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ABSTRACT 

 

 

Seismic Texture Applied to Well Calibration and Reservoir Property Prediction 

 in the North Central Appalachian Basin 

 

Connor J. Gieger 

 

Enhancing seismic interpretation capabilities often relies on the application of object 

oriented attributes to better understand subsurface geology.  This research intends to extract and 

calibrate seismic texture attributes with well log data for better characterization of the Marcellus 

gas shale in north central Appalachian basin.  Seismic texture refers to the lateral and vertical 

variations in reflection amplitude and waveform at a specific sample location in the 3-D seismic 

domain.  Among various texture analysis algorithms, here seismic texture is characterized via an 

algorithm called waveform model regression utilizing model-derived waveforms for reservoir 

property calibration.  Altering the calibrating waveforms facilitates the conversion of amplitude 

volumes to purpose-driven texture volumes to be calibrated with well logs for prediction of 

reservoir properties in untested regions throughout the reservoir.    

Seismic data calibration is crucial due to the resolution and uncertainty in the 

interpretation of the data. Because texture is a more unique descriptor of seismic data than 

amplitude, it provides more statistically and geologically significant correlations to well data. 

Our new results show that seismic texture is a viable attribute not only for reservoir feature 

visualization and discrimination, but also for reservoir property calibration and prediction. 

Comparative analysis indicates that the new results help better define seismic signal properties 

that are important in predicting the heterogeneity of the unconventional reservoir in the basin. 

Provisions of this research include a case study applying seismic texture attributes and an 

assessment of the viability of the attributes to be calibrated with well data from the Marcellus 

Shale in the north central Appalachian basin.  Examples from this study will provide insight in 

its capabilities in practical applications of seismic texture attributes in unconventional reservoirs 

in the Appalachian basin and other basins around the world.  
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1.   INTRODUCTION 

 An amplitude texture refers to a characteristic pattern defined by the magnitude and 

variation of neighboring amplitude samples at a given location in an image space (Gao, 2011).  

There are multiple ways to characterize this pattern, one method being waveform model 

regression (WMR).  Waveform model regression characterizes seismic amplitude texture by 

comparing portions of the seismic amplitude trace to model traces using linear least squared 

regression.   

 This research is an investigation into applying waveform model regression based seismic 

texture attributes, calibrating them with well data, and to enhance visualization of features in 

seismic data.  A case study is provided on the use of texture attributes with 3D seismic and well 

data from the north-central Appalachian basin.  Seismic texture is a little-known attribute that 

utilizes waveform model regression to detect differences in post-stack amplitude data.  These 

efforts are meant to test texture attributes’ viability and better understand what benefits and 

pitfalls exist when employing texture attributes for predicting petrophysical properties and 

enhancing interpretive capabilities. 

To test WMR based texture attributes, a 3D post-stack seismic volume from northern 

Clearfield County of Pennsylvania is used (figure 1).  This region is within the north-central 

Appalachian basin, an area that has seen hydrocarbon production in recent years due to the 

presence of the Marcellus Shale.  The attribute methods used in the research are not dependent 

on the geologic regime or reservoir type, but for this study they will be applied to the Marcellus 

Shale with specific focus on attempting detecting local variations in reservoir properties and 

structural components that may be pertinent to local gas production.  
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There are two general ways in which this research uses texture attributes.  One way is to 

calibrate seismic data and well data, a commonly sought after technique in subsurface 

interpretation and prediction.  The purpose of this research is to investigate the possibility of 

using seismic data to help estimate changes in rock properties away from the well locations, 

while using an attribute that requires few assumptions and little additional geologic information 

to compute.  This research attempts to develop statistical relationships between texture attributes 

and well data that will aid in the estimation of rock properties for the extent of the 3D survey. In 

addition to testing this technology, some degree of success in this calibration can provide 

information about the reservoir that may be useful to wellbore placement in this region. 

 The other way in which WMR based texture attributes are used is to aid in structural 

interpretations.  This approach is meant to enhance interpretive capabilities over using amplitude 

data or other attributes conventionally used in structure identification.  Like the calibration based 

efforts of this research, using texture attributes for structural interpretation will provide 

Figure 1: State of Pennsylvania (USA) illustrating location of 3D survey used for study 

highlighting Clearfield County.  Survey area map shows extent of seismic data and location of 

wells.   
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information about the technological advantages, and information about the geologic structures in 

this region. Texture attributes are used alone and in conjunction will some other conventional 

geometric attributes.   

 

1.1 Data Set 

The data being used in this study includes a 16 square mile 3-D post stack seismic survey  

and data from 2 horizontal wells and 8 vertical wells, all located within the seismic survey.  Of 

the 8 vertical wells, 7 have density, neutron porosity, gamma-ray, and some type of resistivity 

logs.  Only one vertical well has a velocity log.  The horizontal wells have gamma-ray, density, 

p-wave sonic, s-wave sonic in orthogonal directions, and computed mechanical property logs.  

Multiple attribute volumes are used for interpretation as well.  These include texture processed 

structure volumes, a spectral volume, a variance volume, and a curvature volume.   

 

2.  GEOLOGIC BACKGROUND 

The geographic setting of the study area used in this research is in Clearfield County, PA.  

This region of central Pennsylvania is located on the Appalachian Plateau physiographic 

province.  Four main tectonic events have contributed to the geologic structure of the area.  

These tectonic events are the Grenville, Taconic, Acadian, and Alleghenian orogenies, with the 

latter three contributing to most of the structure and stratigraphy relevant to the scope of this 

work (Ver Straeten, 2010). 

 The Proterozoic Grenville orogeny is associated with the assembly of supercontinent 

Rodinia.  Details about the configuration of the block-faulted Proterozoic basement are poorly 

understood (Ryder, 1992).  Grenville orogenic events affected the crystalline basement on which 
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the uppermost Cambrian and Paleozoic sedimentary rock accumulated (Sinha and Bartholomew, 

1984).  Existing interpretations show the northeast-trending, fault-controlled rifting as the 

dominant tectonic element of basement structure in Pennsylvania (Read, 1989; Gao et al., 2000).  

Uplift associated with the Taconic orogeny provided sediment source for the first major 

deposition in the Ordovician including major ramp carbonates and shallow marine facies making 

up the Trenton, Bald Eagle, and Juniata formations (Hatcher, 1989).  The latter stages of the 

Taconic provided uplift and sediment source for the Silurian clastics (Laughery, 1999).  The 

earliest phases of the Acadian orogeny brought about collision of Laurentia with multiple 

landmasses (Ver Straeten, 2010).  Four major phases of Acadian tectonics dictate sedimentation 

from the early Devonian through early Mississippian.  Devonian strata deposition including the 

Marcellus and structural changes in the underlying Salina and lower Helderberg Groups occurred 

during this time (Ettensohn, 1985).  

 The collision of Gondwana with Laurentia brought about the last major tectonic event 

effecting the Appalachian region, the Alleghenian orogeny.  Major structural elements include 

northeast-southwest trending folds above a detachment sheet in the Silurian Salina Salt.  Multiple 

fracture and joint sets connect the decollement near the Salina Salt to the upper Devonian 

Hamilton Group (Younes and Engelder, 1999).   

