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ABSTRACT 
 

Characterization of Insulin Sensitivity and the Plasma Lipidome in Periparturient Dairy Cows. 

 

Sina Saed Samii 

 

During the transition from gestation to lactation, dairy cows experience negative energy balance 

due to an increased demand for energy to support milk production coupled with inadequate energy 

intake. Energy deficit during the peripartum is associated with the development of insulin 

resistance which contributes to adipose tissue lipolysis. In turn, elevated free fatty acids (FFA) in 

circulation increase triacylglycerol (TAG) deposition in liver. This metabolic impairment is known 

to cause postpartum metabolic diseases including fatty liver and ketosis. Consequently, 

postpartum metabolic disease can lead to reduced milk production in early lactation, impaired 

reproductive performance, and increased culling rates. Moreover, cows with enhanced prepartum 

adiposity are at greater risk for postpartum metabolic disease, relative to lean animals. Therefore, 

our first objective was to evaluate the effect of adiposity on insulin and glucose tolerance in lean 

and overweight dairy cows during the transition from gestation to lactation. We also wanted to 

compare these direct measurements with several indirect measurements, including the commonly 

utilized revised quantitative insulin sensitivity check index (RQUICKI). For our second objective 

we wanted to identify novel biomarkers for the progression of postpartum metabolic disease in 

periparturient dairy cows. To achieve this objective, we utilized a contemporary mass 

spectrometry-based lipidomics approach and a bioinformatics workflow. We demonstrate (1) that 

excess prepartum adiposity does not influence postpartum systemic insulin sensitivity, (2) 

surrogate indices for insulin sensitivity do not correlate with direction measurements, and (3) 

biomarkers for metabolic disease include several phosphatidylcholines.  

fatty liver, metabolic health, periparturient dairy cow
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CHAPTER 1 

INTRODUCTION 

Dairy cows transitioning from gestation to lactation develop metabolic adaptations to 

support fetal growth and milk production during the peripartum. Specifically, the peripartal cow 

will become progressively resistant to insulin as lactation approaches, as a means to shift nutrients 

away from adipose and skeletal muscle tissues and towards the mammary gland for the production 

of milk (Bell, 1995). This homeorhetic adaptation is accompanied by enhanced lipolysis and 

circulating free fatty acids (FFA). Elevated circulating FFA predispose cows to postpartum 

metabolic disease risk including ketosis, fatty liver, inflammation, and oxidative stress (Mulligan 

and Doherty, 2008). A predisposing factor that increases metabolic disease risk in peripartal cows 

is overfeeding of energy and body fat accretion (Dann et al., 2006). In turn, overweight dairy cows 

exhibit greater body weight loss during the peripartum relative to lean cows (Rico et al., 2015). 

Nutritional approaches are needed to improve metabolic health in peripartal cows with varying 

adiposity. Better understanding the underpinning mechanisms of insulin resistance during the 

transition period can potentially help nutritionists and farmers improve the metabolic health and 

performance of dairy cows. 

Reduced systemic insulin and glucose tolerance in monogastrics is associated with 

enhanced adiposity (Ross et al., 2001; Hayashi et al., 2008). It has been reported that the greater 

magnitude of adiposity in overweight transition dairy cows may predispose these animals to 

enhanced insulin resistance and adipose tissue lipolysis, thus contributing to increased disease risk 

(Rico et al., 2015; Bossaert et al., 2008). Therefore, we aimed to evaluate the link between 

adiposity and glucose responsiveness to insulin in lean and overweight peripartal cows using direct 

and indirect methodologies to measure systemic insulin sensitivity. For direct measurements, the 

glucose tolerance test (GTT) and insulin tolerance test (ITT) can be employed (Defronzo et al., 
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1979; McCann and Reimers, 1985; De Koster and Opsomer, 2013). For indirect assessment, the 

revised quantitative insulin sensitivity check index (RQUICKI) has been commonly utilized to 

evaluate insulin sensitivity in dairy cows (Kerestes et al., 2009); however, discrepancies between 

RQUICKI and direct approaches have been documented (Holtenius and Holtenius, 2007; De 

Koster et al., 2016; Mann et al., 2016). Thus, our second objective was to compare direct with 

indirect measurements of insulin sensitivity in peripartal dairy cows with contrasting adiposity. 

Monitoring circulating FFA and β-hydroxybutyrate (BHBA) is a common dairy industry 

practice to diagnose metabolic disease. The main limitations of FFA and BHBA testing are the 

inability to detect metabolic disease before onset. Lipidomics and metabolomics are systems 

biology approaches that have the potential to identify novel predictive biomarkers for the 

development of metabolic disease (Kenéz et al., 2016). Several studies have utilized a 

metabolomics approach to diagnose periparturient diseases using milk, blood, and rumen fluid 

collected during the peripartum (Klein et al., 2012; Saleem et al., 2012; Li et al., 2014). However, 

the characterization of the comprehensive lipidome in peripartal dairy cows relative to changes in 

FFA, BHBA, and liver lipid accumulation is limited. Therefore, our third objective was to 

characterize changes in the plasma lipidome of peripartal dairy cows receiving a common total 

mixed ration (TMR) and relate these changes to the disease state of the animal. Our main 

hypothesis was that the plasma lipidome of the dairy cow is highly dynamic during the peripartum 

and changes in association with the progression of metabolic disease. Our targeted focus was on 

phosphatidylcholine (PC) and phosphatidylethanolamine (PE) because of their role on hepatic 

lipoprotein secretion and liver lipid accumulation. To test our hypothesis, we utilized liquid 

chromatography and time-of-flight mass spectrometry. We then applied a bioinformatics approach 
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to analyze our large data set. Our goal was to identify novel biomarkers for metabolic disease 

which can be targeted by future nutritional interventions. 
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CHAPTER 2 

LITERATURE REVIEW 

Energy Metabolism in Peripartal Dairy Cattle 

The transition period is defined as three weeks before to three weeks after parturition, and 

represents a vital period that can negatively impact dairy cow health and productivity as well as 

producer profits (Grummer, 1995; Drackley, 1999). Regulation of energy metabolism during the 

peripartum involves homeorhetic adaptations facilitated by changes in endocrine status. 

Homeorhetic adaptations are defined as the coordinated shifts in body tissue metabolism to support 

gestation and lactation (Bauman and Currie, 1980). These metabolic modifications involve 

fluctuations in hormone supply and action. In brief, growth hormone (GH) increases during the 

peripartum. Growth hormone increases adipose tissue lipolysis and reduces glucose uptake by 

inhibiting insulin sensitivity in adipose tissue (Balogh et al. 2008). The concentration of anti-

lipolytic insulin is lower during early lactation, relative to late gestation, which is accompanied by 

increased FFA mobilization. Block and coworkers (2003) determined that leptin concentrations 

are low during the transition from gestation to lactation, a change that may be mediated in part by 

insulin and may regulate feed intake, and energy expenditure (Yamada et al., 2003). Epinephrine 

is another critical hormone that stimulates FFA mobilization and gluconeogenesis at parturition 

(Sacca et al., 1983). Collectively, the endocrine status of the peripartal cow changes dramatically 

during the peripartum to provide energy for fetal growth, the gravid uterus, and the neonate. 

   

Carbohydrate Metabolism 

The carbohydrate glucose is a major source of energy for all mammals to maintain their 

normal physiological status (Aschenbach et al., 2010). The dairy cow uses glucose for maintenance 

of basal tissue functions, support fetal growth, and for the mammary synthesis of milk lactose. Of 
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highest demand, the mammary gland can account for 50 to 85% of whole-body glucose uptake 

(De Koster and Opsomer, 2013). In contrast to monogastrics, the dairy cow’s dependence on 

glucose absorption from the small intestine is limited due to extensive carbohydrate fermentation 

by the rumen microbiome (Mills et al., 1999; Aschenbach et al., 2010). To meet glucose demand, 

the cow relies on hepatic gluconeogenesis utilizing rumen-derived propionate as the major 

precursor for hepatic glucose synthesis. The quantitative contribution of propionate during the 

transition period is 60 to 70%, followed by lactate, glucogenic amino acids (AA), and glycerol (De 

Koster and Opsomer, 2013). The relative contribution of glucogenic substrates can be modified by 

feed composition, intake, stage of lactation, and energy balance. For instance, feeding a high 

concentrate diet to peripartal dairy cows can shift the rumen microbiome toward amylolytic 

bacteria as a means to increase lactate and propionate production (De Koster and Opsomer, 2013). 

With certainty, propionate and lactate play a pivotal role as glucogenic substrate during late 

gestation and early lactation (Drackley et al., 2001; Reynolds et al., 2003). Glucogenic AA (e.g., 

alanine and glutamine derived from the catabolic breakdown of skeletal muscle) contribute to 

gluconeogenesis during the transition period, more so than other stages of lactation (Drackley et 

al., 2001). Specifically, alanine accounts for 24% of nitrogen-derived AA in portal circulation and 

is considered the predominant glucogenic AA precursor in dairy cattle (Reynolds et al., 1991). 

Additionally, lipolysis-derived glycerol is converted to dihydroxyacetone phosphate and 

glyceraldyde 3-phosphate to support glucose synthesis during negative energy balance (NEB), the 

predominant physiological state of early lactation. However, glycerol is a minor contributor to 

hepatic glucose synthesis, relative to the other precursors described.  

The key regulatory enzymes of gluconeogenesis include phosphoenolpyruvate 

carboxykinase and pyruvate carboxylase. During the transition from gestation to lactation, mRNA 
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abundance of phosphoenolpyruvate carboxykinase and pyruvate carboxylase are responsive to the 

onset of calving (Greenfield et al., 2000). Specifically, hepatic phophoenolpyruvate carboxykinase 

mRNA is elevated by d 28 postpartum, relative to prepartum levels, and hepatic mRNA expression 

of pyruvate carboxylase increases postpartum (Greenfield et al., 2000; Hartwell et al., 2001). These 

changes in hepatic gene transcription support the maintenance of glucose homeostasis during the 

peripartum.  

Glucose disappearance from circulation involves two distinct processes: facilitated 

diffusion and cotransport. The majority of glucose uptake occurs by facilitated diffusion via 

glucose transporters (GLUT; Zhao and Keating, 2007). GLUT1 has ubiquitous distribution in all 

tissues and is mainly responsible for basal glucose uptake. GLUT4 is the only insulin-regulated 

transporter which is responsible for glucose uptake in skeletal and cardiac muscle as well as 

adipose tissue, a transporter that translocates to the plasma membrane in response to insulin 

receptor binding (Watson et al., 2004; Watson and Pessin, 2006).  During late gestation and early 

lactation, skeletal muscle and adipose tissue GLUT4 translocation to the plasma membrane 

decreases due to reduced insulin action; however, GLUT1 mRNA expression increases to enhance 

insulin-independent glucose uptake by the gravid uterus, fetus, and mammary gland (Zhao and 

Keating, 2007).  

Glycogen serves as the storage form of glucose in liver and skeletal muscle tissues. Only 

the liver can provide glucose to blood circulation due to the conversion of glucose-6-phosphate 

into glucose via the actions of glucose-6-phosphatase (De Koster and Opsomer, 2013). Because 

liver glycogen pools are limited, the contribution of glycogenolysis to blood glucose levels is 

minor during the peripartal period (Veenhuizen et al., 1991; Karcagi et al., 2008). Reduced insulin 

levels during the peripartum are associated with reduced hepatic glycogenesis (Brockman and 
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Laarveld, 1986). In a reciprocal fashion, circulating glucagon concentrations increase during early 

lactation as a means to enhance gluconeogenesis and glycogen breakdown (de Boer et al., 1985). 

Overall, the simultaneous rise in circulating glucagon levels coupled with the fall in circulating 

insulin concentrations during early lactation modifies hepatic glucose metabolism to maintain 

blood glucose supply (Rooyackers and Nair, 1997; Aschenbach et al., 2010).  

 

Lipid Metabolism  

During the transition period, adipose tissue metabolism shifts from lipogenesis to lipolysis 

to meet the energy requirements of the cow experiencing NEB (McNamara, 199; Patterson et al., 

1994). The state of energy deficit is characterized by increased adipose tissue FFA mobilization 

from TAG deposits due to decreased plasma insulin concentrations, a progressive increased 

refractoriness of adipose tissue to insulin action (Bell and Bauman, 1997), increased activity of 

adipose tissue lipases such as hormone sensitive lipase and TAG lipase (Langin et al., 2005), and 

increased circulating levels of catecholamines, growth hormone and glucocorticoids (Contreras 

and Sordillo, 2011). In turn, circulating FFA are primarily used for oxidative phosphorylation by 

peripheral tissues, re-esterification of milk fat TAG in mammary tissue, formation of hepatic 

ketone bodies (i.e., BHBA), and/or re-esterification to form neutral lipids such as TAG in liver. 

Although adipose tissue lipolysis can provide glycerol for hepatic gluconeogenesis, an increased 

concentration of FFA in circulation is associated with increased hepatic TAG accumulation. If 

TAG accumulation is severe in liver, then fatty liver disease can develop in dairy cows 

(Rukkwamsuk, 1998; Drackley, 1999). Unfortunately, hepatic gluconeogenesis and glycogen 

storage are suppressed in cows experiencing fatty liver (Overton and Waldron, 2004).  



8 

 

Changes in hepatic TAG accumulation may be due in part to compromised mitochondrial 

fatty acid oxidation. First, hepatic oxidation of long-chain fatty acids (LCFA) involves increased 

activity of multiple key enzymes including acyl-coA synthetase to activate LCFA for oxidation 

and carnitine palmitoytransferase Ι to import LCFA into mitochondria (Drackley et al., 2001; 

Louet et al., 2001). In the liver, the capacity of FFA oxidation can be influenced by the rate of FFA 

uptake. Unfortunately, the dairy cow’s ability to completely oxidize palmitate to CO2 does not 

increase during the peripartum (Litherland et al., 2011). Meantime, incomplete oxidation and re-

esterification is increased during the transition from gestation to lactation. Interestingly, the 

transcription factors sterol regulatory element binding protein-1 (SREBP-1) and peroxisome 

proliferator activated receptor-α (PPARα) may mediate oxidative metabolism during the 

peripartum (Li et al., 2014; Shahzad et al., 2014). Although the hepatic expression of anabolic 

SREBP1 is lowest during early lactation (Loor et al., 2005), PPARα activation is also reduced 

(Shahzad et al., 2014). Inactivation of PPARα may represent the cause of impaired fatty acid 

oxidation which likely supports the partitioning of fatty acids to alternative metabolic fates 

including TAG (i.e. fatty liver), phospholipids, or sphingolipids. 

 

Protein Metabolism  

At the onset of lactation, the dairy cow in energy deficit experiences protein breakdown. 

This catabolic change is mediated in part by insulin. Insulin can stimulate protein synthesis and 

suppress protein degradation (Brockman and Laarveld, 1986); therefore, reduced circulating 

insulin concentrations with concomitant increases in catecholamine levels and GH concentrations 

can increase the flux of AA to the liver for hepatic gluconeogenesis and mammary gland for milk 

protein synthesis (Kuhla et al., 2011). Of importance, GH serves as a promoter of AA uptake and 
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incorporation into protein, particularly in skeletal muscle and mammary tissue (Machlin, 1976). 

Obviously, this response is in contrast with the catabolism of protein reserve in the peripartal dairy 

cow. It has been hypothesized that the capacity for the anabolic effects of GH in skeletal muscle 

is small to favor the partitioning of nutrients toward the mammary gland (Bell, 1995). 

Unfortunately, conventional mixed rations fed to dairy cows are inadequate in methionine (Met) 

and lysine (Lys), the two essential rate-limiting AA for milk protein synthesis (NCR, 2001). 

