
Graduate Theses, Dissertations, and Problem Reports

2015

Static Code Analysis: On Detection of Security Vulnerabilities and Static Code Analysis: On Detection of Security Vulnerabilities and

Classification of Warning Messages Classification of Warning Messages

Andrei M. Perhinschi

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Perhinschi, Andrei M., "Static Code Analysis: On Detection of Security Vulnerabilities and Classification of
Warning Messages" (2015). Graduate Theses, Dissertations, and Problem Reports. 6403.
https://researchrepository.wvu.edu/etd/6403

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230485685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F6403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/6403?utm_source=researchrepository.wvu.edu%2Fetd%2F6403&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Static Code Analysis: On Detection of Security

Vulnerabilities and Classification of Warning

Messages

by

Andrei M. Perhinschi

Thesis submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Katerina Goseva-Popstojanova, Ph.D., Chair
Hany Ammar, Ph.D.
Roy Nutter, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2015

Keywords: static code analysis, machine learning, information assurance

Copyright 2015 Andrei M. Perhinschi

Abstract

This thesis addresses several aspects of using static code analysis tools for detection of se-
curity vulnerabilities and faults within source code. First, the performance of three widely used
static code analysis tools with respect to detection of security vulnerabilities is evaluated. This is
done with the help of a large benchmarking suite designed to test static code analysis tools’ per-
formance regarding security vulnerabilities. The performance of the three tools is also evaluated
using three open source software projects with known security vulnerabilities. The main results of
the first part of this thesis showed that the three evaluated tools do not have significantly different
performance in detecting security vulnerabilities. 27% of C/C++ vulnerabilities along with 11% of
Java vulnerabilities were not detected by any of the three tools. Furthermore, overall recall values
for all three tools were close to or below 50% indicating performance comparable or worse than
random guessing. These results were corroborated by the tools’ performance on the three real soft-
ware projects. The second part of this thesis is focused on machine-learning based classification
of messages extracted from static code analysis reports. This work is based on data from five real
NASA software projects. A classifier is trained on increasing percentages of labeled data in order
to emulate an on-going analysis effort for each of the five datasets. Results showed that classifica-
tion performance is highly dependent on the distribution of true and false positives among source
code files. One of the five datasets yielded good predictive classification regarding true positives.
One more dataset led to acceptable performance, while the remaining three datasets failed to yield
good results. Investigating the distribution of true and false positives revealed that messages were
classified successfully when either only real faults and/or only false faults were clustered in files
or were flagged by the same checker. The high percentages of false positive singletons (files or
checkers that produced 0 true positives and 1 false negative) were found to negatively affect the
classifier’s performance.

v

Acknowledgments

The work presented in this thesis was funded in part by the NASA Independent Verification

and Validation Facility in Fairmont, WV through grants managed by TASC Inc. The author thanks

Brandon Bailey, Keenan Bowens, Richard Brockway, Van Casdorph, Travis Dawson, Roger Harris,

Vaughn Harvey, Joelle Loretta, Shirley Savarino, Jerry Sims and Christopher Williams for their

input and feedback.

vi

Contents

Acknowledgments v

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Introduction to Static Code Analysis Tool Evaluation 1
1.2 Introduction to Static Code Analysis Message Classification Experiments 5

2 Related Work 9
2.1 Related Work for Static Code Analysis Tool Evaluation 9
2.2 Related Work for Static Code Analysis Message Classification Experiments 13

3 Evaluation of Static Code Analysis Tools 16
3.1 Methodology . 16

3.1.1 Common Weakness Enumeration and the Juliet Benchmark 16
3.1.2 Description of the program for automatic computation of the tools perfor-

mance . 19
3.1.3 Metrics used for quantitative comparison of tools performance 23
3.1.4 Background on Statistical Testing . 24
3.1.5 Quantitative evaluation based on real open source programs 25

3.2 Evaluation Results based on Juliet Benchmark . 27
3.2.1 Evaluation on C/C++ CWEs . 27
3.2.2 Evaluation on Java CWEs . 29
3.2.3 Summary of the tools performance on the C/C++ and Java subsets 33
3.2.4 Evaluation of tools performance by CWE category 36

3.3 Evaluation Results based on Real Software . 38
3.4 Threats to Validity for Tools’ Evaluation . 39

3.4.1 Construct Validity . 39
3.4.2 Internal Validity . 40
3.4.3 Conclusion Validity . 40
3.4.4 External Validity . 41

3.5 Conclusion on Tools’ Evaluation . 41

vii

4 Static Code Analysis Message Classification 42
4.1 Methodology . 42
4.2 Datasets . 44
4.3 Results of the Classification Experiments . 46

4.3.1 Discussion of Classification Experiments 50
4.4 Threats to Validity of Classification Experiments 53

4.4.1 Construct Validity . 53
4.4.2 Internal Validity . 54
4.4.3 Conclusion Validity . 54
4.4.4 External Validity . 54

4.5 Conclusion on Classification Experiments . 55

Appendix A 60

viii

List of Figures

3.1 Metrics computation system block diagram . 20
3.2 Metrics for the C/C++ CWEs . 28
3.3 ROC squares for the C/C++ CWEs. Some of the data points above represent mul-

tiple points stacked on top of one another, for example many CWEs cluster at point
(0,0). 30

3.4 Metrics for the Java CWEs . 31
3.5 ROC squares for the Java CWEs. Some of the data points above represent multiple

points stacked on top of one another, for example many CWEs cluster at point (0,0). 32

4.1 Bubble plots for NASA 1 results per file and checker 48
4.2 Bubble plots for NASA 2 results per file and checker 49
4.3 Bubble plots for NASA 3 results per file and checker 50
4.4 Bubble plots for NASA 4 results per file and checker 51
4.5 Bubble plots for NASA 5 results per file and checker 52

ix

List of Tables

3.1 Confusion matrix . 21
3.2 Basic facts about open source programs used for evaluation of the static code anal-

ysis tools . 26
3.3 Accuracy, Recall, Probability of False Alarm, Balance, and G-Score for both C/C++

and Java CWEs with all three tools . 34
3.4 Friedmann results for both C/C++ and Java CWEs with all three tools 36
3.5 C/C++ CWE category grouping . 37
3.6 Java CWE category grouping . 37
3.7 Number of detected known vulnerabilities in the vulnerable versions (true posi-

tives) and reported vulnerabilities in the fixed versions (false positives) 38

4.1 Confusion matrix . 44
4.2 Basic information on the five datasets . 45
4.3 CBA Learning Results for all datasets. 47

A.1 List of C/C++ CWEs and the number of associated good and bad functions along
with number of test cases used in the experiments 61

A.2 List of Java CWEs and the number of associated good and bad functions along
with number of test cases used in the experiments 62

A.3 Accuracy for C/C++ . 63
A.4 Recall for C/C++ . 64
A.5 Probability of False Alarm for C/C++ . 65
A.6 Balance for C/C++ . 66
A.7 G-score for C/C++ . 67
A.8 Accuracy for Java . 68
A.9 Recall for Java . 69
A.10 Probability of False Alarm for Java . 70
A.11 Balance for Java . 71
A.12 G-score for Java . 72
A.13 Recall for categories with C/C++ . 73
A.14 Probability of False Alarm for categories with C/C++ 74
A.15 G-Score for categories with C/C++ . 75
A.16 Recall for categories with Java . 76
A.17 Probability of False Alarm for categories with Java 77

x

A.18 G-Score for categories with Java . 78

1

Chapter 1

Introduction

Static analysis of source code provides a scalable method for code review and helps ensure

that coding policies are being followed. Tools for static analysis have rapidly matured in the last

decade; they have evolved from simple lexical analysis to employ much more accurate and complex

techniques. Many commercial and open source tools exist, and all of them make certain claims

about their effectiveness and performance.

However, in general, static analysis problems are undecidable [8] (i.e., it is impossible to con-

struct an algorithm which always leads to a correct answer in every case). Therefore, static analysis

tools do not detect all faults in source code (false negatives) and are prone to false positives (i.e.,

they report findings which upon closer examination turn out not to be faults at all). Therefore to be

of practical use, a static code analysis tool should find as many faults as possible, ideally all, with

a minimum amount of false positives, ideally none.

1.1 Introduction to Static Code Analysis Tool Evaluation

The advances in technology and broadband connectivity, combined with ever increasing num-

ber of threats and attacks, require information assurance and cyber security to be integrated into

the traditional verification and validation process. Many organizations develop, run, and maintain

numerous systems for which one or more security attributes (i.e., confidentiality, integrity, avail-

ability, authentication, authorization, and non-repudiation) are of vital importance. Therefore it is

becoming imperative to extend current validation and verification capabilities to cover information

2

assurance and cyber security concerns for sensitive projects.

Vulnerabilities are more costly to fix than prevent in the first place [6]. To be able to prevent

vulnerabilities from ever existing, the development process needs to be tailored towards this goal.

Related work shows that static code analysis is only one part of a successful development pro-

cess [3], [34]. What is unclear is whether or not static analysis tools deliver what they promise.

Therefore the motivation for this work was to determine whether static code analysis tools display

significant differences in detection of security vulnerabilities and if so where these differences oc-

cur. In this thesis the capabilities of three existing state-of-the-practice static code analysis tools

were explored. Previous efforts include the work done at the multiple SATE events [29]. While

examining more tools than the work presented here, the SATE approach did not include any rigor-

ous statistical testing. Instead it relied only on the reporting of metrics such as recall and precision

[30]. Similar to the work done within the SATE conference, the experiment presented in this thesis

makes use of the Common Weakness Enumeration (CWE) nomenclature, which is a hierarchical

classification of security vulnerability types. A given CWE will either denote one particular type

of security vulnerability, for example buffer overflow or SQL injection, or it will represent a vul-

nerability class, such as numeric errors or coding standard violations. CWEs are described in more

detail in Section 3.1.

The main motivation behind this work can be summarized with the following three research

questions:

• R1: Is there a difference between three state of the practice static code analysis tools with

respect to detection of security related faults when applied to a benchmark suite?

• R2: If so which of the tools performs the best?

• R3: Is the performance of the three static code analysis tools on real software applications

consistent with the performance on the benchmark suite?

The three tools evaluated in this thesis were chosen based on factors such as popularity, ease

of use, and the ability to check partial source code. This work is based on a large benchmark

suite [23] consisting of 22 vulnerability ”classes” for C/C++ and 19 for Java, with approximately

20,000 and 7,500 test cases respectively. The benchmark-based evaluation was conducted auto-

3

matically by the use of a scripting system developed as part of this effort. The methodology is

based on automatic extraction of quantitative metrics from the outputs of the three static analysis

tools, denoted throughout this thesis as Tools A, B, and C. The work presented here is an empirical

study consisting of a controlled experiment with benchmark input. The Juliet test suite was run

through each of the three tools after which the tools’ output was taken and ran through a script

system developed to compute detection performance metrics. The results were empirically eval-

uated by employing statistical hypothesis testing in order to determine any significant differences

between the three tools’ performance. The inclusion of rigorous statistical testing is an important

contribution as compared to the related work.

In addition to the automatic benchmark-based experiment, the evaluation was extended with

three open source programs, two of which were implemented in C (with 8,500 and 280,000 LOC,

respectively) and one implemented in Java (with 4,800,000 LOC). All three of the programs se-

lected have known sets of vulnerabilities in order to allow quantitative analysis. For this part of

the study all results are obtained by manual inspection of the static tools’ outputs as there was no

way of automating the process, nor was it necessary due to the relatively small number of known

defects.

The contribution of this work can be shortly summarized as follows:

• Approach

– The experimental approach employed in this work was based on a benchmark suite

called Juliet developed by the NSA Center for Assured Software. The main purpose of

the Juliet suite is to assess static code analysis tools. Earlier studies based on the Juliet

suite either employed a very small subset of the C test cases [12] or did not provide

quantitative results [7] [26].

– The work presented here provides a number of quantitative performance metrics: accu-

racy, recall, probability of fasle alarm, balance, and G-score. These metrics are reported

per individual CWE and also across all CWEs. Formal statistical testing, in the form of

the Friedman rank sum test, was employed in comparing the tools’ performance met-

rics in order to determine the existence of any significant difference in performance.

This is a considerable improvement over the referenced related works, none of which

4

reported any such statistical tests.

– Three popular open source applications were employed as case studies besides the

experimental approach. These were included as a way of verifying the experimental

results based on the Juliet benchmark in a more realistic situation.

• Empirical observations

– The three tools were all unable to detect all vulnerabilities. In this context the term

“detect” refers to correctly classifying at least one bad function; it does not mean being

able to detect each and every instance of faulty code for a given CWE. None of the

tools were able to detect six of the 22 C/C++ CWEs. Furthermore seven C/C++ CWEs

were detected either by a single tool or a combination of two tools. All three tools were

able to detect only nine of C/C++ CWEs. The evaluation of Java CWEs yielded similar

results. None of the tools detected two of the 19 Java CWEs while thirteen Java CWEs

were detected either by a single tool or a combination of two tools. All three tools were

able to detect only four of the Java CWEs.

– The three static analysis tools showed no statistically significant difference in detect-

ing security vulnerabilities. This lack of significant difference was observed for both

C/C++ and Java test cases. Furthermore, the mean, median, weighted, and overall val-

ues for the recall metric were either about or less than 50%. This signifies similar or

worse performance than random chance.

– One of the tools displayed better performance with respect to probability of false alarm

for the C/C++ test cases. However, no such difference was measured for Java test cases.

– The three open source program case studies confirmed the experimental results with

respect to the tools’ security vulnerability detection performance.

5

1.2 Introduction to Static Code Analysis Message Classifica-

tion Experiments

Being an integral part of the software development process, static code analysis has the poten-

tial to improve the quality of software. Static code analysis consists of running source code through

a software tool which then outputs a list of messages. Static analysis tools employ pattern matching

constructs known as ”checkers” which flag pieces of source code as defective if the source code

happens to match a particular checker. For example, a static analysis tool has a checker designed

to detect possible buffer overflow conditions. When the tool encounters a piece of source code

which matches its buffer overflow checker, a message is produced. Each message (often called a

warning) consists of information related to a specific piece of source code that the static analysis

tool has flagged as faulty. The information provided varies among static analysis tools; however

a majority of tools report the following: source code filename and function or method where po-

tentially faulty code is located, line number(s) where faulty code is located, some type of severity

ranking of the fault, and checker which flagged the fault.

Throughout the rest of this thesis the list of messages output by static analysis tools is referred

to as ”report”. Each report contains many messages, up to hundreds of thousands for large projects

with millions of lines of code. Each message is either a true positive (TP) or a false positive

(FP). True positives are actual code faults while false positives are not. For each message this

determination falls to a software analyst who has to manually inspect the code referenced by the

message and decide whether or not the static analysis software has made a mistake. In practice,

static analysis tools produce large numbers of false positives [14], [4] which makes it difficult for

analysts and developers to put such tools to effective use. It is clear that time expended identifying

false positives would be better spent on other tasks, such as fixing true positives.