 On the Appalachian Plateau, multiple methods of shortening are proposed and multiple 

joints sets and fault trends have been identified.  Using innovative technology to visualize what 

fractures are present in the region may lead to a better understanding of factors that influence 

hydrocarbon productivity.  Some dominant structures on the Appalachian Plateau are a result of 

thin-skinned tectonic episodes including large scale detachment faults.  In many cases, 

detachment is interpreted as occurring in upper Silurian units.  Most detachment related 
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deformation has been interpreted as westward verging thrust (Hatcher et al., 1988).  Another 

Salina-related structural style that is observed in the Appalachian Plateau is kink band folding 

(Gillespie et al., 2014; Mount, 2014).  Kink band folds observed on the Appalachian Plateau are 

controlled by stratigraphy.  The upward extend is controlled by organic-rich shale units that act 

as a detachment, and a lower extent in the Salina detachment.  Associated with higher order kink 

bands, are localized features, referred to as “pop-down” structures observed in the Salina Salt in 

3-D seismic data in Pennsylvania on the Appalachian Plateau (Gillespie et al, 2014).     

 Joint sets have been extensively studied in the Appalachian basin, particularly regarding 

the Marcellus Shale.  J1 is a northeast trending joint system that is present on the western side of 

the Allegheny structural front and is more closely spaced than the northwestern trending J2 joint 

set based on outcrops, core, and borehole images (Lash et al., 2004; Inks et al., 2014; Yuan et al., 

2014).  It is proposed in literature that both joint sets formed as natural hydraulic fractures during 

thermal maturation of organic matter (Engelder et al., 2009).  Because of their proposed 

generation method and other observations of J1 and J2, they are expected to exist in black shales 

and units immediately above.   

 The study area for this research exists near the edge of the Silurian evaporite basin that 

has not been exposed, and is located near a distinct trend change in the Allegheny structural front 

(Ryder et al., 2007).  At this region, some cross-strike faults have been mapped at the Onondaga 

interval (figure 2).  The orientation of these faults is distinctly different from most faults and fold 

axis on the Appalachian Plateau (DCNR, Inks et al., 2014).   
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Figure 2: Map of Pennsylvania showing fold mapped fold axes (purple) and faults mapped at 

the Onondaga (red).  Note the group of cross-strike faults just south of the survey area.   

Figure 3: Approximate location of survey area in Clearfield County, PA indicated by 

exaggerated size green rectangle.  Map shows the survey area existing within the extent of 

the Salina Salt basin during mid-Cayugan time.  (Modified from Laughery, 1999) 
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The case study provided in this research focuses on interpretations and testing technology 

on Silurian through upper Devonian stratigraphy.  Three of the structural features (joints, kink 

bands, and detachments) are all observed in this interval and technologic limitations for 

calibration constrain the extent of testable data.  The upper Silurian stratigraphy is of particular 

importance to as it contains evaporite units believed to act as a detachment in the central 

Appalachian basin (Ryder et al., 2008; Zagworski et al., 2012).  The Salina Salt basin existed in 

northern and western Pennsylvania in the late Silurian and the research area exists near its 

southeastern edge (figure 3).  The Salina Group evaporites are referred to as the Tonoloway, 

Wills Creek and Bloomsburg formations in outcrop, and have been referred to as Salina Group 

units A-H in the subsurface of central Pennsylvania and Western New York (Cotter and Inners. 

1986).  Salina Group halite ranges in thickness across the north-central part of Pennsylvania 

from less than 250 feet to over 500 feet.  In the study area, it is believed to be up to 500 feet 

thick, with large thickness variations present (Mount, 2014).  The base of the Silurian is marked 

by the Tuscarora formation.  In the middle Silurian, the center of the northeast – southwest 

trending basin remained deeper than the margins which influenced the subsequent carbonate and 

shale deposition (Laughery, 1999). 

 Directly overlying the Tuscarora is the Rose Hill Shale, followed by the Keefer and 

Mifflintown Formations. All three of these formations are composed of marine mudrocks and 

interbedded carbonates.  It has been suggested that the middle Silurian stratigraphy is a result of 

sea-level fluctuations on a submarine ramp that deepened from southeast to northwest and was 

deepest near the location of the present day structural front (Cotter and Inners, 1986).   

 In Pennsylvania, the earliest Devonian strata are Keyser, New Creek and Corriganville 

limestones (Harper, 1999).  The Needmore Shale marks the transition from lower to middle 
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Devonian in central Pennsylvania and underlies Huntersville Chert and Onondaga Limestone.   

The Marcellus Shale is the reservoir interval of interest that overlies the Ondondaga Limestone.  

The Marcellus is an organic-rich black shale that along with the overlying Mahantango 

formation, make up the Hamilton Group.  Above the Hamilton Group is the Tully Limestone 

which marks the top of the interval of interest for this study.  This research is not meant to be a 

stratigraphic study, but the structural development of the region is affected by the stratigraphy, 

particularly weak detachment formations.    

 

3. PREVIOUS WORK 

Though texture is relatively new as a seismic attribute, it has been used in the past to 

enhance the capabilities of seismic interpretation.  Texture attributes have been observed to 

better enhance structure and facies analysis than other attribute extraction algorithms (Gao, 2004, 

2006; Chopra, 2005).   Previously performed case studies provide examples of how the various 

texture analysis methods can be used for subsurface facies characterization (Gao, 2011).  

 Research has been done with this seismic data (Roberts, 2013; Bowers, 2014).  Roberts’ 

work involved using multiple conventional algorithms to identify the location of fractures and 

fracture swarms as it pertains to risk assessment and hydraulic fracturing.  Some structural 

elements were identified, including cross strike lineaments interpreted as “damage zones” 

(Roberts, 2013).  Roberts’ paper posed hypothetical implications of the large “damage zones” if 

their nature was well understood, and this research project intends to provide an understanding of 

these features and their involvement with the underlying salt.  

This seismic survey has also been used to develop a geomechanical model and analyze 

fracture stimulation data (Bowers, 2014).  The identification of highly fractured regions within 
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this seismic survey were identified using a geo-cellular model and strain attributes.  These results 

can be compared to the identification of fractures identified in this research by texture attributes.  

Bowers’ work proposes potential effects of the cross-strike and structure parallel features on 

production of lateral wells in the Marcellus, making the identification of their exact nature 

important for other areas within the basin.  Applying texture attributes is intended to add to 

previous interpretations from this data by providing enhanced visibility.  A quantitative 

calibration and petrophysical prediction has not been applied to this data.  

 

4. SEISMIC TEXTURE AND OTHER ATTRIBUTES  

 Seismic attributes are any quantitative measure of a seismic character of interest (Chopra 

and Marfurt, 2005).  Attributes can be classified in several ways, but can be broken into two 

main groups based on their function.  Attributes that are used to enhance the visibility of 

structural features in the seismic data or on seismic horizons are geometric attributes. These 

include attributes such as dip, azimuth, curvature, and variance.  Attributes that are believed to 

relate to physical parameters of the subsurface such as mechanical properties and lithologic 

characteristics are categorized as physical attributes.  These are typically related to the seismic 

trace and include amplitude, phase, and frequency (Taner et al., 1994 and Chopra and Marfurt, 

2005).   

 In 3D seismic image analysis, seismic texture refers to the internal configuration of 

amplitude samples within a small zone in the 3D space (Gao, 2004, 2006, 2011).  It is difficult to 

categorize seismic texture attributes because their use varies depending on their objective.  As a 

geometric attribute, texture is used in what is referred to as volume processing applications.  The 

other method that texture attributes are used is to assist in rock property estimation and 
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calibration with well data.  This would be categorized as a physical attribute.  Waveform model 

regression based texture is relatively underused and poorly known.  The purpose of this research 

is to provide a case study using these attributes both in a physical and geometric sense to assess 

its viability in both cases. 

