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Abstract
Explore the physical and chemical properties of 1,2,3-triazole:
from fluorescence sensor to ligand in metal catalysis

Yanwei Zhang

1,2,3-Triazole gold (TA—Au) catalysts were developed by Shi’'s group and employed in
several transformations involving propargyl ester rearrangement. Besides the excellent air,
moisture and thermal stability introduced through triazole ligands, unique chemoselectivity was
observed for these novel Au(l) complexes. The chemoselectivity allowed the effective activation
of the alkyne without affecting the reactivity of the allene ester intermediates. These results led
to the investigation of the preparation of allene ester intermediates with TA—Au catalysts under
anhydrous conditions. As expected, the desired 3,3-rearrangement products were obtained in
excellent yields. Besides the typical ester migrating groups, carbonates and carbamates were
also found to be suitable for this transformation, which provided a highly efficient, practical
method for the preparation of substituted allenes.

Previously research results confirmed TA-Au as a chemoselective catalyst in promoting
alkyne activation with high efficiency and improved ligand economy. TA-Au analogues were
sequentially revealed as the effective catalysts in promoting allene hydration, giving the enones
with excellent yields. Furthermore, the gold-catalyzed intermolecular [2+2] cycloaddition of
propargyl esters was achieved with good stereoselectivity. The ‘silver-free’ condition was critical
for this transformation, while only a trace amount of [2+2] products were obtained in the
presence of silver under otherwise identical conditions.

Additionally, naphthalene-bridged bis-triazole (NBT) compounds were prepared and
characterized for investigation of their photophysical properties. Unlike our previously reported
N-2-aryl triazoles (NATSs), which gave strong emissions through the planar intramolecular
charge transfer mechanism (PICT), this newly developed NBTs adopted a noncoplanar
conformation between triazole and naphthalene, achieving fluorescence through twisted
intramolecular charge transfer (TICT).
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Chapter One: Triazole-Au(l) Complex as chemoselective

catalyst in promoting propargyl ester rearrangements.

1.1 Introduction
1.1.1 Background of gold catalysis development

In the past decade, homogeneous gold catalysis has developed rapidly for activating
sp hybridized carbon transformations.! Gold catalysis has been applied in numerous
synthetic applications to achieve previously challenging transformations with higher
yield or/and better regioselectivity.? Compared to traditional metal catalysis, gold

catalysis presents several advantages:

1) In most reported cases, gold catalyst can act as a strong Tr-acid towards

alkynes/allenes and activate the starting material with high selectivity.

2) The gold catalyst presents highly reactivity while comparing with other transition
metals such as Pd, Ru, Rh or Cu (< 1 mol % loading for gold vs approximately 10 mol %

loading for others)

3) The mechanism of gold catalysis is flexible based on different reaction patterns
(such as ligand, solvent, temp.), leading to diverse products even with the similar

starting materials.

Scheme 1 shows several representative examples from the recently developed gold

catalysis transformations reported with high yield and low catalyst loading.



Scheme 1. Representative Samples from Recent Gold Catalysis Chemistry
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Of the two most common oxidation states, Au(l) and Au(lll), more studies have been
focused on Au(l) due to easier preparation and better pre-catalyst thermal stability. Most
often, Au(lll) is simply considered as common Lewis acid to activate heteroatoms (such
as O, N) while Au(l) can serve as Tr-acid for alkyne/allene activation.>* In the gold
catalytic process, one key step to generate the active catalyst complex is to dissociate
the Au-Cl bond. The most common method adopted is relying on silver salts as ClI
scavenger by forming AgCl precipitate. As a result, active cationic gold species were
afforded with counter anions introduced by the silver salts such as BF,, PFs, SbFg,
TfO", and CIOg4. It is accepted by the research community that Au(l) complexes present
two coordination sites with 180° linear geometry (although some exceptions exist). The
actual catalysts involved in alkyne/alkene activation are of the type [L-Au] ", with the

open coordination site on the opposite side of the ligand (L) for substrate binding.

Scheme 2. Catalytic Cycle for Au(l) Catalysis for Common Gold Activated Alkyne
Reaction

L-AuClI
Aoy | X=TFON CIOS,
Nu g BF,, PFg, SbFg

H
H+

Nu

|

R\(LR- L-Au--7

Er
L

H* Nu-H

R
/ ]
\H\R L-Au*




Given the use of an alkyne as a specific reactive substrate, the mechanism of Nu-H
(such as alcohol, amine) addition across the C-C triple bond via an Au(l) catalytic cycle
is shown in Scheme 2. In this process, the stable L-Au-Cl usually serve as catalyst
precursor to generate the active L-Au® complex in situ with the removal of the bonded CI
counter anion. This newly opened coordination site will facilitate the substrate (alkyne
utilizing the C-C triple bond) binding. After the coordination, the nucleophile attacks the
gold activated alkyne complex and forms the corresponding alkene-gold intermediate.
The final product is formed by proto deauration and meanwhile, the Au cation was

released for the next catalytic cycle.

One major drawback in traditional gold catalysis is the stability of cationic gold
complex, since it tends to decompose (formation of Au(0) species) under raised
temperature or reductive environment. To improve the stability of gold complex, various
research groups are focusing on developing novel ligands to increase the stability of

Au(l) catalyst.

The NH carbene is one of the most important ligands currently employed in gold
catalysis.> The NH carbene has a unique chemical nature for its lone electron pair and
TT-acceptor orbital. On one hand, the lone pair electrons make NH carbene a good o-
donor to coordinate towards most transition metals. On the other hand, the Tr-
backbonding from a metal d-orbital to the T* orbital of NH carbene, makes the
coordination between the metal and NH carbene even stronger (shorter C-M bond) than
other heteroatom ligands, and thus the stability of the gold-NH carbene complex is

significantly improved.



Another notable primary ligand in gold catalysis is the phosphine ligand. The
bonding between gold and phosphine is typically strong, which can help stabilize the
complex.® Additionally, unique spatial conformation of several phosphine ligands can
make the complexes more stable. For example, as shown in Scheme 3, in the 3-D
structure of XPhosAuCl, the Ar group introduced by XPhos will block one site of the

linear L-Au-Cl complex due to the irreplaceable spatial geometry expendation.’

Scheme 3. IPrAuCl and XPhosAuCl Complexes with Improved Au Cation Stability

iPr =\ iPr Q
@N?Nb I':’—Au—CI

iPr

i Pr
N iPr

|
Cl iPr
IPrAuCl XPhosAuCl

1.1.2 The role of different 1,2,3-triazole as counter ligand ‘X-factor’ in gold

chemistry

Triazole compounds have been prepared as a unique heterocyclic structure with
interesting electronic effect in last century.® In 2001, ‘Click chemistry’ was first reported
by Professor Sharpless, which facilitated access to various 1,4-disubstituted 1,2,3-
triazoles with moderate to good yield.® In a ‘Click chemistry’, the active Cu(l) catalyst is
generated in situ from Cu(ll) salts (such as CuSQ,), while using sodium ascorbate as
the reducing reagent. Additionally, by adding an excess amount of sodium ascorbate,
the formation of oxidative homo-coupling products could be successfully avoided in late

stage of the reaction (Scheme 4).2% 1



Scheme 4. One Typical Example of 'Click Chemistry'

Click Chemistr N=
Ph—O . Ph—\ Y

1 % CUSO4 5H20
5 % Sodium ascorbate
tBuOH-H,0 (2:1), rt, 8 hrs

One major drawback of ‘Click chemistry’ is that unsubstituted triazole ring could not
be achieved with NaN3; or HN3 as a coupling partner. To achieve NH-1,2,3 triazole,
‘Click chemistry’ was modified by using the N-substituted azide with removable
functional groups (Scheme 5).1? After reaching the 1,4-disubstituted 1,2,3-triazole, NH-
1,2,3-triazole can be synthesized through a simple N-deprotection. This method
significantly improved the scope of the 1,2,3-triazole synthesis, whereby post-

functionalization was possible at the free NH site of 1,2,3-triazole.

