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Abstract 

Conceptual and Preliminary Design of a Stowable Ruggedized Micro Air 
Vehicle 

Shanti D. Hamburg 

This study presents both feasibility and preliminary design studies of a ruggedized, stowable, 

ballistically launched Micro Air Vehicle (MAV). A vehicle capable of being stored within a 40 mm 

diameter, 133 mm long cylinder and able to withstand a significantly rough environment when stowed 

was desired. Minimum performance specifications were a 20% range increase from a 450 m range, 45o 

launch angle ballistic trajectory and a gliding time of 30 s from the apex of said trajectory. To this end, a 

study of comparable MAV systems, available control and communication electronics, low Reynolds 

number flight, ballistic flight, and advanced projectiles was conducted. It was found that the concept was 

possible using current electronics, however, these would require a large majority of the available volume 

necessitating the novel, compact, wing stowage systems discussed within. While aerodynamically feasible 

the transition between ballistic and aircraft flight will necessitate significant sensor and control logic 

design. The small scales of this project necessitated consideration of the vagaries of low Reynolds number 

flight. Despite the final design proposals maintaining chordwise Reynolds numbers greater than 100,000 

several key trends were found to be significantly different than those encountered in classical 

aerodynamic theory; particularly the existence of an optimum aspect ratio for maximum lift to drag ratio 

of the wing alone. For a fixed wing area and velocity increasing the aspect ratio, thereby reducing induced 

drag, also reduced the chordwise Reynolds number which reduced the efficiency of the airfoil. At the 

optimum benefits from reducing induced drag balanced with the penalties of reduced airfoil performance. 

The feasibility study focused  primarily on volumetric concerns; minimizing stowed wing volume was the 

main goal. Several design iterations were constructed in SolidWorks prior to the development of two 

concepts ready for prototyping and testing. Design optimization was performed with both classical semi-

empirical methods using Missile DATCOM and a custom in-house Matlab code as well as the Fluent 

CFD package. Significant work was done to find a suite of solver settings and mesh generation 

parameters capable of predicting 2D and 3D low Reynolds number airfoil performance with sufficient 

quality for preliminary design work. Optimization studies found that achieving both initial performance 

goals with a single aircraft would be highly inefficient.  This effort concluded with a pair of designs, one 

high-speed cruise-to-target version capable of 700 m range and 9 s gliding time optimized for rapid-

response, and a long-endurance glider with a flight time greater than 60 s optimized for surveillance 

purposes.
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Chapter 1 Problem Statement 

1.1 Problem Description 

A micro aerial vehicle (MAV) was to be deployed from a compact, rugged, stowed configuration. 

This aircraft was intended to launch on a ballistic trajectory in a cylindrical stowed configuration and 

deploy aerodynamic surfaces to increase range and provide maneuvering and guidance capability. This 

document discusses the conceptual and preliminary design, paying particular attention to the problems 

created by the transition between ballistic and aircraft flight. The proposed size of the stowed 

configuration imposed significant geometric constraints that required a thorough modeling process and 

forced the design into unusual flight regimes. 

The stowed configuration was specified as a 40 mm diameter cylindrical body with a 

hemispherical nose 133 mm in total length, as shown in Figure 1-1. The center of gravity was fixed at 

50% along the body length in the stowed configuration. Launch conditions were specified as a ballistic 

trajectory with 450m range on the ballistic arc with a 40m/s apex velocity at a launch angle of 45o (Figure 

1-2). A minimum 20% range increase was specified, as well as a fight mass of 180g. Note that the flight 

profiles sketched in Figure 1-2 are for illustration only and do not represent the actual profile. In reality 

the flight plan would form a ballistic arc up to apex and a straight-line gliding decent afterwards. 

 

Figure 1-1: Stowed Configuration Geometry 
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Figure 1-2: Ballistic Launch Trajectory with Minimum Range Increase Specified 

Concepts for lifting and stabilizing surface planforms as well as stowable structures were 

required. The primary goal was to prove the aerodynamic feasibility of this stowed MAV concept. This 

included preliminary recommendation on lifting and stabilizing surface sizing and location for acceptable 

gliding range and stable flight. Proving volumetric feasibility was also a major consideration. Stowed 

aerodynamic surfaces had to leave sufficient volume for future sensor, control, and payload systems. 

Due to International Traffic in Arms Regulations and other security considerations some work 

done on this project has been omitted from this document. These omissions do not seriously impact the 

new information presented here as they deal with a specific application rather than the general 

preliminary design work which is the primary focus of this document. 

1.2 Solution and Overview of Work 

Few options exist to extend the range of an object on a ballistic trajectory. Drag can be reduced 

by modifying external geometry, but work in this document will show that body drag can only be reduced 

by approximately 1/3 at a significant loss of useful volume. The most effective way to extend the range of 

a ballistic object was to increase its lift-to-drag ratio by the addition of lifting surfaces. This placed 

concept development in the region between ballistics and micro aerial vehicle design. 

Design work began with brainstorming stowable wing structure concepts. Development of these 

concepts provided maximum area and extreme fore and aft location limits for the wings and tails. A semi-

empirical code was used to generate first-cut wing and tail sizes within these limits. According to these 

semi-empirical methods performance goals were surprisingly easy to meet.  

With initial sizing completed the stowed geometry was simulated in Fluent to verify prediction 

capability and develop flexible, accurate solution settings. Two basic deployed planforms were then 

studied, a high aspect ratio conventional design, and a clipped-delta layout. At the low Reynolds numbers 

of this flight regime the clipped delta wing had twice the lift-to-drag ratio of the conventional layout. 

With such a clear and significant result all work was then focused on optimizing a delta, or other low 

aspect ratio, configuration. 
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Classical aerodynamic analysis methods were applied again in an optimization analysis of the 

main wing and launch angle. As expected, optimum wing loading varied significantly with the 

apex/cruise velocity. This led to two divergent designs; one focused on the specified range increase, the 

other on a longer, slower flight better suited to a surveillance mission. Long endurance missions required 

a wing area in the neighborhood of 10,000 mm2 while the extended range mission only required 2,500 

mm2.  

A numerical study of airfoils and planforms at low Reynolds numbers was then conducted to 

check classical theory predictions and converge on optimums. This led to the two final designs; a high 

wing-loading, high-speed, range-extended version, and a low-speed, long-endurance reconnaissance 

design. 
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Chapter 2 Mission Description and Prior Art 

The project required combining the field of MAV design with basic ballistics as well as a 

preliminary study of available miniaturized electronics. While the deployed configuration is meant to 

function  purely as a MAV with all associated ground equipment the launch concept required some basic 

knowledge of gyroscopically stabilized flight. Blending these two flight regimes necessitated a study of 

current unmanned aerial vehicles, micro air vehicles, gyroscopically stabilized ballistics, advanced 

projectiles, miniaturized electronics, and low speed aerodynamics. 

2.1 Current Man-Portable UAVs and MAVs 

A survey of current MAV and small UAV systems was conducted. Data collected included mass, 

size, velocity, and ground station type information. Table 2-1 presents this data and Figure 2-1 shows a 

collage of the vehicles. Unfortunately complete information was not available for all aircraft. Wing 

loadings would have been the preferred point of comparison  rather than wing span and flight mass. 

Unfortunately wing area data was not available for the majority of the comparable aircraft.  

Table 2-1: Collected UAV and MAV System Data 

 
 

Designation Classification
Wing Span 

(m )

Maximum 

Mass (kg )

Cruise Speed 

(m/s )
Source

1 MLB 15 cm  Trochoid MAV1 0.150 13.400 Design of MAVs (MLB Co.)

2 University of Floridia MAV MAV 0.152 0.055 11.170 Composite Materials for MAVs

3 Black Widow MAV 0.152 0.050 12.630 defense-update.com

4 MLB 20 cm  Trochoid MAV 0.200 13.400 Design of MAVs (MLB Co.)

5 Mosquito MAV 0.300 0.250 16.450 defense-update.com

6 NRL MITE 2 MAV 0.368 0.213 13.400 The NRL MITE Air Vehicle

7 MLB Bat MPUAV2 0.600 13.400 Design of MAVs (MLB Co.)

8 Wasp Block III MPUAV 0.723 6.530 13.410 USAF Fact Sheet

9 BirdEye 100 MPUAV 0.850 1.300 Israeli Aerospace Industries

10 RQ-14B Dragon Eyes MPUAV 1.100 2.800 9.719 defense-update.com

11 Desert Hawk MPUAV 1.320 3.200 16.662 defense-update.com

12 RQ-11B Raven MPUAV 1.370 7.700 13.950 designation-systems.net

13 BirdEye 500 UAV3 2.000 5.000 18.000 defense-update.com

14 Finder UAV 2.620 27.200 19.439 defense-update.com

15 ScanEagle UAV 3.100 18.000 30.170 USAF Fact Sheet

16 MQ-1 Predator UCAV4 14.800 1020.000 44.700 USAF Fact Sheet

17 MP-9 Reaper UCAV 20.000 4750.000 102.800 USAF Fact Sheet

18 RQ-4B Global Hawk HALE UAV5
39.800 14628.000 159.570 USAF Fact Sheet

1 MAV: Micro Air Vehicle, 2 MPUAV: Man-Portable Air Vehicle, 3 UAV: Unmanned Air Vehicle, 4 UCAV: Unmanned Combat 

Air Vehicle, 5 HALE UAV: High-Altitude Long-Endurance UAV
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Figure 2-1: Collage of Current UAV and MAVs, Number and Sources as Listed in Table 2-1 

Plotting flight mass and cruise velocity as a function of  main wing span shows surprisingly 

strong correlations as seen in Figure 2-2 and Figure 2-3. Note that some of the UAVs listed in Table 2-1 

have been omitted from the figures for the sake of clarity. The flight wing span to flight mass correlation 

was very nearly linear across the entire size range, an excellent guideline for preliminary design work. 

Cruise velocity also displayed a strong correlation with wing span, though with more complex behavior. 

Velocity was seen to decrease with smaller size to a minimum of 10 m/s. At the very smallest sizes 

aircraft operated within a band between 10 m/s and 18 m/s. The lower limit was probably forced by the 

desire to avoid extremely low chordwise Reynolds numbers while maximum velocity was thought to be 

driven by mission constraints. For example, quality video reconnaissance from approximately 100 m 

altitude depends on a relatively slow moving platform 1. Both Figure 2-2 and Figure 2-3 provide an initial 

estimate of the operating regime for the WVU stowable MAV (shaded red geometries) designs. Both 

designs were entirely outside the conventional regions. Innovative and application specific solutions were 

required.  

                                                      

1 (Davis, Kosicki, Boroson, & Kostishack, 1996) 
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Figure 2-2: Flight Mass Plotted Versus Main Wing Span 
 

 

Figure 2-3: Cruise Velocity Plotted Versus Main Wing Span 
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2.2 MAV Electronics 

This project has not yet progressed to full systems integration. However, having information on 

current camera, sensor, control, and communication systems available was useful when considering the 

practicality of structural and volumetric designs and for directing future work. Information presented here 

provided minimum limits and goals for available useable fuselage volume throughout the design process. 

This also provides a brief overview of the currently available technologies. 

Figure 2-4 shows an image taken from a MAV flying at 100 m above ground level with the 

camera mounted at a 45o downward angle from horizontal and a 1,000x1,000 pixel resolution and a 40x40 

degree field of view. Even with images from such a high resolution micro camera, identifying intentions 

of personnel on the ground could be difficult. Image stabilization systems are almost required in addition 

to the high resolution due to the oscillations of the MAV about all axes. The effects of pitch oscillation on 

the camera target are shown in Figure 2-5. AeroVironment's Wasp vehicle, 72.3 cm span, incorporated the 

twin-camera system shown in Figure 2-6. Image stabilization and view steering were both incorporated 

by April 20072. 

 

Figure 2-4: Image from 100 m Altitude at 45
o
 Angle from Aircraft, 40

o
x40

o
 Field of View, 1,000x1,000 Pixel 

Camera(Davis, Kosicki, Boroson, & Kostishack, 1996) 
 

                                                      

2 (Grabowsky, 2007) 
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Figure 2-5: Effect of Pitch Oscillation on Camera View (Morris, Design of Micro Air Vehicles and Flight Test 

Validation, 2000) 
 

 

Figure 2-6: Twin Camera System from AeroVironment's Wasp MAV(Grabowsky, 2007) 

Onboard electronics have been miniaturized sufficiently to make this type of project feasible. 

Figure 2-7 provides details of a small flying-wing MAV produced by MLB Company with major internal 

components visible through a transparent skin 3. This design, developed by Morris et al., incorporated all 

control and communication systems in addition to propulsion. Focusing exclusively on gliding flight in 

the current project has freed a large amount of volume for wing stowage and more powerful transmitter 

systems. 

                                                      

3 (Morris, Design and Flight Test Results for Micro-Sized Fixed-Wing and VTOL Aircraft, 1997) 



9 

 

Figure 2-7: 20 cm Trochoid Planform MAV from MLB Company (Morris, Design of Micro Air Vehicles and 

Flight Test Validation, 2000) 
 

In addition to the micro video cameras and transmitters such as those shown in Figure 2-8 several 

novel micro attitude sensors have been developed. An "optical flow" circuit designed by Ruffier, et al. 

can be used to determine both altitude and velocity. Rates of dilation and translation of separate objects in 

the video feed were used to collect velocity and climb rate information. The greatest advantage of this 

system was that it used the surveillance camera as a major component of the flight sensors and thus 

reduced system weight. An example is provided in Figure 2-9 4.  

 

Figure 2-8: Micro Video Camera and Transmitter (Torres & Mueller, 2001) 
 

                                                      

4 (Ruffier, Viollet, Amic, & Franeschini, 2003) 
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Figure 2-9: Circuitry Required for Optical Flow Velocity and Altitude Measurement System (Ruffier, Viollet, 

Amic, & Franeschini, 2003) 

A MAV scale onboard autopilot has been created by Krashanitsa, et al., (2006)  for use in the 

180g 30 cm span Dragonfly MAV 5. The Paparazzi system, shown in Figure 2-10, used a GPS receiver to 

obtain heading and altitude while a set of four infrared sensors collected pitch, roll, and yaw angles. The 

autopilot computer and sensor system weighed a mere 30g in 2006. Modern equipment would likely be 

capable of bringing this weight down even further. 

 

Figure 2-10: Paparazzi MAV Autopilot System  
 

                                                      

5 (Krashanitsa, Platanits, & Silin, 2006) 
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Unfortunately the Achilles heel of all the small MAV/UAV designs has been the size of the 

ground station. Ground stations for the MLB Bat and AeroVironment's Switchblade are shown in Figure 

2-11. Video display, manual controls, and high-power omnidirectional or gimbaled dish unidirectional 

transmitters and high-sensitivity gimbaled dish receivers have been required 6. To achieve maximum 

potential the ground equipment for the current project would need to be significantly reduced in size.  

 

Figure 2-11: Ground Stations for MLB Bat MAV System (Morris, Design of Micro Air Vehicles and Flight 

Test Validation, 2000)   
 

2.3 Low Reynolds Number Aerodynamics 

Initial study of the small scales and low velocities, 130 mm body length and 40 m/s maximum 

cruise speed, indicated that the aircraft would likely operate in a low Reynolds number (Re) regime, under 

300,000 based on main wing chord. This required attention since flow behavior begins to change in 

significant and nonlinear manners as the Reynolds number is reduced.  Such effects become more 

extreme as Re drops toward 75,000. 

                                                      

6 (Davis, Kosicki, Boroson, & Kostishack, 1996) 
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2.3.1 Two Dimensional Flow: Separation Bubbles and Transition 

At chordwise Re under approximately 150,000 the performance of smooth a airfoil section begins 

to degrade rapidly, as shown in Figure 2-127. This is caused by the variable laminar/turbulent nature of 

the boundary layer. When operating at low angles of attack both upper and lower surfaces maintain 

attached laminar flow. As angle of attack increases a leading edge separation bubble forms on the upper 

surface and flow trips to turbulent 8. The chordwise length of this separation bubble can vary from a few 

percent near the point of maximum velocity at the surface to more than 40% of the upper surface. A 

schematic of the transition is shown in Figure 2-13 along with approximate outlines of the upper and 

lower surface pressure distributions. 

 

Figure 2-12: Reduction in Smooth Airfoil Performance with Falling Reynolds Number (Lissman, 1983) 
 

 

Figure 2-13: Schematic of Low Re Separation Bubble Transition (Roberts, 1980) 
 

                                                      

7 (Lissman, 1983) 
8 (Mueller, Aerodynamic Measurments at Low Reynolds Numbers for Fixed Wing Micro Air Vehicles, 1999) 
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Hysteresis behavior is also encountered at these low Reynolds numbers 9. Flow detaches from the 

wing at a high angle stall but does not re-attach until a much lower angle of attack is achieved as 

illustrated in Figure 2-14. This effect can make stall recovery difficult for MAVs but is fortunately 

uncommon for most airfoils above Reynolds numbers of 100,000 where flow reattaches at approximately 

the same angle of attack at which it separated.  

 

Figure 2-14: Hysteresis Behavior of a Wing at Low Reynolds Number (Simons, 1999) 

Due to these effects drag polars and moment coefficients become highly nonlinear and 

abnormal10. Figure 2-15 clearly illustrates this behavior; the lift-to-drag ratio increases with increasing lift 

coefficient to near the stall point for Reynolds numbers below 200,000 on this thick profile. Such 

behavior is highly dependent on the profile studied 11. 

                                                      

9 (Simons, 1999) 
10 (Shyy, Lian, Tang, Viieru, & Liu, 2008) 
11 (Selig, Donovan, & Fraser, 1989) 
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Figure 2-15: Drag Polars of an Eppler E374 Airfoil at Low Reynolds Numbers (Shyy, Lian, Tang, Viieru, & 

Liu, 2008) 
 

2.3.2 Three Dimensional Low Aspect Ratio Aerodynamics 

The large performance benefits to be gained by increasing Reynolds number above 75,000 

suggested that reducing aspect ratio and increasing chord could provide performance benefits in this 

unique case. According to classical aerodynamics increasing main wing aspect ratio (b2/s) increases 

efficiency by reducing induced drag. However, with poor airfoil performance at low Reynolds number 

and extreme sensitivity to increasing Reynolds number it appeared that an optimum balance would exist. 

Kellog, et al. (2001) working on the NRL MITE MAV derived an expression, Equation 2-1, for optimum 

rectangular planform chord length12. This would provide minimum wing drag at a given velocity and 

wing span. Since Equation 2-1 has a Reynolds number dependence in the calculation of K1 based on two 

dimensional zero lift drag coefficient  the solution is iterative. 

                                                      

12 (Kellogg, et al., 2001) 
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2-1 

Low aspect ratios also produce non-standard effects. Extremely low aspect rations can postpone 

stall to higher angles of attack. Rectangular planforms can maintain attached flow up to 35o as seen in 

Figure 2-16. This work was done with 2% thick 4% circular cambered flat plate airfoils 13. Significant 

differences in performance would be realized by using other airfoil profiles and planforms. 

 

Figure 2-16: Lift Coefficient Versus Angle of Attack for Low Aspect Ratio Rectangular Planforms at Re=10
5
 

(Mueller, Torres, & Srull, Elements of Aerodynamics, Propulsion, and Design, 2006) 

It is possible that the efficiency benefits from increased chordwise Reynolds number could 

outweigh the penalties incurred by a lower aspect ratio in these flight regimes. In addition, the increased 

angle of attack attainable before stall should make these aircraft more controllable since atmospheric 

gusts on the order of their flight speed would be less likely to stall the main wing. 

 

                                                      

13 (Mueller, Torres, & Srull, Elements of Aerodynamics, Propulsion, and Design, 2006) 
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2.4 Ballistics 

Due to the ballistic trajectory of launch and the necessity of gyroscopically stabilizing the stowed 

geometry some basic ballistics knowledge was required. Fin stabilized projectiles conveniently have a 

negative pitching moment coefficient. However, a gyroscopically stabilized body frequently has a 

positive pitching moment coefficient. This is due to the combination of a tapered nose and blunt aft body, 

characterized in Figure 2-17 and a near uniform density distribution forcing the center of gravity aft of the 

center of pressure. 

