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Abstract

Constellation Shaping for Communication Channels with Quantized Outputs

by

Chandana Nannapaneni
Master of Science in Electrical Engineering

West Virginia University

Matthew C. Valenti, Ph.D., Chair

Channel capacity is an important aspect of every digital communication system. Capacity
can be defined as the highest rate of information that can be transmitted over the channel
with low error probability. The purpose of this research is to study the effect of the input
symbol distribution on the information rate when the signal is transmitted over an Additive
White Gaussian Noise (AWGN) channel with a quantized output. The channel was analyzed
by transforming it into a Discrete Memoryless Channel(DMC), which is a discrete-input and
discrete-output channel. Given the quantizer resolution and Signal-to-Noise Ratio (SNR),
this thesis proposes a strategy for achieving the capacity of a certain shaping technique
previously proposed by Le Goff, et. al. Under the constraints of the modulation, the shaping
technique, and the quantizer resolution, the capacity is found by jointly optimizing the
input distribution and quantizer spacing. The optimization is implemented by exhaustively
searching over all feasible input distributions and a finely-spaced set of candidate quantizer
spacings. The constrained capacity for 16-QAM modulation is found using the proposed
technique.
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Chapter 1

Introduction

1.1 Introduction

Shannon’s paper in 1948 [1] defines capacity as the highest rate at which data could be

transmitted with low error probability. The capacity is found by computing the average

mutual information between the channel input and channel output maximized over all pos-

sible input distributions. The average mutual information of the system is also known as the

information rate. Finding conditions under which capacity can be maximized is important

because a higher information rate enables a faster rate of reliable transmission. Papers re-

lated to channel capacity generally find capacity(mostly by Monte Carlo simulation) under

the assumption of uniformly-distributed input symbols. This thesis relaxes this assumption

in order to gain insight into the relationship between the input distribution and the achiev-

able information rate. Furthermore, the thesis studies the effect of quantization, which is a

necessary operation by modern receivers, on the capacity.

There has been some papers related to this topic in the recent years. The paper by

Stefan Krone and Gerhard Fettweis in 2010 [2], considers the effect of uniform quantizer

design on capacity. Also, the authors study the impact of phase offset between transmitter

and receiver on the achievable rate of transmission. The paper by Wu, Davis and Calderbank

in 2009 [3], talks about optimizing the input distribution, in conjunction with a particular

quantization scheme called ‘modulo-quantization’, to achieve capacity. They do not consider

the quantizer optimization. The Blahut-Arimoto algorithm [4], which is described by U.
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Madhow in [5], provides a methodology for optimizing the input distribution. His paper in

2008 [6] with Jaspreet Singh and Onkar Dabeer refers to the cutting-plane algorithm that

gives the bounds for the optimal input distribution along with quantizer optimization.

1.2 Thesis Outline

The thesis is divided into 6 chapters. Chapters 2, 3 and 4 covers the digital communi-

cation concepts in general with a focus on 16-QAM. Chapter 5 presents the results of the

work. Chapter 6 gives the conclusions based on the results observed and provides the scope

for further research. The detailed contents of each chapter is further explained below.

Chapter 2 discusses all the blocks in a digital communication system model. The chapter

walks over the concepts of modulation and demodulation. An entire subsection is dedicated

to quantization basics and design. The importance of transition probabilities, in information

rate evaluation when a discrete channel is considered, is discussed.

Chapter 3 deals with the crux of this work, capacity. Computing the capacity for quan-

tized output and continuous output is discussed. For continuous case, a numerical method,

gauss-hermite quadratures is used. The effect of the quantizer spacing in information rate is

examined.

Chapter 4 talks about the constellation shaping. Constellation shaping refers to picking

up a particular set of symbols more often than the other. Shaping can improve system

performance in terms in achieving a better capacity, conserving energy etc.

Chapter 5 covers the results of our work. Capacity, achieved using uniform constellation

and shaped constellation with continuous and quantized output, is determined and plotted.

Using these results, shaping gain obtained by shaping the constellation is determined for

continuous and quantized output. Also, quantization loss due to quantizing the received

symbol is estimated for uniform and shaped constellations. Also, optimum input distribution

and quantizer spacing curves that maximizes the information rate are shown. All these curves

give us an understanding about the circumstances under which shaping is advantageous.

Chapter 6 presents the conclusions inferred from the results. We suggest the ideas for

future research.
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Chapter 2

Digital Modulation

This chapter deals with concepts related to digital communication systems. Section 2.1

discusses the blocks of a generic communication system. Section 2.2 focusses on digital mod-

ulation and demodulation, and introduces 16 QAM. Section 2.3 deals with the quantization

operation at the receiver and in particular describes the concept of uniform quantization.

Section 2.4 gives a summary of the chapter.

2.1 Communication Model

The generalized communication model using a digital modulation scheme is shown in

Fig. 2.1. The input to a digital communication system is always assumed to be a binary

sequence. If an analog signal needs to be transmitted, the analog signal is converted to a

binary sequence. This input, which in this thesis is called the data sequence, is sent to the

source encoder. The purpose of the source encoder is to represent the binary sequence by as

few bits as possible. Thus the source encoder reduces or sometimes eliminates the redundancy

in the data sequence. The output of the source encoder, which in this thesis is called the

information sequence, is passed to the channel encoder. The channel encoder adds extra

bits to this information sequence, which may be used to detect and correct errors introduced

by the channel. Therefore, this redundancy increases the reliability of transmission. The

output of the channel encoder is called codeword.

The modulator simply maps codeword produced by the channel encoder to a signal.
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Channel 
Encoder

Modulator

Channel

Demodulator
Channel 
Decoder

Source 
Encoder

Source 
Decoder

Input

Output

Figure 2.1: System model for a digital communications system.

Suppose we want to send one bit at a time, then the modulator sends a signal s0(t) for bit

‘0’ and s1(t) for bit ‘1’. We may also map multiple bits to a single signal. For example,

if we have M different signals, we may take log2(M) bits and map it to a signal. This is

called M -ary modulation. These signals are then sent over the channel. The channel is the

physical medium used to send information from transmitter to receiver. The channel may

be atmosphere, wire lines, optical fibre etc. The demodulator collects these signals and tries

to map them back to codeword. This is just the inverse operation of a modulator. The

channel decoder takes this codeword and reconstructs the information sequence. Optionally,

the demodulator may pass soft or quantized observations of the codeword to the channel

decoder. When this is done, the decoder is said to be performing soft-decision decoding.

The source decoder takes the reconstructed information sequence and produces an estimate

of the data sequence by using its knowledge of the source encoding method used at the source

encoder.

2.2 Modulation and Demodulation

2.2.1 Modulation

As mentioned in the previous section, the primary goal of the modulator is to map

its input bits to a corresponding signal. There are several digital modulation techniques
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that may be used, including binary phase shift keying (BPSK), pulse amplitude modulation

(PAM), phase shift keying (PSK), and quadrature amplitude modulation (QAM). In general,

if we opt for higher-order modulation schemes like 16-QAM or 64-QAM, then the advantage

is that we can convey more bits with a signal. On the other hand, when higher-order

modulation is used, the receiver is more likely to mistake one signal for another, i.e if the

transmitter sends sm(t), the receiver may decode the signal to be sn(t), where n 6= m.