 

4.1 Background and Previous Work 

WMR based texture attributes have had limited use in the past, but there has been some 

documented cases of its effectiveness (Gao, 2003, 2004, 2011).  Dynamic waveform model 

regression specifically was documented in Gao’s 2011 research.  Rather than use a static model 

waveform like those used in structural volume processing, the model waveform has adaptive 

phase, frequency, and maximum amplitude.  Gao’s research using the dynamic waveform 

method showed reduced structural interference, and proposed the use of an iteratively changing 

model waveform for reservoir property calibration. This research intends to apply both the use of 

a static model waveform for seismic visualization and dynamic model waveform for calibration 

with well data.   

Whether being used as a physical attribute or a geometric attribute, the basis for 

computing seismic texture is similar.  Each lateral coordinate (x, y) is defined by single seismic 

trace in a post stack volume, considered to be a time series defined by two-way travel time and 

amplitude.  Each trace is considered independent of those adjacent to it, and is compared to a 

model waveform.  Describing the differences between seismic traces is the purpose of 

performing waveform model regression and is outlined by the following steps (figure 4) 

. 
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1. Retrieval of amplitude data defined by n samples at (x, y, z) Di (x,y,z) (i=1…n) 

2. Construction of a model texture with defined phase and frequency (Mi) (i=1…n) 

3. Linear least-squares regression between model and data (Mi ~ Di) (x,y,z) 

4. Calculate absolute gradient or correlation coefficient of regression line 

5. Move to next sample location (x,y,z) 

 

These basic steps can be altered or have additional steps added to them depending on the  

goals of the interpretation.  The most basic component of waveform model regression is to 

compare input data, in this case amplitude, to some model data, and analyze the regression 

(output) between them.  The output is indicative of a relationship between the input data and the 

model.  Each regression slope (output) needs to have a singular defined location in space (x, y, 

z), for it to be useful for interpretation.  There are multiple ways to assign this (x, y, z) location 

that depend on how the attribute is being used, but regardless of its use there is one concept that 

should remain apparent.  The input data defined by multiple (n) samples is defined by texture as 

Figure 4: Schematic illustrating waveform model regression using model data traces.  Each pair of 

samples (connected by dotted lines) are used in linear least squared regression and the slope of the 

line of best fit is the output used for texture attributes.   
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a single output value, thus the output cannot occupy the same space (x, y, z) as the input.  The 

location of the output corresponds to the center (z) of the n samples of the input, and maintains 

the same (x, y) position as the input.  In any applications of the attribute, this would lead to less 

densely populated data in the (z) dimension, essentially populating an output volume defined by 

1/n the amount of data as the input.  This issue is reconciled in two different ways, depending on 

the desired use of the attribute.  Output data is not less densely populated than input data in either 

the volume processing or the well data calibration applications.   

 

4.2 Comparison with Other Attributes  

There exist a large and growing number of seismic attributes that can be used for 

structural interpretations and reservoir property analysis.  Some interpreters believe that there are 

in some cases, too many attributes being employed on the same data.  When performing 

calibration, overtraining of models may occur (Barnes, 2006; AlBinHassan and Wang, 2011; 

Bagheri and Riahi, 2015).  One potential advantage of using WMR based texture is that it is a 

single, simple to compute attribute that is affected by all components of the seismic trace.  In 

addition, it is hypothesized that it can be used to discriminate adjacent traces without needing to 

compare adjacent traces to one another as some geometric attributes do (Li and Lu, 2014; Koson 

et al., 2014).   

 To detect discontinuities, seismic texture utilizes a model waveform to make 

discrepancies between adjacent traces easier to visualize.  This difference is critical in its 

comparison with other attributes that help visualize discontinuities.  For example, coherency and 

chaos attributes utilize differences in amplitude or dip to detect discontinuities (Koson et al., 

2014).  This is useful for highlighting discrete features as being different, but not to what degree 
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or the nature of the difference.  WMR based texture utilizes a model waveform to do a soft 

calibration, and the resulting output highlights not only subtle discontinuities, but gives some 

information to how adjacent traces differ.  This also reduces to the need for other attributes in 

addition to coherency, as coherency volumes/slices show little data outside of regions of high 

variance (Gao, 2011; Li and Lu, 2014).  

 There are attributes used to estimate petrophysical properties that have an obvious rock 

physics basis for anticipating relationships such as inverted acoustic impedance and mechanical 

properties (Schultz et al., 1994, Bosch et al, 2010).  Texture attributes however, rely on a data-

driven approach to develop statistical relationships with rock properties, as many other attributes 

do.  Attributes such as instantaneous frequency, amplitude heterogeneity, instantaneous phase, 

and amplitude envelope have been used in data-driven statistical approaches to predict rock 

properties (Todorov et al., 1998; Schultz et al., 1994; Pederson et al., 1996).  All features of the 

seismic signal are directly caused by rock physics phenomena (Schultz, 1994).  Because this is 

the case, when doing data-driven prediction, it may be more useful to use an attribute that does 

not eliminate components of the trace such as frequency, phase, or amplitude alone.  For this 

reason, it is hypothesized that texture attributes may yield significant statistical relationships with 

logged properties. 

 In data-driven property prediction, it is sometimes necessary to use multiple attributes to 

perform a multivariate model or to determine which attributes have a statistical relationship with 

logged properties (Todorov et al., 1998; Hampson et al, 2000).  This is one component that is 

absent from the proposed approach of using only texture attributes.  It is theorized that by 

varying the model waveform, that a significant relationship with well-log properties may be 

achieved without the use of other attributes.   
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4.3 Well Data Calibration vs. Volume Processing Applications 

To perform well data calibration to texture data, a specific interval of the seismic data 

must be selected.  The goal of the horizon based algorithm is to perform waveform model 

regression on the amplitude data within a window centered on the Marcellus using many 

different model waveforms.  The goal of this operation is to determine the model waveform that 

results in attributes computed at wellbore locations that correlate best with petrophysical 

properties logged at respective wells. 

 The reservoir centered application has limited, but effective uses.  It utilizes a spectral 

volume, which is only good for very general visual interpretations.  It is however appropriate for 

examining how altering the model waveform affects the resulting texture data correlations with 

reservoir properties.  To apply many model waveforms, would result in a large number of 

individual attribute surfaces that would need interpretation.  It is impractical analyze these 

surfaces and attempt to visualize them in the time or depth domain.  Visualizing this data in a 

traditional sense has limited, if any meaning to an interpreter, but it allows for large number of 

attribute surfaces to be tested against well properties with relative computational simplicity.   

As opposed to the horizon based application of texture attributes, the volume processing 

application is utilized best for data visualization.  Volume processing applications are limited by 

the number of attribute volumes one could practically interpret.  The method for computing the 

texture attribute remains the same for either application.  The difference is that the volume 

processing applied in this research, uses one model waveform to transform amplitude volumes to 

texture volumes, maintaining the input’s dimensionality. Therefore, it can be interpreted with 

relative ease.  The purpose of volume processing for this research is to aid in the interpretation of 
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geologic structure, while the purpose of the horizon based application is to aid in well 

calibration.    