 

Figure 2-17: Characteristic Gyroscopically Stabilized Body Showing CG Location and Axis for Polar and 

Transverse Moments of Inertia 

Information in Ballistics: Theory and Design of Guns and Ammunition14, presents the static 

stability criterion for a gyroscopically stabilized projectile. Note that the pitching moment coefficient is 

the only value dependent on the relative locations of the center of pressure and center of mass. If this 

value is insufficiently negative then the projectile would be statically unstable. To compensate for an 

insufficient restoring moment a spin rate would be required. However, to deploy lifting wings and directly 

enter gliding equilibrium the spin must be stopped and the aircraft oriented within less than 90o of upright. 

A slowly decreasing spin rate can cause tumbling as the spin rate approaches and drops below the 

threshold for stability. This is due to dynamic effects discussed in detail in Carlucci and Jacobson's text. 

To avoid the tumbling issue, illustrated in Figure 2-18, the stowed MAV must "jump" down in spin rate 

and rapidly transfer to aerodynamic stability. 

                                                      

14 (Carlucci & Jacobson, 2008) 
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Figure 2-18: Increasing Dispersion and Developing Instability of a Slowly De-Spinning Round (Carlucci & 

Jacobson, 2008) 
 

Non-rigid internal components can also cause significant problems with ballistic flight. 

Harmonics induced by any launch shocks and the high spin rates can cause large trajectory dispersion or 

even structural failure. The lag time to bring these components into equilibrium can be problematic even 

if the steady-state flight analysis proves acceptable15.Significant structural analysis work will be required 

to characterize these effects. 

2.5 Thesis Outline 

While any design process is necessarily recursive a general trend was followed with this project 

and this thesis reflects the same order. Work began with structural stowage concepts. This provided the 

maximum aerodynamic surface limits and available fuselage volumes. Within these limits Missile 

DATCOM, discussed further in Chapter 4, was used to obtain initial main wing and tail sizes for a 200% 

range extension. This long-range capability dictated a moderate wing area and speed, 60 cm2 and 33 m/s. 

Preliminary computational work was then possible. CFD simulations of the stowed geometry 

were conducted since experimental results for a simple blunt cylinder were available. This experimental 

data was used to generate a suite of mesh and Fluent solver settings which were flexible enough to 

support the inclusion of wings. Two deployed geometries were considered, a conventional high aspect 

ratio layout and a truncated delta planform. The delta wing proved to have nearly twice the lift-to-drag 

ratio of the conventional layout. As discussed in Section 2.3 the benefits of increasing chordwise 

Reynolds number outweighed the benefits of increased aspect ratio. Therefore the delta wing was selected 

for all future work. 

                                                      

15 (US Army Armament Ballistic Research Laboratory, 1984) 
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With the delta planform selected an optimization analysis was conducted using classical 

aerodynamic theory. Initially  a range of launch angles was studied to see how wing area and range varied 

with apex/cruise velocity and apex altitude. This analysis showed that initial performance goals of both a 

flight time greater than thirty seconds and a 30% range increase were driving the design in opposite 

directions and a compromise would not perform well at either. A 30% range extension was possible with 

a direct, high-speed glide straight to the location at a high wing loading. However the surveillance option 

required a much lower flight velocity and greater range. Therefore the research was split to follow two 

tracks: one a small wing high-speed version for extended range to target, and the other a large wing, low 

speed, long endurance variant for surveillance purposes. 

Parametric CFD studies were conducted in Fluent on all components with the goal of finding 

clear optimums or tradeoffs. An array of fuselages, airfoils, and wing planforms was studied. With this 

mass of data two final configurations were proposed. A summary of the process is provided in Table 2-2. 

Table 2-2: Thesis Outline Summary 

1) Structural Concept Modeling 

2) Control Surface Actuation Concepts 

3) De-Spin and Orientation Methods 

4) Initial Surface Sizing Calculations 

5) Stowed Geometry Mesh Generation 

6) Deployed Configuration Simulation 

7) Classical Aerodynamic Optimization Analysis 

8) Fuselage Analysis 

9) Two Dimensional Low Reynolds Number Airfoil Analysis 

10) Preliminary Three Dimensional Main Wing Analysis 

11) Recommended Preliminary Designs 

12) Summary and Recommendations 
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Chapter 3 Concept Development 

Initial work began with developing wing storage concepts. The entire project depended on 

developing a method to collapse sufficient wing and tail area into the stowed geometry leaving sufficient 

volume for sensors, controls, and other mission equipment. Multiple different methods were considered 

including completely encased MAVs and shells which transformed their exterior surface using either rigid 

structures or flexible components.   

3.1 Structural Concept Modeling 

Two fundamental stowage systems were proposed in the initial concepts provided by our research 

sponsors. "Cargo" type designs, as presented in Figure 3-1, shed a casing which fully surrounds the UAV 

and provides some support and cushioning from launch loads. These also permit flexibility of the fuselage 

shape within the limits of the discarded shroud. Figure 3-2 provides and outline of the progression of the 

Cargo designs developed at WVU and a schematic of their deployment sequence. 

 

Figure 3-1: Cargo Type Design: Draper Lab's Flyer (Martorana, et al., 2003)  
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Figure 3-2: Design Progression of WVU Cargo Work and Opening Sequence 

Alternately a "transformer" type configuration, Figure 3-3, could be used to increase the useable 

volume fraction of the stowed configuration. Only a thin shield or base support would be discarded, 

leaving the maximum possible volume available for the MAV. However, the fuselage design was far 

more constrained. Figure 3-4 provides a brief overview of the transformer type design progression and the 

deployment process of a transformer system. 

 

Figure 3-3: Transformer Type Sonotube, Missile Tube, and Naval Gun Designs (Woodland, 2000) (Bourlett, 

1997) (Palmer, 2001) 
 

Open 1 Open 2

Open 3

Initial Sponsor Design

WVU Cargo 1

WVU Cargo 2 WVU Cargo 3

WVU Cargo 4

BourtletSubmarine Launch UAV Woodland Sonotube UAV Palmer Gun Launched UAV
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Figure 3-4: WVU Transformer Design Progression and Transformer Deployment Process 
 

Two fundamental wing structures were also examined; solid segments which would swing or fold 

out to position, and membrane or other flexible segments which would un-wrap or expand. Figure 3-1 and 

Figure 3-3 illustrate the solid wing configurations while Figure 3-5 provides some examples of the 

flexible wings. Flexible wings included both composite thin plate airfoils and inflatable envelopes or 

durable, compressible foam to provide thick airfoil profiles.  

 

Figure 3-5: Membrane Wings Concepts, a) WVU Wrapped, b) WVU Leaf Spring, c) Batten Reinforced 

(Stanford, Abdulrahim, Lind, & Ifju, 2007), d) Titanium-Mylar Insect Scale (Pornsin-sirirak, Tai, & Ho, 

2001), e) Small Scale Batten Reinforced (Fleming, Bartram, Waszak, & Jenkins, 2001) 
 

Initial Sponsor Design WVU T1

WVU T2

WVU T3

Transform 1

Transform 2

Transform 3

c

d e
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3.1.1 Cargo Stowage Concepts 

Cargo concepts are characterized by shedding a complete shell or casing from the stowed 

geometry and deploying a small MAV of arbitrary external geometry. This provides significant design 

freedom in both wing planform and fuselage shape but can waste large amounts of the available stowed 

volume. 

3.1.1.1 Switchblade 

The initial cargo concept was a "switchblade" configuration, very similar to a scaled version of 

AeroVironment's SOAR, which was provided by the research sponsors (Figure 3-6). This configuration 

was quickly discarded for two reasons. First, the thin wings would have operated at a chordwise Reynolds 

number under 50,000, severely compromising their efficiency. Second, the fuselage kept less than 22,000 

mm3 useable volume of the initial 160,000 mm3 available in the stowed configuration, barely an eighth of 

the useable capacity. Note that for all cases only the fuselage volume was considered useable. The wing 

structures were all far too thin to contain anything but the smallest actuators and certainly no mission 

payload. 

 

Figure 3-6: Initial Switchblade Concept 

3.1.1.2 Wrapped Solid Wing 

One of the first methods studied was a folding solid wing. A highly contoured wing with multiple 

chordwise hinge points modeled to "wrap" around the fuselage as shown in Figure 3-7.  
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Figure 3-7: Deploy Process for Wrapped Solid Wing Cargo Designs 

This permitted both a much higher chordwise Reynolds number, up to 100,000, and maintained 

far larger fractions of the useable capacity. Both the initial design and the four succeeding improvements 

of the solid structure configuration are shown in Figure 3-8. Available fuselage volume increased from 

25,000 mm3 to 57,000 mm3.  

Pros: 

 Full airfoil profiles possible 

 Simpler designs could use molded, cast, or "rolled" manufacturing to keep costs down 

Cons: 

 Complex wing stowage system 

 Full discarded casing may interfere with deployment or de-stabilize MAV during opening 

 Poor volumetric efficiency when compared to later WVU solutions 

 Complex transformation process 

 

Figure 3-8: Solid Wrapped Wing Design Progression 
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3.1.1.3 Wrapped Membrane Wing 

Initially it was thought that membrane wings would be impossible on this configuration for 

designs requiring wing half-spans greater than three fourths to seven eighths of the circumference of the 

fuselage. This was due to the fact that one wing would have to wrap under the other and would conflict 

with the fuselage-wing junction of its twin. A slot through the fuselage, or an off-set mounting, combined 

with a moderate rearward leading edge sweep near the root chord solved the problem as shown in the top 

right of Figure 3-9 and covered in more detail in Section 3.1.2. With this design the inner-wrapped wing 

could pass freely under the root chord of the outer wrap. Only the composite substructure of the 

membrane wing has been shown in the figures. Either a rubber or fabric skin would be stretched over the 

surface to provide the final airfoil shape. 

 

Figure 3-9: Wrapped Membrane Wing Concept 

As Figure 3-9 shows, the wrapped membrane structure kept a far larger fraction of usable volume 

than any solid wing configuration, on the order of 100,000 mm3. This design was also far more flexible in 

terms of planform and multi-purpose components. Further discussion of this design is presented in 

Section 3.1.2 since it was the first of two structural systems that showed the most promise for 

implementation. 

Top Lef t Front Top Lef t Rear

Front

Lef t

Top
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Pros: 

 Excellent volumetric efficiency 

 Can provide thin-plate to full depth airfoil profiles as detailed in Section 3.1.2 

 Design lends itself to dynamic wing morphing techniques such as adaptive washout 

 Can imitate bird wing shapes to provide stealthier operation through misdirection 

Cons: 

 Wings may be difficult to deploy symmetrically 

3.1.2 Wrapped Membrane Structure Detail 

Composite membrane structure designs have been informed by the significant work done at the 

University of Florida. Figure 3-10 shows a MAV using a curved flat plate airfoil which relies on the 

cambered composite leading edge for spanwise rigidity. A more highly cambered wing could likely be 

made of a thinner, more flexible laminate as its cross-sectional moment of inertia would be greater. 

 

Figure 3-10: Cambered Plate MAV With Wrappable Wings (Shyy, Ifju, & Vieru, Membrane Wing-based 

Micro Air Vehicles, 2005) 

Span limitation was an early concern with the wrapped wing designs. Since both wings would 

have to wrap down around the fuselage initial designs were limited to the arc length between one main 

wing root chord and the other. This was overcome, as shown in Figure 3-11, by incorporating a slot which 

first wrapped one wing through a slot under the main wing root. The second wing would then wrap 

around the outside. With this modification spans were limited only by the ability of the system to un-coil 

from the stowed configuration. 
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Figure 3-11: Slot For Inner Wrapped Wing Pass-Through 

Full airfoil profiles could be created by using either highly compressible open cell foam rubber or 

inflatable envelopes as shown in Figure 3-12. A full airfoil profile could both increase efficiency and 

rigidity with the inclusion of tension fibers on the lower surface.  

 

Figure 3-12: Inflatable or Expandable Lower Surface Profile on Membrane Wing 
 

10% Circular Camber Curved Plate Carbon Laminate Airfoil

Partial Lower Surface Envelope/Foam 
for Serendinsky-Type Profile

Full Lower Surface Envelope/foam 
for Conventional Airfoil Profile
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Each of these methods can be combined with a "batten reinforced" wing.  Battens, in the 

terminology of Ifju, et al., are the composite ribs extending aft from the wing leading edge as shown in  

Figure 3-9. They allow the trailing edge of the wing to deflect into oncoming gusts and reduce the change 

in lift caused by atmospheric disturbances thereby enhancing stability.16 Figure 3-13 shows a pair of 

batten reinforced structures. The left image is a high aspect ratio wing incorporating both adaptive 

washout and a torque rod for control purposes; the right is a much smaller MAV using only adaptive 

washout. 

 

Figure 3-13: Batten Reinforcement and Adaptive Washout Detail (Stanford, Abdulrahim, Lind, & Ifju, 2007), 

(Ifju, Ettinger, Jenkins, & Martinez, 2001) 

The usual method for creating a MAV wing with adaptive washout has been to create a composite 

laminate with a stiff leading edge structure and several trailing battens of unidirectional carbon fiber. A 

flexible, usually elastic, membrane is then bonded over the upper surface. This structure permits the wing 

chord to deform into an oncoming gust. Gust tolerance has been extremely important as flight speeds of 

MAVs are on the order of atmospheric gust velocities. 

A previous wing morphing system developed at West Virginia University for the control of a 

tailless flying wing could be adapted for use on a membrane wing. The combination of a curved actuator 

rod, free-floating "feathers" and a common hinge line (Figure 3-14) allowed the creation of a continuous, 

smooth change in wingtip angle of attack. A latex and polypropylene skin has been omitted from the 

figure for additional clarity. Modifications to this system could incorporate more flexible feathers and 

multiple actuator rods to enable far more dynamic control input incorporating both angle of attack and 

camber changes.  

                                                      

16 (Ifju, Ettinger, Jenkins, & Martinez, 2001) 



28 

 

Figure 3-14: "Feathered" Wing Morphing System for WVU Horten Flying Wing (Guiler, 2007) 

Membrane wings would give the maximum planform diversity. Blended vertical surfaces could 

be incorporated at the wing tips, or a biomimetic planform could be used. Figure 3-15 shows an array of 

possible layouts. Bird like planforms can provide stability without vertical surfaces at these scales as 

shown by Sachs, 2007. The rearward swept tips generate an induced drag imbalance when encountering a 

side-gust. Focusing attention on the Frigatebird in Figure 3-15 it can be seen that a side-gust from the 

right will increase lift and drag on the outboard right wing and inboard left wing while reducing both on 

the outboard left and inboard right wings. The forward swept inboard wing keeps the total amount of lift 

nearly constant while the reduced drag on the left tip and increased drag on the right tip act to rotate the 

bird into the oncoming gust.  

Actuator Rod Path
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Figure 3-15: Potential Biomemetic Membrane Wing Configuration Diversity (Sachs, 2007) 
 

Figure 3-16 provides Sach's scale analysis showing a reduced required yawing moment for 

stability as mass is reduced. Smaller birds require a proportionally smaller restoring moment and their 

planforms can therefore be simpler. It appears that these same planforms should provide acceptable 

performance for the MAVs designed in this project. The hawk-like swept wings which provide these 

acceptable stability characteristics would be easy to manufacture with the methods discussed in this 

section. Using a cylindrical body, a biomemetic wing, and no vertical surfaces the visual signature of the 

MAV would be quickly discounted by observers. 

 

Figure 3-16: Correlation Mass and Required Yaw Stability with Behavior of a Clean Swept Biomemetic 

Planform(Sachs, 2007) 
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3.1.3 Transformer Stowage Concepts 

Three transformer concepts were developed. The first two incorporated solid wing and tail 

structures. A novel "leaf-spring" system was conceived third. Transformer designs, initially stemming 

from the "telescopic" system (Figure 3-17) developed by the sponsor, quickly proved to be more than 

worth the additional design difficulty. Initial designs kept 100,000 mm3 of useable fuselage volume, 

nearly 66% of the stowed configuration. The best solid-wing cargo designs kept barely 25%.  

 

Figure 3-17: Sponsor Telescopic Transformer Concept, (dimensions in cm) 

3.1.3.1 WVU Switchblade Transformer 

All WVU transformer concepts significantly reduced the complexity of the sponsor's initial work. 

In all cases the fuselage was a monolithic volume rather than the multiple sliding elements shown in 

Figure 3-17. 

The switchblade transformer system was the simplest system. Sets of single or multiple "fan" 

blade elements would be mounted on torsion springs as shown in Figure 3-18. These simple solid 

components could be easily and cheaply rolled or stamped for low cost. However, to conserve space only 

thin airfoils or cambered flat plates would be practical.  An advantage of multiple wing elements was that 

they could be deployed at separate times to de-spin, stabilize, and orient prior to deploying lifting 

surfaces. This could be done by having multiple, staged wing deployments with separate sets of fins or 

fins which deploy further at a later point in the flight. 
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Figure 3-18: Switchblade Transformer Structural Concept, (dimensions in  mm) 

Unfortunately this design sacrificed large blocks of volume extending into the center of the 

fuselage. It is anticipated that there will be difficulty in the miniaturization of the electronics and payload 

without the structural design sub-dividing the available volume. In addition, most useful configurations 

opened slots through the center of the body. Air bleed through these gaps could cause significant 

instabilities which would be extremely hard to model and predict.17 

Pros: 

 Simple design 

 Rugged torsion springs 

 Full thin airfoil profile possible 

 Can provide thin plate airfoil profiles 

Cons: 

 Open slot through center of fuselage  

 Large block of central fuselage volume sacrificed 

3.1.3.2 Telescopic Transformer 

The telescopic transformer system increased complexity of both design and construction, but was 

able to increase both planform diversity and available internal volume. Figure 3-19 shows how a set of 

wing elements could telescope into one another creating both a small stowage volume and a complex 

planform. Note that there is no particular significance to the different colors in the figure other than ease 

of viewing. 

                                                      

17 (Appich & Wittmeyer, 2001) 
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Figure 3-19: Telescopic Transformer Structural Concept, (dimensions in  mm) 

 

The large blocks on the wing tips served as both the surface seal of the stowed configuration and 

masses to increase the MAV's rolling moment of inertia. This was an important consideration in all 

designs since the extremely small moments of inertia of standard MAVs produce responses similar to 

fighter aircraft instead of the more desirable general aviation or transport aircraft dynamic 

characteristics.18 

Again, like the Switchblade transformer, a large block of fuselage volume would be sacrificed. In 

addition, manufacturing and g-load problems may be encountered with the thin shell structures the wing 

requires. 

Pros: 

 High AR possible 

 Sacrifices less volume than WVU switchblade 

 Full thin airfoil profile possible 

Cons: 

 Sacrifices large block of useful volume 

 Delicate manufacturing process for "shell" wing segments, prone to deformation 

                                                      

18 (Morris, Design and Flight Test Results for Micro-Sized Fixed-Wing and VTOL Aircraft, 1997) 
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 Cannot provide curved plate airfoil profiles 

 Cannot provide thick airfoil profiles 

3.1.3.3 Leaf Spring Transformer 

An elegant structural solution for a stowed-wing MAV was finally developed with the Leaf 

Spring system, shown in Figure 3-20. Elastic elements would be pinned together at the leading edge root 

and spread out in a fan when in the relaxed, deployed state. A membrane, either elastic rubber or taut 

fabric, would be stretched over at least the upper surface. When properly contoured, and with a taut 

membrane  skin the leaf elements could support any thick airfoil contour by covering both upper and 

lower surfaces. 

 

Figure 3-20: Leaf Spring Transformer Structural Concept 

Volumetrically this system seemed to be by far the most efficient. With the leaves being the only 

solid components of the wing an extremely large area could be compacted into a much smaller volume 

than any other option, with the possible exception of the Wrapped Membrane system. Both methods left 

the central fuselage volume free for payload and electronics. 