The reason for the increased likelihood of error is that as we move towards higher-order

modulations, we have signals placed relatively closer. This means the channel noise can now

easily mislead the receiver, thereby causing an erroneous detection. This results in having

higher error rates. Higher error rates can be mitigated by using powerful error detection and

correction codes. All these issues (and many more) have to be thought of before selection of

the modulation.

M -ary modulation maps a group of ‘n’ bits to one of the ‘M ’ available signals 1, where

M = 2n. Each of the these M signals is represented by a weighted linear combination

of orthogonal functions, called the basis functions. The cardinality, K, of the set of basis

functions is also called dimensionality of the modulation. Let

K = |Φ| (2.1)

where

Φ = {φ0(t), φ1(t), ...φK−1(t)} (2.2)

is the basis for the signal set. When K = 1, we have a one-dimensional modulations like

BPSK and PAM. When K = 2, we have a two-dimensional modulation like QAM. K can

be as large as M . Therefore each signal in the M -signal set, sm(t), can be represented as,

sm(t) =
K−1∑
k=0

sm,kφk(t) (2.3)

The signal can be represented by its set of weights {sm,0, ...sm,K−1}. The set of weights may

be placed into a K-dimensional vector sm. The set of signals may be visualized by a set of

M points in K-dimensional space. This is the idea of a constellation diagram.

1By signal, we mean the continuous analog signal. By symbol, we mean the discrete representation of the
signal i.e the set of weights.
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2.2.2 Demodulation

The received signal r(t) is the input signal s(t) corrupted by noise n(t)

r(t) = s(t) + n(t). (2.4)

The received signal is sent through a bank of K correlators. In the i-th correlator, the

received signal is multiplied with i-th basis function and the result is integrated over the

duration of the basis function, which is denoted Ts. Consider r(t) to be the received signal

and ri be the output of the i-th correlator. Then ri can be found as,

ri =

∫ Ts

0

r(t)φi(t)dt (2.5)

From (2.4)

ri =

∫ Ts

0

[s(t) + n(t)]φi(t)dt (2.6)

Assuming that the j-th signal from the M signal set is transmitted,

s(t) = sj(t) =
K−1∑
k=0

sj,kφk(t) (2.7)

Using (2.7) in (2.6),

ri =

∫ Ts

0

r(t)φi(t)dt

=

∫ Ts

0

[
K−1∑
k=0

sj,kφk(t) + n(t)

]
φi(t)dt

=
K−1∑
k=0

sj,k

∫ Ts

0

φk(t)φi(t)dt+

∫ Ts

0

n(t)φi(t)dt

= sj,i + ni, (2.8)

where

ni =

∫ Ts

0

n(t)φi(t)dt (2.9)

ni is the correlation of the noise with the i-th basis function. Now the signal r(t) is

represented by a set of weights {r0, r1, ..., rK−1}. Let the vector r contain these weights.
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From this r, we need to estimate the most likely transmitted signal ŝ. For finding this ŝ, we

use the following rule

ŝ = arg max
sj∈S

p (sj|r) . (2.10)

where S is the signal set containing the M signals, r is the received vector.

When soft-decision decoding is used, the set of p(sj|r) is passed to the decoder directly

without first applying the argmax operation.

Since the probability of sj is not directly known, we may apply Bayes’ Theorem. Eqn.

(2.10) can be written using Bayes’ Theorem as,

ŝ = arg max
sj∈S

p (r|sj) p (sj)

p (r)
(2.11)

where

r|sj ∼ N
(
sj,

No

2
IK

)
(2.12)

The above expression is a shorthand notation indicating that r conditioned on sj is Gaussian

with a mean of sj and a variance of (N0/2) in each dimension, where N0 is the one-sided

noise spectral density. IK is the identity matrix whose size depends on the dimensionality

of the modulation considered.

p (r) in (2.11) can be ignored as we are trying to maximize over the input symbol distri-

bution. Finding the most likely input symbol now reduces to,

ŝ = arg max
si∈S

p (r|si) p (si) . (2.13)

From (2.12) and the pdf of the a Gaussian vector, (2.13) can be rewritten as,

ŝ = arg max
si∈S

(
1

(πNo)
K/2

exp

{
− 1

No

‖r− si‖2
}
p (si)

)
(2.14)

From this equation, we make the following observations:

• If we assume uniform input distribution, p (si) from (2.14) can be neglected. The ŝ

will be the symbol in the signal set that is closest to the received vector r. Euclidean

distance is used for distance measurement.
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• If we assume nonuniform input distribution, the probability of occurrence of a symbol

along with the closeness of the symbol to the received vector r determines ŝ. A partic-

ular symbol in the set S may be the closest to r, but if the probability of the symbol

is low then that symbol will not be picked as the most probable symbol.

2.2.3 16-QAM

Throughout our work we focus on 16-QAM modulation. QAM is a two dimensional

modulation scheme. QAM conveys two digital bit streams using two basis functions. Using

16-QAM, 4 bits can be modulated at a time. 16-QAM constellation diagram is shown.

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Figure 2.2: 16-QAM constellation diagram

In Fig. (2.2), where each axis represents a basis function, there are 4 equally spaced levels

on each axis. The intersection of these levels forms symbols. Each symbol can be represented

by the corresponding levels on both axes. For example, (-1,-3) indicates a symbol.
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2.3 Quantization

The received vector r can be processed in two ways

• r can be passed directly to the demodulator, which will operate on continuous-valued

coefficients.

• r can be quantized, and the quantized samples can be passed to the demodulator.

In practise, we always and should use the second way to process r.

Quantization is a process of approximating the given value by a predefined set of levels,

called quantization levels. As discussed in Section 2.2, ri, the weights of the basis function

can be found by passing the received signal r(t) through a bank of correlators. Each of these

weights is discrete in time but still continuous in amplitude. The purpose of the quantizer

at the receiver is to make these weights discrete in amplitude. Suppose we have a one-

dimensional quantizer with quantization levels (-2, -1, 0, 1, 2). If a value 0.9 is given to the

quantizer as input, the quantizer gives out the level closest to the input, i.e ‘1’ in this case.

Every quantization level has a quantization region associated with it. If the input to the

quantizer falls in the quantization region of quantization level qi, the input is quantized to

level qi. One way of finding the quantization regions is by considering the midpoints of the

quantization levels. Consider the one-dimensional quantizer stated in the above paragraph,

the quantization levels are (-2, -1, 0, 1, 2), the quantization regions can then be bounded

by the midpoints (-1.5, -0.5, 0.5, 1.5). For instance, any input that falls in (-∞ -1.5) will be

quantized to -2, i.e quantization region of level -2 is (-∞ -1.5). Similarly the quantization

region of level -1 is (-1.5 -0.5), quantization region of level 0 is (-0.5 0.5), quantization region

of level 1 is (0.5 1.5) and quantization region of level 2 is (1.5 ∞). Number of quantization

levels can be estimated by the number of bits of quantization. A 3-bit quantizer means we

can use 3 bits to identify a quantization level. This indicates we can have 23 quantization

levels.

In general, quantization results in a loss of precision. The system performance with

quantization cannot be better than the system that works with direct continuous output.