Supplementation of early lactation diets with rumen protected Met and Lys can improve milk yield 

and protein synthesis (Lara, 2006; Socha, 2008).  

 

Metabolic Disease and the Role of Insulin Resistance 

It is well recognized that many of the metabolic diseases that develop during the transition 

period are in association with insufficient energy intake and increased energy requirements for 

lactation (Curtis et al., 1985). First, the dairy cow has an inherently low capacity to export TAG 

within very low density lipoproteins (VLDL) to blood (Kleppe et al., 1988; Pullen et al., 1990), 

and excessive hepatic FFA infiltration can lead to TAG accumulation and the progression of fatty 

liver (Bobe et al., 2004). Furthermore, excessive FFA uptake can increase ketone synthesis (e.g., 

BHBA) leading to subclinical or clinical ketosis and other associated metabolic disorders, such as 

mastitis, metritis, milk fever, and displaced abomasum (Herdt, 2000; Bobe et al., 2004). Second, 

the elevation in circulating FFA during NEB is associated with a dysfunctional immune system 

(Sordillo et al., 2009; Sordillo and Raphael, 2013). For instance, the pro-inflammatory cytokine 

tumor necrosis factor alpha (TNFα) promotes lipolysis and TAG accumulation, and decreases 

gluconeogenesis in the liver (Kettelhut et al., 1987; Kushibiki et al., 2001; García-Ruiz et al., 

2006). Third, increased FFA influx in the liver is associated with elevated reactive oxygen species 
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(ROS), which form lipid peroxides (Bernabucci et al., 2005). Lipid peroxides can reduce the ability 

of immune cells to respond to infection (Pessayre et al., 2004; Spears and Weiss, 2008). As a 

consequence, the combination of excessive FFA mobilization, hepatic TAG accumulation, 

inflammation, and oxidative stress can compromise cow milk production, milk quality, and 

longevity.  

 

Insulin Signaling and Mechanisms of Insulin Resistance 

Insulin is an anabolic peptide hormone produced by beta cells of the pancreatic islets of 

Langerhans. Insulin is released into circulation, and signals through receptor tyrosine kinases 

(Lemmon and Schlessinger, 2010). First, insulin binds to the α-subunit of the insulin receptor, and 

activates the β-subunit through auto-phosphorylation of tyrosine residues (Ward and Lawrence, 

2009). The activated receptor recruits and activates insulin receptor substrates (IRS; Sun et al., 

1993). In turn, phosphatidylinositol 3-kinase is activated, followed by the phosphorylation of 

phosphatidylinositol 4,5-bisphosphate. This cascade of events results in the activation of protein 

kinase B (Akt) which facilitates the translocation of GLUT to the plasma membrane.  

When sensitive to insulin action, insulin stimulates glycogenesis, lipogenesis, glycolysis, 

and protein synthesis (Brockman and Laarveld, 1986; Edgerton et al., 2006; Hayirli, 2006; Sjaastad 

et al., 2010; Dimitriadis et al., 2011). In addition, insulin reduces lipolysis, protein degradation, 

and glycogenolysis. During early lactation, dairy cows develop insulin resistance as a homeorhetic 

adaptation to partition nutrients to the mammary gland for milk synthesis; however, accelerated 

insulin resistance can promote excessive lipolysis and increase disease risk. Specifically, insulin 

resistance can be defined as a state where normal concentrations of insulin elicit a reduced 

biological response (Kahn, 1978). It can be characterized into 2 distinct entities (insulin sensitivity 
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and insulin responsiveness). Insulin sensitivity is defined as the insulin concentrations needed to 

induce a half-maximal response; whereas, insulin responsiveness is determined as the maximal 

effect of insulin. It is well documented that insulin sensitivity and responsiveness decreases during 

late gestation and early lactation in ruminants (De Koster and Opsomer, 2013). It is important to 

mention that the development of insulin resistance can be specific to a certain metabolic process 

within a given tissue (De Koster and Opsomer, 2013). For instance, reduced insulin response in 

skeletal muscle can dampen the anabolic process of protein synthesis as well as glucose uptake. 

Additionally, research has observed localized adipose tissue, but not hepatic, insulin resistance 

during early lactation, as a result of reduced tyrosine phosphorylation of IRS-1 (Saltiel and Kahn, 

2001; Zachut et al., 2013).  

In monogastrics insulin resistance is correlated with elevated adiposity (Ross et al., 2001; 

Hayashi et al., 2008). Dephosphorylated Akt, down-regulates downstream proteins such as 

glycogen synthase kinase-3 and SREBP1, therefore reduces glycogen synthesis and lipogenesis, 

respectively. Simultaneously, hormone-sensitive lipase is activated, resulting in increased 

circulating FFA. In dairy cows that experience excessive body fat loss, adipose tissue insulin 

resistance is associated with enhanced lipolysis (Zachut et al., 2013), thus, overweight cows that 

mobilize more FFA may be more prone to insulin resistance, relative to their lean counterparts. De 

Koster and coworkers (2015) evaluated the effect of adiposity on insulin resistance at the end of 

the dry period. The results demonstrated a negative correlation between steady-state glucose 

infusion rate and adiposity. Effects on insulin sensitivity may depend on dietary energy intake, 

rather than adiposity. For instance, glucose tolerance was evaluated in peripartal dairy cows 

offered three planes of nutrition during the dry period (controlled, intermediate, and high energy 

diet). Plane of nutrition did not modified glucose tolerance parameters (Mann et al., 2016). The 
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uncertainty between overnutrition and systemic insulin action represents a gap of knowledge that 

should be explored.  

 

Measurement of Systemic Insulin Sensitivity in Dairy Cows 

Because of the importance of insulin resistance to lactation and metabolic health, it is 

critical to identify accurate and efficient approaches for measuring insulin sensitivity and 

responsiveness in dairy cows. It is also important to recognize that the majority of glucose uptake 

takes place independent of insulin action during established lactation. Therefore, one should be 

cautious when assessing direct measures of systemic insulin sensitivity during active milk 

synthesis. 

 

Direct Measurements, Hyperinsulinemic-Euglycemic Clamp  

The hyperinsulinemic-euglycemic clamp (HEC) procedure is considered as the gold 

standard to measure insulin sensitivity in humans and animals (Defronzo et al., 1979). First, 

exogenous insulin is administered as a priming dose followed by constant infusion of insulin (0.1, 

0.5, 2 and 5 mIU/kg/min; De Koster et al., 2016) to raise blood insulin levels to a steady-state 

level. This is referred to as the hyperinsulinemic plateau. Simultaneously, blood samples are 

collected at regular intervals (~5 to 20 minutes) to measure blood glucose concentrations. To 

achieve euglycemia (i.e., maintain normal fasting blood glucose levels), the dose of glucose 

infused is calibrated based on repeated measurements of blood glucose concentrations. The steady-

state of glucose can be explained as no change in glucose infusion required to maintain glucose 

concentrations at the fasting or basal value (Ferrannini and Mari, 1998; De Koster and Opsomer, 

2013). The assessment of insulin sensitivity is characterized by the steady-state insulin 
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concentration (SSIC) and the steady-state glucose infusion rate (SSGIR). A higher SSGIR is 

indicative of high insulin-stimulated glucose uptake by peripheral tissues (De Koster and Opsomer, 

2013). Additionally, the insulin sensitivity index can be calculated as either SSGIR/SSIC 

(Mitrakou et al., 1992) or as SIclamp. SIclamp is defined as M/(G × ΔΙ), where M is glucose disposal 

rate, G is steady-state blood glucose concentrations, and ΔΙ is the difference between fasting and 

steady-state blood insulin concentrations (Muniyappa et al., 2008). The greater SIclamp, the higher 

is systemic insulin sensitivity. Although the HEC is the most accurate method to evaluate insulin 

sensitivity in dairy cows, the technique has major disadvantages such as being laborious, 

expensive, time consuming, and requires some degree of experience (De Koster and Opsomer, 

2013; De Koster et al., 2016). Therefore, other direct and indirect methods have been employed to 

evaluate insulin sensitivity in dairy cows. 

 

Direct Measurements, Glucose Tolerance Testing 

The glucose tolerance test (GTT) is a more applied method to estimate systemic insulin 

sensitivity in dairy cows (De Koster and Opsomer, 2013). In detail, cows are intravenously infused 

with a supraphysiological dose of glucose (150 to 500 mg/kg; Holtenius et al., 2003; Pires et al., 

2007; Kerestes et al., 2009). Blood samples are taken at a regular interval of 10 to 20 minutes to 

determine insulin, FFA, and glucose concentrations in response to the challenge. Glucose 

concentrations measured during the GTT reflect a combination of excretion and absorption from 

different tissues (e.g., liver, mammary gland, intestine, gravid uterus, and skeletal muscle). The 

concentration of insulin reflects secretion from the pancreas and uptake of insulin by the liver. 

Clearance rate, area under the curve (AUC), time to reach basal and half of maximal concentrations 

of glucose and insulin can be calculated (Pires et al., 2007). A low rate of glucose clearance, high 
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AUC for glucose, and increased time to reach basal glucose concentrations can be considered as a 

state of insulin resistance in dairy cows (De Koster and Opsomer, 2013).  

 

Direct Measurements, Insulin Tolerance Testing 

An insulin tolerance test (ITT) involves the administration of insulin (i.v. 0.02 to 0.1 U/kg; 

McCann and Reimers, 1985; Oikawa and Oetzel, 2006; Pires et al., 2007). Comparable to a GTT, 

blood samples are collected at regular intervals following the challenge. Circulating insulin and 

glucose can be measured. Glucose clearance rate, blood glucose reduction (% from basal glucose), 

and AUC for glucose after insulin administration can be calculated. Insulin resistance is defined 

as a low insulin-stimulated reduction of blood glucose levels from measurements made in the basal 

state, low glucose clearance, and elevated glucose AUC (De Koster and Opsomer, 2013). Previous 

work has demonstrated that insulin tolerance decreases in Holstein cows infused with a tallow 

emulsion (Pires et al., 2007). The main disadvantage of the ITT is elicited hypoglycemia and the 

potential neurologic danger of the test (Ferrannini et al., 1998).  

Overall, multiple physiological factors for selecting a direct method to measure insulin 

sensitivity in dairy cows should be considered. Additionally, cost and applicability of the direct 

method should be considered. Because of these considerations, the dairy science research field is 

exploring the use of more affordable and less intensive indirect measures for insulin sensitivity 

(Koster and Opsomer, 2013) 

 

Indirect Measurements, Insulin Sensitivity Indices 

 Indirect methods of estimating systemic insulin sensitivity have been developed in human 

medicine and have been utilized in dairy research due to their simplicity of use and potential 
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effectiveness (Table 2-1: De Koster and Opsomer, 2013); however, these efforts have been 

contested (Mann et al., 2016). The indirect methods predict insulin sensitivity based on blood 

samples collected following an overnight fasting (Muniyappa et al., 2008). First, the homeostasis 

model assessment of insulin resistance (HOMA-IR) is developed (Matthews et al., 1985) to predict 

insulin resistance and β-cell function based on a fasting steady-state glucose and insulin values. 

Second, the quantitative insulin sensitivity check index (QUICKI) is a mathematical model based 

on the reciprocal log transformation of basal glucose and insulin concentrations (Muniyappa et al., 

2008). The higher the HOMA-IR, the greater the insulin resistance of an individual. Whereas, a 

higher QUICKI value can be interpreted as lower insulin resistance. First developed for 

biomedicine (Perseghin et al., 2001; Rabasa-Lhoret et al., 2003), the revised quantitative check 

index (RQUICKI) has been shown to improve QUICKI correlation with the clamp-based index of 

insulin sensitivity (Perseghin at el., 2001). The RQUICKI was first modified to become 

RQUICKIBHBA by adding basal plasma concentrations of BHBA (Balogh et al., 2008). 

Interestingly, the RQUICKIBHBA has never been tested in human medicine.  

Table 2-1: Common surrogate indices for insulin sensitivity.  
Surrogate Indices Equation Reference 

HOMA-IR [glucose (mmol/L) × insulin (µU/mL)/22.5] Muniyappa et al., 2008 

QUICKI 1/[log insulin (µU/mL) + log glucose (mg/dL)] Katz et al., 2000 

RQUICKI 1/[log glucose (mg/dL) + log insulin (µU/mL) + log FFA (mmol/L)] Perseghin et al., 2001 

RQUICKIBHBA 1/[log glucose (mg/dL) + log insulin (µU/mL) + log FFA (mmol/L) + log BHBA (mmol/L)] Balogh et al., 2008 

 

These indirect models have been used in veterinary medicine; however, limited dairy 

science research has evaluated their efficacy relative to direct measurements (De Koster and 

Opsomer, 2013). Because direct methods to measure insulin sensitivity in dairy cows are laborious 

and expensive; the application of an indirect method to estimate insulin sensitivity was first 

adopted by Holtenius and Holtenius (2007). They estimated insulin sensitivity in the first 15 weeks 
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of lactation, and reported that RQUICKI may be used to determine insulin resistance in dairy cows. 

The RQUICKI value was not significantly changed over time. Additionally, results demonstrated 

a negative relationship between RQUICKI value and subcutaneous adiposity. Interestingly, 

indirectly they found positive relationship between RQUICKI and GTT values. The RQUICKI 

approach is the most commonly used index in dairy science (Holtenius and Holtenius, 2007; 

Balogh et al., 2008; Kerestres et al., 2009; Mann et al., 2016). However, a concern is whether these 

indices are comparable to direct measures. Few studies have been evaluated the association 

between insulin resistance indices with direct methods in periparturient dairy cows. De Koster et 

al (2016) validated different measures of insulin sensitivity of glucose metabolism in dairy cows 

during the dry period. Results indicated no association between an HEC test and RQUICKI values. 

Furthermore, Mann et al (2016) investigated the relationship between a GTT and surrogate indices 

in dry period of dairy cows offered three plane of nutrition. Correlation between indirect methods 

and GTT parameters were generally poor. The lack of correlation between direct and indirect 

methods likely reflect changes in FFA, glucose, and insulin over time; particularly in early 

lactation period. Moreover, the influence of the mammary gland, which uptakes glucose 

independent of insulin, is of concern. Additionally, these tests are often performed in the fed state 

(i.e. ruminants do not fast because of rumen feed retention). These uncertainties raise questions 

related to the usefulness of surrogate indices in dairy cows since glucose and insulin kinetics differ 

from human.  

 

Biomarkers for Metabolic Disease  

The prevalence of metabolic disease is high during the transition from gestation to 

lactation, affecting on average 40% of the dairy cow population (LeBlanc, 2010). As previously 
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stated, a postpartum disease can compromise milk production, fertility, and increase treatment 

costs and culling rates (Grӧhn et al., 1998; Grӧhn et al., 1999; Duffield et al., 2009). Thus, early 

detection of post metabolic disease has the potential to prevent a disease from developing and thus 

improve milk production, fertility, and profitability (Saleem et al., 2012; Hailemariam et al., 2014; 

Kenéz et al., 2016). Currently, circulating FFA and BHBA are industry standard biomarkers for 

metabolic disease. Laboratory and cow-side tests have been developed to monitor FFA and BHBA 

levels, respectively. The alarm threshold levels for poor reproductive performance and milk 

production for prepartum FFA and BHBA are 0.27 mEq/L and 10 mg/dL, respectively; and 

postpartum FFA of 0.60 mEq/L (Ospina et al., 2010). The limitations for testing for FFA and 

BHBA include (A) these metabolite thresholds represent the disease state (rather than pre-onset 

disease which would be preferred), (B) they ignore the interactions between other causative 

metabolites of metabolic disease, (C) laboratory testing is expensive, and (D) individual cow blood 

sampling is impractical. Therefore, alternative biomarkers for postpartum metabolic disease are 

needed. 