Problems this system could encounter include a somewhat difficult design of the leaves for a 

desired airfoil and planform shape, and difficulty in obtaining completely symmetrical wing deployment 

in both the transient phase and the final gliding shape. The aerodynamic analysis would also have to 

account for potential deformation of the membrane surface during flight. Unfortunately the span is limited 

by the mounting location, and the leaves may be forced to wrap around the fuselage tail for large spans. 

Span and tip chord are also cross-linked by the leading edge spar/tip rib leaf element as shown in Figure 

3-21. 

Top Lef t Front Top Lef t Rear

TopLef t Front
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Figure 3-21: Inverse Relationship Between Span and Tip Chord Length of Leaf Spring Structure for Wings 

with Equal Length Leading Edge Leaves 
 

Pros: 

 Full airfoil profile possible 

 Can support thin plate airfoil profiles 

 Extremely small stowed volume 

 Leaves center of fuselage available for payload and system components 

Cons: 

 Difficult design of leaf-spring element contours for desired airfoil shape 

 Membrane covering will deform from desired shape 

 Span-chord are cross-linked by leading edge spar/tip rib element 

 Asymmetric deployment possible 

 

3.1.4 Leaf Spring Structure Detail 

Both thick, 10% thickness to chord ratio or greater, wing profiles and cambered plate airfoils 

could be coupled with a dynamic, morphing structure in the Leaf Spring concept. The minimal number of 

simple components move towards a rugged design with small stowage volume, and great planform and 

control diversity. Figure 3-22 illustrates how the relative angle between the fuselage centerline and the 

wing chord could be changed. All leaves would be mounted to a single rotating base point. This would 

remove the necessity to self-right. A tri or quad symmetry setup could be used. While requiring a control 

system able to re-orient for the rotated body reference frame the aerodynamic simplification may make 

this worthwhile.  
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Figure 3-22: Method for Varying Leaf Spring Angle of Attack Relative to Fuselage; Gray) Fuselage With Slot 

for Membrane and Leaves, Blue) Rotating Mount for Leaves, Yellow) Leaf Spring Elements, Tan) Membrane 

Bonded to Leaf Upper and Lower Surfaces 

Alternately some inboard leaves could be attached to an aft-mounted rotating base. This would 

form an effective control surface by altering wing camber around the rotated leaves as in Figure 3-23. It 

may be possible to couple this control system with the previous angle of attack alteration but more design 

work is required to prove this out. 

 

Figure 3-23: Rotated Leaves for Control Surface Actuation and Camber Modifications; Fixed Leaves and 

Fuselage (Gray), Outboard Surface Rotation Point and Leaves (Red), Inboard Rotation Point and Leaves 

(Blue) 

Later powered versions may incorporate a method to actively change the amount the wings 

deploy, either through a winch system or active leaves of some variety. This system could be used to 

stage wing deployment as shown in Figure 3-24. Such a method would require an elastic membrane for 

the two-stage deployed main wings so that the appropriate airfoil shape would be maintained when not 

fully deployed during the de-spin and orientation phase. 
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Figure 3-24: Staged Wing Deployment for Stabilization and De-spin; Red) Initial Deployment for De-spin and 

Orientation, Blue) Secondary Deployment of Main Wings 

In addition, the ability to change wing area during flight could enable advanced maneuvers such 

as "bounding" flight described in Design and Flight Test Results for Micro-Sized Fixed-Wing and VTOL 

Aircraft (Morris, 1997)  and shown in Figure 3-25. This shows how a bird, or an aircraft with variable 

wing area, can alternate between a ballistic trajectory and high-g pull-ups. This mode of flight could 

enable a powered aircraft to cruise at twice its optimum lift-to-drag velocity while operating near its 

maximum lift-to-drag ratio. 

 

Figure 3-25: Illustration of Bounding Flight for Increased Cruising Speed (Morris, Design and Flight Test 

Results for Micro-Sized Fixed-Wing and VTOL Aircraft, 1997) 
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3.2 Control Surface Actuation Concepts 

While future work may enable the use of advanced morphing control systems the present designs 

focused on incorporating simple, standard control surface systems into the collapsible wing structures 

discussed previously. This was an interesting problem requiring hinge lines capable of collapsing down in 

a plane perpendicular to their rotation axis. Several concepts were developed. 

3.2.1 Torsion Rod System 

Torsion rods for actuation of flexible wing surface deflection have been used by several previous 

small UAVS, and have been studied in detail at the University of Florida on a high aspect ratio batten 

reinforced wing 19. Their work proved that, on a batten reinforced MAV wing, excellent roll control could 

be achieved using a system similar to that shown in Figure 3-26. A servo was used to apply torque to the 

horizontal rod along the quarter chord line. This rotated the two chordwise rods in the batten reinforced 

section of the wing to twist the wing structure in that region and provide an effective aileron control.  

 

Figure 3-26: Torsion Rod Control System on Batten Reinforced Wing, Multiple Actuation Point 

Configuration (Stanford, Abdulrahim, Lind, & Ifju, 2007) 
 

This work recommended locating the torsion rod in the weakest spanwise location to maximize 

the amount of deformation gained for the power applied. Unfortunately serious drag penalties were 

discovered when compared to conventional rigid wings and control surfaces. Control authority was 

comparable to conventional systems up to the point tip stall was encountered on the outboard wing. This 

may be a poor choice for a high wing loading design as tip stalls could be encountered when twisting the 

wing leading edge up. 

                                                      

19 (Stanford, Abdulrahim, Lind, & Ifju, 2007) 
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3.2.2 Collapsible Flapped Surface 

A control surface similar to a conventional hinged flap system was desired since it would provide 

a more known quantity. Unfortunately a simple hinged system could not be incorporated into the selected 

flexible wings without creating serious problems for either the hinge or stowage method. A compromise 

system, Figure 3-27, was developed. A more defined hinge line could be created by using a second set of 

rigid segments just forward of the control surface elements with a small gap between the two sets. The 

gap between the two sets of plates would then act as a defined living hinge. Alternately a high-tension 

spanwise line could be run just in front of the control surface elements between two adjoining battens and 

then be bonded to the membrane surface. This would also act as a defined hinge line for a living hinge. 

The rigid elements could be constructed from either a one-way flexible composite or plastic, or smaller 

completely rigid components. A pull-pull system would actuate control horns mounted to the central rigid 

control surface element. While the system would compromise the flexibility of the structure somewhat, 

the stowage system would still function and the system should operate nearly as a standard flapped 

system. For the leaf spring structure a compressible foam could be used to provide a trailing edge shape 

and compatibility with this system. Some efficiency improvements may even be gained since control 

surface gaps would be eliminated and the airfoil profile would not be modified to the extent a torsion rod 

system could generate. 

 

Figure 3-27: Effective Flapped Control Surface for Membrane Wings; Black) Carbon Laminate Structure, 

Tan) Membrane Surface, Dark Gray) Rigid Elements Bonded to Membrane, Light Gray) Control Horns and 

Cables for Pull-Pull Control 
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3.3 De-Spin and Orientation Methods 

The gyroscopically stabilized shell must be de-spun prior to fully deploying any lift generating 

surfaces to avoid a massive recovery oscillation which may end with the MAV traveling in a random 

direction. With the specified center of gravity a high spin rate was required for gyroscopic stability. 

Slowly reducing this rate can permit Magnus instabilities to tumble the round. These instabilities are 

caused by asymmetric circulation lift generated by the round's axial rotation when at a sideslip or pitch 

angle of attack. High spin rates cause gyroscopic stability effects to override these destabilizing lift 

components, but as spin rate drops the round begins to diverge from its intended trajectory and eventually 

tumbles. Figure 3-28 shows an explosively formed penetrator shell encountering just this effect. While 

deployed fins may make a round aerodynamically stable the de-spin action could cause an instability 

similar to that shown in Figure 3-28. Therefore it would be desirable to shorten this de-spin behavior as 

much as possible using over-sized fins or other active methods to reduce the spin rate. 

 

Figure 3-28: Instability and Dispersion Caused by Slowly Decreasing Spin Rate(Carlucci & Jacobson, 2008) 
 

Unfortunately no passive de-spin system could be developed which would also guarantee a 

specified orientation within an acceptable time span. The correction to gliding condition must be achieved 

within a very few seconds to insure the round stays on-target and does not lose so much altitude that it 

could not reach its intended goal. All systems required an orientation sensor and control system. The 

Paparazzi autopilot system, created by Krashanitsa, et al., (2006) would be ideally suited to determine the 

spin rate and angle, as well as selecting the appropriate time to activate the de-spin mechanism. 

Paparazzi's suite of four IR sensors mounted around the radius of the round could directly collect spin rate 

information and provide bank angle data. Figure 3-29 shows the autopilot with the four infrared sensors 

as they would be arranged around the circumference of the fuselage. 
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Figure 3-29: Paparazzi Autopilot Infrared Aerodynamic Angle Sensor System for Spin Orientation 

(Krashanitsa, Platanits, & Silin, 2006) 

Simplest of the methods would to be to deploy three or four large, symmetric, delta wings around 

the body. These wings would be sized to provide lift for cruise flight and use active control surfaces on 

some or all as a mix of elevons and rudders as illustrated in Figure 3-30. The drag penalty incurred by the 

redundant wings would not act over much time and would therefore not impact range to a large degree. In 

addition, the lack of a preferred orientation means less time would be wasted while the aircraft seeks its 

upright position and pitches for lift. Finally, if the deployed configuration is lower drag than the stowed 

configuration the casing could be ejected and the wings deployed shortly after launch to gain an even 

greater range extension. 

 

Figure 3-30: Cruciform Planform and Tri Planforms for Active Control Surface De-spin 
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Utilizing cambered airfoils, which significantly enhance performance, was a much more difficult 

problem. A cambered wing, with its single functional orientation, must be within a tight range of attitudes 

when deployed. Therefore the de-spin mechanism control and timing must be much more precise. A two 

stage process is recommended. Several options are shown in Figure 3-31. First, as discussed earlier, the 

main wing could have variable deployment: an initial opening identical to the vertical surfaces, followed 

by the full opening when the MAV has de-spun and the correct orientation has been reached. Second, a 

set of main wings would be deployed in addition to the de-spin tail fins. Third, a set of symmetrical de-

spin fins would be deployed from the aft casing. Once the spin rate has dropped to the point that one half-

revolution of the fully deployed main wings would damp out the rotation the casing, and de-spin fins, 

would be ejected and the main wings deployed. Strong dihedral stability would then complete the self-

righting process. Rotating the main wings up about the longitudinal axis (dihedral) creates a vertical lift 

component imbalance when the aircraft is at a bank angle. The wing on the side the craft has rotated to 

has a larger vertical lift component than the one on the other side which creates a restoring roll moment. 

With careful design this method could also be applied to the wrapped membrane structure. 

 

Figure 3-31: Multi-Stage Fin Deployment Schematic; a) Stabilizer Fins Deploy Further as Lifting Surfaces, b) 

Additional Lifting Surface Deploy, c) Stabilizers Deploy, De-Spin, and Discard Prior to Main Wing Deploy  
 

a b

c
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Finally, as shown in Figure 3-32, the casing components could be ejected with high tangential 

velocity in the direction of spin. This would carry significant rotational momentum since the rear casing 

must be somewhat massive to withstand explosive launch forces. Fortunately this idea would be 

compatible with all structural concepts. 

 

Figure 3-32: Casing Ejection in Spin Direction with High Rotation Rate to Reduce MAV Rotation Rate 

Initial Stowed Body Spin Rate

High Discarded Casing Spin Rate

Significantly Reduced Spin Rate for Main Wing Deploy
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Chapter 4 Initial Surface Sizing Calculations 

The US Air Force Air Vehicles Research Directorate has been developing and improving Missile 

DATCOM (MDCOM), a semi-empirical code for the analysis of finned projectiles, for several decades. 

MDCOM was used to quickly test a large assortment of fins and wings applied to a generic fuselage. An 

initial survey of this type was necessary to begin restricting the design space. The code requires a text 

input file listing fuselage, wing, tail, and protuberance geometry parameters as well as flight conditions. A 

sample code used for this project incorporating both main wing and tails has been included in Appendix 

A with the associated output. The 1997 Fortran 90 version user's manual was a necessity due to the black-

box nature of the executable file 20 

This semi-empirical code has been developed by the US Air Force to provide a first-cut 

estimation of aerodynamic coefficients for both gyroscopically and fin stabilized projectiles. Since access 

to this convenient program was available it was used to perform all initial sizing calculations. While not 

built for low Reynolds number work analytic and empirical relationships are exactly the classical 

aerodynamic theory used by all MAV design teams on their initial work21. 

Initial work assumed a constant 29 mm chord cruciform tail with trailing edges coincident with 

the aft end of the fuselage. Tail fin span was incremented from zero to 125 mm by 25 mm increments to 

find the optimum. A 50 mm long Ogive tail cone was imposed in addition to the hemispherical nose on 

the 40 mm diameter body as in Figure 4-1. An Ogive tail was imposed in an initial attempt to reduce the 

massive drag producing recirculation region behind the blunt tail of the stowed geometry. Three different 

locations for the center of gravity (CG) were examined, beginning 32.5 mm aft of the nose and moving to 

66.5 mm aft, 50% body length. Additional information from the research sponsors fixed the CG location 

at the rearmost of the locations examined. Flight velocity was assumed to be the apex velocity of the 

given 45o launch trajectory, 44 m/s. 

                                                      

20 (Blake, Missile DATCOM User's Manual - 1997 FORTRAN 90 Revision, 1998) 
21 (Mueller, Torres, & Srull, Elements of Aerodynamics, Propulsion, and Design, 2006) 
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Figure 4-1: Fuselage and Tail Configuration Studied with MDCOM, Dimensions in  mm 

 Figure 4-2 presents the results of this study showing a near linear reduction in pitching moment 

coefficient with angle of attack when tail span exceeded 50 mm. Linear interpolation between these points 

for a center of gravity conservatively located far aft, at 50% of the stowed geometry body length, 

provided sufficient information to estimate a stable tail surface area. A tail span of 60 mm, not including 

the fuselage diameter, was calculated to give a pitching moment coefficient of -0.017 per degree as 

recommended in Aircraft Design: A Conceptual Approach22. Since an extremely stable platform was 

desired values recommended for transport aircraft seemed a good starting point. Smaller surfaces would 

not pose a design problem as the span could simply be truncated. This was not true for enlarging the 

surfaces. For all future work the projected tail area, not including the fuselage as customary in projectile 

design, was fixed at 1,740 mm3 for both horizontal and vertical surfaces. Work then moved to initial main 

wing sizing. 

                                                      

22 (Raymer, 2006) 
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Figure 4-2: Tail Sizing Sensitivity Study with Three CG Locations 

Wing sizing was done in a similar manner to tail sizing. A 36.5 mm chord main wing of varying 

span was placed with its quarter chord at the center of gravity, 62.5 mm aft of the nose. The tail was then 

rotated by 45o to reduce interference issues, as shown in Figure 4-3. An extreme rearward location was 

required due to the fixed far aft CG location. A NACA 0008 airfoil was selected and simulations were 

done with the body at four angles of attack. Figure 4-4 presents the results of the analysis. 

 

Figure 4-3: Complete Planform Studied with MDCOM, Dimensions in  mm 
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Figure 4-4: Main Wing Sizing Sensitivity Study 

Figure 4-4 shows the near linear increase in lift-to-drag ratio with increasing wing area for a 

NACA 0008 airfoil mounted to the fuselage at 1o angle of attack relative to the body. Data for the wing-

body-tail combination is presented for three different angles of attack. Based on this information a wing 

area of 5,500 mm3 was selected, corresponding to a span of 150 mm. This more than satisfied performance 

requirements with a 5:1 predicted lift-to-drag ratio. Structural stowage concepts were checked to insure 

that this wing was feasible. 
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Chapter 5 Preliminary CFD Analysis 

Initial CFD work began with studying the stowed, or baseline, geometry, presented in Figure 5-1. 

This was done to insure that the baseline experimental data for the geometry could be reproduced, and to 

provide a starting point for the selection of optimal solver settings and mesh parameters as work 

progressed to more complex geometry. Both conventional high aspect ratio and truncated delta wing 

concepts were then analyzed for the first planform down-select. 

 

Figure 5-1: Stowed Geometry 

5.1 Stowed Geometry Mesh Generation 

The sponsors were familiar with the aerodynamics of the baseline configuration, and the 

associated CFD simulation of such geometries. A suite of recommended solver settings was provided as 

shown in Table 5-1 along with recommended domain sizes based on the cylindrical stowed body 

diameter. With these settings and the domain shown in Figure 5-2 the drag coefficient was predicted to 

within  from the CFD simulation. Main body axial, dx, cell lengths of 2.0 mm were used, with a 

step down to 0.5 mm spacing at the tail. Five prismatic cell layers were grown up from the wall with a 

first height of 0.5 mm and a growth rate of 1.2. Outside the prismatic region a tetrahedral domain was 

created, again with a cell growth rate of 1.2. Specific details on the mesh generation parameters are 

provided in Appendix B.  



48 

Table 5-1: Sponsor Recommended Solver Settings and Domain Sizes With WVU Selected Solver Settings 
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Figure 5-2: Solution Domain, Sliced on Longitudinal Centerline 

Figure 5-3 shows the convergence obtained for the standard k-ω turbulence model which 

consistently under-predicted the drag value within acceptable limits, -7%. As seen in Figure 5-3 grid 

independence was reached with 2.7x106 cells. A second run with the same mesh was conducted using the 

SST k-ω model. This shifted the error to +8%, still within acceptable limits for preliminary design work.  

 

Figure 5-3: Convergence Plot for Stowed Geometry, Mesh Converged at 2.7x10
6
 Cells 
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5.2 Deployed Configuration Simulation 

Once functional mesh and solver settings had been developed for the stowed configuration work 

moved to simulating the deployed configurations. Settings developed in the previous section were used as 

starting points for simulating the MAV geometry. Ogive tail cone fuselages, as detailed in Chapter 4, 

were used for the simulation of two configurations. Both a conventional planform based on the WVU 

Telescopic transformer, and a delta wing configuration were studied. Surface meshes were 1.5 mm 

spacing in large, low curvature regions, and condensed to 0.5 mm in complex regions such as the wing 

leading and trailing edges and wing-body junctions. This was done to match the on the stowed geometry 

discussed in Section 5.1, which provided an acceptable match to experimental data. All other mesh and 

solver parameters were defined similarly. Figure 5-4 shows the surface meshes of both geometries. 

 

Figure 5-4: Initial Deployed Geometry Surface Meshes, Identical Vertical Tail Area and Main Wing Area, 

Identical Fuselages 
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While the conventional planform produced an acceptable lift-to-drag ratio of 4:1, the delta 

planform exceeded it by 100% with a L/D of 8:1. Both had the same wing area, angle of attack, and 

vertical tail area, mounted to identical fuselages. This huge difference was caused by two phenomena. 

First the interference between the main wing and tail on the conventional layout as clearly seen in Figure 

5-5. The complex vortical structures starting aft of the main wings and becoming denser at the tail 

significantly increase drag on the MAV. While some of these structures still exist on the delta wing 

configuration they are smaller and fewer, therefore generating less drag. Second, as discussed in Section 

2.3.2, the increased chordwise Reynolds number of the delta planform increased the performance of its 

airfoil far in excess of the induced drag penalty incurred by a low aspect ratio. Therefore delta planforms 

were selected for all optimization work. This down-select was also fortuitous from a structural standpoint. 

The delta wing would be far easier to create than the conventional layout primarily due to the elimination 

of two wing surfaces by removing a horizontal tail. In addition, at these small scales the larger structures 

will likely be easier to build. 

 

Figure 5-5: Comparison of Flow at Tails of Conventional and Delta Planforms, Pathlines Colored by Velocity, 

(m/s), Jagged Black Lines Are Artifacts From Geometry Contour Display 
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Chapter 6 Classical Aerodynamic Optimization Analysis 

It was possible that more optimal MAV designs or other missions could be discovered by using a 

launch angle other than the initially specified 45o. Therefore, a basic optimization analysis was performed 

using classical ballistics and aerodynamics. A simple MATLAB code was written to calculate launch 

velocity from the known data presented in Table 6-1. Once the launch velocity was known an array of 

apex altitudes and velocities were determined using a second in-house program. This study was 

conducted to provide initial gliding altitudes an velocities (apex altitude and velocity) as a starting point 

to optimize for maximum range. An increased lift-to-drag ratio at a lower velocity could provide a greater 

range by starting from a significantly higher altitude.  All codes discussed in Chapter 6 have been 

included in Appendix C. 