However, almost all practical systems have a quantizer in their receiver design. The analysis
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with the continuous output is only to validate the results with quantization.

2.3.1 Vector vs. Scalar Quantizers

Scalar quantization and vector quantization are the different schemes of quantizing a

given vector discussed in [7]. In scalar quantization, each element of the vector is quantized

independently.

Noise n(t)

Channel 
Input s(t)

Channel 
Output r(t)

)(1 t

)(2 t

()

Qf

Qf

()

2r

1r
'

1r

'

2r

Correlator

Figure 2.3: 2-D scalar quantization

Fig. 2.3 illustrates a receiver using two-dimensional scalar quantization. s(t) is the

channel input and n(t) is the channel noise. The output of the channel r(t) = s(t) + n(t).

The r(t) is then passed through the correlator to get the weights of the basis functions. r is

the vector containing all the weights. Since we have two basis functions, r = [r1 r2]. Each

of the weights in the vector r is quantized seperatley as shown. Another point to be noted

is that the quantizers used for each dimension may not be symmetrical. If fQ represents the

quantization function. Then

r
′

1 = fQ(r1)

r
′

2 = fQ(r2)

In most cases, the quantization regions of a scalar quantizer are rectangles as shown in

Fig. 2.4
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Figure 2.4: Quantization regions in scalar quantization

In vector quantization, quantization of the vector r is done as a whole. We first divide

the two-dimensional space into cells. All vectors that fall in a cell Ck are quantized to a

vector qk. The fundamental result from rate-distortion theory is that vector quantization

gives better performance than the scalar quantization. Generally, vector quantization is

more complex than scalar quantization. Taking the complexity of vector quantization into

account, we focus our attention on scalar quantization.

Figure 2.5: Quantization regions in vector quantization

The quantization regions of a vector quantizer may have any shape. Vector quantizer
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with hexagonal quantization regions is shown in Fig. 2.5

2.3.2 Uniform vs. non-Uniform Quantizers

Quantizers may also be classified according to the spacing between the quantization levels.

With a uniform quantizer, the quantization levels are equally spaced. Quantization spacing

δ is defined as the spacing between the quantization levels. When the input distribution is

symmetric, a uniform quantizer can be solely defined by the number of quantization bits and

the quantization spacing.

With a nonuniform quantizer, the spacing between the quantization levels is arbitrary.

An example of 3-bit non-uniform quantizer can have the levels (-8, -5, -4, -1, 1, 4, 5, 8).

As seen, the spacing between levels is not constant. For a nonuniform quantizer, it is not

sufficient to give the spacing between a single pair of levels. Instead, the entire set of levels

must be specified.

Building a uniform quantizer is relatively easy than the non-uniform quantizer. Uniform

quantizer requires only one parameter to change. So, optimization with a uniform quantizer

is simple.

An example of a uniform quantizer is a quantizer having quantization levels (-6, -2, 2,

6). The quantizer spacing is 4. This quantizer can be defined as a one-dimensional 2-bit

quantizer with δ = 4.

Given the quantizer spacing and number of quantization levels, the following equation

gives the quantization levels.

qi =

(
(i− 1)−

(
L− 1

2

))
δ, for i = {0, ..., (L− 1)} (2.15)

L is the number of quantization levels. The number of quantization bits are then log2 L.

2.3.3 Discrete Memoryless Channels

A discrete memoryless channel (DMC) is a discrete-input, discrete-output channel. The

channel output at a time ‘t’ depends only on the channel input at time ‘t’ and not on previous

inputs and output, hence the term ‘memoryless’. A digital communication system may be
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




Figure 2.6: Uniform quantizer

modeled as a DMC when the output of the bank of correlators is quantized. In such a case,

the DMC has M inputs and L outputs, where L is the number of quantization levels at

the output of the bank of correlators. DMC can be completely described by the transition

probabilities. Transition probability P(yi|sj) is the probability of observing output yi given

input sj.

P (Y = yi|S = sj) = P (yi|sj) (2.16)

Suppose the channel input is S = (s0, s1, s2, ......, sM−1) and quantized channel output is

Y = (y0, y1, y2, ......, yL−1), then there exists a total of ‘ML’ transition probabilities. The

channel output yi is the quantized output of channel output r.

Transition Probabilities

We assume that a digitally modulated signal is being transmitted over an AWGN chan-

nel and the output vector r is quantized before estimating the transmitted symbol. For one

dimensional(1-D) case: The transition or crossover probability P(yi|sj) is given by,

P (yi|sj) =

∫ bi+1

bi

1√
2πσ

exp

(
−(y − sj)2

2σ2

)
dy (2.17)

where bi, bi+1 are the boundaries of the quantization region associated with level yi, σ is the

variance of the Gaussian distribution of noise on the channel and sj is the transmitted signal.
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3y

1−Ly
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Figure 2.7: Discrete M input, L output channel

Suppose we have ‘L’ quantization levels denoted by Y=(y0, y1, ......, yL−1). The bound-

aries will be the midpoints of these quantization levels. The set of boundaries is B =

−∞, (y0 + y1)/2, ......., (yL−2 + yL−1)/2,∞. This can be explained as follows: If we need to

consider the transition probability of output yi, we need to consider all the instances when

the channel output will be quantized to level yi. Therefore we use the boundaries bi and bi+1

since all the symbols that fall within these limits will be quantized to yi.

For two dimensional (2-D) case: Since the noise in one dimension is independent of the noise

in the other dimension. The transition or cross over probability P(yi|sj) is given by,

P (yi|sj) =

(∫ b(i+1)a

bia

1√
2πσ

exp
−(ya − sja)2

2σ2
dya

)(∫ b(i+1)c

bic

1√
2πσ

exp
−(yc − xjc)2

2σ2
dyc

)
(2.18)

where

bi, bi+1 are two dimensional points.

bia, b(i+1)a represents the coordinates of bi, bi+1 on x-axis

bic, b(i+1)c represents the coordinates of bi, bi+1 on y-axis

Similarly, ya, xja and yc, yjc represents the projection of the points on x and y axis respectively.

The calculation of these crossover probabilities becomes easy when Q-functions are used.
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Q-function can be defined as,

Q(x) =
1

2π

∫ ∞
x

exp

(
−u2

2

)
du (2.19)

Using (2.19) in (2.17),

P (yi|sj) = Q

(
bi − sj
σ

)
−Q

(
bi+1 − sj

σ

)
(2.20)

Also, using (2.19) in (2.18),

P (yi|sj) =

(
Q

(
bia − sj
σ

)
−Q

(
b(i+1)a − sj

σ

))(
Q

(
bic − sj
σ

)
−Q

(
b(i+1)c−j

σ

))
(2.21)

Finding cross over probabilities reduces to just computing the Q-function values. Matlab

has an predefined Q-function which makes it much more easier. These crossover probabilities

are crucial while finding capacity which will be discussed in chapter 3.

2.4 Summary

An overview of the general communication model is presented. The operations of a

modulator and demodulator are explained by transforming the signals to symbols using the

concept of basis functions. The concept of quantization is discussed, along with the different

ways to classify quantizers. The complexity factor made us choose the scalar quantization.

The uniform quantizer is more practical and preferable than the non-uniform quantizer.Thus

we have chosen to focus on a scalar uniform quantizer. 16-QAM is very briefly introduced.