Scheme 5. Synthesis of NH-1,2,3-triazoles

N
[ H H 1 N /P . AN
Click chemistr N N NH
R—=——H + N;—P Yy deprotection N

cu(l) " "

In 2005, another efficient synthesis method towards NH-1,2,3-triazoles is developed
by Professor Zard based on the 1,3-dipolar addition between the nitroalkene and
sodium azide. NH-1,2,3-triazoles with different aryl substituents can be achieved with
good to excellent yields, only trace amounts of predictable by-products were observed

(Scheme 6). '



Scheme 6. Thermal Condensation of Nitroalkene and Sodium Azide

N,
NaN3 (2 eq.) N” 'NH

Ar/\/NOZ
DMSO, 80 °C, 8 hrs

Although the synthesis of 4-mono-substituted 1,2,3-triazole has been reported in
various methods, how to reach 4,5-di-substituted 1,2,3-triazoles still remained challenge.
In 2008, Professor Shi and co-workers successfully developed the methodology with
which to synthesize 4,5-disubstituted NH-1,2,3-triazoles based on a Lewis base-
catalyzed cascade condensation (Aza-Henry reaction) using nitroalkene, aldehyde and
sodium azide as reaction precursors as shown in scheme 7.2 With this method, a
series of 4,5-disubstituted NH-1,2,3-triazoles were produced with good to excellent

yields.

Scheme 7. Lewis Base-catalyzed Cascade Condensation to NH-1,2,3-triazole

R2
H-NO2 0 NaNs, L-Proline (20 %) |
T e X RN
R Ar H DMSO, rt, 10 hrs NH
Ar N
25 examples,

up to 89 % yield

Subsequently, the mechanism of this reaction has been investigated. As described
in Scheme 8, initially, the Henry reaction occurred between the nitroalkene and
aldehyde, after which, sodium azide addition of the alkene intermediate occurred and
formed a new azide intermediate. Follow by the elimination of NO, anion, the desired

triazole was generated as the final product.



Scheme 8. Mechanism for Synthesis of 4,5-disubstituted NH-1,2,3-triazoles

Me  NO, )CL Henry reaction [ W2
> / + R ———
PH Ar” " H . \ar

NO, NO2
NaN3 f Ph N
PH DN, _ NH
N

Ar Ar

At this stage, Shi’'s group focused on the development of triazole post
functionalization. With the appropriate electrophiles and reaction conditions, N-
substituted 1,2,3-triazole derivatives could be obtained with NH-triazole as a nucleophile.
However, in this type of reaction, the regioselectivity between N-1 and N-2 substitution
arose as one major concern. Moreover, the N-1 substitution dominates in most reported
results due to its thermodynamic stability.'® Shi's group subsequently investigated the
selective synthesis towards N-2 substituted 1,2,3-triazole derivatives. With 4,5-
disubstituted 1,2,3-triazole derivatives, the increased steric hindrance from the two
substituents on C-4 and C-5 positions can theoretically block the N-1 nucleophilic sites,
which will further lead to the N-2 regioselectivity over N-1 (Scheme 9A).*"*® Three
different approaches were developed to attain the N-2 aryl substituted derivatives with
base or Cu(l) catalyzed coupling between NH-1,2,3-triaozle and heteroatom substituted

aromatic compounds (Scheme 9B).



Scheme 9. Synthesis to N-2 Alkyl/Aryl Substituted 1,2,3-triaozle

A block the N-1 uncleophlic site
s
(0] R // R
K,CO
R™N\=N 07 N\=N, + RX —2258, o0 \=N
. NH . NH sol. rt - N-R
Ar N Ar N Ar N
preffered conformation selective N-2 substitution, 70-95 % yield
B Ar-F or Ar-Cl, base
R N i 0 R N
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NH N-Ar
R =N or Ar-I, 10 % CuCl, 20 % proline, uW 160 °C, 30 min R =N

Ar-B(OH),, 20 % Cu(OAc),, O, 1 atm, 0 °C, 12 hrs

Additionally, our group has developed the post-triazole functionalization to obtain
more complicated 1,2,3-triazoles derivatives through alkylation, vinylation, arylation,

propargylation and allenation (Scheme 10).



Scheme 10. Different Post-triazole Functionalization Discovered by Prof. Shi's Group
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Org. Lett., 2010, Chem. Commun. 2012,
12, 3308-3311 48, 3521-3523.

With all well-developed synthetic methodologies, Shi’s group decided to investigate
the binding of 1,2.3-triazole as ligand with transition metals (such as Rh, B, Au) and
examine the reactivities displayed by the novel transition metal complexes (Scheme
11).*%%! Despite the fact that all these complexes exhibit interesting reactivities, 1,2,3-

triazole Au(l) complexes would be the major focus in this dissertation.

10



Scheme 11. Different 1,2,3-triazole Metal Complexes Obtained by Prof. Shi's Group

XPhos—Au— N PhsP—Au— N l

© Org. Lett. 2014, J. Am. Chem. Soc. 2009
16, 306-309. L—[M]— N7)\ 131, 12100-12102.
R
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NO, Chem. Commun.

Organomatellics 2009, 6436-6438.

2009, 2352-2355.

As mentioned, Au(l) complexes adopt a linear geometry with two coordination sites.
One coordination site is occupied by a primary ligand, such as N-heterocyclic carbene

or phosphine ligand. Recent research discovered that the second coordination position

could be occupied by a weakly bound Lewis donor, such as pyridine, Tf,N, OH", or

MeCN. These Lewis donor compounds are categorized as ‘X-factors’ (Scheme 12).%2
More and more recent evidence indicated the significant of these ‘X-factors’.
Subsequently, Shi’s group initiated an effort to evaluate the bonding ability of 1,2,3-
triazole towards Au(l) as ‘X-factor’ and examine the reactivity displayed by the resultant

triazole Au(l) complexes.
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Scheme 12. X-factors in Au(l) Catalysis
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The earliest case of triazole Au(l) complexes was reported in 1998 by Nomiya et al.
They obtained the triazole Au(l) complexes by using NaOH in acetone with moderate
yield.?® Our group prepared the neutral 1,2,3-triazole gold complexes with the
analogous strategy. Simply treating the NH-triazoles with PPhzAuCl in methanol under
basic conditions at room temperature gave the neutral TA-Au 1.3 and 1.4 in > 90 %
yield. The 'cationic' complex TA-Au 1.3a was prepared either by the reaction between
PPhsAu*X (prepared from PPhsAuCl and AgX) and benzotriazole or from the addition of
HOTf to TA-Au 1.3. Both complexes were stable and could be further purified by

recrystallization to ensure no extra Ag® or acid remained in the catalysts (Scheme 13).
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Scheme 13. Examples of Triazole Au(l) Complexes
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By using the methodologies introduced in Scheme 13, Shi’'s group synthesized a

library of different benzotriazole gold complexes (Scheme 14).
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Scheme 14. A Library of Au(l) Complexes with Different Primary Ligands and Triazoles
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To investigate the electronic structure of gold-benzotriazole complexes, 3P NMR is
applied to investigate the chemical shift of triazole gold complexes with different
benzotriazoles as ‘X-factors’. The 3P NMR chemical shifts of different gold-
benzotriazole complexes together with L-Au-Cl and PPh;Au*OTf are listed in the

following table (Table 1).
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Table 1. P NMR Data of Substituted TA-Au Complexes @

OTf Noy-R
PhsP-Au-N
1.3 é
complex PPh;AuCl R =p-OMe-Ph R =p-Me-Ph R = Me R=H
1.3f 1.3e 1.3b 1.3a
chemical shift
(ppm) 34.31 31.89 30.67 30.65 30.59
complex R=Ph R = p-F-Ph R = p-nitro-Ph R = 2.4-dinitro-Ph  PPh,Au*OTf
1.3¢ 1.3d 1.3h 1.3g
chemical shift 30.44 30.28 30.19 29.80 28.80

(ppm)

31p NMR spectra of different Au(l) samples.