Table 6-1: Given Stowed Trajectory Data and Calculated Launch Velocity 

 

Results of the trajectory program for launch angles, Λlaunch, of 40, 60, 70, and 80 degrees are 

presented in Figure 6-1. From this point on apex velocity, VA, and optimum MAV glide velocity are 

considered to be identical. In addition, note that increasing launch angle reduces cruise velocity, increases 

starting glide altitude, and, by basic aerodynamics, increases optimum cruising wing area. 
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Figure 6-1: Effect of Varying Launch Angle for AR = 2 Wing on Cruise Velocity and Initial Gliding Altitude 

Once the precise effects of launch angle on cruise velocity and apex altitude were known a third 

code was written. This algorithm calculated an optimum main wing area of specified planform, located 

the wing on the fuselage such that no horizontal tail was necessary, and proceeded to calculate expected 

range and flight time. In the cases detailed in Table 6-2 the main wing was fixed at an aspect ratio of 2 

with a taper ratio of 0.5. Similar sets of data were generated for aspect ratios from 1 to 4. All other values 

were calculated as illustrated by the program flowchart provided in Figure 6-2. 
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Table 6-2: Results of Optimization Code for an Array of Launch Angles 

 
 

 

Figure 6-2: Optimization Code Flowchart 
 

Launch Angle (deg) 40 45 50 55 60 65 AR 2

Apex Altitude (m) 103.8 124.2 143.9 162.5 179.2 193.8 ΛLE (deg) 30

Apex Velocity (m/s) 48 45 41 37 33 28 λ 0.5

Apex Range (m) 236 238.3 233.9 222.6 204.9 181.2 t/c 0.1

Total Range (m) 659 798 1,004 1,256 1,498 1,914 ct/c 0.4

%+ Range 146% 177% 223% 279% 333% 425%

W/S (N/m2) 700 600 450 325 250 150 XCG (mm) 80

Wing Area (cm2) 25.23 29.43 39.24 54.33 70.63 117.72

L/D 4.07 4.51 5.36 6.35 7.2 8.94

ReMAC 121,020 122,550 128,930 136,910 143,450 152,510

XCR LE (mm) 68.4 67.5 65.6 63 60.6 55

cR (mm) 47.4 51.1 59.1 69.5 79.2 102.3

cT (mm) 23.7 25.55 29.55 34.7 39.6 51.15

b (mm) 71 76.7 88.6 104.2 118.9 153.4

αtrim (deg) 7.4 7.14 6.17 5.14 4.41 3.56

L/D Wing 7.04 7.64 8.99 10.43 11.14 13.05
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 Figure 6-3 presents the most important results from this process, clearly illustrating the 

significant  range extensions possible with increased lift-to-drag ratio from greater launch angles. The 

increased efficiency possible with larger wings at lower velocities coupled with the greater initial glide 

start was far more important to maximum range than obtaining the maximum down-field distance at apex. 

 

Figure 6-3: Comparison of High Speed, Low Angle Launch and Low Speed, High Angle Launch Missions 

Based on the results from Figure 6-3 the idea of two divergent mission plans was developed. The 

simplest route was to achieve the minor range extension originally specified from a 45o launch angle with 

high cruise speed and very small wings. Alternately, and more difficult, a high 60o to 80o launch angle 

would produce ranges on the order of 2,000 m and extremely long flight times when coupled with large 

wings. Figure 6-4 compares the two mission profiles and  Figure 6-5 shows the wing areas required to 

accomplish them, along with the stowed geometry as a size reference. 

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

1 2 3 4

M
A

V
 R

an
ge

 (
m

)

Main Wing Aspect Ratio

20 Degree Launch Angle, V(cr) = 61m/s

Baseline Shell, Parabolic Trajectory, 450m Range

40 Degree Launch Angle, V(cr) = 48m/s

60 Degree Launch Angle, V(cr) = 33m/s

80 Degree Launch Angle, V(cr) = 12m/s

S M
A

IN
O

PT
=

 2
,9

43
 m

m
2

S M
A

IN
O

P
T

=
 4

,7
10

 m
m

2

S M
A

IN
O

PT
=

 1
4,

12
6 

m
m

2

S M
A

IN
O

PT
=

 3
5,

31
6 

m
m

2

S M
A

IN
O

P
T

=
 1

,6
05

 m
m

2

S M
A

IN
O

P
T

=
 2

,8
25

 m
m

2

S M
A

IN
O

PT
=

 7
,8

48
 m

m
2

S M
A

IN
O

PT
=

 3
5,

31
6 

m
m

2

S M
A

IN
O

P
T

=
 3

5,
31

6 
m

m
2

S M
A

IN
O

PT
=

 3
5,

31
6 

m
m

2

S M
A

IN
O

PT
=

 5
,8

86
 m

m
2

S M
A

IN
O

P
T

=
 1

,9
09

 m
m

2

S M
A

IN
O

PT
=

 1
,0

70
 m

m
2

S M
A

IN
O

PT
=

 4
,4

15
 m

m
2

S M
A

IN
O

PT
=

 1
,4

41
 m

m
2

S M
A

IN
O

PT
=

 8
72

 m
m

2



56 

 

 

Figure 6-4: Comparison of Alternate Mission Plan Required Wing Areas, Dimensions in  mm 
 

 

Figure 6-5: Comparison of Required Wing Area for High-Speed Cruise ( Wing Loading (W/S) = 700 N/m
2
, Vcr 

= 48 m/s, S = 2,523 mm
2
) and Long Endurance Missions (Wing Loading (W/S) = 150 N/m

2
, Vcr = 20 m/s, S = 

11,772 mm
2
) Relative to Stowed Geometry 
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The low flight speed option would be best suited to a surveillance role while the high speed 

variant would provide rapid, maneuverable, extended delivery. A compromise design would be a poor 

choice since it would require a more complex wing system than the high-speed variant and would fly 

much too fast for surveillance with insufficient duration. MAVs for surveillance tend to operate between 

10 m/s and 20 m/s to provide useful time-on-target without having to frequently re-orient the viewpoint.23  

With the decision to pursue two alternate missions the comparison to current MAV and UAV 

designs was re-considered. Figure 6-6 presents a modified version of Figure 2-3 with the two missions 

indicated. Neither is within the normal regime, and the high-speed version is not similar to any other 

current designs. 

 

Figure 6-6: Comparison of WVU Stowable UAV Flight Regimes for High-Speed and Long-Endurance 

Missions to Current UAV and MAV aircraft 
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Fuselage drag effects on range were also considered. Since the fuselage drag coefficient was a 

single specified value in the code it was trivial to vary between 0.2, based on fuselage frontal area, a 

worst-case scenario for a fuselage generating more drag than the stowed geometry, and 0.05 for an 

impossibly low drag configuration. Resulting ranges were predicted for both large and small wing designs 

as shown in Figure 6-7. As expected the percent increase in range from a lower fuselage drag coefficient 

was greater with the larger wing. This was due to the increased flight time over which the drag had an 

effect. In both cases the reduction of fuselage drag coefficient would be limited by required fuselage 

volume. The optimum range-volume selection cannot be made until a much more complete systems 

design is available. 

 

Figure 6-7: Lift-to-drag Ratio Sensitivity to Fuselage Drag Coefficient 
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Chapter 7 Component CFD Analysis 

To simplify the parametric numerical analysis the aircraft was broken down into sub-components. 

Fortunately this could be reduced to a pair of major segments, the fuselage and a wing which, over a 

range of Reynolds numbers and with a symmetric airfoil, would provide data for both the main wing and 

vertical tail. Mesh independence analyses for each of the sub-components were conducted to provide 

starting points for full MAV studies to be conducted in the future. This also allowed a more in-depth 

exploration of Fluent's ability to predict low Reynolds number airfoil performance. A detailed summary 

of the Fluent solver settings used in this work is provided in Appendix D. 

7.1 Fuselage Analysis 

From the classical aerodynamics work presented in Chapter 6 it was apparent that the fuselage 

was the largest drag contributor. Therefore any possible fuselage drag reductions would have large effects 

on overall MAV performance. As illustrated in Figure 7-1 a pair of Ogive tail cones were "carved" from 

the stowed baseline geometry. The Ogive geometries are referenced by the corresponding length of 

straight cylinder: 30 and 45 mm. Mesh and solver settings identical to those used for the stowed geometry, 

presented in Figure 5-2 and Table 5-1were applied. Streamlining the fuselage in this manner cost 35,000 

mm3 with the 45 mm long body and 45,000 mm3 with the 30 mm body. 

 

Figure 7-1: Various Ogive Tail Cones Applied to Stowed Geometry for Fuselage Study, Dimensions in  mm 
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Grid independence was obtained on the 45 mm long central body version ( middle outline in 

Figure 7-1). Specific details on mesh sizing are provided in Appendix B. Figure 7-2 shows that a mesh-

independent solution was reached at 7.5x105 cells in the domain. The entire mesh was generated with 

triangular prisms on the body and tetrahedral cells in the main volume. Body cells were restricted to 2.0 

mm on a side with a first cell height of 1.05 mm. A sample domain including local refinement regions and 

prismatic boundary layer is presented in Figure 7-3. 

 

Figure 7-2: Mesh Independence Study for 45 mm  Center Body Fuselage 
 

 

Figure 7-3: Component Mesh For Fuselage Analysis, 45 mm Center Body 
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With drag data collected and plotted in Figure 7-4 it was apparent that no peak "optimum" 

existed. Instead a case of diminishing returns was encountered. Maximum drag reductions of 

approximately 30% were possible, but significant fuselage volume was sacrificed. Since the case of 

diminishing returns in the drag-volume correlation was gradual it appeared that fuselage volume should 

first be dictated by mission payload, sensors, and controls. Only after the internal design is completed 

could the appropriate streamlining be selected.  

 

Figure 7-4: Correlation Between Fuselage Volume and Fuselage Drag Coefficient, Stowed Geometry is Far 

Right Value, Length of Tail Cone Increases to Left 

7.2 Two Dimensional Low Reynolds Number Airfoil Analysis 

As mentioned briefly in Section 2.3.1 flow over a two dimensional airfoil at low Reynolds 

numbers becomes extremely complex. The combination of laminar and turbulent regimes with possible 

flow separation and recirculating pockets, as shown in Figure 7-5, pushed the limits of commercial CFD 

software.  
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Figure 7-5: Smoke Visualization of Transition Bubble on a Smooth Airfoil at Re - 40,000 (Mueller & Batill, 

1982) 

To begin this analysis a survey of other low Reynolds number airfoil simulations was conducted. 

All prior work appeared to use fully orthogonal structured meshes with customized codes and transition 

models.24 While useful for expanding theoretical knowledge and improving turbulence transition models 

these codes are not useful for full three dimensional MAV design and optimization studies. To conduct 

this project a very flexible set of mesh specifications was required along with solver settings which 

functioned over a broad range of aircraft geometries. 

                                                      

24 (Lian & Shyy, 2007) 
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Work done by Kim, et al. in 2009 showed the complex turbulent behavior over a lifting airfoil at 

low Reynolds number in detail from experiment. As seen in Figure 7-6 the turbulent and recirculation 

regions of the boundary layer can extend up to 0.06 chord lengths from the airfoil surface at very low 

Reynolds numbers. Initially it was hoped that the same mesh settings used to simulate the Ogive tailed 

fuselage geometries would work with minor changes to maximum surface cell edge lengths. 

Unfortunately the separation, recirculation, and reattachment was not correctly captured modeled by the 

y+>30 mesh settings generated for the stowed geometry and fuselage analysis as illustrated by the 

extremely poor lift and drag prediction in  Figure 7-7.  At most five grid points would have been located 

in the unusually complex boundary layer. Therefore a y+<1 high resolution mesh was generated with 10 

to 20 nodes in the boundary layer depending on chord location. Specifics of this process are discussed in 

the following section. 

 

Figure 7-6: Turbulent Boundary Layer Measurements at Reynolds Numbers Under 0.5x10
5
, Airfoil Chord = 

180 mm, α=3
o
 (Kim, Yang, Chang, & Chung, 2009) 
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Figure 7-7: Comparison Between y+>30 Mesh Results and Experimental Data for a NACA 0009 Airfoil at 

Re=1.5x10
5
. NACA 0009 Experimental Data, (Selig, Donovan, & Fraser, 1989) 

7.2.1 NACA 0009 Validation 

Two dimensional data required validation for both mesh independence and turbulence model 

selection. The simple NACA 0009 airfoil was chosen for mesh and solver validation due to the wealth of 

experimental data available. Low Reynolds number data for the NACA 0009, reported by Selig, et al., 

(1989) has been used for all validation studies. Many other airfoils were studied by Selig's group; a small 

subset is  discussed later in this document. 

7.2.1.1 Mesh Independence 

Figure 7-8 presents the mesh regions on which the values in Table 7-1 were specified. Settings 

vary from the coarsest, Mesh 5, to the finest, Mesh 1. Results from these grids at a Reynolds number of 

3x105 for both the lift and drag coefficients, as well as the lift-to-drag ratio, were used to check for grid 

independence as shown in Figure 7-9. This demonstrates that even Mesh 4 with its 8,480 cells would have 

been sufficient to obtain reasonable results. However, since the two dimensional solutions took minimal 

computational time, "Mesh 3 Mod", incorporating a thicker prismatic layer and a more detailed local 

refinement region, was used to improve accuracy. Results, presented in Figure 7-9, show that while no 

mesh completely matches the experimental lift curve, and all over-predict the drag curve, grid 

independence was achieved with Mesh 4. Lift matched well for all meshes, but there was an increase in 

predicted drag from all finer meshes to an angle of ten degrees where the fine meshes predicted lower 

drag.    
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Figure 7-8: Mesh Regions for 2D Airfoil Studies, Labels as in Table 7-1 
 

Table 7-1 Mesh Region Specifications for Figure 7-8, C=Chord Length, 0.1 m for this Study 

 
 

Tip Cell Spacing Tail Cell SpacingAverage Cell Spacing

Last AR

First Cell Height

Refinement 

Region

Surface Mesh Mesh 5 Mesh 4 Mesh 3
Mesh 3 

MOD
Mesh 2 Mesh 1

Tip & Tail Spacing
0.004C 

(0.002C 

tail, max 

0.002C 0.001C
0.001C 

(0.00033C 

FL 2 side, 

0.0005C 0.00025C

Average Cell Spacing 0.02C .01C .005C .005C .0025C .00125C

Prismatic Layer Last AR Last AR Last AR Last AR Last AR

First Cell Height 0.00005C 0.00005C 0.00005C 0.00005C 0.00005C

Number of Layers 25 25 25 40 40

Aspect / Growth Rate 50% 50% 200% 50% 50%

Tetrahedral Domain

Domain Growth Rate 1.3 1.3 1.3 1.3 1.3 1.3

Refine Growth Rate 1.01 1.01 1.01 1.005 1.01 1.01

Refine Xcenter 2C 2C 2C 2C 2C 2C

Refine Xlength 7C 7C 7C 7C 7C 7C

Refine Ylength 3C 3C 3C 3C 3C 3C

Refine Volmax 400 200 100 50 100 100

Mesh Statistics Last AR Last AR Last AR Last AR Last AR

Skewness 0.71 0.72 0.74 0.77 0.75

Average Volume 1,061 509 358 263 98

Number of Cells 8,480 17,664 25,110 34,176 91,634

50%

25

0.00005C

Last AR

1,709

0.78

5,266

Last AR
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Figure 7-9: Lift and Drag Coefficient Plot Showing Mesh Independence for NACA 0009 2D Airfoil, Standard 

k-ω Turbulence Model 

One geometric modification was made to the NACA 0009 and all other airfoils studied. As shown 

in Figure 7-10 the trailing edge of the airfoil was blunted. This was done by rotating the upper and lower 

surfaces about the leading edge by 0.1o away from one another. To verify that this change had minimal 

effects Mesh 3 was compared to results generated by a sharp trailing edge geometry with the same upper 

and lower surface mesh settings.  
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Figure 7-10: Comparison of Blunt and Sharp Trailing Edge Mesh Geometries, Dimensions in m 

Figure 7-11 shows that the lift and drag coefficients returned by the blunted geometry were nearly 

identical to those calculated for the sharp training edge. Lift and drag coefficients for this study were not 

expected to match experimental data at this point. Errors at this stage were likely due to imperfect 

transition and turbulence modeling with the current settings. Following sections discuss the process used 

to select an appropriate turbulence model for these Reynolds numbers. This geometric modification 

allowed a single "last AR" prismatic layer to be grown from the surface of the airfoil which greatly 

simplified mesh generation for both two and three dimensional cases. A "last AR" prismatic layer creates 

a set of prism cells with the final layer having a specified ratio between the cell height normal to the 

surface and the cell length along the surface. Prismatic layers specified in this manner are more flexible 

and easier to generate around complex geometries but deal poorly with sharp edges. In this project it was 

easier to eliminate sharp edges by going back to the geometric model an inserting fillets and chamfers 

rather than developing a more complex and more tightly structured mesh. This blunted geometry is also 

likely more representative of any physical model which would be created. Even if the effort were invested 

to create a perfect sharp trailing edge it would likely be blunted in use. 
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Figure 7-11: Comparison of Blunt and Sharp Trailing Edge Mesh Results, Standard k-ω Turbulence Model 
 

7.2.1.2 Turbulence Model Selection 

As seen in Figure 7-7, the standard k-ω turbulence model produced extremely poor results. As 

this research program was focused on design work it was not practical to write a custom turbulence model 

for this flow regime. A model sufficient to produce conservative first-cut engineering estimates was 

required. To this end the full suite of turbulence models and settings available in Fluent 12 was examined 

on Mesh 3 Mod at an angle of attack of 6o and a Reynolds number of 3x105. Table 7-2 presents a 

summary of all turbulence models, some general comments, and their performance in this case. Laminar 

solutions were also attempted in both steady-state and transient formulations. Neither configuration 

returned useful results and have been omitted here. Laminar solvers failed to capture the leading edge 

separation, circulation bubble, and reattachment and returned a fully-stalled solution as soon as leading 

edge separation occurred. Only those models which predicted both lift and drag coefficients, and lift-to-

drag ratio, within  were selected for further study. The Reynolds Stress models have been omitted 

due to the number of options to be displayed, and the fact that these seven equation models performed 

poorly and ran slowly in later testing. 
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Table 7-2: Summary of Fluent 12 Turbulence Models Applied to NACA 0009 at 6
o
 Angle of Attack and 

Reynolds Number of 3x10
5
, Errors Less than 10% Highlighted in Green 

 

With the first down-select complete all potential turbulence models were run at angles of attack 

between 0o and 8o at two degree increments at Reynolds numbers of 3.0x105, 1.5x105, 1.0x105, and 

0.6x105. These Reynolds numbers were selected to correspond with Selig's published data.25 Repeated 

down-selects occurred each time the Reynolds number was reduced based on the closest experimental 

match at the current Reynolds number. Figure 7-12 shows lift-to-drag ratio data after the first down-

select. All steady-state models under-predicted the lift-to-drag ratio across the range. Two transient 

turbulence transition models, SST and k-kl-ω were also examined. Neither performed well; both over-

predicted lift and under-predicted drag and were therefore useless as conservative engineering tools, even 

neglecting the 10-5 s time step forcing extremely long run times and making three dimensional 

simulations utterly impractical. 