Metabolomics and lipidomics are systems biology approaches that have emerged in the 

field of life sciences (Fischer, 2008; Nam et al., 2015). These omics approaches rely on mass 

spectrometry to profile the metabolome (i.e., the comprehensive set of metabolites in a biological 

matrix). Lipidomics and metabolomics produce large-scale data sets that when analyzed with 

appropriate bioinformatic tools, can expand our understanding of energy metabolism. These omics 

approaches have been routinely utilized to identify predictive biomarkers for insulin resistance and 

non-alcoholic fatty liver disease in humans (Haus et al., 2009). For instance, lipidomics approach 

identified lysophosphatidylcholine (LPC), particularly LPC 16:0, as the key metabolite in fatty 

liver-induced insulin resistance in humans (Lehmann et al., 2013). Additionally, 
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phosphatidylcholine (PC) 32:3 is positively associated with nonalcoholic fatty liver insulin 

resistant humans (Lehmann et al., 2013). A targeted metabolomic approach has been used to 

identify serum PC 32:1, 36:1, 38:3, and 40:5 as biomarkers for type 2 diabetes (Floegel et al., 

2013). The routine prevalence of PC as a biomarker for metabolic disease is likely due to the 

importance of PC for hepatic VLDL assembly and secretion (Cole et al., 2012). Because VLDL 

secretion is suppressed in dairy cows with fatty liver disease, and dietary choline intake is limited 

during the peripartum, research should evaluate whether circulating PC is representative of hepatic 

steatosis in dairy cattle as well.  

Metabolomics and lipidomics have been limitedly employed to identify biomarkers of 

insulin resistance, hepatic lipidosis, mastitis, metritis and clinical and subclinical ketosis in dairy 

cows (Hailemariam et al., 2014; Imhasly et al., 2014; Sun et al., 2014; Imhasly et al., 2015; Rico 

et al., 2015). For instance, Hailemariam et al. (2014) conducted a longitudinal and cross-sectional 

metabolomic study to characterize the patterns and changes of plasma metabolites before and after 

the onset of metabolic disorders in dairy cows. They reported 3 metabolites (carnitine, propionyl 

carnitine, and lysophosphatidylcholine) that can predict multiple postpartum diseases including 

metritis, mastitis, laminitis, and retained placenta 4 weeks before initiation; moreover, 2  PC 

species (PC 42:2 and 42:6) reported to possibly predict disease a week before its appearance. 

Moreover, carnitine and LPC C16:0 have emerged as biomarkers of immune activation (Sampey 

et al., 2012; Kabarowski et al., 2002; Drobnik et al., 2003). Furthermore, a dairy metabolomics 

study was conducted to identify serum biomarkers as an alternative diagnostic approach for hepatic 

lipidosis (Imhasly et al., 2014). They identified 29 metabolites particularly several PC and 

sphingomyelins. The major metabolites to distinguish between control and diseased dairy cows 

were PC 30:2, 32:2, 36:2, 36:3, 36:4, 38:3, 38:4, 38:6, 40:2, 40:3, 40:4, and 42:2. In addition, the 



19 

 

usefulness of metabolomics approach has been evaluated in dairy cows to identify healthy cows 

from cows affected by ketosis (Zhang et al., 2013; Sun et al., 2014). Their results demonstrated 

2,3,4-trihydroxybutyric acid, α-aminobutyric acid, methylmalonic acid, sitosterol ,and α-

tocopherol as potential biomarkers for ketosis. Further, lipidomics results from our lab, established 

sphingolipid ceramide as a predictive biomarker of insulin resistance in peripartal dairy cows (Rico 

et al., 2015, Rico et al., 2016). Although omics data has emerged, data investigating the link 

between biomarkers and the mechanisms that mediate metabolic disease are non-existent and the 

inclusion of hypothesis-driven research that applies omics should be a requirement. 

Biomarker discovery should focus on hepatic lipid export, considering that fatty liver 

disease can promote ketosis. Specifically the dairy cow’s limited capacity to remove TAG from 

the liver is important contributor to postpartum fatty liver disease (Pullen et al., 1990). Therefore, 

identifying markers for VLDL assembly represents an approach to improve hepatic health. What 

represents a challenge is that impaired VLDL export might involve multiple factors. First, the 

hepatic mRNA expression and circulation of Apo B100 decreases as parturition approaches 

(Bernabucci et al., 2004). Second, FFA can reduce VLDL export by decreasing the abundance of 

microsomal transfer protein in the FFA-treated hepatocytes (Lei et al., 2014). Third, possibly the 

most important reason for impaired VLDL export is due to limited hepatic phospholipid sources 

(Van den Top et al., 1996; Kessler et al., 2014). Phosphatidylcholine is the major form of choline 

phospholipids and is the main component of VLDL (Zeisel, 1992). Reduced hepatic PC levels 

impair liver VLDL export (Verkade et al., 1993; Fast and Vance, 1995). Noticeably, reduced PC 

synthesis impair VLDL export in animals fed choline-deficient diets (Li and Vance, 2008). 

Further, phophatidylethanolamine is required for nascent VLDL assembly (Hamilton and Felding, 
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1989). Thus, to facilitate lipoprotein export, PC and PE likely play a vital role and deserve further 

attention as potential markers for metabolic disease.  

Collectively, lipidomics and metabolomics provide a global assessment of metabolite 

changes; however, we must carefully ensure that newly discovered biomarkers are tested for their 

efficacy. Once identified and tested, novel diet formulations can be created to target these newly 

discovered biomarkers, and new affordable prognostic and diagnostic testing procedures can be 

implemented to improve dairy cow health and performance. 
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CHAPTER 3 

COMPARATIVE EFFECTS OF ADIPOSITY ON DIRECT AND INDIRECT 

MEASUREMENTS OF INSULIN SENSITIVITY IN PERIPARTURIENT DAIRY 

COWS. 

 

ABSTRACT 

Insulin resistance in periparturient dairy cows develops as a means to support lactation; 

however, the excessive mobilization of free fatty acids (FA) from adipose tissue can increase 

metabolic disease risk.  Moreover, prepartum adiposity is a risk factor for the lipolytic release of 

FA and hepatic lipid deposition. Our primary objective was to investigate the effect of prepartum 

adiposity on systemic glucose and insulin tolerance in lean and overweight periparturient dairy 

cows fed common diets. Our secondary objective was the comparative evaluation of direct and 

indirect measurements of insulin sensitivity in peripartal dairy cows. Twenty-one multiparous 

Holstein cows were allocated into 2 groups according to their adiposity at d -28 prepartum: lean 

(body condition score (BCS) ≤ 3.0) or overweight (BCS ≥ 4.0). All cows were ad libitum fed diets 

formulated to meet or exceed nutrient requirements. Blood and milk samples were collected 

routinely. Prior to morning feeding, liver biopsies were collected on d -27, -14, and 4, relative to 

expected calving. An intravenous insulin (0.1 IU/kg of body weight; ITT) or glucose (300 mg/kg 

of body weight; GTT) challenge was performed following each liver biopsy. Plasma FA, insulin, 

glucose, and β-hydroxybutyrate (BHBA) concentrations were measured. Surrogate indices of 

insulin sensitivity were calculated. Data were analyzed as repeated measures using a mixed model 

with fixed effects of adiposity and time. Overweight cows had lower dry matter intake and lost 

more adiposity during the peripartum, relative to lean cows. Overweight cows had increased 

plasma FA and BHBA concentrations, and elevated liver lipid content. In support of impaired 

insulin sensitivity, GTT glucose clearance rate (30 min post-glucose infusion) was lower for all 
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cows postpartum. Prepartum adiposity had minimal effects on multiple ITT and GTT glucose-

dependent parameters; however, the ability of the cow to restore blood glucose levels following 

an insulin challenge was suppressed by increased adiposity. Additionally, overweight cows 

experienced lower glucose-stimulated reductions in FA following a glucose challenge. 

Collectively, glucose-dependent parameters of insulin and glucose tolerance were not correlated 

with surrogate indices of insulin sensitivity. We conclude that prepartum adiposity had no effect 

on systemic insulin sensitivity following parturition. Observed inconsistencies between surrogate 

indices for insulin sensitivity and direct measurements of insulin and glucose tolerance raises 

concerns regarding whether their application to estimate systemic insulin action in periparturient 

cows is suitable. 
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INTRODUCTION 

Dairy cattle transitioning from gestation to lactation will partition glucose away from 

adipose and skeletal muscle tissues, and toward the mammary gland as a means to support lactose 

synthesis (Bell, 1995). The adaptive change in peripheral glucose utilization during the 

periparturient period is caused in part by decreased insulin sensitivity (Bell and Bauman, 1997). 

Reduced insulin signaling in adipose tissue occurs in parallel with enhanced lipolysis of 

triacylglycerol during early lactation. The postpartum elevation in circulating fatty acids (FA) will 

promote hepatic lipid deposition and ketogenesis in the early lactation cow, peripartal risk factors 

for the development of fatty liver disease and ketosis.  

An increase in prepartum adiposity can predispose dairy cows to a greater magnitude of 

FA mobilization during early lactation (Holtenius et al., 2003; Holtenius, 2007). Others have 

proposed that a greater extent of adipose tissue insulin resistance in overweight peripartal dairy 

cows may contribute to excessive lipolysis thus greater metabolic disease risk (Bossaert et al., 

2008), a response that may be mediated by the sphingolipid ceramide (Rico et al., 2015). Certainly 

enhanced body fat accumulation can develop in dairy cattle fed in excess of energy requirements 

during gestation, albeit dependent upon the length of the overfeeding regimen (Marrow, 1976; 

Roche et al., 2013). Effort has been focused on the effects of plane of nutrition during the dry 

period on peripartal metabolic health and glucose disposal. For instance, feeding a high energy 

diet to cows prepartum does not modify systemic glucose tolerance following a challenge 

performed during late gestation or early lactation (Schoenberg and Overton, 2011; Schoenberg et 

al., 2012; Mann et al., 2016). Moreover, the ability of prepartum nutrient excess to suppress FA 

disappearance following a glucose challenge has been previously demonstrated during late 

gestation (Schoenberg and Overton, 2011; Schoenberg et al., 2012); however, this finding is in 
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contrast to recent observations made during the peripartal transition (Mann et al., 2016). It is 

important to recognize that these studies utilized dairy cows with moderate adiposity at enrollment 

(~3.0 body condition score; BCS), and prepartum elevated plane of nutrition resulted in minor 

gains in adiposity during gestation (~0.25 BCS change). 

Enhanced adiposity is associated with reduced systemic insulin sensitivity in fasted non-

ruminants (Ross et al., 2001; Hayashi et al., 2008); however, this view has been challenged by 

others describing obese humans that are insulin-sensitive (Klӧting et al., 2010; Samocha-Bonet et 

al., 2012). Suppressed insulin sensitivity may explain why overweight dairy cows during the 

peripartal period exhibit greater FA mobilization postpartum. Pregnant cows with moderate body 

condition that gain adiposity through wk 1 postpartum in response to high-energy feeding have 

exhibited a decrease in glucose clearance rate postpartum (Holtenius et al., 2003a, b). In contrast, 

glucose clearance rate was not related to BCS when recorded three weeks postpartum in dairy 

cows with moderate FA mobilization (Jaakson et al., 2013). Recently, De Koster and coworkers 

(2015) evaluated nine Holstein Friesian dairy cows during late gestation with variable BCS 

(Wildman et al., 1982), and observed that maximal steady-state glucose infusion rate during a 

hyperinsulinemic-euglycemic clamp was inversely related with BCS and basal circulating FA 

concentrations. Undoubtedly differences in experimental designs, feeding regimens, magnitude of 

adiposity, metabolic status, and method of insulin sensitivity assessment during the peripartum 

confound our understanding of insulin action in peripartal dairy cows.  

 Several surrogate measures have been employed to evaluate insulin sensitivity in 

monogastrics and ruminants. These insulin sensitivity indices rely on the measurement of 

circulating FA, glucose, insulin, and β-hydroxybutyrate (BHBA) levels in the basal state (Kerestes 

et al, 2009; Mann et al., 2016). Initially evaluated in dairy cows by Holtenius and Holtenius (2007), 
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the Revised Quantitative Insulin Sensitivity Check Index (RQUICKI) has received considerable 

attention (Schoenberg et al., 2011; Rico et al., 2015; Mann et al., 2016). However, Mann and 

colleagues (2016) recently discovered that peripartal glucose tolerance in cows fed different planes 

of nutrition prepartum did not correlate with multiple indices of insulin sensitivity including 

RQUICKI, and stated that indice values should not be compared across stages of lactation.  

Our primary objective was to examine the effect of adiposity on glucose disposal in 

response to repeated intravenous glucose and insulin tolerance tests performed in lean and 

overweight periparturient dairy cows ad libitum fed common diets. Considering the recent 

uncertainty related to the application of surrogate indices of insulin sensitivity, our secondary 

objective was the comparative evaluation of direct and indirect measurements of insulin sensitivity 

in periparturient dairy cows with contrasting adiposity. 

 

MATERIALS AND METHODS 

Experimental Design  

Experimental procedures were approved by the Institutional Animal Care and Use 

Committee at West Virginia University (Morgantown). The experiment was completed at Dovan 

Farms (700-cow Holstein dairy herd; Berlin, PA), a West Virginia University Agricultural 

Research and Education Partner. Twenty-one multiparous Holstein cows (parity 2 to 4) were 

enrolled 28 d before expected parturition, and immediately allocated to one of two groups 

according to their adiposity, as either lean (BCS = 2.93 ± 0.16) or overweight (BCS = 4.01 ± 0.20). 

Cows were housed on a straw bedded pack and trained to access feed from Calan gate feeders 

(American Calan, Inc., Norwood, NH) from enrollment through 6 DIM. Because of farm 

management constraints, cows were moved to adjacent free-stalls from 7 DIM through study 
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completion. Diets provided ad libitum were composed of corn silage and grass haylage as the main 

forage components, and were formulated to meet or exceed nutrient recommendations (Table 3-1; 

NRC, 2001). Cows were fed once (0800 h) and twice (0800 and 1900 h) daily during pregnancy 

and lactation, respectively, and free access to water was provided.  

 

Sample Collection 

 Samples of TMR were collected weekly throughout the experiment. Blood collection (10 

mL) by coccygeal venipuncture occurred prior to morning feeding on d -28, -21, -14, -7, and -5, 

relative to expected calving, and d 0, 2, 4, 7, 14, and 21 postpartum. Blood was placed on ice for 

30 min until centrifugation at 3,400 × g for 10 min. Following centrifugation, EDTA-preserved 

plasma was removed and snap-frozen in liquid nitrogen, and then stored at -80 ºC until further 

analysis. Cows were milked twice daily at 0800 and 1800 h. Milk yields were continually recorded 

and milk samples were collected at each milking on d 2 , 3, 4, 5, 6, 7, 10, 14, and 21 postpartum. 

A single milk aliquot was stored with bronopol at 4°C for component analysis. Body weights and 

BCS were recorded weekly. 

Liver tissue biopsies were performed prior to morning feeding on d -27 and -14, relative to 

expected calving, and d 4 postpartum. Cows were anesthetized using xylazine (0.04 mL/kg of BW) 

delivered via the coccygeal vein. After the hair was clipped, the biopsy site located within the 11th 

intercostal space was scrubbed with iodine and anesthetized with 5 mL of 2% lidocaine HCl 

(Vedco Inc., Saint Joseph, MO) delivered subcutaneously. A 0.5 cm incision was made through 

the skin and a fabricated trocar (Hughes, 1962) was utilized to collect approximately 1 g of liver 

tissue. Liver tissue was immediately snap-frozen in liquid nitrogen and stored at -80°C. Following 

each tissue collection, the biopsy site was stapled and sprayed with antiseptic, and ceftiofur 
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hydrochloride antibiotic was delivered once by intramuscular injection (0.68 mL/kg of BW; 

Excenel RTU; Zoetis, Florham Park, NJ). 