 

5. PRELIMINARY GEOLOGIC INTERPRETATIONS 

To assess texture attribute effectiveness, conventional geologic interpretations must be 

performed on the seismic data.  This includes, horizon mapping, creation of synthetic 

seismograms, domain conversions, and structural interpretations. General geologic 

reconnaissance provides features for further investigation with attribute data. 

 To begin the geologic interpretation, the stratigraphic interval of interest must be located 

in the seismic data.  To aid in doing this, a synthetic seismogram is used.  Only one of the 

vertical wells has a sonic log that exists from 3,100 feet to 7,340 feet.  The slowness log (inverse 

of velocity) is used in conjunction with the density log to create a synthetic seismic trace.  The 

density and velocity logs are used to create an acoustic impedance log, which is used to make a 

reflection coefficient series.  A 28hz, fixed frequency wavelet is convolved with the reflection 

coefficient series to create the synthetic seismic trace.  A 28hz wavelet is used because that is the 

dominant frequency of the amplitude data at the reservoir interval.  Without check-shots, a full 

vertical sonic log, and data collection differences between seismic data and the well logs, the 

synthetic seismogram is not guaranteed to match with the seismic data in the region that the logs 

are present (Ewing, 2001).  By stretching the synthetic seismic, a general match can be 

accomplished between the synthetic and seismic data at the location of the well (figure 5A).  

Lithologic tops were picked using gamma ray logs and for most of the wells in this study, 

driller’s picks were provided.  These lithologic tops are then matched with reflections for horizon 

interpretation (figure 5B).   
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Fractures and horizons were interpreted from the amplitude data to provide a general 

geologic reconnaissance before attributes were used.  Horizons were interpreted by following 

continuous reflectors in the seismic data and observing the log data converted to the time 

domain.  The lithologic tops that are interpreted include top and bottom of the Salina, Marcellus, 

Tully, and the top of the Onondaga and Genneseo.   

 Multiple types of structural features are interpreted to be present within the survey area.  

Using the amplitude data, fractures are interpreted as discontinuities in reflectors.  There are 

interpreted structure parallel lineaments that strike approximately 30˚-50˚ northeast.  It is 

A 

Tully 

Marcellus 

B 

Figure 5: Synthetic seismic trace made using velocity and density matched with adjacent seismic 

traces.  Figure 5A shows the time-depth relationship created from the synthetic seismic generation 

applied to other wells to convert the wells to the time domain.  Once in the time domain, lithologic tops 

were associated with seismic reflectors.  Log shown in figure 5B is gamma-ray.  
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difficult to interpret exactly what type of features these are using amplitude data, but the majority 

of the northeast trending features are limited to a vertical extent from the top of the Salina to the 

middle Marcellus.  The other set of lineaments interpreted in the amplitude data are structure-

perpendicular and trend at roughly 315˚ and 345˚northwest.  These features differ greatly in their 

seismic expression from the structure-parallel lineaments.  The northwest trending features have 

a much greater vertical extent, spanning from above the Tully Limestone, to far below the base 

of the Salina.  The lower extent is approximately 0.5 seconds (TWT) below base of the Salina.  

These lineaments are also best expressed in terms of vertical offset of reflectors, similar to 

narrow anticlines (Figure 6).  The majority of anticlinal features and large scale fractures in post-

Silurian strata are oriented northeast-southwest, as opposed to these northwest striking features 

(Mount, 2014).  Both feature types will be discussed in more depth when analyzing texture 

enhanced attribute volumes in section 7.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Time structure map for the top of the Marcellus Shale highlighting cross strike features 

associated with linear structural highs.     
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Using the amplitude data, preliminary observations regarding the salt detachment can be 

made.  Of interest are thickness changes, and structural expression of strata above and below the 

salt.  When observing the isochore map for the Salina interval, most prominent thickness changes 

have a northeast trend and correspond to interpreted discontinuities in the overlying rock (figure 

7).  Multiple cases of this pattern exist within the survey area, with the overlying discontinuities 

converging upward near the top of the Marcellus.  It is difficult to determine the exact nature of 

the features in this area and whether or not they are salt facilitated because the vertical extent of 

many of the fractures cannot be determined using amplitude data.   

 There is another pattern of salt thickness change that is less prominent, but that also 

coincides with lineaments seen in overlying strata.  Two large northwest striking features with 

large vertical extent are apparent on the salt thickness map, but less so than the northeast striking 

features.  The northwest striking features do not terminate, either upper or lower extent, in the 

Salina Group.  The preliminary geologic reconnaissance provides useful information about the 

geologic structure within the survey and points of interest that can be used in testing the 

effectiveness of WMR based texture attributes.  
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6. WELL DATA CALIBRATION  

It is of interest to many interpreters to estimate reservoir properties in inter-well areas,  

particularly when seismic data is present.  This can be done using a variety of techniques 

including inversion, machine learning, and multi-variable correlations, each with their own rock-

physics or statistical methods (Bosch et al., 2010; Hampson et al., 2000; Bagheri and Riahi, 

2015).  The challenges of this research include a small number of wells within the seismic 

volume, no obvious rock-physics relationship with the proposed attribute, and a lack of 

precedent for using this variable for reservoir property calibration.  To overcome some of these 

challenges, statistical approaches are taken to investigate the calibration efforts, and other 

conventional attributes will be incorporated for comparison to texture attributes.   

 

Figure 7: Time thickness map of the Salina Salt.  Two prominent trends exist in thickness 

changes that are associated with the structure-parallel features that terminate in the Salina, and 

the Northwest trending faults that are interpreted as not terminating in the Salina detachment.   
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6.1  Well-data Calibration Methodology 

The basics of computing waveform model regression is outlined in section 4.1.  Based on  

the regular waveform model regression algorithm, a dynamic waveform model regression 

algorithm using multiple model waveforms are used to generate a spectral 3-D volume (Gao 

2011, 2017).  To create the volume, an interpreted horizon must be selected.  For this 

application, a horizon at the middle of the Marcellus shale is used.  All of the waveform model 

regression calculations will be centered in the z-position around this horizon.  To populate the 

spectral volume, a number of model waveforms equivalent to the z-dimension’s extent of the 

spectral volume are needed.  These waveforms are defined by the vertical window size (number 

of amplitude samples), and the frequency of model waveform.  

By varying the size and frequency of the model waveform, an entirely different output 

can be created.  Cross-checking the extremely large number of possible output volumes (possible 

due to an extremely large number of potential model waveforms) to the wells within the survey 

would be computationally impractical, because this process is not currently automatic.  Instead, a 

large number of different model waveforms will be used to target the Marcellus shale reservoir, 

and a property prediction will be performed on only the reservoir interval.   

 Each model waveform has a specific window size and frequency combination that 

corresponds to the vertical position in the spectral volume.  There are 15 window sizes used, and 

for each window size, 32 frequencies are used, making for a total of 480 model waveforms.  The 

z-position of the output data of the spectral volume is first ordered by window size, such that the 

first 32 z-positions use the smallest window, the following 32 z-positions (32-63) use the second 

largest window size, and so on.  Within each group of 32 slices with the same window size, the 

z-position corresponds to increasing frequency of the model waveform.  The window sizes range 
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from 5 samples (10ms) to 33 samples (66ms), and the frequency of the models are defined by the 

number of cosine cycles within each corresponding window from a minimum of 1 cycle to a 

maximum of 4 cycles.  This corresponds to frequency by the following equation: 

Frequency(model) = (1+(p*.09375)) / 2n), 

 

In which p is the iteration (1-32) within the corresponding window size, and n is the number of 

samples defining the model waveform (5-33).  Designing the horizon-based volume in this way 

facilitates the determination of the optimal model’s frequency and size.    