                                                      

25 (Selig, Donovan, & Fraser, 1989) 

Model
Prediction for NACA 0009 at α=6o

Comments
CL % Error CL CD % Error CD

Laminar Unstable Err Unstable Err
Failed due to flow detatchment at separation 
bubble, no modeling for re-attachment

Spalart - Allmaras

Vorticity - Low RE 0.657 7.15% 0.017 6.92% Simple, one equation model built for the aerospace 
industry to handle wall bounded and adverse 
presure gradient flows

Strain/Vorticity - Low RE 0.655 6.79% 0.017 5.66%

Strain/Vorticity 0.062 -89.85% 0.026 64.15%

Vorticity 0.062 -89.87% 0.027 66.67%

k-ε

Standard-Standard 0.592 -3.46% 0.041 155.35% Simple two equation model based on turbulent 
kinetic energy and turbulent dissipation rateStandard- NWF 0.563 -8.14% 0.053 230.82%

Standard - Enh Wall 0.612 -0.20% 0.038 135.85%

Standard - Enh Wall - Press Grad 0.612 -0.24% 0.038 135.85%

RNG - Standard 0.624 1.75% 0.029 81.76% RNG model improved for high strain rates

RNG - NWF 0.589 -3.85% 0.041 159.12%

RNG - Enh Wall 0.649 5.84% 0.028 75.47%

RNG - Enh Wall - Press Grad 0.649 5.84% 0.023 43.40%

RNG - Standard - DVM Unstable Err Unstable Err

RNG - NWF - DVM Unstable Err Unstable Err

RNG - Enh Wall - DVM 0.645 5.22% 0.024 50.94%

RNG - Enh Wall - DVM - Press Grad 0.645 5.22% 0.240 1409.43%

Realizable - Standard 0.622 1.47% 0.027 68.55% Realizable model built for planar and round jets, 
rotation, adverse pressure, separation, and 
recirculation

Realizable - NWF 0.586 -4.34% 0.038 140.88%

Realizable - Enh Wall 0.652 6.39% 0.020 28.30%

Realizable - Enh Wall - Press Grad 0.652 6.41% 0.020 28.30%

k-ω

Standard 0.635 3.54% 0.026 64.15% Standard model verified for wakes, mixing layers, 
and jets. Should be valid for wall bounded shear 
flows

Standard - Low Re 0.620 1.14% 0.035 118.24%

Standard - Shear 0.631 2.97% 0.025 55.97%

Standard Low Re - Shear 0.616 0.52% 0.032 99.37%

SST 0.651 6.18% 0.016 3.14% SST model uses the k-ω model in the near field and 
the k-ε model in the far-fieldSST - Low RE Unstable Err Unstable Err

Transition k-kl-ω Steady Unstable Err Unstable Err

Transition SST Steady Unstable Err Unstable Err

Transition  SST dt=10-5 0.653 6.56% 0.017 3.77%
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Figure 7-12: Lift-to-drag Ratios for Selected Turbulence Models at a Reynolds Number of 3x10
5
 

 

Continuing down-selects were conducted as the Reynolds number was reduced to 1.5x105, 

1.0x105, and 0.6x105. The final lift to drag ratio plot, Figure 7-13, compares the two permutations of the 

Spalart-Allmaras turbulence model and a pair of k-ω model permutations. While the faster one equation 

Spalart-Allmaras model would have been preferable due to its reduced computational time, especially 

when looking forward to three dimensional modeling, the far better stall prediction of the k-ω SST model 

made it the clear winner. 

 

 

Figure 7-13: Lift-to-drag Ratios for Final Turbulence Model Down-Select at Reynolds Number of 0.6x10
5 
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From this process the k-ω SST model was selected for its accuracy, simplicity of implementation, 

and short run times. Most turbulence models produced very similar results, under-predicting efficiency to 

6o angle of attack and over-predicting afterward. Only the transient SST Transition model seemed to 

predict the physical stall angle, however it significantly over-predicted efficiency across the lower angle 

range and was therefore not a useful engineering tool. The transient k-kl-ω model was only checked at 6o 

and returned a significant over-prediction which also made it useless as a preliminary design tool. All 

turbulence models which produced useful results under-predicted performance at lower angles of attack, 

however since all were built on the assumption of fully turbulent flow stall was not predicted at the 

physically correct angle. The increased mixing caused by the fully turbulent boundary layer solution 

maintained flow attachment resulting in over-predictions of lift and under-predictions of drag past the 

physical stall angle of 6o. 

Figure 7-14 through Figure 7-17 show the drag polars at each Reynolds number across the angle 

of attack range from zero degrees to eight degrees. Note that for these plots the experimental data was 

taken from tabulated lists which were not precisely at 0, 2, 4, 6, and 8 degrees angle of attack due to the 

limitations of the experimental apparatus used.  

 

Figure 7-14: Drag Polar Using K-ω SST Turbulence Model for a NACA 0009 at a Reynolds Number of 

3.0x10
5
, Markers at 2

o
 α Increments from 0

o
 

 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

D
ra

g 
C

o
e

ff
ic

ie
n

t

Lift Coefficient

CFD Drag Polar

Experimental Drag Polar



72 

 

Figure 7-15: Drag Polar Using K-ω SST Turbulence Model for a NACA 0009 at a Reynolds Number of 

1.5x10
5
, Markers at 2

o
 α Increments from 0

o
 

 

 

Figure 7-16: Drag Polar Using K-ω SST Turbulence Model for a NACA 0009 at a Reynolds Number of 

1.0x10
5
, Markers at 2

o
 α Increments from 0

o
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Figure 7-17: Drag Polar Using K-ω SST Turbulence Model for a NACA 0009 at a Reynolds Number of 

0.6x10
5
, Markers at 2

o
 α Increments from 0

o
 

 

While not perfect by any means the preceding results show that the k-ω SST model provided an 

acceptable preliminary engineering design tool, particularly at moderate angles of attack and lower 

Reynolds numbers. In all cases the lift was predicted with reasonable accuracy and the drag tended to be 

over predicted which resulted in conservative performance estimates. Wind tunnel testing would be 

required to verify a final design or to inform the design optimization process. Prediction was poor near 

zero degrees angle of attack due to the solver forcing a turbulent boundary layer around the entire airfoil. 

Physically large portions of the leading edge boundary layer were likely laminar in nature and therefore 

producing less drag. In addition, the lift coefficient, and lift-to-drag ratio was over predicted at high 

angles of attack. This was likely due to the turbulence model maintaining flow attachment past the point 

where flow separation would begin. It is interesting to note that the pre-stall prediction performance of 

these settings improved significantly as the Reynolds number was reduced.  

Surprisingly the turbulence model did indicate the existence of a circulation bubble and 

reattachment region as shown in Figure 7-18 and Figure 7-19.  
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Figure 7-18: Velocity Pathlines (m/s) Showing Prediction of Recirculating Separation Bubble, 6
o
 α, 

Re=0.6x10
5
 

 
 

 

Figure 7-19: Pressure Coefficient Around NACA 0009 Showing Separation Bubble "plateau", 6
o
 α, 

Re=0.6x10
5 
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This demonstrates that, while not yet physical in magnitude and location, the field of turbulence 

modeling is progressing toward the ability to accurately predict low Reynolds number aerodynamics on 

arbitrary aircraft geometry. In fact work with the model constants in the Fluent solver could significantly 

increase accuracy. This was not pursued for the current project since acceptable results had already been 

obtained. Future work on this project could involve some experimentation with these constants to more 

closely match physical data. 

7.2.2 Two Dimensional Airfoil Comparison 

Table 7-3 shows the seven airfoils analyzed with the mesh and solver settings discussed 

previously. With the NACA 0009 already complete the other six were simulated at angles of attack from 

zero to eight degrees and the same set of four Reynolds numbers. 

Table 7-3: Selected Airfoil Profiles and Details 

 

Figure 7-20 through Figure 7-26 present the drag polars for each airfoil. It is interesting to note 

that the quality of prediction improves as the airfoil thickness to chord ratio increases. This is likely due 

to the larger separation bubbles created by the sharper leading edge radius on thinner airfoils. The same 

trend of reasonably predicting lift and over predicting drag within the useful angle of attack range held for 

all but the MA 409 which had the smallest leading edge radius of all. Experimental data was unavailable 

for either the S5020 or S3010 airfoils. Developing this comparison with experiment was necessary to 

provide confidence in the ability to predict the behavior of three dimensional wings using these or other 

airfoils. The cost to experimentally test all airfoils, wing, and wing-body configurations would be 

prohibitive; therefore the current study was conducted to provide a basis for a computational optimization 

analysis. Future experimental work will be used to verify and improve the computational predictions.  

MA 409, 7%Thick

S 2048, 8.6% Thick

DF 102, 11% Thick

MH 22, 7% Thick

S5020, 8.4 % Thick

S3010, 10.3% Thick

NACA 0009, 9% Thick

Conventional Camber Symmetric Reflexed Camber
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Figure 7-20: MA 409 Drag Polar with Experimental and CFD Data 
 

 

Figure 7-21: S 2048Drag Polar with Experimental and CFD Data 
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Figure 7-22: DF 102 Drag Polar with Experimental and CFD Data 
 

 

Figure 7-23: NACA 0009 Drag Polar with Experimental and CFD Data 
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Figure 7-24: S 3010 Drag Polar with Experimental and CFD Data 
 

 

Figure 7-25: MH 22 Drag Polar 
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Figure 7-26: S 5020 Drag Polar 

While this analysis does show some capability to predict the performance of various airfoils at 

low Reynolds numbers it did not seem likely that an accurate representation of their effects in three 

dimensions would be correctly captured. Parametric numerical studies of other airfoils would be 

interesting future work if coupled with a wind tunnel verification study. 

7.3 Preliminary Three Dimensional Main Wing Analysis 

Early three dimensional wing work was done prior to the two dimensional analysis discussed in 

Section 7.2. A DF102 airfoil was used prior to obtaining a full appreciation for simulation of flow in this 

regime. While the general trends of that early work, reported here, are consistent with other projects such 

as the work done by Mueller, et al. (2006) the specific values and exact locations of optimums are 

questionable 26. Future work will complete a more detailed set of these analyses using mesh and solver 

settings expanded from Section 7.2 but the previously collected trends provided information that is worth 

covering as a preliminary step in this direction. The more detailed analysis will use chordwise meshes and 

solver models based on those developed in the 2D work discussed previously in this document.  

                                                      

26 (Mueller, Torres, & Srull, Elements of Aerodynamics, Propulsion, and Design, 2006) 
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Figure 7-27 shows the primarily structured hexahedral prismatic boundary layer with triangular 

prism tips used for the 3D study. A detailed listing of the mesh generation parameters used is presented in 

Appendix B. Grid independence was reached, as illustrated by the lift and drag convergence shown in 

Figure 7-28, at 1.5x106 cells. Geometric and flow parameters used are presented in Table 7-4. The 33 m/s 

flow velocity was selected in an attempt to split the difference between the high-speed extended range 

mission and the low-speed long endurance mission so that two sets of planform studies would not be 

required. A lift coefficient of 2.09 based on the fuselage frontal area was required to lift the 180g mass 

MAV at 33 m/s and all wings were incremented in angle of attack until this value was reached. Stowed 

geometry body diameter was used as the reference area for lift and drag coefficient calculations due to the 

huge variation in planform area between the high-speed and long-endurance (nearly 500% larger) designs. 

A fixed reference was required to easily compare efficiencies of the competing designs. Performance data 

was then collected with each planform producing sufficient lift to complete the mission. 

 

Figure 7-27: Surface and Centerline Volume Mesh for Initial 3D Wing Modeling 

 

 

 

Figure 7-28: Mesh Independence Plot for Initial 3D Wing Modeling 
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Table 7-4: Flow Parameters, Lift Coefficient, and Geometric Parameters Varied for Three Dimensional 

Planform Study 

 

As expected, Figure 7-29 shows that the classical three dimensional flow structure about a lifting 

wing has been captured by this simulation. The reference wing  that all parameters was varied from used a 

DF 102 airfoil, 300 N/m2 wing loading, aspect ratio of 3, 30o sweep angle, and a taper ratio of 0.5.  

 

 

Figure 7-29: Pathlines Colored by Velocity (m/s) Around Reference Wing (Angle of Attack = 4
o
) 

 

Velocity 33 m/s 2.09

Wing Loading
Sweep 

Angle
Wing Area ReMAC

N/m 2 deg cm 2

200 3 30 0.5 88.29 127,096

300 3 30 0.5 58.86 103,773

300 3 30 0.75 58.86 100,748

300 3 30 1 58.86 100,067

300 3 15 0.5 58.86 103,773

300 3 0 0.5 58.86 103,773

300 2 30 0.5 58.86 127,096

300 4 30 0.5 58.86 89,870

400 3 30 0.5 44.15 89,870

DF 102

Airfoil
Aspect 

Ratio

Taper 

Ratio

Lift Coefficient, based on 

fuselage frontal area
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The most interesting result of this preliminary 3D wing analysis was the inverse relationship 

between aspect ratio and the lift-to-drag ratio of these wings. This is entirely counter to classical 

aerodynamic theory which states that as aspect ratio increases efficiency also increases due to a reduction 

in induced drag. Figure 7-30 clearly shows nearly a 25% drop in performance as the aspect ratio was 

doubled from 2 to 4. A drop of 40,000 in the Reynolds number accompanied the increased aspect ratio. 

This indicates that an optimum exists, which is significantly driven by the Reynolds number at the mean 

aerodynamic chord for aircraft at this small scale. Apparently for MAVs in certain flight regimes, with a 

fixed wing area, the increased efficiency of the airfoil section caused by increased mean aerodynamic 

chord Reynolds number can be significantly greater than the induced drag penalty incurred by reducing 

aspect ratio. In the more detailed study  currently underway, aspect ratios of 0.5, 1.0, and 1.5 will also be 

examined. At some point the induced drag losses must begin to overwhelm the increased Reynolds 

number effects. Finding this point will be critical to optimizing the final design of these MAVs. 

 

Figure 7-30: Inverse Correlation Between Aspect Ratio and Lift-to-drag Ratio and Direct Correlation 

Between Lift-to-drag Ratio and Mean Aerodynamic Chord Reynolds Number 
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Increasing wing loading at this velocity had a positive effect on efficiency, as demonstrated in 

Figure 7-31. The reference 300 N/m2 wing loading was the optimum calculated by the classical 

aerodynamics code discussed in Chapter 6. It is apparent that this was a significant under estimate as 

performance improves by 11% with a 33% increase in wing loading. Finding the peak of the wing loading 

tradeoff will permit designs to be sized at or above this point so as to minimize wing loading and simplify 

the task of collapsing the wings into the stowed geometry. These trends remain qualitatively similar 

between the MAV scale and in classical theory, though it is possible that the curves are shifted somewhat. 

No judgment can be made at this time due to the previously discussed limitations with this study. 

 

Figure 7-31: Lift-to-drag Ratio Improving Towards Optimum As Wing Loading Increases in Initial Study 
 

Fortunately, from a parameter space perspective, varying the leading edge sweep angle had little 

effect on the performance of the wing as shown in Figure 7-32. Therefore leading edge sweep may be 

used to enhance stability by both shifting the aerodynamic center and through the dihedral effect of rear 

sweep angles. This agrees with classical aircraft design theory though the intensity of the effect of sweep 

angle on stability may be different at these scales. 
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Figure 7-32: Lift-to-drag Ratio Insensitive to Leading Edge Sweep Angle 

Classical aerodynamic theory agreed well with the trends observed when varying the taper ratio. 

Reducing the taper ratio from 1.0 to 0.5 enhanced the lift-to-drag ratio consistently as shown in Figure 

7-33. It appears that the classical ideal elliptical lift distribution may well still hold at these scales. 

 

Figure 7-33: Inverse Correlation Between Taper Ratio and Lift-to-drag Ratio 
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Chapter 8 Recommended Preliminary Designs 

Based on this work it is possible to recommend two designs for prototyping, wind tunnel 

validation, and eventual flight tests. This would include the high speed cruise and long endurance 

configurations and both  leaf spring or membrane wing structures will be experimented with. While the 

work presented here provides excellent starting points, true design optimization will require significant 

physical experimentation. Determining the complex interactions between large fuselages and low aspect 

ratio wings at low Reynolds numbers is only one of the problems not yet vetted. With this ground work it 

is now possible to implement the optimization process outlined in Figure 8-1.  

 

Figure 8-1: Flow Chart of Proposed Optimization Process 

8.1 High Speed Cruise Configuration 

From a mechanical perspective the high speed cruise mission would be the simplest to 

implement. Wing areas less than 22% of those required for the long endurance mission will be relatively 

easy to store. Figure 8-2 provides a simplified sketch of the design with an Ogive tail and appropriate 

wing areas in a cruciform layout. Figure 8-3 provides an outline of the high speed cruise mission. 
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Figure 8-2: High Speed To Target Configuration, (dimensions in  mm) 
 

 

Figure 8-3: High Speed Cruise Mission Profile 
 

At this point preliminary structural design and prototyping are ready to begin for both the 

membrane and leaf spring structures. Conceptual packaging designs for both are shown in Figure 8-4 and 

Figure 8-5. These initial models, with hemispherical tails, retain nearly 130,000 mm3 of usable fuselage 

volume out of the 161,000 mm3 provided by the stowed geometry, or 82%. More detailed structural 

design work will be required to implement the designs shown. Both were created to confirm that 

sufficient volume was available; actuators, catches, and connectors will be designed in the next stage of 

the project.  

Maneuver 
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Figure 8-4: High Speed Leaf Spring Structure Concept, Partially Deployed (Left) and Fully Deployed (Right) 
 

 

Figure 8-5: High Speed Membrane Wing Structure Concept, Partially Deployed (Left) and Fully Deployed 

(Right) 

As discussed in Chapter 6, the high speed cruise wing area has been fixed at 2,520 mm2 through a 

classical aerodynamic optimization analysis. The initial location of the center of gravity will be 50% 

down the fuselage and coincident with the 20% mean aerodynamic chord location. This should provide a 

stable platform. However, complex interactions between the nonlinear positive pitching moment of an 

axisymmetric body and the behavior of low aspect ratio wings at these Reynolds numbers is poorly 

understood and may cause problems. Significant experimental work will be required. 

Prototypes of both the leaf spring and membrane structures should now be created since 

conceptual modeling and analysis have reached their limits. Wind tunnel experimental results will be 

required to improve efficiency and stability. 

The expected performance for the high-speed design is presented in Table 8-1. Performance was 

calculated for both the high-drag baseline fuselage (CD = 0.155) and an idealized, streamlined version (CD 

= 0.100). It is interesting to note that the range only increased by 88 m  (13%) when the fuselage drag 

coefficient was dropped by 35%.  
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Table 8-1: Sizes and Expected Performance of High Speed MAV 

 

8.2 Long Endurance Configuration 

Preliminary structural designs of the long endurance configuration have been developed as well. 

Sections 3.1.1.3 and 3.1.3.3 showed that sufficient wing area for the long endurance mission can be 

compacted into the stowed geometry. However, these models are not as certain or detailed as those of the 

high speed configuration due to the increased wing area exacerbating any unforeseen packing problems. 

Packing issues should be explored first with the high speed design before continuing work on the long 

endurance version. Figure 8-6 provides a schematic showing dimensions of a characteristic trapezoidal 

planform for this variant. Several features should be noted: 

 High-wing improves lateral stability characteristics 

 Near total masking of fuselage by the main wing should reduce non-linear axisymmetric 

body pitching moment behavior but will need to be tested 

 Clean transition between wing and upper fuselage should smooth air flow over the wing 

upper surface and increase efficiency as found by Kellog et al. (2001) in the design of the 

NRL MITE 2. The wing should be mounted so that the upper surface of the airfoil 

extends above the upper surface of the fuselage. 

Launch Angle 45 deg Wing Loading 700 N/m 2
Main Wing αTRIM 8.8 deg Main Wing αTRIM 8.8 deg

Apex Velocity 45 m/s Wing Area 2,523 mm 2 Glideslope 16.3 deg Glideslope 13.6 deg

Apex Altitude 124 m LE Location 68.4 mm Range 663 m Range 751 m

Apex Range 238 m Root Chord 47.4 mm Gliding Time 9.84 s Gliding Time 11.7 s

Ballistic Time 10 s Tip Chord 23.7 mm REMAC REMAC

CD o Fuselage Span 71 mm L/D L/D3.42

113,460

Performance, Cdo Fuse = 0.100

113,460

8.4

Performance, Cdo Fuse = 0.155Launch Information Wing Planform Information

0.155 4.1
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Figure 8-6: Long Endurance Concept, Dimensions in mm 
 

Figure 8-7 and Figure 8-8 provide some detail of both the leaf spring and wrapped membrane 

structures for the larger wing area of this configuration. These designs are less certain as unforeseen 

manufacturing difficulties encountered in the prototyping of the high-speed variants will be more 

pronounced when applied to the larger wing. A final leaf spring system would require a thinner airfoil 

than the NACA 0009 used in the model presented. 

