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ABSTRACT 

Developing A Grid-Based Surrogate Reservoir Model  

Using Artificial Intelligence 

Shohreh Amini 

 

Reservoir simulation models are the major tools for studying fluid flow behavior in hydrocarbon 

reservoirs. They are now being used extensively in performing any kind of studies related to fluid 

production/injection in hydrocarbon bearing formations. Reservoir simulation models are 

constructed based on geological models, which are developed by integrating data from geology, 

geophysics, and petro-physics. This data comes from observation, measurements, and 

interpretations.  

Integration of maximum data from geology, geophysics, and petro-physics, contributes to 

building geologically complex and more realistic models. As the complexity of a reservoir 

simulation model increases, so does the computation time. Therefore, to perform any 

comprehensive study which involves thousands of simulation runs (such as uncertainty analysis), 

a massive amount of time is needed to complete all the required simulation runs. On many 

occasions, the sheer number of required simulation runs, makes the accomplishment of a project’s 

objectives impractical.  

In order to address this problem, several efforts have been made to develop proxy models which 

can be used as a substitute for complex reservoir simulation models. These proxy models aim to 

reproduce the outputs of the reservoir models in a very short amount of time. In this study, a 

Grid-Based Surrogate Reservoir Model (SRM) is developed to be used as a proxy model for a 

complex reservoir simulation model. SRM is a customized model based on Artificial Intelligent 

(AI) and Data Mining (DM) techniques and consists of several neural networks, which are 

trained, calibrated, and validated before being used online.  

In this research, a numerical reservoir simulation model is developed and history matched for a 

CO2 sequestration project, which was performed in Otway basin, Australia where CO2 is injected 

into a depleted gas reservoir through one injection well. In order to develop SRM, a handful of 

appropriate simulation scenarios for different operational constraints and/or geological 

realizations are designed and run. A comprehensive spatio-temporal data set is generated by 

integrating data from the conducted simulation runs and it is used to train, calibrate, and verify 

several neural networks which are further combined to make the surrogate model.  

This model is able to generate pressure, saturation, and CO2 mole fraction at each grid block of 

the reservoir with a significantly less computational effort compared to the numerical reservoir 

simulation model. 
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CHAPTER 1. 

INTRODUCTION 

1.1 Motivation and Problem Statement 

In a geological carbon sequestration once the CO2 is injected underground there is no direct 

method which is able to exactly determine the CO2 flow path in the porous media.  Numerical 

reservoir simulation models are the major tools through which the CO2 fate can be studied after 

being injected underground. These models are constructed based on the geological studies and 

interpretations, field observation, and measurements, and therefore are essentially uncertain. In 

each specific sequestration project, different operational practices will have different 

sequestration outcomes. Consequently, any practical uncertainty analysis and risk assessment 

technique should address both geological and operational uncertainties.  

Developing a reservoir simulation model and conducting that for thousands of different scenarios 

ultimately provides us with a solution space which can be practically used for an extensive 

uncertainty analysis. The most widely used techniques for this purpose is Monte Carlo 

simulation. However, this method will be essentially impractical for a geologically complex 

reservoir simulation model, which requires even few hours for a single run to be accomplished. 

On one hand, adding complexity to the reservoir simulation model is inevitable since integrating 

all the observations and measurements is the sensible way to reduce the uncertainty. On the other 

hand, the more complex the simulation model, the higher the run time. Therefore, any study 

which involves thousands of simulation runs such as uncertainty analysis, optimization study, or 

history matching can become prohibitive due to the massive required run time and computational 

effort. 

Encountering such a problem motivates the quest to find an alternative approach through which 

we can utilize the complex numerical reservoir model to develop a surrogate model, which can 

significantly lower the computational cost while it approximates the results of the complex model 

with an acceptable accuracy. 

In order to address this problem, several efforts have been made to develop proxy models which 

can be used as a substitute for a complex reservoir simulation model. What is sought in the area 

of proxy or surrogate modeling is generating a meaningful representation of the existing complex 

system which can be performed in a computationally efficient way. 



2 

 

The existing proxy models, which have been applied in petroleum engineering, can be generally 

categorized into four different groups based on their development approach. These four groups 

are: statistics-based approach, reduced physics approach, reduced order modeling approach, and 

data driven or artificial intelligence-based technique. Although all the developed proxy models 

are trying to address the problem of expensive numerical reservoir simulation models, these 

proxy models still have many drawbacks and limitations to be used as a practical tool. 

The statistical methods, such as response surfaces, are trying to generate a function which can 

capture the input-output relationship of the involved parameters. In order to be practical, 

hundreds of simulation runs must be conducted in order to generate sufficient data to cover all the 

input space and that is due to the statistical nature of the approach.  

In proxy models based on reduced physics, the physics of the process is simplified by applying 

several assumptions. The formulations which are used in petroleum engineering, and particularly 

the ones related to the fluid flow in porous media, are developed based on some simplifying 

assumptions and the results we obtain by applying these formulations is already an estimation of 

what is actually happening and can be even very far from the reality. Therefore, simplifying the 

existing formulation and generating proxies based on these simplified formulations make a large 

amount of limitations in their application.  

The reduced order modeling approach is used to reduce the computational effort of solving the 

system of non-linear equations pertaining to the fluid flow in porous media and some of the 

techniques in this category are able to decrease the run time for a numerical reservoir model by 

several orders of magnitude. However, the development procedure of this type of reduced order 

model is computationally expensive and therefore construction of such a surrogate model can 

only be justified if thousands of simulation cases are to be conducted for a comprehensive study. 

Finally, proxy models can be constructed using Artificial intelligence. Artificial intelligence and 

in particular artificial neural networks (ANN) have proven to be powerful data processing tools 

and can be applied to a wide variety of problems in different areas such as medical, engineering, 

financial, business, etc. Artificial neural network is a virtual intelligence technique which is an 

efficient tool for detecting and approximating the highly non-linear relationship between inputs 

and outputs of a system. During the last three decades this technique has been employed in 

petroleum engineering in different areas as an efficient tool to predict reservoir characteristics 

such as porosity and permeability, synthetic log generation, well production performance, etc. 

However, this technique has not been used to develop a surrogate model which is able to predict 

the dynamic variables of the reservoir at the grid block level.  
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1.2 Research Objective 

The principle objective of this research is to develop a surrogate reservoir model by using 

artificial neural networks, which do not have the draw backs and shortcomings of the existing 

surrogate or proxy modeling techniques.  

In this research the goal is to develop a grid-based surrogate reservoir model as a proxy for a 

numerical reservoir simulation model. The numerical reservoir model is developed for the 

purpose of investigating the outcomes of different injection scenarios and/or geological 

realizations, for a CO2 sequestration project, in terms of pressure, gas saturation, and CO2 mole 

fraction distribution throughout the reservoir.  

The surrogate reservoir model  must be capable of generating pressure, gas saturation, and CO2 

mole fraction at each grid block of the reservoir at the desired time step when the uncertain input 

parameters are changed within a specific range (range of data by which the SRM is trained). 

This surrogate model is constructed based on the data extracted from a handful of numerical 

reservoir simulation scenarios and it is able to generate the results of the numerical reservoir 

model at the gird block within a few seconds.  

1.3 Dissertation Outline 

This dissertation includes nine chapters, which are organized as follows: 

Chapter 1 presents the background, motivations, and objective of this research. 

Chapter 2 includes a brief overview of CO2 sequestration, which is the process based on which 

the surrogate model is developed in this work. Further in this chapter a thorough study and 

evaluation of the previous works that have been done in the area of proxy/surrogate modeling is 

presented and the advantages of the approach used in this research against other methods are 

discussed. 

Chapter 3 introduces the artificial intelligence background as the methodology that is deployed 

in this research for grid-based surrogate reservoir model development. This chapter specifically 

includes a detailed description of the artificial neural network structure, formulation, and training 

process as applied in this study. 

Chapter 4 presents the workflow that was followed to develop and history match a numerical 

reservoir simulation model for a CO2 sequestration process. 
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Chapter 5 includes detailed description of different steps to develop a surrogate reservoir model 

for the first layer of the reservoir. This part of the SRM development is considered as proof of 

concept for the proposed methodology. 

Chapter 6 covers some studies related to data sampling as a data reduction technique for 

reducing the dimensionality of the under study system. 

Chapter 7 presents a full-field SRM development that is applied for two different grid 

resolutions of the numerical reservoir simulation model. This section includes the results of SRM 

and a comparison between the SRM output and numerical reservoir model output, as well as a 

general error evaluation.  

Chapter 8 comprises two sections of lessons learned and conclusion of this study which 

highlights the key findings and the learned lessons through performing the current research 

followed by a list of concluding remarks of this study. 

Chapter 9 presents the possible further studies that can be performed in the future in order to 

improve the current research or extend its application.   
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CHAPTER 2. 

 LITERATURE REVIEW 

2.1 Overview of Geological Carbon Sequestration 

A viable means of CO2 reduction in the atmosphere is to capture and concentrate CO2 from large 

point sources, such as power plants and petroleum refineries, and store it by underground 

injection. This process is called Geological Carbon Sequestration (GCS).  

There are several options to store CO2 in an underground geological structure which are: depleted 

oil and gas reservoirs, saline aquifers, and unmineable coal-beds. Each of these geological 

structures has its own characteristics which must be extensively studied before any CO2 is 

injected underground and stored for a long time (Bachu 2000). 

The injected CO2 can be stored through different trapping mechanisms (Kaldi and Gibson-Poole 

2008), such as: 

 Physical trapping that happens in structural or stratigraphic traps, where the free-phase 

CO2 is physically trapped by the geometric structure of the reservoir and its caprock. This 

type of trapping is similar to hydrocarbon accumulations in the reservoir. 

  Residual trapping, where the CO2 is trapped in the pore spaces due to the capillary 

pressure forces.  

  Solubility trapping, which takes place when the injected CO2 dissolves into the formation 

water. 

 Mineral trapping through which CO2 precipitates as new carbonate minerals and therefore 

becomes immobile. 

  Adsorption trapping, which happens when CO2 is injected in to the coal-beds, where the 

CO2 adsorbs onto the surface of the coal. 

Although carbon sequestration seems to be a sensible way of reducing the ever increasing level of 

CO2 in the atmosphere, the risk involved in this process is always a matter of concern. A safe 

sequestration is achieved when it is ensured that once the CO2 is injected underground it will 

remain safely in the structure over a long geological time (thousands of years). In general the risk 

involved in CO2 sequestration in geological formations decreases as time passes. The risk 

associated with any geological sequestration is directly related to the geological uncertainties of 

the structure and operational practices, and therefore these items are required to be 

comprehensively studied for any CO2 sequestration plan.  
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Reservoir simulation models are the major tools used to perform principal studies related to 

uncertainty analysis of CO2 sequestration. They provide us with a means to predict the 

performance of this process under different geological realizations and different injection 

scenarios. The outcome of any realization can be studied from different aspects such as: 

 Distribution of CO2 though the pore spaces of the formation and CO2 front prediction 

 Displacement of water, oil, or gas caused by CO2 injection 

 Pressure build-up due to injection 

In order to comprehensively study and quantify the risk associated with a sequestration project, 

thousands of simulation runs are required to take into account the variability of the uncertain 

parameters in the project, which can be practically used for an extensive uncertainty analysis. 

2.2 Surrogate/Proxy Models: Applications and Previous works  

Due to the advancement of technology and software improvements, the developed models for 

simulating different processes in different science and engineering areas are becoming more and 

more complex and computationally expensive to perform. On some occasions these complex 

models are required to be performed hundreds or thousands of times, which requires a massive 

amount of time and computational effort to be completed. Sometimes these runs are just required 

to answer some questions about the behavior of the system or some general evaluation of the 

system response to the change of involved variables. Therefore, engineers are looking for a way 

which enables them to make use of the complex models and generate a surrogate or proxy model, 

which can provide them with the information they are looking for with less computational effort. 

The basic idea of surrogate modeling is to avoid investing on computational time and effort to 

answer the questions in hand, and instead, investing in the development of models which can 

approximate the long running simulation models in a significantly shorter time. These 

approximations can answer many questions and can provide many insights of the under study 

process more efficiently (Forrester, Sobester and Keane 2008).        

What we are looking for in the area of proxy or surrogate modeling is generating a meaningful 

representation of the existing complex system, which can be performed in a computationally 

efficient fashion. The surrogate acts as a function which relates the inputs of the system to its 

outputs, and therefore it is able to approximate the system response without using the primary 

expensive simulation source. Generally, the approach is based on the assumption that once the 

surrogate model is developed it can be run significantly faster than the primary complex model 

while it offers an acceptable accuracy of the predicted results.  
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During the last decade, in the petroleum industry, many proxy models or surrogate models have 

been developed with the purpose of replicating the functionality of numerical simulation models 

with different objectives such as optimization, history matching, uncertainty analysis, risk 

assessment, etc. 

The proxy models that have been developed in petroleum engineering area can generally be 

categorized into four different groups based on their development approach. These four 

categories are:  

1. Statistical method 

2. Simplified analytical (reduced physics) approach 

3. Reduced order modeling approach 

4. Data driven or artificial intelligence-based technique  

The following sections provide an extensive description of the background, previous works, and 

application of the aforementioned proxy modeling techniques. Furthermore, proxy modeling 

capabilities and limitations of their application to develop a surrogate model for a numerical 

reservoir model are evaluated. 

2.2.1 Statistics-Based or Response Surface Method (RSM) 

Response Surface Methodology is a combination of mathematical and statistical techniques. This 

methodology is used for modeling and analysis of problems in which the output is influenced by 

several input variables (Montgomery 2005). 

In the area of petroleum engineering, this technique has been applied in several types of studies 

such as history matching (Slotte and Smorgrav 2008), upscaling geological models (Narayanan, 

et al. 1999), field development planning (Carreras, Turner and Wilkinson 2006), optimization 

(Purwar, Jablonowski and Nguyen 2010), and many other studies. However, the most common 

area where this methodology has been applied is in uncertainty analysis of a particular process 

such as oil production (Ahmed, et al. 2013) (Al Salhi, et al. 2005) and CO2 sequestration (Yeten, 

Castellini, et al., A Comparison Study on Experimental Design and Response Surface 

Methodologies 2005).  

Uncertainty analysis requires identification of the involved uncertain parameters that affect the 

desired output of a system and evaluation of their degree of influence.  Ideally, all possible 

combinations of these parameters should be tested in order to capture and evaluate the 

relationship between the behavior of the system and uncertain parameters. However, due to 

limited computational power, evaluation of all combinations of the uncertain parameter is 
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practically impossible for a complex model which requires a huge amount of time for a single run 

to be accomplished. 

A response surface is a mathematical function that is capable of representing the behavior of a 

system, either real or simulated, by approximating the relationship between the inputs and outputs 

of the system. In the field of reservoir engineering, the system is a reservoir flow simulator, the 

inputs are the uncertain parameters such as reservoir characteristics or operational constraints, 

and the output can be production or injection variables such as oil/water rates or the wells’ 

pressure (Fetel and Caumon 2007) or other parameters based on the objective of the study.  

In order to develop a response surface, the first step is to generate a number of simulation runs 

which can provide a maximum amount of information from the system. This process is called 

design of experiment, which aims at finding the minimum number of simulation runs by selecting 

the best combination of uncertain parameters. The combination of experimental design and 

response surface is a statistical approach for uncertainty assessment which has some advantages 

as well as shortcomings. The earlier application of this methodology in petroleum engineering 

can be found in studies conducted by Chu (Chu 1990) and Damsleth (Damsleth, Hage and Volden 

1992).     

The linear multivariate regression and interpolation methods are amongst the most popular 

response surface methods (Yeten, Castellini, et al., A comparison study on experimental design 

and response surface methodology 2005). Linear multivariate regression is a parametric approach 

which aims at fitting a given priori model to a set of data points.  

Interpolation is a non-parametric mathematical procedure through which the system response is 

estimated at a given location based on the nearby known value. The results of the research 

performed by Fetel et al. show that response surfaces developed based on linear regression 

methods are generally unable to capture the non-linearity of the actual reservoir flow behavior. 

Therefore, they suggest applying interpolation methods such as Discrete Smooth Interpolation 

(DSI) or Kriging method combined with an external drift (KED), which results in a lower amount 

of error when applied for developing a model to estimate production rate (Fetel and Caumon 

2007).  

Other regression methods such as Gaussian Process regression (GP) can also be applied to 

develop a response surface. This method was used by Zhang et al. to develop a proxy model for 

risk assessment of a geological CO2 sequestration in a brine reservoir (Zhang and Pau 2012). This 

proxy model was developed for a numerical reservoir simulation model, which consists of 

470,573 non-uniform grid blocks in 77 layers. The model was developed to approximate the 
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desired output of the system (pressure at a specific time and specific location of the reservoir) for 

different values of the uncertain input parameters and consequently the constructed model was 

used for uncertainty quantification. However, due to the substantial limitations of the applied 

methodology for this proxy development, in practice the model is just able to make a prediction 

in a certain time and at a certain location of the reservoir. Therefore, the developed proxy model 

is not applicable for a comprehensive uncertainty analysis purpose.  

The research that has been conducted by Zhang et al. is another attempt of using response surface 

methodology or, in particular Polynomial Chaos Expansion (PCE) method to develop a proxy 

model for a numerical reservoir simulation model with the objective of approximating pressure 

and saturation of each grid block of the reservoir (Zhang and Sahinidis 2012).  

This work is the only one, among several response surface approaches, that have been applied in 

reservoir engineering with the objective of approximating pressure and saturation of the grid 

blocks of the reservoir under uncertain input parameters. 

Due to the similarity of the objective of the work performed by Zhang et al. with the objective of 

the current research, the PCE method and its specific application in this area is described in more 

detail in the following section. 

Polynomial Chaos Expansion (PCE)  

PCE has been applied as a method for analyzing uncertain behavior of complex systems in 

different areas such as oceanology (Webster and Tatang 1996), aerospace (Eldred and Burkardt 

2009), risk assessment of CO2 storage (Oladyshkin, et al. 2011), and history matching (Bazargan 

and Christie 2012).  

Zhang et al. developed a surrogate model using the PCE method to approximate the outputs of a 

numerical reservoir simulation model of a CO2 sequestration process as polynomial functions of 

the uncertain parameters (porosity and permeability). In this work, the developed surrogate model 

has been used for geological uncertainty analysis and consequently optimizing the amount of CO2 

injection into a saline aquifer (Zhang and Sahinidis 2012). 

In order to develop a PCE-based model, it is assumed that the model output (𝑦) is a function of 

uncertain parameters (𝑥) and can be represented by a polynomial chaos expansion as formulated 

below.  
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𝑦 = 𝑀(𝑥) =∝0 𝐵0 + ∑ ∝𝑗 𝐵1

𝑀

𝑗=1

(𝑥𝑗) + ∑ ∑ ∝𝑗𝑘 𝐵2(𝑥𝑗 , 𝑥𝑘)

𝑗

𝑘=1

+ ∑ ∑ ∑ ∝𝑗𝑘ℎ 𝐵3(𝑥𝑗 , 𝑥𝑘 , 𝑥ℎ)

𝑘

ℎ=1

𝑗

𝑘=1

𝑀

𝑗=1

𝑀

𝑗=1

+ ⋯ 

Equation 1 

 

Where the α′s are coefficients and the 𝐵′s are multivariate polynomial basis functions that are 

orthogonal to the joint Probability Distribution Function (PDF) of 𝑥. 

The PCE, in practice, is truncated to a finite number of terms which can be calculated as follows: 

𝑁𝑡 =
(𝑀 + 𝑑)!

𝑀! 𝑑!
 

Equation 2 

Where, 𝑀 is the number of model inputs and 𝑑 is the degree of expansion which is the highest 

degree of the polynomial basis function.  

Each 𝑥 is a single random variable and the orthogonal polynomials for this variable are defined 

as:  

∫ 𝜑𝑑

𝛺

𝜑𝑐𝑓(𝑥)𝑑𝑥 = 0, 𝑑 ≠ 𝑐 

Equation 3 

Where, {𝜑𝑑 = 𝑥𝑑 + 𝑙𝑜𝑤𝑒𝑟 𝑑𝑒𝑔𝑟𝑒𝑒 𝑡𝑒𝑟𝑚𝑠, 𝑑 = 0,1,2, … } are polynomial functions of 𝑥 and 

orthogonal to polynomial 𝜑𝑐 and  𝑓(𝑥) is the PDF of 𝑥. Ω is the support of the random variable 𝑥. 

If 𝑥 can be characterized with one of the most commonly known PDFs, such as a normal or 

uniform distribution, then the corresponding orthogonal polynomials can be chosen through some 

known methods. If 𝑥 has an arbitrary PDF, the orthogonal polynomials should be generated 

numerically. These orthogonal polynomials are optimal with respect to the PDF of 𝑥, since the 

error computed as a difference between the exact value of a model output 𝑦 and the value 

approximated by Equation 1 with {𝐵𝑖 = 𝜑𝑖  , 𝑖 = 0, … , 𝑑 } converges to zero exponentially as 

𝑑 increases linearly. 