Channel is analyzed by transforming it into a DMC. The concept of transition probability,

important for mutual information calculation, is explained in detail.
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Chapter 3

Information Rate

The chapter discusses how to compute the capacity of a communication channel with

a modulation-constrained input. Both continuous outputs and quantized outputs are con-

sidered. Section 3.1 talks about mutual information and its relation to capacity. The term

input symbol distribution is introduced in this section. Section 3.2 discusses the mutual infor-

mation calculation with quantized output. The section also explains the usage of crossover

probabilities, discussed in chapter 2, in the computation of mutual information. Section 3.3

deals with the capacity calculation with continuous output, using a numerical method called

Gauss Hermite Quadratures. Section 3.4 presents the information results under continuous

and quantized output with uniform input symbol distribution. Section 3.5 gives a summary

of the chapter.

3.1 Capacity and Mutual Information

The mutual information between two random variables X and Y is the mutual dependence

of one random variable on the other. High mutual information suggests that we can, with

high certainty, predict Y with knowledge of X. Low mutual information indicates that there

is less information shared between the random variables and therefore having knowledge of

one random variable helps us guess the other random variable with very low certainty. If the

mutual information between X and Y is zero, it implies that the two random variables are

independent. In digital communications, mutual information can be defined as the certainty
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of predicting the input symbol given the output symbol and the input symbol distribution.

Mathematically, mutual information between channel input X and channel output Y, is

defined as,

I(X;Y ) = E

[
log

(
p(Y |X)

p(Y )

)]
(3.1)

The numerical value of (3.1) depends on the type of channel, the type of receiver and the

distribution of the input symbols. The input distribution 1, denoted by p(x), is the probability

distribution of the input symbols. We have discrete input symbols and each input symbol

occurs with some probability depending on the encoders used before the modulator. The

input distribution is the probability mass function (PMF) of these input symbols.

Shannon defined capacity in [1] as the amount of information per unit time that can be

transmitted over the channel with low error probability. Given the channel and the receiver,

capacity is defined as

C = max
p(x)

I(X;Y ) (3.2)

Capacity is found by maximizing (3.1) over all possible input distributions. Therefore

for estimating capacity we need to have:

• A tool for computing the mutual information given the type of channel, receiver and

input distribution.

• A methodology for determining the input distribution that maximizes the mutual in-

formation.

3.2 Mutual Information Evaluation for Quantized Out-

put

For the DMC and one-dimensional modulation, (3.1) in the can be rewritten as,

I(X;Y ) =
M−1∑
j=0

L−1∑
i=0

p(xj)p(yi|xj) log2

(
p(yi|xj)
p(yi)

)
(3.3)

where,

1Input distribution, also termed as input symbol distribution, is the PMF of the input symbols.
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• ‘M’ is the number of input symbols.

• ‘L’ is the number of output symbols.

• p(xj) is the probability of selecting input symbol xj by the modulator. This is given

by the input distribution.

• p(yi|xj) is the transition probability of observing output yi when input xj is transmit-

ted. The calculation of the transition probability is discussed in the previous chapter.

• p(yi) is the probability of observing output yi. For finding p(yi), we use,

p(yi) =
M−1∑
j=0

p(yi|xj)p(xj). (3.4)

For N -dimensional modulation, xj and yi would be vectors xj and yi of length N respec-

tively. The value of ‘L’ in (3.3) is the number of quantization levels. ‘L’ depends on the bits

of quantization considered. Implementing these equations will give the mutual information

between the input and output of the DMC for a given input distribution. The next step is

to find the input distribution that will maximize the mutual information. An approach for

optimizing the input distribution will be discussed in chapter 5.

3.3 Mutual Information Evaluation under Continuous

Output

The capacity with a modulation-constrained channel input and continuous channel out-

put is required to validate our quantized output results. Due to the data processing theorem,

a channel with a quantized output should never perform better than with a continuous out-

put.

From (3.1) we have, the mutual information between output Y and input set X is

I(Y ;X) =
M−1∑
j=0

p(xj)

∫
RD

log2

(
p(y|xj)

p(y)

)
dy (3.5)
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For solving the complex integration in (3.5), mathematical techniques discussed in [8] are

used. In particular, Gauss-Hermite quadratures help us in solving (3.5) as follows:

I(Y ;X) =
M−1∑
j=0

(p(xj))(Hj) (3.6)

where RD is the D-dimensional real space.

Hj in (3.6) is defined by (3.7).

Hj =
1

π
D
2 ln(2)

∫
RD

exp(−||y||2)gj(y)dy (3.7)

gj can be found by

gj(y) = − log(
M−1∑
n=0

exp(−βj,n(y))) (3.8)

and

βj,n(y) = − log(p(xj)) +

√
Es

N0

(xj − xn)t(2y +

√
Es

N0

(xj − xn)) (3.9)

where

• Es

N0
is the signal to noise ratio (SNR).

• x0,x1, ......,xM are the input symbols.

• y is an instance of the output random variable Y .

• p(xj) is the probability of selecting signal xj.

Some definitions used for solving (3.8) and (3.9) are,

min∗(x1, x2.....xM) = − log(exp(−x1) + exp(−x2) + ..... exp(−xM)) (3.10)

min∗(x, y, z) = min∗(min∗(x, y), z) (3.11)

Using (3.10) in (3.8) gives,

gm(y) = min∗n {βm,n(y)} (3.12)
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To evaluate (3.6), we use a numerical algorithm called Gauss-Hermite Quadratures defined

as follows:

For 1-D integrals, D=1, ∫ ∞
−∞

exp(−||z||2)f(z)dz ≈
I∑

i=1

wif(zi) (3.13)

where ‘I’ is the number of sample points to use for approximating the integral on the left

side of (3.13). The higher the value of ‘I’, the better the approximation.

zi are the roots of the Hermite polynomial which is given by,

HI(x) = (−1)I exp

(
x2

2

)
dI

dxI

[
exp

(
−x2

2

)]
(3.14)

wi can be found using,

wi =
2I−1I!

√
π

I2[HI−1(zi)]2
(3.15)

For multidimensional integrals, D>1,∫
RD

exp(−||z||2)f(z)dz ≈
I∑

i1,i2,......,iD

wi1wi2 ......wiDf(zi1 , zi2 , ......ziD) (3.16)

where each of the indices i1, i2, ......iD are made to vary from 1 to I.

An algorithmic implementation of the above approach is provided in the Appendix. The

algorithm is suitable for implementation in Matlab.

3.4 Information Rate Results

Fig. 3.1 shows the variation of information rate with SNR for 16-QAM modulation under

uniform input distribution and continuous output, i.e each symbol occurs with a probability

of (1|M) and under infinite output quantization levels. This curve represents the upper limit

of the information that can be achieved at each SNR point. Information rate is calculated

using (3.5). The results generated were verified with the curves in [9] and [8].