 

Figure 8-7: Long Endurance Configuration Leaf Spring Structure, Top Left Front Quarter (Left), Bottom 

Right Rear Quarter (Right) 
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Major modifications, of both the leaf spring and membrane wing structures, were necessary to 

stow the 467% increase in wing area. Collapsing the leafs directly aft would have caused the elements to 

run into one another. A gull-wing arrangement mounted to the top of the fuselage allowed the leaves to 

wrap from the upper to lower surfaces parallel to one another without conflict as shown on the right of 

Figure 8-7.  

Storing the membrane wing unfortunately required the addition of a pair of thin shields covering 

the vast majority of the fuselage (grey components in Figure 8-8). These were necessary to protect the 

fragile exterior surface of the membrane from the launch tube. A long rear casing, a modification of that 

used for the high-speed version seemed more likely to jam during deployment. Fortunately the aspect 

ratio 2 wing has a span sufficiently short that the slot discussed in Section 3.1.2 to enable large wing 

spans was not required for this design. The inner-wrapped wing ends just short of the root chord of the 

outer wing wrap when stowed. 

 

Figure 8-8: Long Endurance Configuration Wrapped Membrane Structure 
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Expected performance of this configuration is presented in Table 8-2. Again note that a 35% 

reduction in fuselage drag ratio only provides another 104 m of range, 6.6%. Figure 8-9 presents a 

schematic of the low speed cruise mission profile with an emphasis on moderate endurance over-the-hill 

surveillance. 

Table 8-2: Sizes and Expected Performance of Long Endurance MAV 

 
 

 

Figure 8-9: Schematic of Long Endurance Mission Profile 

Launch Angle 73 deg Wing Loading 150 N/m 2
Main Wing αTRIM 9.86 deg Main Wing αTRIM 9.86 deg

Apex Velocity 20 m/s Wing Area 11,772 mm 2 Glideslope 8.4 deg Glideslope 7.8 deg

Apex Altitude 212 m LE Location 7.46 mm Range 1,576 m Range 1,680 m

Apex Range 132 m Root Chord 102.3 mm Gliding Time 73 s Gliding Time 78 s

Ballistic Time 12.9 s Tip Chord 51.1 mm REMAC REMAC

CD o Fuselage Span 153.4 mm L/D L/D 7.3

Performance, Cdo Fuse = 0.100

108,930

Performance, Cdo Fuse = 0.155

6.8

108,930

Launch Information Planform Information

0.155

1,680 m
Maximum 

Gliding Range

Orbit Target for 
Surveillance
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Chapter 9 Summary and Recommendations 

This work has shown that an effective micro air vehicle can be stowed within a small, rugged, 

cylindrical volume. In addition the same MAV can perform a useful mission while gliding from the apex 

of a ballistic arc. 

A survey of prior art showed that the projected flight regime of this aircraft would be well outside 

the usual MAV cruise performance envelope. This survey also indicated that power supplies, 

communication systems, actuators, and sensors have all been miniaturized sufficiently to enable the 

mission concept with the provided geometric constraints. Information collected on low Reynolds number 

aerodynamics indicated that flow separation and laminar-turbulent transition effects would be 

encountered, significantly increasing the difficulty of computational modeling and pushing the limits of 

classical aerodynamic theory. The two primary goals were verifying volumetric feasibility and obtaining 

reasonable performance predictions. 

Digital solid modeling of a series of wing stowage concepts lead to the development of the Leaf 

Spring and membrane wing structures which enabled significantly greater wing areas and provided 

approximately 400% more fuselage volume than the sponsor's initial designs. In addition to these two 

novel structures several methods of control actuation have also been developed. Refinement of the thin 

curved-plate membrane wings used in earlier MAVS have enabled this structure to incorporate full thick 

airfoil profiles.  

A fundamentally new "leaf spring" structure has also been proposed. This system uses a group of 

contoured "leaf elements" providing the structural function of both spars and ribs in a conventional wing 

while collapsing into an extremely small stowed volume. A film skin of Mylar, latex, or similar material 

would be bonded over the leaf elements to provide the outer surface. Multiple biomimetic morphing 

techniques could be applied to this structure including adaptive washout and variable sweep angle, wing 

area, angle of attack, and camber. Continuing work should now focus on physically prototyping both 

structural concepts and all control actuation methods. Material choice and subtle geometric permutations 

will be critical in obtaining optimum function and further progress will be extremely slow without 

physical models. 

With the volumetric feasibility verified work progressed to performance estimation and 

optimization. The semi-empirical Missile DATCOM code developed by the USAF was used to rapidly 

calculate initial estimates of required stabilizer and wing areas. Initial simulations in Fluent showed that a 

low aspect ratio delta planform significantly outperformed conventional high aspect ratio wing and tail 

layouts. 
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An in-house MATLAB code was developed to calculate optimum delta wing surface areas and 

longitudinal positions for cruise flight conditions. These cruise conditions were the calculated apex 

altitude and velocity for a range of launch angles determined from launch data provided by the research 

sponsors. In addition to returning optimum wing areas, the in-house code calculated total range from 

ballistic launch, gliding range, total flight time, and gilding flight time as well as the Reynolds number at 

the mean aerodynamic chord. 

CFD analyses of individual components was then conducted in preparation for future verification 

of the component build-up method at MAV scales. The tradeoff between fuselage drag and volume was 

determined by shaving the aft end into progressively longer Ogive conics. A 39% reduction in fuselage 

drag cost 28% of the stowed volume at the approximate point that diminishing returns began to take hold.  

Developing a suite of mesh and solver settings capable of providing reasonable preliminary 

design performance predictions for two dimensional airfoils between Reynolds numbers of 60,000 and 

300,000 consumed significant time. An examination of all Fluent 12 turbulence models was conducted. 

This provided a small subset of the 51 studied permutations capable of predicting the lift, drag, and lift-to-

drag ratio of a NACA 0009 airfoil at 6o angle of attack within +10%. Each of these models was then used 

to generate entire drag polars for the 0009. Finally the k-ω SST model was selected due to its simplicity 

of implementation, and speed of calculation. Future computational work should initially focus on 

improving flow modeling performance by modifying model constants of the k-ω SST model. Should this 

fail to improve results alternate low Reynolds transition models may need to be examined. Once that 

work is completed a second three dimensional planform study should be performed with the new mesh 

settings and turbulence model.  

A three dimensional planform study was conducted prior to realizing the intricacies of modeling 

this transitional flow. Despite this the general trends obtained were very strong, and while specific values 

are likely not accurate the qualitative information obtained was extremely useful. The effects of varying 

wing loading, taper ratio, and sweep angle all followed the trends shown in classical theory. This was 

important since wing loading has a primary effect on optimum cruise while taper ratio directly effects 

planform efficiency and sweep angle is critical for obtaining longitudinal stability of a delta design. 

However, increasing aspect ratio did not follow the classical trend.  
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Over the range of aspect ratios studied: 2, 3, and 4, the lift-to-drag ratio actually fell as the aspect 

ratio was increased, which is contrary to classical wing theory. Calculating the mean aerodynamic chord 

Reynolds number for each case provided the explanation. At an aspect ratio of 2 the mean aerodynamic 

chord Reynolds number was 127,096 which fell to 89,870 as the aspect ratio was increased to 4. In this 

critical transitional region smooth airfoils are extremely sensitive to falling Reynolds numbers. Future 

work should implement the revised mesh and solver settings developed for the two dimensional work and 

study a larger range of aspect ratios, down to 0.5 or less, to find the point at which increasing induced 

drag outweighs the benefits of increasing chordwise Reynolds number. It would also be interesting to 

examine several airfoils to determine whether the aspect ratio / Reynolds number tradeoff point is profile 

dependent to any significant degree. Several alternate MAV planforms such as circular, elliptical, and 

trochoidal layouts should also be examined. Wing-body effects between the low aspect ratio planforms 

and large fuselage will also need investigated.  

The primary conclusion of this work is that the initial concept is entirely practicable from 

volumetric and aerodynamic perspectives. However, the initial performance goals were not optimal from 

either of those engineering design viewpoints. Proposals for two more optimal designs have been made 

including a high-speed cruise variant capable of a 66% range extension, and a long-endurance 

configuration capable of gliding times greater than 60s. Much physical and computational work remains 

to be done prior to deploying a fully functional system but the initial groundwork has been completed and 

is very promising. 

 

 



95 

References 
Appich, W. H., & Wittmeyer, R. E. (2001). Aerodynamic Effects of Body Slots on a Guided Projectile 

with Cruciform Surfaces. Journal of Spacecraft , VOL. 17, NO. 6, 522-528. 

Blake, W. B. (1998). Missile DATCOM User's Manual - 1997 FORTRAN 90 Revision. Wright-Patterson 

Air Force Base: Air Force Research Laboratory, Air Vehicles Directorate. 

Bourlett, S. P. (1997). Patent No. 5,615,847. United States. 

Carlucci, D. E., & Jacobson, S. S. (2008). Ballistics: Theory and Design of Guns and Ammunition. Boca 

Raton, FL: CRC Press. 

Davis, W. R., Kosicki, B. B., Boroson, D. M., & Kostishack, D. F. (1996). Micro Aerial Vehicles for 

Optical Surveillance. The Lincoln Laboratory Journal , VOL. 9, NO. 2, 194-214. 

Fleming, G. A., Bartram, S. M., Waszak, M. R., & Jenkins, L. N. (2001). Projection Moire Interferometry 

Measurments of Micro Air Vehicle Wings. Proceedings of the SPIE International Symposium on 

Optical Science and Technology. San Diego, CA: SPIE. 

Grabowsky, J. (2007). AeroVironment Future Solutions - ISR. Pacific Theater Operational Science and 

Technology Conference.  

Guiler, R. W. (2007). Control of a Swept Wing tailless Aircraft Through Wing Morphing. Morgantown 

WV: West Virginia University. 

Ifju, P. G., Ettinger, S., Jenkins, D., & Martinez, L. (2001). Composite Materials for Micro Air Vehicles. 

Proceedings of the SAMPE Annual Conference (pp. 7-12). Long Beach, CA: University of 

Florida Mechanics and Engineering Science Department. 

Kellogg, J., Bovias, C., Dahlburg, J., Foch, R., Gardner, J., Gordon, D., et al. (2001). The NRL MITE Air 

Vehicle. US Naval Research Laboratory. 

Kemp, I. (2007, February). The Infantry's Explosive Punch: 40 mm Grenades and Launchers. Asian 

Military Review , pp. 17-23. 

Kim, D.-H., Yang, J.-H., Chang, J.-W., & Chung, J. (2009). Boundary Layer and Near-wake 

Measurments of NACA 00012 Airfoil at Low Reynolds Numbers. 47th AIAA Aerospace Sciences 

Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, FL: AIAA. 

Krashanitsa, R., Platanits, G., & Silin, D. (2006). Auopilot Integration into Micro Air Vehicles. In J. 

Schetz, Introduction to the Design of Fixed-Wing Micro Air Vehicles (pp. 109-149). Reston, VA: 

American Institute of Aeronautics and Astronautics, Inc. 

Lian, Y., & Shyy, W. (2007). Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible 

Airfoil. AIAA Journal , VOL. 45, NO. 7, 1501-1513. 

Lissman, P. B. (1983). Low-Reynolds Number Airfoils. Annual Review of Fluid Mechanics , VOL. 15, 

223-239. 

Lockheed Martin. (2010). Hellfire II Missile. Retrieved April 28, 2010, from Lockheed Martin: 

http://www.lockheedmartin.com/products/HellfireII/index.html 

Lyon, D. H. (2003). Mortar-Launched Recon-Targeting Programs. Army Research Lab, Ballistics and 

Weapons Concepts Division. 

Martorana, R. T., Anderson, J., Spearing, S. M., Kessler, S., Appleby, B., Bergmann, E., et al. (2003). 

Patent No. 2003/0089820 A1. United States. 

Morris, S. J. (1997). Design and Flight Test Results for Micro-Sized Fixed-Wing and VTOL Aircraft. Palo 

Alto, CA: MLB Company. 

Morris, S. J. (2000). Design of Micro Air Vehicles and Flight Test Validation. Palo Alto, CA: MLB 

Company. 



96 

Mueller, T. J. (1999). Aerodynamic Measurments at Low Reynolds Numbers for Fixed Wing Micro Air 

Vehicles. Development and Operation of UAVs for Military and Civil Applications. Belgium: 

University of Notre Dame. 

Mueller, T. J., & Batill, S. (1982). Experimental Studies of Separation on a Two-Dimensional Airfoil at 

Low Reyolds Numbers. AIAA Journal , VOL. 20, NO. 4, 457-463. 

Mueller, T. J., Torres, G. E., & Srull, D. W. (2006). Elements of Aerodynamics, Propulsion, and Design. 

In J. A. Schetz, Introduction to the Design of Fixed-Wing Micro Air Vehicles (pp. 39-107). 

Reston, VA: American Institute of Aeronautics and Astronautics, Inc. 

Ott, J., & Biezad, D. (2004). Design of a Tube-Launched UAV. Proceedings of the AIAA 3rd Unmanned 

Unlimited Conference (pp. 540-550). Chicago, IL: AIAA. 

Palmer, M. R. (2001). Patent No. 6,260,797. United States. 

Pepper, W. B., & Fellerhoff, R. D. (1969). Parachute System to Recover Spinning Shell Subjected to 

20,000 g's. Journal of Spacecraft , VOL. 6, NO. 3, 344-346. 

Pornsin-sirirak, T. N., Tai, Y. C., & Ho, C. M. (2001). Titanium-alloy MEMS wing technology for a 

micro air vehicle aplication. Sensors and Actuators , VOL. A 89, 95-103. 

Raymer, D. P. (2006). Aircraft Design: A Conceptual Approach, Fourth Edition. Reston, VA: American 

Institute of Aeronautics and Astronautics. 

Raythoeon Corporation. (2009). Raytheon Excalibur Datasheet. Raytheon Corporation. 

Roberts, W. B. (1980). Calculation of Laminar Separation Bubbles and Their Effect on Airfoil 

Performance. AIAA Journal , VOL. 18, NO. 1, 25-31. 

Ruffier, F., Viollet, S., Amic, S., & Franeschini, N. (2003). Bio-Inspired Optical Flow Circuits for the 

Visual Guidance of Micro Air Vehciles. Proceedings of the IEEE Symposium on Circuits and 

Systems (pp. 846-849). Bangkok, Thiland: IEEE. 

Sachs, G. (2007). Why Birds and Miniscale Airplanes Need No Vertical Tail. Journal of Aircraft , VOL. 

44, NO. 4, 1159-1167. 

Selig, M. S., Donovan, J. F., & Fraser, D. B. (1989). Airfoils at Low Speeds. Virginia Beach, VA: H. A. 

Stokely Publishing. 

Shyy, W., Ifju, P., & Vieru, D. (2005). Membrane Wing-based Micro Air Vehicles. Applied Mechanics 

Reviews , 283-301. 

Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2008). Aerodynamics of Low Reynolds Number 

Flyers. New York, NY: Cambridge University Press. 

Silton, S. I. (2005). Navier-Stokes Computations for a Spinning Projectile from Subsonic to Supersonic 

Speeds. Journal of Spacecraft and Rockets , VOL. 42, NO. 2, 223-231. 

Silton, S. I., & Dinavahi, S. P. (2008). Base Drag Considerations on a 0.50-caliber Spinning Projectile. 

Proceedings of the 26th AIAA Applied Aerodynamics Conference. Honolulu, HI: AIAA. 

Simons, M. (1999). Model Aircraft Aerodynamics; Fourth Edition. Poole, Dorset, UK: Special Interest 

Model Books Ltd. 

Stanford, B., Abdulrahim, M., Lind, R., & Ifju, P. (2007). Investigation of Membrane Actuation for Roll 

Control of a Micro Air Vehicle. Journal of Aircraft , VOL. 44, NO. 3, 741-749. 

Torres, G., & Mueller, T. J. (2001). Micro Aerial Vehicla Development: Design, Components, 

Fabrication, and Flight Testing. Notre Dame: University of Notre Dame. 

US Army Armament Ballistic Research Laboratory. (1984). Flight Data on Liquid-Filled Shell for Sipin-

Up Instabilities. US Army Armament Ballistic Research Laboratory. 

Woodland, R. L. (2000). Patent No. 6,056,237. United States. 

  



97 

Appendix A Missile DATCOM Input and Output Files 

Missile DATCOM Input File: Comments preceded by "<" 

$FLTCON      < Begin specifying flight conditions 

  NALPHA= 3.,     < Number of angles of attack to be analyzed 

  ALPHA= 0.,2.,4.,     < Angles of attack in degrees 

  NMACH=1.,     < Number of Mach numbers to be analyzed 

  MACH=0.131,     < Mach numbers to be analyzed 

  ALT=0.0,     < Altitude to run analysis in meters 

 $END      < End flight condition specification 

 $REFQ      < Specify reference quantities 

  SREF= 12.566,     < Reference Area in square centimeters 

  XCG=5.,     < Center of gravity location 

  ROUGH=0.000,     < Surface roughness characteristic length 

  LREF= 4.,$     < Length 

 $AXIBOD     < Define axisymmetric body (fuselage) 

     TNOSE=OGIVE,    < Type of nose = Ogive 

     LNOSE=2.,     < Length of nose = 2 cm 

     DNOSE=4.,     < Diameter of nose = 4 cm 

     LCENTR=6.1,     < Length of cylindrical center body = 6.1 cm 

     TAFT=OGIVE,     < Type of tail cone = Ogive 

     LAFT=5.3,     < Length of tail cone = 5.3 cm 

     DAFT=0.001,     < Diameter of aft end of tail cone = 0.001 cm 

     DEXIT=0.,$     < Close diameter = 0 

$FINSET1     < First fin set in the axial direction 

     SECTYP=NACA-1-4-0008   < Airfoil section = NACA 0008 

     SSPAN=2.0,14.5,CHORD=3.65,3.65,  < Semi-Span from axis and chord at specified locations 

     XLE=6.25,SWEEP=0.0,STA=0.0,   < Leading edge location, sweep angle, 

     NPANEL=2.,     < Number of fins 

     PHIF=90.,270.,$     < Angle of fins around body from vertical 

 $FINSET2     < Second fin set 

     SECTYP=NACA-1-4-0008   < Airfoil section = NACA 0008 

     SSPAN=2.0,6.,CHORD=2.92,2.92,   < Semi span from axis and chord at semi-span locations 

     XLE=10.34,SWEEP=0.0,STA=0.0,   < Leading edge location and sweep angle 

     NPANEL=4.,     < Number of fins 

     PHIF=45.,135.,225.,315.,$    < Angle of fins around body from vertical 

$DEFLCT     < Fin deflection Angles 

   DELTA1=1.,-1.0,     < Main wings set to 1 degree angle of attack 

   DELTA2=0.,0.,0.,0.    < Tails set to no angle of attack 

CASEID  CASE WVU      < Case name 

BUILD      < Build data 

DERIV DEG     < Report derivatives in degrees instead of radians 

PART 

DIM CM 

SOSE 

NO LAT 

NEXT CASE 
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Missile DATCOM Output File, Important quantities in bold 

1       ***** THE USAF AUTOMATED MISSILE DATCOM * REV 07/07 ***** 

               AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS      

 

    CONERR - INPUT ERROR CHECKING 

 

    ERROR CODES - N* DENOTES THE NUMBER OF OCCURENCES OF EACH ERROR 

    A - UNKNOWN VARIABLE NAME 

    B - MISSING EQUAL SIGN FOLLOWING VARIABLE NAME 

    C - NON-ARRAY VARIABLE HAS AN ARRAY ELEMENT DESIGNATION - (N) 