For the case where input vector 𝑥 contains 𝑀 random variables, Equation 3 can be applied to 

define the multidimensional orthogonal polynomials. If 𝑥𝑖’s are independent of each other, then 

the joint PDF of 𝑥 is a product of the marginal distributions of each 𝑥𝑖 . Therefore, 𝐵𝑑 which is the 



11 

 

multidimensional orthogonal polynomial of degree 𝑑 can be calculated by multiplying the 

corresponding individual orthogonal polynomial for each 𝑥𝑖 , as shown in Equation 4. 

𝐵𝑑(𝑥) = ∏ 𝜑𝑚𝑖
(𝑥𝑖)

𝑀

𝑖=1

 

Equation 4 

In this equation: 

∑ 𝑚𝑖 = 𝑑𝑀
𝑖=1  and 𝜑0(𝑥𝑖) = 1, 𝑖 = 1, … , 𝑀 

The next step is to estimate the coefficient vector α in Equation 1. 𝑁𝑝 points are selected for 𝑥 

and the coefficients are calculated by solving the following linear equation: 

𝐵𝛼 = 𝑦 

Equation 5 

In order to calculate α′s, the error between the real and estimated output is minimized by 

minimizing the training error of ‖𝐵 ∝ −𝑦‖2. 

Therefore, to build a PCE, an initial value is assumed for the degree of expansion (𝑑 = 0) then 

the coefficients are calculated through a minimization procedure where the error is monitored and 

if it is within an acceptable range then 𝑑 is considered as the best degree of expansion. If not, the 

value of 𝑑 is increased and the same procedure is followed so that it meets the condition (in this 

work the calculated degree of expansion has been reported as 3 or 4). 

In this research, a PCE-based surrogate model was developed for a numerical reservoir simulation 

model of a CO2 sequestration process to approximate the pressure and saturation of the model 

during CO2 injection as a function of two uncertain parameters of porosity and permeability.  

The numerical reservoir simulation model is a 2D vertical model which consists of 1972 non-

uniform grid blocks; however, the PCE was developed for half of this model which contains 986 

grid blocks. By using Latin Hyper Cube Sampling (LHS) method, and based on the uncertain 

parameters, 100 simulation runs were performed and PCE was developed for each grid block of 

the reservoir.   

The limitations of the developed proxy model can be listed as follows: 

 The computation time for generating a single PCE is relatively small; however, the fact 

that this method is an iterative method that requires PCE generation for each single grid 

block of the reservoir at each single time step, implies that the proxy model development 
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time will increase dramatically if this method is to be developed for a numerical reservoir 

model with a huge number of grid blocks and for a large number of time steps. 

 The same argument can be applied to the deployment of the method to estimate the 

output parameters for a new scenario. The method calculates the output for each single 

grid block at each time step by evaluating the obtained polynomial with the uncertain 

parameter value at each specific grid block and specific time step. 

 In this study, the results of pressure and gas saturation distribution have been presented 

for a very short time interval (30 days of CO2 injection), which is not a realistic injection 

duration for a CO2 injection process.  

 Although different distribution functions was considered for porosity and permeability of 

the reservoir, the study has actually been conducted on a homogenous reservoir, which is 

another shortcoming of this method.  

The aforementioned limitations of the application of the PCE methodology endorse that this 

technique is not practical to be used for grid-based surrogate modeling of a complex reservoir 

model. 

2.2.2 Reduced Physics Models 

Developing a simulation model of a system in order to investigate its behavior under different 

conditions is a common practice in the field of engineering. These models are developed based on 

the formulations through which a physical phenomenon is described. The complexity of these 

models can be dramatically increased in an attempt to develop a more realistic model by 

including several parameters in the model for the purpose of obtaining more reliable results. 

Reduced physics proxy models are the models which are developed through simplifying a 

physics-based formulation of a process or by disregarding some parameters which are responsible 

for representing a particular phenomenon that is taking place in the process. 

In reservoir engineering, the reduced physics proxy modeling technique has  most commonly 

been used in modeling thermal recovery processes such as SAGD (Steam Assisted Gravity 

Drainage) and Vapex (Vapor extraction), and also Shale gas production.  

Using this approach, several proxies have been developed based on analytical formulations for 

modeling SAGD processes. Azad et al. used an analytical physics-based proxy model and the 

Extended Kalman Filter method for the purpose of reservoir characterization (Azad, Chalaturnyk 

and Movaghati 2011).  
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Vanegas et al. (Vanegas, Deutsch and Cunha 2008) developed a proxy model based on Butler’s 

formulation (Butler, A New Approach to the Modeling of Steam-Assisted Gravity Drainage 

1987) for predicting oil flow rate, cumulative oil production, and cumulative steam injection 

under some uncertain parameters of porosity, horizontal permeability, vertical permeability, oil 

saturation, and rock type (shale or sand). This model was developed for a 2D heterogeneous 

reservoir with 5796 grid blocks (161 × 36 × 1) for a single SAGD well pairs. They performed 

100 simulation runs in order to generate the required data to develop the proxy model. Making 

some simplifying assumptions to the general formulation a proxy model was developed, which 

includes four tuning factors to adjust the proxy behavior for different parameters with respect to 

the full model. The tuning process is implemented through an error minimization procedure.  

Jindong Shi and Juliana Leung built a physics-based proxy model for a Vapex process in a 

heterogeneous reservoir which allows the prediction of total drainage rate, drainage rate change 

with time, and the change of solvent chamber boundary position during the spreading chamber 

period (Shi and Leung 2013). In this study, they proposed a formulation based on Butler’s 

analytical solution developed for the conditions applicable for typical Hele-Shaw cell 

experiments (Butler and Mokrys, Solvent Analog Model of Steam Assisted Gravity Drainage 

1989), and therefore certain modifications were made in order to model the Vapex process in 

porous media.  

A sequence of explicit calculation of the analytical equations was performed to predict the 

solvent-oil interface position and producing oil rate as a function of time. They applied the 

analytical proxy model to three case studies and compared the obtained results with the 

constructed numerical simulation model for all cases. All the numerical reservoir models are 2D 

models; the first one consists of 108 grid blocks (12 × 9 × 1) and the second and third cases 

comprise 3600 grid blocks (120 × 30 × 1).  

The results of applying the proposed proxy model in different case studies demonstrates that as 

the complexity of the system increases the efficiency of the proxy model in terms of run time 

decreases. According to their study, the proxy model developed for the first case, which is a small 

case, aims at simulating the experiments of Butler and Mokrys (Butler and Mokrys, Solvent Analog 

Model of Steam Assisted Gravity Drainage 1989). In this case, the total run time was decreased from 

67 hours of numerical simulation to 2 seconds through the proxy model application. In the second 

case, which is a compositional flow simulation of the Vapex process in a homogeneous reservoir, 

the computational time was reported as 9 hours, which was decreased to 3 seconds by using the 

developed proxy model. The last case is the same as case 2 where the reservoir model is a 

heterogeneous model, and therefore it is the most complex case in this study. The total simulation 
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run time for the numerical model was about 5 hours, which could be reduced to 3 seconds (Shi 

and Leung 2013).  

The study of shale production is another area in which reduced physics approach has been used to 

develop proxy model as a substitute for a numerical reservoir simulation model.  

In the research performed by Wilson et al. (Wilson and Durlofsky 2012) the objective is to 

develop a much simpler and faster reduced-physics surrogate model that can be used for 

optimization of shale gas production (K. C. Wilson 2012). In this study, a full-physics 2D 

numerical simulation model was developed, which comprises 50,000 to 250,000 grid blocks in 

different cases. The fluid flow is considered as non-Darcy flow and was modeled through 

Fourchhemeire modification to Darcy’s law.  This model is considered as the reference model, 

that includes highly-resolved fracture networks, dual-porosity, dual-permeability regions, and gas 

desorption. The objective is to determine well spacing, well length, and the number of fractures 

for each horizontal well in order to optimize gas production from a shale reservoir.  

The developed reduced-physics surrogate is a simplified model that not only considers fewer 

physical effects, but also contains fewer grid blocks than the full-physics model. In order to 

determine the required level of physics, and also the degree of reduction in grid resolution, some 

numerical experiments were performed. According to this study, a single-porosity model, without 

desorption or grid refinement, could provide results close to the full-physics model outputs. 

Another simplification assumption is that each fracture in the reduced-physics model was 

represented through an additional perforation along the wellbore in the stimulated region instead 

of explicitly being modeled. The reduced-physics model contains only 5618 grid blocks, which is 

a factor of 10 (or more) fewer than a typical full-physics model.  

The simplified model must then be tuned with the results of the reference model. The tuning 

parameters are the porosity and permeability of the surrogate model. An optimization procedure 

was applied to minimize the error of the gas production resulted from the full-physics models and 

the proxy model when the models are conducted for a variety of scenarios. These scenarios are 

designed based on changes in parameters such as well lengths, well spacing, and fracture spacing 

which are the key parameters for gas production optimization, for the under study shale reservoir. 

The surrogate model was implemented in two different cases. The results for the first case, with 

long well length and high density fracture, and the second case, with short well length and low 

density fracture, demonstrate that the surrogate model was able to generate the results within 4 

seconds for both cases while the two full-physics models were run in 2100 and 560 seconds 

respectively. 
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According to the research that has been performed on the development of proxy models through 

reduced physics approach, the following can be concluded: 

 From the studies related to proxy modeling for thermal recovery processes using 

simplified physics, it can be inferred that although in some cases the results demonstrate 

the capability and efficiency of these proxy models in predicting the required output 

parameters, the application of these proxy models is significantly limited.  

 These proxy models have never been applied to a complex 3D reservoir with a large 

number of grid blocks in order to evaluate their range of capabilities when the size of the 

reservoir grows dramatically. In this case the tuning process of the simplified model can 

be significantly difficult due to the high dimensionality. 

 The argument for the case where the proxy was developed for shale is that since a single 

value for porosity and permeability was used it cannot be considered as a realistic 

assumption and therefore it seems impractical due to the over simplification.   

Based on the applications of this approach for proxy model development (as it appears in the 

literature), it can be generally concluded that reduced physics models are efficient when they are 

applied for very complex processes such as thermal recovery or production from shale reservoirs. 

That is due to the fact that there are many unknown complexities pertaining to such processes that 

can be represented as a simplified format; however, for a non-complex process which is 

happening in a complex reservoir (can be complex structure/geology) the mathematical 

formulation of the physical phenomenon is already simplified through several assumptions. 

Therefore, further simplification either results in a very unrealistic representation of the system or 

it will not be efficient in terms of reducing the computational effort.   

Consequently, this methodology cannot be considered as a universal approach which can be 

effectively applied to variety of problems associated with fluid flow in porous media.  

2.2.3 Reduced Order Models 

Reduced order modeling is an approach through which the high-dimensional models are 

transformed into lower dimensional models that can be performed more efficiently with less 

computational costs. The low order model should be a meaningful representation of the high 

dimensional model.  

Reduced order modeling has been applied in different areas for several purposes of simulation, 

classification, visualization, and compression of high-dimensional data. The application of this 
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methodology in subsurface fluid flow modeling is relatively new, and is mostly based on Krylov 

subspace, balanced truncation, and proper orthogonal decomposition (POD) techniques. All of 

these approaches are using projection methods to transform the high-dimensional state space of 

the original model into a low-dimensional subspace (M. a. Cardoso 2009). Proper orthogonal 

decomposition is probably the most commonly used method for the reduced order modeling of 

nonlinear systems. 

The reduced order models are beneficial in several types of problems such as optimization and 

uncertainty analysis where a large number of high order models are required to be performed. In 

reservoir engineering, POD has been vastly used as an approach to develop fast running proxy 

models for variety of numerical reservoir simulation models. However, many researchers have 

modified POD methodology in an attempt to enhance the results or the efficiency of POD through 

integrating some other techniques. For example Cardoso et al. (Cardoso and Durlofsky 2010) 

have used clustering technique to optimize the snapshots for the eigen-decomposition problem 

and missing point estimation (MPE) procedure to reduce the dimension of the POD basis vectors. 

Other techniques include the application of POD-TPWL (Trajectory Piecewise Linearization) and 

POD-DEIM (Discrete Empirical Interpolation Method) which are elaborated further in this 

chapter. 

Since POD is the most commonly used approach in reduced order model (ROM) development in 

reservoir engineering, this methodology is described in more details in the next section, followed 

by presenting other studies through which some modifications have been performed on this 

methodology.    

Proper Orthogonal Decomposition (POD) 

Proper Orthogonal Decomposition (POD), also known as principal component analysis, 

Karhunen-Loeve decomposition or the method of empirical orthogonal function is a model 

reduction technique through which a low-order model is generated using snap shots from a high-

order simulation model.  

POD was first introduced by Lumley (Lumley 1967) where it was employed to identify coherent 

structures in dynamic systems then it was applied in fluid mechanics (Holmes, Lumley and 

Berkooz 1996), (Sirovich 1987) and has been frequently used in reduced-order model 

development for several physical processes (Ly and Tran 2001); however, its application in the 

area of reservoir modeling has been introduced in the past two decades (Hejin, Markovinovic and 

Jansen 2003), (Heijn, Markovinovic and Jansen, Generation of Low-Order Reservoir Models 

Using System-Theoretical Concepts 2006), (Van Doren, Markovinovic and Jansen 2006). 
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There are several works in which POD-based reduced order models have been developed for 

subsurface flow modeling. Vermeulen has applied this technique to simulate the long-term effect 

of change in precipitation/evaporation and also the effects of different well production rates for a 

heterogeneous aquifer (Vermeulen, Heemink and Te Stroet, Reduced models for linear ground 

water flow models using empirical orthogonal function n.d.). This model includes 33,000 active 

nodes. The reduced order model can achieve a 625 run time speed up, which is due to the 

linearity of the system. 

However, several other researchers have used the same technique for non-linear two-phase 

subsurface flow. Van Doren et al. (Van Doren, Markovinovic and Jansen 2006) developed an 

adjoint-based optimal control methodology for water-flooding of a heterogeneous two-

dimensional model which contains 2,025 grid blocks and two horizontal wells, one producer, and 

one injector. Proper orthogonal decomposition was used to compute reduced order models, which 

resulted in reducing the number of unknowns from 4,050 in the high-order model to 20-100. 

Finally, they applied this method to optimize the net present value (NPV). The run time speedups 

they achieved were only about a factor of 1.5.  

In other work, Markovinovic and Jansen (Markovinovic and Jansen, Accelerating iterative 

solution methods using reduced-order models as solution predictors 2006) proposed the use of 

POD to accelerate the iterative linear solver used for the high-order model, which consists of 

93,500 grid blocks. Generating a reduced order model, based on POD, they achieved up to a 

factor of 3 in speedup.  

The outcomes of all these works in the development of reduced order models by using POD, 

illustrate the challenges pertaining to using this method for problems with significant 

nonlinearity. It should be noted that even though the ROMs can be used for nonlinear problems, 

their performance generally reduces considerably compared to the linear cases (Astrid 2004) 

(Rewienski and White 2003). 

The following section is a summary on applications of POD in reduced order model development 

for numerical simulation reservoir models. Introducing the application of this methodology as an 

approach to reduce the order of the high dimensional subsurface flow necessitates the description 

of the formulations of fluid flow in porous media as used to develop full order reservoir models. 

Therefore, the first part in the following section presents the related formulations.  
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Full order Reservoir Model 

To develop a reduced order model for a reservoir simulation model, first the full order model 

must be run in order to generate several snapshots, which are representative of the dynamic 

system.  

Considering a two-dimensional reservoir with �̅� × �̅�  grid blocks, the fluid flow in porous media 

can be formulated as a set of partial differential equations resulted from material balance for oil 

and water and Darcy's law (Aziz and Settari 1979). Assuming a two phase flow in an iso-thermal 

condition, and disregarding the gravity forces, the governing fluid flow equation for oil and water 

phases can be written as: 

−∇. {
𝛼𝜌𝑤𝑘𝑟𝑤

𝜇𝑤
𝐾 (∇𝑝𝑤 −

𝜕𝑝𝑐

𝜕𝑆𝑤
 ∇𝑆𝑤)} + 𝛼

𝜕(𝜌𝑤𝜑𝑆𝑤)

𝜕𝑡
− 𝛼𝜌𝑤𝑞𝑤 = 0 

Equation 6 

−∇. {
𝛼𝜌𝑜𝑘𝑟𝑜

𝜇𝑜
𝐾 (∇𝑝𝑜 −

𝜕𝑝𝑐

𝜕𝑆𝑜
 ∇𝑆𝑜)} + 𝛼

𝜕(𝜌𝑜𝜑𝑆𝑜)

𝜕𝑡
− 𝛼𝜌𝑜𝑞𝑜 = 0 

Equation 7 

Where, α is geometrical factor, 𝜌𝑤 and 𝜌𝑜 are water and oil densities, K is permeability and 𝑘𝑟𝑤  

and 𝑘𝑟𝑜 are water and oil relative permeability, respectively. 

𝑆𝑤 is water saturation, 𝑆𝑜 is oil saturation, and 𝑝𝑐  =  𝑝𝑜 – 𝑝𝑤 (where 𝑝𝑐 is capillary pressure, 𝑝𝑜 

is pressure in the oil phase, and 𝑝𝑤 is pressure in the water phase). 

Discretizing the above equations in space using a five-point block-centered grid will result in the 

following system of non-linear first order differential equations: 

[
𝑉𝑤𝑝(𝑠) 𝑉𝑤𝑠

𝑉𝑜𝑝(𝑠) 𝑉𝑜𝑠
] [

�̇�
�̇�

] + [
𝑇𝑤(𝑠) 𝐷

𝑇𝑜(𝑠) 0
] [

𝑝
𝑠

] = [
𝑞𝑤

𝑞𝑜
] 

Equation 8 

Where s is the vector of water saturation, V and T are matrices containing accumulation and 

transmissibility term respectively, which are the function of s, and D is a matrix with entries 

containing diffusion coefficient (Jansen and Markovinovic 2004).  

Equation 8 can be rearranged in the form of state variable representation as a non-linear ordinary 

differential equation (Heijn, Markovinovic and Jansen, Generation of Low-Order Reservoir 

Models Using System-Theoretical Concepts 2006). 
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𝑥 ̇ (𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) = 𝐴𝑐𝑥(𝑡) +  𝐵𝑐𝑢(𝑡) , 𝑦(𝑡) = 𝐶𝑐𝑥(𝑡) 

Equation 9 

Where, x is the state vector containing oil pressures ( 𝑝𝑜) and water saturations ( 𝑆𝑤) for each grid 

block. The order n of the state space system in Equation 9 is equal to the total number of state 

variables, which in this case will be 𝑛 = 2�̅��̅�. 

𝐴𝑐 is the system matrix, and 𝐵𝑐 is the input matrix, and their parameters are functions of 𝑥.  

𝑦 is the output vector, which is represented by output matrix 𝑪𝑐, times the state variable of the 

system. Here, 𝑥 is the n-dimensional state vector. 

First, Equation 9 is linearized around point x=x*: 

𝑥 ̇ (𝑡) = [𝑓]𝑥∗ + [
𝜕𝑓

𝜕𝑥
]

𝑥∗ 
(𝑥(𝑡) − 𝑥0) + ⋯  ≈  [

𝜕𝑓

𝜕𝑥
]

𝑥∗ 
𝑥(𝑡) + [𝐵𝑐]𝑥∗ 𝑢(𝑡) + [𝐴𝑐 −

𝜕𝑓

𝜕𝑥
]

𝑥∗
𝑥∗ 

Equation 10 

 

𝑦(𝑡) = 𝐶𝑐𝑥(𝑡) 

Equation 11 

 

In the case that [
𝜕𝑓

𝜕𝑥
]

𝑥∗ 
exists, �̅� = 𝑥 + [

𝜕𝑓

𝜕𝑥
]

𝑥∗

−1

 
[𝐴𝑐 −

𝜕𝑓

𝜕𝑥
]

𝑥∗
𝑥∗ and   �̅� = 𝑦 + 𝐶𝑐 [

𝜕𝑓

𝜕𝑥
]

𝑥∗

−1

 
[𝐴𝑐 −

𝜕𝑓

𝜕𝑥
]

𝑥∗
𝑥∗. In general state space notation in continuous time (Equation 9) can be rewritten as: 

𝑥 ̅̇ (𝑡) = �̅�𝑐�̅�(𝑡) + �̅�𝑐�̅�(𝑡) , �̅�(𝑡) = 𝐶𝑐
̅̅ ̅𝑥(𝑡) 

Equation 12 

Where:  

�̅�𝑐 = [
𝜕𝑓

𝜕𝑥
]

𝑥∗ 
  ,    �̅�𝑐 =  [𝐵𝑐]𝑥∗  𝑎𝑛𝑑 𝐶𝑐

̅̅ ̅ = 𝑲𝑻    

𝑲 is a matrix selecting only the elements that contain a well segment. Using semi-implicit Euler 

discretization of Equation 12 by treating the state vector 𝑥(𝑡) implicitly and the input vector 𝑢(𝑡)  

explicitly results in:  

𝑥(𝑘 + 1)  = [𝑰 − ∆𝑡 �̅�𝑐 ]−1[𝑥(𝑘) + ∆𝑡 �̅�𝑐  𝑢(𝑘)]          , 𝑦(𝑘) = 𝐶𝑑
̅̅ ̅𝑥(𝑘) 

Equation 13 
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In this equation k represents the discrete time. Now, by defining �̅�𝑑 =  [𝑰 − ∆𝑡 �̅�𝑐  ]−1 and �̅�𝑑 =

[𝑰 − ∆𝑡 �̅�𝑐 ]−1∆𝑡 �̅�𝑐 , and 𝐶�̅� =  𝐶�̅�, the general state space system in discrete time is expressed as 

followed: 

𝑥(𝑘 + 1)  = �̅�𝑑𝑥(𝑘) + �̅�𝑑𝑢(𝑘)   ,    𝑦(𝑘) = 𝐶𝑑
̅̅ ̅𝑥(𝑘)    

Equation 14 

It should be noted that in order to simplify the notations, the over-bar sign will be omitted during 

the rest of this section. 