Analysts’ competence at dealing with the large numbers of false positives resulting from static

code analysis was studied in [5]. The findings showed that, while analysts were quite competent

with respect to true positive classification, they were not very successful in identifying false posi-

tives. Furthermore, it was reported that analyst experience did not make a difference with regard

to their ability to identify false positive messages. A newer study by the same research team [4]

again confirmed the negative effects of false positives. The results showed a high incidence of false

6

positives among static analysis tool output, with slightly more than a third of them being identified

as such by analysts. The researchers also found that false positives negatively impacted analysts’

efforts by forcing them to spend time looking at and identifying non-issues. These results further

confirm that some classification of true and false positives should be an integral part of any static

analysis effort. It follows that if the number of false positives could be significantly decreased, the

static code analysis process could be made less time consuming and would lead to better outcomes

in terms of software quality, including reliability and security.

The motivation for this work was to evaluate the viability of machine learning in classifying

static code analysis report messages using only features extracted from the static code analysis re-

port. While integrating data from more than just the static analysis tool may make it more likely for

machine learning algorithms to perform well, such integration between static analysis tool reports

and other sources is not always possible. It would then be desirable to be able to perform ma-

chine learning classification using only static analysis reports. Specifically, the following research

questions are posed:

• R4: Can static analysis messages be successfully classified to true positives and false posi-

tives?

• R5: If so, what percentage of report messages must be labeled before predictions become

useful?

• R6: What is the distribution of true and false positives among files and checkers?

Exploring the distribution of true and false positives across files was motivated by the so-called

Pareto principle, that is that around 80% of faults are localized in 20% of files. The Pareto principle

has been confirmed in numerous studies [27], [1], [18], [11], with the actual percentage of faults

contained in about 20% of files ranging from 60% to 90%.

Furthermore, it was found that many checkers also tend to cluster false positives for various

reasons such as the inherent vagueness involved when designing such checkers and the variety of

possible code constructs that may violate checkers’ rules about what constitutes a correct construct

while not actually being incorrect [24]. This motivated the decision to look at true and false positive

distribution across checkers.

7

The classification approach used in this work is based on using the Classification Based on

Associations (CBA) algorithm [25]. CBA is an association rule-based classifier which works on

categorical data such as the fields found in static code analysis reports. The experimental design is

based on train/test experimentation with incremental percentages of a given dataset being trained

on. Training was done on 25% and testing on 75% of a given dataset, then training was done on

50% and testing on 50%, then training on 75% and testing on 25%, and finally training on 90% and

testing on 10%. This setup was chosen to simulate an ongoing analysis process at different points

in time. For the experiments presented in this part of the thesis we used static analysis reports

from five real NASA projects which were manually analyzed, that is, the messages were manually

checked by a software analyst.

The contributions of this part of the thesis are:

• The experiment presented in this thesis employed association rule based classification with

training on different percentages of labeled messages.

• The work presented here applies classification on five datasets obtained from real NASA

software projects’ static code analysis efforts.

The main empirical observation of this work are as follows:

• The experiment presented in this thesis showed that two of the projects produced good classi-

fication results while the remaining three projects did not lend themselves well to association

based classification.

• Classification based on association rules led to good performance when TP and FP messages

were clustered in code units (files in the present case) with other messages of their type (TP or

FP, respectively). When operating on datasets with code units containing mixed distributions

of TP and FP messages performance was significantly decreased.

• Classification based on association rules did not lead to good performance on datasets with

large numbers of FP singletons, that is when files produce only one message, which provide

no benefit when training the classifier.

8

• Unlike the Stanford team [24] which found that singleton faults tend to appear quite bal-

anced, that is TP and FP singletons seem to occur in relatively similar numbers, the results

of this work show a significant trend towards FP singletons. More importantly, it was found

that for some projects true and false positives tend to be found mixed together within files or

checkers.

9

Chapter 2

Related Work

This chapter presents related work to both parts of this thesis, the static code analysis tool

evaluation and the static code analysis message classification. The related works are split into two

sections, respectively, for each main part of this thesis.

2.1 Related Work for Static Code Analysis Tool Evaluation

Despite the prevalent use of static analysis, few evaluation efforts of static code analysis tools

based on repeatable benchmarking systems have been undertaken, and even fewer with a focus on

security vulnerability detection. The following related works are based on static code analysis with

some kind of benchmarking input.

The SAMATE (Software Assurance Metrics and Tool Evaluation) project, sponsored by the

U.S. Department of Homeland Security (DHS) National Cyber Security Division and NIST, hosts

the Static Analysis Tool Exposition [29], which annually reviews a wide variety of different tools.

A recent study by the NSA [15], presented at the fourth SATE conference, tested eight commercial

tools and one open source static analysis tool for C/C++ and seven commercial and one open source

tool for Java. In that study, the evaluated tools were not identified and specific results for each tool

were not made public. However, it was reported that 21% of the vulnerabilities in the C/C++ test

cases and 27% of vulnerabilities in Java test cases were not detected by any tool. Furthermore,

although open source tools detected some vulnerabilities, they were not among the best in any

class of test cases.

10

A similar study, based on creating a test suite consisting of injected vulnerabilities in otherwise

clean code, was conducted by the University of Hamburg in collaboration with the Siemens CERT

[22]. Like the NSA evaluation, this work examined the performance of static code analysis tools

in detecting security vulnerabilities. The study presented in [22] compared the performance of six

tools. The findings showed that tools for analyzing C code scored within a range of 50-72 points

out of the possible 168, and that tools for analyzing Java code scored within a range of 53-89 points

out of the possible 147. Similar to the work done by NSA, this study did not identify the evaluated

tools or the individual results.

A 2014 study [32] evaluated 2 commercial static analysis tools against the Juliet test suite. The

Velicheti study was focused on evaluating tool performance with respect to code complexity. The

authors found that both tools performed better at code with low cyclomatic complexity rather than

high. Furthermore the researchers concluded that static analysis results are highly variable depend-

ing on the tool used, the type of vulnerability in question, and even the specific code construct in

question.

A study [21] presented a comparison of 12 static code analysis tools, 11 open source and

one commercial tool. This study was focused only on qualitative comparison using metrics such

as installation process, configuration, support, reports understand, vulnerabilities coverage degree

and support for handling projects. Although interesting, the study lacked quantitative comparison

of tools performance.

The comparison of three commercials tools, Polyspace, Prevent and Klocwork Insight pub-

lished in [13] concluded that Prevent and Klocwork found largely disjoint sets of vulnerabilities.

The study also indicated that Prevent and Klocwork Insight sacrificed finding vulnerabilities in

favor of reducing the number of false positives, while PolySpace produced a high rate of false

positives.

A recent study [12] compared the performance of nine tools, most of them commercial, with

respect to detection of security vulnerabilities in C code. The evaluation results presented in [12]

were based on a very small benchmark test suite consisting of only 73 test cases for a total of only

22 CWEs. The examined tools had mean recall values in the range from 37.6% to 66.5%. Seven

out of 22 CWEs were not detected by any tool. The results in [12] were consistent with those from

[13] regarding the lack of detection overlap between Prevent and Klocwork. In agreement with

11

previous work, the study recommended that static analysis be integrated into the defect detection

and removal process alongside other methods. Furthermore the study concluded that current gen-

eration static analysis tools cannot be employed interchangeably as their internal designs, as well

as output formats, yield greatly differing results.

While many related studies conclude that false positives are a major issue in the application of

static analysis, the effects of high numbers of false positives on the development process are rarely

discussed. Understanding the implications of false positives is paramount when selecting a static

code analysis tool to be integrated into a development environment. The following related works

either looked at static code analysis tools from an environment integration point of view or they

compare static analysis tools to other approaches such as penetration testing as part of an integrated

development environment.

A recent study [4] investigated how static analysis should be integrated into the development

process in order to assure successful usage and improvement in software quality with regards to

security. The study focused on 4 commercial products from Ericsson analyzed with a single static

analysis tool. The researchers concluded that most of the tool output was not security related

and that false positives were an issue, albeit not as much as other studies with a false positive

rate ranging from 5% to 20% depending on the product. More interestingly the study showed

that only 37.5% of false positives were correctly identified as false positives. Furthermore it was

found that developers may introduce new vulnerabilities while attempting to fix code that did not

need to be fixed (that is the remaining 62.5% of false positives which are not identified as such).

While this may be explained by a lack of developer experience, the same research team found

that experience has no effect on developers false positive classification accuracy [5]. The study

[5] claimed that while the developers used in the study were good at identifying true positives,

false positive identification rates were not better than chance. Additionally developers were found

to be bad at judging the accuracy of their own classifications. These conclusions indicated that

high numbers of false positives were detrimental to the development process not only through

the amount of time spent classifying them, but also through the added risk of fixing improperly

classified false positives.

Another study regarding static code analysis with respect to security was aimed at web ser-

vice vulnerabilities [2]. Specifically the study attempted to compare penetration testing and static

12

code analysis with regard to SQL injection vulnerabilities. The researchers chose three commer-

cial automated penetration testing tools along with one testing tool proposed in previous work.

These penetration testing tools were compared with three static code analysis tools by employing

all tools over a set of eight web services. The researchers key metrics of interest were simply

vulnerability coverage and false positive rate. This study concluded with three key observations:

static analysis provided more coverage than penetration testing, false positives were a problem for

both approaches but static analysis was affected more, and different tools often reported different

vulnerabilities for the same piece of source code.

Taking an economic standpoint, yet another study evaluated the effectiveness of static analysis

as pertaining to large organizations efforts in improving software quality [34]. The researchers fo-

cused on static analysis with Flexelint, Klocwork, and Illuma as applied to 3 large network service

products from Nortel. In comparing the three tools defect removal rates with manual inspection

the study found no significant difference. Furthermore the defect removal rates of execution-based

testing were found to be two to three times higher than that of static analysis techniques. While

this study was not exclusively focused on security vulnerabilities and these only comprised a small

subset of the vulnerabilities explored, the study concluded that while static analysis can be used to

identify certain programming errors with the potential to manifest as security vulnerabilities, static

analysis is essentially complementary to other defect detection methods.

A 2013 study [3] compared 4 vulnerability detection techniques: exploratory manual penetra-

tion testing, systematic manual penetration testing, automated penetration testing, and automated

static analysis. The study used 3 large software projects. The authors found that static analysis re-

sulted in many more false positives than the other 3 methods. They also found that static analysis

did quite poorly on certain vulnerability types.

The work presented in this thesis takes a quantitative approach based on a standard software

vulnerability nomenclature, namely the Common Weakness Enumeration [9]. Furthermore the

way the CWE hierarchy is employed is indirectly through the automatically generated Juliet test

suite which provides a repeatable benchmark. Despite the shortcomings of the CWE nomenclature

itself, this approach is considered to be more straightforward and objective than methods based

on researchers own categorizing of vulnerabilities, which much of the related work employs. In

addition to using a repeatable benchmark statistical hypothesis testing was employed in the form

13

of the Friedman rank sum test to draw empirical conclusions about the results.

2.2 Related Work for Static Code Analysis Message Classifica-

tion Experiments

The most primitive technique of dealing with large numbers of expected false positives is sim-

ple statistical sampling of reports followed by exhaustive manual analysis of the sample. The

obvious issue with this simple method is the probability that significant true positives may not be

part of the sample and be missed by analysts; in other words the sample of error reports might not

be representative of the overall distribution. The fact that automated methods for message classi-

fication can cover the entirety of reports makes them attractive alternatives. One such method is

based on error ranking schemes which apply a ranking centered on some metrics to static analysis

reports in an attempt to push the most likely true positives to the front of the list and the most

likely false positives to the bottom [24]. The researchers introduced a Bayesian incremental mes-

sage ranking technique which takes into account newly inspected messages. They examined the

clustering behavior of true and false positives within the source code of two large software systems.

The researchers observed that when graphing the number of false vs. true positives per source code

unit (file and function) the data fell into a particular “L” shape. The “sides” of the “L” shaped graph

represent the distribution of source code units which contain only true positives and those which

contain only false positives. These source code units which cluster along the axes of the TP/FP per

source code unit charts represent the most predictively powerful data from a classification point

of view. The source code units which cluster further away from the axes contain a mix of true

and false positives. If these observations hold for other projects then it may be possible to apply

machine learning techniques in order to perform classification on static analysis reports.

Many automated methods for message classification described in literature are based on some

kind of machine learning. The end goal of such methods is to predict whether or not a previously

unseen message will be a true or false positive based on a previously learned model, a very attrac-

tive prospect for the beleaguered analyst. Machine learning methods described in literature tend to

integrate static code analysis report information with data from other sources such as static code

14

metrics, churn metrics, complexity metrics, etc, [28], [20].

A 2008 study [28] introduced four classification models for true and false positives based on

features extracted from static analysis reports, such as checker, category, and priority. In addition

to the features extracted from static analysis reports, the researchers also included other features,

such as number of messages per file and several different churn metrics. The four models were

evaluated with static analysis reports obtained by running Googles Java codebase through the open

source FindBugs [16] static analysis tool. The study only reported precision metrics: 61-72% for

true positive classification and 77-88% for false positive classification.

A code study [20] presented a comparison of fifteen machine learning algorithms applied to

static analysis reports. The algorithms were evaluated using two real JAVA software projects.

Similar to Ruthruff et al., this study used a mixture of features obtained from several sources. In

addition to the features extracted directly from static analysis reports, the researchers also included

source code features, such as cyclomatic complexity, code churn features, as well as other features

such as file age and number of open issues per revision. Five of the fifteen machine learning

algorithms evaluated were rule based learners. The paper reported very high average precision,

recall, and accuracy for both software projects: 89% and 98% average precision, 83% and 99%

average recall, and 87% and 96% average accuracy.

While other related work focused on evaluating different machine learning algorithms, a 2008

paper [19] introduced a benchmark for evaluating and comparing static analysis report prioritiza-

tion and classification techniques. They evaluated the benchmark with three classification methods:

one based on static analysis message type, one based on static analysis message locality within

source code, and one based on a combination of the previous two. The benchmark, which con-

sisted of static code analysis reports from six software projects, resulted in average recall values of

42%, 25%, and 32% for the three respective methods employed when used to perform classifica-

tion. The study also provided precision and accuracy metrics in addition to the recall metric. The

methods presented in this study include incremental analyst feedback which is beyond the scope

of the work presented in this thesis.

Not much previous work marrying association rules to static code analysis error reports has

been published. A 2006 paper [31] employed association rule learning to predict fault associa-

tions of the type “if fault x occurs then fault y is likely to occur”. The study compared association

15

rule learning with three other machine learning algorithms: PART, C4.5, and Naive Bayes and

concluded that association rules perform roughly 25% better in terms of accuracy than the other

methods. While the application of association rules in [31] did not focus on static code analysis re-

port mining and is only loosely related to the work presented here, the study shows that association

rules can be a powerful tool for gaining insight into the relationships between faults.