The *'P NMR data in Table 1 clearly showed that with different substituted groups,
different chemical shifts of benzotriazole gold compounds were observed. The
theoretically most unreactive Au(l) chloride had the chemical shift of 34.31 ppm. And the
theoretically most reactive cationic Au(l) complex PPhsAu*OTf exhibited the lowest *'P
chemical shift at 28.80 ppm. All triazole gold complexes *'P NMR data lying between
these two extreme cases, exhibited a trend which perfectly lined with the electron
negativity of different N-1 aromatic substitutions. Complex 1.4f was the one which
contains the most electronic rich R-substituent gave the *P NMR chemical shift (5
31.89 ppm) closest to L-Au-Cl. In contrast, complex 1.4g with the most electronic
deficient R-substituent gave the %P NMR chemical shift (3 29.80 ppm) closest to
PPhs;Au*OTf. Based on the diverse chemical shift, the reactivity for different gold (1)

benzotriazole complexes are tuned with a small range to apply in gold catalysis.
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To better evaluate the reactivity of benzotriazole Au(l) complexes and compare the
catalytic performance of benzotriazole Au(l) complexes with other Au(l) catalysts, we
chose to study the 3,3-rearrangement of propargyl ester to allene promoted by triazole

Au(l) complexes.

1.2 Propargyl ester rearrangements promoted by triazole Au(l) complex as

chemoselective catalyst.

The propargyl ester rearrangement was considered as one of the most important
reaction modes in Au(l) promoted transformations.?*** Recent experimental and
computational mechanistic studies showed that the 3,3-rearrangement to form the
allene ester intermediate as the key step in this transformation (Scheme 15A).>*3" Both
experimental and theoretical investigations confirmed the reversibility between allene
and propargyl ester due to effective activation of both functional groups by the Au(l)
catalysts. As a result, it was extremely challenging to obtain the allene intermediates

with good vyields.
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Scheme 15. The Challenge of The Synthesis of Allenes through Au(l) Activated Alkynes

A. Equilibrium between gold activated alkyne and allene
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X CH,Cly, rt, 5 min OAc Ph/_':< )
Bu Bu R
1-1a 1-3a 1-2a

Many strategies have been developed to make the Au(l)-activated allene esters
react with other proper substrates, forming interesting new products in a cascade
fashion. Different types of Au(l) complexes have been applied in the investigation of this
reaction, such as IPrAuCI/AgBF,4. In 2006, Nolan et al developed the synthesis to
indene compounds, which is a good example highlighting the importance of the cascade
process.*® As shown in Scheme 15B, with the [IPr-Au]” catalyst, only a trace amount of
allene was obtained. The major product was derived from the Friedel-Crafts addition of
the aromatic ring to the gold activated allene. Therefore, selective activation of the

alkyne over the allene was considered as a significant challenge in gold catalysis.

Our group reported the synthesis and characterization of the 1,2,3-triazole
coordinated Au(l) complexes.**** As revealed by the X-ray crystal structures (Scheme
16), both neutral and anionic triazoles can coordinate with the Au(l) cation, forming

stable TA-Au complexes.*
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Scheme 16. X-ray Crystal Structures of Two Different Types of 1,2,3-triazole—Au

Complexes
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The crystal structures revealed nearly identical Au-P bond distance of 2.24 A for
both the anionic and neutral triazole coordinated Au(l) complexes. The longer Au-N
bond in TA-Au-2 implies that the neutral triazole dissociates more easily to release the
coordination site for substrate activation. This new class of compounds offers improved
thermal stability and substrate stability in the Au(l) promoted hydroamination and
Hashimi phenol synthesis,* which makes them interesting novel catalysts in the field of
gold catalysis. One particular new development of the TA-Au catalysis that attracted our

attention was the synthesis of a-iodoenone from propargyl esters (Scheme 17).%
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Scheme 17. Synthesis of a-lodoenone Compounds from Propargyl Esters
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B. Formation of kinetically fovered (E)-isomers
0]
_.:<OAC NIS, MeNO,, 1 hr Ph\_?*Bu
Ph Bu 0°C,92%, E:Z>20:1 —
1-2a '
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As indicated in Scheme 17A, the typical [L-Au]" catalyst promoted the sequential

rearrangement and iodination, giving the thermally, dynamically stable(Z)-isomer.

The cationic TA-Au catalyst, on the other hand, produced the kinetically favored (E)-

isomer. Notably, treating the allene ester with NIS gave the (E)-isomer (Scheme 17B).

The typical [L-Au]" catalyst influenced the allene reactivity, probably through gold

catalyzed allene activation. The fact that TA-Au gave the dominant (E)-isomers strongly

suggests that these complexes may be applied as a chemoselective catalyst in alkyne

activation over allene.

The reaction of propargyl ester 1-1a with TA-Au catalysts were then investigated as

shown in Scheme 18.
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Scheme 18. Chemoselective Activation of Alkyne over Allene by the TA-Au Catalysts
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This transformation proceeded smoothly with substrates having both an aromatic
group on the propargyl side and an aliphatic group on the alkyne side (entries 1-6) as
shown in Table 2. The desired allene products were formed in excellent yields, with 1 %
catalyst loading. The electronic density on the aromatic ring did not have a strong
impact on the transformation: Both electron donating and electron-withdrawing groups
were suitable for the reaction. Again, no indene by-products were observed in any of the
tested cases, even with the electron-enriched p-OMe substituted alkyne 1-1d. These

results highlighted the excellent chemoselective nature of the TA-Au catalyst.
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Table 2. The Reaction Substrate Scope #

R R
=0 TA-Au-2 (1.0 mol %) o=
° dry DCM, rt R o
— r 3y r //_o
R R
11 1-2
Entry Substrate Product Yield
AcO
——Bu OAc
1 :/< 1-1a ©/\ Y 1-2a 91 %
AcO
——Bu OAc
2 :/< 1-1b /@A Y 1-2b 90 %
AcO
——Bu OAc
3 :/< 1-1c /©/\ Y 1-2¢ 87 %
F
AcO
——Bu OAc
4 :/< 1-1d /©/\ ﬁ/ 1-2d 89 %
MeO
AcO
——Bu OAc
5 :/< 1-1e @A Y 1-2e 89 %
O,N
AcO
1-2f 85 %

(0]
-—
1
-—
-

©/%.\150Ac
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Substrates that did not form the desired allenes?