 

Reduction of the High-Order Reservoir Model  

The POD technique uses a transformation matrix of the non-linear high-order model in order to 

reduce the order of the system. In other words, POD can be described as an orthogonal linear 

transformation that transforms a set of data to a new coordinate system, such that the greatest 

variance lies in the first coordinate, the second greatest variance in the second coordinate, and so 

on. This theory exits for both infinite and finite dimensional systems; however, it is more 

generally applied to the latter.  

Suppose the original system has a 𝑛-dimensional state space, the objective is to lower the 

dimension of the system by projecting the state space into a lower dimensional space. Therefore, 

first the n-dimensional reservoir model is run and a total number of M snapshots of the state 

variables are generated   {𝑥𝑖}𝑖=1
𝑀 . Note that n is much larger than M (i.e.  𝑛 ≫ 𝑀).  

𝑋 ∶= [𝑥1  𝑥2  …   𝑥𝑀]   

Equation 15 

Given the data matrix 𝑿, which comprises of the state vectors (𝑥), it is desired to find a 

transformation so that:  

𝑥 ≃ 𝜙𝑙𝑧        

Equation 16 

Where, 𝜙 is an 𝑛 ×  𝑙 transformation matrix and z is a reduced state vector of length 𝑙. Therefore, 

based on Equation 14 and Equation 16, the reduced state vector is calculated as follows: 

𝑧(𝑘 + 1)  = 𝜙𝑇[�̅�𝑑𝑥(𝑘) + �̅�𝑑𝑢(𝑘)],   𝑦(𝑘) = 𝐶𝑑
̅̅ ̅𝜙𝑧(𝑘)    

Equation 17 
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The objective of using POD is to find 𝑙 orthogonal eigenvectors (𝑙 ≤ 𝑀 ≪ 𝑛), represented 

by {𝜙𝑖}𝑖=1
𝑙  such that the total square distance between the snapshots and its projections on the 

subspace defined by the 𝑛 × 𝑙 matrix is minimized for any 𝑙. 

𝑄(ɸ) ∶= 
1

𝑀
∑‖𝑥𝑖 −  ɸ ɸ𝑇𝑥𝑖‖2

𝑀

𝑖=1

 

Equation 18 

ɸ ∶= [𝜙1  𝜙2  …   𝜙𝑀] 

Equation 19 

In summary, the POD method characterizes the states of the system by a set of orthonormal basis 

functions, which correspond to the leading eigenvectors of a covariance matrix constructed from 

a set of computed solutions. These solutions are generated by using some snapshots of the high-

fidelity (high-dimensional) simulation runs which are considered as training. The method of 

snapshot was introduced by Sirovich (Sirovich 1987) to identify the POD basis functions for large 

systems.  

Singular Value Decomposition (SVD) can be used in order to more efficiently generate the basis 

function and obtain the transformation matrix (Markovinovic, System-Theoretical Model 

Reduction for Reservoir Simulation and Optimization 2009). 

Consequently, a reduced-order model is generated by projecting the original governing equations 

onto the POD basis functions, which significantly reduces the number of unknowns that must be 

computed. Since the error between the original data (snapshots from the high-order reservoir 

model) and the reconstructed data for any given number of basis functions is minimized, the 

obtained basis is considered to be optimum. Consequently, the full state vector (x) is 

reconstructed using φ (M. A. Cardoso 2009). 

  

Summary of POD-Based ROM Using SVD 

In order to develop a reduced order model for a numerical reservoir model using POD method, 

the reservoir simulation model is run and solution snapshots of the state variables (pressure and 

saturation) of the system is stored. In the next step the singular value decomposition (SVD) is 

performed on the resulting data matrix that generates a reduced basis, which is used to project the 

solution into a lower dimensional subspace. Consequently, the equations are only solved for a 

reduced set of unknowns.  



22 

 

The POD procedure requires performing the following steps (𝑁𝑐  represents the number of grid 

blocks): 

1. The full reservoir simulation model is run one time or more with prescribed 

sequences of the control 𝑢. These runs are called training simulations. 

2. The state variables of the system (pressure and saturation) at each time step are saved 

as solution snapshots and the data matrix is generated (individually for pressure and 

saturation). If 𝑘 is the number of snapshots, the matrix 𝑋 is of dimensions 𝑁𝑐 × 𝑘 

(typically𝑘 ≪ 𝑁𝑐). 

3. The eigen functions of 𝑋𝑋𝑇(with a dimension of 𝑁𝑐 × 𝑁𝑐) generates the POD basis 

matrix. Since 𝑁𝑐 is large the eigen-decomposition is very expensive, instead the 

Singular Value Decomposition (SVD) is used. 

4. 𝑙 most significant eigenvectors encompass the energy of 𝐸𝑙 = ∑ 𝜆𝑖
𝑙
𝑖=1 . The total 

energy of the system (𝐸𝑡) can be calculated by setting 𝑙 = 𝑘. Based on the amount of 

energy which is desired to be captured in ф, a fraction of total energy is specified 

through which a value for 𝑙 ≪ 𝑘 can be determined. 

5.  Following the above steps, ф𝑃(of dimensions 𝑁𝑐 × 𝑙𝑝) and ф𝑠(of dimension 𝑁𝑐 × 𝑙𝑠) 

are obtained and are combined to produce the basis matrix ф. 

6. Since ф is orthonormal, 𝑧 is calculated through. 𝑧 = 𝜙𝑇𝑥. 

7. At each iteration of each time step, the full Jacobian matrix 𝑱 must be evaluated. This 

part of the POD procedure makes it a costly computation since this calculation is 

performed at each iteration. 

 

Combination of POD and TPWL  

The application of POD for solving a non-linear subsurface flow problem provides a run time 

speed up of about three or less, which can be significantly improved if used in combination with 

other methods. Trajectory piecewise linearization (TPWL) and Discrete Empirical Interpolation 

Method (DEIM) are the two methodologies that have been used in conjunction with the POD 

technique in order to make this method more efficient (M. A. Cardoso 2009) (Rousset, et al. 

2013) (Gildin, et al. 2013) (He and Durlofsky, Reduced-Order Modeling for Compositional 

Simulation by use of Trajectory Piecewise Linearization 2014). The application of these two 
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methodologies in ROM development for reservoir simulation model is discussed in the following 

sections. 

Trajectory piecewise linearization method was introduced by Rewienski (Rewienski and White 

2003). In this methodology, a nonlinear system is presented as a weighted combination of a 

piecewise linear system and each linear system is projected into a low-dimensional space through 

a ROM procedure. New state variables of the system are represented in terms of piecewise linear 

expansions around previously simulated (and saved) states and Jacobian matrices.   

Based on this method, Cardoso et al. have used a reduced-order modeling technique to reduce the 

computational time of numerical model of two-phase fluid flow in porous media (M. a. Cardoso 

2009) (Cardoso and Durlofsky 2010). In this study, in order to achieve a significantly greater 

speed up, Trajectory Piecewise Linearization Method was used, which represents new pressure 

and saturation states using linear expansions around the states previously simulated and saved. 

This linearized representation is then projected into a lower dimensional space using POD 

procedure. 

As stated before, the governing equation of fluid flow in porous media can be represented through 

the following partial differential equation: 

𝜕

𝜕𝑡
(𝜑𝜌𝑗𝑆𝑗) − ∇. [𝜌𝑗𝜆𝑗𝒌(∇𝑝𝑗 − 𝜌𝑗𝑔∇𝐷)] + 𝑞𝑗

𝑤 = 0         

Equation 20 

Where 𝑗 designates component/phase (𝑗 = 𝑜 for oil and 𝑤 for water), 𝒌 stands for the (diagonal) 

absolute permeability tensor,  𝜆𝑗 = 𝑘𝑟𝑗 𝜇𝑗⁄  is the phase mobility in which 𝑘𝑟𝑗  is the relative 

permeability to phase 𝑗, and µ  is the phase viscosity, 𝑝𝑗 is phase pressure, 𝜌𝑗is the phase density, 

𝑔 is gravitational acceleration, 𝐷 is depth, 𝑡 is time, 𝜑 is porosity, 𝑆𝑗 is saturation, and 𝑞𝑗
𝑤 is the 

source/sink term. 

Equation 20 is a non-linear system of equations, which comprises four equations and four 

unknowns (𝑝𝑜 , 𝑝𝑤, 𝑆𝑜 , 𝑆𝑤). In a two phase fluid system (water and oil), the constraint of 𝑆𝑜 +

 𝑆𝑤 =  1, and also the capillary pressure relationship 𝑝𝑐(𝑆𝑤) =  𝑝𝑜 − 𝑝𝑤  are the two other 

equations which are used to solve the equations. This system of equation can be solved through a 

fully implicit approach. Based on the finite volume scheme, the non-linear equation can be 

discretized. The discretized system for fully-implicit formulation can be presented as follows 

(Aziz and Settari 1986): 
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𝑔(𝑥𝑛+1, 𝑢𝑛+1) = 𝐴(𝑥𝑛+1, 𝑥𝑛) + 𝐹(𝑥𝑛+1) + 𝑄(𝑥𝑛+1, 𝑢𝑛+1) = 0 

Equation 21 

In this equation, 𝑔 is the residual vector aimed to drive to zero and 𝑥 = [𝑝𝑜 , 𝑆𝑤] is the state 

vector, 𝑢 represents the (specified) well control parameters (e.g. bottom-hole pressure), 𝑛 and 

𝑛 +  1 identify time level, 𝐴 and 𝐹 are the discretized accumulation, and 𝑄 represents the flux 

and source/sink terms. 

Equation 21 represents a fully implicit non-linear system, which is solved through application of 

Newton’s method with the Jacobian matrix of 𝐽 =
𝜕𝑔

𝜕𝑥
⁄ . This is an iterative procedure which 

requires a huge amount of computational effort especially when the numerical reservoir 

simulation model comprises a large number of grid blocks (in the order of 106). Therefore, in 

order to address this problem, Cardoso et al. have utilized TPWL technique to linearize Equation 

21. This linearization is performed by expanding the governing equation around a particular state 

(here is the previously saved state 𝑥𝑠𝑣) which correspond to a set of controls (𝑢𝑠𝑣). The 

expansion of Equation 21 will result in: 

𝑔(𝑥𝑛+1, 𝑢𝑛+1) = 𝑔(𝑥𝑠𝑣 , 𝑢𝑠𝑣) + (
𝜕𝑔

𝜕𝑥
)

𝑠𝑣
(𝑥𝑛+1 − 𝑢𝑠𝑣  ) + (

𝜕𝑔

𝜕𝑢
)

𝑠𝑣
(𝑢𝑛+1 − 𝑢𝑠𝑣 ) + ⋯ 

Equation 22 

Where 𝑢𝑛+1, is the new set of controls, 𝑥𝑛+1 is the new state to be determined. Both terms of 

(
𝜕𝑔

𝜕𝑥
)𝑠𝑣 and (

𝜕𝑔

𝜕𝑢
)𝑠𝑣 are matrices evaluated at (𝑥𝑠𝑣 , 𝑢𝑠𝑣).  

The goal is to represent 𝑥𝑛+1 in the form of Equation 22 when the solution at time step n (𝑥𝑛) is 

known. When information about the higher-order derivatives is not available, error will be 

minimized by expanding around the saved state that is the closest to 𝑥𝑛+1. The state that is 

closest to 𝑥𝑛 is designated as 𝑥𝑖. It is assumed that the closest saved state to 𝑥𝑛+1 (the unknown 

state) is 𝑥𝑖+1, which is the saved state that follows 𝑥𝑖. 

The coressponding Jacobian matirx of the system is defined as: 

𝑗𝑖+1 =
𝜕𝐹𝑖+1

𝜕𝑥𝑖+1 +
𝜕𝐴𝑖+1

𝜕𝑥𝑖+1 +
𝜕𝑄𝑖+1

𝜕𝑥𝑖+1  

Equation 23 

Applying the expansion in the form of Equation 22, for each single term of Equation 21, and 

using the Jacobian matrix will result in the following equation assuming that the residual term at 

the new state is set to zero (𝑔(𝑥𝑛+1, 𝑢𝑛+1) = 0). 
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𝑱𝑖+1(𝑥𝑛+1 − 𝑥𝑖+1) = −[𝑭𝑖+1 + 𝑨𝑖+1 +
𝜕𝐴𝑖+1

𝜕𝑥𝑖 (𝑥𝑛 − 𝑥𝑖) + 𝑸(𝑥𝑖+1, 𝑢𝑛+1)] 

Equation 24 

If the number of grid blocks in the numercial reservoir simulation model is denoted as 𝑁𝑐 , then 

the dimension of the matrices  𝑱𝑖+1 and 
𝜕𝐴𝑖+1

𝜕𝑥𝑖  are 2𝑁𝑐 ×  2𝑁𝑐 . Still the high dimensionality of the 

problem makes it computationlly expensive to solve the system of equations. Therefore, a 

reduced-order modeling technique can be applied in conjunction with TPWL to project the high-

dimensional linearized model into lower-dimension space. Propoer Orthogonal Decomposition, 

Krylov subspace (Gratton and Willcox 2004), and balanced truncation method (Markovinovic 

and Jansen, Accelerating iterative solution methods using reduced-order models as solution 

predictors 2006) (Heijn, Markovinovic and Jansen, Generation of low-order reservoir models 

using system-theoretical concepts 2004) are among the possible reduced order techniques that can 

be used. 

For solving this problem through POD procedure a basis matrix (ф) is sought so that: 

𝑥 = [
𝑃

𝑆𝑤
] ≃ ф𝑧 = [

ф𝑃 0
0 ф𝑠

] [
𝑧𝑝

𝑧𝑠
] 

Equation 25 

Where ф relates the high dimensional state 𝑥 to the reduced state 𝑧, which is of dimension 𝑙. 

Since ф is orthonormal, 𝑧 is calculated through 𝑧 = 𝜙𝑇𝑥. The full Jacobian matrix 𝑱 is projected 

to reduced Jacobian 𝐽𝑟 by using  𝐽𝑟 = 𝜙𝑇𝐽𝜙. 

Using ф and the reduced Jacobian, Equation 24 can be solved directly for 𝑧𝑛+1. Therefore, the 

TPWL-POD formulation can be represented as follows: 

𝒛𝑛+1 = 𝒛𝑖+1 − (𝑱𝑟
𝑖+1)

−1
[( 

𝜕𝑨𝑖+1

𝜕𝒙𝑖 )
𝑟

(𝑧𝑛 − 𝑧𝑖) + ( 
𝜕𝑸𝑖+1

𝜕𝒖𝑖+1)
𝑟

(𝑢𝑛+1 − 𝑢𝑖+1)] 

Equation 26 

Cardoso et al. have applied this methodology to two reservoir models (Cardoso and Durlofsky 

2010). The first one is a three dimensional model which contains 24,000 grid blocks (60 × 80 ×

5), including 4 production and two water injection wells. The second one consists of 79,000 grid 

blocks (60 × 220 × 6). They used a different bottom hole pressure scheme for the production 

wells in two training sets while the bottom hole pressure of the injection wells are kept constant. 

The models were run for a time interval of 5000 days. The two models are similar in all 
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properties except for the oil and water densities, which are assumed to be equal in the second 

model. The results of the test runs to predict the production and injection rates show a very good 

agreement with the reservoir model output. They ultimately used the constructed ROM for a 

multi-objective optimization study. The run time speed up reported as 500 to 2000 using this 

methodology when the mass balance error was not evaluated. 

Although in this study the pressure and saturation of each grid block is calculated at each time 

step, since the objective is to obtain the production and injection rates through the ROM, the 

calculated pressure and saturation at the grid block level were not compared to those of the high 

dimensional reservoir model. 

In a similar work, the same methodology was used to construct a ROM for a simplified though 

non-linear thermal recovery (SAGD) problem (Rousset, et al. 2013) (M. Rousset 2010). Three 

high dimensional reservoir models were constructed. The first one consists of 75,000 (50 × 50 ×

30) grid blocks, which was used for simulating the primary production where permeability field 

follows a log-normal distribution. The second and third are both two dimensional models (in Y-Z 

direction) with 3,751 and 6,050 grid blocks respectively and they simulate idealized SAGD 

process. The permeability field is considered as homogeneous in the second model and 

heterogeneous for the third one. 

The result of the ROM in estimating the oil and water production, as well as water injection, was 

compared to those of the high fidelity reservoir model, which shows some discrepancies between 

the two outputs when applied for the most complex model. The run time speed up is reported as 

200-500 in the test cases.  

In this study, the oil saturation distribution map has also been generated for different time of the 

simulation for the second and third models, which shows more accuracy in the case of 

homogeneous permeability field. However, the pressure distribution maps were not generated in 

this study.     

A similar work was done by Jincong He (He, Enhanced Linearized Reduced-order Models For 

Subsurface Flow Simulation 2010) on the application of POD-TPWL method for subsurface flow 

simulation. 

According to the latest study, which was conducted by Jincong He (He and Durlofsky, Reduced-

Order Modeling for Compositional Simulation by use of Trajectory Piecewise Linearization 

2014), a reduced order model was developed for a compositional numerical reservoir model, 

which at the maximum consists of 52,800 grid blocks. 
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Summary of POD-TPWL Procedure 

Development of POD-TPWL requires two different steps of offline and inline calculations.  

The offline calculation includes the following steps: 

1. The controls are set and the high-dimensional reservoir simulation (training run) is 

performed. 

2. The snapshots of 𝑿𝒑and 𝑿𝒔 are saved. 

3. The matrix ф is constructed (by combining 𝜙𝑃 and 𝜙𝑠). 

4. All the reduced order items that are required in Equation 26 are generated. 

The inline calculation consists of the steps below: 

1. The control u is prescribed. 

2. At each time step, the closest 𝑧𝑖 to 𝑧𝑛 is computed. 

3. The linearized model (Equation 26) is solved to obtain 𝑧𝑛+1 (the new state). 

4. The full order state is constructed through 𝑥𝑛+1 ≈ ф𝑧𝑛+1. 

There are two major sources of error when POD-TPWL is used to develop a proxy model. The 

first one is disregarding the higher terms in linearization step, and the second is projection into 

reduced space and reconstruction of the parameters into actual space. 

Combination of POD and DEIM 

As mentioned in the previous section, the objective of integrating TPWL with POD is to achieve 

a significant run time speed up with respect to POD by linearizing the system of non-linear 

equations. However, TPWL suffers from some instability problems when the fluids have high 

density difference. In order to avoid such a problem another method was introduced by Gildin et 

al. which uses Discrete Empirical Interpolation Method (DEIM). The objective of using DEIM is 

to approximate the nonlinear term of the system of equations through some form of interpolations 

(Gildin, et al. 2013).  

Through DEIM procedure an interpolation function is constructed, which is used for evaluation of 

the nonlinear terms in the partial differential equations by selecting an optimal subset of indexes. 

Consequently, the nonlinear function only needs to be evaluated at this greatly reduced set of 

component functions. 

If the nonlinear part of the flow equation is represented by 𝑔(𝑥), then it can be projected into a 

sub-space spanned by a basis {𝑢1, … , 𝑢𝑚} ⊂ 𝑅𝑁 with dimension 𝑚 < 𝑛 and the approximation is 

given as follows: 
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𝑔(𝑥) ≈ 𝑈𝑐(𝑥) 

Equation 27 

In this equation, columns of U are the projection basis, which are obtained through applying 

singular value decomposition to the nonlinear function snapshots, and c(x) is the corresponding 

coefficient vector. To determine c(. ), m rows of the overdetermined system in Equation 27 which 

cover the largest range of solution is selected. 