 

Glucose and Insulin Tolerance Testing 

Immediately following each liver biopsy, jugular catheters were inserted and patency was 

maintained by flushing with heparinized saline every 12 h for 2 d. Intravenous insulin and glucose 

tolerance tests (ITT and GTT, respectively) were performed using previously described methods 

(Pires et al., 2007). Briefly, feed was removed 2 h prior to tolerance testing. An intravenous ITT 

(0.1 IU of insulin per kg BW; Humulin R; Eli Lilly and Co., Indianapolis, IN) was performed on 

d -26 and -13 before expected calving, and on d 5 postpartum. An intravenous GTT was performed 

on d -25 and -12, relative to expected calving, and d 6 postpartum. Cows were intravenously 

infused with 300 mg of glucose (dextrose, 50% wt/vol) per kg of BW. Glucose infusion occurred 

within 8 ± 2 min, and was followed by a 10-mL saline flush. For GTT and ITT, blood samples (10 

mL) were collected at -10, 0, 10, 20, 30, 40, 60, 90, 120, 150, and 180 min relative to initiation of 

challenge. Blood was processed as described above. Feed was provided immediately following the 

completion of testing.  

 

Sample Analyses 

Weekly TMR samples were analyzed for DM content by drying at 60°C until a static weight 

was observed. Nutrient composition of TMR was analyzed using near-infrared spectroscopy 

(AOAC method 989.03) by Cumberland Valley Analytical Services Inc. (Cumberland, MD). 

Plasma samples were analyzed in duplicate for nonesterified FA, insulin, glucose, and BHBA. 

Plasma concentrations of FA, glucose, and BHBA were determined by enzymatic methods using 
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commercial kits (HR series FA-HR (2), Autokit Glucose, and Autokit 3-HB, respectively; Wako 

Chemicals USA Inc., Richmond, VA). Plasma insulin concentrations were determined by ELISA 

(Mercodia Bovine Insulin ELISA; Mercodia AB, Uppsala, Sweden). Spectrophotometric 

measurements were conducted using a SpectraMax Plus 384 Microplate Reader (Molecular 

Devices, Sunnyvale, CA). Intra- and interassay coefficient of variations for all colorimetric assays 

were <5 and <10%, respectively. Total liver lipid content was determined by extracting 100 mg of 

liver tissue, as previously described (Hara and Radin, 1978; Piepenbrink and Overton, 2003).  

Individual milk samples were analyzed for fat, true protein, and lactose concentrations (Dairy One, 

Hagerstown, MD; AOAC, 1990; method 972.160). 

 

Calculations and Statistical Analysis 

The indices for insulin sensitivity quantitative insulin sensitivity check index (QUICKI; 

Katz et al., 2000), RQUICKI (Perseghin et al., 2001), RQUICKI including BHBA (RQUICKIBHBA; 

Balogh et al., 2008), and homeostasis model of insulin resistance (HOMA-IR; Muniyappa et al., 

2008) were calculated as follows: QUICKI = {1 / [log glucose (mg/dL) + log insulin (µU/mL)]}, 

RQUICKI = {1 / [log glucose (mg/dL) + log insulin (µU/mL) + log FA (mmol/L)]}, 

RQUICKIBHBA = {1 / [log glucose (mg/dL) + log insulin (µU/mL) + log FA (mmol/L) + log BHBA 

(mmol/L)]}, and HOMA-IR = {[glucose (mmol/L) × insulin (µU/mL)] / 22.5}. Glucose  clearance 

rate (CR), time to reach half maximal concentration (T1/2), and time to reach basal concentration 

(Tbasal) were calculated according to methods described by Pires et al. (2007): Glucose CR (%/min) 

= [(ln glucose at 10 min – ln glucose at time point 60 min) / 60] × 100, T1/2 (min) = [(ln 2) / CR] × 

100, Tbasal (min) = [(ln glucose at 10 min – ln glucose at 60 min) / CR] × 100. The glucose area 

under the curve (AUC) during a GTT was calculated using the trapezoidal method. Baseline 
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glucose concentrations were calculated as the mean of measurements at -10 and 0 min, relative to 

start of challenge. Changes in BCS and BW of lean and overweight cows were calculated as the 

differences between values at d -21 prepartum and d 21 postpartum.  

Changes in BCS and BW were analyzed under the GLM procedure of SAS (version 9.3; 

SAS Institute Inc., Carry, NC). Plasma, liver, and milk variables were analyzed as repeated 

measures over time relative to parturition under the MIXED procedure of SAS (SAS Institute Inc.). 

The statistical model included the random effect of cow nested within BCS, and the fixed effects 

of BCS, day relative to parturition, and their interaction. The most appropriate covariance structure 

for the repeated measures analysis was selected for each variable after evaluating 3 different 

covariance structures (variance components, first-order autoregressive, compound symmetry), and 

the structure with the smallest Akaike’s information criterion coefficient was selected for analysis. 

The method of Kenward-Rogers was used for calculation of denominator degrees of freedom. 

When the BCS effect or BCS × day relative to parturition were significant, the SLICE option of 

SAS was used to compare treatment differences at individual time points. Non-parametric 

Spearman’s rank-order correlations were performed in order to determine associations between 

surrogate indices of insulin sensitivity, direct measurements of insulin sensitivity, and plasma 

metabolites. In order to reduce risk of type I error for repeated measures analysis, the significance 

level was decreased to P ≤ 0.05, and trends toward significance were considered at 0.05 < P ≤ 

0.10. Studentized residual values >3.0 or <-3.0 were considered outliers and removed from the 

analysis (typically 1 per response variable). All results are expressed as least squares means and 

their standard errors, unless stated otherwise. 
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RESULTS AND DISCUSSION 

 Although twenty-one prepartum cows were enrolled, 4 lean and 3 overweight cows were 

not included within our analyses because they were diagnosed with a metabolic disease and 

subsequently treated by the herd veterinarian; therefore, our data represents fourteen cows that 

transitioned from gestation to lactation without clinical intervention. Overweight cows displayed 

DMI suppression during the peripartum (Figure 3-1; P < 0.01), a response that may be regulated 

in part by anorexigenic signals including circulating FA and BHBA (Laeger et al., 2012; Le Foll 

and Levin, 2016). Certainly, reductions in DMI can exacerbate negative energy balance and 

increase metabolic disease risk in cows with enhanced adiposity. As evidence, the transition from 

gestation to lactation was accompanied by accelerated loss of BW (18 vs. 9%; P < 0.01) and BCS 

(22 vs. 13%; P < 0.05) in overweight cows (Figure 3-1). Lactation performance was comparable 

for lean and overweight cows; except, milk fat yield (P < 0.10) and content (P < 0.01) was greater 

in cows with enhanced prepartum adiposity (Figure 3-2). 

 Basal measurement of systemic and hepatic health were performed to confirm that 

prepartum adiposity is a risk factor for postpartum metabolic impairment (Figure 3-1). Plasma FA 

concentrations were greater in overweight animals (P < 0.05), and maximum lipolysis was 

observed at parturition with a 2.4-fold increase in circulating FA in overweight cows, relative to 

lean cows (P < 0.001). Although the development of insulin resistance in overweight humans is 

associated with elevated circulating FA, glucose, and insulin (Reaven et al., 1988; Thévenod, 

2008), we recognize that the characteristic response to lactation and the progression of insulin 

resistance in cows is a decrease in circulating insulin. Unlike our previous observations (Rico et 

al., 2015), circulating insulin was numerically but not significantly higher in overweight cows 

prepartum (P < 0.05); whereas, plasma insulin concentrations were similar for both adiposity 
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groups during early lactation. The characteristic decline in circulating insulin observed for all cows 

occurred in conjunction with reduced plasma glucose concentrations postpartum (P < 0.001), 

although prepartum BCS did not influence systemic glucose supply. Due in part to increased 

hepatic FA influx, liver lipid accumulation and plasma BHBA concentrations were elevated in 

cows with enhanced gestational adiposity. The poor metabolic health observed in overweight cows 

reinforces the importance of avoiding over-conditioning of cows during gestation.  

Due to early parturition, the actual sampling day for each prepartum tolerance test was -

20.5 ± 5.8 and -9.4 ± 3.5 for each ITT, and -21.3 ± 5.6 and -9.4 ± 3.5 for each GTT, whereas 

postpartum ITT and GTT occurred as scheduled on d 5 and 6 postpartum, respectively. Several 

methods have been utilized to evaluate insulin sensitivity. Insulin tolerance test was first developed 

(Horgaard and Thayssen, 1929) to measure insulin sensitivity in vivo based on the clearance of 

plasma glucose concentrations after injection of insulin bolus (0.1 U/kg BW). The main 

disadvantage for any direct measurement of insulin sensitivity (especially during lactation) is that 

glucose is primarily utilized by the mammary gland independent of insulin action (Bauman and 

Currie, 1980; Pethick, 2005). Specifically, GLUT 1 and 3 in mammary gland are insulin-

independent glucose transporters (Duehlmeier et al., 2005; Zhao et al., 2006) which makes 

interpretation of results difficult. Although an insulin challenge lowered plasma glucose (P < 

0.001), we did not observe an effect of adiposity pre and postpartum (Figure 3-3). However, we 

did observe increased plasma glucose in lean cows 60 min post insulin challenge. Postpartum basal 

glucose concentration was higher for lean cows during ITT (71.3 ± 6 vs. 65.1 ± 6 mg/dL, Table 3-

2). The lowest concentration of glucose occurred 40 min after insulin challenge both pre- and 

postpartum. The insulin dose administered in our research was similar to (Pires et al., 2007; 

Kerestes et al., 2009), but lower than McCann and Reimers (1985), which is critical to consider 
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when comparing results from different studies. We observed no differences between adiposity pre- 

and postpartum for reduction of glucose concentrations after insulin administration (Figure 3-3). 

Following insulin-stimulated glucose disappearance, return to basal glucose in overweight cows 

was delayed by 60 min (P < 0.05). Glucose utilization, hepatic glucose production, intestinal 

glucose absorption and excretion of glucose by the kidney can determine the plasma glucose 

concentrations (Pires et al., 2007) and glucose clearance during ITT can be interpreted as the 

maximal glucose response to insulin challenge. In our study, adiposity did not impair glucose 

clearance prepartum; however, overweight cows had delayed glucose return to their basal 

concentrations, which indicates adiposity did not regulate systematic insulin resistance prepartum; 

but probably reflects the postpartum insulin resistance induced by adiposity. The reason for 

delayed glucose return to basal levels in overweight cows postpartum might be due to hepatic lipid 

deposition blocking gluconeogenesis. The greater insulin-stimulated blood glucose reductions 

after challenge indicates higher insulin sensitivity in peripheral tissues (De Koster and Opsomer, 

2013), our findings indicate that glucose response to insulin was not impaired by adiposity that 

were in contrast with Pires et al (2007) reports indicating impaired insulin responsiveness in 

nonlactating, nongestating Holstein cows with hyperlipidemia. In addition, our findings were not 

consistent with Kerestes et al (2009) where they observed higher glucose reduction after insulin 

challenge in early lactation than prepartum, as well as an earlier return to basal glucose 

concentrations (60 min) in obese after administering of high insulin dose (200 mU/kg). The 

differences in findings can be explained by differences in experimental design, age of cows, 

treatments, dose of insulin administered, and adiposity. 
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Effect of adiposity on glucose response During GTT 

We aimed to measure insulin sensitivity by evaluating glucose response during glucose 

challenge. De Koster et al. (2016) validated different measures of insulin sensitivity during the dry 

period. They reported a positive correlation between hyperinsulinemic euglycemic clamp (HEC) 

and GTT parameters. The amount of glucose infused was greater than previous studies (Holtenius 

et al., 2003; Pires et al., 2007; Mann et al., 2016) but lower than Kerestes et al. (2009). We did not 

observe an effect of adiposity pre- and postpartum (Figure 3-4). Nevertheless, there were 

significant interactions between adiposity and GTT, with overweight cows tended to have greater 

glucose concentrations during the far-off at time point 40 min (P < 0.1) after glucose infusion. The 

results indicate that adiposity does alter glucose metabolism during transition to lactation in dairy 

cows. This is in agreement with studies investigating insulin sensitivity of Holstein cows varying 

energy density during the dry period (Schoenberg et al., 2012; Mann et al., 2016). De Koster et al. 

(2013) defined insulin resistance in dairy cows as a condition where glucose clearance is low, the 

area under the curve for glucose is high, and time to reach basal glucose concentrations is high 

during GTT. Post-glucose challenge of the glucose AUC for 60 min and CR of glucose for the first 

30 min were lower (P < 0.05) and tended to be lower for AUC for 30 and 180 min for postpartum 

cows, relative to prepartum cows (Table 3; P = 0.06). Our results are in contrast with Mann et al., 

(2016) which reported increased glucose clearance in postpartum cows. Although adiposity had 

no effect on GTT; however, time to reach basal glucose concentrations was higher in overweight 

cows postpartum (Table 3-3; P < 0.05). On the other hand, lower postpartum glucose CR in dairy 

cows that are fed to gain body condition has been reported (Holtenius et al., 2003). Comparability 

of GTT parameters of lactating cows with nonlactating, pregnant cows are intriguing; due to high 

turnover of glucose in early lactation (De Koster and Opsomer, 2013) as it has been demonstrated 
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by lower basal glucose concentrations postpartum (P < 0.01). Together, our findings suggest an 

increased insulin resistance in early lactation regardless of adiposity.   

 

Effect of Adiposity on FA Response During GTT  

Plasma FA concentrations during GTT is depicted in Figure 3-5. Overweight cows had 

greater FA concentrations in the far-off period at time point 120 min (P < 0.05) and tended to be 

higher at time points 20, 30, 40 and 90 min (P < 0.1) relative to time after glucose infusion. We 

observed higher FA concentrations in overweight cows during the entire close-up period and time 

points 10 through 90 min postpartum (P < 0.05) with a tendency to be higher at time point 120 

min postpartum (P < 0.1) after glucose challenge. Overweight cows experienced greater glucose-

stimulated FA reduction pre- and postpartum (Table 3-4; P < 0.05). These findings are in contrast 

with results suggesting no effect of difference between plane of nutrition on FA metabolism pre- 

and postpartum (Mann et al., 2016). FA concentrations reached a nadir around time point 60 min 

on close-up and postpartum after glucose challenge, which has delayed compare with previous 

studies reported at 45 min (Zachut et al., 2013; Mann et al., 2016); that might be related to the dose 

of glucose administered. This indicates the inhibition of lipolysis, after glucose infusion, in 

response to insulin regardless of adiposity and physiological stage of a cow. Although we did not 

observe an effect of adiposity on the percentage of FA reduction from baseline; however, we 

observed increased post-glucose challenge of FA AUC for 60 through 180 min and reduced FA 

CR for 60 through 180 min in postpartum, relative to prepartum (P < 0.01). The difference between 

glucose and FA metabolism during peripartum was explained by De Koster et al. (2015) which 

illustrated that lower insulin concentrations are needed to metabolize FA compare with its action 
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on glucose metabolism. Together, our results reflect increased insulin resistance in early lactation 

to partition nutrients to mammary gland as means to support milk synthesis.  

 

Surrogate indices 

We first evaluated the effect of adiposity on QUICKI, RQUICKI, RQUICKIBHBA, and 

HOMA-IR values obtained during the peripartum (Figure 3-6). Surrogate indices have been 

developed and validated, particularly QUICKI, in human medicine (Muniyappa et al., 2008). 