Much of the previous work focusing on machine learning methods as applied to static analy-

sis reports employed features extracted from sources other than static analysis reports [28], [19],

such as issue tracking systems (historical metrics such as how many faults have been fixed in

this file/function) and versioning/revision control systems (change metrics such as code churn and

number of developers having worked on a file/function). The work presented here is based solely

on features extracted from static analysis reports and includes discussion and analysis on how the

TP/FP distribution across source code can affect classification performance.

16

Chapter 3

Evaluation of Static Code Analysis Tools

This chapter presents the background, methodology, and results for the static code analysis tool

evaluation. This chapter also includes threats to validity and the conclusion for the evaluation part

of this thesis.

3.1 Methodology

The methodology for this chapter is based on automatic computation of confusion matrices.

The following steps outline the way results were obtained:

• Run the benchmark through each of the three tools.

• Take the static analysis reports from each of the three tools and run them through an auto-

mated system of scripts to compute confusion matrices.

The static code analysis tools employed in this experiment were all commercial off the shelf

products. One of the tools was designed with the explicit purpose of detecting security vulnerabil-

ities in source code while the other two are static code analysis tools that have added the ability to

detect vulnerabilities.

3.1.1 Common Weakness Enumeration and the Juliet Benchmark

In order to take repeatable and objective performance measurements from the selected tools a

standard and easily reproducible way of categorizing software vulnerabilities was required. This

17

section provides some background information on the Common Weakness Enumeration [9] tax-

onomy regarding its design and hierarchical structure. The Juliet test suite [23] is also described

along with a brief explanation of the structure of its test cases.

CWE description

The Common Weakness Enumeration taxonomy is maintained by the MITRE Corporation with

support from the DHS [9] and it provides a common language of discourse for discussing, finding

and dealing with the causes of software security vulnerabilities. Many static code analysis tools

map their messages to CWEs. Each individual CWE ID represents a single vulnerability type or

category. For example CWE 121 is Stack-based Buffer Overflow, CWE 78 is OS Command Injec-

tion, and so on. The CWE nomenclature consists of a hierarchical structure with broad category

CWEs on the top level. The top level CWEs may have multiple children which in turn may or may

not have further children. Each CWE may have one or more parents and zero or more children.

The further down this hierarchy one goes the more specific the vulnerabilities become.

Juliet Description

The Juliet test suites were created by the NSA evaluation effort [15] and have been made

publicly available at the NIST web site [23]. The Juliet test suites were specifically designed to

evaluate static code analysis tools by acting as input to such tools. Juliet consists of many sets (one

set per CWE) of mini-tests, each with only one vulnerability mapped to one CWE. The test cases

are designed in such a way as to produce output which can easily be processed automatically. This

is accomplished by having a strict naming convention for functions and methods as well as by each

test case having a standard design common throughout the entire test suite. Juliet test suite v.1.1

[23] was used for this work. For C/C++ it has 57,099 test cases for a total of 119 CWEs and for

Java it has 23,957 test cases for 113 CWEs. Only those CWEs which were covered by all tools

were included.

Juliets test case design is such that automatic evaluation of static analysis results can be feasibly

implemented. Note that throughout the rest of this chapter the term function is used when referring

to either C/C++ functions or Java methods. The main characteristic of Juliet is that correct code

18

constructs are found in functions which have the string ”good” in their names and incorrect code

constructs are found in functions which have the string ”bad” in their name. This makes it so

that a confusion matrix of true positives, false positives, true negatives, and false negatives can be

automatically constructed as described in Section 3.1.2. This is a very simplified description of the

general Juliet test case, which in addition to good and bad functions, also contains source, sink,

and helper functions. The following is a detailed description of the Juliet test case format:

• All C test cases and the vast majority of C++ and Java test cases implement flaws contained in

arbitrary functions. These test cases are called non-class-based flaw test cases. The simplest

of these test cases consist of a single source file, while the more complex test cases are often

implemented within multiple files.

• Each non-class-based flaw test case contains exactly one primary bad function. For test cases

which span multiple files this primary bad function is located in the primary file.

• Each non-class-based flaw test case contains exactly one primary good function. This pri-

mary good function does not contain non-flawed constructs, its only purpose is to call the

secondary good functions.

• Each non-class-based flaw test case contains one or more secondary good functions. Simpler

test cases will have the non-flawed construct in the secondary good function(s), however in

more complex test cases the secondary good function(s) can also be used to call some source

and/or sink functions.

• Non-class-based flaw test cases which test for different data flow variants use source and sink

functions. These source and sink functions can be either good or bad. Each such function

can be mapped to either the primary bad function or exactly one secondary good function.

• When the implementation of a flaw cannot be represented within a single function, helper

functions are used. Helper functions are mapped to either the bad function or one of the

good functions. The source and sink functions mentioned above are not considered helper

functions.

19

• Very few C++ and Java test cases implement vulnerabilities which are based on entire classes

as opposed to individual statements or blocks of code. These are called class-based flaw test

cases and are implemented across multiple files with each file containing a separate class:

• Each class-based flaw test case has one bad file. This file contains the required bad function.

• Each class-based flaw test case has one good file. This file contains a primary good function

as well as one or more secondary good functions.

• There are some test cases for certain flow variants for C++ and Java which use virtual func-

tions, in the case of C++, or abstract methods, in the case of Java. These test cases can be

comprised of four or five files.

• Very few of the test cases contain only flawed constructs. As Juliet was being designed it

was found that non-flawed constructs which correctly rectify the flaw being tested could not

be generated for a small number of non-class-based vulnerabilities, which resulted in these

bad-only test cases.

3.1.2 Description of the program for automatic computation of the tools per-

formance

To compute the metrics for quantitative evaluation of the tools performance we implemented

several scripts to automatically compute the confusion matrix for each CWE (i.e., the number

of true positives (TP), false negatives (FN), true negatives (TN) and false positives (FP)). This

automatic system consists of three steps shown in Figure 3.1.

The first step is to convert the tool report into a common format. This was done so that the

same scripts could be used for all three tools without modification. The common format is a

simple flat text file containing one report message per line. Each line is a comma-separated value

list containing information such as file name, function name, line number, vulnerability CWE ID,

and a unique identifier (in some cases more than one of the same vulnerability can be reported in

the same place).

The second step is to parse each CWE directory in Juliet and assemble a complete list of test

cases to be taken into account. This is needed because each CWE directory can have one or more

20

(thousands in some cases) test cases. Furthermore, for each test case considered, the script parses

the test case source files to obtain the function list, which may be rather complex as described in

section 3.1.1. This step is specific to the Juliet test suite and is common for the evaluation of all

three tools.

Figure 3.1: Metrics computation system block diagram

The third step loads the tool output file and iterates through it while matching the messages

to the list of test cases assembled in the first step. The output of the second step is a flat text file

(tr out.txt) containing a list of each test case, the functions found within each test case (excluding

the primary good function), and the messages produced by the tool for each test case.

During this third step all messages from some test cases were excluded, as well as some mes-

sages from all test cases. Following the suggestions given in [26] test cases and/or messages were

discarded due to the following reasons:

• Messages produced by the tools which were not related to security vulnerabilities were ex-

cluded as the scope of the work described in this chapter was to evaluate tools performance

regarding security vulnerability detection. In addition, almost all Juliet test cases contain

incidental flaws, such as unreachable code and unused variables, which are typically consid-

ered unrelated to security vulnerabilities. Therefore such incidental flaws were also ignored,

with the exception of two CWEs specifically designed for unreachable code, CWE561, and

unused variables, CWE563.

21

• In the event that a test case contains more than one secondary good function as well as one or

more helper function, the helper function cannot be mapped to the secondary good function

from which it was called. This is an artifact of the automatically generated nature of the

Juliet test suite. Due to this issue messages flagged within helper functions were ignored.

• Class-based flaw test cases comprise a very small subset of the total number of test cases.

Furthermore their naming convention clashes with the naming convention of the much more

numerous virtual function/abstract method test cases. Due to these issues class-based flaw

test cases were ignored.

• Bad-only test cases can contain empty primary/secondary good functions but since they do

not contain non-flawed constructs they cannot be counted as false positives and/or true neg-

atives. All bad-only test cases were therefore excluded from the analysis as the results they

produce cannot be properly evaluated.

• Additionally Windows-only test cases were excluded from all experiments as the available

installation of Tool C was Linux-only. Only a few of the CWEs consist of Windows-only

test cases.

The final step uses the text file output described above to compute the confusion matrix, shown

in Table 3.1. After this final step statistical testing is performed on the results to draw empirical

conclusions.

Table 3.1: Confusion matrix

Reported vulnerability No message reported

Actual vul-

nerability
True Positives (TP) False Negatives (FN)

No vul-

nerability

(good func-

tion/method)

False Positives (FP) True Negatives (TN)

For each test case, the script parses through the messages associated with it and evaluates

whether or not each message constitutes a true positive (TP), false negative (FN), true negative

22

(TN), false positive (FP), or if it should be ignored. The following points provide an explicit listing

of which messages are taken into account and how special functions (i.e., source, sink) were taken

care of when computing the confusion matrix:

• If a message was flagged as an appropriate CWE within bad code one true positive (TP) was

counted.

• If no messages were flagged as an appropriate CWE within bad code one false negative (FN)

was counted.

• If a message was flagged as an appropriate CWE within good code one false positive (FP)

was counted.

• If no messages were flagged as an appropriate CWE within good code one true negative

(TN) was counted.

• Source and sink functions, as described in section 3.1.1, were mapped to their calling func-

tion, either a primary bad function or a secondary good function. Messages flagged within a

source or sink function were counted as messages relating to the specific calling function.

• Messages flagged in non-class-based test cases were all taken into account, with the excep-

tion of what is described in the Excluded Messages/Test-cases section.

• Messages flagged in virtual function/abstract method test cases were all taken into account,

with the exception of what is described in the Excluded Messages/Test-cases section.

• For each bad function (one per test case) only one true positive was counted regardless of

how many messages match the criteria for true positives.

The determination of whether or not a message was flagged as the appropriate CWE being

tested goes beyond a simple exact match. As mentioned in section 3.1.1, each CWE may have

one or more parents and zero or more children. Due to the nature of the CWE hierarchy and

the complex relationships it establishes between individual CWEs the definition of “appropriate

CWE” was expanded to include the currently investigated CWEs immediate parents and children.

This was done because the vague relationships between CWEs, at the very least, make the problem

23

of automatic labeling of individual messages by the static analysis tools ambiguous enough to

introduce some uncertainty in those labels. Without having access to the process by which static

analysis tools label the reports they generate the benefits gained in terms of better chances for

detecting true positives outweigh the slight bias introduced in favor of the tools.

A simple example to illustrate the above is as follows: consider Java CWE 129 and the as-

sociated list of its parents and children: CWE-867 (2011 Top 25 - Weaknesses On the Cusp),

CWE-802 (2010 Top 25 - Risky Resource Management), CWE-20 (Improper Input Validation),

CWE-189 (Numeric Errors), CWE-633 (Weaknesses that Affect Memory), CWE-738 (CERT C

Secure Coding Section 04 - Integers), CWE-740 (CERT C Secure Coding Section 06 - Arrays),

CWE-872 (CERT C++ Secure Coding Section 04 - Integers), CWE-874 (CERT C++ Secure Cod-

ing Section 06 - Arrays and the STL), CWE-970 (SFP Secondary Cluster: Faulty Buffer Access).

While computing the confusion matrix for CWE 129 a message flagged as any of the CWEs listed

previously is considered an “appropriate CWE”. Please note that only the immediate parent and

children CWEs of the current CWE being looked at are considered. “Siblings” of the current CWE

are not considered. For example, another one of the Java CWEs is CWE 190. It is also a child of

CWE 189, just like CWE 129, however it is not considered when computing the confusion matrix

for CWE 129.

The total number of bad functions and the total number of good functions counted by the first

script were used as a sanity check. This was done because TP + FN = number of bad functions and

FP + TN = number of good functions.

3.1.3 Metrics used for quantitative comparison of tools performance

For each CWE the script automatically produced the confusion matrix, which was then used to

compute the following metrics used to quantitatively evaluate the static code analysis tools.

Accuracy: This metric provides the percentage of correctly classified instances, both true pos-

itives and true negatives, or the ratio of the sum of true positives and true negatives to the sum of

true positives, true negatives, false positives, and false negatives.

Acc =
(TN + TP)

(TN + FN + FP + TP)
(3.1)

24

Probability of Detection: Sometimes called recall, this metric provides the probability of cor-

rectly classifying true positives, or in other words the ratio of true positives to the sum of true

positives and false negatives. The closer the probability of detection is to a value of 1 for a given

CWE, the better the tool performs on that CWE.

PD =
TP

(FN + TP)
(3.2)

Probability of False Alarm: This metric provides the probability of incorrectly classifying non-

flawed constructs as flawed, or the ratio of false positives to the sum of true negatives and false

positives. The closer the probability of false alarm is to 0 for a given CWE, the better the tool

performs on that CWE.

PF =
FP

(TN + FP)
(3.3)

Balance: Balance is a rather useful metric of performance because it combines the two most

important metrics above: probability of detection and probability of false alarm. It is defined as

the Euclidian distance from the ideal point of pf = 0, pd = 1 to a pair of (pf, pd). For convenience,

the balance is normalized by the maximum possible distance across the ROC square (i.e.,
√
2) and

then subtracted from 1. It follows that higher balance is better since (pf, pd) point falls closer to

the ideal point (0, 1).

Bal = 1−
√
(0− PF)2 + (1− PD)2√

2
(3.4)

G-Score: G-Score is the harmonic mean between recall, (PD), and (1-PF). Similarly to balance,

it helps elucidate the relationship between recall and probability of false alarm. G-Score values are

close to 1 when recall is high and probability of false alarm is low, which is the desirable outcome.

G-Score =
2PD(1− PF)

PD + 1− PF
(3.5)

3.1.4 Background on Statistical Testing

The goal of any statistical testing is to refute the given null hypothesis. In the case being

presented here the null hypothesis was that there is no difference between the performance of the

25

three tools, where performance is defined in terms of the metrics described in Section 3.1.3. The

experiment presented in this chapter is of a simple two-factor design (tools and CWEs), however

because of the same samples being used for testing all of the tools, only one factor can be tested.

The factor in question is the tool being tested, of which there are three. The Friedman rank sum test

is a non-parametric version of the repeated measure ANOVA and is similar to the Kruskal-Wallis

test in its use of ranks. The Friedman test process consists of ranking each data row (in this case

the metric values per CWE) followed by a comparison of the rank values by column (in this case

the columns represent each of the three tools tested). When the null hypothesis that there is no

difference between tools’ performance is refuted, post-hoc tests are used to determine where the

difference is.

3.1.5 Quantitative evaluation based on real open source programs

Using the Juliet test suite for evaluation has several advantages. It allows automatic evaluation

of the tools performance using metrics such as recall, probability of false alarm and balance, on a

large number of test cases for many different vulnerabilities. However, individual Juliet test cases

are rather small, containing only a single vulnerability of a specific type. Such synthetic test cases

may not leverage the full potential of any given tool. Therefore the tools performance was also

evaluated using real open source programs with known vulnerabilities in an attempt to discern any

difference in performance.