𝑐(𝑥) = (𝑃𝑇𝑈)−1𝑃𝑇𝑔(𝑥) 

Equation 28 

Where, 𝑃 is the output of a DEIM function. This function gets the 𝑈𝑚 as input and finds the 

coefficient so that the solution range is maximized. The complexity reduction lies in the fact that 

each of these components only depend on a small subset of the state variables. 

In the study performed by Gildin (Gildin, et al. 2013), the POD-DEIM methodology was applied 

to a two dimensional, heterogeneous numerical reservoir simulation model, which consists of 

2,025 grid blocks (45 × 45 × 1). This model simulated oil production under a 5-spot water flood 

process for an interval of 1,000 days. Applying the POD-DEIM method, the production rate of 

four producing wells, in addition to the pressure and saturation at each grid block, were estimated. 

As reported, the error for the pressure and saturation estimation is of order 10−3, and the results 

show a close agreement between the production rate from high dimensional reservoir simulation 

and the POD-DEIM reduced model results. 

POD-DEIM methodology has also been used in a study by Han Chen (Chen, Klie and Wang 

2013) to predict the space-time pressure solution by using a non-intrusive reduced order model. 

In this work, a simplified equation was assumed for the pressure (Laplacian Model), which is 

supposed to give the real solution for pressure if an error term is added to this equation ( 𝑃𝑅𝑒𝑎𝑙 =

𝑃𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 + 𝐸𝑟𝑟𝑜𝑟). The simplified pressure equation was solved through an implicit scheme. 

The reservoir is a 2D space, which consists of 30 × 30 grid blocks, and is run for 500 time steps. 

Chen et al. tried to develop a surrogate model which is able to approximate the error with respect 

to the actual flow equation. To generate the input-output samples for training, 18 simulations 

were run. The ROM result was compared to the true physics model results, and the error was 

computed. 
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 Limitations of POD-based reduced order models  

 The proxy models developed based on POD does not provide a significant run time speed 

up, which is due to the fact that the nonlinear function must still be evaluated at the full 

order number of states, and this consequently makes this approach computationally 

expensive and inefficient. 

 In order to generate the Jacobian matrix, the source code of the high-dimensional 

reservoir model must be accessible. However, using the common commercial reservoir 

simulators does not provide the access to the source code, and therefore generating the 

Jacobian matrix as an output at each iteration is not generally possible. 

 The computational time required for constructing the basis and generating the required 

reduced matrices are comparable to the run time of the training simulation. The overall 

processing overhead for building TPWL is about the time required to simulate four high-

fidelity models (Cardoso and Durlofsky 2010). Therefore, the application of this method 

is only practical when many simulation runs are required for a specific study.  

 The generated output files are also significantly large which requires a large amount of 

space to be stored. 

 One of the most important draw backs of this method is that when the system includes 

fluids with strong density differences, the accuracy of the estimated parameters is 

deteriorated, especially when applied to a model with a large number of grid blocks. This 

issue is related to the stability of the linearized representation. In the study conducted by 

Cardoso et al. (Cardoso and Durlofsky 2010), the inaccuracy in the estimated parameters 

was reported when the two fluids (oil and water) with different densities are used, and the 

reason of the result inaccuracy is said to be related to the more complex physics due to 

unequal densities. The understudy systems did not include a gas phase, which obviously 

have a huge density difference with the oil and water. Therefore, it can be concluded that 

using TPWL is not practical when it comes to a three phase fluid flow system.  

2.2.4 Data driven or Artificial Intelligence-based Models 

Data-driven proxy models are developed based on comprehensive analysis of all the existing data, 

which are extracted or become available from an understudy system.  
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In the approach based on Artificial Intelligence, employing machine learning techniques enables 

us to construct a model that can learn the behavior of the system through the provided data and 

perform a forecast of the system outputs when new data is introduced to the model.  

In data-driven models, virtual intelligence techniques can be employed, which includes neural 

networks, fuzzy logic, and genetic algorithm. Pattern recognition and learning capability of 

artificial intelligence are the key characteristics of the AI-based surrogate reservoir models, which 

make it a unique and efficient approach for proxy model development.  

Some of the advantages of AI-based surrogate reservoir models are low development cost and 

fast track analysis (S. Mohaghegh, Reservoir Simulation and Modeling Based on Pattern 

Recognition 2011). 
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CHAPTER 3. 

SURROGATE RESERVOIR MODELING BASED ON  

ARTIFICIAL INTELLIGENCE 

3.1 Surrogate Reservoir Model (SRM) 

The Artificial Intelligence-based modeling approach can be viewed as finding the complex 

relationships between the input-output parameters involved in fluid flow in porous media, and it 

is the most flexible technique, which can be used for variety of problems in petroleum and 

reservoir engineering areas such as field development planning, uncertainty analysis, production 

optimization, formation evaluation, history matching, etc. 

In some instances, although the mathematical representation of the physical phenomenon is 

considered to be accurate enough for the analysis purposes, due to the required computational 

effort for performing the analysis, using the mathematical formulations may become impractical. 

Therefore, the AI-based modeling approach in which the relationship between the inputs and 

outputs are learned through the provided data seems to be an efficient way of performing the 

required analysis. 

Surrogate Reservoir Model (SRM) is a reasonably accurate replica of a reservoir simulation 

model that runs in a very short period of time. SRM was first developed and introduced in 2006 

(S. D. Mohaghegh 2006). Originally, the SRM only dealt with pressure and production profiles at 

the well, and therefore was later named Well-Based SRM. 

In reservoir engineering, the pressure and gas saturation of the reservoir are among the key 

factors for decision making and consequently affects the operational practices. Therefore, a proxy 

model, which can generate the outputs of a reservoir simulation model at the grid block level in a 

short time, is desired. The Grid-based Surrogate Reservoir Model was developed for the first time 

for a CO2 sequestration project (Amini, et al. 2012). 

There are a few number of proxy models that aimed at predicting the pressure and gas saturation 

of the reservoir at the grid block level. However, the limitations and shortcomings of these 

approaches make them have a limited application, and in some occasions are even impractical to 

be used in real cases. 

The following section presents the capabilities and advantages of using Grid-Based SRM against 

the other techniques which have been used for the same objective. 
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3.2 SRM versus other Proxy Modeling Techniques 

The choice of the best technique for the purpose of proxy modeling must be driven considering 

the capability as well as the applicability of the technique. 

In the statistics-based proxy modeling a specific function of 𝑦 = 𝑓(𝑥1, 𝑥2, … 𝑥𝑛) is generated to 

predict the system output (𝑦) when the inputs (𝑥1, 𝑥2, … 𝑥𝑛) are changed. The number of inputs is 

limited to the uncertain parameters of the system. Even with this limited number of inputs, this 

approach requires hundreds of simulation runs to properly cover the input-output space.  

However, in AI-based surrogate modeling, a variety of inputs can be used. These inputs not only 

include the uncertain parameters of interest, but also many other parameters which can provide 

more information regarding the entire system. With the large number of inputs that can be 

integrated into the model, still the number of runs required for developing a surrogate model 

remains considerably lower than the statistics-based modeling technique.  This characteristic of 

the AI-based approach makes it remarkably flexible and significantly less dependent to the 

complexity of the high fidelity reservoir model. 

The reduced-physics modeling approach is claimed to be more accurate due to the fact that the 

physics of the phenomenon is taken into account, and therefore the developed proxy model 

honors the involved physics. However, it should be noted that even in the source model (the 

numerical reservoir simulation model), which is believed to perform based on the physics of the 

process, a large number of assumptions are made. Consequently, these detailed, complex 

numerical reservoir models are just a significantly simplified mathematical formulations of the 

physical phenomenon that is actually taking place in reality. As a result, the proxy model, which 

is developed based on further simplification of the involved formula, barely represents the actual 

physics of the process. Calibrating or tuning the reduced-physics model against the full-physics 

model, based on a limited number of runs, does not guarantee proper generalization ability for the 

model that can be applicable in a variety of cases.  

In the AI-based approach, no simplifying assumptions are made, and instead, the hidden complex 

relationship between the inputs of the model and the outputs is sought based on pattern 

recognition ability of this technique. Consequently, the behavior of the system under several 

conditions is taught to the surrogate model through provided data, which enables the surrogate 

model to predict the outputs when new inputs are introduced to the system. 

The reduced order modeling technique is basically based on partial differential equations of the 

fluid flow in porous media. In the ROM types of proxy modeling, we are still bounded to the 

entire physics-based mathematical formulations of fluid flow, and therefore this method suffers 
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from the problems that engineers encounter when they are dealing with solving a system of non-

linear equations. In order to overcome this problem, in some occasions further simplifications of 

the problem is required. For instance, in the study based on POD-TPWL, which was conducted 

by Cardoso et al. (Cardoso and Durlofsky 2010), in the cases with high difference in density of 

the existing fluids they experienced some instability problems. Even if we assume that the 

stability and convergence problem can be solved, the size of the problem still can be a significant 

obstacle for this type of approach. 

The reduced order modeling technique reduces the computational effort of solving the huge 

system of partial differential equations by projecting the high-dimensional system matrix into a 

lower-dimension matrix through a method of transformation, and consequently the system of 

equations can be solved faster. However, this procedure still needs to be performed on the full 

reservoir, and therefore it would not be as efficient when it is applied to a reservoir with a large 

number of grid blocks (over 106).  That is due to fact that in this approach, generating a low order 

model requires generating a system of partial differential equations for a million grid blocks. The 

question is that to what extent the order of the system matrix can be reduced? There is no doubt 

that in order to achieve a certain amount of accuracy, the order reduction cannot exceed a certain 

amount, and therefore, in practice, the reduced order model development for such a large number 

of grids becomes inefficient if not impossible. Consequently, there are many limitations 

associated with the reduced order modeling based on fluid flow formulations. Still this type of 

modeling has not been successfully applied on a large (more than 105 grids) and complex 

reservoir model with no simplifying assumptions.  

On the other hand, the AI-based surrogate reservoir modeling provides a significant amount of 

flexibility in so many aspects that are listed below: 

 There is no limitation regarding the involved parameters, such as the number of phases 

involved in the reservoir model, geological complexity, number of grid blocks, number of 

injection and production wells, rock-fluid properties, etc. 

 The physics of the phenomenon is not simplified. 

 It can be developed with a relatively low computational effort. 

All the mentioned characteristics and the amount of flexibility of the AI-based technique makes it 

a prominent and distinctive approach in the area of proxy modeling, which is much more 

applicable and practical for a variety of problems with different degrees of complexity. 
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3.3 Artificial Intelligence (AI) 

Artificial Intelligence is a universal field which encompasses a huge variety of subfields, from 

more general areas such as learning and perception to more specific tasks such as playing chess, 

writing poetry, and diagnosing diseases (Russell and Norvig 2003). 

McCarthy was the first one to introduce AI as a new field in 1955. Afterwards McCarthy and 

some other researchers resumed their research in this field in spite of all the difficulties they 

encountered. Three decades later, AI became a science and a revolution that occurred both in its 

content and methodology (Russell and Norvig 2003). 

There are several definitions for AI according to different researchers; however, it can generally 

be defined as “the study and design of intelligent agents.” An intelligent agent is something that 

acts intelligently in an environment according to the circumstances and its goal. This agent is 

flexible to the change of environments and goals. it learns from experience, and, within a certain 

limitation, it is able to make appropriate choices (Poole, Mackworth and Goebel 1998).  

Artificial Neural Network (ANN), Fuzzy Logic (FL), and Genetic Algorithms (GA) are among 

the most popular artificial intelligence techniques that are used to solve engineering problems. 

Incorporation of several virtual or artificial intelligence tools in a hybrid manner can generate a 

successful intelligent application. Virtual intelligence tools are able to complement each other by 

amplifying each other’s effectiveness (S. Mohaghegh, Virtual-Intelligence Applications in 

Petroleum Engineering: Part 2-Evolutionary Computing 2000). 

As one of the sub-categories of the artificial intelligence method, Artificial Neural Networks 

(ANNs) have a great potential for performing accurate analysis and predictions from historical 

data. The ANNs are particularly useful where mathematical modeling cannot be considered as a 

practical option. This can be due to the fact that all the parameters involved in the process are not 

known and/or there is a very complex relationship between the parameters of the system, which is 

too complicated to be presented through mathematical formulations (Holdaway 2014).  

The artificial neural network is a powerful tool that has been successfully used in a wide variety 

of problems in different areas such as medical, engineering, financial, business, etc. However, in 

different industries, many cases of unsuccessful neural network implementations have been 

reported, which can be traced back to inappropriate neural network design and general 

misconceptions about how they work (Reid 2014).  

In the current research, the artificial neural network method is employed to develop a surrogate 

reservoir model. This technique is explained in detail throughout the upcoming sections.   
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3.3.1 Artificial Neural Network Overview 

Artificial Neural Network is an information-processing paradigm that was inspired by the 

biological nervous system. This inspiration comes from the way information is processed through 

the interconnected structure of the nervous system (Basu, Bhattacharyya and Kim 2010). 

The most attractive characteristics of artificial neural networks are their ability to learn complex 

nonlinear input-output relationships, use sequential training procedures, and adapt themselves to 

the data. Therefore, ANN has been used as a powerful data processing tools in a wide variety of 

problems in different areas such as medical, engineering, financial, business, etc. 

The first artificial neural network were introduced and modeled by McCulloch and Pitts in 1943 

(McCulloch and Pitts 1988). There is a wide variety of neural networks used in solving different 

engineering and science complex problems, some of which can be named as feed-forward neural 

network, radial basis function network, recurrent network, modular neural network, etc. 

ANN can be considered as generalizations of mathematical models of biological neurons. It 

consists of a large number of simple processing elements called neurons where the information 

processing occurs. Each neuron is connected to other neurons by means of communication link 

any of which has an associated weight.  The weights represent information being used by the net 

to reach the solution (S. D. Mohaghegh, Virtual-Intelligence Applications in Petroleum 

Engineering: Part 1-Artificial Neural Networks 2000).   

Generally a neural network is characterized by three items which are:  

1. Pattern of connections between the neurons (network architecture)  

2. Method of determining the weights on the connections (training or learning algorithm) 

3. Activation function that converts the neuron’s weighted input into the output activation 

 

 

 

 

 

 

 Figure 1. An artificial neuron (a single processing element of a Neural Network) 
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 illustrates the process that occurs in an artificial neuron as an example. Several inputs are 

weighted and received by a single neuron and are summed up and subsequently applied to the 

activation function which results in the neuron output. 

Three different methods can be used as learning or training strategies which are: supervised, 

unsupervised, or reinforcement learning.  

In supervised learning, the network is trained by providing a set of inputs and their corresponding 

outputs (training set). At each training iteration, the error between the network output and 

provided output is computed, and based on the error signal the network parameters are adjusted. 

At each iteration, the network is applied to a set of inputs without their expected output to verify 

the performance of the trained network. This procedure is repeated until some criteria are met. 

Unsupervised learning is a method through which a hidden structure in input data is sought when 

the output is not provided. Since no output is available there is no error signal to lead the network 

to the solution. This method is used to cluster data, find, summarize, and explain the key features 

of the data. 

In the reinforcement learning method, the agent is rewarded when it makes a good move and is 

punished for a bad move, and consequently it learns from its success and failure (C. M. Bishop 

2006).   

In this study, the purpose of using neural networks is to develop a proxy model which is able to 

mimic the outputs of a reservoir simulation model, and therefore the neural networks are trained 

through the supervised learning strategy. 

The feed-forward neural network method is the type of neural network used in this research. 

Therefore, this specific class of neural network is presented in detail in the following sections. 

3.3.2 Feed-forward Neural Network Model 

Among all the different types of neural networks, the feed-forward neural network is the first and 

one of the most widely used types of the artificial neural network in which the information flows 

in one direction from input toward output.     

The simplest feed-forward artificial neural network consists of a single perceptron that is only 

capable of learning linear separable problems. A simple multi-layer feed-forward artificial neural 

network is used to solve more complex problems. 
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The basic neural network model can be described as a series of functional transformations. Neural 

networks use basis functions in the form of Equation 29 (C. M. Bishop 2006). 

𝑦(𝑥, 𝑤) = 𝑓(∑ 𝜔𝑗𝜙𝑗(𝑥)

𝑀

𝑗=1

) 

Equation 29 

Each basis function, itself, is a nonlinear function of a linear combination of the inputs. 

Considering 𝑥1, 𝑥2, … , 𝑥𝐷  as inputs, in order to develop the neural network, 𝑀 linear 

combinations of the input variables are constructed through the following formulation.  

𝑎𝑗 = ∑ 𝜔𝑗𝑖
(1)𝑥𝑖

𝐷

𝑖=1

+ 𝜔𝑗0
(1) 

Equation 30 

Where, 𝑎𝑗 is known as activation, 𝑗 = 1,2, … , 𝑀, and subscript (1) is the representative of the first 

layer of the network. The parameters 𝜔𝑗𝑖
(1)  are referred to as weights, and 𝜔𝑗0

(1)’s are called the 

biases.  

Each activation is transformed by using a nonlinear activation function ℎ(. ) which then gives: 

𝑧𝑗 = ℎ(𝑎𝑗) 

Equation 31 

These quantities correspond to the hidden units. The nonlinear function of ℎ(. ) can be a 

sigmoidal function or the ′𝑡𝑎𝑛ℎ′ function. In order to obtain the output unit activation, these 

values are again linearly combined. 

𝑎𝑘 = ∑ 𝜔𝑘𝑗
(2)𝑧𝑗

𝑀

𝑗=1

+ 𝜔𝑘0
(2) 

Equation 32 

 

Equation 32 is the transformation related to the second layer of the network in which, 𝑘 =

1,2, … , 𝐾 and 𝐾 is the number of outputs. The same as Equation 30, the 𝜔𝑗0
(1)’s are the bias 

parameters.  

Finally, in order to calculate the network output, 𝑦𝑘 the output unit activations, are transformed 

through an appropriate activation function. Several activation functions are available for different 
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systems. The linear, unit step, ramp, logistic sigmoid, hyperbolic tangent, and Gaussian transfer 

function are the most commonly used. The diagram below shows the schematics of the six 

activation functions. 

 

 

The choice of activation function is determined based on the nature of the data and also the type 

of problem (C. M. Bishop 2006). The logistic sigmoid function, 𝛿 which is the activation function 

used in this work, is defined as: 

𝛿(𝑎) =
1

1 + exp(−𝑎)
 

Equation 33 

Considering the sigmoid function as the activation function, each output unit is transformed 

through 𝑦𝑘 = 𝛿(𝑎𝑘) formula. 

By combining the various stages mentioned above (Equation 30 to Equation 32), the overall 

neural network function can be represented in the following form.     

Figure 2. Six most popular activation functions used in neural network models (Reid 2014) 



39 

 

𝑦𝑘(𝑥, 𝑤) = 𝛿(∑ 𝜔𝑘𝑗
(2)

𝑀

𝑗=1

ℎ (∑ 𝜔𝑗𝑖
(1)𝑥𝑖 + 𝜔𝑗0

(1)) +

𝐷

𝑖=1

𝜔𝑘0
(2))  

Equation 34 

As indicated in Equation 34 the neural network model is a nonlinear function of a set of input 

{𝑥𝑖} to a set of output {𝑦𝑖}, and it is controlled by a set of adjustable parameters which are the 

weights. 

Figure 3 demonstrates the network diagram, which represents the input-output relationship 

corresponding to Equation 34. In this diagram, the input, hidden, and output variables are denoted 

by nodes. The weights are indicated by links between the nodes. The bias parameters are the 

additional nodes in input and hidden layers 𝑥0, 𝑧0  respectively. The green arrows show the 

direction of flow of information through the network during forward propagation. 

 

 

Figure 3. Diagram of a Two-layer Feed-forward Neural Network (C. M. Bishop 2006) 

 

3.3.3 Neural Network Training 

Neural network training will be performed once the network structure is determined. In general, 

neural network is considered as a class of non-linear parametric function. The neural network 

training process comprises several steps that lead to the determination of the involved network 

parameters.  A simple analogy to this process is curve fitting through which a sum of squares of 
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the error function is minimized. Therefore, in a neural network, given a set of input vectors {𝑥𝑛} , 

𝑛 = 1,2, … , 𝑁, and the corresponding set of target vectors {𝑡𝑛}, the goal is to minimize the error 

function which can be denoted as follows. 

𝐸(𝑤) =
1

2
∑‖𝑦(𝑥𝑛, 𝑤) − 𝑡𝑛‖2

𝑁

𝑛=1

 

Equation 35 

The next step is to find the weight vector such that the error function is minimized. In most 

techniques, an initial value is chosen for the weight vector (𝑤(0)), and in subsequent steps the 

weights are updated through: 

𝑤(𝜏+1) = 𝑤(𝜏) + ∆𝑤(𝜏) 

Equation 36 

Where, 𝜏 is an indicator for the iteration step. Different algorithms use different choices for 

updating the weight vector. However, many of them apply gradient information, and therefore the 

value of ∇𝐸(𝑤) should be evaluated at the new iteration step (C. M. Bishop 2006).  