AcO
AcO
AcO OAC ——H ¢ — B
——Bu { %: Bu - u
n-Pr
1-1h 1-1i 1-1j

1-1g

®General reaction condition: 1-1 (0.25 mmol) and TA-Au-2 (1.0 mol %) in dry DCM (2.5 mL), the
reaction were monitored by TLC (2-10 hrs), rt. °TA-Au-1, TA-Au-2 and TA-Au-3 did not catalyze
the reaction under the standard conditions.

The terminal alkyne 1-1i did not give any product when treated in the presence of
the TA-Au catalyst, even after an extended reaction time (24 hrs). This was probably
caused by the preferred 1,2-rearrangement with the formation of the vinyl-Au
intermediate. The aliphatic propargyl ester (1-1g, 1-1h) also did not give any desired
allene products although enones from hydrations were produced after a long reaction
time (24-48h). The crude NMR of the reaction mixtures did not show an evidence of any
allene products. This may be caused by the high reactivity of the corresponding
aliphatic allenes under the reaction conditions (activated by TA-Au) and the overall
better stability of the propargyl ester compared to the aliphatic substituted allenes
(equilibrium favored the starting material). The reaction of cyclopropyl substituted
propargyl ester 1-1j with the TA-Au catalyst gave a complex reaction mixture, which
suggests possible ring opening and sequential cyclization as reported previously.*
Overall, this study suggests that the propargyl ester rearrangement to form allene is
highly substrate dependent. This could either be due to the similar reactivity of the
alkyne and the allene (giving an equilibrium state favoring the alkyne over the allene) or
it could be due to a preferred alternative migration path (2,3-migration versus 3,3-
migration). In any case, the TA-Au catalyst clearly displayed interesting

chemoselectivity.
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To study the feasibility of this migration, we then investigated migrating groups other

than esters. The results are summarized in Table 3.

Table 3. Different Migrating Groups 2

Entry Substrate Product Yield
EtO
=0
0 ™
— Bu s OCO,Et
1 4a ©/\Y >~ s5a 92 %
Bu
t-BuO
0 N
o . OBoc
2 ziz Bu 4b ©/\§/ Sb 9%
Bu
& 0__0
30"\ Z0r
0 O
3 — 5, 4 Y 5¢ 88 %
Bu
EtO
=0
4 0 N
—Bu s OCO,Et
4d D " 92 %
02N Bu
NO,
t-BuO

0
S
o *x-0Boc
5 _ o, % Y 5e 89 %
Bu
O ON
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Ph,N Ph,N__O

0 e

0
6 QO af N 5f 85 %
Bu

02N N02

®General reaction condition: 1-4 (0.25 mmol) and TA-Au-2 (1.0 mol %) in dry DCM (2.5 mL), the
reactions were monitored by TLC (2-10 hrs), rt.

As indicated in Table 3, carbonates (entries 1-5) and carbamate (entry 6) were also
suitable for this transformation. Compared to the allene-acetates, the allene-carbonates
and allene-carbamate were more stable in water. Notably, although the alkene was
considered as a readily reactive functional group in gold catalysis, the substrate 1-4c

was suitable for this transformation, giving the desired allene-ene 1-5c¢ in excellent yield.

1.3 Conclusion

In this research, we reported the application of triazole-coordinated Au(l) complexes
as the effective catalysts for the promotion of the propargyl ester, carbonate and
carbamate 3,3-rearrangement for the synthesis of the corresponding substituted allene
derivatives. The chemoselective nature of the TA-Au catalysts was clearly
demonstrated, which makes them an interesting class of new catalysts for promoting
organic transformations. The application of the allene-carbonates and allene-
carbamates as building blocks for development of new synthetic methodologies is

currently underway in our group.
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1.4 Contribution

Dr. Dawei Wang was the researchers who had first investigated the reaction.
Together Dr. Wang and Yanwei Zhang were responsible for the substrate scope
evaluation and manuscript completion for successful submission to Beilstein J. Org.
Chem.. Detailed X-ray crystallographic data analysis of compound TA-Au-1 and TA-Au-
2 was done by Prof. Jeffrey L. Petersen, C. Eugene Bennett Department of Chemistry,

West Virginia University.
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Chapter Two: Further transformations from allene
intermediate formed by triazole-Au(l) Complex promoted

propargyl ester rearrangements.

2.1 Triazole gold promoted, effective synthesis of enones from propargylic esters

and alcohols

2.1.1 Introduction

Among previous reported Au(l) catalysts, none of them exhibits a ‘real
chemoseletivity towards alkyne over allene. All the allene intermediates generated from
the corresponding 3,3-rearrangement were further activated by the Au(l) catalysts and
transformed to other products. As mentioned above, TA-Au complex could selectively
activate alkyne over allene, the isolated allene analogues have been achieved from the
Au(l) activated transformation effectively for the first time. These allene analogues alone

could serve as very interesting reaction precursors.

Shi’'s group successfully synthesized and characterized a library of 1,2,3-triazole
gold complexes (TA-Au) as effective catalysts. These complexes exhibit significantly
improved thermal and substrate stability. These results opened up a new strategy in
tuning gold reactivity through secondary ligand as ‘X-factor’. Herein, we report the
application of the 1,2,3-triazole-coordinated®® PPhs-Au catalysts in promoting the
propargylic ester rearrangement and sequential hydration to form the enone with high
efficiency (0.2 % catalyst loading, up to 97 % isolated yields), unique reactivity

(combining the chemoselectivity and acidity) and improved ligand-economy (utilization
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of the much cheaper triazole and PPhj3 ligands as compared with NHC ligands). In
addition, with the significantly improved thermal stability, TA-Au was further applied as
the effective catalyst in promoting the propargylic alcohol Meyer-Schuster
rearrangement to give the enones (0.5 % catalyst loading, up to 98 % vyields), which
highlighted the advantage of this complex compared with other conventional L-Au®

catalysts.

As indicated in scheme 19, one advantage of the TA-Au catalyst is the significantly
low cost of the ligands. Compared with the NHC ligands, the combination of the PPh3
primary ligand and triazole as X factor, the cost can be only 1,000th that of a single
NHC primary ligand. Our original intention was to test whether TA-Au could promote
transformations that previously required the expensive NHC primary ligands (to improve
the ligand economy of the overall reaction). This initiated our investigation on the enone

synthesis from the propargylic esters with our TA-Au catalyst.

Scheme 19. NHC: Good Ligand in Gold Catalysis but at High Cost

N
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Ar— N S N ~Ar 3 N

cl
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+
N,
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triazole-Au (TA-Au): effective
catalystes at much lower cost
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The gold-catalyzed Propargylic ester 3,3-rearrangement is a well-studied
transformation.”® One application of this process was the synthesis of enones from
sequential hydration of the allene-acetate 2-1-2a intermediates.® Although this
transformation provided one attractive strategy in preparing enones under mild
conditions, it suffered from a limited substrate scope due to the side reactions caused
by the gold-promoted allene activation. One side reaction was the intramolecular
Friedel-Crafts cyclization of 2-1-2a, giving the indene 2-1-3a.>> As a result, a simple Au(l)
catalyst, such as PPhsAu®, gave poor overall yields of the desired enones (5 %

Ph3sPAUCI/AgOTf, < 40 % yields) (Scheme 20).