Fig. 3.2 shows the plots using 2 bits of quantization per dimension for 16-QAM mod-

ulation. The information rate values are obtained by solving (3.3). The figure shows the

significance of having optimum spaced quantizer. The non-optimum quantizer curve is drawn
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Figure 3.1: Information rate variation with SNR for 16-QAM under continuous output with
uniformly-distributed inputs.

considering a quantizer spacing of ‘2’ at all SNR points. Observe that at all SNR points

the information rate achieved using an optimum quantizer is higher than the information

rate achieved by a non-optimum spaced quantizer. Therefore, it is completely worth invest-

ing time and effort in choosing the optimum spacing between the quantization levels. The

strategy used for selecting the optimum spacing is discussed in chapter 5.
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Figure 3.2: Variation of information rate with SNR for 16-QAM under optimum spaced
quantizer and non-optimum spaced quantizer with uniformly-distributed inputs
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3.5 Summary

This chapter gives an introduction to the concept of mutual information. It is then shown

that capacity is the mutual information optimized over the possible input distributions.

Methodologies for computing mutual information are given for both the quantized-output

and continuous-output channels. For the quantized-output channel, the mutual information

is evaluated using a summation that involves the crossover probabilities of the corresponding

DMC. For the continuous-output channel, the mutual information must be evaluated using

an integral. However, the integral lends itself to efficient numerical computation through the

use of Gauss Hermite quadratures.
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Chapter 4

Constellation Shaping

The term ‘constellation’ is defined in chapter 2. This chapter deals with the constellation

normalization and constellation shaping. Section 4.1 talks about constellation normalization.

Section 4.2 discusses how the encoder can shape the constellation. Section 4.3 explains the

parameters involved in controlling the symbol distribution. Section 4.4 summarizes the

chapter. All the concepts are discussed taking 16-QAM constellation as an example.

4.1 Constellation Normalization

Constellation normalization means modifying the constellation to maintain unit average

energy. Normalizing the constellation ensures that the comparison of the system perfor-

mance with different modulation schemes is fair. The goal is to maintain the average of the

constellation, i.e Es in (4.1), at unity. Let ‘M’ represent the number of input symbols. The

average energy of the constellation is,

Es =
M−1∑
i=0

piEi (4.1)

where

• Ei, the energy of a symbol ‘si’, is simply the square of distance of the point ‘si’ from

origin.

• pi is the probability of choosing symbol si.
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Normalization is explained in detail taking 16-QAM as an example. For 16-QAM, we consider

the symbols to be the points of intersection of lines:

x=-3, x=-1, x=1, x=3 and

y=-3, y=-1, y=1, y=3.

Therefore we have 16 intersection points. The constellation is shown in Fig. 4.1

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Figure 4.1: 16-QAM constellation diagram

In order to make the constellation satisfy the unit average energy constraint,

• find average energy of existing constellation.

• divide each symbol by the square root of the average energy calculated in above step.

From the constellation in Fig. 4.1, it is clear that there are four symbols with energy ‘2’,

eight symbols with energy ‘10’ and four symbols with energy ‘18’. Assuming uniform input

distribution, i.e probability of every symbol is
(

1
16

)
, the average energy Es is,

Es =
1

16
((4 ∗ 2) + (8 ∗ 10) + (4 ∗ 18)) =

1

16
(160) = 10 (4.2)

Therefore to normalize the 16-QAM constellation, we have the divide the symbols by
√

10. The constellation points will now be the points of intersection of lines:

x= −3√
10

,x= −1√
10

,x= 1√
10

,x= 3√
10

and

y= −3√
10

,y= −1√
10

,y= 1√
10

,y= 3√
10

.

Thus the constellation now changes as shown in Fig. 4.2. Observe that normalizing the

constellation changes the location of constellation points.
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Figure 4.2: Normalized 16-QAM Constellation Diagram

4.2 Constellation Shaping

Our strategy for constellation shaping is from [10] and [11]. Constellation shaping means

making the modulator to pick certain symbols more frequently than the other. In most

modulations, there exists a particular non-uniform input PMF which performs better then

the uniform PMF. The goal of constellation shaping is to find the PMF of the symbols that

results in improved performance.

Desired constellation shaping can be obtained by careful design of the encoders employed

before the modulator. We always want to have our constellation shaped such that the

symbols closer to the origin are picked more frequently than the symbols far away, the

reason being the symbols near the origin need less energy for transmission. This reduces the

average energy per bit required.

Note: M -ary modulator maps a group log2M bits, to one of the M available symbols.

Let these log2M bits be called a bitword.

The shaping encoder that we use should transmit more 0’s than 1’s making the ‘probability

of zero’ higher than the ‘probability of one’. This ‘p(0) > p(1)’ condition at the output of

the encoder is necessary because at the modulator the less energy signals are mapped to a

bitword that has more ‘0’s at the higher bit positions. Also, bitword corresponding to higher

energy signals has more ‘1’s in the higher bit positions.
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All these concepts are better understood by an example. Consider 16-QAM, the modu-

lator takes a bitword, having four bits, from the encoder and maps the bitword to a sym-

bol in the constellation. As said above, the modulator maps the least energy symbols, i.e

( ±1
sqrt(5)

, ±1
sqrt(5)

), to bitwords that has zeros in higher bit positions. The location of higher bit

positions can be understood by Fig. 4.3

0        1         0        0

4 bits

bit 0bit 1bit 2bit 3

Figure 4.3: Bit positions

‘bit n’ represents the nth bit position. Therefore ‘bit 3 and bit 2’ are considered higher

bit positions in this example. Less energy signals mapped to bitwords having more zeros in

the higher bit positions and higher energy signals mapped to bitwords having more ones in

the higher bit positions is illustrated in the Fig. 4.4.

From Fig. 4.4,

• four symbols represented by circles are closest to origin and have the least energy.

• eight symbols represented by squares are at a intermediate distance from origin and

have the intermediate energy.

• four symbols represented by triangles are farthest to origin and have the highest energy.

Also, observe the bits in the higher bit positions(bit positions 2 and 3).

• bit 2 and bit 3 positions of the four bits associated with the least energy symbols is

‘00’

• bit 2 and bit 3 positions of the four bits corresponding to intermediate energy symbols

are ‘10’ and ‘01’
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00000001

0010 0011

1001 0111

01101010

1011

1000 0101

01001110 1111

1100 1101

Figure 4.4: 16 QAM Constellation representation

• bit 2 and bit 3 positions of the four bits related to highest energy symbols is ‘11’

Everything should be clear by now that having 0’s at bit positions 2 and 3 of the bitword is

preferred so that less energy is needed for transmitting the binary sequence. We take help

of the shaping encoder to increase the probability of having 0’s at the higher bit positions.

There are many shaping encoding schemes available.

Consider a (3,5) shaping code shown in table 4.1. The left column of the table has 3-

bits, which is the input to the shaping encoder. The right side of the table contains the

corresponding output of the shaping encoder. For example, if the encoder is given an input

‘000’, it gives out ‘00000’. Also, from the table it can be observed that, probability of ones

and zeros at the output of the shaping encoder input are equal, whereas the output of the

encoder has probability of zero
(
31
40

)
and probability of one

(
9
40

)
. Therefore the chances of

observing zero at the encoder output is very much higher than observing a one and thus the

purpose of the shaping encoder is served. Fig. 4.5 clearly shows how an encoder is employed

practically.