In order to test static analysis on real programs software with known vulnerabilities for which

exact locations in source code is also known was required. Furthermore fixed versions of the same

software were needed in order to properly compare the tools. With these requirements in mind for

evaluation of the selected tools we constructed a small test suite of three open source programs:

Gzip, Dovecot, and Tomcat. The basic facts about these programs are given in Table 3.2.

This approach allowed evaluating the tools’ performance on applications with realistic com-

plexity. However it also has some limitations. Since unknown vulnerabilities may still be present

in the source code, the assessment of all false negatives is impossible. Instead, only the messages

relating to the locations of the known vulnerabilities were analyzed.

Each of the known vulnerabilities in Gzip and Dovecot was located within a single source file.

26

Table 3.2: Basic facts about open source programs used for evaluation of the static code analysis

tools

Name Functionality LOC Lang
of known vul-

nerabilities

Version with

known vulnera-

bilities

Version with

fixed vulnerabili-

ties

Gzip
Archiving

tool
˜8,500 C 4 1.3.5 1.3.6

Dovecot
IMAP/POP3

server
˜280,000 C 8 1.2.0 1.2.17

Tomcat

Java

Servlet/JavaServer

Pages im-

plementa-

tion

˜4,800,000 Java 32 5.5.13 5.5.33

Each of the Tomcat vulnerabilities spanned several locations within the same file and/or multiple

files. Specifically, out of 32 known vulnerabilities in Tomcat version 5.5.13, four occurred in one

location within one file, nine occurred at multiple locations within one file, and 19 occurred across

multiple files. A true positive was counted, i.e., vulnerability being detected, if at least one of the

file(s)/location(s) were matched by a tool’s message.

With a total of 44 known vulnerabilities between all three applications the breakdown in terms

of CWE mapping is as follows:

• 10 vulnerabilities did not have available CWE mappings

• 8 vulnerabilities were mapped to CWE 264 (Permissions, privileges, and access controls)

• 7 vulnerabilities were mapped to CWE 22 (Path traversal)

• 7 vulnerabilities were mapped to CWE 200 (Information exposure)

• 5 vulnerabilities were mapped to CWE 79 (Cross-site scripting)

• 4 vulnerabilities were mapped to CWE 20 (Improper input validation)

27

• 1 vulnerability was mapped to CWE 399 (Resource management errors)

• 1 vulnerability was mapped to CWE 119 (Improper restriction of operations within the

bounds of a memory buffer)

• 1 vulnerability was mapped to CWE 16 (Configuration)

Out of the CWEs listed above, two are part of MITREs Top 25 Most Dangerous Software

Errors, namely CWE 22 (Path traversal) and CWE 79 (Cross-site scripting). These two CWEs add

up to a total of 12 out of 44 known vulnerabilities being in MITREs Top 25. Since the number of

known vulnerabilities was small, matching the messages to the vulnerabilities was done manually.

It should be noted that due to the large number of messages produced by the tools, (see Table 3.7)

analyzing all messages and inspecting the code to find the false positives was impractical.

3.2 Evaluation Results based on Juliet Benchmark

In this section the quantitative results of the evaluation for all three tools with C/C++ and

Java CWEs (i.e., 22 C/C++ CWEs common among all tools and 19 Java CWEs common among

all tools) are presented. The tools’ performance is then discussed with regards to several CWE

categories and finally the results for the real-software-based evaluation are presented. The actual

data used in this section is given in more detail in Appendix A.

3.2.1 Evaluation on C/C++ CWEs

Figure 3.2a presents the accuracy of the three tools for the C/C++ test suite. With the accuracy

metric, the higher the value, the better the performance. From Figure 3.2a it can be observed that

the three tools have similar performance with respect to accuracy, with Tool C performing slightly

better.

Figure 3.2b is the tools recall values for the C/C++ CWEs. The recall metric (i.e., probability of

detection) is important because it is related to the number of true positives (i.e., flawed constructs

detected). As with accuracy, a higher recall value indicates better performance. It can be observed

from Figure 3.2b that each tool has recall of 0% for several CWEs. Furthermore, for some CWEs,

28

(a) Accuracy (b) Recall

(c) Probability of False Alarm (d) Balance

(e) G-Score

Figure 3.2: Metrics for the C/C++ CWEs

such as 478 and 480, all three tools have recall of 0%. These recall values show that even though

the accuracy may look promising, all of the tools perform rather poorly when it comes to detecting

certain flawed constructs.

Figure 3.2c displays the values for the probability of false alarm in analyzing the C/C++ CWEs.

29

Here smaller values indicate better performance as they represent less non-flawed constructs being

misclassified as flawed. As it can be observed from Figure 3.2c, Tool C appears to have compar-

atively lower false positive rate than Tool A and Tool B for all CWEs except CWE 134 and CWE

242.

Figure 3.2d presents the balance metric for the C/C++ CWEs. When it comes to the balance

metric higher values indicate better performance. As it can be seen in Figure 3.2d the balance

values for many CWEs were around 30%. This indicates rather poor overall performance from all

tools. Similarly, as with accuracy, Tool C performed slightly better than the other two tool, most

likely due to its low false positive rate. It also appears from Figure3.2d that Tool B performed

slightly better than Tool A when it comes to this metric.

Figure 3.2e shows the G-Score metric for the C/C++ CWEs. Similar to balance, G-Score values

close to 1 indicate performance with high recall and low probability of false alarm. As with the

other metrics, all three tools display poor performance overall.

Figures 3.3a through 3.3c present the ROC squares for each of the three tools. In these figures

the probability of false alarm is shown on the x-axis, while recall (i.e., probability of detection) is

shown on the y-axis. The closer a point is to the ideal point (0, 1), the better the tools performance

is on that particular CWE.

Figures 3.3a through 3.3c indicate the following main observations:

• For each of the three tools not many points are close to the ideal (0, 1) point.

• Tool C has a noticeably lower probability of false alarm than both Tool A and Tool B.

• For each tool there are multiple CWEs at the (0, 0) point as a consequence of the tools failing

to detect any of the test cases associated with those CWEs.

3.2.2 Evaluation on Java CWEs

Figure 3.4a shows the accuracy metric for the Java CWEs. From Figure 3.4a one notices that

the accuracy values for Java vary somewhat more than those for C/C++ shown in Figure 3.2a.

Furthermore it is observed that all three tools attain a maximum accuracy value for several CWEs.

This means that for those CWEs and the respective tool(s), all constructs, both flawed and non-

30

(a) ROC square for the C/C++ CWEs with Tool A (b) ROC square for the C/C++ CWEs with Tool B

(c) ROC square for the C/C++ CWEs with Tool C

Figure 3.3: ROC squares for the C/C++ CWEs. Some of the data points above represent multiple

points stacked on top of one another, for example many CWEs cluster at point (0,0).

flawed, were correctly classified. As in case of the C/C++ CWEs, Tool C seems to be performing

slightly better than the other two tools

Figure 3.4b presents the recall values for the Java CWEs. One can see that there are again a

couple CWEs (486 and 489) for which none of the tools correctly flagged any flawed constructs,

however there were not as many as in the case of the C/C++ suite.

Figure 3.4c displays the probability of false alarm values for the Java CWEs. The trend here is

similar to the C/C++ false alarm values; Tool C performed significantly better than the other two

tools and Tool A performed slightly better than Tool B.

31

(a) Accuracy (b) Recall

(c) Probability of False Alarm (d) Balance

(e) G-Score

Figure 3.4: Metrics for the Java CWEs

Figure 3.4d shows the balance values for the Java CWEs. Again one notices a similar trend to

the C/C++ balance values for many CWEs the balance values were around 30% for either all or

some of the tools, which is an indication of overall poor performance. Tool C and Tool A appear

to perform slightly better than Tool B.

32

Figure 3.4e shows the G-Score values for the Java CWEs. As with the C/C++ G-Score values,

the Java data shows overall poor performance from all three of the tools.

Figures 3.5a through 3.5c show the ROC squares for the Java CWEs with Tool A, Tool B,

and Tool C, respectively. The closer the points are to the ideal point (0, 1), the better the tools

performance.

(a) ROC square for the Java CWEs with Tool A (b) ROC square for the Java CWEs with Tool B

(c) ROC square for the Java CWEs with Tool C

Figure 3.5: ROC squares for the Java CWEs. Some of the data points above represent multiple

points stacked on top of one another, for example many CWEs cluster at point (0,0).

Based on Figures 3.5a through 3.5c one can make following main observations:

• For each of the three tools not many points are close to the ideal (0, 1) point.

33

• Tool C has noticeable smaller probability of false alarm than Tool A and Tool B.

• For each tool there are multiple CWEs at the (0, 0) point as a consequence of failing to detect

any of the test cases associated with those CWEs.

3.2.3 Summary of the tools performance on the C/C++ and Java subsets

Table 3.3 presents the summary results of how each tool performed with respect to the 22

C/C++ CWEs and 19 Java CWEs. For each metric four statistic measures are provided: mean

(simple arithmetic average), median, a weighted mean which takes into account the number of test

cases for each CWE (i.e., CWEs with larger numbers of test cases carry more weight than ones

with only a few test cases), and an overall value computed from the total sum of TP, FP, TN, and

FN over all CWEs (that is, the sums of all TPs, FPs, TNs, and FNs for all CWEs). The weight for

each CWE was simply computed as follows:

Weight =
number of test cases for current CWE

total number of test cases
(3.6)

The best values for each tool are shown in grey. As it can be seen from Table 3.3, Tool C tends

to perform slightly better than the other tools for most metrics, except for the recall for the Java

CWEs for which Tool A performs best. However, Tool C still has slightly better Balance statistics

than Tool A, which is due to lower probability of false alarm.

As it can be seen from Figures 3.2a to 3.2e and Figures 3.4a to 3.4e, none of the tools was able

to detect all vulnerabilities. Out of the 22 C/C++ CWEs, 9 were detected by all three tools (around

41%) and 6 were not detected by any tool (i.e., 27%). The remaining 7 CWEs were detected by a

single tool or a combination of two tools.

34

Table 3.3: Accuracy, Recall, Probability of False Alarm, Balance, and G-Score for both C/C++

and Java CWEs with all three tools

Tool A Tool B Tool C

Mean 59% 67% 72%

C/C++ Median 63% 64% 64%

Accuracy Weighted 51% 69% 82%

Overall 51% 69% 82%

Mean 67% 60% 73%

Accuracy Java Median 63% 63% 67%

Weighted 69% 66% 72%

Overall 69% 66% 73%

Mean 21% 26% 39%

C/C++ Median 14% 10% 42%

Recall Weighted 26% 34% 61%

Overall 25% 32% 59%

Mean 49% 35% 36%

Java Median 50% 18% 17%

Weighted 13% 25% 3%

Overall 14% 26% 3%

Mean 18% 9% 7%

C/C++ Median 2% 1% 0%

Prob. of Weighted 35% 11% 6%

Overall 35% 12% 7%

False Mean 24% 25% 5%

Alarm Java Median 0% 3% 0%

Weighted 10% 19% 1%

Overall 10% 19% 1%

Continued on the next page

35

Table 3.3: (continued)

Tool A Tool B Tool C

Mean 39% 46% 53%

C/C++ Median 29% 36% 46%

Balance Weighted 36% 52% 70%

Overall 42% 51% 71%

Mean 50% 43% 52%

Java Median 34% 34% 41%

Weighted 36% 44% 31%

Overall 39% 46% 31%

Mean 20% 31% 40%

C/C++ Median 15% 18% 37%

G-Score Weighted 24% 45% 68%

Overall 36% 47% 73%

Mean 36% 23% 38%

Java Median 12% 0% 29%

Weighted 16% 35% 4%

Overall 24% 39% 6%

The results obtained when running the Java CWEs were similar. None of the tools was able to

detect all vulnerabilities and many CWEs were not detected by either tool. Out of the 19 CWEs,

4 were detected by all three tools and 2 by none (i.e., over 10%). The remaining 13 CWEs were

detected by a single tool or a combination of two tools.

An important observation is that there is no significant difference in the recall values. Fur-

thermore, the values themselves fall under 50% which would be the expected outcome at random

guessing. This implies that the three tools are worse at detecting true positives than random chance.

There does appear to be a difference in performance when looking at the probability of false alarm

metric between tools A and C. This metric is important when trying to minimize false positives so

it represents a positive result. A difference in performance between tools A and C is also found

when looking at the accuracy metric as well but the accuracy metric is not considered to be very

representative in the context of this experiment.

36

The results obtained were tested for significance using the Friedmann test. Furthermore, post-

hoc testing was performed in those cases in which a significant difference was detected by the

Friedmann test. The results are given in Table 3.4 and show the null hypotheses of no difference

among tools to be rejected between tools A and C with respect to Accuracy, Balance, and Probabil-

ity of False Alarm for C/C++ CWEs. The null hypotheses of no difference in performance among

the three tools were not rejected for Java CWEs.

Table 3.4: Friedmann results for both C/C++ and Java CWEs with all three tools

Accuracy Recall Balance
Probability of

False Alarm
G-Score

C/C++ Tools

A, B, C

Reject null hy-

pothesis
Fail to reject

Reject null hy-

pothesis

Reject null hy-

pothesis
Fail to reject

Difference A and C N/A A and C A and C N/A

Java Tools A,

B, C
Fail to reject Fail to reject Fail to reject Fail to reject Fail to reject

Difference N/A N/A N/A N/A N/A

3.2.4 Evaluation of tools performance by CWE category

Much of the related work groups software vulnerabilities in broad categories often defined by

researchers themselves without a firm objective reason. While this approach may introduce new

threats to validity, the idea of testing for security vulnerability detection based on categories should

be explored. One tool may perform better than others on a specific type of vulnerability. In order

to get a better idea of whether or not performance is affected by categorizing vulnerabilities, the

CWEs for both C/C++ and Java were grouped according to the general vulnerability classes and

categories found in [10]. These vulnerability categories are themselves CWEs, however unlike

the CWEs so far discussed, these category/class CWEs serve no purpose other than to help bring

structure to the CWE hierarchy. Using these top-level CWE categories is more objective, consis-

tent, and repeatable than constructing categories and assigning what appear to be related CWEs to

them. The resulting grouping was applied only to those CWEs which belonged to a group with

37

more than one CWE. For example, assuming CWE 121 is one of the CWEs investigated, if CWE

121 fits into the category CWE 970 and is the only CWE that fits in category CWE 970, then that

category CWE 970 is excluded from the evaluation. The groupings explored for C/C++ are shown

in Table 3.5.

Table 3.5: C/C++ CWE category grouping

Category CWE IDs

CWE 398 Indicator of poor code quality 478, 561, 562, and 563

CWE 399 Resource management errors 401, 415, 416, and 590

CWE 465 Pointer issues 467, 468, and 476

CWE 569 Expression issues 480 and 482

CWE 633 Weaknesses that affect memory 122 and 134

Because the CWEs differed between the C/C++ and Java test suites the groupings that were

used for Java are show in Table 3.6.