Back propagation technique is applied as the neural network training method in this research. 

Back Propagation Technique 

Back propagation is found to be an efficient technique for evaluating the gradient of an error 

function for a feed-forward neural network. In this method, the calculated error is sent backward 

through the network and the weights are updated accordingly. 

Assuming a particular input pattern 𝑛, the error function takes the following form. 

𝐸𝑛 =  
1

2
 ∑(𝑦𝑛𝑘 − 𝑡𝑛𝑘)2

𝑘

 

Equation 37 

Where, 𝑦𝑛𝑘 = 𝑦𝑘(𝑥𝑛 , 𝑤). The gradient of this error function is calculated with respect to a weight 

𝑤𝑖𝑗 through Equation 38. 

𝜕𝐸𝑛

𝜕𝑤𝑖𝑗
=  (𝑦𝑛𝑗 − 𝑡𝑛𝑗)𝑥𝑛𝑖 

Equation 38 
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In general feed-forward network, each unit calculates the weighted some of its inputs as denoted 

below: 

𝑎𝑗 = ∑ 𝑤𝑖𝑗

𝑖

𝑧𝑖 

Equation 39 

In this equation, 𝑧𝑖 represents the activation of a unit, or an input that has a connection to unit 𝑗, 

and 𝑤𝑖𝑗 is the weight associated with that connection. The summation in Equation 39 is 

transformed through a nonlinear activation function to generate the activation 𝑧𝑗 of unit 𝑗. 

𝑧𝑗 = ℎ(𝑎𝑗) 

Equation 40 

The forward propagation is the process through which the input vectors are supplied to the 

network, and the activations of the hidden and output units are calculated by successive 

application of Equation 39 and Equation 40.  

Applying the chain rule to the gradient of the error function, the partial derivative can be 

rewritten as: 

𝜕𝐸𝑛

𝜕𝑤𝑖𝑗
=  

𝜕𝐸𝑛

𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑤𝑖𝑗
 

Equation 41 

Now, a new notation is introduced as  𝛿𝑗 ≡
𝜕𝐸𝑛

𝜕𝑎𝑗
 .   

Using Equation 39, the second term can be written as  
𝜕𝑎𝑗

𝜕𝑤𝑖𝑗
= 𝑧𝑖 . 

By substituting these two terms into Equation 41, the derivative can be obtained by multiplying 

the value of 𝛿  for the unit at the output end of the weight by the value of 𝑧 for the unit at the 

input end of the weight.  

𝜕𝐸𝑛

𝜕𝑤𝑖𝑗
=  𝛿𝑗𝑧𝑖 

Equation 42 

For the output layer we have: 
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𝛿𝑘 = 𝑦𝑘 − 𝑡𝑘 

Equation 43 

For the hidden layer, again making use of chain rule, results in: 

𝛿𝑗 = ∑
𝜕𝐸𝑛

𝜕𝑎𝑘

𝜕𝑎𝑘

𝜕𝑎𝑗
𝑘

 

Equation 44 

Where, the sum applies on all of unit 𝑘 to which unit 𝑗 sends connections. The schematic of the 

units and how the error is back propagated is illustrated in the figure below, where the purple 

arrow indicates the direction of information flow through the network in forward propagation, 

and the red arrows show the direction of the backward propagation of the error information.  

 

 

Figure 4. Backward propagation of error information from the output layer to hidden layer (C. M. Bishop 2006) 

 

Using the definition of 𝛿, and making use of Equation 39 and Equation 40, the back propagation 

formula can be represented as follows. 

𝛿𝑗 = ℎ′(𝑎𝑗) ∑ 𝑤𝑘𝑗𝛿𝑘

𝑘

 

Equation 45 

The procedure to apply the back propagation method can be summarized in the following steps 

(C. M. Bishop 2006). 

1. The input vector is applied to the network and it is propagated forward through the 

network using Equation 39 and Equation 40. This results in finding the activations for all 

the hidden and output units. 

2. 𝛿𝑘’s are evaluated for all the output units using Equation 43. 
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3. The 𝛿’s are back propagated using Equation 40 to obtain 𝛿𝑗’s for each hidden unit in the 

network. 

4. Equation 42 is applied to evaluate the required derivatives. 

5. The weights are updated and the same procedure is repeated until the stopping condition 

is met. 

3.4 Application of Neural Network in Petroleum Engineering 

In the past three decades, neural networks have become of interest to petroleum engineers and 

geoscientists. In petroleum engineering, the supervised training algorithms are commonly used. In 

this method both the inputs and outputs are presented to the network and the learning process 

takes place based on error feedback to the network (S. D. Mohaghegh, Virtual-Intelligence 

Applications in Petroleum Engineering: Part 1-Artificial Neural Networks 2000). 

Artificial neural network has been used for a variety of problems in petroleum engineering. The 

earlier applications of this method are well test interpretation (Al-Kaabi and Lee 1993), prediction 

of formation permeability (S. Mohaghegh, R. Arefi, et al. 1995) (Mohaghegh, Ameri and Arefi, 

Virtual Measurement of Heterogeneous Formation Premeability Using Geophysical Well Log 

Responses 1996), prediction of formation damage due to injection into low permeability 

reservoirs (Nikravesh, Kovscek and Patzek 1996) and reservoir characterization (Mohaghegh, 

Arefi and Ameri, Petroleum Reservoir Characterization with the Aid of Artificial Neural Network 

1996). 

Later, applications of neural networks in several areas of petroleum engineering became more 

common. Gorucu et al. applied this methodology to construct a tool which was named a 

“Neurosimulation Tool”, with the objective of predicting the performance of CO2 sequestration 

process for enhanced coalbed methane (Gorucu, et al. 2005). In order to perform an optimization 

study for this process, thousands of numerical reservoir simulation runs were required to evaluate 

the effect of several operational conditions. This would require a massive amount of time. 

However, the AI-based proxy model was able to generate the required results in a few seconds.   

Alajmi et al. developed a pressure transient analysis tool which was able to predict the desired 

unknown properties of a double-porosity reservoir system such as permeability of the matrix, 

porosity of the matrix, and fracture by training a neural network. In the training process they used 

the known properties of the reservoir, fluid properties, and well parameters as the neural network 

input (Alajmi and Ertekin 2007). 
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In another study performed by Mohaghegh et al. a well-based surrogate reservoir model was 

developed for a giant oil field in the Middle-East in order to identify the wells that are prime 

candidates for rate relaxation with the objective of higher oil production. The field production 

after more than two years confirmed the results predicted by developed SRM, which 

demonstrates the capability of the reservoir models developed based on neural network in real 

field operation (Mohaghegh, Modavi, et al. 2009).   

Shahkarami et al. have used the AI-based approach to develop an assisted history matching 

technique for a synthetic oil field with 24 production wells and 30 years of production. The 

history matching process in this study is based on three uncertain parameters of the reservoir 

which are porosity, permeability and thickness. The results of this study showed that neural 

networks can be used as a fast and efficient tool for assisted history matching process 

(Shahkarami 2014).  

In the study performed by Esmaili (Esmaili 2013) an AI-based model was developed for a 

Marcellus Shale asset which includes 135 horizontal wells from 43 pads. The full field AI-based 

shale model was used to predict the well/reservoir performance and also forecast the behavior of 

the new wells. Moreover, based on the developed model the impact of design and native 

parameters on gas production was investigated. This work demonstrated that application of 

artificial intelligence, and in particular neural network, can be significantly advantageous in shale 

modeling where development of a numerical reservoir simulation models is substantially costly 

due to the massive amount of time and effort required. In the occasions where the field involves a 

large number of wells, modeling through conventional reservoir simulators is impractical if not 

impossible. 

In general, according to the existing literature, artificial intelligence techniques have been mostly 

used to develop proxy models, which aim at computing well related parameters such as 

production/injection rather than dynamic parameters of the reservoir such as pressure and gas 

saturation. The well-based models are constructed for a variety of problems including well 

performance analysis, optimization, history matching, etc. 

There are only a few studies that have been conducted using artificial neural networks for the 

purpose of pressure and gas saturation calculation at the reservoir grid block level. In a study 

performed Klie, POD and DEIM methodology and Radial Basis Function (RBF) networks were 

used to develop a proxy model with two objectives. The first objective is to generate the well oil 

and gas production rate under uncertain permeability. The second objective is to predict the 

pressure and gas saturation distribution under uncertain permeability and varying injection rate. 
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This study was performed on two very simple reservoir simulation models. The first model is a 

2D-2phase reservoir with a maximum of 100 grid blocks and the second model is a 3D black oil 

reservoir with 300 grid blocks (10 × 10 × 3). In this study, POD and DEIM were used as a tool 

to reduce the dimensionality of the generated matrices which are going to be used as inputs for 

the RBF network (Klie 2013). Therefore, they need to go through all the complications of the 

POD methodology, which was discussed in the previous chapter, before they can use the RBF 

network to develop the proxy model. 

In the research performed by Chen et al. (Chen, Klie and Wang 2013) a proxy model was 

developed for a 2D reservoir model with 900 grid blocks (30 × 30) and a heterogeneous 

permeability distribution and a constant porosity. They assumed that saturation is known and tried 

to predict the pressure at each grid block by using the simplified developed proxy model using 

artificial neural networks. In this work a very simplified formulation and reservoir model has 

been used which does not demonstrate the ability of the model to be applied for a more realistic 

case.  

The existing studies on the application of artificial neural network for developing a grid-based 

surrogate reservoir model have many limitations and deficiencies, and therefore, they fail to 

generate acceptable models that can be used as a practical tool for a complex numerical reservoir 

simulation model.  

The current research uses a novel approach to develop a surrogate reservoir model by using 

artificial neural networks. The capability of the developed model is demonstrated by applying the 

technique to a real case 3D heterogeneous reservoir with 100,000 active blocks which is used for 

a CO2 sequestration study.  
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CHAPTER 4. 

 NUMERICAL RESERVOIR MODEL DEVELOPMENT 

A numerical reservoir simulation model is developed based on a CO2 injection and sequestration 

project which was implemented in Australia. In this work all the available filed data was 

integrated to develop the model. The following sections present more details regarding the field 

background and the operations performed in this field for the purpose of CO2 sequestration. Later, 

the process through which the numerical reservoir simulation model was developed will be 

explained.   

4.1 Field Background 

The understudy field is a depleted gas reservoir located in Otway Basin in Victoria, Australia 

(Figure 5). This field was identified as a proper option for CO2 sequestration since the site is well 

characterized due to its natural gas production history. Furthermore, having previously stored 

natural gas for millions of years it obviously has a proven storage capacity in which CO2 can be 

safely stored (CSIRO 2008). 

 

 

 

 

 

 

 

 

 

 

The target reservoir for injecting CO2 is Waarre-C formation, which is a sandstone reservoir 

approximately 100 ft thick and located 6561 ft underground with an area of about 500 acres. The 

reservoir is overlain by a caprock of mudstones (Flaxman and Belfast Formations). The structure 

is bound with three major sealing faults and two aquifers which are connected to the reservoir 

Figure 5. Otway Field Location in Victoria, Australia  
(Reference: IEA Greenhouse gas R&D program website) 
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from south-east and west side. The reservoir has an average porosity and permeability of 15% and 

1,000 md respectively (Dancea, Spencera and Xua 2008). The stratigraphy column of the 

reservoir is depicted in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two wells exist in this reservoir. The first one is Naylor-1 which was a natural gas production 

well, producing from May 2002 to October 2003 and later it was converted to a monitoring well 

in 2007. The second one is CRC-1 through which the CO2 is injected underground. It was drilled 

in 2007 and is located approximately 980 ft away from Naylor-1 well.   

In this pilot project, CO2-rich gas that contains about 80% CO2 and 20% methane is produced 

from a nearby gas field then compressed, transported, and injected into the depleted gas reservoir.  

CO2 injection through CRC-1 started at March 2008 (Dancea, Spencera and Xua 2008). Figure 

below shows the injection and monitoring wells and how CO2 is transported and injected into the 

reservoir for long-term storage. 

 

Waarre C Depleted 
Gas Reservoir 

Mudstone Cap Rock 

Figure 6. Stratigraphy column of the Otway field 
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4.2 Reservoir Model Development 

In this research a numerical reservoir simulation model was constructed to simulate the natural 

gas production as well as the CO2 injection processes which were performed in this reservoir. 

However, further studies were performed based on the CO2 injection process. The reservoir 

model was developed in CMG-GEM (Compositional Modeling module) using the available field 

data. 

The structure of the reservoir was generated by making use of a contour map available from the 

geological information of the field. This model includes 100 × 100 grid blocks in x-y direction 

and consists of 10 layers. The reservoir structure and well locations are depicted in Figure 8. The 

production well was completed in layers 5 and 6; however, the injection well was completed in 5 

layers from layer 3 to layer 7. 

 

 

 

Figure 7. Schematic of the Otway CO2 injection project (Source: CO2CRC) 
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Reservoir parameter distribution (porosity and permeability) was generated through statistical 

method using the CRC-1 core and log data (Figure 9) and using average values of porosity and 

permeability at each layer of the reservoir. 

 

 

 

 

 

 

 

 

 

Figure 8. Left: Available contour map of the reservoir, Right: Reservoir model structure and well locations 

Figure 9. Porosity and Permeability values from core and log data 
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The composition of the original natural gas was assigned according to the following table as 

reported in the available data. 

 

Table 1. Natural gas composition of the reservoir 

Composition Mole Percentage 

C1 84.35 

C2 4.62 

C3 2.01 

C4+ 1.48 

N2 6.52 

CO2 1.02 

 

When injection takes place in the reservoir, hysteresis phenomenon plays a significant role on 

fluid flow behavior. In the early injection period, drainage is the dominant process; however, 

imbibition takes place when the CO2 plume starts migrating. Hysteresis affects the CO2 mobility 

as well as the gas water contact. In order to include the hysteresis effect, the following relative 

permeability curves were used, which were generated based on the laboratory measurement on a 

core from CRC-1 well. 

Figure 10. Correlation between porosity and permeability using log and core data 
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Due to the existence of an active aquifer system, a fraction of the injected CO2 is dissolved into 

the water phase and therefore in this model the CO2 solubility in water was also taken into 

account. 

4.3 History Matching 

The developed reservoir model was history matched based on the available field data both in the 

natural gas production phase and the CO2 injection phase. During the history matching process 

the monthly natural gas production rate for 18 months and the monthly CO2 injection rate for 8 

months were considered as the constraint in the model and the well bottom-hole pressure was 

matched for the production and injection wells by changing the reservoir parameters. The 

thickness of the reservoir layers was assumed to be a constant value equal to 11 feet. Therefore, 

during the history matching process, the porosity and permeability of the reservoir were used as 

the major tuning parameters. 

 Figure 12 demonstrates the result of history matching (matched BHP) for both production and 

injection wells. 

Figure 11. Relative permeability curves including hysteresis effect 
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The history matched model was used as a base model to generate the grid-based surrogate 

reservoir model for the injection interval when the model was run for several injection scenarios 

and multiple geological realizations. 

  

Figure 12. History Matched BHP for production and injection well 
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CHAPTER 5. 

 SURROGATE RESERVOIR MODEL (SRM) DEVELOPMENT 

Surrogate reservoir modeling is an artificial-intelligence-based approach to construct a proxy 

model which can be used to generate the output of a complex numerical reservoir simulation 

model. In this context SRM can be defined as a customized model comprised of a collection of 

neural networks which are trained, calibrated, and verified for a specific problem.    

Once developed for a particular problem it can generate the outputs of the numerical reservoir 

simulation model when the inputs are changed within a specific range which the networks have 

been trained with. Details regarding the structure of the neural network, type of the neural 

network, and its training process for the purpose of proxy modeling have been thoroughly 

explained in Chapter 3. 

The workflow demonstrated in Figure 13 was followed in the current research to develop a SRM 

for the particular problem of CO2 injection and sequestration. 

 

 

Figure 13. General workflow for SRM development 
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5.1 Proof of Concept 

Artificial intelligence approach can be applied to develop a proxy model for a numerical reservoir 

simulation model with a large number of grid blocks (greater than 105); however, applying this 

methodology to fewer number of grid blocks reduces the complexity of the generated data set and 

therefore enables us to fully understand different aspects of this approach before applying it to a 

significantly larger number of grid blocks. 

Consequently, the initial goal is set to construct an SRM for the top layer of the reservoir which 

enables us to observe and study the distribution of the dynamic parameters of the reservoir at the 

first layer, located just below the caprock, under different injection scenarios. Practically, the 

results of this study would be useful to evaluate the risk of CO2 leakage through the reservoir 

caprock under the change of uncertain parameters. Therefore, as a proof of concept the SRM was 

primarily developed for the first layer only. This SRM is referred to as Layer-1 SRM further in 

this study.  

It should be mentioned that this approach does not assume the first layer as an isolated layer 

through which some changes are taking place. Instead, the methodology for this SRM 

development is based on the fact that whatever changes are happening in the first layer are 

directly related to the changes in the layers beneath due to the CO2 injection. 

In the following sections the procedure of Layer-1 SRM construction is elaborated. 

5.1.1 Reservoir Partitioning 

As mentioned in the previous chapter, the reservoir model comprises 10 layers. A simplified 

schematic of the reservoir layers is depicted in Figure 14. Different colors in this figure 

demonstrate the classification of the reservoir layers in four distinct layers which contribute to 

data set generation.     

In the top layer SRM, the first layer (Layer 1) and the second layer (Layer A) were considered 

individually. Layer 3 to layer 7, are the perforated layers in which CO2 injection takes place. 

These three layers were lumped as Layer B. Similarly, the last three layers of the reservoir were 

grouped as Layer C.  

 

 

 



55 

 

 

 

 

 

 

 

 

 

 

5.1.2 SRM Development Procedure 

SRM development comprises four major stages which can be listed as follows: 

1. Based on the objective of the study a handful of reservoir simulation scenarios are 

conducted.  

2. The required static and dynamic data are extracted and organized in order to generate a 

comprehensive spatio-temporal dataset which is further used to generate input data set 

for training neural network. 

3. Several neural networks are designed and trained. 

4. The neural network models are validated by applying them to a set of blind scenarios.   

 

SRM development for the top layer of the reservoir is described in detail in the following 

sections. 

5.1.3 Simulation Scenario Design 

The training simulation runs are the simulation scenarios which provide the sample space of 

model input-output relationships for the neural network training purpose. Since the surrogate 

reservoir model is developed to observe the CO2 injection under different operational constraints 

and different geological realizations, the training simulation runs were designed so that they take 

into account both areas of concern.  

Figure 14. Schematic of the reservoir layers as contributing to the data set generation 
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Considering the real case CO2 injection scenario (the history matched model) as the base model, 

five other injection scenarios were designed. In two of them, the behavior of the system was 

investigated when higher amounts of CO2 were injected over the same injection interval (with 

respect to the base model) and in others, the impact of CO2 injection over longer injection periods 

were observed.  

For the purpose of providing multiple geological realizations, two other realizations were 

generated. Considering the history matched model as the base case, in the first realization the 

porosity and permeability was non-uniformly increased in all ten layers of the reservoir to 

generate high porosity-high permeability case. In the second realization, the porosity and 

permeability of all layers of the reservoir was non-uniformly decreased through which the low 

porosity-low permeability case was generated. 

According to the available field data for CO2 injection in Otway CO2 sequestration process, a 

total amount of about 593 MMSCF of CO2 is injected into the reservoir during 8 months. 

Considering “𝐺” as the total amount of gas injected in real case injection scenario and “𝐿” as the 

real case injection length, different injection scenarios were defined based on combination of 

these two parameters according to the table presented below. 

 

Table 2. Six injection scenario schedule based on the amount of CO2 and the injection duration 

 

 

Consequently, 18 different simulation cases (three geological realizations under six injection 

schedules) were designed and conducted in CMG-GEM as the training scenarios. 

5.1.4 Data Base Generation 

Surrogate reservoir modeling process used in this study is a data driven approach and therefore 

the type and the amount of data provided for the training phase plays a crucial role in the success 

of the developed model.  

The philosophy behind this type of proxy modeling is to represent the entire reservoir system and 

also the process which is taking place in the reservoir through data. Therefore data from multiple 
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domains is required to properly introduce the whole system and to represent the input-output 

relationship.   

For this purpose two types of data were generally collected, which are static data and dynamic 

data.  

The static data does not change over time and provides information related to the reservoir 

structure such as the location of the grid blocks, reservoir parameters such as porosity and 

permeability. The static data also includes other types of data which need to be calculated such as 

distance of the grid blocks to the injection well, relative grid distance to the boundaries of the 

reservoir, etc. Some other parameters, such as the initial values of pressure, phase saturation and 

CO2 model fraction of each grid block, are also considered as constant variables with respect to 

time. 