Initially, RQUICKI has been utilized in dairy cows by Holtenius and Holtenius (2007) to evaluate 

insulin sensitivity; with few other studies comparing HEC and GTT with insulin resistance indices. 

Therefore, the lack of studies for evaluating surrogate indices in different adiposity during 

peripatrum, necessitate the investigation in dairy cows. Comparable to previous findings 

(Holtenius and Holtenius, 2007), enhanced adiposity was associated with a decrease in estimated 

insulin sensitivity before and after parturition (P < 0.001), a response most pronounced for late 

gestation (P < 0.05). In comparison to the effects of adiposity, changes in estimated insulin 

sensitivity across time were inconsistent among surrogate markers. Whereas HOMA-IR decreased 

and QUICKI increased with time (P < 0.01), reflecting an increase in estimated insulin sensitivity, 

the transition from gestation to lactation was not accompanied by changes in RQUICKI or 

RQUICKIBHBA. Considering that reduced insulin sensitivity is recognized as a homeorhetic 

adaptation to lactation (De Koster and Opsomer, 2013), these discrepancies between indices are 

concerning.  

We next compared the index most often utilized in dairy science (Holtenius and Holtenius, 

2007; Kerestes et al., 2009), RQUICKI with QUICKI, RQUICKIBHBA, and HOMA-IR; Table 3-

5). We detected strong positive correlations between RQUICKI and QUICKI (ρ = 0.64; P ≤ 0.001), 
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and RQUICKI and RQUICKIBHBA (ρ = 0.95; P ≤ 0.001). We also observed a strong inverse 

relationship between RQUICKI and HOMA-IR (ρ = -0.63; P ≤ 0.001). These correlative 

relationships were anticipated because higher QUICKI, RQUICKI, and RQUICKIBHBA, and lower 

HOMA-IR values are indicative of reduced insulin action in monogastrics.  

We further evaluated the correlation between surrogate indices and ITT, and GTT 

parameters (Table 3-6). We hypothesized a strong association between IR indices and tolerance 

tests during the peripartum. We observed positive correlation of glucose CR at time point 10 min 

with RQUICKI (ρ = 0.38; P < 0.05), and RQUICKIBHBA (ρ = 0.32; P = 0.05). We observed no 

other strong positive correlation between IR indices and tolerance tests. This is consistent with 

previous studies (De Koster et al., 2016; Mann et al., 2016) which reported poor correlation or no 

association between IR indices and direct measurement of insulin sensitivity. Insulin resistance in 

dairy cows is very different than in humans due to the drastic physiological changes initiated in 

the early lactation, especially for glucose, insulin, and FA metabolism. Consequently, usefulness 

of surrogate indices in dairy cows can be questionable. It should be emphasized that comparing 

results between different stages of lactation is not an accurate practice. 

 

CONCLUSIONS 

Although overweight dairy cows exhibit elevated prepartum insulin, postpartum FA, and 

peripartal liver lipid deposition in parallel with a greater reduction in appetite, enhanced adiposity 

during late gestation is not associated with modifications in glucose or insulin tolerance as assessed 

by GTT or ITT. Furthermore, we agree with Mann and colleagues (2016) and reaffirm that the 

usefulness of surrogate measures of systemic insulin sensitivity is indeed questionable, and that 

investigators should refrain from comparing index values across the peripartal period. 
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Figure 3-1. Metabolic health in lean and overweight dairy cows transitioning from gestation to 

lactation. (A) Continuous DMI (kg/d). Plasma concentrations of (B) FA, (C) insulin, (D) regression 

analysis of plasma insulin and BCS units, and (E) plasma concentrations of glucose. (F) Percent 

liver lipid and (G) plasma concentrations of BHBA. Adiposity groups differed at each time point: 

*, P < 0.05; †, P < 0.10. Data are represented as least squares means and their standard errors. 
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Figure 3-2. Milk production data collected from postpartum lean and overweight dairy cows 

transitioning from gestation to lactation. (A) The continuous evaluation of milk yield. Early 

lactation yields (kg/d) of milk (B) fat, (C) protein, and (D) lactose in cows assigned as lean or 

overweight -28 d prior to expected parturition. Differences in percent milk (E) fat, (F) protein, and 

(G) lactose. Data are represented as least squares means and their standard errors.  
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Figure 3-3. Plasma concentrations of glucose during an intravenous insulin tolerance test (ITT) performed 

in lean or overweight peripartal cows. Insulin tolerance testing was completed at (A) 26 and (B) 13 d 

prepartum, and (C) 5 d postpartum. Baseline measurements represent the average of samples 

collected at -10 and 0 min relative to intravenous administration of 0.01 IU of insulin per kg of 

BW. Fixed effects in model: BCS (not significant), Day < 0.001, and BCS × Day < 0.01. Adiposity 

groups differed at each time point: *, P < 0.05; †, P < 0.10. Data are represented as least squares 

means and their standard errors. 
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Figure 3-4. Plasma concentrations of glucose during an intravenous glucose tolerance test (GTT) 

performed in lean or overweight peripartal cows. Glucose tolerance testing was completed at (A) 

25 and (B) 12 d prepartum, and (C) 6 d postpartum. Baseline measurements represent the average 

of samples collected at -10 and 0 min relative to intravenous administration of 300 mg of dextrose 

per kg of BW. Fixed effects in model: BCS (not significant), Day < 0.001, and BCS × Day < 0.05. 

Adiposity groups differed at each time point: †, P < 0.10. Data are represented as least squares 

means and their standard errors.
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Figure 3-5. Changes in plasma FA concentrations during an intravenous glucose tolerance test 

(GTT) performed in lean and overweight peripartal cows. Plasma FA concentrations during GTT 

completed on d (A) 25 and (B) 12 prepartum, and (C) d 6 postpartum. Baseline measurements 

represent the average of samples collected at -10 and 0 min relative to intravenous administration 

of 300 mg of dextrose per kg of BW. Fixed effects in model: BCS < 0.001, Day < 0.001, and BCS 

× Day < 0.001. Adiposity groups differed at each time point: *, P < 0.05; †, P < 0.10. Data are 

represented as least squares means and their standard errors. 
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Figure 3-6. Surrogate indices of insulin sensitivity in lean and overweight periparturient dairy 

cows. Estimated insulin sensitivity as measured by the (A) revised quantitative insulin sensitivity 

check index (RQUICKI), (B) homeostasis model of insulin resistance (HOMA-IR), (C) QUICKI 

and (D) RQUICKI including BHBA (RQUICKIBHBA). Description of abbreviations can be found 

within Table 2. Data are represented as least squares means and their standard errors.  
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Table 3-1. Ingredient and nutrient composition of diets.  

 Diets 

Item Gestation Lactation 

Ingredient (% DM)   

 Corn silage 30.7 42.4 

 Grass haylage 28.4   7.0 

 Grass hay 13.2   2.1 

 Dry ground corn – 14.4 

 Prepartum mix1 13.9 – 

 Lactation mix A2 – 14.0 

 Soybean meal 9.0   4.7 

 Cottonseed with lint –   4.5 

 Sugar cane syrup –   3.6 

 Lactation mix B3 –   4.5 

 Close-up supplement4   4.8   2.7 

 Rumensin mix5 –   0.1 

Nutrient composition    

 DM, % 55.5 51.6 

 NDF 48.3 37.6 

 Forage NDF 43.7 25.1 

 Forage NDF, % of NDF 90.5 66.7 

 ADF 32.0 25.2 

 CP 12.2 16.5 

 Starch 14.1 21.2 

 Crude fat    3.16   4.33 

 Ash   7.5   7.3 

 NEl, Mcal/kg DM    1.44 1.61 
1Mix contained 27% commercial dry cow mix with Animate (Phibro Animal Health Corp., Teaneck, NJ), 

17.3% ground corn, 17.3% crimped oats, 13% corn distillers, 12.9% soybean meal, 4.3% calcium 

carbonate, 4.3% calcium sulfate, 2.6% Omnigen AF (Phibro Animal Health Corp.), 1.1 Monocalcium 

phosphate, and <1% of each of the following: Sel-plex 600 (Alltech Biotechnology, Nicholasville, KY) 

and vitamin E. 
2Mix contained 33.6% citrus pulp, 19% soybean meal, 15.6% canola meal, 14% soybean hulls, 4.5% 

calcium carbonate, 4.5% sodium bicarbonate, 2.8% urea, 2.7% fat, 2.4% sodium chloride, and <1% from 

each of the following: Monocalcium phosphate, biotin, and Rumensin 90 (Elanco Animal Health, 

Greenfield, IN). 
3Mix contained 43.6% Fermenten (Church and Dwight Co., Princeton, NJ), 21.8% calcium carbonate, 

10.8% soybean hulls, 7.8% Mintrex blend (Novus International Inc., St. Charles, MO), 5.2% blood meal, 

3.5% magnesium oxide, 2.6% Celmanax (Vi-COR, Mason City, IA), 2.6% Omnigen (Phibro Animal 

Health Corp.), and <1% of each of the following: vitamin E, selenium selenite, and selenium yeast 600. 
4Mix contained 74.5% ground oats, 15.3% commercial amino acid, 8% Reashure (Balchem Encapsulates, 

Slate Hill, NY), and <1% of each of the following: vitamin E and Niashure (Balchem Corporation, New 

Hampton, NY).  
5Rumensin for dairy included at 4,890 mg/kg. 

 

http://www.journalofdairyscience.org/article/S0022-0302(15)00619-0/fulltext#back-tblfn0020
http://www.journalofdairyscience.org/article/S0022-0302(15)00619-0/fulltext#back-tblfn0025
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Table 3-2. Insulin tolerance test (ITT) parameters for plasma glucose in lean and overweight 

cows during late gestation and early lactation.1 

 BCS  P-value 

Item  Lean Overweight SEM BCS Period BCS × Period 

Basal glucose concentration (mg/dL)    0.71 0.48 0.53 

-26 76.5 72.4 4.11    

-13 68.1 72.5 3.79    

+5 71.2 65.1 3.79    

Minimum glucose concentration 

(mg/dL) 

   0.36 0.55 0.70 

-26 44.7 36.9 3.36    

-13 35.9 35.8 3.08    

+5 39.7 36.7 3.08    

Maximum glucose concentration 

(mg/dL) 

   0.53 0.12 0.35 

-26 87.3 86.8 4.82    

-13 73.3 75.7 4.45    

+5 84.1 70.5 4.45    

Glucose CR2 (%/10 min)    0.97 0.23 0.78 

-26     1.03     0.51 0.49    

-13     1.73     2.07 0.45    

+5     1.01     1.25 0.43    

Glucose CR (%/20 min)    0.88 0.52 0.74 

-26     1.46     1.75 0.32    

-13     1.77     1.97 0.30    

+5     1.55     1.23 0.29    

Glucose CR (%/30 min)    0.91 0.55 0.79 

-26     1.83     1.62 0.22    

-13     1.65     1.77 0.20    

+5     1.35     1.53 0.20    

Glucose CR (%/40 min)    0.21 0.39 0.71 

-26     1.17     1.57 0.15    

-13     1.51     1.62 0.14    

+5     1.25     1.36 0.13    

ISRG3 (mg/dL)    0.62 0.41 0.51 

-26 32.0 35.1 2.72    

-13 32.2 36.7 2.52    

+5 31.6 28.4 2.52    

Glucose AUC4 (mg 40 min/dL)    0.54 0.28 0.66 

-26   2163   1930 136    

-13   1730   1797 125    

+5   1952   1800 125    

Glucose AUC (mg 40 to 180 min/dL)    0.20 0.09 0.40 

-26   9559   8740 557    

-13   7580   7652 512    

+5   8675   6832 512    

1Data represent ITT performed at d 26 and 13 prepartum, and d 5 postpartum. 
2CR = clearance rate. 
3ISRG = insulin-stimulated reductions in glucose. 
4AUC = area under the curve. 
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Table 3-3. Glucose tolerance test (GTT) parameters for plasma glucose in lean and overweight 

cows during late gestation and early lactation.1 

 BCS  P-value 

Item Lean Overweight SEM BCS Period BCS × Period 

Basal glucose concentration (mg/dL)    0.70 0.01 0.57 

-25      70.5 71.4     4.55    

-12      77.2 77.2     4.26    

+6      65.5 56.7     4.41    

Minimum glucose concentration (mg/dL)    0.79 0.15 0.86 

-25      64.4 63.2     4.31    

-12      68.1 63.7     3.97    

+6      54.9 56.3     4.14    

Maximum glucose concentration (mg/dL)    0.96 0.07 0.89 

-25       276     285    16.2    

-12       296     295    14.9    

+6       251     240    15.6    

Glucose CR2 (%/30 min)    0.35 0.02 0.82 

-25          3.30     3.10     0.18    

-12          2.55     2.52     0.16    

+6          2.74     2.41     0.17    

Glucose CR (%/60 min)    0.24 0.19 0.53 

-25          2.33     2.32     0.12    

-12          2.07     1.95     0.11    

+6          2.34     1.96     0.12    

T1/2
3 (min)    0.34 0.21 0.58 

-25         31.1  30.2     2.15    

-12      34.6  37.3     1.99    

+6      31.1  36.4     2.07    

Tbasal
4 (min)    0.89 0.93 0.02 

-25       110      110     3.92    

-12       117      103     3.47    

+6       101      116     3.61    

Glucose AUC5 (mg 180 min/dL)    0.97 0.06 0.64 

-25 17090   18110 948    

-12 19938   18791 878    

+6 16150   16168 915    
1Data represent GTT performed at d 25 and 12 prepartum, and d 6 postpartum. 
2CR = clearance rate. 
3T1/2 = time to reach half maximal glucose concentration.  
4Tbasal = time to reach basal glucose concentration. 
5AUC = area under the curve
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Table 3-4. Glucose tolerance test (GTT) parameters for plasma FA in lean and overweight cows 

during late gestation and early lactation.1 

 BCS  P-value 

Item  Lean Overweight SEM BCS Period BCS × Period 

Basal FA concentration (mmol/L)    0.001 0.001 0.54 

-25 179       244      1.19    

-12 209       421      1.17    

+6 501     1153      1.18    

Minimum FA concentration (mmol/L)    0.001 0.01 0.53 

-25      55.4         98.2      1.32    

-12      39.6       143      1.30    

+6 116       466      1.31    

Maximum FA concentration (mmol/L)    0.01 0.001 0.88 

-25 164       280      1.15    

-12 232       467      1.13    

+6 814     1435      1.14    

FA CR2 (%/20 min)    0.07 0.60 0.35 

-25 2.21           0.66        0.33    

-12 2.29           1.25        0.32    

+6 1.80           1.30        0.33    

FA CR (%/40 min)    0.08 0.99 0.99 

-25 2.39           1.63        0.24    

-12 2.37           1.67        0.24    

+6 2.37           1.67        0.24    

T1/2
3 (min)    0.62 0.26 0.41 

-25 47.1         50.0        4.89    

-12 41.3         44.5        4.32    

+6 36.0         52.8        4.67    

GSRF (% from basal)4    0.07 0.33 0.78 

-25 67.09         58.05        5.40    

-12 72.90         65.47        5.01    

+6 71.16         57.51        5.40    

FA AUC5 (mmol 60 min/L)    0.001 0.001 0.02 

-25   5651.88       10417  2439.77    

-12 6420.43        15432  2194.77    

+6 16729   41733  2406.49    

FA AUC (mmol 90 min/L)                                                                                             0.001 0.001 0.03 

-25 7578.86   13988  3538.22    

-12 8470.43   20037  3201.49    

+6      24681   58406  3500.15    

FA AUC (mmol 180 min/L)    0.001 0.001 0.02 

-25 18422   31266  8653.79    

-12 21718   47505  8011.85    

+6 77427 158890  8653.79    
1Data represent GTT performed at d 25 and 12 prepartum, and d 6 postpartum. 
2CR = clearance rate. 
3T1/2 = time to reach half maximal glucose concentration.  
4GSRF = glucose-stimulated reductions in FA. 
5AUC = area under the curve
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Table 3-5. Relationship between surrogate indices for insulin sensitivity1.  
 RQUICKI HOMA-IR QUICKI RQUICKIBHBA 

Item2 ρ P-value ρ P-value ρ P-value ρ P-value 

RQUICKI   1  -0.63 0.001  0.64 0.001  0.95  0.001 

HOMA-IR -0.63 0.001  1  -0.99 0.001 -0.49   0.01 

QUICKI  0.64 0.001 -0.99 0.001  1   0.51  0.001 

RQUICKIBHBA  0.95 0.001 -0.49 0.01  0.51 0.001  1  

1Data represent basal plasma samples collected in lean and overweight cows prior to intravenous glucose tolerance 

tests at d 21 and 14 prepartum, and d 4 postpartum. 