Table 3.6: Java CWE category grouping

Category CWE IDs

CWE 189 Numeric errors 129 and 190

CWE 254 Security features 259 and 330

CWE 399 Resource management errors 404 and 568

CWE 422 Web problems 80 and 113

CWE 569 Expression issues 570 and 571

The recall, false alarm, and balance metrics were investigated with the groups outlined above

using all three tools. Almost nothing of relevance was found; a few observed patterns only rein-

forced the previous results. One conclusion able to be drawn from looking at the probability of

false alarm for both C/C++ and Java was that Tool C produces almost no false positives. This is

consistent with the previous findings. Furthermore, from the C/C++ balance and recall metrics it

also appears that Tool C performs better than the other two on CWE 399 Resource management

errors (CWEs 401, 415, 416, and 590) and CWE 633 Weaknesses that affect memory (CWEs 122

and 134), both categories having to do with memory management and buffer issues. Looking at

38

the Java balance and recall it seems that Tool A performs relatively better than the other two on

CWE 569 Expression issues (CWEs 570 and 571). Going back to C/C++ recall one can notice that

all three tools failed to detect any true positives on CWE 569 Expression issues (CWEs 480 and

482).

3.3 Evaluation Results based on Real Software

The results of tools evaluation based on the open source programs shown in Table 3.7 confirm

the evaluation done based on the Juliet test suite — static code analysis tools were not very suc-

cessful in detecting the known vulnerabilities. Thus, in case of the smallest program, Gzip, Tool B

did not identify any of the four vulnerabilities. Even though Tool A and Tool C detected one of the

four known vulnerabilities, they both reported the same vulnerability in the fixed version, which

are actually false positives. The results using Dovecot were even worse, none of the three tools

detected any of the eight known vulnerabilities. Tool A was the most successful on Tomcat, the

largest of the three programs used for evaluation; it detected seven out of the 32 known vulnera-

bilities compared to five vulnerabilities detected by Tool C and three by Tool B. The fact that Tool

A was able to detect more known vulnerabilities than the other two tools for the Java application

is also consistent with evaluation based on the Juliet test suite. Unfortunately, Tool A and Tool C

also reported two and one vulnerabilities at the same locations in the fixed versions, respectively.

Table 3.7: Number of detected known vulnerabilities in the vulnerable versions (true positives)

and reported vulnerabilities in the fixed versions (false positives)

Tool A Tool B Tool C

Program Version Messages Det. Vulns Messages Det. Vulns Messages Det. Vulns

Gzip 1.3.5 112 1/4 36 0/4 119 1/4

1.3.6 206 1/4 125 0/4 374 1/4

Dovecot 1.2.0 8263 0/8 538 0/8 1356 0/8

1.2.17 8655 0/8 539 0/8 1293 0/8

Tomcat 5.5.13 12399 7/32 12904 3/32 20608 5/32

5.5.33 167837 2/32 13129 0/32 21128 1/32

39

3.4 Threats to Validity for Tools’ Evaluation

Several threats to validity may have affected the empirical evaluations presented in this chapter.

Similar concerns as the ones discussed here were discussed in the latest evaluation done by the

NSA [15]. Next these threats are briefly discussed in terms of construct, internal, conclusion, and

external threats along with the approaches taken to mitigate their effects on the results.

3.4.1 Construct Validity

Construct validity refers to ensuring that what is intended to be tested is actually tested for.

One threat to construct validity is associated with the chosen static analysis tools employed in this

work. The selected tools may not be a representative sample of the vast number of available static

analysis tools. However, the results presented in this work are believed to be representative of the

current state of the art and practice in static analysis as the three tools employed are widely used

commercial tools, each with large user bases.

Another construct validity threat relates to how the CWEs reported by the three tools are

matched to the CWEs found in the benchmark suite. Despite being hierarchical in nature, the

CWE nomenclature is more similar to a directed graph than a tree-like structure. This is because

CWEs may have many different parents and children. For this reason static code analysis tools

may have a difficult time mapping their messages to CWEs. As an example consider a situation

in which a static analysis tool has to decide whether to report a message as CWE A or CWE B,

where CWE A and CWE B are parent and child, respectively. Since CWE A is the parent to CWE

B, mapping the message to it would be a safe call, however as the parent CWE A is also less

descriptive than CWE B for the same reason that makes it a safe call in the first place: CWE A

is more general than CWE B. In the end, responsibility for mapping between messages and CWE

IDs falls to individual tools and as such there is a risk that different tools will report different CWE

IDs for the same piece of code. Due to the structure of the CWE nomenclature and the inherent

inter-relatedness of security vulnerability types, an exact matching would be likely to underesti-

mate the tools’ detection performance. Previous studies employed groupings of CWEs but found

that the groupings would have to be improved upon and that there is no straightforward way to

group vulnerability types [26]. Thus when determining whether or not the CWE reported by a tool

40

matched the specific CWE being tested for the hierarchical relationships established by the CWE

nomenclature were used as outlined in the Methodology section. This was done in order to avoid

both a strict exact matching, which might underestimate the tools’ performance, and loose groups

containing tenuously related vulnerabilities, which might overestimate the tools’ performance.

Static analysis tools’ performance is highly dependent on the input source code and the amount

and type of defects found in that code. Employing a publicly available benchmark suite covering

a wide array of different defects makes the experimental approach repeatable. However, given

the benchmark’s synthetically generated nature, three open source projects with known security

defects were included to gage the tools’ performance with real vulnerabilities.

3.4.2 Internal Validity

Internal validity is concerned with any influences that may affect measurements and indepen-

dent variables. With static analysis tools reporting very large numbers of messages, analysts and

developers must manually examine and classify messages as either true or false positives. Clearly

human intervention introduces the risk of misclassification which constitutes a threat to internal

validity. To mitigate this risk the Juliet benchmark was used which identifies the vulnerable code

constructs, that is the bad functions, as well as the corresponding non-vulnerable code, the good

functions. This in turn provides for the usage of automatic classification of static analysis mes-

sages and removes the internal validity threat of human error with respect to classification. The

three open source case studies had a small number of known vulnerabilities and this allowed for

manual evaluation of the tools’ reports. Knowing the true outcome, that is the presence of known

vulnerabilities in specific code locations for the versions with known defects and the lack of those

vulnerabilities in the fixed versions, meant that no misclassifications occurred when inspecting the

tools’ output for the real software projects.

3.4.3 Conclusion Validity

Conclusion validity has to do with threats that influence the drawing of correct conclusions.

This threat was mitigated by employing a proper statistical experimental design based on a bench-

mark test suite and correctly applying the non-parametric statistical test applicable to the data.

41

Another threat to conclusion validity is a small sample size. This threat was removed by using

the benchmark test suite with numerous CWEs in both the C/C++ and Java cases as well as only

applying the statistical tests on those CWEs with large numbers of test cases.

3.4.4 External Validity

External validity has to do with the generalizability of experimental results. An obvious threat

to external validity is the synthetic nature of the benchmark’s test cases. This threat was eliminated

by the inclusion of three open source application case studies whose results confirmed the tools’

performance with the benchmark suite.

3.5 Conclusion on Tools’ Evaluation

The work presented in this chapter is focused on evaluation of static code analysis tools’ per-

formance with respect to the detection of security vulnerabilities. The experimental design based

on a synthetically generated benchmark suite allowed for automatic evaluation of tools’ perfor-

mance, the quantitative assessment of tools’ performance per CWE and across all CWEs, and for

statistical evaluation of the results.

In spite of claims made by static analysis tool vendors and recent improvements in the static

analysis field, the performance of static analysis tools with respect to security vulnerabilities is

not satisfactory. A few CWEs were detected by all three tools while others were detected by a

combination of two tools or by a single tool. However, many CWEs were completely missed by

all three tools. Thus, none of the three tools reported 27% of the C/C++ CWEs and 11% of the

Java CWEs. The tools’ detection performance varied significantly by vulnerability type, however

none of the tools significantly outperformed the other tools across all vulnerability types.

The results of the evaluation with real open source programs were consistent with the evalua-

tion based on the Juliet test suite. By performing this part of the evaluation the conclusion that tools

have high false negative rates (i.e., are not able to identify majority of the known vulnerabilities)

was strengthened.

The results presented in this chapter were summarized in a research paper which was submitted

for publication [17].

42

Chapter 4

Static Code Analysis Message Classification

This chapter presents the background, methodology, and results for the static code analysis

message classification experiments. Threats to validity and the conclusion are also provided in this

chapter.

4.1 Methodology

This section presents the methodology employed in the message classification chapter of this

thesis. Briefly summarized the methodology is based on labeled classification of messages using

incremental percentages of training data in order to emulate an on-going analysis effort over time.

Most machine learning algorithms operate on numerical data and therefore cannot be used in

this context. The approach taken in this work is to use Classification Based on Associations (CBA)

[25] on features directly extracted from static analysis reports. This algorithm was chosen because

it operates on categorical data such as the fields in a static analysis message report. The CBA

algorithm integrates classification with association rule mining in a supervised algorithm. Note

that the class labels (TP, FP) are the analysts decisions for each message. While simple association

rule mining strives to find as many rules as it can, classification rule mining instead attempts to

construct a small set of rules that can be used as a classifier [25]. The algorithm is divided into two

main steps: a rule generating step which produces a large set of association rules and a classifier

building step which constructs the smaller rule based classifier. The initial research by Liu et al

with CBA [25] showed that the resulting classifiers performed better than other algorithms that

43

operate on categorical datasets, such as C4.5. For the experiments presented in this thesis the CBA

implementation available from the Weka machine learning framework [33] was used.

The features used for classification, which were extracted from each dataset’s messages, are as

follows:

• Filename: source code filename where the potentially faulty code is located

• Function: function or method where potentially faulty code is located

• Line #: line number(s) where faulty code is located

• Severity: severity ranking of the fault

• Checker: checker that flagged the fault

• TP/FP label: analyst’s determination whether the message is TP or FP

An example of one such message instance is as follows:

FileName.java,main method,168,Critical,SOME.CHECKER,FP

A typical data mining experiment as found in literature involves 10-fold cross validation. This

means the given dataset is split into 10 equal folds (i.e., subsets), and then the training is per-

formed on 9 of them, and the testing is performed on the remaining 10th fold. This is repeated

10 times, with each fold used exactly once for testing. The problem with this approach is that it

simulates the situation in which an analyst has to have 90% of the analysis done before attempting

to do predictive classification. This clearly has a limited practical value. Therefore, we conducted

several experiments exploring the feasibility of employing the CBA algorithm on smaller subsets

of labeled data. For each of the datasets, we explored the performance of CBA in classifying the

messages as TP/FP when using 25%, 50%, 75%, and 90% subsets for training, and the remain-

ing part for testing. For the 25% experiment, since a cross validation approach would not work,

the experiment was performed using random stratified selection with four repetitions. The results

from the four experiments were averaged together. The experiments for 50%, 75%, and 90% were

performed using cross validation (that is, 2-fold, 4-fold, and 10-fold, respectively) and again the

results were averaged.

44

Table 4.1 gives an overview of how confusion matrices were built. The top row denotes the

classification given to messages by the CBA algorithm, while the left column denotes the actual

classification of messages by analysts, which was used as a ground truth.

Table 4.1: Confusion matrix

Classified as TP Classified as FP

Actual TP True Positives (TP) False Negatives (FN)

Actual FP False Positives (FP) True Negatives (TN)

The recall and precision metrics are used to determine how successful the classification is.

Recall, given with equation (4.1), or probability of detection, is defined as the number of correctly

classified true positives (TP) divided by the total number of true positives (i.e., those classified as

true positives (TP) and those misclassified as false negatives (FN)). Precision, given with equation

(4.2), is defined as the ratio between the number of correctly classified true positives (TP) and the

total number of instances classified as true positives (i.e., the sum of true positives (TP) and false

positives (FP)).

Recall =
TP

FN + TP
(4.1)

Precision =
TP

TP + FP
(4.2)

In other words recall represents the percentage of true positives which are correctly classified

as true positives while precision represents the percentage of instances classified as true positives

which actually are true positives. Since Weka reports recall and precision rates for both classes, TP

and FP, both of them are also reported here. However, the recall for the TP class is more important

as it signifies how well the algorithm performs when predicting for true positives (i.e., real faults

in source code), that is, not missing real existing faults.

4.2 Datasets

For the purposes of this empirical study the data required were analysis reports containing TP

and FP determinations for individual messages produced by the static code analysis tools. In this

45

study datasets extracted from five NASA projects’ software analyses were used. All datasets are

the result of static analysis efforts performed with the same static code analysis tool. Two of the

datasets, NASA 1 and NASA 2, consist of analysis data from large scale ground station software

written mostly in C++ with some Java code. The other three datasets come from flight software

for science missions and were all written in C++. It should be noted that the datasets used in this

work consist of only those messages which have been manually analyzed. The number of total

messages for the datasets presented may be much higher than the number of analyzed messages.

The analysts determinations (either TP or FP) are taken as the “class label” of each message. This

is required for two reasons. Firstly, studying the distribution of true and false positives would be

impossible without such labels. Secondly, since CBA is a supervised algorithm it must be provided

with class labels in order to determine a classification model. Note that the “Function” feature did

not exist in the NASA 1 dataset and therefore only the remaining five features, as described in

Section 4.1 were used for that dataset.

The basic information on the five datasets, annotated as NASA 1 to NASA 5, is given in Table

4.2 and includes the number of instances, the number and percentage of TP and FP messages,

and the precision of the static analysis tool’s classification. Of the datasets experimented with

the NASA 2 and NASA 5 datasets are the more balanced, with 29-30% true positives and the

remaining 70-71% of the messages being false positives. The NASA 1, NASA 3, and NASA 4

datasets are much more unbalanced, with only 4-5% true positives and 95-96% false positives.

Table 4.2: Basic information on the five datasets

Project # of Instances # and % of TP # and % of FP Tool Classification Precision

NASA 1 726 34 (5%) 692 (95%) 4.7%

NASA 2 344 100 (29%) 244 (71%) 29.0%

NASA 3 375 20 (5%) 355 (95%) 5.3%

NASA 4 455 18 (4%) 437 (96%) 3.9%

NASA 5 144 42 (30%) 102 (70%) 29.2%

46

4.3 Results of the Classification Experiments

The results of using CBA on all five datasets are given in Table 4.3. NASA 1 results are very

good, with less than 0.5 value for TP recall when using only 25% of the data for training and all

other with much higher recall for TP (0.88-0.91). This means that for NASA 1 analysts could run

the CBA algorithm after labeling 50% of the messages as TP or FP and obtaining good predictions

for remaining 50%, with TP recall of 0.9 and FP recall of 1. Interestingly, the predictions with

50% of labeled messages were as good as with 75% labeled messages.

One would intuitively expect the NASA 1 dataset to fail to produce good predictions given how

unbalanced the dataset is, with only 5% TP messages (see Table 4.2). Closer look at the NASA 1

dataset showed that, even though NASA 1 had only 5% TP messages of all messages inspected by

the analysts, the TP were very localized, i.e., found in only two files. Due to the localization of TP

and the fact that they were often flagged by the same checkers, the data mining results are quite

good.