Dynamic data consists of the parameters in the well domain and the grid block domain. The 

parameters at the well domain are related to the well constraints which generally include 

production/injection rates or well bottom-hole pressures that are changing over time. Dynamic 

parameters at the grid blocks are the state variables of the systems (pressure, gas saturation and 

CO2 mole fraction) which are changing over time. 

The entire data, which is used in SRM development, is listed in the following diagram. 

 

Table 3. List of data collected for SRM database generation 
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For some parameters such as porosity, permeability, pressure, saturation and CO2 model fraction, 

data from both the main grid block and from the neighboring grid blocks is included in the data 

set. The surrounding blocks are identified in different ways known as “Tier System.” The tier 

system which was used in this part of the study includes the four grid blocks around the main 

block. 

 

 

 

 

 

 

 

Static Parameter Averaging 

As mentioned earlier in this chapter, the data from layers beneath the first layer of the reservoir is 

also integrated into the data set. Data related to the lumped layers are averaged through different 

methods based on the type of the parameter. 

The X and Y of each grid block remain the same and the average depth of each grid block is 

calculated through: 

𝑍𝑎𝑣𝑔 = (𝑍1 + 𝑍2 + ⋯ . . +𝑍𝑛)/𝑛 

To obtain the average value of permeability and porosity, the geometric average and arithmetic 

average is used respectively. 

 𝑘𝑎𝑣𝑔 = ∑ 𝐿𝑗
𝑛
𝑗=1 / ∑

𝐿𝑗

𝑘𝑗

𝑛
𝑗=1    (𝐿𝑗: layer depth,  𝑘𝑗  : grid absolute permeability) 

Ф𝑎𝑣𝑔 = ( Ф1 + Ф2 + ⋯ … +  Ф𝑛)/𝑛 

Dynamic Parameter Averaging 

All the dynamic parameters including pressure, gas saturation, CO2 mole fraction in gas phase, 

CO2 mole fraction in water phase and global CO2 mole fraction at different time steps for each 

Figure 15. The tier system of each grid block used in Layer-1 SRM  
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grid block of the new layers have been calculated through arithmetic averaging method, through 

following equations. 

𝑃𝑎𝑣𝑔 = (𝑃1 + 𝑃2 + ⋯ + 𝑃𝑛)/𝑛 

𝑆𝑎𝑣𝑔 = (𝑆1 + 𝑆2 + ⋯ + 𝑆𝑛)/𝑛 

𝑚𝑎𝑣𝑔 = (𝑚1 + 𝑚2 + ⋯ + 𝑚𝑛)/𝑛 

Distance Calculation 

The distance of each grid block to the injection well is calculated based on the location of the grid 

and the location of the middle perforation of the well through the following formula. 

𝐷 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2 

In order to include the distance of the grid block to each boundary of the reservoir the distance of 

each grid block to every grid on the boundary is calculated through the above equation and then 

the minimum distance value is considered as the minimum distance to the boundary. 

For all 18 scenarios, the required data was individually extracted from each CMG simulation 

scenario. Generating a data set which includes all the data listed in Table 3 required a software 

which is able to organize the CMG output files with a specific CMG format into the desired 

format, and furthermore to perform the required calculations for some of the parameters. This 

software was developed in Visual Basic and it is capable of transforming the CMG output files 

and other data files format to a comprehensive spatio-temporal data set which includes all the 

required data for neural network training input file. 

5.1.5 Data Selection and SRM Input Generation 

As mentioned in Table 2, data from different simulation cases, which have different injection 

duration, are integrated to develop the SRM. Therefore, in order to make use of all scenarios, the 

SRM was developed for three time steps during the injection interval, which are at the end of the 

first month of injection (Time-1), in the middle of the injection interval (Time-Mid), and at the 

end of injection interval (Time-End).  

 For SRM development, the input data were arranged so that besides the static and well data, the 

value of the dynamic parameters at time-0 (before injection takes place), is considered as the 

input. The output is the value of dynamic parameter of interest (pressure, gas saturation, and CO2 

mole fraction) at each grid block and at each time step of interest. 
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Adding Additional data 

One of the advantages of using artificial intelligence to develop SRM is that any type of 

parameter that seems to provide additional information about the system can be integrated as an 

input and therefore it is not limited to a specific type of data.  

In this part of the study as mentioned before, data are collected from multiple scenarios with 

different geological realizations and different amounts of total CO2 injected, as well as different 

injection intervals. In order to identify different scenarios used in the data set, a new parameter 

was added to the data set, which is presented as “Scenario Index” and it is calculated as follows. 

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼𝑛𝑑𝑒𝑥 =  𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 ×  𝐺𝑒𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝐼𝑛𝑑𝑒𝑥 

where, 

𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =  𝐺 (𝑀𝑀𝑀𝑆𝑐𝑓) ×  𝐿 (𝑀𝑜𝑛𝑡ℎ) 

Where, 𝐺 is the total CO2 injected in each simulation case and 𝐿 is the total injection length. 

Since the different geological realization is related to the different porosity and permeability 

value, the geological index is calculated through the following formula: 

𝐺𝑒𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝐼𝑛𝑑𝑒𝑥 = 𝜑𝑖𝑛𝑑𝑒𝑥 × 𝑘𝑖𝑛𝑑𝑒𝑥 

where, 

𝜑index =  
(𝜑𝑚𝑎𝑥 − 𝜑𝑚𝑖𝑛)

𝑆𝑇𝐷(𝜑)
 

𝑘index =  
(𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛)

𝑆𝑇𝐷(𝑘)
 

Adding all the customized data, for all gird blocks at the time step of interest, SRM input 

generation is accomplished.    

5.1.6 Neural network Construction and Training  

The generated input file was used to construct several artificial neural networks which include the 

networks for pressure, gas saturation, and CO2 mole fraction at each time slice. 

“Back Propagation” algorithm was used as the training method. In this method the error is fed 

back to the network by the end of each training epoch (C. M. Bishop 1995). All the networks 

contain one hidden layer and one output. A typical neural network architecture used in this work 

is depicted in Figure 16. 
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Previous similar works on SRM development for several subjects in petroleum engineering have 

shown that adding more hidden layers to the network architecture does not significantly affect the 

accuracy of the results, and therefore in this research the number of hidden layers remains 

unchanged. For the purpose of adding more complexity to the network structure, the number of 

neurons in the hidden layer can be increased.    

During the training process, performance of the neural networks in predicting the output 

parameter can be investigated by observing the cross plots of the predicted versus simulation 

output data, scatter plot which shows the predicted and actual value of the parameter and the 

calculated R-squared value. 

5.1.7 Validation with Blind Scenario  

The last step in the SRM development process is to verify the result of the constructed SRM 

when it is applied to a blind case. A blind case is defined as a simulation scenario which has not 

been used in neural network training.   

Therefore, a blind simulation scenario was defined and run in which 2G (1.187 BCF) total 

amount of CO2 is injected into the reservoir (history matched model) within 2L (16 Months). The 

figure below demonstrates the blind injection scenario selection based on the amount of CO2 

injection and the injection duration. 

 

Figure 16. Typical NN architecture for the current SRM 
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Table 4. Blind set injection scenario for Layer-1 SRM 

 

 

The required data was extracted and SRM input was generated for Time-1, Time-mid, and Time-

end, as well as post injection time intervals of 100 and 500 years after injection. The 

corresponding SRM was applied to this blind scenario and results are generated. 

5.1.8 Post Injection Scenario 

In any CO2 sequestration project in order to insure that the injected CO2 will remain safely within 

the reservoir structure for a long time, the CO2 movement in reservoir layers must be studied for a 

long interval of time. Therefore, all the reservoir simulation scenarios in this part of the study 

were performed for 500 years after injection and SRM is developed for the post injection interval 

to investigate the dynamic parameter distribution throughout the reservoir after a long time under 

different injection scenarios. 

5.2 Layer-1 SRM Results 

In this section, the developed SRM is first applied to a scenario which was included in the 

training set and then the results of SRM is presented when it is applied to a blind scenario. 

5.2.1 Training Set Results  

The constructed neural networks for pressure, gas saturation, and CO2 mole fraction at the three 

time steps of interest were individually applied to scenario#6 data set (as an example). In this 

scenario, the amount of CO2 injected is 1.78 BCF and this amount is injected into the reservoir 

during 40 Months.  

In the following sections, the 2D distribution maps of pressure, gas saturation, and CO2 mole 

fraction in the first layer of the reservoir are presented for the three time intervals during the 

injection period. In each of them, SRM result is compared to the CMG output and the error 

distribution is depicted for each parameter.  
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Figure 17. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer of the reservoir  
(left to right: CMG output, SRM result and Error)-After 1 month of injection 
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Figure 18. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer of the reservoir  
(left to right: CMG output, SRM result and Error)-After 20 months of injection 



65 

 

 

 

  

Figure 19. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer of the reservoir  
(left to right: CMG output, SRM result and Error)-After 40 months of injection 
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5.2.2 Blind Set Results 

In order to validate the results of SRM in generating the dynamic parameter distribution the same 

networks were applied to the blind case which was presented in the previous section and 

distribution maps were generated. 

 

Figure 20. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer of the reservoir  
(left to right: CMG output, SRM result and Error)-After 1 month of injection 
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Figure 21. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
((left to right: CMG output, SRM result and Error)-After 8 months of injection 
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Figure 22. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer of the reservoir  
(left to right: CMG output, SRM result and Error)-After 16 months of injection 
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5.2.3 Post Injection Results 

The developed SRM for pressure, gas saturation and CO2 mole fraction in 100 and 500 years after 

injection was stopped were applied to scenario#6 data and the SRM result is compared to the 

CMG output and the error distribution is depicted for each parameter in the mentioned post 

injection times.  

 

 

 

Figure 23. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer of the reservoir  
(left to right: CMG output, SRM result and Error)-100 years after end of injection 
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Figure 24. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer of the reservoir  
(left to right: CMG output, SRM result and Error)-500 years after end of injection 
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5.3 Layer-1 SRM Discussion 

The result of the developed SRM for the first layer of the reservoir demonstrates the capability of 

the SRM to generate the output of the numerical reservoir simulation model at the grid block 

level. However, the result which is obtained so far does not reflect the ultimate SRM accuracy as 

a proxy model, and therefore some modifications are required to improve the results. Some of the 

factors that could be responsible for the large amount of time required for SRM development or 

the amount of errors in the presented SRM results are as follows: 

1. Although this SRM was developed for the first layer of the reservoir, the data set included a 

huge amount of data (180,000 data records). Including this amount of data makes the 

training process significantly time consuming and thus considerably inefficient. This 

process can become more efficient by reducing the dimensionality of the data set. 

2. This SRM was developed based on the data extracted from three different geological 

realizations as well as different injection scenarios. The result of SRM might be improved 

if these two contexts are studied separately. 

3. The accuracy of the SRM to predict the dynamic parameters’ distribution might be 

improved by including more injection scenarios in the training process. 

4. To develop the current SRM the CO2 injection scenarios have different injection intervals, 

and therefore the SRM was developed only for three specific time steps during the injection 

interval. Using this scheme for SRM development may not be as efficient as the SRM that 

is developed for a constant injection interval which includes consecutive time steps. 

The upcoming chapters address the aforementioned issues through different SRM development 

approaches.  

Since in developing grid-based SRM we are dealing with a massive amount of data which 

represents all the grid blocks of a numerical reservoir model, the first issue mentioned above 

regarding the efficiency of the SRM development becomes a significantly important issue for any 

grid-based surrogate reservoir modeling. As a possible solution to this problem a “Data 

Sampling” approach is proposed. 

Due to the importance of this subject and the fact that further in this work, data sampling will be 

used as an approach for data reduction, an individual chapter is devoted to this subject. In this 

chapter, two different sampling techniques are presented and their performance is investigated 

when both of them are applied as a data reduction tool for SRM development.  
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CHAPTER 6. 

DATA SAMPLING AS A DATA REDUCTION TOOL 

Data sampling refers to the practice of selection of a sub set from the entire population. Sampling 

should be performed in such a way to ensure that the selected data are a proper representation of 

the whole system, and therefore the analysis that is performed on the selected portion of data can 

be generalized or applied to the entire data set. However, the approximation models are generally 

generating the results more accurately for the points in the vicinity of the sampled points 

(Forrester, Sobester and Keane 2008).   

In grid-based surrogate reservoir development we are dealing with an enormous amount of data. 

As the reservoir simulation tools, and also the computer hardwares are advancing, the number of 

grid blocks that can be used in the numerical reservoir models is significantly increasing. If all the 

data from all grid blocks of the reservoir are included in the training process, a massive amount of 

time would be required to develop and train a neural network that is able to predict the outputs of 

the system. This problem is referred to as the so called “curse of dimensionality.”  

A solution to address this problem is “Data Sampling,” which enables us to make use of a portion 

of data that are a proper representation of the entire system. This process makes the neural 

network training process significantly more efficient. 

In this work, two different techniques are used for data sampling. The two approaches are 

described below in details. The first is based on spatial parameter distribution at each time step 

and the second one is based on the changes of parameters at each time step with respect to time 

zero. The efficiency of two methods were verified when they were applied to the same data set 

based on which the layer-1 SRM was developed.  

6.1 Data Sampling Based on Parameter Distribution 

In this approach, a data sampling method was used which samples data based on distribution of a 

parameter versus one or more other parameters. A Visual Basic computer code was developed to 

sample the data and generate the SRM input files for each parameter of pressure, gas saturation, 

and CO2 mole fraction at each time step. 

In this part of the study, the same simulation runs as used in previous chapters were used to 

generate a comprehensive data set. 
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In order to sample data for pressure models, a plot of pressure versus depth at the desired time 

step was generated. Based on a user defined number of segments between the minimum and 

maximum value of each parameter, gridding was performed on the plot.  

For the purpose of data sampling for gas saturation and CO2 mole fraction, these parameters were 

plotted versus location (X and Y) and the same procedure was followed for gridding the plot.  

In the next step, a portion of data (10% in this case) was randomly selected out of each generated 

grid (2D for pressure plot and 3D for gas saturation and CO2 mole fraction).  

6.1.1 SRM Based on First Approach Sampling 

Using the sampled data through the above procedure, SRM input was generated for each 

parameter individually at each time step. 

The input files were used to develop and train 3 neural networks at each time step (one month 

after the start of injection, in the middle of the injection, and at the end of injection). 

The constructed networks were applied to all grid blocks of the first layer of the reservoir and the 

results were visualized in 2D distribution maps of pressure, gas saturation, and CO2 mole 

fraction. 

Comparing the SRM results with the simulation output (for scenario 1, as an example) generally 

shows a very poor prediction of the parameters especially for the CO2 mole fraction. 

The 2D distribution maps of the three parameters are depicted in the following figures for the 

middle and the last time steps. 

It should be mentioned that the color bar scale chosen in this section differs from those presented 

in the previous chapter. The same scale (as used in this section) will be applied to present the 

further results throughout this study.   
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Figure 25. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer of the 
reservoir (left to right: CMG output, SRM result and Error)-4 months after injection (using sampling approach 1) 

Figure 26. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer of the 
reservoir (left to right: CMG output, SRM result and Error)-8 months after injection (using sampling approach 1) 
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6.2 Data Sampling Based on Change of Dynamic Parameters  

Since in numerical simulation models we are dealing with the changes in dynamic parameters at 

each time step, the second proposed sampling method is based on the changes in dynamic 

parameters of the reservoir at each time step rather than the parameter distribution.  

Prior to sampling, some analyses were performed on the extent of changes of dynamic parameters 

at different time steps during the injection. 

In this study the difference between each parameter of pressure, gas saturation and CO2 mole 

fraction at each time step with respect to time-0 was calculated. For each parameter at the desired 

time step a histogram was generated individually based on minimum and maximum change of 

parameter to observe how many gird blocks are changed to which extend. 

As an example, the histograms of all the existing data which was generated for individual 

parameters at the mid time step (middle of the injection) are presented in Figure 27. 

 

 

 

 

 

 

 

 

 

 
Figure 27. Histograms of ΔP, ΔSg and ΔCO2 at the middle of injection 
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As demonstrated in the above histograms, the majority of the grid blocks are exposed to lower 

amounts of changes during injection. Therefore, it can be concluded that sampling will be more 

efficient if it is performed by taking into account where the higher amount of change takes place. 

This process results in a smarter data sampling for SRM development since the change of 

dynamic parameters are one of the most important items that we are looking for in reservoir 

modeling.  

Using this concept, a Visual Basic computer code was developed to take the comprehensive 

dataset at each time step as input and generate the histograms based on the changes of the data. 

This code provides the facility for the user to choose the percentage of the data which is desired 

to be selected. The identified number of data is selected and SRM input is generated individually 

for each parameter of pressure, gas saturation, and CO2 mole fraction at the time step of interest. 

6.2.1 SRM Based on Second Approach Sampling 

Using the generated input files, 9 neural networks were trained and applied to all grid blocks of 

the reservoir top layer for all scenarios. The results of this SRM in generating the dynamic 

parameter distribution, when applied to scenario 1, at two time steps are demonstrated in the 

following sections. 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer of 
the reservoir (left to right: CMG output, SRM result and Error)-4 months after injection (using sampling approach 2) 
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The results of SRM prediction using the second approach sampling show a significant 

improvement compared to those of the first approach; especially for the gas saturation and CO2 

mole fraction distribution. Therefore, the second sampling method will be applied further in this 

work. 

6.3 Application of Data Sampling on New Simulation Runs  

In Chapter 5, SRM was developed using three geological realizations of the reservoir each of 

which was conducted under six injection scenarios. In this section, we would like to investigate 

the result of SRM when it is developed using a single geological model and several injection 

scenarios. 

As mentioned before, the injection scenarios are defined based on the changes in the amount of 

injected CO2 as well as the injection duration. In the developed SRM no specific procedure was 

followed to select the six combinations of these two parameters, and therefore the injection 

scenarios were defined based on the values presented in Table 2. In this part of the study, 10 new 

numerical reservoir simulation scenarios are designed based on a more systematic approach 

Figure 29. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer of 
the reservoir (left to right: CMG output, SRM result and Error)-8 months after injection (using sampling approach 2) 
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which is called “design of experiment” and is commonly used when more than one parameter is 

involved in defining different scenarios. 

6.31. Design of Experiment (Latin Hyper Cube Sampling Method) 

Assuming that the maximum CO2 injection that is going to be performed in this sequestration 

project reaches to 3 times the real case, and the maximum injection interval can be extended up to 

5 times the real case, 10 different injection scenarios are designed based on these two parameters 

using Latin Hypercube Sampling method (LHS). 

To ensure that the constructed SRM is able to generate the results between minimum and 

maximum boundaries of the involved parameters, the four combinations of the minimum and 

maximum amount of total CO2 injected (denoted as G) and injection duration (denoted as L) are 

manually selected to be included in the simulation runs (shown in red stars with circle, in Figure 

30). The other six remaining combinations are selected by using LHS method through a computer 

code which was developed in MATLAB. There are four types of LHS that can be used to 

generate the desired combinations. In this work the “LHS-Correlation” type was used through 

which correlation between the generated combinations is minimized. 

 The following figure shows all combinations of G and L, which are used to design the simulation 

scenarios. 

 

 

 

 

 

 

 

 

 

 

Having the generated G and L multipliers for 10 scenarios, the amount of CO2 and the injection 

duration was calculated for each scenario and presented in Table 5. 

Figure 30. Final G-L multiplier combination obtained through LHS Method (Blue) and  
the min-max value of G and L multipliers (Red) 



79 

 

Table 5. The calculated amount and length of injection for 10 simulation scenarios 

 

A computer code was developed in MATLAB to generate the injection schedule for 10 scenarios 

based on the table above and also considering the base case monthly injection rate. The following 

plot demonstrates the generated CO2 injection schedule for the 10 scenarios.   

Figure 31. Injection schedule generated for 10 simulation scenarios 
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6.3.2 Dataset Generation and Data Sampling 

A comprehensive spatio-temporal data set was generated to properly introduce the entire system 

as well as the changes which are taking place within this system. The data set again includes 

several types of data such as reservoir structure and properties, initial distribution of dynamic 

parameters, well data, and dynamic data from the time step of interest.  

Due to the large dimensionality of the data set, when all the data are incorporated, a computer 

code was developed in Visual Basic to arrange the extracted data from CMG reservoir simulation 

scenarios into the desired dataset format. Next it performs the required calculations for some 

parameters such as distance of each grid block to the boundaries, average value of the parameters 

in the adjacent grid blocks, and etc. 

Integrating data from 100,000 grid blocks of each simulation scenario, results in a huge data 

matrix of 1,000,000 rows and some tens of columns. This amount of data is far more than the 

limit which can be utilized to develop and train a neural network. Therefore, in order to be able to 

properly use the available data, a portion of data should be selected. The sampled data must carry 

the most important information regarding the changes that are taking place in the system. 

Using the second sampling approach, which was presented earlier in this chapter, 10% of the data 

(100,000) was selected to be used for neural network training process. 