 Determining the optimum model waveform is determined by analyzing which window 

sizes and frequencies of the models correspond to the highest correlation with logged reservoir 

properties.  Texture outputs from all 480 models are compared to 3 up-scaled measures of 

neutron porosity and gamma-ray at each vertical well location.  The optimum model waveform 

derived texture attributes are then compared to other conventional attributes individually and in a 

multi-attribute model to determine their significance compared to other attributes.  To test the 

equations that are made to estimate reservoir properties from texture attributes, cross-validation 

is used by removing each well, one at a time, and attempting to predict the reservoir properties at 

individual well locations.  Finally, the equations will be used to generate reservoir property maps 

and data from those maps are validated against vertical and horizontal well data.   
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6.2 Physical Limitations 

The primary concern when performing any data-driven seismic calibration is the lack of  

resolution of seismic data.  It is impractical to expect to detect vertical variations of reservoir 

properties within the Marcellus using texture attributes.  The post-stack seismic data being used 

has a 2ms sampling rate, and one vertical position the reservoir is represented by about 20-25 

amplitude samples.  This reduces the ability to calibrate texture at a fine vertical interval within 

the reservoir.  Instead, the reservoir properties must be up-scaled so that an interval of logged 

data is represented by a single value.  For calibration purposes, the reservoir properties are up-

scaled to a 10 foot, 20 foot, and entire reservoir interval averages.   

 The primary physical constraint for calibrating texture attributes is that there is no 

obvious rock physics relationship between reservoir properties and texture.  This is not an 

unprecedented issue as most data-driven property prediction relies on statistical relationships 

between seismic data and rock properties (Todorov et al, 1998).  When performing a calibration 

using empirical relationships, it is advantageous to incorporate as much data as possible. With 

only seven vertical wells, the lack of physical data presents challenges in building robust 

prediction models and creating training data sets.   

  

6.3 Calibration Results and Statistics  

 The spectral volume was generated, and the data along each vertical well path was 

extracted.  Seven vertical wells have a resulting extracted attribute trace and are used in 

determining an optimum model waveform.  Figure 8 illustrates example results for how the 

optimum model waveform selection can be interpreted.  Each reservoir property has its own 

relationship with the output associated with each model waveform. For each reservoir property, 
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an optimum model waveform is determined from plots such as these.  To aid in the optimum 

model selection, model frequency versus correlation (r2) cross-plots are produced.  Included in 

figure 9, these cross-plots provide information about which model waveform frequencies are 

associated with highly strong correlations to well data.  These plots often result in a small range 

of frequency for preferable models, or models with high correlation strength, when compared 

with well data. 

 Figure 8 illustrates the relationship between model waveform parameters and correlation 

strength for the gamma-ray at the entire reservoir thickness.  Similar plots are generated for 

porosity to assist in determining the optimum model for use in porosity prediction.   

 

 

 

Figure 8: Correlation results between all 7 vertical wells with logged gamma-ray and the texture 

attribute data from the horizon-based volume.  The reservoir property associated with this plot is 

the up-scaled GR for the entire reservoir interval.  The blue line represents individual model 

number to correlation points.  The red line is a 32-point moving average, dictated by the 32 models 

per window size.   
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High r2 values (up to 0.93) are observed between texture attributes and reservoir  

properties, but to further investigate its viability as a predicting attribute, texture is compared 

with other attributes in forward selection and adjusted r2 statistical models.  A forward selection 

model building process was applied to all attributes in table 1 and each of the 6 up-scaled 

reservoir properties.  This is performed to test how well texture attributes can predict reservoir 

properties alone and how significant empirical relationship developed using textures are 

compared to the significance of a multi-attribute model.  Forward selection also provides an 

equation to predict reservoir properties using texture attributes alone or more complex equations 

to predict reservoir properties using multiple attributes.  The results in table 2, include only the 

first 4 steps of a nine step forward selection process, but the model continues to degrade with the 

inclusion of additional attributes.  It is important to note that the probability of getting F-scores 

as high as this using models with texture are very low, and thus the sum of squares (a measure of 

predicted vs. actual gamma-ray) is also low.  These results are indicative of a model that 

accurately predicts the reservoir properties. Six forward selection processes were performed, but 

each showed similar results to those in table 2.  

Figure 9: Results pertaining to the r2 values and corresponding model frequencies for the 

correlation between texture attribute data and the gamma-ray averaged from the entire thickness 

of the Marcellus Shale.   
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Attributes Used in Multi-attribute Models Reservoir Properties  

Amplitude Envelope Middle 10 feet Gamma-ray 

Optimum Model Waveform Texture  Middle 20 feet Gamma-ray 

Amplitude Variance Entire Reservoir Gamma-ray 

RMS Amplitude Middle 10 feet Neutron Porosity 

Instantaneous Frequency Middle 20 feet Neutron Porosity 

Average Absolute Amplitude Entire Reservoir Neutron Porosity 

Trace Derivative   

Absolute Trace Derivative   

Dominant Frequency   

Table 1: List of attributes and reservoir properties used in multi-attribute models.  The 6 

reservoir properties are the same logged data that is used in selecting optimum models and in all 

reservoir property prediction applications included in this study.  Seismic attributes other than 

“Optimum Model Waveform Texture,” are selected based on popularity in literature for use in 

attribute calibration, and for scientific inquiry based on quantification of texture attributes.  

Variable Parameter Estimate F-Value Pr > F

Intercept 323.315

Optimal Model Texture -45590 47.16 0.001

Variable Parameter Estimate F-Value Pr > F

Intercept 292.442

Optimal Model Texture -38500 23.5 0.0084

RMS Amplitude 36.383 1.94 0.2365

Total Model (ANOVA) 28.96 0.0042

Variable Parameter Estimate F-Value Pr > F

Intercept 254.907

Optimal Model Texture -28591 21.86 0.0185

Trace Derivative -87.487 7.43 0.0722

RMS Amplitude 84.487 12.44 0.0387

Total Model (ANOVA) 52.83 0.0043

Variable Parameter Estimate F-Value Pr > F

Intercept 242.215

Optimal Model Texture -35927 60.78 0.0161

Trace Derivative -117.656 27.8 0.0341

Instantaneous Frequency 84.487 6.59 0.1242

RMS Amplitude 88.987 39.18 0.0246

Total Model (ANOVA) 115.07 0.0086

Step 3

Step 4

FORWARD MODEL SELECTION FOR GR (MIDDLE 10 FT)

Step 1

Step 2

Table 2: Example results from the forward selection model.  These results are specifically for the 

gamma ray of the middle 10 feet of the Marcellus.  At each step, the empirical relationship is 

assessed and an overall model F-value computed.  Based on ANOVA and corresponding F-values, 

the best model is when only Optimal Model Texture is used, though RMS amplitude also has 

considerably high F-values.   
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Another method used to examine the effectiveness of texture attributes is to examine how 

accurately well-properties can be estimated when wells are removed from the optimum model 

selection.  This technique, known has cross-validation, has been used for log property prediction 

from seismic data, even when a small number of wells are available (Hampson et al, 2000; Hart 

and Balch, 2000).  Each well is removed from the set of 7 vertical wells and an optimum model 

waveform is determined for each reservoir property.  Each time a well was removed, a new 

optimum model waveform and associated equation is selected.  The plots used to select these 

model waveforms are included in figure 10.  A summary of the results of the cross-validation are 

included in tables 3 & 4. 