Scheme 20. L-Au’: Effective Catalysts Activating both Alkyne and Allene

[(IPr)AuCI/AgBF, o)
AcQ (2 mol %) S
——Bu - Bu
PH 2.11a with H,O  path B
[(IPr)AuCI/AgBF 2142, 47 %
r)AuCI/AgBF 4
DCM, r.t.l (2 mol %)
_ PAc [Au] path A
PR = ‘
Bu no H,0 OAc
' ' Bu
e e A 213
[Au] Loading Yield
[Au] PPh;AUCI)/AgOTf 59 <409
2-1-1a 2142 [T AUCIIAG % %
wet CH,Cly, rt [(IPr)AuCIl)/AgBF 2% 17 %
4
[(ItBu)AuCI/AgBF, 1% 98 %

To overcome this problem, Nolan and co-workers investigated different N-
heterocyclic carbene ligands.®® The more steric hindered [(ItBu)Au]* complex was
revealed as the optimal catalyst for the formation of enones with high efficiency (1 %

loading, up to 98 % yields). The authors have performed comprehensive mechanistic
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investigations.> Through both experimental and computational studies, the Sy2' water
addition to the gold-activated alkyne was suggested as the mechanism by avoiding the
formation of allene (Scheme 21A). This mechanism is further supported by two other
experimental observations: (i) no enone formation was observed with the t-Bu-
substituted alkyne 2-1-1b (Scheme 21B), and (ii) treating allene ester 2-1-2a with the

NHC-Au catalyst did not give enone 2-1-4a (Scheme 21C).

Scheme 21. Proposed Sy2' Addition Mechanism by Nolan

A
Ac [Au] OAc OH 0
==Bu —— py N gy~ N
PH Ph Bu
) [Au]
H,O
B g
conditions
AcO o [(IPr)AuCI)/AgSbFg 2 %
_ A
>TR1 Aa /\)k 1 THF/H,0 10:1, 60 °C, 8 hrs
P Ph R
2-1-1a, R'= Bu; 2-1-4a, R'= By; 2-1-4a, 98 % vyield
2-1-1b, R'= t-Bu 2-1-4b R'=t-Bu  2-1-4b, no reaction
c
0Ac [(IPrAUCI/AgSbFg 2 % i’
THF/H,0, 60 °C, 24 hrs no reaction
Ph/—':<B 2 88 % 2-1-2a recovered
u

2-1-2a
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2.1.2 Triazole gold promoted, effective synthesis of enones from prypargylic
esters and alcohols: a catalyst offering chemoselectivity, acidity and ligand

economy

Recently, we reported the synthesis of E-a-iodo-enone from a propargylic ester 3,3-
rearrangment followed by the iodination of the allene ester. Interestingly, while all other
[L-Au]” catalysts (such as [NHC-Au]" and [PPhsz-Au]*) gave only the thermodynamically
stable Z-isomers, the application of TA-Au led to the selective formation of the
kinetically favored E-isomers. These results suggested that TA-Au was a
chemoselective catalyst, which could effectively promote alkyne activation without

interrupting the inherent reactivity of the allene intermediates.*°

Moreover, as shown in Scheme 22A, although the allene ester 2-1-2a is rather
stable even at elevated temperatures, treatment of this compound with a catalytic
amount of acid could effectively convert the allene to the desired enones with excellent
yields. Interestingly, unlike the previously reported NHC-Au complexes (Scheme 21C),
TA-Au could effectively catalyze the hydration of 2-1-2a at either room temperature or
elevated temperature, giving the desired enone in excellent yields. This was likely
caused by the equilibrium shown in Scheme 22B, where a catalytic amount of HOTf

was released to serve as the Bronsted acid in promoting the hydration.
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Scheme 22. TA-Au Serves as Bronsted Acid in Hydration Transformation

A cat. conditions 2-1-4a
OAc 0 MeOH, 60 °C, 10 hrs  N.r
o - e y y rs -
Ph/—o:<B — > PhMBU
u 5% TfOH MeOH, 60°C,6 hrs 99 %
2-1-2a 2-1-4a 5% TA-Au  MeOH, 60 °C, 6 hrs 98 %
B +
N j N
HN" “N-Au—PPh, N“ "N-Au—PPh;,
OTf + HOTf

We then postulated that TA-Au might be the effective catalyst in promoting the
propargylic ester rearrangement and hydration to give enones. Unlike the previously
reported [(ItBu)Au]” catalyst, TA-Au promoted this reaction through a chemoselective
rearrangement followed by an effective hydration with the same pre-catalysts, which
therefore provides an alternative to prepare enones compared with the Sy2' mechanism

by the more expensive [(ItBu)Au]” catalysts.

As expected, with the TA-Au catalyst, enone 2-1-4 was obtained in excellent yields.
No indene by-product was observed, which highlighted the chemoselective nature of the

TA-Au catalyst.

TfOH was not a suitable catalyst for this reaction since the 3,3-rearrangement did
not occur with only TfOH. Screening of solvents revealed MeOH as the optimal choice.
The reaction worked smoothly at room temperature and gave the enone product in

excellent yields over 24 h. Increasing the temperature decreased the reaction time to 3-
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6 h. As a result, the enones 2-1-4 were obtained with near quantitative yields (> 99 %

NMR vyields) at very low catalyst loading (0.2 %).

As shown in Table 4, the reaction tolerated large group substrates, giving the
desired enone in excellent yields and good double-bond selectivity (dominant trans-
isomers). The t-Bu-substituted alkyne 2-1-2b, which was not suitable with the NHC-Au
catalyst due to the Sy2' mechanism, proceeded smoothly under these alternative
conditions although with slightly decreased Z/E selectivity (2-1-4b). The high efficiency
makes TA-Au a very attractive and practical catalyst for this transformation: at least 5

times lower catalyst loading than NHC-Au™ with much less expensive ligands.

Table 4. TA-Au Catalyzed Propargyl Ester Hydrolysis ®°

o 0.2 % TA-Au
=~ NG .
R wet MeOH, 60 °C
2-1-1 2-1-4
o) o) o)
PhMBu Ph/\)kt-Bu n-PrMBu
2-1-4a,92 %, E/Z =121  2-1-4b, 93 % E/Z = 3:1 2-1-4c, 92 %, E/Z > 20:1
o) o o
N
Bu A
Ph/\)% n-PrMPh
2-1-4d,91 %, E/Z>8:1  2-1-4e, 83 %, E/Z = 10:1 2-1-4f, 89 %, E/Z > 20:1
o)
/\)(J)\ N Bu )\)(J)\
X Bu X Bu
F
2-1-4g, 85 %, E/Z > 201 2-1-4h, 95 %, E/Z > 20:1 2-1-4i. 89 %



O

(0] O\/\Ok N
Bu
/-Pr/\)J\BU S~ o /@/\)J\
MeO

2-1-4j, 93 %, E/Z > 20:1 2-1-4k, 87 % 2-1-41, 97 %, E/Z > 20:1

4General reaction condition: 2-1-1 (1.0 eq.) and TA-Au (0.2 mol %) in wet MeOH (0.25 M), the
reaction were monitored by TLC (3-6 h), 60 °C. "Isolated yields; E/Z ratios were determined by
'H NMR.

Heating the [(IPr)AuCl)/AgBF; in wet MeOH at 60 °C produced a black
solution/patrticipate within 30 min, indicating the rapid decomposition of the catalyst. In
contrast TA-Au, on the other hand, showed much improved stability, with no
decomposition after more than 6 h under the same conditions. Considering the good
thermal stability of TA-Au, we wondered whether this catalyst could also be used to
promote the challenging Meyer-Schuster arrangement of propargylic alcohols 2-1-5 at
higher temperature.®” Impressively, the desired enone products were formed with

excellent yields. The reaction also tolerated a large group of substrates (Table 5).