To illustrate, the distributions of TP and FP messages per file as well as per checker are pre-

sented as bubble charts in Figure 4.1. The size of the bubbles represent either number of files or

number of checkers with a given TP/FP ratio represented by the bubble’s position on the chart.

The bubble sizes have been scaled relative to one another for all per-file bubble plots and for all

per-checker bubble plots. The reason for this is to allow quick and easy comparisons of per-file

or per-checker bubble sizes across the five projects. Note that comparing the bubble sizes for a

per-file plot with the bubble sizes on a per-checker plot is meaningless.

The localization phenomenon can be seen in Figure 4.1a; the “L” shape of the bubble plot in-

dicates that files either contain true positives or false positives, but not a mix of the two, with the

exception of one file. Figure 4.1b presents the bubble plot for TP/FP per checker. The most inter-

esting observations in this figure are the three right most bubbles, which represent three checkers,

each with a large number of only FP messages reported which leads to FP recall values of or close

to 1. Figures 4.1a and 4.1b represent advantageous cases that allow the algorithm to generate very

descriptive rules that lead to excellent predictions, even with 50% of the messages labeled. The

large bubble at position (1,0) represents 192 singletons, that is, only one FP message in a file with

no other messages flagged. So in the case of the NASA 1 dataset 192 files each resulted in only

47

one static code analysis message.

It should be noted that NASA 1 was the only dataset which resulted in rules with more than

one feature on the left side. Such complex rules should be better predictors as they narrow down

the classification criteria. The following example shows such a rule:

line=45 checker=SOME.CHECKER severity=Critical ==> result=TP

Table 4.3: CBA Learning Results for all datasets.

Project Experiment TP Recall FP Recall TP Precision FP Precision

Train on 25%, test on 75% 0.48 1 1 0.98

NASA 1 Train on 50%, test on 50% 0.91 1 1 0.99

Train on 75%, test on 25% 0.91 1 1 0.99

Train on 90%, test on 10% 0.88 1 1 0.99

Train on 25%, test on 75% 0.46 0.82 0.53 0.78

NASA 2 Train on 50%, test on 50% 0.44 0.93 0.72 0.8

Train on 75%, test on 25% 0.33 0.99 0.94 0.78

Train on 90%, test on 10% 0.33 0.98 0.85 0.78

Train on 25%, test on 75% 0 1 0 0.95

NASA 3 Train on 50%, test on 50% 0 1 0 0.95

Train on 75%, test on 25% 0.25 1 1 0.96

Train on 90%, test on 10% 0.35 1 1 0.96

Train on 25%, test on 75% 0 1 0 0.96

NASA 4 Train on 50%, test on 50% 0.167 1 1 0.96

Train on 75%, test on 25% 0.33 0.99 0.86 0.97

Train on 90%, test on 10% 0.33 0.99 0.86 0.97

Train on 25%, test on 75% 0.03 0.97 0.33 0.69

NASA 5 Train on 50%, test on 50% 0.69 0.79 0.58 0.86

Train on 75%, test on 25% 0.69 0.75 0.54 0.86

Train on 90%, test on 10% 0.69 0.75 0.54 0.86

Unlike for NASA 1, the recall values for TP for NASA 2 dataset were less than 0.5 for all

levels of labeled data (25%, 50%, 75%, 90%). At first sight this was a surprising result because the

NASA 2 dataset is more balanced than NASA 1, having 29% TP messages and 71% FP messages.

48

(a) Bubble plot of TP/FP per file for NASA 1. The

size of the bubbles represents the number of files with

a given ratio of TP/FP. For example at coordinates

(1,0), that is 0 TP and 1 FP, there are a total of 192

files represented by the largest bubble. The points at

(0,11) and (0,19) each represent a single file

containing only true positives and no false positives.

(b) Bubble plot of TP/FP per checker for NASA 1.

The largest bubble is at (1,0) with a size of 3. The

most interesting here are the three rightmost bubbles,

each representing one checker that produced no TP

messages and 126, 209, and 342 FP messages,

respectively.

Figure 4.1: Bubble plots for NASA 1 results per file and checker

NASA 2 results were not as good as the ones for NASA 1 because, instead of having files with

either only TP or only FP messages, in many files TP messages were mixed with FP messages.

This can clearly be seen in Figure 4.2a: one file contains 14 TPs and 4 FPs, another contains 7 TPs

and 9 FPs, 21 files contain two FPs each, and nine files contain two TPs each. The analysis per

checker produced similar results; many checkers produced a mix of TP and FP results.

All of the rules generated from the NASA 2 data set were simple rules (i.e., had only one

feature, either checker or filename) as in the following example:

checker=ANOTHER.CHECKER ==> result=TP

The results for the NASA 3 dataset are not particularly good. For both the 25% and 50%

training experiments the TP recall reported was 0 while for the remaining two, training on 75% and

90%, the TP recall value increased to 0.25 and 0.35, respectively. As can be seen from Figure 4.3a,

the TP/FP distribution in NASA 3’s files did not lead to a good classification because TP messages

are distributed across multiple files, mixed with FP messages. This observation, combined with

49

(a) Bubble plot for TP/FP per file for NASA 2. As

with Figure 4.1a, the size of the bubbles represent the

number of files per TP/FP ratio. The largest bubble is

found at (1,0) and represents 58 files with 0 TP and 1

FP.

(b) Bubble plot for TP/FP per checker for NASA 2.

The largest bubble is again at (1,0) with a size of 7.

The right most bubble on the x axis corresponds to

one checker that produced 53 FP and 0 TP.

Figure 4.2: Bubble plots for NASA 2 results per file and checker

the very small number of TP (only 5%), led to the worst classification results of the five datasets.

Similar to the NASA 3 dataset, the NASA 4 dataset is very unbalanced. Furthermore, the

results obtained from NASA 4 are very comparable to the results obtained from NASA 3, that is

poor TP recall of 0.16 to 0.33. Figures 4.4a and 4.4b show the true and false positive distributions.

False positives per file seem to cluster quite a lot with other false positives, however this does not

help the classification performance.

The NASA 5 dataset is one of the two balanced datasets experimented with in this work. Intu-

itively NASA 5 should provide somewhat better results than other datasets. This intuitive expec-

tation is justified by the results: NASA 5 displays better TP recall than all other datasets with the

exception of NASA 1, with a value of 0.69. Figure 4.5a shows close to “L” shaped distribution,

which as previously discussed signifies source files with only TP and only FP instances.

50

(a) Bubble plot for TP/FP per file for NASA 3. The

largest bubble is at (1,0) with a size of 44.

(b) Bubble plot for TP/FP per checker for NASA 3.

The largest bubble is at (1,0) with a size of 10.

Figure 4.3: Bubble plots for NASA 3 results per file and checker

4.3.1 Discussion of Classification Experiments

The classification experiment presented in this thesis was motivation to explore the distribution

of the analyzed true and false positive messages from real projects. This was done because the

distribution of TP and FP messages can be used to explain the results. Furthermore, the way in

which true and false positives are distributed throughout a codebase is interesting because based

on the knowledge of how true and false positives tend to cluster one can build better classifiers

and improve performance. It is desirable to know if there are many files and checkers which are

associated with only one message, otherwise known as singletons. It would also be important to

know if there are many files and checkers that are associated with only true positives or only false

positives. Furthermore it would also be desirable to know what the population of mixed true and

false positive messages per file and checker looks like.

The main observations are as follows:

• CBA works well when either only real faults and/or only false faults are clustered in files or

are flagged by the same checkers. It does not work well when true and false positives are

mixed together.

• By comparing the bubble plots for files and checkers in the datasets that yielded good results,

51

(a) Bubble plot for TP/FP per file for NASA 4. The

largest bubble is at (1,0) with a size of 62.

(b) Bubble plot for TP/FP per checker for NASA 4.

The largest bubble is at (1,0) with a size of 12.

Figure 4.4: Bubble plots for NASA 4 results per file and checker

that is, NASA 1 and NASA 5, one can notice that the desirable “L” shape appears when

graphing TP/FP per file yet does not appear when graphing TP/FP per checker. This does

not necessarily mean that checkers are not good predictors for true and false positives.

• The “L” shape described by the Stanford team [24] does not exist for all datasets.

• There are many singletons both per file and per checker and they have a negative effect on

classification performance.

• Looking at the bubble plots for both files and checkers it is observed that the majority of

files and checkers exhibit 0 TP and 1 FP. That is, there are many FP singletons and near-

singletons, files or checkers with, for example, 0 TP and only a few FP.

There are many singletons both per file and per checker. This does not bode well for the

performance of not just the algorithm employed in this thesis but any machine learning algorithm.

When only one message is flagged in a given file or by a given checker one of the features (either

file or checker) is inherently void of information since it will only apply to that message. In fact

when a message is a file singleton then two of the features extracted cannot provide information.

Since the function feature follows the file feature both of them are useless. This trend of having

52

(a) Bubble plot for TP/FP per file for NASA 5. The

largest bubble is at (1,0) with a size of 15. Here one

can see here the desirable L shape that signifies files

with only TP instances and files with only FP

instances.

(b) Bubble plot for TP/FP per checker for NASA 5.

The largest bubble is at (2,0) with a size of 2.

Figure 4.5: Bubble plots for NASA 5 results per file and checker

many singletons was seen for both files and checkers. However, looking at the bubble graphs

one notices that the files had many more singletons (relative to their non-singleton populations)

compared to checkers. Looking at the graphs one can be certain that in almost every case the

largest two bubbles will be the singleton population which is to be expected given the previous

observations.

The conclusion that can be drawn from these experiments is that CBA works well when the

real faults (i.e., TP) and FP are clustered in several files or are flagged by the same checkers. In

other words CBA performs well when true positives and false positives are found in homogeneous

sets. This phenomenon resulted in the “L” shape of the scatter plot for NASA 1 shown in Figure

4.1a, which lead to TP recall of 91% using only 50% labeled messages. Contrary to expectations

based on TP/FP distribution among files NASA 5 performed well compared to the other datasets.

The TP recall values of 69% for the NASA 5 dataset, the second best performing of the five, show

that close to “L” shape leads to acceptable performance. Thus, the data points at 17 FP/4 TP and

43 FP/5 TP in Figure 4.5b support predicting for false positives due to significantly higher number

of false positives compared to true positives. The observation that the “L” shape is not necessary

53

for good classification performance implies that it is not a particularly generalizable concept and

only applies to a specific subset of software projects.

The results for NASA 2 were significantly worse than NASA 1, even though NASA 1 had

only 5% TP messages, while NASA 2 had 29% TP messages. Unlike in the case of NASA 1,

the NASA 2 files had a mix of TP and FP messages, and therefore the classification was not

as good, even though the percentage of TP messages was higher. As for the NASA 3 dataset,

the distributions of the TP and FP messages across files and checkers were mixed, as in case of

NASA 2. This combined with the low percentage of TP messages (only 5%) led to non-descriptive

rules and produced very poor classification results. The NASA 4 dataset was also of mixed TP/FP

distribution similar to NASA 5, however due to the more localized distribution of TPs and FPs in

NASA 4 the classification performance was better.

4.4 Threats to Validity of Classification Experiments

This section discusses several threats to validity which may have had an effect on the work

presented in this chapter. The threats are discussed in terms of construct, internal, conclusion, and

external validity. This section also outlines the methods used in mitigating these threats to validity.

4.4.1 Construct Validity

One thread to construct validity stems from the the provenance of the data. The datasets contain

only those messages which were deemed critical enough, or otherwise selected due to some other

criteria, to be manually analyzed. Given the large amount of messages produced by static code

analysis tool only a subset of the total number of messages per project were selected for manual

analysis. The exact selection criteria used to choose messages for manual analysis were not avail-

able; however, it is known that more critical messages were more likely to be selected. This means

that the whole picture with regard to TP/FP distribution is not available here, it is only a picture

based on a sample of more critical messages. That being said, this is a typical situation arising in

the static code analysis process and the prevalence of false positives. Because of the large number

of messages no organization has the resources required to analyze every single message.

54

Yet another threat to construct validity appears due to the nature of static code analysis. Since

a static code analysis tool only outputs messages when the tool believes a fault has been detected,

the number of true negatives and false negatives cannot be assessed. This prevents studying the

distribution of all faults (per file or checker) because it is likely that the static analyzer has failed to

report some faults, i.e., has false negatives. Again it should be noted that the distributions discussed

are based on reported and analyzed messages.

4.4.2 Internal Validity

The classification labels in the datasets employed were generated by manual analysis of static

report messages done by NASA analysts. This is a threat to internal validity due to the possibility

of human misclassification of messages. One has to trust and assume that the analysts correctly

identified the true positive and false positive determinations. However, since the datasets used in

this work were extracted from static analyses of real mission critical NASA systems it is believed

this threat to internal validity to be acceptably mitigated.

4.4.3 Conclusion Validity

One threat to conclusion validity that requires mention is the size of the datasets used. Having

small datasets could impact researchers’ ability to draw reliable conclusions about the data at hand.

In this case the datasets are not very small. Furthermore, given that the datasets were composed

of static analysis messages which were actually analyzed by a human analyst, that is, messages

which were given a high priority by the analysis teams, it is believed the data in question is of good

quality and the size of the datasets are appropriate.

4.4.4 External Validity

External validity is concerned with the generalizability of research outcomes. Using five real

projects provides strong empirical evidence for the external validity. Furthermore, the results pre-

sented in this work seem to imply a more general observation than found in previous work [24].

55

4.5 Conclusion on Classification Experiments

The work presented in this chapter is based on an investigation of association rule based classi-

fication of static code analysis messages. The experimental approach emulated an ongoing analysis

effort across five datasets sourced from real NASA project analyses. The approach, based on train-

ing the CBA classifier on 25%, 50%, 75%, and 90% of each dataset, allowed for an investigation

of how machine learning classification performs on real software projects. In addition, it also al-

lowed for a study of the distributions of true and false positive messages across source code files

and checkers and how the distributions affect the classification performance.

Using only features directly extracted from analysis reports, the results show that classification

performance using association rules is dependent on whether or not true positive and false positive

messages were found clustered together or spread throughout the source code. This was the case

for two out of the five datasets employed. The two datasets with more well-clustered true and false

positive messages resulted in good classification performance.

Message classification based on CBA as described in this chapter was implemented as part of

SCAPE (Static Code Analysis Prioritization Engine), a tool designed to aid software analysts in

working with static code analysis tools’ reports. This tool is currently used to support static code

analysis of NASA projects at the NASA IV&V facility. The tool development work was funded

by NASA IV&V under a project managed by TASC.

One avenue for further research would be to investigate classification performance when addi-

tional features, such as static code metrics, or change metrics, are included.

56

References

[1] C. Andersson and P. Runeson, “A replicated quantitative analysis of fault distributions in

complex software systems,” IEEE Transactions on Software Engineering, vol. 33, no. 5, pp.

273–286, 2007.

[2] N. Antunes and M. Vieira, “Comparing the effectiveness of penetration testing and static

code analysis on the detection of sql injection vulnerabilities in web services,” in 15th IEEE

Pacific Rim International Symposium on Dependable Computing, 2009. PRDC’09. IEEE,

2009, pp. 301–306.

