 15 or earlier 

(Hunter et al., 2010a). In this study, rat pups were exposed to O3 (2000ppb for 3 hours) at PD 6, 

10, 15, 21 or 28 and sacrificed 12 hours later to examine the effect of O3 on NGF mRNA in the 

tracheal epithelial cells. Animals were sacrificed 12 hours after exposure because this was the 

only time point to show a significant difference in NGF mRNA. This is consistent with other 

studies examining NGF mRNA production (Heumann et al., 1986; Barth et al., 1984). When 

compared to age-matched air controls, PD 6 rat pups showed a significant two-fold increase in 

the amount of NGF mRNA extracted from tracheal epithelial cells. Significant differences 

between air and O3 exposed animals were not observed at any other age. These results suggest 

that there is an early life sensitivity to O3 exposure with regard to epithelial cell interaction, as 

the earliest age examined was the only one to show a significant change in NGF mRNA.  

To further examine the effect of early postnatal O3 exposure on tracheal epithelial cells, 

rat pups were exposed to O3 at PD 6, 10, 15, 21 or 28 and the level of NGF protein in the 
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tracheal epithelial cells was measured 24 hours later, as previous work in our lab has shown an 

increase in SP nerve fiber density at 24 hours (Hunter et al., 2010a). The early life exposure to 

O3 did not lead to an increase in NGF in the isolated rat tracheal epithelial cells at PD 6. It did, 

however, lead to an increase in NGF at both PD 15 and PD 21. These experiments measured the 

levels of NGF within the tracheal epithelial cells following an airway irritant exposure. It is 

possible that the amount of NGF was increased following the O3 exposure at earlier postnatal 

days and that this NGF was released from the cells, and therefore not measurable in this set of 

experiments. The increased NGF protein at PD 15 and PD 21 suggests that this protein was 

sequestered in the cells and not released at these postnatal ages, but previous work has shown an 

increase in NGF in bronchoalveolar lavage fluid following an O3 exposure at PD 10 and PD 15 

(Hunter et al, 2010b). As bronchoalveolar lavage fluid measures the total protein in the lung, it is 

possible that the NGF measurements obtained in that study reflect the contribution of immune 

cells. Further experiments, potentially in vitro, measuring the amount of NGF released from 

tracheal epithelial cells would provide more information regarding this possible phenomenon.  

The increase in NGF mRNA in tracheal epithelial cells at PD 6 did not directly produce 

an increase in NGF protein. Likewise, the lack of an NGF mRNA increase at PD 15 and PD 21 

did not prevent the increase of NGF protein. It is possible that the timing of NGF mRNA 

production changes with development and that measuring the mRNA at other time points after 

exposure would have shown an increase in NGF mRNA. It is also possible that the protein was 

increased at PD 6 and was released from the cells prior to cell extraction and measurement. NGF 

is produced and secreted, not stored in cells and released on demand (Heumann et al., 1984; 

Shelton & Reichardt, 1984), so it is possible that the increase in NGF protein occurred at an 

earlier time point.   
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Further studies were completed to examine how the effect an O3 exposure during this 

early critical or sensitive period of development (≤ PD 6) might affect the response to a second 

exposure later in life (≥ PD 28). Previous work in our lab has shown that rat pups exposed to O3 

during the critical period show an increase in SP nerve fiber density following a second O3 

exposure outside of the critical period (Hunter et al., 2010a). This effect was not observed when 

rat pups were initially exposed outside of the critical period or when the initial exposure was 

followed by an air exposure in later life. The NGF measured in broncoalveolar lavage is also 

significantly increased in rat pups exposed to O3 on both PD 6 and PD 28 (Hunter et al., 2010b). 

The results of the current study correlate with the previous findings. Rat pups were exposed to 

O3 within (PD 6) or beyond (PD 21) the proposed critical period. A second exposure to O3 or air 

occurred on PD 28. Rat pups that were exposed to O3 on both PD 6 and PD 28 showed a 

significant increase in NGF mRNA in the tracheal epithelial cells. Rat pups that were initially 

exposed to O3 on PD 21 or that were exposed to O3 on PD 6 and air on PD 28 did not show any 

significant change in NGF mRNA from control. The results of this series of experiments suggest 

a critical period of development during which younger animals are more susceptible to the 

effects of airway irritants and that this early life exposure could have an effect on the response to 

later exposures.  

The critical period experiments show that the effect of ozone-exposure during the period 

of early life sensitivity can persistent and have an effect on the response to exposures in later life.  

These results suggest a novel NGF pathway that contributes to early life sensitivity to inhaled 

irritants. NGF has been shown to upregulate SP expression in airway nerves (Larsen et al., 2004) 

through both the TrkA and p75 neurotrophin receptors (Skoff et al., 2006). In guinea pigs, NGF 

administration increases airway hyperresponsiveness through neurokinin-1 (NK-1), a SP receptor 
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(de Vries et al., 1999). Increased SP expression has also been shown to increase blood vessel 

extravasation by binding to endothelial cell NK-1 receptors (Li et al., 2008). Airway 

hyperresponsiveness and edema are hallmark symptoms of asthma (Bergeron et al., 2010) and 

these results show a possible role for NGF from tracheal epithelial cells in mediating this asthma 

symptom. Furthermore, NGF could support the proliferation or branching of nerves in the airway 

smooth muscle that are typically pruned during development. NGF is known to promote sensory 

nerve growth and survival (Levi-Montalcini, 1987) and mice that overexpress NGF display 

increased airway sensory innervation (Hoyle et al., 1998). The increase in NGF in tracheal 

epithelial cells following an early life O3 exposure might therefore promote innervation. The 

increase in sensory innervation could lead to increased sensitivity in later responses to O3 

exposure. NGF release plays a role in the recruitment, survival, and activation of inflammatory 

cells (Freund & Frossard, 2004). The NGF released by tracheal epithelial cells in response to O3 

might therefore contribute to airway inflammation. As proinflammatory cytokines are known to 

upregulate the release of NGF from airway structural cells, including epithelial cells (Fox et al., 

2001), the initial release of NGF from tracheal epithelial cells might lead to a secondary increase 

in NGF production through inflammation (Leikauf et al., 1995). Blocking the initial increase in 

NGF could be an important step in reducing the response to airway irritants. 

Future studies examining the potential role for NGF in the response to airway irritants 

need to be conducted. Knocking down or preventing the observed increase in NGF and then 

measuring SP expression in the airways would show whether or not the increase in NGF leads to 

the increased SP observed in airway sensory neurons following an O3 exposure. Currently, there 

are no selective NGF antagonists that could be used to perform these important studies, but the 

use of an NGF siRNA could provide more information about NGF’s role in the O3 response. 
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Further studies could look at the possible role of other neurotrophins, such as brain-derived 

neurotrophic factor (BDNF), in the response to airway irritants. BDNF has also been shown to be 

upregulated in asthmatics and associated with clinical severity of asthma symptoms (Lommatzch 

et al., 2005; Muller et al., 2010). Functional studies examining the role of neurotrophins in 

response to inhaled irritants are also necessary for a more complete understanding of the clinical 

significance of these findings. 
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