 

Table 3: Error in predicting the reservoir properties from well-data using optimum model 

texture.  Each error is for the predicting data at the well location that was removed from the 

derivation of the best fit equation. Reservoir properties with (10) or (20) are the middle 10 

feet and 20 feet up-scaled values respectively.  

GR  %ERROR GR (10) %ERROR GR(20) %ERROR NPHI %ERROR NPHI(10) %ERROR NPHI(20) %ERROR

6.680 4.114 2.932 1.569 7.194 2.579

9.029 1.727 1.681 1.361 7.030 6.973

0.487 1.863 2.241 2.975 8.332 4.053

6.390 8.650 7.816 6.195 6.983 4.318

10.243 8.138 7.367 0.679 3.777 2.798

9.151 13.130 10.698 5.163 11.110 7.436

5.788 3.031 2.000 8.359 2.094 7.221

6.824 5.808 4.962 3.757 6.646 5.054

6

7

Averages

5

Without well #

1

2

3

4

Table 4: Error in predicting well properties at all well locations for each cross-validation 

attempt.  The averages do not include error in the prediction effort including all wells, 

indicated by the N/A under “without well #.”  

GR  %ERROR GR (10) %ERROR GR(20) %ERROR NPHI %ERROR NPHI(10) %ERROR NPHI(20) %ERROR

5.427 4.605 3.908 2.882 5.762 4.265

4.644 4.494 3.857 3.975 5.673 4.837

4.993 4.487 3.873 3.935 6.366 5.196

5.006 4.918 4.236 4.032 5.788 4.806

5.163 4.305 3.650 4.386 6.192 5.424

5.095 4.439 3.848 3.806 4.244 3.820

5.237 4.472 3.878 4.137 4.990 5.326

4.961 4.392 3.756 3.975 5.701 4.837

5.081 4.531 3.893 3.879 5.574 4.811

6

7

Averages

N/A

5

Without well #

1

2

3

4
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Figure 10: Cross-plots used in optimum model selection during cross-validation.  Each line shows 

the relationship between correlation and model waveform number when a different well is removed 

from the process.  It is apparent that the lines follow similar trends for porosity (figure C) and for 

gamma-ray (figures A & B) regardless of which well is removed.  The gamma-ray cross plots are split 

into two figures (A & B) to make it more clear to see.   
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Once determination of an optimum model waveform is completed, and validity of its 

determination is checked to some degree, it is possible to compute reservoir property maps.  

Using the equation generated by the linear regression corresponding to the optimum model 

waveform, seismic texture can be converted into a 2-D reservoir property map.  How the 

porosity and gamma ray varies laterally using this conversion can be seen in figures 11 & 14.  

The gamma-ray and porosity maps show spatial distribution of the estimated properties.  The 

spatial resolution is approximately 100ft x 200ft due to the lateral resolution of the original trace 

data.  The information about the structural highs and lows are removed from these maps because 

the horizon based texture calculation is based off of a surface that follows the structure of the 

reservoir.  Some effects of fractures can be seen in these maps.   

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 11: Map of porosity predicted from texture.  Location of vertical 

wells and one horizontal well used to test prediction accuracy are shown.   

7500 feet 
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The information from the property maps is checked against the vertical well properties 

and results are provided in figure 13.  One of the horizontal wells is also used to assess the 

property prediction map.  To do this, the lateral portion of the well must be transferred into 

attribute space as illustrated in figure 12.  The gamma-ray values from the map were extracted 

along the well path and compared to the logged gamma-ray from that well, included in figure 15.    

 

 

 

 

 

 

 

 

 

Figure 12: Map of predicted gamma-ray showing the seven vertical and one horizontal well used in 

the verification of the predicted properties.  Lateral well was repositioned at the location of the 

property map in the spectral volume.  Note that the lateral well has been transferred to a spectral 

volume and z-dimension remains constant at a desired position.   

Figure 13: Cross-plots comparing the reservoir property data from well logs vs. the 

reservoir properties predicted from property map that was converted from texture data.  

Vertical well data was averaged at a 10 foot, 20 foot, and entire reservoir intervals. This 

shows the data from the entire reservoir interval size average.   
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Figure 14: Map of gamma-ray predicted from texture data.  Wells used to assess accuracy of 

gamma-ray prediction shown.   

7500 feet 

Figure 15: Comparison of the predicted and measured gamma-ray along the lateral portion 

of the wellbore.  Predicted data comes from lateral well in figure 14.   
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6.4   Interpretation of Calibrations  

The first step of calibrating texture attributes to reservoir properties from well-data is to  

determine the optimum model waveform for each reservoir property.  This is achieved by 

analyzing which model waveforms coincide with texture attributes that have the strongest 

correlation with reservoir properties at well locations.  A possible downfall to this method is the 

use of a large number of model waveforms.  It brings into question how statistically likely this 

method is to produce good correlations just due to the large number of models tried, rather than 

any meaningful correlation between texture attributes and reservoir properties.  However, there is 

evidence against the significant correlations being random.  

As illustrated in figure 8, there is a definite trend associated with both the frequency and 

the window size of the model and its correlation to reservoir properties.  In general, window 

sizes of 9, 11, and 13 samples (18ms, 22ms, and, 26ms respectively) have the best correlations 

with reservoir properties.  This is promising because the thickness of the Marcellus is 

represented by about 24 ms in thickness.  The texture attributes that best correlate with reservoir 

properties are ones that consider an amount of data approximately represented by the Marcellus, 

and ones that incorporate seismic data from outside the reservoir tend to correlate worse with 

reservoir properties.  

 The other component of the model waveform that varies is the frequency.  This too has a 

trend with correlation to reservoir properties.  Regardless of the window size, all of the 

waveform models used to produce an r-squared greater than 0.80 with gamma-ray had a 

frequency between 50Hz and 70Hz, about 5% of the range of included frequencies.  Unlike the 

window size, a physical explanation for this is not clear, but it does suggest that high correlation 

strengths between texture and reservoir properties such as gamma-ray are not random due to a 
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large number of models tried.  Instead, there appears to be a systematic variation between how 

well texture correlates with reservoir properties, and the properties of the model waveform used 

to compute the attributes.  

 As a final measure to test whether or not strong correlations between texture and 

reservoir properties were random and due to large numbers of models being applied, 

petrophysical properties from outside the reservoir were applied to the same procedure to 

determine an optimum model.  In this trial, very few high correlations were found. The results of 

this trial are included in figures 16 & 17.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Optimal model selection cross-plot for gamma-ray data outside of the Marcellus shale.  