[3] A. Austin, C. Holmgreen, and L. Williams, “A comparison of the efficiency and effectiveness

of vulnerability discovery techniques,” Information and Software Technology, vol. 55, no. 7,

pp. 1279–1288, 2013.

[4] D. Baca, B. Carlsson, K. Petersen, and L. Lundberg, “Improving software security with static

automated code analysis in an industry setting,” Software: Practice and Experience, 2012.

[5] D. Baca, K. Petersen, B. Carlsson, and L. Lundberg, “Static code analysis to detect software

security vulnerabilities-does experience matter?” in International Conference on Availability,

Reliability and Security, 2009. ARES’09. IEEE, 2009, pp. 804–810.

[6] P. E. Black, “Samate and evaluating static analysis tools,” Ada User Journal, vol. 28, no. 3,

pp. 184–188, 2007.

[7] (2012, December) Cas static analysis tool study - methodology. Center for Assured Software,

National Security Agency. [Online]. Available: http://samate.nist.gov/docs/CAS 2012 Static

Analysis Tool Study Methodology.pdf

57

[8] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security & Privacy, vol. 2,

no. 6, pp. 76–79, 2004.

[9] (2013, September) Common weakness enumeration. [Online]. Available:

https://cwe.mitre.org/

[10] (2013, July) CWE development concepts. [Online]. Available:

https://cwe.mitre.org/data/graphs/699.html

[11] T. Devine, K. Goseva-Popstojanova, S. Krishnan, and R. Lutz, “Assessment and cross-

product prediction of software product line quality: accounting for reuse across products,

over multiple releases,” Automated Software Engineering, pp. 1–50, 2014.

[12] G. Dı́az and J. R. Bermejo, “Static analysis of source code security: assessment of tools

against samate tests,” Information and Software Technology, vol. 55, no. 8, pp. 1462–1476,

2013.

[13] P. Emanuelsson and U. Nilsson, “A comparative study of industrial static analysis tools,”

Electronic notes in theoretical computer science, vol. 217, pp. 5–21, 2008.

[14] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking system rules using system-specific,

programmer-written compiler extensions,” in Proceedings of the 4th conference on Sympo-

sium on Operating System Design & Implementation-Volume 4. USENIX Association, 2000,

pp. 1–1.

[15] K. Erno, “Sticking to the facts II: Scientific study of static analysis tools,” in Presentation

at the SATE IV Workshop. Center for Assured Software, National Security Agency, March

2012.

[16] (2015) Findbugs. [Online]. Available: http://findbugs.sourceforge.net/

[17] K. Goseva-Popstojanova and A. Perhinschi, “On the performance of static code analysis for

detection of security vulnerabilities,” Submitted for publication, 2015.

[18] M. Hamill and K. Goseva-Popstojanova, “Common trends in software fault and failure data,”

IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 484–496, 2009.

58

[19] S. Heckman and L. Williams, “On establishing a benchmark for evaluating static analysis

alert prioritization and classification techniques,” in Proceedings of the Second ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement. ACM,

2008, pp. 41–50.

[20] ——, “A model building process for identifying actionable static analysis alerts,” in Interna-

tional Conference on Software Testing Verification and Validation, 2009. ICST’09. IEEE,

2009, pp. 161–170.

[21] T. Hofer, “Evaluating static source code analysis tools,” Master’s thesis, École Polytechnique

Fédérale de Lausanne, April 2010.

[22] M. Johns, M. Jodeit, W. Koeppl, and M. Wimmer, “Scanstud: Evaluating static analysis

tools,” in OWASP Europe, 2008.

[23] (2013) Juliet test suite. [Online]. Available: http://samate.nist.gov/SRD/testsuite.php

[24] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler, “Correlation exploitation in error ranking,”

in ACM SIGSOFT Software Engineering Notes, vol. 29, no. 6. ACM, 2004, pp. 83–93.

[25] B. Liu, W. Hsu, and Y. Ma, “Integrating classification and association rule mining,” in Pro-

ceedings of the 4th International Conference on Knowledge Discovery and Data Mining.

AAAI, 1998.

[26] V. Okun, A. Delaitre, and P. E. Black, “Report on the third static analysis tool exposition (sate

2010),” SP-500-283, US Nat. Inst. Stand. Techn, Tech. Rep., 2011.

[27] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large industrial software

system,” in ACM SIGSOFT Software Engineering Notes, vol. 27, no. 4. ACM, 2002, pp.

55–64.

[28] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rothermel, “Predicting ac-

curate and actionable static analysis warnings: an experimental approach,” in Proceedings of

the 30th International Conference on Software Engineering. ACM, 2008, pp. 341–350.

59

[29] (2013) Static analysis tool exposition. [Online]. Available: http://samate.nist.gov/SATE.html

[30] (2013) Static analysis tool exposition. [Online]. Available:

http://samate.nist.gov/SATE4.html

[31] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “Software defect association mining and

defect correction effort prediction,” IEEE Transactions on Software Engineering, vol. 32,

no. 2, pp. 69–82, 2006.

[32] L. M. R. Velicheti, D. C. Feiock, M. Peiris, R. Raje, and J. H. Hill, “Towards modeling the be-

havior of static code analysis tools,” in Proceedings of the 9th Annual Cyber and Information

Security Research Conference. ACM, 2014, pp. 17–20.

[33] (2014) Weka jcba implementation. [Online]. Available:

http://weka.sourceforge.net/doc.packages/classAssociationRules/weka/classifiers/rules/car/JCBA.html

[34] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. A. Vouk, “On the

value of static analysis for fault detection in software,” IEEE Transactions on Software Engi-

neering, vol. 32, no. 4, pp. 240–253, 2006.

60

Appendix A

This appendix provides the entirety of the data presented and discussed in the static code anal-

ysis tool evaluation chapter. Detailed listing of all CWEs employed in the evaluation chapter are

also included.

61

Table A.1: List of C/C++ CWEs and the number of associated good and bad functions along with

number of test cases used in the experiments

CWE (ID) Description # of good functions # of bad functions # of test cases

(78) OS Command Injection 5,770 4,410 4,410

(122) Heap Based Buffer Overflow 8,407 5,665 5,665

(134) Uncontrolled Format String 7,440 2,820 2,820

(197) Numeric Truncation Error 1,116 846 846

(242) Use of Inherently Dangerous

Function
32 19 19

(367) TOC TOU 64 38 38

(391) Unchecked Error Condition 96 57 57

(401) Memory Leak 4,434 1,684 1,684

(415) Double Free 2,154 799 799

(416) Use After Free 1,256 410 410

(457) Use of Uninitialized Variable 2,940 924 924

(467) Use of sizeof on Pointer Type 186 141 141

(468) Incorrect Pointer Scaling 65 39 39

(476) NULL Pointer Dereference 733 270 270

(478) Missing Default Case in

Switch
32 19 19

(480) Use of Incorrect Operator 32 19 19

(482) Comparing Instead of As-

signing
32 19 19

(561) Dead Code 2 2 2

(562) Return of Stack Variable Ad-

dress
3 3 3

(563) Unused Variable 878 396 396

(590) Free Memory Not on Heap 3,534 2,679 2,679

(835) Infinite Loop 7 6 6

Total 39,213 21,265 21,265

62

Table A.2: List of Java CWEs and the number of associated good and bad functions along with

number of test cases used in the experiments

CWE (ID) Description # of good functions # of bad functions # of test cases

(80) XSS 636 456 456

(113) HTTP Response Split-

ting
5,088 1,824 1,824

(129) Improper Validation of

Array Index
6,148 2,204 2,204

(190) Integer Overflow 7,314 2,622 2,622

(259) Hard Coded Password 159 114 114

(330) Insufficiently Random

Values
31 18 18

(382) Use of System Exit 31 18 18

(396) Catch Generic Excep-

tion
62 36 36

(404) Improper Resource

Shutdown
3 3 3

(476) NULL Pointer Derefer-

ence
422 151 151

(486) Compare Classes by

Name
31 18 18

(489) Leftover Debug Code 31 18 18

(497) Exposure of System

Data
31 18 18

(500) Public Static Field Not

Final
1 1 1

(568) Finalize Without Super 1 1 1

(570) Expression Always

FALSE
6 6 6

(571) Expression Always

TRUE
6 6 6

(580) Clone Without Super 1 1 1

(581) Object Model Violation 1 1 1

Total 20,003 7,516 7,516

63

Table A.3: Accuracy for C/C++

CWE (ID) Description Tool A Tool B Tool C

(78) OS Command Injection 29.27% 57.32% 56.88%

(122) Heap-based Buffer Overflow 61.31% 68.84% 88.39%

(134) Uncontrolled Format String 27.49% 69.76% 59.17%

(197) Numeric Truncation Error 56.88% 56.88% 56.88%

(242) Use of Inherently Dangerous Function 41.18% 62.75% 41.18%

(367) Time-of-check Time-of-use (TOCTOU)

Race Condition
68.63% 62.75% 100.00%

(391) Unchecked Error Condition 62.75% 62.75% 62.75%

(401) Improper Release of Memory Before Re-

moving Last Reference (’Memory Leak’)
59.12% 83.16% 94.87%

(415) Double Free 65.02% 72.40% 92.56%

(416) Use After Free 66.81% 86.61% 90.01%

(457) Use of Uninitialized Variable 76.76% 80.69% 89.29%

(467) Use of sizeof() on a Pointer Type 56.88% 65.14% 56.88%

(468) Incorrect Pointer Scaling 62.50% 51.92% 62.50%

(476) NULL Pointer Dereference 67.00% 80.06% 90.43%

(478) Missing Default Case in Switch State-

ment
62.75% 62.75% 62.75%

(480) Use of Incorrect Operator 62.75% 62.75% 62.75%

(482) Comparing instead of Assigning 62.75% 62.75% 62.75%

(561) Dead Code 75.00% 75.00% 75.00%

(562) Return of Stack Variable Address 50.00% 50.00% 66.67%

(563) Unused Variable 74.25% 69.94% 69.40%

(590) Free of Memory not on the Heap 56.88% 65.83% 86.96%

(835) Loop with Unreachable Exit Condition

(’Infinite Loop’)
53.85% 53.85% 53.85%

64

Table A.4: Recall for C/C++

CWE (ID) Description Tool A Tool B Tool C

(78) OS Command Injection 53.51% 3.51% 0.00%

(122) Heap-based Buffer Overflow 11.70% 37.83% 72.84%

(134) Uncontrolled Format String 29.79% 38.17% 78.72%

(197) Numeric Truncation Error 0.00% 0.00% 0.00%

(242) Use of Inherently Dangerous Function 100.00% 0.00% 100.00%

(367) Time-of-check Time-of-use (TOCTOU)

Race Condition
50.00% 0.00% 100.00%

(391) Unchecked Error Condition 0.00% 0.00% 0.00%

(401) Improper Release of Memory Before Re-

moving Last Reference (’Memory Leak’)
48.93% 65.91% 81.83%

(415) Double Free 17.52% 16.77% 73.25%

(416) Use After Free 23.17% 87.07% 59.53%

(457) Use of Uninitialized Variable 15.58% 36.58% 57.21%

(467) Use of sizeof() on a Pointer Type 0.00% 87.23% 0.00%

(468) Incorrect Pointer Scaling 0.00% 48.72% 0.00%

(476) NULL Pointer Dereference 35.19% 64.44% 65.33%

(478) Missing Default Case in Switch State-

ment
0.00% 0.00% 0.00%

(480) Use of Incorrect Operator 0.00% 0.00% 0.00%

(482) Comparing instead of Assigning 0.00% 0.00% 0.00%

(561) Dead Code 50.00% 50.00% 50.00%

(562) Return of Stack Variable Address 0.00% 0.00% 33.33%

(563) Unused Variable 32.83% 3.28% 13.84%

(590) Free of Memory not on the Heap 0.00% 41.66% 69.76%

(835) Loop with Unreachable Exit Condition

(’Infinite Loop’)
0.00% 0.00% 0.00%

65

Table A.5: Probability of False Alarm for C/C++

CWE (ID) Description Tool A Tool B Tool C

(78) OS Command Injection 89.25% 1.56% 0.00%

(122) Heap-based Buffer Overflow 5.26% 10.21% 1.60%

(134) Uncontrolled Format String 73.39% 21.37% 48.36%

(197) Numeric Truncation Error 0.00% 0.00% 0.00%

(242) Use of Inherently Dangerous Function 93.75% 0.00% 93.75%

(367) Time-of-check Time-of-use (TOCTOU)

Race Condition
20.31% 0.00% 0.00%

(391) Unchecked Error Condition 0.00% 0.00% 0.00%

(401) Improper Release of Memory Before Re-

moving Last Reference (’Memory Leak’)
37.01% 10.28% 0.00%

(415) Double Free 17.36% 6.96% 0.00%

(416) Use After Free 18.95% 13.54% 0.00%

(457) Use of Uninitialized Variable 4.01% 5.44% 0.63%

(467) Use of sizeof() on a Pointer Type 0.00% 51.61% 0.00%

(468) Incorrect Pointer Scaling 0.00% 46.15% 0.00%

(476) NULL Pointer Dereference 21.28% 14.19% 0.00%

(478) Missing Default Case in Switch State-

ment
0.00% 0.00% 0.00%

(480) Use of Incorrect Operator 0.00% 0.00% 0.00%

(482) Comparing instead of Assigning 0.00% 0.00% 0.00%

(561) Dead Code 0.00% 0.00% 0.00%

(562) Return of Stack Variable Address 0.00% 0.00% 0.00%

(563) Unused Variable 7.06% 0.00% 3.66%

(590) Free of Memory not on the Heap 0.00% 15.85% 0.00%

(835) Loop with Unreachable Exit Condition

(’Infinite Loop’)
0.00% 0.00% 0.00%

66

Table A.6: Balance for C/C++

CWE (ID) Description Tool A Tool B Tool C

(78) OS Command Injection 28.84% 31.77% 29.29%

(122) Heap-based Buffer Overflow 37.45% 55.45% 80.76%

(134) Uncontrolled Format String 28.18% 53.74% 62.64%

(197) Numeric Truncation Error 29.29% 29.29% 29.29%

(242) Use of Inherently Dangerous Function 33.71% 29.29% 33.71%

(367) Time-of-check Time-of-use (TOCTOU)