2QUICKI = quantitative insulin sensitivity check, {1 / [log glucose (mg/dL) + log insulin (µU/mL)]}, RQUICKI = 

revised QUICKI, {1 / [log glucose (mg/dL) + log insulin (µU/mL) + log FA (mmol/L)]}, RQUICKIBHBA = 

RQUICKI including BHBA, {1 / [log glucose (mg/dL) + log insulin (µU/mL) + log FA (mmol/L) + log BHBA 

(mmol/L)]}, and HOMA-IR = homeostasis model of insulin resistance, {[glucose (mmol/L) × insulin (µU/mL)] / 

22.5}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 

 

Table 3-6. Comparison of tolerance testing glucose parameters and surrogate indices of insulin 

sensitivity in peripartal dairy cows.1  

 RQUICKI HOMA-IR QUICKI RQUICKIBHBA 

Item ρ P-value ρ P-value ρ P-value ρ P-value 
Insulin tolerance2         

Glucose CR (%/10 min)3  0.38 0.02 -0.26 0.11  0.25 0.12  0.32 0.05 

Glucose CR (%/20 min)  0.14 0.40  0.03 0.87 -0.03 0.86  0.08 0.61 

Glucose CR (%/30 min)  0.24 0.14 -0.06 0.70  0.03 0.83  0.16 0.32 

Glucose CR (%/40 min) -0.01 0.96  0.16 0.34 -0.15 0.36 -0.02 0.91 

ISRG4  -0.01 0.99  0.06 0.71 -0.07 0.66  0.06 0.72 

Glucose AUC (mg 40 min/dL) -0.07 0.66  0.05 0.75 -0.05 0.74  0.05 0.75 
         

Glucose tolerance5         

Glucose CR (%/30 min)  0.20 0.22  0.10 0.54 -0.12 0.44 0.15 0.34 

Glucose CR (%/60 min)  0.16 0.32  0.03 0.82 -0.06 0.69 0.15 0.35 

T1/2 (min)6 -0.16 0.33 -0.04 0.80  0.07 0.67 -0.14 0.37 

Tbasal (min)7  0.17 0.30 -0.12 0.47  0.11 0.50 0.17 0.29 

Glucose AUC (mg 180 min/dL)8 -0.01 0.94  0.18 0.26 -0.18 0.28 -0.01 0.96 

FA CR (%/10 min)  0.24 0.16 -0.32 0.05  0.32 0.05  0.34 0.05 

FA CR (%/20 min)  0.31 0.06 -0.25 0.13  0.25 0.13  0.32 0.05 

FA CR (%/30 min)  0.11 0.50 -0.12 0.46  0.12 0.46  0.14 0.38 

FA CR (%/40 min)  0.12 0.47 -0.08 0.62  0.08 0.63  0.19 0.26 

FA AUC (mg 20 min/dL) -0.05 0.74 -0.38 0.02  0.38 0.02 -0.11 0.49 

FA AUC (mg 30 min/dL) -0.06 0.73 -0.37 0.02  0.37 0.02 -0.12 0.46 

FA AUC (mg 40 min/dL) -0.07 0.65 -0.34 0.04  0.34 0.04 -0.14 0.41 
1Description of abbreviation can be found within table 1. 
2CR = clearance rate. 
3Data reflect samples collected at d 26 and 13 prepartum, and d 5 postpartum. 
4ISRG = insulin-stimulated reductions in glucose. 
5Data reflect samples collected at d 25 and 12 prepartum, and d 6 postpartum. 
6T1/2 = time to reach half maximal glucose concentration. 

7Tbasal = time to reach basal glucose concentration. 
8AUC = area under the curve. 

 

 

 

 

 

 

 

 

 



64 

 

CHAPTER 4 

CHARACTERIZATION OF THE PLASMA LIPIDOME IN DAIRY CATTLE 

TRANSITIONING FROM GESTATION TO LACTATION: IDENTIFYING NOVEL 

BIOMARKERS OF METABOLIC IMPAIRMENT. 

 

ABSTRACT 

The discovery of novel biomarkers for metabolic disease can refine nutritional 

interventions aimed at improving dairy cow health and performance. Therefore, our objective was 

to characterize the plasma lipidome and identify metabolites associated with common markers of 

metabolic disease in peripartal dairy cattle. Twenty-seven multiparous Holstein cows were 

enrolled -28 d prepartum and fed diets formulated to meet or exceed requirements. Blood and liver 

samples were routinely collected from enrollment through d 14 postpartum. To characterize the 

plasma lipidome spanning nine time points, untargeted lipidomics was performed using 

quadrupole time-of-flight mass spectrometry. Univariate and multivariate analyses of normalized, 

auto-scaled lipidomic data were performed. Based on postpartum metabolic health data, cows were 

categorized into low or high free fatty acid area under the curve (FFAAUC; d 1 – 14 postpartum; 

4,915 ± 1,369 vs. 12,501 ± 2,761 [μmol/L × 14 d]; n = 18), β-hydroxybutyrate area under the curve 

(BHBAAUC; d 1 – 14 postpartum; 4,583 ± 459 vs. 7901 ± 1,206 [μmol/L × 14 d]; n = 18), or mean 

postpartum liver lipid content (d 5 and 14 postpartum; 5 ± 1 vs. 12 ± 2 % of wet weight; n = 18). 

Significant variables associated with a specific category were identified based on leverage/squared 

prediction error plots. Lipidomics revealed 301 plasma lipids including 8 cholesterol esters, 163 

phospholipids, and 130 acylglycerols. Independent of category, all cows displayed dramatic 

decreases in plasma triacylglycerols and monoalkyl-diacylglycerols (P < 0.01), and the majority 

of phospholipids reached a nadir at parturition (P < 0.01). Analyses revealed that 

phosphatidylcholine (PC) 32:3, 35:5, 37:5 were specific for high FFAAUC, PC 31:3, 32:3, 35:5, and 
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37:5 were specific for high BHBAAUC, and PC 31:2, 31:3, and 32:3 were specific for high liver 

lipid. Notably, PC 32:3 was specific for cows with elevated FFA, BHBA, and liver lipid content, 

a metabolite that was lower in abundance relative to healthy cows (P < 0.01). Other lipids specific 

for two or more categories included phosphatidylglycerol 38:4 and lysophosphatidylcholine 15:0. 

Our lipidomics approach confirms dynamic remodeling of the bovine lipidome during the 

peripartum. Future focus should be on nutritional interventions that increase plasma PC 32:3 in 

cows during the peripartal period. 
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INTRODUCTION 

The prevalence of metabolic disease is high during the transition from gestation to 

lactation, affecting on average 40% of the dairy cow population (LeBlanc, 2010). Metabolic 

diseases develop because of the onset of negative energy balance caused by insufficient energy 

intake and increased energy demand for lactation (Curtis et al., 1985). Postpartum metabolic 

diseases in dairy cows include fatty liver, ketosis, mastitis, metritis, milk fever, and displaced 

abomasum. The development of a metabolic disease can compromise milk production and 

reproductive performance as well as cost associated with health management (Grӧhn et al., 1998; 

Grӧhn et al., 1999; Duffield et al., 2009). Therefore, early detection or prevention of metabolic 

disease has the potential to minimize disease onset and thus improve milk production, fertility, and 

profitability (Saleem et al., 2012; Hailemariam et al., 2014; Kenéz et al., 2016). The advent of 

lipidomics has the potential to improve our understanding of bovine lipid metabolism and reveal 

novel biomarkers for metabolic disease which will refine nutritional interventions aimed at 

improving dairy cattle health and performance.  

At the present time, circulating free fatty acid (FA) and β-hydroxybutyrate (BHBA) are 

industry standard biomarkers for metabolic impairment during the periparturient period. 

Laboratory and cow-side tests have been developed to monitor circulating free FA and BHBA 

levels, respectively. The alarm threshold levels for poor reproductive performance and milk 

production for prepartum free FA and BHBA are 270 µmol/L and 550 µmol/L, respectively; and 

postpartum free FA of 600 µmol/L (Ospina et al., 2010). The limitations for free FA and BHBA 

testing are that (A) these metabolite thresholds represent the disease state (rather than pre-onset 

disease which would be preferred), (B) free FA and BHBA monitoring ignores the interactions 

between other causative metabolites of metabolic disease, (C) laboratory testing is expensive and 
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requires additional labor, and (D) individual cow blood sampling is impractical. Therefore, 

alternative biomarkers for postpartum metabolic disease are needed. 

Lipidomics is a system biology approach that emerged in the field of life sciences to 

investigate metabolite alterations in biological samples (Nicholson et al., 1999; Fischer, 2008; 

Nam et al., 2015). The application of lipidomics to identify novel biomarkers of metabolic disease 

in non-ruminants has been extensively employed (Barber et al., 2012; Donovan et al., 2013; Nam 

et al., 2015). However, only a limited number of studies have employed this analytical technology 

to better understand dairy cow health and performance (Hailemariam et al., 2014; Imhasly et al., 

2014; Sun et al., 2014; Imhasly et al., 2015; Rico et al., 2015). Initial work has identified several 

phosphatidylcholines (PC) as biological indicators of postpartum metabolic disease (Hailemariam 

et al., 2014). For instance, PC 30:2, 32:2, 36:2, 36:3, 36:4, 38:3, 38:4, 38:6, 40:2, 40:3, 40:4, and 

42:2 can be used to distinguish between healthy cows or those with a varying clinical disease 

(Imhasly et al., 2014). Phosphatidylcholine is a promising candidate because of the role it plays in 

hepatic very low density lipoproteins (VLDL)-triacylglycerol synthesis and export (Agren et al., 

2005). However, a more comprehensive analysis of the bovine lipidome with multiple common 

markers of metabolic disease has the potential to refine our current understanding. Applying high 

throughput mass spectrometry-based technologies and bioinformatics can be employed 

cooperatively to achieve this goal. Therefore, our objective was to employ this approach to 

characterize the bovine plasma lipidome in Holstein dairy cows transitioning from gestation to 

lactation, and relate these findings to circulating free FA, BHBA and liver lipid accumulation.  
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MATERIALS AND METHODS 

Experimental Design  

Experimental procedures were approved by the Institutional Animal Care and Use 

Committee at West Virginia University (Morgantown). The experiment was completed at Dovan 

Farms, a West Virginia University Agricultural Research and Education Partner located in Berlin, 

PA. Nonlactating, pregnant, multiparous Holstein cows (n = 27; parity 2 and 3) were enrolled 32 

d prior to expected parturition, and offered a total mixed ration (TMR) to meet or exceed nutrient 

requirements (Table 4-1). Cows were fed once (0800 h) and twice (0800 and 1900 h) daily during 

pregnancy and lactation, respectively, and were provided free access to water. Cows were milked 

twice daily at 0800 and 1800 h from d 1 to d 14 postpartum, then milked three times a day thereafter 

(0500, 1400, and 2100 h). 

 

Sample Collection  

Blood collection (10 mL) by coccygeal venipuncture occurred prior to morning feeding on 

d -28, -21, -14, daily from -7 to 7, 10, 12, 14, 21, and 28, relative to expected calving. Plasma 

samples were placed on ice for 30 min, whereas serum samples were allowed to clot for 30 min at 

room temperature until centrifugation at 3,400 × g for 10 min. Following centrifugation, plasma 

and serum samples were removed and snap-frozen in liquid nitrogen, and then stored at -80oC until 

further analysis. Samples of TMR were collected weekly throughout the experiment, and dry 

matter content was determined by heating at 60oC until a static weight was observed. Body weight 

(BW) and body condition score (BCS) were recorded weekly.  

Liver tissue biopsies were performed prior to morning feeding on d -28, 5, and 14 d, relative 

to expected calving. Cows were anesthetized using xylazine (0.04 mL/kg of BW) delivered via the 
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coccygeal vein. After the hair was clipped, the biopsy site located within the 11th intercostal space 

was scrubbed with iodine and anesthetized with 5 mL of 2% lidocaine HCL (Vedco Inc., Saint 

Joseph, MO) delivered subcutaneously. A 0.5 cm incision was made through the skin and 

fabricated trocar (Hughes, 1962) was inserted to collect approximately 1 g of liver tissue. Liver 

samples were immediately snap-frozen in liquid nitrogen and stored at -80oC. Following biopsy, 

the collection site was stapled and sprayed with antiseptic, and ceftiofur hydrochloride antibiotic 

was administered once by intramuscular site (0.68 mL/kg of BW; Excenel RTU; Zoetis, Florham 

Park, NJ). 

 

Sample Analyses 

Nutrient composition of TMR was analyzed using near-infrared spectroscopy (AOAC 

method 989.03) by Cumberland Valley Analytical Services Inc. Plasma samples were analyzed in 

duplicate for free FA, glucose, and BHBA by commercial kits using enzymatic methods (HR series 

FA-HR (2), Autokit Glucose, Autokit 3-HB, respectively; Wako chemicals USA Inc., Richmond, 

VA). Plasma concentrations of insulin were determined by ELISA (Mercodia Bovine Insulin 

ELISA; Mercodia AB, Uppsala, Sweden). Spectrophotometric measurements were conducted 

using a SpectraMax Plus 384 Microplate Reader (Molecular Devices, Sunnyvale, CA). Total liver 

lipid content was determined using method described by Hara and Radin (1978), and Piepenbrink 

and Overton (2003).  

For lipidomics, plasma samples were extracted using a modified Bligh and Dyer procedure 

to obtain a crude lipid fraction. In brief, 60 l of plasma was gently mixed in a glass vial with 940 

ml ddH2O and 2.9 mL methanol/dichloromethane (2:0.9, v/v) containing the following internal 

standards: N-lauroyl-D-erythro-sphingosine (Cer d18:1/12:0, 6 ng/mL), 1,3(d5)-dihexadecanoyl-
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glycerol (d5-DAG d16:0/16:0, 12.5 ng/mL), D-galactosyl-β-1,1' N-lauroyl-D-erythro-sphingosine 

(GlcCer d18:1/12:0, 3.3 ng/mL), D-lactosyl-β-1,1' N-lauroyl-D-erythro-sphingosine (LacCer 

18:1/12:0, 10.6 ng/mL), 1,3(d5)-dihexadecanoyl-2-octadecanoyl-glycerol (D-5 TAG 

16:0/18:0/16:0, 0.5 ng/mL), cholesteryl-d7 palmitate (cholesteryl-d7 ester 16:0, 30 ng/mL), 1,2-

dilauroyl-sn-glycero-3-phosphate (sodium salt) (PA d12:0/12:0, 1025 ng/mL), 1,2-dilauroyl-sn-

glycero-3-phosphocholine (PC 12:0/12:0, 0.2 ng/mL), 1,2-dilauroyl-sn-glycero-3-

phosphoethanolamine (PE d12:0/12:0, 1.6 ng/mL), 1,2-dilauroyl-sn-glycero-3-phospho-[1'-rac-

glycerol] (PG d12:0/12:0, 200 ng/mL), 1,2-dilauroyl-sn-glycero-3-phospho-L-serine (PS 

d12:0/12:0), N-lauroyl-D-erythro-sphingosylphosphorylcholine (SM d18:1/12:0, 0.3 ng/mL), all 

internal standards were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). To obtain a 

biphasic mixture, an additional 1mL of ddH2O and 0.9 mL dichloromethane was added and 

vortexed. The resultant mixture was incubated on ice for 30 min and centrifuged (10 min, 3000 g, 

4oC) to separate the organic and aqueous phases. The organic phase was removed and stored at -

20oC. Just prior to analysis 1 mL of the organic layer was dried using a nitrogen evaporator 

(Organomation Associates, Inc., Berlin, MA, USA) and re-suspended in 250 µl of running solvent 

(dichloromethane:methanol (1:1) containing 5 mM ammonium acetate), and 5 mg/mL of ceramide 

C17:0 used to track instrument performance. All solvents used were HPLC grade. 