This is performed to test whether high correlations between texture data and gamma-ray data can 

be achieved due to the large number of model waveforms applied.  The highest correlations from 

this plot are significantly lower than those found when using gamma-ray data from within the 

Marcellus.  This provides some evidence that correlations are not random.   
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 The forward selection model results indicate that texture attributes are the most 

significant predictor in multi-attribute models, and are consistently associated with the least 

amount of error for each of the up-scaled reservoir properties.  Adjusted r-squared multi-attribute 

analysis is used to observe a large number of combinations of attributes’ ability to correlate with 

reservoir properties.  Of the nearly 500 attribute combinations tested for each reservoir property, 

combinations using fewer than 5 variables were analyzed.  Of those combinations, none had a 

stronger correlation with reservoir properties than texture alone.  Meaning, without incorporating 

texture into a multi-attribute model, no combination of up to 5 other variables included in this 

study could correlate as well with reservoir properties as texture computed with the optimal 

model waveform.   

 The final product of calibrating texture attributes with well-data is to attempt to estimate 

the reservoir properties away from well locations.  In this case, it is performed using texture data 

alone, with no other attributes.  Only gamma-ray and porosity can be attempted to be predicted.  

These reservoir properties were chosen for calibration based on availability at almost all well 

Figure 17: Optimal model selection cross-plot for porosity data outside of the Marcellus shale.  This 

is performed to test whether high correlations between texture data and porosity data can be achieved 

due to the large number of model waveforms applied.  The highest correlations from this plot are 

significantly lower than those found when using porosity data from within the Marcellus.  This 

provides some evidence that correlations are not random.   
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locations.  For vertical wells, there are very strong correlations (r2 values of 0.94 and 0.97) 

between logged reservoir properties and properties from the maps.  This is somewhat expected, 

as those vertical wells were used in deriving the equation that transformed the texture data to 

gamma-ray and porosity.  This good correlation indicates that when the equation is actually 

applied to the entire survey area, it works properly.   

 Trying to predict the gamma-ray along a horizontal well is a more significant test to the 

reservoir property map.  Porosity cannot be validated with the horizontal well because it was not 

logged in the lateral portion.  Information from the lateral well is not included at all in the 

derivation of the transforming equation, and it asses hundreds of predicted cells of the map rather 

than just a few as the vertical wells do.  Figure 15 shows the comparison between the predicted 

and logged data for the lateral well.  The logged data is presented as a moving average with a 

200 foot window, to match the size of the cells of the property map.  The predicted gamma-ray 

trend along the well path follows a similar trend as the logged property, particularly considering 

the lateral resolution of the seismic data compared to that of the well data.   

 Cross-validation is used to observe the error in predicting reservoir properties when wells 

are removed from the process of generated the transformation equations.  Tables 3 & 4 show that 

there is commonly a low amount of error in prediction when wells are removed, regardless of 

which well it was.  This is promising because it indicates that there are no leverage points in the 

equation building process.  No well(s) data falls outside the prediction by other well(s) data to 

change the resulting prediction equation significantly.  In addition, the relationship between 

optimum models and the correlation strength to well-data is very similar regardless of what well 

is removed from the process, as illustrated in figure 10.  It supports both the optimal model 

waveform selection and the resulting prediction equation that regardless of which well is 
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removed from the calibration, the resulting optimal model waveforms are almost always the 

same and the prediction equations changes very slightly.    

 

7.0 VOLUME PROCESSING USING TEXTURE ATTRIBUTES 

7.1 Methodology 

The basics of computing waveform model regression is outlined in section 4.1.  Unlike 

spectral volumes, applying texture attributes for structural interpretations results in volumes that 

maintain the dimensionality of the amplitude (input) data.  This is done by positioning the 

attribute values at the same x,y position as the input and the z-position at the center of the 

analysis window that each respective attribute value is computed.  One model waveform is used 

to perform waveform model regression for an entire input volume.  The model waveform starts 

at one input trace and is shifted along its entirety.  At each step, linear regression is performed 

and the slope is output to the resulting volume at the center of the analysis window location.  

Once every input trace has been used, the resulting volume can be used for interpretation.   

 To assess the ability of texture attributes to increase interpretive capabilities, visual 

inspection of the attribute volumes was performed and fractures/ faults were interpreted from the 

volumes manually.  In addition, variance and curvature calculations were performed using the 

texture volumes as input rather than amplitude. This will investigate whether texture is viable 

when used in conjunction these more common attributes and compare attribute volumes using an 

unbiased process.   
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7.2  Volume Processing Results 

 Like many geometrical attributes, the prominent advantage of texture attributes for 

volume processing comes by visualizing attribute volumes.  Attribute volumes were created 

using single cosine model waveforms of four window sizes.  These models are defined by 7, 11, 

15, and 29 sample window sizes, and frequencies of 71Hz, 45Hz, 33Hz, and 17Hz respectively.  

The purpose of doing this is to analyze the effect that different models have on resolving 

features, and visual results are provided in figure 18.    

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Four of the same inlines oriented NE/SW showing texture data calculated using 7(A), 

11(B), 15(C), and 29(D) sample window sizes.  Each inline presents varying ability to identify 

fractures, and differentiate detachment zone from overlying strata.  Large fault shown is one of the 

cross-strike, strike slip faults. 
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 Faults were manually picked from two of the texture attributes volumes to observe any 

effects of using different model window sizes on the ability to interpret faults.  First, the attribute 

volume computed with a 29 sample window was used, followed by one using an 11 sample 

window.  All of the faults interpreted from the 29 sample window size volume can be interpreted 

in the 11 sample window size volume, but more faults can be interpreted by using the smaller 

window size volume.  Though smaller window sizes generally leads to an appearance of more 

fractures, the smallest window size used to compute texture (7 samples) resulted in some 

reduction of interpretive capabilities.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Window size: 11 

Window size: 11 & 29 

 

Figure 19: Map of fractures interpreted from volumes computing using an 11 and 29 

sample window size.  Black lines indicate traces of fractures that could be detected in 

both attribute volumes while pink lines indicate fractures that could only be detected 

using the volume computed with a smaller window size.  
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To better understand why this is the case, attributes were computed along a single trace 

for each window size to view the effect of window size on feature detection.  Figure 20 shows 

the results of computing texture using three window sizes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20: Waveform model regression output as used in volume processing applications for 

three model waveform window sizes.  The same amplitude trace is used for each window size, 

while the output texture data varies.    
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 Variance and curvature were applied to the texture attribute volumes in order to see if 

texture attributes can be used in conjunction with conventional geometric attributes for enhanced 

structural interpretations.  Results of this application show that lineaments detected by variance 

attributes vary when different model waveforms are used to compute them.  Figure 21 shows 

results for variance applied to amplitude and three texture attribute volumes at time=1078ms.  

 

 

 

 

 

 

 

 

 

 

 

There are also differences in interpreting faults from curvature attributes when applied to 

amplitude data and texture data.  Regardless of the window size used to compute the texture 

volumes, applying curvature attributes results in generally the same ability to resolve 

faults/fractures, but it differs from results of applying curvature to amplitude data.  Because 

using texture in volume processing applications is designed to highlight faults, they appear more 

distinct when curvature attributes are applied, as illustrated by figure 22.   

 

A B 

C D 

Figure 21: Variance attribute applied to amplitude volume (A), and texture volumes using a 7 

sample window (B), 11 sample window (C), and a 29 sample window (D).    
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A comparison of amplitude data and texture data in cross section highlights the most 

important potential benefit of using texture data, being interpretability.  Enhanced visibility of 

seismic features brought about by using an appropriate window size and frequency model is the 

most crucial and basic reason to consider texture as a viable attribute for structural 

interpretations.  Figure 22 illustrates the difference in feature visibility when applying texture 

attributes.    