Table 5. TA-Au Catalyzed Meyer-Schuster Rearrangement ® °

HO 0.5 % TA-Au o
=Rz R1/\)J\R2
R’ wet MeOH, 60 °C
2-1-5 2-1-4
0 A)?\ o)
\
PhA\)J\Bu Ph t-Bu n-PrM Bu
2-1-4a, 89 %, £/Z = 9:1 2-1-4b, 90 %, E/Z = 3:1 2-1-4¢c, 91 %, E/Z > 20:1
\
Bu A
M Ph/\)JW n_Pr/\)J\Ph
2-1-4d, 97 %, E/Z= 6:1 2-1-4e, 89 %, £/Z = 11:1 2-1-4f, 85 %, £/Z > 20-1
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L

(e}
/\)Oj\ S Bu
N Bu
F

Bu
2-1-4g, 94%, E/Z >20:1 2-1-4h, 91%, E/Z >20:1 2-1-4i, 98%
(0]
I O\)OJ\ h
Bu
i-PrMBu N"pp M
MeO
2-1-4j, 96 %, E/Z > 20:1 2-1-4k, 84 % 2-1-41, 95 %, E/Z > 20:1
(@)
j o N
Bu
Ph/\)LPh ™ Ph @(\)J\
2-1-4m, 93 %, E/Z > 20:1 2-1-4n, 92 % 2-1-40,94 %, E/Z = 13:1
! I O\/LOJ\
N
Ph X
/©/\)J\ NBU X Bu
2-1-4p, 97 %, E/Z = 16:1 2-1-4q, 92 %, E/Z > 20:1 2-1-4r, 87 %
(@]
(@] (0]
™ A X Bu
Bu Bu O
OMe Cl O
2-1-4s, 93 %, E/Z > 20:1 2-1-4t, 98 %, E/Z > 20:1 2-1-4u, 88 %, E/Z > 20:1

4General reaction condition: 2-1-5 (1.0 eq.) and TA-Au (0.5 mol %) in wet MeOH (0.2 M), the
reaction were monitored by TLC (4-12 h), 60 °C. "Isolated yields; E/Z ratios were determined by
'H NMR.

Surprisingly, the bulky tert-butyl-substituted alkyne 2-1-5b was also suitable for this
reaction, which suggested the effective water addition to the sterically hindered alkyne
at higher temperature. The terminal alkyne propargylic alcohol gave enal in modest
yields, which were probably caused by the longer reaction time required for the less

favored anti-Markovnikov addition. 58->°



Scheme 23. Comparison with the Best Results Obtained in the Literature

R°0 Au Q
——R?

P Ph/vLRZ

2-1-1 or 2-1-5 2-1-4
2-1-1a: [(IPr)AuCI/AgSbFg¢ (2.0 %): 98 % yield
R3 =Ac, R? = n-Bu (IPr)AUOH (2.0 %): 91 % yield

TA-Au (0.2 %): 92 % yield

2-1-1b: [(IPr)AuCI)//AgSbFg (2.0 %): no reaction
R3 =Ac, R2=t-Bu TA-Au (0.2 %): 93 % yield
2-1-5a: (IPr)AuOH (2.0 %): 97 % vyield
R3 =Ac, R2 = n-Bu TA-Au (0.5 %): 89 % yield
2-1-5b: (IPr)AuOH (2.0 %): 75 % vyield
R3 =Ac, R? = t-Bu TA-Au (0.5 %): 90 % yield

Continuous addition of catalysts could improve the overall yields. Nevertheless, the
feasibility of this challenging substrate highlighted the strength of the TA-Au catalyst

over the [NHC-Au]" catalyst (Scheme 23) by tolerating the much harsher conditions.°

2.1.3 Conclusion

In conclusion, we have reported herein the application of triazole-coordinated Au(l)
complex (TA-Au) as an effective catalyst in promoting propargylic ester rearrangement
and hydration for the synthesis of substituted enones. The key for the success of the
TA-Au catalyst was the combination of its unique chemoselectivity and acidity.
Extension of this transformation to the Meyer-Schuster rearrangement by taking
advantage of the thermal stability of the TA-Au further improved the atom economy.

Compared with the more expensive NHC-Au catalysts, TA-Au promoted the reaction
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through a different mechanism and achieved better performance with lower overall

costs.

2.1.4 Contribution

Dr. Dawei Wang was the researcher who had first investigated the reaction condition
and mechanism investigation. Together, Dr. Wang and Yanwei Zhang were responsible
for substrate scope, NMR spectrum, and manuscript completion for successful

submission to Advanced Synthesis and Catalysis.
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2.2 Ambient Intermolecular [2+2] cycloaddition of allene intermediate
2.2.1 Introduction

As mentioned, Au(l) catalyzed alkyne transformations typically undergo 3,3-
rearrangement. The allene intermediates can be further activated by the same gold
species and converted into various products, such as indenes, enones, and vinyl

halides.

Scheme 24. Gold-catalyzed Propargyl Ester Activation
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The formation of indene, enones and E-a-haloenones has been introduced in
chapter 1 and 2.1. One more important application of allene substrate is the
intermolecular [2+2] cyclization forming the multiple substituted cyclobutane. In this
transformation, TA-Au complexes chemoselectivity was applied in the well-developed

process of forming an allene intermediate. The allene intermediate then facilitated the
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[2+2] cyclization process, achieved the cyclobutane under the absolutely 'Silver-free'

condition.

2.2.2 'Silver effect' in homogeneous gold () catalysis

Along with the development of gold catalysis, it is possible to get some traditionally
challenging transformation to occur by tuning the reactivity of gold complexes with
different primary ligands. However, it still remains one critical issue in gold catalysis,
which is referred as ‘Silver effect’ in the transformations. As indicated above, silver salts
are generally adopted to dissociate the Au-Cl bond in L-Au-Cl complex by forming AgCI
precipitate. Because these cationic gold complexes slowly decompose over time, they

are always freshly prepared right before the reaction setup or generated in situ.

Typically, the resulting AgCl precipitate can be removed by simply passing the
reaction solution mixture through cotton plug or filter paper.®* However, recent research
indicates that: a) practically, more than necessary silver salt is applied in the reaction
mixture, therefore, not all Ag” is converted to AgCl precipitate. The additional amount of
Ag” left in the catalyst system affects the transformation; b) in presence of Au™ and Ag”,
an unexpected Au-Ag di-metal co-catalysis system is observed in the resting state and

leads to diverse reaction patterns.