    D - NON-ARRAY VARIABLE HAS MULTIPLE VALUES ASSIGNED 

    E - ASSIGNED VALUES EXCEED ARRAY DIMENSION 

    F - SYNTAX ERROR 

 

    ************************* INPUT DATA CARDS ************************* 

 

   1  $FLTCON                                                                         

   2   NALPHA= 3.,                                                                    

   3   ALPHA= 0.,2.,4.,                                                               

   4   NMACH=1.,                                                                      

   5   MACH=0.131,                                                                    

   6   ALT=0.0,                                                                       

   7  $END                                                                            

   8  $REFQ                                                                           

   9   SREF= 12.566,                                                                  

  10   XCG=6.65,                                                                      

  11   ROUGH=0.000,                                                                   

  12   LREF= 4.,$                                                                     

  13  $AXIBOD                                                                         

  14      TNOSE=OGIVE,                                                                

               ** SUBSTITUTING NUMERIC FOR NAME OGIVE 

  15      LNOSE=2.,                                                                   

  16      DNOSE=4.,                                                                   

  17      LCENTR=6.1,                                                                 

  18      TAFT=OGIVE,                                                                 

               ** SUBSTITUTING NUMERIC FOR NAME OGIVE 

  19      LAFT=5.3,                                                                   

  20      DAFT=0.001,                                                                 

  21      DEXIT=0.,$                                                                  

  22 CASEID  CASE WVU                                                                 

  23 BUILD                                                                            

  24 DERIV RAD                                                                        

  25 PART                                                                             

  26 DIM CM                                                                           

  27 SOSE                                                                             

  28 NO LAT                                                                           

  29 NEXT CASE                                                                        

     30 ** BLANK CARD - IGNORED 

 

1         ***** THE USAF AUTOMATED MISSILE DATCOM * REV 07/07 *****    CASE   1 

               AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS          PAGE   1 

    CASE INPUTS 

    FOLLOWING ARE THE CARDS INPUT FOR THIS CASE 

 

  $FLTCON                                                                         

   NALPHA= 3.,                                                                    

   ALPHA= 0.,2.,4.,                                                               

   NMACH=1.,                                                                      

   MACH=0.131,                                                                    

   ALT=0.0,                                                                       
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  $END                                                                            

  $REFQ                                                                           

   SREF= 12.566,                                                                  

   XCG=6.65,                                                                      

   ROUGH=0.000,                                                                   

   LREF= 4.,$                                                                     

  $AXIBOD                                                                         

      TNOSE=1.,                                                                   

      LNOSE=2.,                                                                   

      DNOSE=4.,                                                                   

      LCENTR=6.1,                                                                 

      TAFT=1.,                                                                    

      LAFT=5.3,                                                                   

      DAFT=0.001,                                                                 

      DEXIT=0.,$                                                                  

 CASEID  CASE WVU                                                                 

 BUILD                                                                            

 DERIV RAD                                                                        

 PART                                                                             

 DIM CM                                                                           

 SOSE                                                                             

 NO LAT                                                                           

 NEXT CASE                                                                        

    * WARNING * CENTER SECTION DEFINED BUT BASE DIAMETER NOT INPUT 

                CYLINDRICAL SECTION ASSUMED 

    * WARNING * NOSE LENGTH EQUALS BASE RADIUS, SPHERICAL NOSE BLUNTNESS ASSUMED 

    THE BOUNDARY LAYER IS ASSUMED TO BE TURBULENT 

    THE INPUT UNITS ARE IN CENTIMETERS, THE SCALE FACTOR IS   1.0000 

1         ***** THE USAF AUTOMATED MISSILE DATCOM * REV 07/07 *****    CASE   1 

               AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS          PAGE   2 

                                   CASE WVU                                  

                        AXISYMMETRIC BODY DEFINITION 

 

                             NOSE   CENTERBODY     AFT BODY        TOTAL 

    SHAPE                   OGIVE     CYLINDER        OGIVE 

    LENGTH                  2.000        6.100        5.300       13.400  CM 

    FINENESS RATIO          0.500        1.525        1.325        3.350 

    PLANFORM AREA           6.281       24.400       14.529       45.210  CM**2 

    AREA CENTROID           1.152        5.050       10.125        6.140  CM 

    WETTED AREA            25.131       76.655       48.077      149.863  CM**2 

    VOLUME                 16.753       76.655       36.936      130.344  CM**3 

    VOL. CENTROID           1.250        5.050        9.806        5.909  CM 

 

    NOSE IS SPHERICALLY BLUNTED, BLUNTNESS RATIO =1.0000 

                              MOLD LINE CONTOUR 

 

     LONGITUDINAL STATIONS    0.0000     0.2000     0.4000     0.6000     0.8000  

        1.0000     1.2000     1.4000     1.6000     1.8000     2.0000     2.6100  

        3.2200     3.8300     4.4400     5.0500     5.6600     6.2700     6.8800  

        7.4900     8.1000     8.6300     9.1600     9.6900    10.2200    10.7500  

       11.2800    11.8100    12.3400    12.8700    13.4000  

 

                  Z-OFFSET    0.0000     0.0000     0.0000     0.0000     0.0000  

        0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000  

        0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000  

        0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000  

        0.0000     0.0000     0.0000     0.0000     0.0000  

 

                BODY RADII    0.0000     0.8718     1.2000     1.4283     1.6000  

        1.7321     1.8330     1.9079     1.9596     1.9900     2.0000     2.0000  

        2.0000     2.0000     2.0000     2.0000     2.0000     2.0000     2.0000  

        2.0000     2.0000     1.9825     1.9297     1.8409     1.7149     1.5498  
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        1.3430     1.0908     0.7883     0.4283     0.0005  

1         ***** THE USAF AUTOMATED MISSILE DATCOM * REV 07/07 *****    CASE   1 

               AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS          PAGE   3 

                                   CASE WVU                                  

                             BODY ALONE PARTIAL OUTPUT 

 

       ******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* 

     MACH NO  =       0.13                REYNOLDS NO = 3.037E+06 /M 

     ALTITUDE =        0.0 M         DYNAMIC PRESSURE =   1217.19 N/M**2 

     SIDESLIP =       0.00 DEG                   ROLL =      0.00 DEG      

     REF AREA =     12.566 CM**2        MOMENT CENTER =     6.650 CM 

     REF LENGTH =     4.00 CM          LAT REF LENGTH =      4.00 CM 

 

      ALPHA    CA-FRIC  CA-PRES/WAVE CA-BASE    CA-PROT     CA-SEP     CA-ALP 

       0.00     0.0642     0.1173     0.0000                           0.0000 

       2.00     0.0641     0.1172     0.0000                           0.0003 

       4.00     0.0639     0.1168     0.0000                           0.0013 

 

                     CROSS FLOW DRAG PROPORTIONALITY FACTOR = 0.61239 

 

      ALPHA    CN-POTEN  CN-VISC   CN-SEP    CM-POTEN  CM-VISC   CM-SEP    CDC 

       0.00     0.000     0.000               0.000     0.000             0.740 

       2.00     0.000     0.002               0.181     0.000             0.743 

       4.00     0.000     0.008               0.361     0.001             0.746 

1         ***** THE USAF AUTOMATED MISSILE DATCOM * REV 07/07 *****    CASE   1 

               AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS          PAGE   4 

                                   CASE WVU                                  

                     STATIC AERODYNAMICS FOR BODY ALONE 

 

       ******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* 

     MACH NO  =       0.13                REYNOLDS NO = 3.037E+06 /M 

     ALTITUDE =        0.0 M         DYNAMIC PRESSURE =   1217.19 N/M**2 

     SIDESLIP =       0.00 DEG                   ROLL =      0.00 DEG      

     REF AREA =     12.566 CM**2        MOMENT CENTER =     6.650 CM 

     REF LENGTH =     4.00 CM          LAT REF LENGTH =      4.00 CM 

 

                   ----- LONGITUDINAL -----     -- LATERAL DIRECTIONAL -- 

         ALPHA       CN        CM        CA        CY       CLN       CLL 

 

          0.00     0.000     0.000     0.182     0.000     0.000     0.000 

          2.00     0.002     0.181     0.182     0.000     0.000     0.000 

          4.00     0.008     0.362     0.182     0.000     0.000     0.000 

 

         ALPHA       CL        CD      CL/CD     X-C.P. 

 

          0.00     0.000     0.182     0.000-17931.443 

          2.00    -0.004     0.182    -0.024    90.858 

          4.00    -0.005     0.182    -0.026    45.247 

 

    X-C.P. MEAS. FROM MOMENT CENTER IN REF. LENGTHS, NEG. AFT OF MOMENT CENTER 

1         ***** THE USAF AUTOMATED MISSILE DATCOM * REV 07/07 *****    CASE   1 

               AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS          PAGE   5 

                                   CASE WVU                                  

                     STATIC AERODYNAMICS FOR BODY ALONE 

 

       ******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* 

     MACH NO  =       0.13                REYNOLDS NO = 3.037E+06 /M 

     ALTITUDE =        0.0 M         DYNAMIC PRESSURE =   1217.19 N/M**2 

     SIDESLIP =       0.00 DEG                   ROLL =      0.00 DEG      

     REF AREA =     12.566 CM**2        MOMENT CENTER =     6.650 CM 

     REF LENGTH =     4.00 CM          LAT REF LENGTH =      4.00 CM 
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                   ---------- DERIVATIVES (PER RADIAN) ---------- 

         ALPHA       CNA         CMA         CYB         CLNB        CLLB 

          0.00     -0.0003      5.1961 

          2.00      0.1145      5.1808 

          4.00      0.2293      5.1655 

    *** END OF JOB ***  
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Appendix B Grid Generation Details 

Fuselage Mesh Independence Settings 

 
 

Mesh 1 Mesh 2 Mesh 3

Surface Mesh

Nodes Around Nose Cone 6 12 20

Nodes Around Body 25 75 125

Nodes Along Body 10 20 40

Nodes Around Tailcone 6 8 20

Surface Geometric Growth Rate From Tail 1.25 1.1 1.05

Maximum Cell Size from Tail 4 2 1

Prismatic Cells

First Prism Height 1.05 1.05 1.05

Number of Layers 10 10 10

Prism Growthrate 1.05 1.05 1.05

Inner Refinement Region

Growth Rate 1.01 1.01 1.01

X center 180 180 180

X length 240 240 240

Y length 80 80 80

Z length 80 80 80

Max Volume 10 5 2

Middle Refinement Region

Growth Rate 1.05 1.05 1.05

X center 250 250 250

X length 600 600 600

Y length 120 120 120

Z length 120 120 120

Max Volume 100 50 25

Outer Refinement Region

Growth Rate 1.1 1.1 1.1

X center 500 500 500

X length 1500 1500 1500

Y length 300 300 300

Z length 300 300 300

Max Volume 1000 1000 1000

Volume Growth Rate 1.2 1.2 1.2

Cell Count 568,795 749,333 1,460,495

Average Cell Size 19,800 14,489 7,433

Cell Shrink Rate 0.732 0.513

Drag Coefficient 0.12 0.1 0.096

% Change -16.67% -4.00%
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Two Dimensional NACA 0009 Mesh Independence Settings 

 

Surface Mesh Mesh 5 Mesh 4 Mesh 3
Mesh 3 

MOD
Mesh 2 Mesh 1

Tip & Tail Spacing
0.004C 

(0.002C 

tail, max 

0.002C 0.001C
0.001C 

(0.00033C 

FL 2 side, 

0.0005C 0.00025C

Average Cell Spacing 0.02C .01C .005C .005C .0025C .00125C

Prismatic Layer Last AR Last AR Last AR Last AR Last AR

First Cell Height 0.00005C 0.00005C 0.00005C 0.00005C 0.00005C

Number of Layers 25 25 25 40 40

Aspect / Growth Rate 50% 50% 200% 50% 50%

Tetrahedral Domain

Domain Growth Rate 1.3 1.3 1.3 1.3 1.3 1.3

Refine Growth Rate 1.01 1.01 1.01 1.005 1.01 1.01

Refine Xcenter 2C 2C 2C 2C 2C 2C

Refine Xlength 7C 7C 7C 7C 7C 7C

Refine Ylength 3C 3C 3C 3C 3C 3C

Refine Volmax 400 200 100 50 100 100

Mesh Statistics Last AR Last AR Last AR Last AR Last AR

Skewness 0.71 0.72 0.74 0.77 0.75

Average Volume 1,061 509 358 263 98

Number of Cells 8,480 17,664 25,110 34,176 91,634

Results

Angle of Attack

CL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CD 0.0228 0.0303 0.0301 0.0298 0.0301 0.0301

L/D 0.00 0.00 0.00 0.00 0.00 0.00

Angle of Attack 2.14

CL 0.2021 0.1956 0.1955 0.1951 0.1958 0.1949

CD 0.0234 0.0310 0.0308 0.0306 0.0308 0.0308

L/D 8.65 6.31 6.35 6.38 6.36 6.32

Angle of Attack

CL 0.3990 0.3872 0.3866 0.3856 0.3866 0.3864

CD 0.0255 0.0335 0.0332 0.0328 0.0332 0.0332

L/D 15.64 11.55 11.65 11.75 11.65 11.63

Angle of Attack

CL 0.5837 0.5683 0.5680 0.5651 0.5680 0.5691

CD 0.0302 0.0379 0.0377 0.0372 0.0376 0.0377

L/D 19.34 14.98 15.06 15.21 15.09 15.10

Angle of Attack

CL 0.7402 0.7292 0.7312 0.7255 0.7320 0.7322

CD 0.0403 0.0462 0.0457 0.0449 0.0456 0.0456

L/D 18.38 15.78 16.01 16.14 16.04 16.04

0.08

4.19

6.22

8.25

50%

25

0.00005C

Last AR

1,709

0.78

5,266

Last AR
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Three Dimensional Main Wing Mesh Independence Settings 

 

 

Mesh Settings

Surface Mesh

LE Cell Spacing 1.35 0.84 0.65

TE Cell Spacing 1.35 0.84 0.65

Tip Cell Count 40 60 75

Tip First Length 0.2 0.2 0.2

Tip Last Length 0.2 0.2 0.2

LE / Te Surface Step Down

First Row - - -

Growt Rate - - -

Layers - - -

Transition Pattern - - -

Prismatic Layer

First Cell Height 0.6 0.6 0.6

Number of Layers 5 5 5

Geometric Growth Rate 1 1 1

Pyramid Layer

Option Skewness Skewness Skewness

Fill Cap Yes Yes Yes

Face Angle 120 120 120

Tetrahedral

Refinement Growth Rate 1.01 1.01 1.01

Xc 200 200 200

XL 600 600 600

YL 150 150 150

ZL 300 300 300

Vmax 250 100 50

Outer Region Growth Rate 1.2 1.2 1.2

Cell Count 694,639 1,442,986 2,384,412

Max Skewness 0.884 0.869 0.882

Cl 1.708 1.501 1.522

% Change CL - 12.11% 1.40%

Cd 0.616 0.239 0.268

% Change CD - 61.18% 12.13%

L/D 2.774 6.280 5.679

% Change L/D - 126.38% 9.57%

Mesh 1 Mesh 2 Mesh 3
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Appendix C Analysis Program Code 

Code used to calculate trajectory based on back-calculated launch velocity, drag coefficient, 

and mass: 

% Baseline Shell 

 

clear 

clc 

 

Range = 450; 

CD = 0.133; 

d = 0.04006; 

gamma = 70.6; 

rho = 1.225; 

dt = 0.005; 

Vl = 71.32; 

m = 0.18; 

g=9.81; 

 

R = 0; 

Y = 0.01; 

i = 1; 

 

S = pi/4*d^2; 

 

while Y(i) > 0 

    if R == 0 

        Vy(i) = Vl*sin(gamma*pi/180); 

        Vx(i) = Vl*cos(gamma*pi/180); 

    end 

    Y(i+1)=Y(i)+Vy(i)*dt; 

    R(i+1)=R(i)+Vx(i)*dt; 

    if Vy > 0 

        Vy(i+1)=Vy(i)-[g+0.5*CD*sin(atan(Vy(i)/Vx(i)))*rho*Vy(i)^2*S/m]*dt; 

    else 

        Vy(i+1)=Vy(i)-[g-0.5*CD*sin(atan(Vy(i)/Vx(i)))*rho*Vy(i)^2*S/m]*dt; 

    end 

    Vx(i+1)=Vx(i)-0.5*CD*cos(atan(Vy(i)/Vx(i)))*rho*Vx(i)^2/m*S*dt; 

    i=i+1; 

end 

 

t = dt*i 

 

subplot(2,1,1),plot(R,Y),xlabel('Range (m)'),ylabel('Altitude (m)') 

subplot(2,1,2),plot(R,Vx,R,Vy),xlabel('Range (m)'),ylabel('Velicity (m/s)'),legend('X-Velocity','Y-

Velocity') 

 

for n = 1:1:i-1 
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    if Y(n+1)>Y(n) 

        Ymax=Y(n+1); 

        lmax = n+1; 

        Vxcr = Vx(n+1); 

    end 

end 

 

disp('The apogee altitude is: (m)') 

disp(Ymax) 

disp('The apogee range is: (m)') 

disp(R(lmax)) 

disp('The apogee velocity is: (m/s)') 

disp(Vxcr) 

 

% Ylift = Ymax; 

% Vylift = Vy(lmax); 

% Vxlift = Vx(lmax); 

% Rlift = R(lmax); 

% Vtop = Vx(lmax); 

% LD = 8.5; 

% i=1; 

%  

% while Ylift(i)>0 

%     Ylift(i+1) = Ylift(i)+Vylift(i)*dt; 

%     Rlift(i+1) = Rlift(i)+Vxlift(i)*dt; 

%     Ax = 0.5*CD*cos(atan(Vylift(i)/Vxlift(i)))*rho*Vxlift(i)^2/m*S; 

%     Ay = LD*Ax; 

%     Vylift(i+1) = Vylift(i)-(g-Ay)*dt; 

%     Vxlift(i+1) = Vxlift(i)-Ax*dt; 

%     i=i+1; 

% end 
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Classical Aerodynamics Optimization Code 

 

Program Integration Portion: 

%   Hybrid Projectile Performance Analysis 

%   Sub-program: Program Integration 

%   By: Shanti Hamburg, 5/27/2009, for Ruggedized Stowable MAV Design Study 

%.......................................................................... 