6.3.3 Neural Network Development and Training 

In order to develop the SRM for this study, data from different simulation cases were integrated 

which have different injection durations. Therefore, neural network input was generated for three 

time steps during the injection interval similar to the previous models. The networks were 

developed and trained individually for pressure, gas saturation and CO2 mole fraction at three 

time slices.  

6.3.4 Result of the Neural Network Deployment 

In order to generate the dynamic parameter distribution in the entire grid blocks of the reservoir, 

the developed neural networks were applied to one of the scenarios (scenario#4, in which a total 

of 0.687 BCF of CO2 was injected into the reservoir within 16 months).  

As an example, the 2D distribution maps of the three parameters at the first layer of the reservoir 

at two time steps (in the middle of injection and at the end of injection) are presented below. In 

each of them, SRM result is compared to its corresponding CMG output. 
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Observing the results presented in Figure 32 and Figure 33 and comparing them to the results 

shown in Figure 28 and Figure 29, it is concluded that the prediction accuracy is improved 

significantly when the number of numerical reservoir models is increased reasonably through a 

systematic approach. Therefore, in a data driven approach it is not just the methodology that can 

lead to a successful proxy model; the type and amount of data which are introduced to the model 

are of the same significance.      

 

 

 

 

 

 

 

Figure 32. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer 
of the reservoir (left to right: CMG output, SRM result and Error)-8 months after injection  
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Figure 33. Distribution maps of Pressure, Gas saturation and CO2 mole fraction (top to bottom) in the first layer 
of the reservoir (left to right: CMG output, SRM result and Error)-16 months after injection  
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CHAPTER 7. 

FULL-FIELD SURROGATE RESERVOIR MODEL 

In Chapter 5, SRM was developed for the first layer of the reservoir in order to prove the 

capability of artificial intelligence technique for proxy model development which aims at 

generating the output of a reservoir simulation model at the grid block level.  

In this section, the application of this technique is extended to develop a proxy model for the 

three dimensional reservoir. For this purpose the 3D reservoir model of two different areal 

resolutions is used, both of which consist of 10 layers. The coarse-grid model comprises 20 × 20 

grid blocks and the fine model includes 100 × 100 grid blocks in X-Y direction.  

It should be mentioned that the same history matched numerical reservoir simulation model 

which was presented in chapter 4 is used as the base case model in this part of the study. 

All the SRMs in this section and in the rest of the study are developed for each consecutive time 

step during the entire injection interval. 

7.1 Coarse-Grid Numerical Reservoir Model 

The original numerical reservoir simulation model consists of 100 × 100 × 10 grid blocks in X, 

Y and Z direction. The reservoir structure was modified to decrease the number of grid blocks in 

X and Y direction while the grid blocks in Z direction (number of layers) remains the same. The 

new model has a total number of 4,000 grid blocks (20 × 20 × 10). Figure 34 shows the structure 

of the coarse-grid model. 

 

Figure 34. Reservoir structure of (20x20x10) grid block model 
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The porosity and permeability maps were imported from the original model to this model and the 

fluid properties, rock-fluid parameters, and the initial conditions are considered the same as the 

previously developed model. 

7.2 SRM Development for Coarse-Grid Model 

In the coarse-grid model, since the number of grid blocks for each case equals 4,000 we are not 

dealing with a huge number of data, and therefore SRM development does not require sampling 

which is used as a data reduction tool. In this part of the study all data from the training 

simulation cases are included in the neural network training process.  

The previously developed SRM was based on the idea that in the training process, the dynamic 

parameters at the time before injection starts (Time 0) are introduced to the network as input in 

order to train the network to generate the dynamic parameters at the time step of interest, as 

output. However, according to the calculations which are performed in numerical reservoir 

simulation models, the results of the dynamic parameters of the system at the previous time step 

is used to compute the dynamic parameters at the current time step. This can be used as another 

approach to develop SRM which is called “Cascading SRM.” 

Therefore, in this part of the study, both of the mentioned approaches are used to develop the 

SRM and generate the result. Based on the result, one approach is used to move forward for the 

rest of the study. 

7.2.1 Simulation Scenario Design 

As mentioned above, the simulation runs used in this part of the study have a constant CO2 

injection interval. The minimum interval is considered as 8 months, and the maximum as 24 

months. For each constant injection interval, 3 CO2 injection scenarios are designed based on the 

amount of CO2 injected into the reservoir. Assuming G as the total amount of CO2 injected for the 

base case, in the 2 other scenarios, 2G and 3G total CO2 is injected into the reservoir. 

The plots of the monthly injection rates for 2 different injection intervals (which is used in this 

part of the study) are depicted in Figure 35 and Figure 36. 
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Figure 35. Three CO2 injection scenarios within 8 months of injection 

Figure 36. Three CO2 injection scenarios within 24 months of injection 
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7.2.2 Data Set Generation 

For each constant injection interval, all the required static and dynamic data are extracted and a 

comprehensive data set is generated for each injection scenario.  

The only static parameter that has been changed to some extent, in this part of the study, is the 

calculation of the tier system through which the properties of the grid block around a single grid 

is introduced. In CO2 injection and sequestration process, since CO2 is migrating upward, CO2 

mole fraction, and as a result gas saturation changes, depend on the characteristics (such as 

porosity and permeability) of the lower and upper layer. It is not just a single grid block in the 

upper and lower layer that affect the dynamic parameter distribution, but rather a group of grid 

blocks. In other words, the degree of tightness of several grid blocks in the vicinity of the main 

grid can affect CO2 movement and gas saturation distribution. 

Therefore, in order to take into account the effect of this dependability, a new scheme is used for 

the tier system calculation which is depicted in Figure 37. To obtain the value of Tier-1, Tier-2, 

and Tier-3 the average value of the parameter is calculated over the grids which are included in 

the corresponding tier system. It should be mentioned that the number of grid blocks included at 

each tier system can be increased, in the case where reservoir grid blocks are smaller. 

  

  

  

 

 

 

 

 

 

 

 

As mentioned before, the data set includes all the dynamic parameters at each month of injection 

for the entire injection interval. In cascading SRM, two injection intervals of 8 months and 24 

months are considered for model development. This is to investigate the capability of SRM in 

Figure 37. New scheme for Tier System calculation  
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generating the outputs of a numerical reservoir simulation when the injection interval is extended. 

The CO2 injection schedule for 8 and 24 months of injection is demonstrated in Figure 35 and 

Figure 36 respectively.  

7.2.3 Cascading SRM 

As mentioned above, the organization of the SRM inputs in cascading SRM is different from the 

previously developed models. In this approach, the outputs of the system which were calculated 

at the previous time step are used to compute the outputs at the current time step, instead of using 

the dynamic parameters at the time 0. 

Generating the appropriate inputs for the injection intervals of 8 and 24 months, neural networks 

are designed and trained for pressure, gas saturation, and CO2 mole fraction at each month. 

Therefore, a total of 24 and 72 neural networks were trained for the two injection intervals of 8 

months and 24 months respectively.  

In order to implement the developed SRM, a computer code was developed through which at 

each time step (each month of injection), the neural network corresponding to each dynamic 

parameter (pressure, gas saturation and CO2 mole fraction) is applied to one scenario data set. 

Then the results, which are the calculated dynamic parameters at each grid block, are saved. In 

the next step, the calculated outputs (pressure, gas saturation, and CO2 mole fraction) are updated 

in the data set; these are in fact the inputs of the next time step neural networks. Therefore, using 

these new values the next time step networks are implemented. This procedure is continued for 

each consecutive injection month until it reaches the last time step. 

The computer code mentioned above was implemented to deploy the SRM on Scenario#1 both 

for the 8 months of injection and 24 months of injection. The results of pressure, gas saturation 

and CO2 mole fraction at each grid block were generated and the corresponding distribution maps 

were plotted. Figures 39 to 42 demonstrate the results. 

Since at each time step, the 2D distribution maps are generated for each layer of the reservoir 

(number of layers equals to 10) for each of the dynamic parameters, the total number of generated 

maps is equal to 240 for the case with 8 months of injection, and 720 for the 24 months. 

Therefore, in the following section, as an example, the results are presented for layer 1 of the 

reservoir at two time steps only. The SRM results for some other layers of the reservoir are 

presented in the Appendix-B. 
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SRM Results for Training Case-8 Months of Injection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 4 Months after injection 

Figure 39. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 8 Months after injection 
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SRM Results for Training Case-24 Months of Injection  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 40. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 12 Months after injection 

Figure 41. Distribution maps of Pressure, Gas saturation and CO2mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 24 Months after injection 
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Cascading SRM discussion 

The results which are obtained through the cascading approach shows that the calculated values 

of pressure, gas saturation, and CO2 mole fraction at each grid block of the reservoir are of very 

high accuracy for the shorter injection interval or fewer number of time steps. However, as the 

number of time steps increases so does the amount of prediction error.  

Generally, in the cascading SRM approach, the error of the predicted outputs is originated from 

two main sources. The first source of error is pertaining to the neural network training quality, 

which can be observed during the training process. The second comes from the fact that at each 

time step the predicted value of the previous time step is used as input to calculate the outputs of 

the current time step. This procedure results in an error accumulation that is responsible for a 

larger amount of error as time goes on and therefore poor predictions at the later times.  

Therefore, in order to investigate the source of errors between the SRM calculated values and the 

CMG outputs, the two sources of error should be evaluated on developed SRM.  

The IDEA software, through which the neural networks are developed, provides three different 

means for evaluating the quality of the neural network while it is being trained. The first 

parameter is the R-squared of error between the actual and virtual data. Cross plot of the actual 

verses predicted values and also the plot of error between these two are other ways of evaluating 

the network performance. Observing the cross plots and the R-squared of the error for all time 

steps during the 24 months, it can be concluded that all the networks’ quality is almost the same 

and therefore deteriorating the results as time passes cannot be a result of network quality. 

Consequently, the error accumulation at each time step can be considered as the major source of 

error which deteriorates the SRM output at the later times during injection. 

More study on this issue was conducted which endorses the above claim regarding the source of 

errors which results in drawing the conclusion that cascading SRM is not a proper approach to be 

applied for this specific study (especially for a long duration of time). The result of this particular 

study is presented in the Appendix-B. 

It should be mentioned that since SRM is a case-specific modeling technique, this conclusion 

may not be applicable if SRM is developed for a different system. 
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7.2.4 Non-Cascading SRM 

To develop the non-cascading SRM two different injection intervals of 8 months, and 24 months 

were considered. The same comprehensive data set, as the one used in cascading SRM, was used 

to generate neural network input for non-Cascading approach. 

Each input file includes data from three scenarios of similar injection interval. The input file is 

arranged so that besides the static parameters, the value of dynamic parameters for each grid 

block at time step 0 (before injection takes place) is considered as inputs. The output of each 

network is the pressure, gas saturation or CO2 model fraction of each grid block at all monthly 

time steps during the injection interval. 

7.2.4.1 Results of Non-Cascading SRM  

In order to implement the developed SRM, a computer code was developed through which at 

each time step (each month of injection), the neural network corresponding to pressure, gas 

saturation and CO2 mole fraction is applied to any scenario of interest. 

The developed SRM for two different injection intervals were deployed to two cases. The first 

one is one of the scenarios which was included in the training process and the other one is a blind 

case which has not been used in training. 

In order to make a comparison between the cascading and non-cascading SRM, the results of 

SRM for non-cascading approach is presented for the 8 months and 24 months of injection.  

The output of SRM for the first layer of the reservoir is presented as 2D distribution maps in the 

following sections (Figure 43 to Figure 49) for a training case as well as a blind case. The maps 

demonstrate the pressure, gas saturation and CO2 mole fraction distribution (first row, second row 

and third row respectively) generated by SRM (middle plot), its corresponding distribution map 

as CMG output (left plot) and also the error between these two (right plot). More distribution 

maps for other reservoir layers in different time steps are presented in Appendix-C.The results 

show that the accuracy of the SRM outputs based on non-cascading approach is significantly 

higher for gas saturation and CO2 mole fraction predictions both for training case and blind case 

compared to that of the cascading approach (especially for the longer injection interval). 

However, observing the results for the pressure distribution generated through cascading 

approach shows a slight percentage increase in the error when applied to a blind case. This might 

be attributed to the problem of over training the pressure networks. Based on the results obtained 

in this part of the study, a non-cascading SRM scheme is chosen for the rest of this research.  
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SRM Results for Training Case-8 Months of Injection 

Figure 43. Distribution maps of Pressure, Gas saturation and CO2mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 4 Months after injection 

Figure 42. Distribution maps of Pressure, Gas saturation and CO2mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 4 Months after injection 
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Figure 44. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Blind case- 4 Months after injection 

SRM Results for Blind Case-8 Months of Injection 

 

 

 

 

 

 

 

 

 

 

 

Figure 45. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Blind case- 8 Months after injection 
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SRM Results for Training Case-24 Months of Injection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 24 Months after injection 

Figure 46. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 12 Months after injection 
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SRM Results for Blind Case-24 Months of Injection  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 48. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Blind case- 12 Months after injection 

Figure 49. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Blind case- 24 Months after injection 
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7.2.4.2 Coarse-Grid SRM Error Evaluation   

The 2D distribution maps, which were presented in the previous sections, visualize the SRM 

result versus the CMG output for pressure, gas saturation and CO2 mole fraction distribution in 

each layer of the reservoir. In this section the frequency error plots is presented in order to 

demonstrate the frequency distribution of the prediction error for all grid blocks of the reservoir.  

The plots presented in Figure 50 to Figure 55 are generated for each parameter of pressure, gas 

saturation, and CO2 mole fraction individually when neural networks are applied to two different 

scenarios with 24 months of injection (the training case and the blind case) at three time steps 

during the injection interval (as an example).  

In general the frequency of the grid blocks with higher amount of error increases when the neural 

networks are applied to the blind case as opposed to the training case, especially in the later time 

steps. This is justified through the fact that the blind case scenario was not included in the neural 

network training process and therefore the prediction error for this case is generally higher. 

The results show that the pressure networks have the highest acuracy in predicting the pressure 

distribution since for this parameter the amount of error for the blind case scenario after 24 

months of injection does not exceed 5%.  

The frequency error plot for gas saturation prediction for the same blind case after 24 months of 

injection shows that around 90% of the grid blocks have an error of less than 0.02.  

The prediction results for the same case for CO2 mole fraction show that more than 95% of the 

grid blocks have an error of less than or equal to 0.05. 

Observing the amount of error presented in the frequency error plots it can be concluded that the 

developed SRM is a powerful tool to be used as a proxy model to generate the outputs of a 

numercial reservoir model at the grid block level.  

 

  



97 

 

Pressure Error Frequency Distribution plots-Training Case 

 

 

 

  

Figure 50. Pressure Error Frequency Distribution for all grid blocks of the reservoir at 3 time steps 
during the injection-Training case 
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Pressure Error Frequency Distribution plots-Blind Case 

 

 

  

Figure 51. Pressure Error Frequency Distribution for all grid blocks of the reservoir at 3 time steps 
during the injection-Blind case 
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Gas Saturation Error Frequency Distribution plots-Training Case 

 

  

Figure 52. Gas Saturation Error Frequency Distribution for all grid blocks of the reservoir at 3 time steps 
during the injection-Training case 
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Gas Saturation Error Frequency Distribution plots-Blind Case 

 

  

Figure 53. Gas Saturation Error Frequency Distribution for all grid blocks of the reservoir at 3 time 
steps during the injection-Blind case 
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CO2 Mole Fraction Error Frequency Distribution plots-Training Case 

 

  

Figure 54. CO2 mole fraction Error Frequency Distribution for all grid blocks of the reservoir at 3 time 
steps during the injection-Training case 
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CO2 Mole Fraction Error Frequency Distribution plots-Blind Case 

 

  

Figure 55. CO2 mole fraction Error Frequency Distribution for all grid blocks of the reservoir at 3 time 
steps during the injection-Blind case 
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7.3 SRM Development for Fine-Grid Model  

The fine reservoir model is the original model which consists of 100,000 (100 × 100 × 10) grid 

blocks. The reservoir construction procedure was explained in details in Chapter 4.  

For the purpose of SRM development, only the injection phase is the interval of interest. 

Therefore, three different injection scenarios are designed for 8 months and 24 months of CO2 

injection. Figure 35 and Figure 36 demonstrate the CO2 injection rate schedule for the two 

injection intervals. 

Two SRMs are developed for the fine-grid reservoir model for the two constant injection intervals 

of 8 months and 24 months.  

As a first trial, SRM was generated for 8 months of CO2 injection. Three training simulation cases 

were conducted using CMG simulator which were used as training cases. 

 To generate a comprehensive spatio-temporal data base, data should be extracted from the three 

simulation cases for each grid block. Since the reservoir consists of 100,000 grid blocks, the total 

number of data in the data set adds up to 300,000. This amount of data is much higher than the 

number of data that can be used in neural network development and training. Therefore, for the 

fine-grid reservoir, employing sampling to reduce the number of data is inevitable; whereas, in 

SRM development for the coarse-grid reservoir, the entire data from the training cases were 

utilized in neural network training process. Since the sampling method is based on the change of 

parameters at each time step with respect to time 0, sampling is performed individually for 

pressure, gas saturation, and CO2 mole fraction for each scenario. At each time step 10% of all 

data was sampled which mostly includes the grid blocks with the higher amount of change for 

that specific parameter. 

The neural network inputs are generated based on the non-cascading approach in order to avoid 

error accumulations during the deployment stage. 

Having the inputs, for each parameter, at each monthly time step, a single neural network is 

developed and trained. The total number of networks equals 24 for the SRM related to 8 months 

of CO2 injection and 72 for the scenarios with an injection interval of 24 months. 

7.3.1 SRM Result for Fine-Grid Model  

In order to implement the fine-grid SRM, the previously developed computer code was modified 

to be able to use a data set of 100,000 rows of input data, corresponding to the all reservoir grids 

to generate the desired output. At each time step (each month of injection), the specific neural 
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network related to pressure, gas saturation, and CO2 mole fraction is applied to a single scenario 

data file. 

The developed SRM were deployed to two simulation cases. The first case is one of the scenarios 

which was included in the training process (Scenario#2) and the second case is a blind scenario 

(where 1.5 G of CO2 is injected into the reservoir) which was not used in neural network training. 

The results of the dynamic parameters distribution generated by the developed SRM are 

presented in the following sections. The error between the generated parameters and the outputs 

of the numerical reservoir simulation model demonstrates the degree of accuracy of the SRM. 
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SRM Results for Training Case-8 Months of Injection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 4 Months after injection 

Figure 57. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 8 Months after injection 
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Figure 58. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Blind case- 4 Months after injection 

SRM Results for Blind Case-8 Months of Injection 

 

 

 

  

Figure 59. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Blind case- 8 Months after injection 
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7.3.2 Fine-Grid SRM Discussion 

Observing the results which are obtained through the constructed SRM for fine-grid reservoir, the 

following can be pointed out: 

 The results of the fine-grid SRM in generating the pressure field demonstrate higher 

accuracy, when applied to the blind case, compared to that of the coarse grid. As 

mentioned in section 7.2.4 the pressure networks could be over-trained for the coarse grid 

SRM where the pressure data of all grid blocks are included in the training set. Whereas, 

for the fine grid pressure networks only a portion of the data are considered in the 

training process which could prevent the networks from being over-trained.     

 In general, pressure distribution generated by fine-grid SRM is of very high accuracy 

(less than 3% of error) compared to gas saturation and CO2 mole fraction distribution. 

The reason lies in the fact that the reservoir has a relatively small volume with strong 

aquifer support and therefore, the entire reservoir is pressurized as a result of CO2 

injection. Consequently, pressure does not have a clear front which needs to be 

specifically detected. This can be the reason why the changes in pressure can be captured 

effectively through the sampled data. 

 On the contrary, the output generated by fine-grid SRM for gas saturation and CO2 mole 

fraction shows higher amounts of error, and therefore the accuracy is less than the coarse-

grid SRM. The reason is that both of these two parameters have a sharp front, and 

therefore in order to be accurately detected, sufficient amount of data is required to be 

introduced to the network particularly from the areas close to the edge of the plume.  

The problem of having insufficient data comes from two main sources. The first one is 

that although the sampling methodology is based on selecting the majority of the data 

from the area with maximum amount of change, it does not guarantee selection of all the 

data specifically from the edge of the CO2 plume. The second reason is that the plume 

always extends more in the simulation cases where more amounts of CO2 is injected into 

the reservoir, and therefore the grid blocks that are affected by this maximum amount of 

CO2, if selected during the sampling process, are introduced to the network only once. 

This does not provide enough data for the network to learn from the extended CO2 plume 

area. 
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7.4 Modification to Fine-Grid SRM 

Evaluating the errors, especially the gas saturation and CO2 mole fraction errors, suggests that 

performing some modifications to the inputs of the neural network might be helpful to better 

introducing the variability of the system to the neural network which could ultimately improve 

the SRM accuracy in generating the reservoir model output. 