Chandana Nannapaneni Chapter 4. Constellation Shaping 28

Table 4.1: (3,5) shaping encoder

3 input bits 5 output bits

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 1 0 0 0 0 1 0

0 1 1 0 0 1 0 0

1 0 0 0 1 0 0 0

1 0 1 1 0 0 0 0

1 1 0 0 0 0 1 1

1 1 1 0 0 1 0 1

Fig. 4.5 shows the shaping operation in detail. ‘ENC’ represents the shaping encoder.

The shaping encoder can be accommodated within the channel encoder or the modulator.

The shaping operation is shown as separate blocks for better understanding. The length of

bitword for 16 QAM is 4. Therefore, we need four streams of bits each giving out one bit

at a time. Observe that the operation of the splitter is to split the incoming bits into 4

streams. The output of these streams at any instance ‘t’ will become a bitword. As said, we

prefer having a bitword with more number of zeros in the 2nd and 3rd bit positions as this

will enable us to transmit lower energy symbols. This is the reason behind choosing shaping

encoder to be placed at the streams that gives out bits at the higher positions. Placing a

shaping encoder at stream i, implies we are increasing the probability of the stream i to

output bit ‘0’. The shaping encoder encodes data as per Table 4.1

The bitwords in the Fig. (4.5) are 0111, 1010, 0000, 0011, 0010. This means we have to

transmit three least energy signals and two intermediate energy signals. Thus shaping helps

us to choose the low energy signals more frequently than the high energy signals. We can

achieve the required symbol distribution by using proper shaping encoding scheme.
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Figure 4.5: Shaping operation

4.3 Controlling the constellation distribution and sym-

bol locations

Once we know the symbol distribution we want, we can then use the shaping code that

will achieve that distribution. Choosing a different symbol distribution can be made easy by

making the distribution to depend on a single parameter. The parameter p0, the probability

of 0 at the output of the encoder, will describe the constellation distribution. Fig. 4.6 shows

the probability distribution of symbols.

p0, p1 represent the probability of observing zero and one respectively from the shaping

encoder. This implies

p0 + p1 = 1 (4.3)

(p1 + p0)
2 = 1 (4.4)

From (4.3), p1 = 1− p0. From (4.4),

p20 + 2p1p0 + p21 = 1 (4.5)
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Sum of the total probabilities of the constellation should be 1. Each energy level has a

probability associated with it. In 16-QAM, we have symbols with three different energy

levels. Therefore we need three probability values to represent each of these symbol energies.

From (4.5), each of the terms on the right hand side can represent these three probabilities.

Let p20 represent the probability of selecting least energy symbols. We have four signals

with least energy. Therefore, probability of each symbol will be
(

p20
4

)
. 2p1p0 represent

the probability of intermediate energy symbols. We have eight symbols with intermediate

energies. Therefore probability of each symbol will be
(
p1p0
4

)
. p21 represents the probability

of selecting highest energy symbols. We have four signals with highest energy. Thus each

symbol is selected with a probability
(

p21
4

)
. All these are represented in Fig. 4.6
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Figure 4.6: Constellation distribution of 16-QAM

Looking at the probabilities, the only parameter that can control the entire distribution

is p0. As the total energy of the constellation depends on the symbol distribution, varying

p0 will change the total energy.

Let us consider the effect of p0 in normalizing the constellation shown in table 4.2

Case 1: We choose p0 = 0.9. Then the symbol distribution will be [0.0025 0.0225 0.0225
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Table 4.2: 16-QAM constellation points

(-3 -3) (-1 -3) (1 -3) (3 -3)

(-3 -1) (-1 -1) (1 -1) (3 -1)

(-3 1) (-1 1) (1 1) (3 1)

(-3 3) (-1 3) (1 3) (3 3)

0.0025 0.0225 0.2025 0.2025 0.0225 0.0225 0.2025 0.2025 0.0225 0.0025 0.0225 0.0225 0.0025].

Total energy of the constellation will then be 3.6units. For normalizing the signal set, each

symbol should be divided by
√

(3.6). The constellation will then change according to table

4.3. The constellation diagram is shown in Fig. 4.7.

Table 4.3: Constellation when p0 = 0.9

(-1.5811 -1.5811) (-0.5270 -1.5811) (0.5270 -1.5811) (1.5811 -1.5811)

(-1.5811 -0.5270) (-0.5270 -0.5270) (0.5270 -0.5270) (1.5811 -0.5270)

(-1.5811 0.5270) (-0.5270 0.5270) (0.5270 0.5270) (1.5811 0.5270)

(-1.5811 1.5811) (-0.5270 1.5811) (0.5270 1.5811) (1.5811 1.5811)
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Figure 4.7: Constellation diagram of 16-QAM when p0=0.9

Case 2: Suppose we choose p0 = 0.1. Then probability distribution will be [0.2025

0.0225 0.0225 0.2025 0.0225 0.0025 0.0025 0.0225 0.0225 0.0025 0.0025 0.0225 0.2025 0.0225

0.0225 0.2025]. Total energy of the constellation will then be 16.4units. For normalizing the
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signal set, each symbol should be divided by
√

(16.4). The constellation will then change as

shown in table 4.4 and corresponding constellation diagram is shown in Fig. 4.8.

Table 4.4: Constellation when p0 = 0.1

(-0.7408 -0.7408) (-0.2469 -0.7408) (0.2469 -0.7408) (0.7408 -0.7408)

(-0.7408 -0.2469) (-0.2469 -0.2469) (0.2469 -0.2469) (0.7408 -0.2469)

(-0.7408 0.2469) (-0.2469 0.2469) (0.2469 0.2469) (0.7408 0.2469)

(-0.7408 0.7408) (-0.2469 0.7408) (0.2469 0.7408) (0.7408 0.7408)
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Figure 4.8: Constellation distribution of 16-QAM when p0=0.1

Comparing figures 4.7 and 4.8, we can say that smaller p0 brings the constellation closer

to origin and larger p0 makes the constellation to move farther from origin. Thus p0 can

alter the constellation.

4.4 Summary

This chapter explains normalizing a given constellation with an example. The role played

by the shaping encoder in shaping the constellation is discussed. Further, the influence of

the symbol distribution on normalizing the constellation is examined. The performance of

the system with constellation shaping will be dealt in the next chapter.
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Chapter 5

Optimization Results

This chapter discusses the results achieved by this work and the approach used to generate

the results. Section 5.1 talks about the approach used to find optimum symbol PMF. Section

5.2 deals with the technique employed to find optimum spacing between the quantization

levels given the constellation PMF. Section 5.3 explains the concept of joint optimization.

The optimization is with respect to symbol PMF and the output quantizer. Section 5.4

presents the results. Section 5.5 summarizes the chapter.

5.1 Finding Optimum PDF

We now focus on finding the optimum distribution given the L and the SNR value.

Chapter 4 explains that p0 is the only parameter controlling the symbol distribution of the

constellation. When optimising over two parameters,which in this case are δ and p0, we

do not want to use searching strategies on both the parameters. We believe by doing this

we may lose some combinations of (p0, δ) which can actually be the optimum combination.

Keeping this in mind, we want to use brute force technique on one parameter and use some

searching strategy on the other parameter. Since p0 can never be >1, we have strict upper

and lower bounds for p0. Also, there is no strict upper bound for δ. This encouraged use

a brute force technique for finding the optimum distribution and use a search technique

for finding optimum δ. We want p0 to be at least 0.5. p0 is varied in the range [0.5 0.99]

with an increment of 0.01. The mutual information is calculated for all distributions and the
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distribution that gives the highest mutual information is said to be the optimum distribution.