Race Condition
61.84% 29.29% 100.00%

(391) Unchecked Error Condition 29.29% 29.29% 29.29%

(401) Improper Release of Memory Before Re-

moving Last Reference (’Memory Leak’)
55.40% 74.82% 87.15%

(415) Double Free 40.40% 40.94% 81.09%

(416) Use After Free 44.05% 86.77% 71.38%

(457) Use of Uninitialized Variable 40.24% 54.99% 69.74%

(467) Use of sizeof() on a Pointer Type 29.29% 62.40% 29.29%

(468) Incorrect Pointer Scaling 29.29% 51.21% 29.29%

(476) NULL Pointer Dereference 51.76% 72.93% 75.49%

(478) Missing Default Case in Switch State-

ment
29.29% 29.29% 29.29%

(480) Use of Incorrect Operator 29.29% 29.29% 29.29%

(482) Comparing instead of Assigning 29.29% 29.29% 29.29%

(561) Dead Code 64.64% 64.64% 64.64%

(562) Return of Stack Variable Address 29.29% 29.29% 52.86%

(563) Unused Variable 52.24% 31.61% 39.02%

(590) Free of Memory not on the Heap 29.29% 57.25% 78.62%

(835) Loop with Unreachable Exit Condition

(’Infinite Loop’)
29.29% 29.29% 29.29%

67

Table A.7: G-score for C/C++

CWE (ID) Description Tool A Tool B Tool C

(78) OS Command Injection 17.90% 6.79% 0.00%

(122) Heap-based Buffer Overflow 20.83% 53.24% 83.71%

(134) Uncontrolled Format String 28.11% 51.39% 62.37%

(197) Numeric Truncation Error 0.00% 0.00% 0.00%

(242) Use of Inherently Dangerous Function 11.76% 0.00% 11.76%

(367) Time-of-check Time-of-use (TOCTOU)

Race Condition
61.45% 0.00% 100.00%

(391) Unchecked Error Condition 0.00% 0.00% 0.00%

(401) Improper Release of Memory Before Re-

moving Last Reference (’Memory Leak’)
55.08% 76.00% 90.01%

(415) Double Free 28.91% 28.42% 84.56%

(416) Use After Free 36.04% 86.77% 74.63%

(457) Use of Uninitialized Variable 26.82% 52.75% 72.61%

(467) Use of sizeof() on a Pointer Type 0.00% 62.25% 0.00%

(468) Incorrect Pointer Scaling 0.00% 51.15% 0.00%

(476) NULL Pointer Dereference 48.63% 73.61% 79.03%

(478) Missing Default Case in Switch State-

ment
0.00% 0.00% 0.00%

(480) Use of Incorrect Operator 0.00% 0.00% 0.00%

(482) Comparing instead of Assigning 0.00% 0.00% 0.00%

(561) Dead Code 66.67% 66.67% 66.67%

(562) Return of Stack Variable Address 0.00% 0.00% 50.00%

(563) Unused Variable 48.52% 6.36% 24.20%

(590) Free of Memory not on the Heap 0.00% 55.73% 82.19%

(835) Loop with Unreachable Exit Condition

(’Infinite Loop’)
0.00% 0.00% 0.00%

68

Table A.8: Accuracy for Java

CWE (ID) Description Tool A Tool B Tool C

(80) XSS 59.25% 68.13% 58.79%

(113) HTTP Response Splitting 60.69% 61.98% 72.77%

(129) Improper Validation of Array Index 73.61% 71.74% 73.24%

(190) Integer Overflow 73.61% 64.63% 73.24%

(259) Hard Coded Password 58.97% 58.97% 61.90%

(330) Insufficiently Random Values 40.82% 40.82% 63.27%

(382) Use of System Exit 40.82% 63.27% 71.43%

(396) Catch Generic Exception 63.27% 0.00% 52.04%

(404) Improper Resource Shutdown 66.67% 50.00% 66.67%

(476) NULL Pointer Dereference 59.51% 73.65% 84.60%

(486) Compare Classes by Name 63.27% 63.27% 63.27%

(489) Leftover Debug Code 63.27% 63.27% 63.27%

(497) Exposure of System Data 40.82% 40.82% 63.27%

(500) Public Static Field Not Final 100.00% 50.00% 100.00%

(568) Finalize Without Super 50.00% 100.00% 100.00%

(570) Expression Always FALSE 75.00% 50.00% 58.33%

(571) Expression Always TRUE 75.00% 50.00% 58.33%

(580) Clone Without Super 100.00% 50.00% 100.00%

(581) Object Model Violation 100.00% 100.00% 100.00%

69

Table A.9: Recall for Java

CWE (ID) Description Tool A Tool B Tool C

(80) XSS 55.26% 69.08% 4.39%

(113) HTTP Response Splitting 36.79% 34.54% 4.39%

(129) Improper Validation of Array Index 0.00% 9.53% 0.00%

(190) Integer Overflow 0.00% 26.70% 0.00%

(259) Hard Coded Password 2.63% 30.70% 8.77%

(330) Insufficiently Random Values 100.00% 100.00% 0.00%

(382) Use of System Exit 100.00% 0.00% 100.00%

(396) Catch Generic Exception 0.00% 0.00% 50.00%

(404) Improper Resource Shutdown 100.00% 0.00% 33.33%

(476) NULL Pointer Dereference 37.75% 0.00% 47.68%

(486) Compare Classes by Name 0.00% 0.00% 0.00%

(489) Leftover Debug Code 0.00% 0.00% 0.00%

(497) Exposure of System Data 100.00% 100.00% 0.00%

(500) Public Static Field Not Final 100.00% 0.00% 100.00%

(568) Finalize Without Super 0.00% 100.00% 100.00%

(570) Expression Always FALSE 50.00% 0.00% 16.67%

(571) Expression Always TRUE 50.00% 0.00% 16.67%

(580) Clone Without Super 100.00% 0.00% 100.00%

(581) Object Model Violation 100.00% 100.00% 100.00%

70

Table A.10: Probability of False Alarm for Java

CWE (ID) Description Tool A Tool B Tool C

(80) XSS 37.89% 32.55% 2.20%

(113) HTTP Response Splitting 30.74% 28.18% 2.24%

(129) Improper Validation of Array Index 0.00% 5.95% 0.00%

(190) Integer Overflow 0.00% 21.77% 0.00%

(259) Hard Coded Password 0.63% 20.75% 0.00%

(330) Insufficiently Random Values 93.55% 93.55% 0.00%

(382) Use of System Exit 93.55% 0.00% 45.16%

(396) Catch Generic Exception 0.00% 100.00% 46.77%

(404) Improper Resource Shutdown 66.67% 0.00% 0.00%

(476) NULL Pointer Dereference 32.70% 0.00% 1.93%

(486) Compare Classes by Name 0.00% 0.00% 0.00%

(489) Leftover Debug Code 0.00% 0.00% 0.00%

(497) Exposure of System Data 93.55% 93.55% 0.00%

(500) Public Static Field Not Final 0.00% 0.00% 0.00%

(568) Finalize Without Super 0.00% 0.00% 0.00%

(570) Expression Always FALSE 0.00% 0.00% 0.00%

(571) Expression Always TRUE 0.00% 0.00% 0.00%

(580) Clone Without Super 0.00% 0.00% 0.00%

(581) Object Model Violation 0.00% 0.00% 0.00%

71

Table A.11: Balance for Java

CWE (ID) Description Tool A Tool B Tool C

(80) XSS 58.54% 68.26% 32.37%

(113) HTTP Response Splitting 50.30% 49.60% 32.37%

(129) Improper Validation of Array Index 29.29% 35.89% 29.29%

(190) Integer Overflow 29.29% 45.93% 29.29%

(259) Hard Coded Password 31.15% 48.85% 35.49%

(330) Insufficiently Random Values 33.85% 33.85% 29.29%

(382) Use of System Exit 33.85% 29.29% 68.07%

(396) Catch Generic Exception 29.29% 0.00% 51.59%

(404) Improper Resource Shutdown 52.86% 29.29% 52.86%

(476) NULL Pointer Dereference 50.28% 29.29% 62.98%

(486) Compare Classes by Name 29.29% 29.29% 29.29%

(489) Leftover Debug Code 29.29% 29.29% 29.29%

(497) Exposure of System Data 33.85% 33.85% 29.29%

(500) Public Static Field Not Final 100.00% 29.29% 100.00%

(568) Finalize Without Super 29.29% 100.00% 100.00%

(570) Expression Always FALSE 64.64% 29.29% 41.07%

(571) Expression Always TRUE 64.64% 29.29% 41.07%

(580) Clone Without Super 100.00% 29.29% 100.00%

(581) Object Model Violation 100.00% 100.00% 100.00%

72

Table A.12: G-score for Java

CWE (ID) Description Tool A Tool B Tool C

(80) XSS 58.49% 68.26% 8.40%

(113) HTTP Response Splitting 48.05% 46.65% 8.40%

(129) Improper Validation of Array Index 0.00% 17.30% 0.00%

(190) Integer Overflow 0.00% 39.81% 0.00%

(259) Hard Coded Password 5.13% 44.26% 16.13%

(330) Insufficiently Random Values 12.12% 12.12% 0.00%

(382) Use of System Exit 12.12% 0.00% 70.83%

(396) Catch Generic Exception 0.00% 0.00% 51.56%

(404) Improper Resource Shutdown 50.00% 0.00% 50.00%

(476) NULL Pointer Dereference 48.37% 0.00% 64.17%

(486) Compare Classes by Name 0.00% 0.00% 0.00%

(489) Leftover Debug Code 0.00% 0.00% 0.00%

(497) Exposure of System Data 12.12% 12.12% 0.00%

(500) Public Static Field Not Final 100.00% 0.00% 100.00%

(568) Finalize Without Super 0.00% 100.00% 100.00%

(570) Expression Always FALSE 66.67% 0.00% 28.57%

(571) Expression Always TRUE 66.67% 0.00% 28.57%

(580) Clone Without Super 100.00% 0.00% 100.00%

(581) Object Model Violation 100.00% 100.00% 100.00%

73

Table A.13: Recall for categories with C/C++

Category CWE ID Tool A Tool B Tool C

CWE 478 0.000 0.000 0.000

CWE 561 0.500 0.500 0.500

CWE 398 CWE 562 0.000 0.000 0.333

CWE 563 0.328 0.033 0.138

Overall 0.312 0.033 0.135

CWE 401 0.489 0.659 0.818

CWE 415 0.175 0.168 0.733

CWE 399 CWE 416 0.232 0.871 0.595

CWE 590 0.000 0.417 0.698

Overall 0.190 0.488 0.731

CWE 467 0.000 0.872 0.000

CWE 465 CWE468 0.000 0.487 0.000

CWE476 0.352 0.644 0.653

Overall 0.211 0.702 0.363

CWE 480 0.000 0.000 0.000

CWE 569 CWE 482 0.000 0.000 0.000

Overall 0.000 0.000 0.000

CWE 122 0.117 0.378 0.728

CWE 633 CWE 134 0.298 0.382 0.787

Overall 0.177 0.379 0.743

74

Table A.14: Probability of False Alarm for categories with C/C++

Category CWE ID Tool A Tool B Tool C

CWE 478 0.000 0.000 0.000

CWE 561 0.000 0.000 0.000

CWE 398 CWE 562 0.000 0.000 0.000

CWE 563 0.071 0.000 0.037

Overall 0.068 0.000 0.035

CWE 401 0.370 0.103 0.000

CWE 415 0.174 0.070 0.000

CWE 399 CWE 416 0.189 0.135 0.000

CWE 590 0.000 0.158 0.000

Overall 0.198 0.117 0.000

CWE 467 0.000 0.516 0.000

CWE 465 CWE 468 0.000 0.462 0.000

CWE 476 0.213 0.142 0.000

Overall 0.159 0.234 0.000

CWE 480 0.000 0.000 0.000

CWE 569 CWE 482 0.000 0.000 0.000

Overall 0.000 0.000 0.000

CWE 122 0.053 0.102 0.016

CWE 633 CWE 134 0.734 0.214 0.484

Overall 0.372 0.165 0.179

75

Table A.15: G-Score for categories with C/C++

Category CWE ID Tool A Tool B Tool C

CWE 478 0.000 0.000 0.000

CWE 561 0.667 0.667 0.667

CWE 398 CWE 562 0.000 0.000 0.500

CWE 563 0.485 0.064 0.242

Overall 0.467 0.065 0.236

CWE 401 0.551 0.760 0.900

CWE 415 0.289 0.284 0.846

CWE 399 CWE 416 0.360 0.868 0.746

CWE 590 0.000 0.557 0.822

Overall 0.307 0.628 0.845

CWE 467 0.000 0.622 0.000

CWE 465 CWE468 0.000 0.512 0.000

CWE 476 0.486 0.736 0.790

Overall 0.338 0.733 0.533

CWE 480 0.000 0.000 0.000

CWE 569 CWE 482 0.000 0.000 0.000

Overall 0.000 0.000 0.000

CWE 122 0.208 0.532 0.837

CWE 633 CWE 134 0.281 0.514 0.624

Overall 0.276 0.522 0.780

76

Table A.16: Recall for categories with Java

Category CWE ID Tool A Tool B Tool C

CWE 129 0.000 0.095 0.000

CWE 189 CWE 190 0.000 0.267 0.000

Overall 0.000 0.189 0.000

CWE 259 0.026 0.307 0.088

CWE 254 CWE 330 1.000 1.000 0.000

Overall 0.159 0.402 0.076

CWE 404 1.000 0.000 0.333

CWE 399 CWE 568 0.000 1.000 1.000

Overall 0.750 0.250 0.500

CWE 80 0.553 0.691 0.044

CWE 422 CWE 113 0.368 0.345 0.044

Overall 0.405 0.414 0.044

CWE 570 0.500 0.000 0.167

CWE 569 CWE 571 0.500 0.000 0.167

Overall 0.500 0.000 0.167

77

Table A.17: Probability of False Alarm for categories with Java

Category CWE ID Tool A Tool B Tool C

CWE 129 0.000 0.060 0.000

CWE 189 CWE 190 0.000 0.218 0.000

Overall 0.000 0.145 0.000

CWE 259 0.006 0.208 0.000

CWE 254 CWE 330 0.935 0.935 0.000

Overall 0.158 0.326 0.000

CWE 404 0.667 0.000 0.000

CWE 399 CWE 568 0.000 0.000 0.000

Overall 0.500 0.000 0.000

CWE 80 0.379 0.325 0.022

CWE 422 CWE 113 0.307 0.282 0.022

Overall 0.315 0.287 0.022

CWE 570 0.000 0.000 0.000

CWE 569 CWE 571 0.000 0.000 0.000

Overall 0.000 0.000 0.000

78

Table A.18: G-Score for categories with Java

Category CWE ID Tool A Tool B Tool C

CWE 129 0.000 0.173 0.000

CWE 189 CWE 190 0.000 0.398 0.000

Overall 0.000 0.309 0.000

CWE 259 0.051 0.443 0.161

CWE 254 CWE 330 0.121 0.121 0.000

Overall 0.268 0.503 0.141

CWE 404 0.500 0.000 0.500

CWE 399 CWE 568 0.000 1.000 1.000

Overall 0.600 0.400 0.667

CWE 80 0.585 0.683 0.084

CWE 442 CWE 113 0.481 0.466 0.084

Overall 0.509 0.524 0.084

CWE 570 0.667 0.000 0.286

CWE 569 CWE 571 0.667 0.000 0.286

Overall 0.667 0.000 0.286

	Static Code Analysis: On Detection of Security Vulnerabilities and Classification of Warning Messages
	Recommended Citation

	tmp.1568233084.pdf.49HGB