The first evidence for Au-Ag di-metal co-catalysis was published in 2009. For first
time, researchers realized that silver presented a more significant effect in the catalyst

system behavior other than just forming AgCl precipitate (Scheme 25).%2
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Scheme 25. Different Resting States in the Au(l) Catalysis when Silver is Presented
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As shown in Scheme 25, there were two resting states of Au(l) activated Friedel-
Crafts reaction in this transformation. One (2.6) was established with two Au® atoms,
and the other one (2.7) was formed with one Au® and one Ag’. The ratio of these two
resting states was differing based on the amount of silver salt introduced in the reaction
mixture. Although these two very similar resting states gave the identical product in this
specific case, the reaction rates were significantly different. Furthermore, by adding an

excess amount of AgNTf,, the reaction was quenched (Scheme 26B).5

This case demonstrated that in gold catalysis, Ag" might serve as an important
candidate which participated in the catalysis pattern. Subsequently, more and more
effort has been devoted to investigating the mechanism of ‘silver effect’ in gold catalysis.
Additionally, to better understand ‘silver effect’, ‘silver free’ gold catalyst system is

desired as standard in gold catalysis.
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Scheme 26. The Reaction Rate is Slowed Down by Adding AgNTf,
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In 2007, the original 'silver free' Au(l) catalyst was developed by Prof. Gagosz et al.
The bis(trifluoromethanesulfonyl)imidate moiety (Tf,N) was applied as the counter ion
for Au(l) complexes (Scheme 27A). It was shown that AuNTf;, is stable enough to
perform a recrystallization purification and obtain the 'silver free' gold complexes as a
crystal solid.** As mentioned above, the coordination between gold cation and Tf,N"is
weak and enabled the significant ligand exchange between the Tf,N" and reacting

substrates without influencing the reactivity of gold catalysts (Scheme 27B).%°
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Scheme 27. Synthesis and Application of [IPrAuUNTf,]

A
AgNTf, IPr-Au-NTf,
IPr-Au-CI| —— +
CHzclz, rt
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B
H OMe
MeOOC _ [Au] catalyst, 1.0 % MeOOC
Ph
Meooc”\ __ Ph MeOH, rt MeOOC
2.8 29
IPr-Au-NTf, 95 %
XPhosAuCl/AgSbFg 94 %

The triazole gold complexes are also able to achieve the 'silver free' crystal by
recrystallization due to their moisture and air stability. As a consequence, triazole gold
complexes provide us a good ‘silver free’ model to investigate the 'silver effect' in gold
catalysis. To comprehensively understand the function of Ag® in gold catalysis, an
alkyne hydration reaction was investigated with both Au-Ag co-catalysts and ‘silver free’
Au(l) catalysts (such as TA-Au). The consequences of different gold catalysts are

summarized in Table 6.

Table 6. Silver Effect in Alkyne Hydration 2

OAc
OAc [Au]
Ph

Ph NV
oS 0
2.10 (91 % ee) 2.1

Entry Catalyst Conditions Yield (%)°  ee (%)
1 1 % TA-Au 5 hrs 87 90
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2 10 % AgX°© 12 hrs 0 -

3 2 % [PPh3Au]*X ¢ 12 hrs 0 -
4 2 % PPh;AuCI/AgOTf 12 hrs 90 0
5 2 % PPh3AuCIl/AgSbFg 8 hrs 97 0
6 2 % PPh;AuCl/AgOTf 5 hrs (N) 92 90
7 2 % [PPh;Au]"SbFs + AgSbFg 12 hrs 91 -

®General reaction conditions: 2.10 (1.0 equiv) and catalyst in 2.5 mL of dioxane/water (H,O, 3.0
equiv) at rt. Reactions were monitored by TLC. °NMR yields. °X”™ = TfO", SbFs, BF, .

The results indicated that Ag® by itself did not perform any reactivity towards this
transformation (entry 2). Additionally, entry 3 (gravity celite filtration) showed that when
using the ‘silver free’ Au® catalyst, there was no desired product observed no matter
what primary ligand was applied. However, when using a mixture of L-Au-Cl and AgX
(entry 4 and 5, cotton plug or filter paper filtration) as pre-catalyst, the reaction
proceeded with high yield under the identical conditions. In addition, a high ee value
was observed as reported under N, protection (entry 6). To confirm the effect of Ag” in
this transformation, entry 7 was designed with a mixture of ‘silver free’ [(PPhs)Au]” OTf
and back-addition AgSbFs (AgSbFs was added to the reaction mixture after the celite
filtration). The consistent result was observed as entry 5, which verified this reaction

was actually catalyzed by Au-Ag co-catalysts.

The only difference between entry 3 and entries 4, 5 here was the filtration
precedure. Entry 3 was using a cotton plug or filter paper to remove the AgCI, while in
entry 4 and 5, celite pipette was used to reach the same target. The gravity filtration

through the celite pipette was a quite efficient and reliable process to remove all
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remaining Ag®, which was further confirmed by X-ray photoelectron spectroscopy (XPS)

(Scheme 28).

Scheme 28. XPS Spectra of (PPh3)AuCI/AgSbFes Mixtures
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In Scheme 28, both spectra showed the signal of Au® at the binding energy as Au
4f,, 85.5 eV; Au 4fs;,, 89.2 eV, while the signal of Ag* (Ag 3ds;,, 368.7 eV; Ag 3dzp,
374.7 eV) was only observed in spectrum A which regular cotton plug or filter paper was
applied in the filtration step. No corresponding Ag® signal was observed which indicated
no presence of silver in spectrum B with celite pipette filtration. This result is sufficient to
prove that gravity celite filtration procedure is reliable to produce 'silver free' gold

catalyst even with excess amount Ag* ((PPh3)AuCl:AgSbF6 = 1:1.5).

Meanwhile, 3P NMR spectroscopy is applied to inspect the existence of Ag* in Au(l)

complexes (Scheme 29).
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Scheme 29. 3P NMR Spectra of Different Au(l) Species
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The data in Scheme 29 released the relationship between chemical shift of 3P and
the reactivity of Au(l) complexes (more downfield chemical shift, lower reactivity). The
unreactive (PPh3)AuCl presented the most downfield chemical shift due to the strong
coordination between Au and Cl. The freshly prepared 'silver free' [(PPhs)Au] TfO
through gravity celite filtration presented the most upfield chemical shift (which is
considered as the most reactive catalyst). The (PPh3)AuCI/AgOTf mixture without any
filtration presented a chemical shift between these two mentioned cases. These results

indicated that silver here can, to some extent, influence the reactivity of Au(l) complexes.

2.2.3 Ambient intermolecular [2+2] cycloaddition: an example of carbophilicity

and oxophilicity competition in Au/Ag catalysis

Recently, special gold catalysts have been reported to achieve high yields of allene
intermediates, including the triazole gold reported by our group. While this chemistry
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seems well understood, one ‘'concealed’ problem was that most of these
transformations generally lack tolerance for the diaryl substituted internal alkynes (R*,
R?= aryl groups). For example, simply treating diphenyl propargyl ester 2-2-1a (R* = R®
= Ph, R = CHj3) with various LAUCI/AgX (L = PPhg, IPr, XPhos; X = TfO", Tf,N", SbFe¢ ,
BF, ) catalysts gave complex reaction mixtures with little indene or allene obtained. In
order to determine the product for diaryl propargyl ester in presence of gold catalysts,

we conducted detailed investigations with the diaryl propargyl ester starting material.

We herewith report the different products formed from this diaryl propargyl ester
rearrangement and the intermolecular allene [2+2] cycloaddition at ambient temperature.
In addition, the ‘silver-free’ condition is critical in this transformation. In the presence of
silver, even a catalytic amount, dimer 2-2-2 was observed over the [2+2] products due
to the silver-activated substitution. Considering the extensive efforts from various
research groups toward understanding the role of silver in gold catalysis, this work
provides another example of silver influence as an oxophilic Lewis acid, which deviates

from the gold reaction pathway.®

The cationic gold complexes are effective carbophilic 1T-acids, which can effectively
activate both an alkyne and allene.®” According to the literature, three types of
chemoselective gold catalyst (activate alkyne over allene) have been reported as gold-
oxo complexes, gold-pyridine/EtsN complexes, and 1,2,3-triazole gold complexes (TA-
Au).?®°  Surprisingly, among all the reported gold-catalyzed propargyl ester
rearrangements, diaryl propargyl esters are not viable substrates. In fact, during our
investigations of the triazole gold (TA-Au) catalyzed allene synthesis, complex reaction

mixtures were observed. In order for us to understand how this particular type of
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substrate reacts, we monitored the reactions of compound 2-2-1a with various gold

catalysts (Scheme 30).