5.2 Finding the optimal quantizer spacing

As discussed in chapter 2, a uniform quantizer is utilized at the receiver section. The goal

now is to find the optimal spacing between the quantization levels, denoted by δ. δ can be

any value in the range (0,∞). A smoothly varying pattern was observed when trying to study

the effect of different δ values on the mutual information, i.e mutual information increases

as δ approaches the optimum δ and smoothly goes down as δ moves far away from optimum

δ. Fig. 5.1 shows the variation of information rate with the quantizer spacing. The figure

corresponds to 16-QAM modulation scheme under signal to noise ratio(SNR)=2dB with 4

quantization levels in each dimension.
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Figure 5.1: Variation of information rate with quantizer spacing of 16-QAM at SNR = 2dB
with 2 quantization bits/dimension

We exploit the pattern shown in Fig. 5.1 by the technique ‘reduction in the search space’

, i.e initially we search within a set of values which are widely spaced. Say we got a good

system performance at δ=k. This gives us an approximate idea of where optimum δ lies.

Then we narrow down the search by looking around value k, i.e we now consider a set of

values around k with smaller spacing. This way we keep narrowing down the search space,

and search a small area with high resolution. We continue this process until we get a value up

to the resolution we want or until the value converges. While implementing this technique,
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the initial range we consider is [1, 10] with a spacing of ‘one’. We can pretty confidently say

that optimum δ value will be within 5 because always a normalized signal set is considered

while evaluating the system. Therefore the signal points will not be too far which means

optimum spacing of the uniform quantizer will not be too large.

In our work we only considered δ till the fourth decimal. If optimum δ for a particular

scenario is 3.7560, let us see how this algorithm lands to this value.

• range [1 10] with spacing ‘1’ is searched. Then we find the information rate values,

given the value L and signal constellation, for each value in the set. Optimum value

of δ will now be around the value that gives the highest information rate. Value ‘3’ in

the set will give highest information rate.

• range [2 4] with spacing ‘0.1’ is searched. Observe that we increased the resolution of

our search. The value in this set that gives highest information rate is found. The

value will be 3.7.

• range [3.6 3.8] with spacing ‘0.01’ is searched. Observe that we further increased the

resolution of our search. The value in the set that gives highest information rate is

found. The value will now be 3.75.

• range [3.74 3.76] with spacing ‘0.001’ is searched. Resolution of our search space is now

‘0.001’. The value in the set that gives highest information rate is found. The value

will be 3.756.

• range [3.755 3.757] with spacing ‘0.0001’ is searched. Resolution of our search space is

now ‘0.0001’. The value in the set that gives highest information rate is found. The

value will be 3.7560.

• We stop the search

Therefore, given the number of quantization levels and normalized constellation, this

algorithm will find an optimum δ of the quantizer.
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5.3 Joint Optimization

Sections 5.1 and 5.2 discussed optimizing the two parameters separately for maximizing

the mutual information. One parameter symbol distribution is on the transmitter side and

the other parameter quantization spacing is on the receiver side of the communication system.

These two parameter have to be jointly optimized for achieving a better system performance.

This calls a need for joint optimization of both the parameters mentioned above. The

approach is as follows:

• Specify the SNR value

• Provide the number of quantization levels

• Vary p0 form 0.5 to 0.99 with increments of 0.01

• For each value of p0, find the optimum δ that maximizes mutual information for

that particular distribution. Save the optimum δ and the maximum information rate

achieved.

• Now we have two 2-dimensional arrays. Array1 has p0 and corresponding maximum

mutual information that can be achieved and Array2 containing p0 and the correspond-

ing optimum spacing of quantization levels.

From Array1 pick the distribution that gives highest mutual information. Thus this distri-

bution will be the optimum symbol distribution. From Array2, for the optimum distribution

found from Array1, find the corresponding optimum spacing for the quantization levels.

Now we have the optimum symbol distribution and quantizer spacing. We hope that these

results when used in practical communication systems, will improve the performance of a

communication system.

5.4 Observations

There are many results to be presented. For clarity, we define the following terms:
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• Uniform Continuous - This means we are considering uniform symbol distribution and

continuous output i.e infinite levels of quantization.

• Uniform Quantized - This means we are considering uniform symbol distribution and

quantized output i.e finite levels of quantization with optimum spacing.

• Shaping Continuous - This means we are considering the optimum symbol distribution

and continuous output i.e infinite levels of quantization.

• Shaping Quantized - This means we are considering the optimum symbol distribution

and quantized output i.e finite levels of quantization with optimum spacing.

Note: We have uniform symbol distribution when p0 = 0.5. Further, we consider 2,3 and

4 bits of quantization, i.e 4,8 and 16 number of quantization levels in each dimension. For

these 3 cases, we present plots for all the four scenarios mentioned above.
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5.4.1 For two quantization bits

This means we can have 22 quantization levels in each dimension. Fig. 5.2 shows the

variation of information rate with SNR(dB) for different scenarios.
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(a) Uniform Case
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(b) Shaping case
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(c) Continuous case
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(d) Quantized case

Figure 5.2: Two bits of quantization

From Figs. 5.2(a) and 5.2(b), the continuous output can give an upper bound on the

information rate that can be achieved at all SNRs under the uniform case and shaping case.

But practically continuous output or output with infinite quantization levels is not possible.

The curves are only to understand how much we lose by quantizing the output. Also from

Figs. 5.2(c) and 5.2(d), shaping the input distribution will perform better than uniform

input distribution at some SNR points(5dB - 15dB). At certain SNR points, trying to shape

the input distribution to get better results is of no use as uniform input distribution itself is
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optimal.
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Figure 5.3: Shaping Gain and Quantization Loss curves for two bits of quantization

The Shaping Gain and Quantization Loss curves are shown in Figs. 5.3(a) and 5.3(b).

From the Shaping Gain curve in Fig. 5.3(a), shaping is more beneficial under continuous

output case as there is considerable gain at most of the SNR points. Under quantized output,

shaping makes a difference at capacity values[1.7 4] which is equivalent to SNR range [7 17].

The benefits of using optimum symbol PMF at the input be explained in 2 ways

• If we need SNR snr1 and snr2 for uniform and shaped cases respectively for achieving

capacity c, then snr2 ≤ snr1. This means we can achieve the same capacity with

smaller SNR when shaped input distribution is used.

• If c1 and c2 are the capacities achieved under uniform and shaped cases respectively at

SNR snr, then c1 ≤ c2. This means shaping gives us a better data rate at a particular

SNR.

From the Quantization Loss curve in Fig. 5.3(b), it can be observed that irrespective

of the SNR point and input distribution, quantization loss is always significant. One inter-

esting point is that before a rate 2.5 bits/channel use, shaping the input results in higher

quantization loss then the uniform input distribution and vice versa after an information

rate 2.5 bits/channel use. The information rate value of 2.5 is equivalent to SNR (7-8)dB.
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5.4.2 For three quantization bits

In this case, we can have 23 quantization levels in each dimension. Fig. 5.4 shows the

variation of information rate with SNR(dB) for different scenarios.
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(a) Uniform Case
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(b) Shaping case
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(c) Continuous case
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(d) Quantized case

Figure 5.4: Three bits of quantization

Observe Figs. 5.2 and 5.4, the performance of the three bit quantizer is similar to that

of a two bit quantizer.