Lipid analysis was conducted by MS/MSALL on a TripleTOFTM 5600 (AB SCIEX, 

Redwood City, CA) mass spectrometer. Samples (50 L injection volume) were infused by HPLC 

at a constant flow rate of 5 µL/min using a LC-20AD pump, and SIL-20AC XR autosampler 

(Shimazu, Canby, OR). Source parameters were as follows: ion source gases 15 psi (GSI) and 20 

psi (GS2), curtain gas 30 psi, temperature 150oC, positive ion spray voltage +5500V, declustering 

potential at 80 V and collision energy at 10V. Each sample was run in duplicate in positive ion 
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mode. An initial TOF MS scan provided an overview of the total lipid content at an accumulation 

time of 5 s. Precursor ions were selected by sequential 1 Da mass steps from 200 to 1200 m/z, and 

the analytes in each 1Da step were introduced into the collision chamber and fragments identified 

by TOF with a scan range of 100-1500 m/z and accumulation time of 450 ms. TOF MS and 

MS/MSALL data obtained was post-aligned to internal standards using Analyst 1.7 TF. 

Lipid identifications were validated using a pooled sample that was extracted and 

sequentially analyzed 8 times. Criteria for inclusion of lipid analytes for analysis was that MS/MS 

fragment peaks were present in 7 of the 8 pooled runs, and coefficient of variation (CV) for peak 

identifications were less than 20 %. Peak identifications meeting these criteria were then used to 

develop a targeted method in LipidView. The targeted method was used to identify these pre-

validated lipid species in experimental samples using a custom made MatLab script and 

MultiQuant software (version 3.0, AB SCIEX, Concord, ON, Canada). All peak intensities were 

corrected by their corresponding internal standard, and each sample duplicate was averaged. If 

duplicates varied more than 30%, the sample was re-run. For statistical analyses, intensity values 

of 0 were replaced with a minimum intensity value that was calculated by dividing the average 

intensity value of for that particular lipid by 0.001. 

 

Statistical Analyses 

Changes in BW and BCS were analyzed under the GLM procedure of SAS (version 9.3; 

SAS Institute Inc., Carry, NC). Plasma variables and liver lipid percent were analyzed as repeated 

measures over time relative to parturition under the MIXED procedure of SAS (SAS Institute Inc.). 

The statistical model included the random effect of cow, and the fixed effect of time (day relative 

to parturition). The most appropriate covariance structure for the repeated measures analysis was 
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selected for each variable after evaluating 3 different covariance structures (variance components, 

first-order autoregressive, compound symmetry), and the structure with the smallest Akaike’s 

information criterion coefficient was selected for analysis. The method of Kenward-Rogers was 

used for calculation of denominator degrees of freedom. In order to reduce risk of type I error for 

repeated measures analysis, the significance level was decreased to P ≤ 0.05, and trends toward 

significance were considered at 0.05 < P ≤ 0.10. Studentized residual values >3.0 or <-3.0 were 

considered outliers and removed from the analysis (typically 1 per response variable). All related 

results are expressed as least squares means and their standard errors, unless stated otherwise. 

Lipidomic data were analyzed using MetaboAnalyst (Xia et al., 2016). Log transformation 

and autoscaling were employed for normalization of all lipidomic data, followed by visual 

inspection of normal distribution. To perform longitudinal analysis, we analyzed time-dependent 

metabolite changes over an 8-wk period. Multivariate analysis of normalized, auto-scaled 

lipidomic data included random forest (RF) classification, partial least squares discriminant 

analysis (PLS-DA), ANOVA, and Pearson’s correlation coefficient procedures. Based on 

postpartum metabolic health data, cows were separately categorized into low or high free FA area 

under the curve (FFAAUC), BHBA area under the curve (BHBAAUC), or mean postpartum liver 

lipid content. Significant variables associated with a specific category were identified based on 

leverage/squared prediction error plots.  

 

RESULTS 

Metabolic Health Status 

The transition from gestation to lactation was accompanied by suppressed DMI (Figure 4-

1A; P < 0.01), as well as BW and BCS loss (Figure 1B and C; P < 0.01). Characteristic 
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observations indicative of metabolic stress were detected. Specifically, plasma free FA and BHBA 

levels, and liver lipid content were elevated postpartum (Figure 4-1D, E, and F; P < 0.01), while 

plasma insulin and glucose levels were expectedly lower following parturition (Figure 4-1G, and 

H; P < 0.01). 

 

Plasma Lipidome Remodeling during the Peripartum 

HPLC/TOF MS data were loaded for PLS-DA analyses to investigate the global lipidome 

of plasma samples from multiparous Holstein dairy cows during the transition period. The 

lipidomic approach revealed 301 plasma lipids including 163 phospholipids (phosphatidylcholine 

(PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol (PG), 

lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylserine 

(LPS)), 130 fatty acylglycerols (triacylglycerol (TAG), diacylglycerol (DAG), and monoalkyl-

diacylglycerol (MADAG)) and 8 cholesteryl esters (CE). A two-dimensional PLS-DA model was 

applied to identify a subset of variables that distinguishes between time points (d -28 to d 14, 

relative to parturition) and a variable importance of projection (VIP) score of > 1 based on 

Component 1 (explained 40 % of variables) of the PLS-DA model was used to determine the 

relative contribution of lipid species to discriminate between time points (Figure 4-2). PLS-DA 

(Figure 4-2A) score plots illustrate a significant separation across all time points. Variance for 

Component 1 was explained by dynamic changes in TAG, MADAG, PS, and LPS (Figure 4-2B). 

Additionally, a dominant lipid pattern showing a reduction of TAG 60:1, 62:0, 56:1, 60:0, 56:0, 

62:1, 58:0, 58:1, 58:2, and 56:4; MADAG 58:1, 60:1, 60:2, 62:1, 56:4, 60:0, 54:5, 52:1, 48:0, 52:0, 

58:0, and 50:0; PS 28:0; and LPS 30:6 postpartum. These changes reflected total plasma TAG and 

MADAG, LPS, PS levels which consistently declined during the transition from gestation to 
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lactation (Figure 4-4 and 4-5; P < 0.01); while total PC and PE levels increased postpartum. The 

majority of phospholipids such as LPC, PC, LPE, and PE reached a nadir at parturition (P < 0.01). 

Component 2 (explained 19% of the variance; Figure 4-2C) was explained by reduction in TAG, 

MADAG, PS, and LPS; meanwhile increase in LPE 18:2, PC 34:2, LPC 18:2, and DAG 38:3 

during the peripartum period. Specifically, component 2 included reductions in TAG 60:1, 62:0, 

56:1, 56:0, 60:0, 62:1, 58:0, and 58:1; MADAG 60:1, 60:2, 52:2, 56:4, 62:2, 60:0, 54:5, 50:1, 48:0, 

and 52:0; PS 28:0; and LPS 30:6. 

Random forest analysis was developed by Breiman (2001) and has since been used as a 

supervised statistical tool in clinical metabolomics and gene selection studies (Díaz-Uriarte et al., 

2006; Chen et al., 2013). It is an excellent classification method that provide measures for 

metabolite selection by identifying key metabolites that discriminate between time points during 

the transition period. The main advantage of this model is to retrieve very small sets of metabolites 

that possess a high predictive accuracy, thus can be an ideal method for metabolite characterization 

and classification. Random forest (Figure 4-3A) is used to predict classes of metabolites based on 

days and is based on bootstrap sampling (e.g. take random samples from original data set with 

replacement), thus some data are left out of the bootstrap sample, which are called out-of-bag 

(OOB). The OOB data is then used as a test sample to predict the classification error rate. 

Therefore, the mean decrease in accuracy (Figure 4-3B) is calculated based on prediction of the 

OOB data set. Figure 3B shows important metabolites that differentiate between time points. As 

cows approached parturition, TAG 38:2 and 58:1, LPS 30:6, and MADAG 58:1, 46:0, 54:1, and 

60:7 declined and remained low until day 14, whereas DAG 38:3, LPE 18:2, LPC 16:0 and 18:2, 

PG 36:2, and PC 36:2 and 34:2 increased after parturition.  
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Prepartum data was isolated, and two-dimensional PLS-DA model was used to identify a 

subset of variables that distinguishes between prepartum time points (Figure 4-6A). Plasma lipids 

LPS, TAG, LPC, and MADAG decreased as parturition approached. Prepartum variance for 

Component 1 is explained by changes in LPS, TAG, LPC, and MADAG. A heat map shows 

reduction in LPS 30:6, TAG 38:2, 54:0, 56:1, 54:1, 56:2, 56:3, 56:0, and 56:6, LPC 18:0, 15:0, 

20:4, and 20:3, and MADAG 54:1, 52:0, 62:1, 60:2, 60:0, 54:7, 52:1, 56:3, and 54:0 prepartum 

(Figure 4-6C).  

Postpartum data was isolated, and two-dimensional PLS-DA model was used to identify 

metabolites that distinguishes between postpartum time points (Figure 4-6B). Plasma PC, LPC, 

PG, LPE, PE, and DAG increased postpartum. Postpartum variance for Component 1 is explained 

by changes in PC, LPC, PG, LPE, PE, and DAG. A heat map shows increases in PC 34:2, 36:2, 

36:3, 35:2, 33:2, 35:3, 36:4, 33:3, 36:1, and 34:3, LPC 18:2, 16:0, 18:0, 18:1, 28:3, 30:3, 28:2, 

16:1, and 30:4, PG 38:5, LPE 18:2, PE 34:2, 36:2, and 26:4, and DAG 38:3 postpartum (Figure 4-

6D). 

 

Correlations of PC and TAG Species 

Because of the characterized relationship between hepatic PC synthesis and VLDL-TAG 

export (Li and Vance, 2008), we explored the relationship between circulating PC and TAG using 

Pearson’s correlation coefficient analysis (Figure 4-7). A heat map (r-values) demonstrates that 69 

PC (C24-C42) were correlated with 49 TAG (C38-C64). Our results illustrate that the plasma 

levels of PC species were positively or negatively correlated with the plasma levels of TAG, 

depending on fatty acyl chain length of PC species. 
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Identification of Biomarkers Associated with Metabolic Stress 

Based on postpartum metabolic health status, cows were categorized into low or high free 

FFAAUC (d 1-14 pp; 4,915 ± 1,369 vs. 12,501 ± 2,761 [µmol/L × 14 d]), BHBAAUC (d 1-14 pp; 

4,583 ± 459 vs. 7,901 ± 1,206 [µmol/L × 14 d]), or mean liver lipid deposition (d 5 and 14 pp; 5 ± 

1 vs. 12 ± 2 % of wet weight, respectively). Significant variables associated with a specific 

category were identified based on leverage/squared prediction error plots (Figure 4-8). Our 

analyses revealed that PC 36:6, 32:3, 34:4, 32:2, 31:3, 34:6, 33:5, 31:2, 37:6, 38:2, 40:5, 38:3, 

35:6, 37:0, and PE 34:4 and 34:3 were specific for high liver lipid content, PC 32:3, 35:2, 38:1, 

35:5, 33:1, 37:2, 37:0, 35:0, 33:0, 37:5, 33:2, 36:4, 39:2, PE 39:0 and 45:4, LPC 30:2 and 30:1, 

TAG 46:2, and PG 38:4 were specific for high FFAAUC, whereas PG 36:4, 39:0, 38:4, 38:6, PC 

37:5, 32:3, 35:5, 32:0, 31:3, 32:4, 30:2, DAG 40:4, 36:0, 30:2, LPC 22:5, 15:0, 18:0, and PE 37:6 

and 34:3 were specific for high BHBAAUC (Figure 4-8). Notably, PC 32:3 was specific for high 

FFAAUC, BHBAAUC, and liver lipid cows.  

 

DISCUSSION 

The transition from gestation to lactation is defined as three weeks before to three weeks 

after parturition, which imposes a metabolic risk in dairy cow (Grummer, 1995; Drackley, 1999). 

It is well documented that the development of metabolic diseases are associated with suppressed 

feed intake and increased energy requirements for lactation (Curtis et al., 1985). In particular, 

dysfunctional lipid metabolism is associated with diverse metabolic disorders in Holstein dairy 

cows (Drackley, 1999). Thus, better understanding of bovine lipid metabolism is crucial to 

improve animal health and productivity. In our study, we utilized lipidomics approach to profile 

the plasma lipidome of multiparous dairy cow transitioning from gestation to lactation to shed light 
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on our understanding of metabolic disease and work towards identifying novel targets for future 

nutritional intervention aimed at improving dairy cow health and performance.  

In our study, the dramatic loss of BW and BCS were accompanied by suppressed DMI and 

elevated free FA and BHBA, responses that have been previously observed in periparturient dairy 

cows (Roche et al., 2009), reflecting a metabolic adaptation associated with the onset of lactation 

in dairy cows (Reid et al., 1986). Adaptations in nutrient metabolism ensure energy supply to the 

fetus and neonate (Bauman and Currie, 1980). However, maternal adaptations accelerate lipolysis 

and predispose dairy cow to enhanced risk for developing a postpartum metabolic disorders. 

Insulin resistance is a common physiological response during the transition from late gestation to 

early lactation, which promotes adipose tissue lipolysis and enhances metabolic disease (Rico, et 

al., 2015; Rico et al, 2016). Previously, our lab utilized a targeted lipidomic approach to reveal 

sphingolipid ceramide as a plasma and skeletal muscle biomarker of insulin resistance (Rico et al., 

2016). In the present study, we utilized an untargeted lipidomics approach to (1) identify other 

potential biomarkers of metabolic disease and (2) improve our understanding of phospholipid and 

acylglycerol metabolism in relation to metabolic health. 

PLS-DA score plots demonstrated clear separation of plasma metabolites between time 

points. As cows approach parturition, neutral lipids such as TAG and MADAG declined and 

remained low postpartum. Levels of TAG, MADAG, LPC, and PC differed significantly pre- and 

postpartum, indicating dynamic changes of lipids during peripartum. Additionally, RF was used 

as an alternative classification model. Similarly, results demonstrate reduction of TAG and 

MADAG, meanwhile increase of PC and LPC species postpartum. To consolidate our 

understanding, we applied PLS-DA pre- and postpartum, separately. VIP scores result for 

Component 1 was comparable to our previous results, which indicates reduced plasma levels of 
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TAG and higher content of PC and LPC. Comparable to our study, PC 34:2 and 36:2 were 

recognized as the most contributing metabolites to distinguish between pre- and postpartum in 

dairy cow (Kenéz et al., 2016). In a non-ruminant study, lipidomic analysis revealed significant 

elevation of ether-linked PC and PE in plasma of an obese individual (Donovan et al., 2013). These 

specific results suggest that low levels of plasma PC and LPC are associated with improved cow 

health. However, a challenging question is whether all PC species are associated with metabolic 

disease or rather a subclasses of them. 