The problem mentioned above can be addressed to some extent by adding more scenarios closer 

to the desired maximum amount of injection. For instance, if the maximum amount of total CO2 

that is designed to be injected into a reservoir equals to 3 × 𝐺 (assuming G as the base amount of 

CO2 to be injected), some simulation cases in which the amount of total CO2 is close and larger 

than this amount can be conducted. Using data related to this higher total CO2 injection can 

provide more information from the grid blocks in the edge of the CO2 plume.  

7.4.1 Adding to the Number of Training Cases  

Based on the error evaluation of the previously developed SRM for fine-grid reservoir, the 

decision was made to increase the number of training simulation cases from 3 scenarios to 5. The 

5 scenarios include the 3 original training cases, and two other cases in which the amount of CO2 

injection is close to the maximum target of total injected CO2. 

The following plots demonstrate the monthly CO2 injection schedule for 5 training simulation 

runs for 8 months and 24 months of injection respectively. In these plots, the CO2 monthly 

injection rate curves related to the three initial simulation runs are shown in solid lines and the 

two injection rate curves related to the new simulation cases are demonstrated by dashed lines.   
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Figure 61. Five CO2 injection scenarios within 24 months of injection 

Figure 60. Five CO2 injection scenarios within 8 months of injection 
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7.4.2 Modified Fine-Grid Models for 8 Months of injection  

A new data set was generated which includes the static, dynamic, and well data pertaining to the 

new simulation runs in addition to the 3 orginial simulation cases. This data set comprises 

500,000 rows of data, which must be reduced in order to be used for neural network trianig.  

For reducing the number of data, 10% of the data was decided to be selected. In order to ensure 

selection of the maximum number of grid blocks, which were affected by CO2 injection, the 

sampling procedure was implemented for each simulation case individually. 

In the next step, SRM inputs were generated for 8 months and in total 24 neural networks were 

trained for pressure, gas saturation, and CO2 mole fraction at each month. 

The results of the developed SRM for the first layer of the reservoir are demonstrated in the 

following section. The results for some other reservoir layers in other time steps are presented in 

Appendix-C. 
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Figure 62. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case-4 Months after injection 

Modified SRM Results for Training Case-8 Months of Injection 

  

Figure 63. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case-8 Months after injection 
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Figure 65. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Blind case-8 Months after injection 

Figure 64. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Blind case-4 Months after injection 

Modified SRM Results for Blind Case-8 Months of Injection 
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7.4.3 Fine-Grid Models for 24 Months of Injection 

The results of the SRM for 8 months of injection suggests that including more numbers of 

training simulation cases leads to an improvement in the accuracy of the output generated by 

SRM. Therefore, the same strategy was used to develop SRM for the simulation cases with 24 

months of CO2 injection. 

The same procedure as described above was followed to generate individual SRM input for 

pressure, gas saturation, and CO2 mole fraction for 24 months. 

The corresponding neural networks were developed and trained for 24 months. The results when 

SRM is applied to one training case (Scenario#1) and one Blind case (when 1.5 G of CO2 is 

injected into the reservoir) are presented in the following sections. 

 

Modified SRM Results for Training Case-24 Months of Injection 

  

Figure 66. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 12 Months after injection 
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Modified SRM Results for Blind Case-24 Months of Injection 

 

 

 

  

Figure 68. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Blind case- 12 Months after injection 

Figure 67. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 24 Months after injection 
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Figure 69. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in the first layer of the reservoir  
(from left: CMG output, SRM result and Error) – Blind case- 24 Months after injection 
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7.4.3.1 Fine-Grid SRM Error Evaluation   

The 2D distribution maps, which were presented in the previous sections, visualize the SRM 

result versus the CMG output for each layer of the reservoir. In this section the frequency error 

plots is presented in order to demonstrate the frequency distribution of the error for all grid blocks 

of the reservoir.  

The plots presented in Figure 70 to Figure 75 are generated for each parameter of pressure, gas 

saturation, and CO2 mole fraction individually when neural networks are applied to two different 

scenarios with 24 months of injection (the training case and the blind case) at three time steps 

during the injection (as an example).  

Generally, the frequency of the grid blocks with higher amount of error increases when the neural 

networks are applied to the blind case as opposed to the training case, especially in the later time 

steps. 

The same as the coarse-grid SRM the results show that the pressure networks have the highest 

acuracy in predicting the pressure distribution since for this parameter the amount of error for the 

blind case scenario after 24 months of injection does not exceed 2%.  

The frequency error plot for gas saturation prediction for the same blind case after 24 months of 

injection shows that around 85% of the grid blocks have an error of less than 0.02.  

The prediction results for the same case for CO2 mole fraction show that more than 95% of the 

grid blocks have an error of less than or equal to 0.05. 

Observing the amount of error presented in the frequency error plots it can be concluded that the 

accuracy of the developed fine-grid SRM is comparable to that of the coarse-grid which 

demonstrates that the SRM is able to generate the outputs of a large numercial reservoir 

simulation model very effectively even when only 10% of the data are used.      
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Pressure Error Frequency Distribution plots-Training Case 

 

 

 

 

Figure 70. Pressure Error Frequency Distribution for all grid blocks of the reservoir at 3 time 
steps during the injection-Training case 
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Pressure Error Frequency Distribution plots-Blind Case 

 

  

Figure 71. Pressure Error Frequency Distribution for all grid blocks of the reservoir at 3 time 
steps during the injection-Blind case 
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Gas Saturation Error Frequency Distribution plots-Training Case 

 

  

Figure 72. Gas Saturation Error Frequency Distribution for all grid blocks of the reservoir at 3 
time steps during the injection-Training case 
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Gas Saturation Error Frequency Distribution plots-Blind Case 

 

  

Figure 73. Gas Saturation Error Frequency Distribution for all grid blocks of the reservoir at 3 
time steps during the injection-Blind case 
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CO2 Mole Fraction Error Frequency Distribution plots-Training Case 

 

  

Figure 74. CO2 mole fraction Error Frequency Distribution for all grid blocks of the reservoir 
at 3 time steps during the injection-Training case 
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CO2 Mole Fraction Error Frequency Distribution plots-Blind Case 

 

 

 

  

Figure 75. CO2 mole fraction Error Frequency Distribution for all grid blocks of the reservoir 
at 3 time steps during the injection-Blind case 
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CHAPTER 8 

LESSONS LEARNED AND CONCLUDING REMARKS 

8.1 Lessons Learned 

In this work artificial intelligence has been applied as a technique to develop a proxy/surrogate 

reservoir model to be substituted for a numerical reservoir simulation model. This proxy model 

generates the outputs of the reservoir simulation model at the grid bock level, or in other words, it 

is able to calculate the pressure, gas saturation, and CO2 mole fraction distribution throughout the 

reservoir under different injection scenarios. 

Different stages which were performed toward developing the surrogate reservoir model for this 

specific CO2 sequestration study is summarized and presented as a flow chart in Appendix-A.  

The following can be pointed out as the most important findings of this study: 

1. Neural networks can be considered as an efficient tool which is capable of learning the 

behavior of a system through the provided data. These data must be collected wisely so 

that the system behavior can be captured and learned by the network. This is one of the 

most important aspects of application of a neural network which makes all the difference 

between employing the neural network as a black box, and changing that to a transparent 

box. If the amount of data to develop the model is not sufficient, or the collected data 

cannot represent the system behavior, the constructed network will have a poor 

performance and that is the reason why many researchers call the neural network a black 

box that is not a proper tool to be used for modeling different processes. 

2. In the cases where a portion of data must be selected due to the high dimensionality of 

the data set, application of a proper data sampling method is of significant importance. 

According to this study in the case of the coarse reservoir model, where the data related 

to all the grid blocks are included in training, the developed SRM is able to generate the 

outputs with very high accuracy by including only 3 training simulation runs. However, 

the SRM developed for the fine grid reservoir, in which only 10% of the data are 

included in the training process, the generated outputs through SRM (using 3 simulation 

runs) are of lower accuracy. Therefore, in this case more simulation runs are required to 

be included in the training so that the variability of the system can be properly introduced 

to the network through sufficient sampled data.  
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3. The CO2 sequestration project, which the current research was implemented on, is not the 

best candidate for developing a SRM which is able to generate the dynamic parameter 

distribution under different geological realizations. The reason is that in this reservoir 

there is only a single injection well through which CO2 is injected into the reservoir. 

Therefore, the data which should introduce the plume extension and its behavior during 

CO2 injection only comes from a single injection point and some grid blocks close to this 

location in the entire reservoir.  

If the injection process is performed in several locations throughout the reservoir, then 

the data, which is collected from different locations, carry the information related to the 

injection process, and therefore they can more efficiently reflect the effect of different 

geological characteristics of the reservoir. In other words, in case of more injection wells 

the neural network can be more efficiently trained to capture the effect of variability of 

the reservoir geology on the model output. 

4. Since CO2 mole fraction and gas saturation both have a sharp front, the maximum error 

occurs around the edge of the plume or close to the fluid front. Therefore, one of the 

solutions which can improve the results in these areas is to design the majority of the 

simulation runs close to the maximum amount of injection and even extend the amount of 

injection to a higher amount than what is required for a specific study. This can help the 

training process by providing more data from the fluid front location, which leads to a 

more accurate prediction of the parameter distribution in those areas. 
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8.2 Concluding Remarks 

Based on the current research, Surrogate Reservoir Modeling (SRM) technique, which uses 

artificial intelligence and data mining, is a very efficient method for developing a proxy/surrogate 

reservoir model. The developed SRM is capable of generating the results of a complex reservoir 

simulation model at the grid block level with reasonable accuracy in a very short amount of time 

with significantly less computational cost.  

The several reasons which make this technique an efficient and practical approach for developing 

proxy model for any complex numerical reservoir model are listed below.  

1. SRM is not limited by the choice of a predefined function and therefore it is very flexible. 

In all the proxy models developed through statistical approaches, the function that 

represents the system behavior is solely determined through the relationships between the 

uncertain parameters and the system outputs. However, in SRM any type of data which 

influences the output of the model or introduces the under study system can be included 

in model development, no matter what the parameters of interest are. Therefore, the 

neural network is trained by providing information related to any component of the 

system, the relationship between these components, and the effect of each of them on 

system behavior. 

2. SRM can be used to model significantly non-linear behavior of a system. The pattern 

recognition capability of SRM enables the model to capture the interrelationship between 

multiple parameters of the system without encountering any instability problems. 

Therefore, SRM can be developed for a very complex reservoir model with more than 

106 grid blocks and in existence of maximum number of fluid phases (3 dimensional 

reservoir, 3 phase fluid flow). 

3. In SRM development no simplifying assumption is made. In this approach all the 

complexity of the reservoir, fluid properties, rock properties, etc. are introduced to the 

neural network. Instead of generating a model by simplifying the physics of the process, 

SRM tries to find the complex relationship between the inputs and outputs of the system.  

4. Once SRM is developed, the input parameters can be changed (within a range) at any 

time and the output response to this change at that time is calculated in a fraction of a 

second. In other words the impact of any input alteration on the output can be obtained 

regardless of the complexity of the reservoir model in a very short amount of time. 
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For one of the cases studied in this research which includes 100,000 grid blocks with 8 

months of CO2 injection and 500 years of post-injection, the numerical reservoir model 

developed in CMG takes about 440 minutes to run, however SRM is able to generate the 

results in less than 2 minutes on the same machine, which means that the developed 

proxy model can be run about 150 times faster than the original numerical simulation 

model. About the same amount of run time speed up can be achieved for the other 

scenarios for this specific study. 
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CHAPTER 9 

 RECOMMENDATIONS FOR FUTURE WORK 

The current work is the first comprehensive work with the objective of developing a 

proxy/surrogate model which is able to mimic a numerical reservoir model’s output at the gird 

block level. Therefore, the results of this research can be further improved and its capabilities can 

be extended in different aspects. For this purpose the following are proposed: 

1. Within the current study, two different techniques of cascading and non-cascading SRM 

development were employed. In the first approach, the inputs to the neural networks 

included the dynamic parameters of the last time step. In the second, the only dynamic 

parameter used was the pressure, gas saturation, and CO2 mole fraction at the time step 

zero (before injection starts).  

According to the results, in cascading SRM the accuracy of the prediction is decreased as 

time passes and that is due to the error accumulation that happens through parameter 

updating at each time step. In the non-cascading approach, since the dynamic parameters 

at one time step before is not used in neural network training the error is not accumulated. 

However, since the pattern of the dynamic parameter distribution, especially gas 

saturation and CO2 mole fraction are changing during the time, just providing the 

dynamic parameter at time zero cannot be as useful for the networks at the later time 

steps. 

Therefore, it is suggested to use a semi-cascading approach to develop the SRM. In this 

approach, dynamic parameters of the previous time step are used at every predetermined 

time interval (not at every single time steps). For instance,  if the CO2 injection duration 

is 24 months, after each 6 month pressure, gas saturation, and CO2 mole fraction of the 

previous time can be included in the in network inputs. This, on one hand, introduces to 

the network the new pattern of the dynamic parameter distribution, and on the other hand, 

reduces the error accumulation. Consequently, this approach can help increasing the 

accuracy of the output generation specifically during the later time steps. 

2. The sampling method which was used in this study is a significantly efficient method of 

data selection for this specific case. However, based on the error evaluation for each 

individual dynamic parameter more data can be selected and included in the training 

process from specific areas which still have higher error distribution. This can be used as 

a local diagnostic approach which can improve the accuracy of the results.  
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3. The result of the SRM which was developed for different geological realizations of this 

specific case of CO2 sequestration was not of acceptable accuracy. This is due to the fact 

that in this specific project injection takes place in a single location of the reservoir and 

therefore the data which are gathered from the entire grid blocks of the reservoir does not 

provide sufficient information about the injection process.   

For this reason, it is suggested to apply the same methodology to a different case with 

more injection wells throughout the reservoir and observe the performance of the 

surrogate reservoir model in generating the outputs of numerical reservoir model when 

the model is run under different porosity and permeability distribution. 

4. In this work the SRM was developed for ascending CO2 injection schedule; however, the 

application of grid-based SRM can be extended to study the reservoir behavior under 

varying injection/production schedule.  
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Appendix-A 

A-1. SRM Development procedure in different Stages 

 

  

Figure 77. SRM development for data sampling evaluation 

Figure 76. Layer-1 SRM development  
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Figure 78. Full field SRM development flow chart 
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Appendix-B 

B-1. Cascading SRM Results for coarse-grid model 

The result of cascading SRM for the first layer of the reservoir was presented in Chapter 7 

(section 7.2.3). In this section the dynamic parameter distribution maps generated by SRM for 

layer 2 and layer 4 of the reservoir, in 2 different time steps during the injection interval (in the 

middle of the injection and at the end of injection), are demonstrated and compared to the 

corresponding CMG outputs. 
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B-1.1. Layer 2-Training Case-8 Months of Injection 

 

 

 

 

 

Figure 80. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 8 Months after injection 

Figure 79. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 4 Months after injection 
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B-1.2. Layer 4-Training Case-8 Months of Injection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 81. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 4 Months after injection 

Figure 82. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 8 Months after injection 
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B-1.3. Layer 2-Training Case-24 Months of Injection 

 

 

  

Figure 83. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 12 Months after injection 

Figure 84. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 24 Months after injection 
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B-1.4. Layer 4-Training Case-24 Months of Injection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 85. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 12 Months after injection 

Figure 86. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) – Training case- 24 Months after injection 
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B-2. Cascading Result Evaluation 

Based on the cascading SRM results which were presented in chapter 7 (section 7.2.3) it was 

concluded that in cascading procedure the error accumulation at each time step generates a large 

amount of errors especially in the latest time steps during the injection. Further study was 

performed to ensure that the deterioration of the results at later time steps is due to the cascading 

process. 

For this purpose, the SRM results for gas saturation networks are evaluated when the neural 

networks are applied with and without cascading.  

In the first step, the neural networks are applied through cascading process in which the output of 

the previous time step is used as input of the current time step. Then, the same networks are 

applied independent of the generated outputs of the previous time step, which means that the 

inputs of the current time are not updated with the SRM results and the value of the CMG output 

is used instead. 

In the second step, some of the grid blocks with the highest amount of changes of dynamic 

parameter are selected from each layer of the reservoir. Then, the error between the SRM and the 

CMG outputs for each selected grid block is calculated both for cascading and non-cascading 

procedure at each time step during the injection interval. Finally, the amount of error during the 

injection interval is evaluated and compared for both procedures. 

The injection scenario used for this study is scenario#1 with 24 months of CO2 injection. The 

error plots for both processes are depicted in the following figures for layer 1, 3 and 5 of the 

reservoir (as an example). 
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Figure 87. Error comparison between cascading (top) and non-cascading (bottom) results for gas 
saturation during 24 months of CO2 injection in Layer 1 
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Figure 88. Error comparison between cascading (top) and non-cascading (bottom) results for gas 
saturation during 24 months of CO2 injection in Layer 3 
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Figure 89. Error comparison between cascading (top) and non-cascading (bottom) results for gas 
saturation during 24 months of CO2 injection in Layer 5 
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Appendix-C 

C-1. Non-Cascading SRM Results for Coarse-grid Model 

The result of non-cascading coarse-grid SRM for the first layer of the reservoir was presented in 

Chapter 7 (section 7.2.4). In this section the dynamic parameter distribution maps generated by 

SRM for layer 2 and layer 4 of the reservoir, in 2 different time steps during the injection interval, 

are demonstrated and compared to the corresponding CMG outputs. The results are presented in 

the following sections. 
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C-1.1. Layer 2-Training Case-8 Months of Injection 

 

  

Figure 91. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) –Training Case- 8 Months after injection 

Figure 90. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 4 Months after injection 



142 

 

C-1.2. Layer 4-Training Case-8 Months of Injection 

 

 

  

Figure 92. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 4 Months after injection 

Figure 93. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 8 Months after injection 
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Figure 94. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 4 Months after injection 

C-1.3. Layer 2-Blind Case-8 Months of Injection 

 

  

Figure 95. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 8 Months after injection 
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Figure 96. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 4 Months after injection 

C-1.4. Layer 4- Blind Case-8 Months of Injection 

 

 

 

 

  

Figure 97. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 8 Months after injection 
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C-1.5. Layer 2-Training Case-24 Months of Injection 

 

 

  

Figure 99. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 24 Months after injection 

Figure 98. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 16 Months after injection 
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C-1.6. Layer 4-Training Case-24 Months of Injection 

 

 

  

Figure 100. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 16 Months after injection 

Figure 101. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 24 Months after injection 
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C-1.7. Layer 2-Blind Case-24 Months of Injection 

 

 

  

Figure 102. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 16 Months after injection 

Figure 103. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 24 Months after injection 
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C-1.8. Layer 4- Blind Case-24 Months of Injection 

 

 

 

  

Figure 104. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 16 Months after injection 

Figure 105. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 24 Months after injection 
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C-2. Non-Cascading SRM Results for Fine-grid Model 

The result of non-cascading fine-grid SRM for the first layer of the reservoir was presented in 

Chapter 7 (section 7.4.2 and 7.4.3). In this section the dynamic parameter distribution maps 

generated by SRM for layer 2 and layer 4 of the reservoir, in 2 different time steps during the 

injection interval, are demonstrated and compared to the corresponding CMG outputs. The results 

are presented in the following sections 
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C-2.1. Layer 2-Training Case-8 Months of Injection 

 

 

  

Figure 107. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 8 Months after injection 

Figure 106. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 4 Months after injection 
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C-2.2. Layer 4-Training Case-8 Months of Injection 

 

 

  

Figure 109. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 8 Months after injection 

Figure 108. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 4 Months after injection 
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C-2.3. Layer 2-Blind Case-8 Months of Injection 

 

 

 

  

Figure 110. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 4 Months after injection 

Figure 111. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 8 Months after injection 
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C-2.4. Layer 4- Blind Case-8 Months of Injection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 112. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 4 Months after injection 

Figure 113. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 8 Months after injection 
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Figure 114. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 16 Months after injection 

C-2.5. Layer 2-Training Case-24 Months of Injection 

 

 

 

  

Figure 115. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 24 Months after injection 
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C-2.6. Layer 4-Training Case-24 Months of Injection 

 

 

 

  

Figure 116. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 16 Months after injection 

Figure 117. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Training Case- 24 Months after injection 
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Figure 118. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 16 Months after injection 

C-2.7. Layer 2-Blind Case-24 Months of Injection 

 

 

  

Figure 119. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 2 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 24 Months after injection 
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C-2.8. Layer 4- Blind Case-24 Months of Injection 

 

 

 

Figure 121. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 24 Months after injection 

Figure 120. Distribution maps of Pressure, Gas saturation and CO2 mole fraction in layer 4 of the reservoir  
(from left: CMG output, SRM result and Error) - Blind Case- 16 Months after injection 
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