The Shaping Gain and Quantization Loss curves are shown in subfigures 5.5(a) and 5.5(b)

of Fig. 5.5. The Shaping Gain obtained using a three bit quantizer is different from a two

bit quantizer. From Figs. 5.3(a) and 5.5(a), it can be observed that with a two bit quantizer

shaping under continuous output gives better performance than shaping under quantized

output at lower SNR points and vice versa at higher SNR points. But with a three bit
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Figure 5.5: Shaping Gain and Quantization Loss curves for three bits of quantization

quantizer, shaping input under continuous output is always better at all SNR points.

Also, quantization loss curve of a three bit quantizer differs from a two bit quantizer.

From Fig. 5.5(b), observe higher quantization losses with shaped input distribution at all

SNR points.
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5.4.3 For four quantization bits

This means we can have 24 quantization levels in each dimension. Therefore the total

quantization points are 256. The number of quantization levels are very much higher than

the number of input symbols. It is expected that the performance with this quantizer should

be far better than the two bit quantizer.
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(a) Uniform Case
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(b) Shaping case
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(c) Continuous case
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(d) Quantized case

Figure 5.6: Four bits of quantization

Observe Figs. 5.6(a) and 5.6(b), the quantized output information rate is almost ap-

proaching the continuous output information rate. From Figs. 5.6(c) and 5.6(d), as expected,

shaping the input distribution gives a better information rate.

The Shaping Gain and Quantization Loss curves are shown in subfigures 5.7(a) and 5.7(b)

respectively. In the quantization loss curve, the quantization loss obtained under a four bit
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Figure 5.7: Shaping Gain and Quantization Loss curves for four bits of quantization

quantizer is lower than the two and three bit quantizers. At a data rate of 3, the quantization

loss was 0.59 and 0.5 under shaped input and uniform input distributions respectively with

a three bit quantizer. The quantization loss is approximately 0.143 and 0.122 under shaped

input and uniform input distributions respectively with a four bit quantizer. There is huge

reduction in quantization loss when we use one bit more for quantization level representation.



Chandana Nannapaneni Chapter 5. Optimization Results 44

5.4.4 Optimum parameters

Here the curves for optimum p0 and optimum spacing are presented. Once we fix the

number of quantization levels and the SNR, Fig. 5.8 gives us the optimum p0 value at the

transmitter side.
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Figure 5.8: Variation of optimum p0 with SNR for 16-QAM at different number of quanti-
zation bits/dimension

Similarly, Fig. 5.9 gives us the optimum spacing, between the quantization levels at the

receiver. This plot helps us design the quantizer.
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Figure 5.9: Variation of optimum p0 with SNR for 16-QAM at different number of quanti-
zation bits/dimension

Figs. 5.8 and 5.9 together helps us select the PMF of the constellation and quantizer

spacing. When these values are applied to the system, information rate is maximized.
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5.5 Summary

Optimizing the quantizer spacing δ and input distribution individually for maximizing

the information rate is discussed. Joint optimization of δ and p0 under a given SNR is

covered. The results of this joint optimization are presented and some observations made

are discussed. The next chapter deals with the conclusions upon analyzing the results.
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Chapter 6

Conclusions

All the results shown are for 16-QAM modulation scheme. The loss in information

rate due to output quantization is observed. Quantization loss decreases significantly with

increase the number of quantization levels.

Table 6.1: Quantization Loss comparison with R

L QLoss(Shaped) QLoss(Uniform)

2 bits ≈ 1.45dB ≈ 1.22dB

3 bits ≈ 0.41dB ≈ 0.29dB

4 bits ≈ 0.11dB ≈ 0.07dB

Table 6.1 shows the quantization loss at Information rate=2. At a glance, table 6.1 seems

to tell us that shaping the symbols results in higher quantization loss. But, the columns ‘2’

and ‘3’ of each row cannot be compared because:

The value in column ‘2’ is the difference in SNR(dB) values between continuous shaping and

quantized shaping curves whereas the value in column ‘3’ is the difference in SNR(dB) values

between continuous uniform and quantized uniform curves.

The intent of table 6.1 is to show the reduction in quantization loss with increase in R. The

complexity of the receiver increases with L.

It is expected that shaping the input will improve the information rate of the system.

But it is noticed that, at certain SNR points, there is no improvement by shaping the input

symbols. This means that at some SNR points the uniform distribution is the optimal
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distribution. Table 6.2 shows the results

Table 6.2: Statistics at zero shaping gain

L SNR(dB) Shaping Gain(dB)

2 bits ≈ 4.7dB 0

3 bits ≈ −1dB 0

4 bits ≈ −5dB 0

At certain SNR points the shaping gain is so small(≤ 0.1dB) that putting effort in finding

the optimum PMF is not worth. Table 6.3 shows the SNR points at which the shaping gain

is insignificant.

Table 6.3: Statistics at shaping gain ≤ 0.1dB

L SNR(dB) Shaping Gain(dB)

2 bits ≈≤ 6.5dB and ≥ 15dB 0.1dB

3 bits ≈≤ −4dB and ≥ 15dB 0.1dB

4 bits ≈≤ −2dB and ≥ 15dB 0.1dB

By examining all the findings, it can be concluded that 2 bits of quantization results in

very high quantization losses. Therefore using 3 bits of quantization is appropriate. Best

results due to shaping can be observed at SNR points 6dB - 15dB. Therefore when the system

is operated at SNR (6dB - 15dB), shaping can significantly improve the information rate.

Constellation shaping is discussed in the previous papers. But studying the constellation

shaping in conjunction with quantization is important because almost every practical com-

munication system uses a quantizer. However optimal our input symbol PMF may be, if we

do not select an optimal quantizer, we are compromising on the information rate. Therefore

it is very important that we use optimum symbol distribution along with optimal quantizer.

The results of our work helps in choosing the optimal PMF and quantizer under given SNR

and L.

This work can be further extended to a more-complex two-dimensional modulations like

16-APSK and to higher-dimensional modulations. Using a non-uniform vector quantizer can

also be investigated.
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Appendix A

Appendix

A.1 Algorithm for Information rate calculation for two

dimensions

Assumptions:

Es|No, the roots and weights of the Hermite polynomial,w[i] and z[i], are known. Signal set

is normalized.

IR ← 0

for m ← 0 to (M-1)

Jm ← 0

for i0 ← 0 to (I-1)

for i1 ← 0 to (I-1)

X ← ∞

for n ← 0 to (M-1)

t0 ←
√

(Es|N0)(xm[0]− xn[0])

t1 ←
√

(Es|N0)(xm[1]− xn[1])

βm,n ← −ln(pm) + t0(t0 + 2z[i0]) + t1(t1 + 2z[i1])

X ← min∗(X, βm,n)

end

Jm = Jm + w[i0]w[i1]X

end
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end

IR ← IR + Jm ∗ pm
end

IR ← IR|(π ln(2))
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