In biological systems, PC comprises majority of plasma VLDL components following PE 

and LPC (Agren et al., 2005). Phosphatidylcholine is the main form of choline phospholipids and 

reduced hepatic PC levels impair VLDL export (Zeisel, 1992; Verkade et al., 1993; Fast and 

Vance, 1995), thus, elevate the accumulation of TAG in the liver (Bobe et al., 2004). Ruminants 

in particular, have an inherently low capacity to remove TAG from the liver in the form of VLDL 

(Kleppe et al., 1988; Pullen et al., 1990), and excessive hepatic free FA uptake can lead to TAG 

accumulation, and increase the incidence of fatty liver disease and ketosis, which further can lead 

to serious metabolic disorders, such as mastitis, metritis, and milk fever (Herdt, 2000; Bobe et al., 

2004). Phosphatidylethanolamine may be as well required for VLDL assembly, particularly 

nascent VLDL contain more PE than plasma VLDL (Hamilton and Felding, 1989). Unfortunately, 

the requirement of PC and PE for VLDL assembly has not been defined for dairy cows. However, 

phospholipids have been recognized as potentially important metabolites for VLDL assembly and 

secretion (Van de Top et al., 1996; Kessler et al., 2014). Therefore, to facilitate VLDL export, PC 

and PE are likely needed. Noticeably, despite higher levels of PC and PE later in early lactation, 

plasma TAG remained low. Possible explanation might be that origin of PC extract from plasma 

is uncertain, and expected changes in circulating PC likely depend on acyl chain moiety.  
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One should consider the diverse structure of TAG, degree of saturation, and their 

contribution on VLDL assembly and secretion. Therefore, we investigated the pattern of TAG 

saturation during the peripartum period. Levels of saturated and monounsaturated TAG were 

negatively correlated with the progress of the peripartum period. As cows progress through 

lactation mono- and polyunsaturated TAG (e.g. TAG 60:1, 58:2) and saturated TAG (e.g. TAG 

60:0) are reduced. This reflects the hepatic accumulation of TAG, thus progression of fatty liver 

disease. Of note, the present study indicates that the PC acyl moiety in the plasma is associated 

with levels of plasma TAG. The acyl chain length correlation between PC and TAG species can 

be either positive or negative. In a previous studies, the PC levels were shown to be elevated in 

periparturient dairy cows, which indicates the abnormal lipid metabolism (Hailemariam et al., 

2014; Kenéz et al., 2016). In particular, our results are comparable to Imhasly et al. (2015) which 

reported reduced TAG species with different chain length and levels of saturation, meanwhile 

increased PC species postpartum. Thus, one can postulate that PC acyl moiety may influence TAG 

export. Further, to clearly elucidate the association of PC species with TAG species, liver 

exploration is warranted.  

Our lipidomic investigation revealed a novel lipid class not yet considered in dairy science, 

MADAG. Monoalkyl-diacylglycerol are neutral lipids that aggregate within hepatic lipid droplets 

with TAG (Bartz et al., 2007). Our results suggest that the hepatic transport of MADAG and TAG 

may share a similar pathway. Further, a similar pattern of TAG remodeling was observed for 

saturated and unsaturated MADAG. Unfortunately, the relative contribution of MADAG as a 

modulators of energy metabolism and VLDL secretion in ruminants and monogastrics are 

unknown. Thus, future studies should characterize the role of MADAG in VLDL assembly and 

their association with metabolic disease. 
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 Excessive hepatic free FA during the peripartum period can be re-esterified to form other 

neutral lipids (i.e., DAG, and CE) or glycerophospholipids (i.e., LPC, PS, LPG, and PG). Several 

studies have shown the relative contributions of DAG and LPC in obesity and diabetic non-

ruminants (Erion and Shulman, 2010; Barber et al., 2012). For instance, LPC 16:0 was identified 

as the key metabolite in fatty liver-induced insulin resistance in humans (Lehmann et al., 2013). 

Additionally, it has been speculated that DAG is a potential biomarker of insulin resistance in 

humans (Erion and Shulman, 2010). Specifically, DAG 18:1, 18:2, and 20:4 were shown to be 

positively associated with acute muscle insulin resistance in humans (Szendroedi et al., 2013). In 

our study, levels of total DAG increased after parturition that developed in parallel with elevated 

insulin resistance in early lactation dairy cow. However, more investigation is needed in dairy 

cows to unravel the role of DAG species on insulin sensitivity during the periparturient period.   

Additionally, we analyzed the association of PC species with common biomarkers of 

metabolic impairment during the peripartum period. The circulating free FA and BHBA are 

diagnostic biomarkers of the active disease state and poor performance (Ospina et al., 2010; Ospina 

et al., 2010). However, they are not an ideal predictive biomarkers (reflect disease state) for 

metabolic disease during the transition period. Thus, evaluating PC species as potential predictive 

biomarkers of metabolic disease are warranted. The relative concentrations of several PC species 

were suppressed with increased postpartum liver lipid content (component of fatty liver disease), 

high free FA and BHBA. Therefore, one may assume that not all PC species contribute in similar 

manner to VLDL assembly. In particular, PC 32:3 was reduced in all aforementioned categories, 

which indicates the possible importance of this metabolite in VLDL assembly, thus improving cow 

health.   
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In conclusion, the plasma samples of multiparous Holstein dairy cow model were 

characterized using HPLC/QTOF MS-based lipid profiling to enhance understanding of lipid 

metabolism during transition from gestation to lactation. Our lipidomic approach identified the 

importance of PC 32:3 as a potential biomarker of metabolic disease. Future studies should 

determine the prognostic and diagnostic efficacy of PC 32:3 to monitor disease progression. 

Moreover, the development of nutrition interventions that increase PC 32:3 may be beneficial. 

Finally, the structural and functional role of MADAG should be considered in content of hepatic 

VLDL export.

1 
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Figure 4-1. Dry matter intake (DMI) suppresses as cow approaches parturition, and body weight 

(BW) and body condition score (BCS) decline postpartum. Circulating free fatty acid (FA) and β-

hydroxybutyrate (BHBA), and liver lipid content are elevated postpartum. Insulin and glucose 

concentrations decrease postpartum. (A) DMI, (B) BW, (C) BCS, (D) FA, (E) BHBA, (F) hepatic 

lipid deposition, (G) insulin, and (H) glucose. Data are represented as least squares means and their 

standard errors.  
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Figure 4-2. Plasma neutral lipids triacylglycerol (TAG) and monoalkyl-diacylglycerol (MADAG) 

decrease dramatically during the peripartum. (A) Two-dimensional partial least squares 

discriminant (PLS-DA) score plot, (B) VIP scores analysis based on Component 1 of the PLS-DA, 

and (C) VIP scores analysis based on Component 2 of the PLS-DA used to rank the relative 

contribution of metabolites to the variance between time points. Variance for Component 1 is 

explained by changes in TAG, MADAG, phosphatidylserine (PS), and lysophosphatidylserine 

(LPS). Normalized, auto-scaled data is representative of plasma collected from multiparous 

Holstein dairy cows (n= 27) prior to morning feeding at nine time points spanning the peripartum 

(d-28 to d14). PLS-DA score plots demonstrate good fitness and high predictability of model with 

R2 and Q2 values ≥ 0.73 and 0.85, respectively. Data were obtained using quadrupole time-of-flight 

mass spectrometry. 
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Figure 4-3. Random Forest analysis revealed that subjects are distinguishable across nine time 

points (class error = 0.15). Permutation importance reveals significant metabolites identified by 

Random Forest method. The metabolites are ranked by the mean decrease in classification 

accuracy when they permuted. Each lines represent the error rates for each day. (A) Random 

Forest, (B) permutation importance. Data were obtained using quadrupole time-of-flight mass 

spectrometry. 
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Figure 4-4. Circulating total triacylglycerol (TAG) and neutral ether lipid monoalkyl-

diacylglycerol (MADAG) decreased postpartum. Circulating phospholipid concentrations are 

lowest at parturition in periparturient Holstein dairy cows. Normalized, auto-scaled data reflect the 

sum of (B) 49 TAG (C38-C64), (C) 64 MADAG (C40-C62), (D) 29 lysophosphatidylcholine 

(LPC; C14-C30), (E) 69 phosphatidylcholine (PC; C24-C42), (F) 5 lysophosphatidylethanolamine 

(LPE; C18-C26), and (G) 38 phosphatidylethanolamine (PE; C26-C45) species measured in 

plasma collected from multiparous Holstein dairy cows (n = 27) at nine time points spanning the 

peripartum (d -28 to d 14). Data were obtained using quadrupole time-of-flight mass spectrometry. 
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Figure 4-5. Circulating cholesterol esters (CE), diacylglycerol (DAG), and phosphatidylglycerol 

(PG) decrease as cow approaches parturition, circulating lysophosphatidylserine (LPS), and 

phosphatidylserine (PS) decrease postpartum, and lysophosphatidylglycerol (LPG) remains 

unchanged during the peripartum. Data were obtained using quadrupole time-of-flight mass 

spectrometry. 
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Figure 4-6. Plasma lipids lysophosphatidylserine (LPS) and triacylglycerol (TAG) prepartum and 

phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) postpartum decrease drastically.  

(A) Two-dimensional partial least squares discriminant (PLS-DA) score plot prepartum, (B) Two-

dimensional PLS-DA score plot postpartum, (C) VIP scores analysis based on Component 1 of the 

PLS-DA prepartum, (D) VIP scores analysis based on Component 1 of the PLS-DA postpartum, 

(E) VIP scores analysis based on Component 2 of the PLS-DA prepartum, and (F) VIP scores 

analysis based on Component 2 of the PLS-DA postpartum used to rank the relative contribution 

of metabolites to the variance between time points. Prepartum variance for Component 1 is 

explained by changes in LPS, TAG, LPC, and monoalkyl-diacylglycerol (MADAG). Postpartum 

variance for Component 1 is explained by changes in PC, LPC, phosphatidylglycerol (PG), 

lysophosphatidylethanolamine (LPE), phosphatidylethanolamine (PE), and diacylglycerol (DAG). 

Normalized, auto-scaled data is representative of plasma collected from multiparous Holstein dairy 

cows (n= 27) prior to morning feeding at four time points spanning the prepartum and five time 

points spanning the postpartum. Data were obtained using quadrupole time-of-flight mass 

spectrometry.  
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Figure 4-7. Depending on fatty acyl moiety, plasma phosphatidylcholine (PC) levels are positively 

or negatively correlated with circulating triacylglycerol (TAG). Pearson’s correlation coefficient 

analysis represents normalized, auto-scaled data collected from plasma of periparturient Holstein 

dairy cows (n = 27) at nine time points spanning the peripartum (d -28 to d 14). Heat map is 

representative of r-values. Data were obtained using quadrupole time-of-flight mass spectrometry. 
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Figure 4-8. Suppressed plasma phosphatidylcholine (PC) levels are associated with fatty liver 

disease, high free FA, and BHBA area under the curve (AUC) concentrations in periparturient 

Holstein dairy cows. Leverage/squared prediction error (SPE) plot of 301 complex lipid and their 

relationship with (A) hepatic lipid accumulation, (B) elevated FFAAUC concentrations, and (C) 

elevated BHBAAUC concentrations. Normalized, auto-scaled data represent data collected from 

periparturient Holstein dairy cows categorized into low (n = 9) or high (n = 9) mean (d 5 and 14 

postpartum) liver lipid content (5 ± 1 vs. 12 ± 2 % of wet weight, respectively), low (n =9) or high 

(n = 9) FFAAUC (d1-14 postpartum; 4,915 ± 1,369 vs. 12,501 ± 2,761 [µmol/L × 14 d]), and low 

(n = 9) or high (n = 9) BHBAAUC (d1-14 postpartum; 4,583 ± 459 vs. 7,901 ± 1,206 [µmol/L × 14 

d]). Metabolites in red area have high loadings and follow the expression pattern of the submodel 

(i.e. data demonstrate that out of 301 metabolites, the suppression of specific PC levels are most 

associated with fatty liver disease). Data were obtained using quadrupole time-of-flight mass 

spectrometry. PE = Phosphatidylethanolamine 
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Table 4-1. Ingredients and nutrient composition of diets fed to dairy cows during the transition 

from late gestation to early lactation.  

  Diets 

Ingredients, % of DM Prepartum   Postpartum 

Corn Silage  35.89                 43.06 

Grass Haylage 27.26   6.41 

Grass Hay        14.7   3.13 

Concentrate Mix A1 -                 16.14 

Ground Corn -                 15.74 

Concentrate Mix B2 14.33  - 

Soybean Meal   7.82   6.14 

Cottonseed -   4.47 

Concentrate Mix B3 -   4.31 

Palmit Fat -                   0.5 

Rumensin -                   0.1 

Nutrient, % of DM    

Dry matter (% as-fed) 45.73  49.08 

Crude Protein 15.38  16.57 

Neutral detergent fiber 47.74  35.42 

Acid detergent fiber 29.65                  21.65 

Non fiber carbohydrate        27.45                  39 

Ash   8.82     7.24 
1 Mix contained 28.0% citrus pulp, 30.3% soybean meal 47.5%, 18.7% distillers, 9.3% soy hulls, 

3.3% calcium carbonate, 3.7% sodium bicarbonate, 2.3% urea, 2.3% fat, 2.1% salt, 0.3% biotin 

640.  
2 Mix contained 24.9% soybean meal 47.5%, 23.2% ground corn, 16.6% corn distillers, 12,4% 

animate, 10.4% calcium carbonate, 9.1% selenium yeast, 2.5% calcium sulfate, and < 1% of each 

of the following: biophos, selenium yeast, and Vitamin E.   
3 Mix contained 43.6% fermenten, 21.8% calcium carbonate, 13.5% soybean hulls, 7.8% 1965 mill 

mix 4 mintrex, 5.2% blood meal, 3.5% magnesium oxide, 2.6% celmanax, and <1% of each of the 

following: Vitamin E, selenium 0.06%, and 9273 selenium yeast 600. 
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CHAPTER 5 

GENERAL CONCLUSIONS 

In the first experiment presented, our primary objective was to evaluate the effect of 

prepartum adiposity on systemic glucose and insulin tolerance test in lean and overweight dairy 

cattle during the transition period. Our second objective was to investigate the relationship between 

direct and indirect measurements of insulin sensitivity in the periparturient period. Our results 

demonstrate minimal effect of prepartum adiposity on glucose and insulin tolerance test 

parameters, except lower glucose-stimulated reductions of FA following a glucose challenge in 

overweight dairy cows. Additionally, we observed a poor correlation between surrogate indices 

and direct measurements of insulin sensitivity which questions the usefulness of indirect 

measurements of insulin sensitivity during the periparturient period in dairy cattle.  

In the second experiment, we characterized the plasma lipidome and identified potential 

biomarkers associated with common biomarkers of metabolic disorder in the transition dairy cattle 

using mass spectrometry-based lipidomics and bioinformatics. Our results revealed 301 plasma 

lipids including phospholipids, acylglycerols, and cholesterol esters. Further, we identified that PC 

32:3 was specific for cows with elevated FFA, BHBA, and liver lipid deposit. Collectively, our 

lipidomics approach demonstrates the dynamic remodeling of the plasma lipidome during the 

transition period. Future research should be focus on validation of these metabolites and possible 

nutritional intervention to modify them toward improve animal health and performance. 

In summary, prepartum adiposity does not modify postpartum systemic insulin sensitivity, 

and surrogate indices for insulin sensitivity are not associated with direct measurements of insulin 

sensitivity. Moreover, we identified potential biomarkers of metabolic disease during the transition 

period including PC 32:3.  
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