 

 

 

 

 

 

 

 

 

Figure 22: Curvature attribute applied to amplitude data (A) and texture data computed 

using a 11 sample window (B). Both time slices are located at 1078 ms, interpreted to be near 

the base of the reservoir interval.   
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Figure 23: Inline of amplitude data (A) and texture data computed using an 11 sample window (B).   
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7.3 Structural Analysis Results 

 From the seismic data, it is interpreted that three types of faults/fractures are present.    

One type is reverse faults that terminate in the Salina detachment and propagate somewhere into 

the Hamilton group, but are not associated with significant offset of reflectors or changes in salt 

thickness.  The features primarily strike between 35˚ and 50˚ and almost exclusively dip to the 

southeast.  These features can only be identified by interpreting attribute volumes and are 

laterally less continuous than the other two fracture/fault types.   

 Another feature type identified in the seismic data are faults commonly occurring in pairs 

that are associated with offset through the reservoir and thickness changes in the underlying salt.  

These features are apparent in time-structure maps and in cross section.  These features generally 

terminate in the upper extent at the top of the Marcellus and in the lower extent in the Salina 

detachment.   

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Cross section showing examples of paired faults associated with thinning of the 

underlying salt.  Texture data is used to interpret these faults and texture data computed with an 

22ms window is displayed above.  
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The third feature type identified in the seismic data is interpreted as two near vertical 

NW/SE trending strike slip faults, contrary to the orientation of other fractures in the survey area.  

These faults have the greatest vertical extent, spanning from well below the detachment to above 

the Tully.  They are associated with some vertical offset, though smaller than the aforementioned 

paired faults.  Both of the faults have a length of at least 3 miles and appear to intersect in the 

northwest portion of the survey (figures 6 & 18).   

 

7.4  Volume Processing Interpretations  

 From a visual perspective, texture attributes can enhance interpretive capabilities.  The 

vertical resolution of the seismic signal appears to be higher, because texture attributes 

accentuate changes in amplitude according to the size of the analysis window being employed.  

After examining texture attribute volumes computed with different window sizes and the single 

trace outputs in figure 20, it is apparent that window size is crucial when employing waveform 

model regression.  When an analysis window is too large, some changes in the input amplitude 

go undetected in the computed texture.  When an analysis window is too small, the regression 

computed between the data trace and model is often near zero, or cannot encompass significant 

patterns in the amplitude trace.  When the window size is appropriate, subtle changes in 

amplitude are detected and the differences in adjacent traces can be accentuated, which is the 

main purpose of the WMR and soft-calibration is used to compute texture attributes.  In the case 

of this seismic survey, model waveforms with window sizes of 11 and 15 samples appear to be 

best at producing volumes for visual interpretations. 

 To detect faults, one looks for offset of seismic reflectors or apparent breaks in other wise 

continuous reflection horizons.  Because texture attribute computed with various window sizes 
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detect these apparent faults differently, more than one texture volume may be necessary to 

properly interpret all discontinuities within one survey area.  By looking at the faults picked from 

the 11 sample and 29 sample volumes (figure 19), its apparent that some portions of continuous 

faults, and some entire faults create changes in amplitude that are different than others.  It is 

unclear as to whether the faults are actually different sizes, but it’s important to note that not all 

texture attributes should be treated equally when trying to identify seismic features of different 

relative size.   

 Applying geometric attributes to texture data is possible and the results are believed to be 

significant.  Applying variance to amplitude data and various texture volumes produces results 

that would lead to slightly different fault interpretations.  As observed in figure 21, 

interpretations of faults in through the reservoir using variance data would differ, and most likely 

be best using texture data computed with an 11 sample window as input.  One instance in which 

the window size does not matter significantly appears to be when texture is used as an input for 

curvature computation.  Various texture volumes were used as input, but the resulting curvature 

data is almost identical.  However, curvature results are different when the input is amplitude.  

Figure 22 illustrates that NE trending faults are more precisely outlined using curvature when 

texture is used as the input.   

 

7.5  Structural Analysis Interpretations  

 The structure of the Marcellus Shale at the location of this seismic survey has multiple 

feature types that could affect horizontal drilling due to the offset associated with them.  Most 

faults interpreted in the seismic data are parallel to the majority of the fold axes in central 

Pennsylvania. Though there are a large number of NE oriented faults, only certain types appear 
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to be associated with offset through the reservoir.  This type of feature has been identified in 

other regions of the Marcellus as kink-bands and are associated with pop-down structures in the 

underlying salt.  In the seismic data, these are differentiated from other northeast trending 

fractures in two ways.  One way is that the faults appear in pairs, dipping in opposite directions 

(figure 24).  In addition, these features are associated with distinct changes in salt thickness.   

 The other type of feature associated with offset in the reservoir are two large faults 

oriented at 340˚ and 310˚.  These faults are cross-strike to the orientation of the structural front 

and most fault and fold axes in the area.  These faults are expressed by offset at both the top and 

bottom of the salt, as opposed to the kink-bands which are only expressed at the top of the salt.  

This indicates that the detachment facilitates the structure-parallel faults, but not the structure-

perpendicular faults.  The offset from the structure-perpendicular faults can be seen far above 

and below the reservoir.  These are interpreted as large high-angle strike slip faults.   

In an attempt to determine transport direction above the detachment, texture attributes 

were employed to interpret faults in the detachment that terminate in overlying strata.  It is 

typically difficult to interpret fractures in the detachment, but by applying texture attributes with 

a relatively small (11 samples) window size, 40 fractures were interpreted with a northeast trend 

and a length of at least 1000 feet.  Of the 40 fractures, 34 of them are dipping to the south east.  

This supports a transport direction to the northwest.  Because the cross-strike faults are not 

facilitated by the detachment, it’s difficult to use them to determine transport direction.  

Therefore the transport direction is cautiously interpreted as northwest.   
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8.  CONCLUSIONS  

 The main provisions of this study include an analysis of waveform model regression 

based texture attributes and their viability to calibrate with well data and increase seismic 

visualization.  Like any data-driven prediction methods, there are uncertainties about the 

correlations that are derived, but evidence supports a connection between texture attributes and 

reservoir properties.  Model waveform window size is generally best calibrated to reservoir 

properties when it is approximately the size of the reservoir.  There is a connection between 

model frequency and correlation with reservoir properties. Though large amounts of model 

waveforms were tested, the high strength of correlation between texture and reservoir properties 

appears to be non-random, and a function of using the correct window in the seismic data that 

corresponds to the reservoir.   

 It is observed that using texture attributes enhances the visibility of faults and structure of 

the 3D seismic data.  The ability to resolve features is dependent on the window size and 

frequency of the model waveform being employed.  Smaller window sizes generally lead to an 

apparent increase is visibility, but there is a point when the window size becomes too small to 

detect important changes in the input data.  Texture attributes prove useful as input data for other 

conventional attributes such as variance and curvature. It is interpreted that salt facilitated offset 

exists in the Marcellus Shale in the form of kink-bands.  Large high-angle strike-slip faults are 

cross-strike to the regional structure and are vertically extensive in this area.   

 Waveform model regression based texture is not an all-encompassing attribute and 

should be used according to an intended purpose.  Though this case study shows that it correlates 

well with changes in reservoir properties, care should be taken when developing relationships 
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with no obvious rock physics basis.  With this being said, texture attributes have potential for 

application in estimating reservoir properties and enhancing visual interpretations.   
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