 

% Clear variables and command window 

clear 

clc 

 

% Call atmospheric and performance input data 

Atmosphere_and_Performance_Input 

 

AR = [2.5]; 

 

ARcount = 1; 

while ARcount <= max(size(AR)) 

    AR_M = AR(ARcount); 

 

    Vopt = 1; 

    count = 0; 

    WS = 25; 

    while Vopt < Vcr && count < 100000 

 

        WS = WS+25; 

 

        % Call main wing input data 

        Main_Wing_Input 

        if count >= 1 

            CbarCG = CbarCG_old; 

        end 

        S_H = -0.0001; 

        count2 = 0; 

        while S_H/S_M < 0.005 && count2 < 100000000 

            % Call horizontal tail input data 

            H_Tail_Input 

 

            % Call fuselage performance calculation 

%            Fuselage_Performance 

 

            % Call main wing performance calculation 

            Main_Wing_Performance 

 

            % Call longitudinal stability and horizontal tail sizing 

            Longitude_Stability 

 

            CbarCG = CbarCG-0.00001; 

 

            HM = S_H/S_M; 
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            count2 = count2+1; 

            if count2 == 100000000 

                disp('Error in tal area calculation'); 

            end 

        end 

        CbarCG_old = CbarCG; 

        S_H_store = S_H; 

 

        % Call combided performance calculation 

        Hybrid_Performance 

        count = count+1; 

        if count == 50000 

            disp('Problem with wing loading estimation.'); 

        end 

    end 

 

    S_Mdisp = S_M*100*100; 

 

%     disp('The length from the nose to the center of gravity is: (m)'); 

%     disp(Xcg) 

     Xcgst(ARcount) = Xcg; 

%       disp('The main wing area is: (cm^2)'); 

%       disp(S_Mdisp) 

    S_Mst(ARcount) = S_Mdisp; 

%     disp('The main wing area is: (cm^2)'); 

%     disp(S_Mdisp) 

%     disp('The main wing aspect ratio is:'); 

%     disp(AR_M) 

%     disp('The design wingloading is: (N/m^2)'); 

%     disp(WS) 

    WSst(ARcount) = WS; 

 

    % Output results 

%     disp('The maximum lift-to-drag ratio is:'); 

%     disp(LDopt); 

    LDst(ARcount) = LDopt; 

%     disp('The velocity for maximum lift-to-drag ratio is: (m/s)'); 

%     disp(Vopt); 

%     disp('The range from launch altitude at optimum glide is: (m)'); 

%     disp(Range); 

    Rst(ARcount) = Range; 

    Tgl = (Range-Ropen)/Vcr 

    disp('The time of flight is: (s)'); 

    disp(t); 

%     disp('The Reynolds number at the main wing MAC is:') 

%     disp(Recbar_Mopt) 

    Rest(ARcount) = Recbar_Mopt; 

%     disp('The main wing trimmed angle of attack is: (deg)') 

%     disp(Atr) 

%      

    Xcrst(ARcount) = Xcr_M; 
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    crst(ARcount) = cr_M; 

    ctst(ARcount) = ct_M; 

    bst(ARcount) = b_M; 

%    plot(V,LD),xlabel('Velocity (m/s)'),ylabel('Lift-to-drag Ratio'),%legend('Induced Drag','Parasitic 

Drag'),axis([10 100 0 max(DI)]) 

%  

%      

%     disp('Paused for examination of current results. Press any key to continue.'); 

%     pause 

     

     

    ARsave = num2str(AR(ARcount)); 

    ARsave = ['LD for AR' ARsave '.txt']; 

    save (ARsave, 'LD', '-ASCII') 

    ARcount 

    ARcount = ARcount +1; 

    WS 

    Range 

end 

%  

% disp('Aspect Ratio') 

% disp(AR) 

% disp('Main wing leading edge location from nose: (m)') 

% disp(Xcrst) 

% disp('Root chord length: (m)'); 

% disp(crst) 

% disp('Tip chord length: (m)'); 

% disp(ctst) 

% disp('Main wing span: (m)'); 

% disp(bst) 

% disp('Wing area: (cm^2)'); 

% disp(S_Mst) 

% disp('Wing loading: (N/m^2)'); 

% disp(WSst) 

% disp('Lift-to-drag ratio'); 

% disp(LDst) 

% disp('Range: (m)'); 

% disp(Rst) 

% disp('MAC Reynolds number:'); 

% disp(Rest) 

% LDwing = CLcr/(CDcr-Cd0_F) 

% Atr 
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Atmosphere and Performance Input Section 

%   Hybrid Projectile Performance Analysis 

%   Sub-program: Atmosphere and Performance Data Input 

%   By: Shanti Hamburg, 5/27/2009, for Ruggedized Stowable MAV Design Study 

%.......................................................................... 

 

% Aircraft Weight [(kg m)/s^2] 

W = 0.18*9.81; 

 

% Launch velocity (m/s) 

Vcr = 28; 

 

% disp('The design cruise velocity is: (m/s)'); 

% disp(Vcr) 

 

% Launch Altitude (m) 

Hl = 193.8; 

 

% Range to opening point (m) 

Ropen = 181.2; 

 

% Speed of Sound (m/s) 

a = 340; 

% Air Density (kg/m^3) 

rho = 1.225; 

% Air Viscosity [kg/(m s)] 

mu = 1.7894*10^-5; 

 

% Cruise Mach number 

Mi = Vcr/a; 

  



111 

Main Wing Input Section 

%   Hybrid Projectile Performance Analysis 

%   Sub-program: Main Wing Data Input & geometry calculation 

%   By: Shanti Hamburg, 5/27/2009, for Ruggedized Stowable MAV Design Study 

%.......................................................................... 

 

% Wing loading (N/m^2) 

%WS = 200; 

 

% Aspect Ratio 

%AR_M = 2.5; 

 

% Center of gravity, distance forward of wing Xac as a ratio of mean 

% aerodynamic chord 

CbarCG = .4; 

 

% Leading edge sweep angle (deg) 

GLE_M = 0; 

 

% Taper ratio 

LA_M = 1; 

 

% Root Chord Leading Edge Location (m) 

%Xcr_M = .05; 

 

% Chord location of maximum airfoil thickness (decimal of chord length) 

Xtc_M = 0.4; 

 

% Maximum airfoil thickness to chord ratio 

TC_M = 0.1; 

 

% Zero lift angle of attack (deg) 

A0L_M = -3; 

 

%%%%%%%%%% END MAIN WING INPUT DATA 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Wing area (m^2) 

S_M = W/WS; 

 

% Wingspan (m) 

b_M = (S_M*AR_M)^0.5; 

 

% Root chord (m) 

cr_M = 2*b_M/(AR_M*(1+LA_M)); 

 

% Tip chord length (m) 

ct_M = LA_M*cr_M; 

 

% Mean aerodynamic chord (m) 



112 

cbar_M = 2/3*cr_M*(1+LA_M+LA_M^2)/(1+LA_M); 

 

% Mean aerodynamic chord span location (m) 

ybar_M = b_M/6*(1+2*LA_M)/(1+LA_M); 

 

% Xac location (m) 

%XAC_M = Xcr_M+ybar_M*tan(GLE_M*pi/180)+0.25*cbar_M; 

 

% Quarter chord sweep angle (deg) 

G25c_M = 180/pi*atan(tan(GLE_M*pi/180)-0.25*cr_M/b_M*(1-LA_M)); 

 

% Maximum thickness sweep angle (deg) 

Gtc_M = 180/pi*atan(tan(GLE_M*pi/180)-TC_M*cr_M/b_M*(1-LA_M)); 
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Horizontal Tail Input Section 

%   Hybrid Projectile Performance Analysis 

%   Sub-program: Horizontal Tail Input Data 

%   By: Shanti Hamburg, 5/27/2009, for Ruggedized Stowable MAV Design Study 

%.......................................................................... 

 

% Design Cm_alpha (based on main wing area and mean aerodynamic chord 

% length here, final values will be corrected to fuselage frontal area and 

% diameter) 

CmAd = -0.5; 

 

% Dynamic pressure ratio 

N_H = 0.8; 

 

% Downwash effect on angle of attack 

DH_DA = 0.6; 

 

% Leading edge sweep angle (deg) 

GLE_H = 0; 

 

% Aspect ratio 

AR_H = AR_M - 0.5; 

 

% Taper ratio 

LA_H = 1; 

 

% Location of tail aerodynamic center (m) 

XAC_H = 0.12; 

 

% Thickness to chord ratio 

TC_H = 0.1; 

 

% Thickness to chord location 

Xtc_H = 0.3;  
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Fuselage Performance Section 

%   Hybrid Projectile Performance Analysis 

%   Sub-program: Fuselage Performance 

%   By: Shanti Hamburg, 5/27/2009, for Ruggedized Stowable MAV Design Study 

%.......................................................................... 

 

% Calculate fuselage pitching moment with angle of attack 

CmAf = 0.2143*((Xcr_M+0.25*cr_M)/max(Lf))^2-0.0123*((Xcr_M+0.25*cr_M)/max(Lf))+0.0108; 

CmAf = CmAf*(max(Df))^2*max(Lf)/(cbar_M*S_M); 

 

Main Wing Performance Section 

%   Hybrid Projectile Performance Analysis 

%   Sub-program: Wing Performance 

%   By: Shanti Hamburg, 5/27/2009, for Hybrid Projectile Project / Micro 

%   Tube Launched UAV Design Study 

%.......................................................................... 

 

% Oswald efficiency calculation 

e = 0.98*(1-(max(Df)/b_M)^2); 

k_M = 1/(pi*AR_M*e); 

 

% Effective leading edge Mach number 

Me = Mi*cos(GLE_M*pi/180); 

B_M = (1-Me^2)^0.5; 

 

% Lift curve slope 

CLA_M = 2*pi*AR_M/(2+(4+(AR_M*B_M)^2*(1-(tan(Gtc_M*pi/180))^2/B_M^2))^0.5); 

 

% Alpha = 0 lift coefficient 

CLA0 = -CLA_M*pi/180*A0L_M; 

 

% Design lift coefficient 

CLd = W/(0.5*rho*Vcr^2*S_M); 

 

% Maximum lift coefficient 

CLM_M = -2*10^-4*(Gtc_M*pi/180)^2-7*10^-4*(Gtc_M*pi/180)+1.5; 

 

% Wetted area 

Swet_M = S_M*(1.977+0.52*TC_M); 

 

% Form factor 

F_M = (1+0.6/Xtc_M*TC_M+100*TC_M^4)*(1.34*Me^0.18*(cos(Gtc_M*pi/180))^0.28); 
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Longitudinal Stability Section 

%   Hybrid Projectile Performance Analysis 

%   Sub-program: Longitudinal Stability and Horizontal Tail Sizing 

%   By: Shanti Hamburg, 5/28/2009, for Ruggedized Stowable MAV Design Study 

%.......................................................................... 

 

% Effective leading edge Mach number 

Me = Mi*cos(GLE_H*pi/180); 

B_H = (1-Me^2)^0.5; 

 

% Horizontal tail lift curve slope 

CLA_H = 2*pi*AR_H/(2+(4+(AR_H*B_H)^2)^0.5); 

 

% Xcg location 

Xcg = 0.08; 

 

XAC_M = Xcg+CbarCG*cbar_M; 

 

Xcr_M = XAC_M-0.25*cbar_M-ybar_M*tan(GLE_M*pi/180); 

 

% Calculate fuselage pitching moment with angle of attack 

CmAf = 0.2143*((Xcr_M+0.25*cr_M)/max(Lf))^2-0.0123*((Xcr_M+0.25*cr_M)/max(Lf))+0.0108; 

CmAf = CmAf*(max(Df))^2*max(Lf)/(cbar_M*S_M); 

 

% Horizontal tail area 

S_H = (CLA_M*(Xcg-XAC_M)/cbar_M-CmAd)/(N_H*CLA_H*DH_DA*(XAC_H-Xcg)/cbar_M); 

 

% Pitching moment with respect to angle of attack, normalized to fuselage 

% frontal area and diameter 

CmAd_ref = CmAd*S_M*cbar_M/(Sref*max(Df)); 

 

%%%% HORIZONTAL TAIL GEOMETRY AND DRAG CALCULAITON %%%%%%%%% 

 

% Horizontal tail span 

b_H = (S_H*AR_H)^0.5; 

 

% Horizontal tail root chord 

cr_H = 2*b_H/(AR_H*(1+LA_H)); 

 

% Horizontal tail tip chord 

ct_H = LA_H*cr_H; 

 

% Horizontal tail mean aerodynamic chord 

cbar_H = 2/3*cr_H*(1+LA_H+LA_H^2)/(1+LA_H); 

 

% Mean aerodynamic chord span location 

ybar_H = b_H/6*(1+2*LA_H)/(1+LA_H); 

 

% Horizontal tail Oswald efficiency factor 

k_H = 0.98*(1-(max(Df)/b_H)^2); 

k_H = 1/(pi*AR_H*k_H); 
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% Wetted area 

Swet_H = S_H*(1.977+0.52*TC_H); 

 

% Form factor (assumes that Xtc sweep angle = 0) 

F_H = (1+0.6/Xtc_H*TC_H+100*TC_H^4)*(1.34*Me^0.18*1^0.28); 
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Hybrid Performance Calculation Section 

%   Hybrid Projectile Performance Analysis 

%   Sub-program: Hybrid Performance 

%   By: Shanti Hamburg, 5/28/2009, for Ruggedized Stowable MAV Design Study 

%.......................................................................... 

 

% Calculate lift-to-drag ratio throughtout flight 

LDopt = 0; 

for i = 5:1:100 

    % Fuselage parasitic drag calculations 

        % Reynolds number at each fuselage station 

        Cfx = zeros(size(Lf)); 

        for p = 1:1:max(size(Lf)) 

            if p == 1 

                Cfx(p) = 0; 

            elseif Df(p) < max(Df) 

                Cfx(p) = rho*i/mu*(Lf(p)); 

                Cfx(p) = 1.328/Cfx(p)^0.5*1.16; 

            else 

               Cfx(p) = rho*i/mu*(Lf(p)); 

                Cfx(p) = 1.328/Cfx(p)^0.5;  

            end 

        end 

        % Calculate fuselage drag coefficient 

        Cdo_F = 0; 

        SwfT = 0; 

        for p = 1:1:max(size(Lf)) 

            Cdo_F = F*Cfx(p)*Swf(p)+Cdo_F; 

            SwfT = Swf(p)+SwfT; 

        end 

        Cd0_F = Cdo_F*SwfT/Sref; 

        %Testing changed Cd0 to CFD value 

         Cd0_F = 0.10; 

         

    % Main wing parasitic drag calculations 

        % Mean aerodynamic chord Reynolds number 

        Recbar_M = rho*i/mu*cbar_M; 

        % Friction coefficient 

        cf_M = 1.328/Recbar_M^0.5; 

        % Drag coefficient 

        Cd0_M = cf_M*F_M*Swet_M/S_M; 

        % Correct drag coefficient to reference area 

        Cd0_M = Cd0_M*S_M/Sref; 

     

    % Horizontal tail parasitic drag calculations 

        % Mean aerodynamic chord Reynolds number 

        Recbar_H = rho*i*cbar_H/mu; 

        % Friction coefficient 

        cf_H = 1.328/(Recbar_H)^0.5; 

        % Drag coefficient 

        Cd0_H = cf_H*F_H*Swet_H/S_H; 
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        % Correct drag coefficient to reference area 

        Cd0_H = Cd0_H*S_H/Sref; 

     

%     % Vertical tail parasitic drag calculations 

%         % Mean aerodynamic chord Reynolds number 

%         Recbar_V = rho*i*cbar_V/mu; 

%         % Friction coefficient 

%         cf_V = 1.328/(Recbar_V)^0.5; 

%         % Drag coefficient 

%         Cd0_V = cf_V*F_V*Swet_V/S_V; 

%         % Correct drag coefficient to reference area 

%         Cd0_V = Cd0_V*S_V/Sref; 

     

    Cd0 = Cd0_F+Cd0_M+Cd0_H;%+Cd0_V; 

    CL(i) = W/(0.5*rho*i^2*S_M); 

    DI(i) = k_M*CL(i)^2*S_M*0.5*rho*i^2; 

    DP(i) = Cd0*0.5*rho*i^2*Sref; 

    V(i) = i; 

    L(i) = W; 

    D(i) = DP(i)+DI(i); 

    CD(i) = D(i)/(Sref*0.5*rho*i^2); 

    LD(i) = L(i)/D(i); 

    GS(i) = atan(1/LD(i)); 

    Lg(i) = D(i)*sin(GS(i))+W*cos(GS(i)); 

    Tg(i) = W*sin(GS(i))-D(i)*cos(GS(i)); 

    if i > 1 

        if LD(i) > LD(i-1) 

            Vopt = i; 

            LDopt = LD(i); 

            Recbar_Mopt = Recbar_M; 

            Atr = (CL(i)-CLA0)/CLA_M*180/pi; 

        end 

    end 

    if i == Vcr 

        LDcr = LD(i); 

        Recbar_Mcr = Recbar_M; 

        Atrcr = (CL(i)-CLA0)/CLA_M*180/pi; 

        CLcr = CL(i)*S_M/Sref; 

        CDcr = CD(i); 

        Cd0cr = Cd0_M; 

        GScr = 180/pi*atan(1/LDcr); 

        Rcr = Hl/tan(GScr*pi/180); 

        tcr = Rcr/(Vcr*cos(GScr*pi/180)); 

        Cd0Fcr = Cd0_F; 

    end 

end 

 

% Optimum glideslope 

GSopt = 180/pi*atan(1/LDopt); 

 

% Maximum range 
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Range = Hl/tan(GSopt*pi/180)+Ropen; 

 

% Time of flight 

t = Range/(Vopt*cos(GSopt*pi/180)); 
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Appendix D Fluent Configuration Details 

 

 

 

Category Option Setting

Dimension 2D / 3D As Appropriate

Double Precision YES

Use Job Scheduler NO

Use Remote Linux Nodes NO

Display Mesh After Reading YES

Embed Graphics Windows NO

Workbench Color Scheme YES

Serial NO

Parallel (Local Machine) YES

Number of Processors 4

Version 12.1.4

Interconnects Default

MPI Types Default

Run Types Shared on Local

Fluent 12.4.1 Launcher Settings

Parallel Settings

Processing Options

Display Options

Options

Scale Convert milimeter mesh to meters

Check Check for grid problems

Report Quality Check skewness < 0.9

Type Pressure-Based

Velocity Formulation Absolute

Time As Appropriate

Gravity NO

Units Default

Solver

Mesh

Fluent 12.4.1 Solver Settings, Problem Setup, General

Multiphase Off

Energy Off

Viscous As discussed

Radiation Off

Heat Exchanger Off

Species Off

Discrete Phase Off

Solidification & Melting Off

Acoustics Off

Fluent 12.4.1 Solver Settings, Problem Setup, Models
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Fluid Air

Solid Aluminum

Fluent 12.4.1 Solver Settings, Problem Setup, Materials

All Cells Fluid

Operating Pressure (N/m 2 ) 101325

X = -0.9

Y = 0

Z = 0

Reference Pressure Location

Oprating Conditions

Fluent 12.4.1 Solver Settings, Problem Setup, Cell Zone Conditions

Inlet Velocity Inlet

Outlet Pressure Outlet

Surface Default Wall

Interior Interior

Interface Interior

Fluent 12.4.1 Solver Settings, Problem Setup, Boundary Conditions

Area (m 2 ) 0.001266

Density (kg/m 3 ) 1.225

Length (1) 1

Temperature (K ) 288.16

Velocity (m/s ) As Appropriate

Viscosity (kg/(m s) ) 1.7894x10-5

Ratio of Specific Heats 1.4

Fluent 12.4.1 Solver Settings, Problem Setup, Reference Values

Scheme SIMPLE

Gradient Green-Gauss node Based

Pressure Second Order

All Others Second Order Upwind

Fluent 12.4.1 Solver Settings, Solution, Solution Methods

Under-Relaxation Factors Default

Solution Limits Default

Fluent 12.4.1 Solver Settings, Solution, Solution Controls
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Print to Console Yes

Plot Yes

Convergence Criterion None

Continuity

X-Velocity

Y-Velocity

Z-Velocity

Turbulence Model Parameters

Print to Console Yes

Plot Yes

Force Vector (X = 1) (Y = 0) (Z = 0)

X Axis (Auto Range)

Y Axis (0.0 - 0.2)

Print to Console Yes

Plot Yes

Force Vector (X = 0) (Y = 1) (Z = 0)

X Axis (Auto Range)

Y Axis (0.0 - 0.2)

Equations to Monitor

Residual Monitor

Drag Monitor

Axis Limits

Drag Monitor

Axis Limits

Fluent 12.4.1 Solver Settings, Solution, Monitors

Gauge Pressure (N/m 2 ) 0

X Velocity (m/s ) 0

Y Velocity (m/s ) 0

Z Velocity (m/s ) 0

Turbulence Parameters (Problem Dependent, Defaults Used)

Fluent 12.4.1 Solver Settings, Solution, Solution Initialization

Autosave Every (Iterations) 500

When Data File Saved Save Case If Modifified

Retain Only Most Recent Files YES

Maximum Number of Data Files 2

File Name As Appropriate

Fluent 12.4.1 Solver Settings, Solution, Calculation Activities

Check Case YES

Number of Iterations Problem Dependent

Reporting Interval 1

Profile Update Interval 1

Fluent 12.4.1 Solver Settings, Solution, Run Calculation
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Morgantown, West Virginia 
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 Member, WVU Unmanned Aerial Vehicle Design Team, August 2003 - May 2005 

RELEVANT SKILLS 

 Experience with the Fluent CFD Package 

 Experience with Missile DATCOM semi-empirical projectile analysis code 

 Experience with basic composite mold and component fabrication 

 Experience with basic operation of D-Six and FDC flight simulator packages 

 Experience with MATLAB and Simulink mathematics and control packages 

 Experience with ANSYS structural analysis 
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