Scheme 30. Analyzing the Propargyl Rearrangement of 2-2-1a

. OAc
Ar' O OAc e
OAc Ar! :<Ph
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1
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- - a r = .
' -2- -2- B
2-2-1b. Ar' =Tol dimer 2-2-2 [2+2] 2-2-3
catalyst time 2-2-2a 2-2-3a
PPh;AUCI/AgX 5 % 5 min 50 % 0%
[PPh3AU(TA-H)]OTf 2 % o 10 %
TA-H = NH-benzotriazole 12 hrs 30% + other isomers

X-ray of 2-2-3a

First, the treatment of 2-2-1a with LAUCI/AgX (5 % loading, L = PPhs, IPr, XPhos, X
= OTf, NTf, or SbFg) gave complex reaction mixtures. Through careful examination,
dimer 2-2-2a was identified as the major product (50 % yield using anhydrous solvent;
see detailed structure analysis in the Supporting Information). With the triazole gold
(TA-Au) catalysts, the reaction was much cleaner (less polymerization and
decomposition). However, several other products were observed in addition to the dimer
2-2-2a (30 %). Fortunately, the structure of one major product was determined by X-ray
crystallography as the [2+2] cycloaddition product 2-2-3a. Other minor products were

identified as the stereoisomers generated from the [2+2] cycloaddition.

This result was exciting because it was the first example of an intermolecular allene

[2+2] reaction through a propargyl ester rearrangement. Notably, indene was not
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observed in this case. The successful confirmation of the dimer and the [2+2]
cycloaddition products greatly enhanced our understanding of this reaction. A proposed

reaction mechanism is shown in Scheme 31.

Scheme 31. Propargyl Ester Activation

allene activation
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Cyclobutanes are very attractive as building blocks in organic synthesis, and this
reaction is conducted under mild conditions (rt) with simple starting materials. Thus the
discovery shown above revealed an interesting new approach to access substituted
cyclobutanes under mild conditions. As shown in Scheme 31, the allene should be
formed prior to either dimerization or cyclization. This was confirmed by monitoring the
reaction with NMR: allene A was the only product formed during the first 2 h of reaction
when treating 2-2-1a with TA-Au catalysts. Efforts to isolate allene A were unsuccessful
due to the poor stability. In order to improve the chemoselectivity ([2+2] over dimer) and
stereoselectivity (different cyclobutane isomers), we prepared various propargyl ester
derivatives and examined them under the conditions of gold catalysis. The results are

summarized in Table 7.

47



Table 7. Optimization of Au(l)-catalyzed Allene [2+2]

a

/'l RCOO RCOO OOCR
0o [cat ] Tol™ X/ ~Ph Ph—\\__/ ~Ph
dimer
: 2-2-2 .
Tol N DCM, rt, air o, -
N - RCOO™ %, "Tol Tol® Tol o
. -ray of 2-2-3¢
2-2-1 2-2-3 2-2-3 R= £-Bu
yield (%)°
entry cat. (%) R temp (°C) time (h) conv (%)b
2-2-2 2-2-3  2-2-3' other isomer
1  PPh3AuCl/AgOTSf (5 %) CHj rt 1 100 67 trace  trace -
2° [PPh3Au(TA-H)IOTf (1 %) CHs rt 12 100 43 10 8 35
39 [PPhsAu(TA-Me)]OTf (1 %) CHs, rt 12 100 12 16 13 50
4 [PPh3Au(TA-Me)]OTf (1 %) Ph rt 12 100 53 trace trace trace
5 [PPhzAu(TA-H)]OTf (1 %) t-Bu rt 16 100 <5 68 12 <5
6 [PPh3AuO]OTf (1 %) t-Bu rt 20 100 trace 69 14 <5
- o,

7 [+P§ tz%ég@er)]OTf“ %) t-Bu rt 1 100 63 trace  trace trace
8 AgSbFg (5 %) t-Bu rt 16 100 45 trace trace trace
9 HOTf (5 %) t-Bu rt 16 60 0 0 0 0
10° PtCl, (5 %) t-Bu 80 16 100 0 56 14 <5

3Reaction conditions: 2-2-1 (0.2 mmol) and catalyst in DCM (0.8 mL), rt, time. "Determined by
'H NMR using 1,3,5-trimethoxybenzene as internal standard. °TA-H = benzotriazole. “TA-Me =

N-methyl benzotriazole. °15 % yield of (E)-1-phenyl-3-(p-tolyl)prop-2-en-1-one.

The PPh3AuCI/AgOTf catalysts gave only dimer 2-2-2 with no cycloaddition product

2-2-3 observed (entry 1). The silver-free TA-Au catalyst produced the desired [2+2]

products as mixtures of isomers. With the NH-triazole (TA-H) as the ligand, 43 % dimer

was obtained (entry 2). The amount of dimer was decreased when N-methyl triazole

(TA-Me) was used (entry 3), probably due to the elimination of an acidic proton on NH-

triazole (activating the OAc leaving group). Switching acetate to benzoylate resulted in

the exclusive formation of a dimer due to the better propargyl leaving group (PhCOO"

vs CH3COO)). Finally, application of pivalate achieved excellent chemoselectivity, giving
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the [2+2] products in good yields (>85 % combining all isomers, entry 5). Moreover, the
bulky pivalate group also gave significantly improved stereoselectivity with only two
major cycloaddition products obtained (2-2-3 and 2-2-3") in a 5:1 ratio. The structure of
the minor isomer, 2-2-3', was also confirmed by the X-ray crystallography. The silver-
free gold oxo catalyst [(PPh3Au)sO]JOTf could also promote this reaction effectively

(entry 6), though with a slightly lower reaction rate compared with the use of TA-Au.

The silver salt was crucial in this transformation. As shown in entry 7, the addition of
2 % AgOTTf led to the formation of only dimer 2-2-2 without obtaining any cycloaddition
product 2-2-3 obtained. Using a silver catalyst alone (entry 8) gave the same dimer
product with a slower reaction rate, likely due to the decreased reactivity of the silver
catalyst toward alkyne activation (compared with gold catalyst). Triflate acid did not
promote the rearrangement at all, giving only the propargyl ester decomposition over
time (entry 9). Finally, the silver-free PtCl, catalyst gave a similar cycloaddition reaction,
albeit at elevated temperature (entry 10). In view of these results, it is clear that the
propargyl rearrangement is the initiation step. The reactivity of the three well-known T11-
acids follows the general trend Au(l) > AgX > PtCl; in this transformation. Besides
alkyne activation, the silver cation (more oxophilic) can also activate the acetate as a
leaving group, giving dimer 2-2-2 as the only product. The silver-free TA-Au catalyst
indicated excellent reactivity toward alkyne activation over the undesired oxygen
activation, which led to the successful cycloaddition of allene for the first time. The

scope of reaction substrate is shown in Table 8.
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Table 8. Reaction Scope of [2+2] Cycloaddition "

t-Bu PivO OPiv
o/go [PPh;AU(TA-Me)JOTf (1 %)  Af! AN ar?

AT DCM, rt, air T, -

X A2 PIvO" % 2 Ar' Ar' ALl

2-2-3 2-2-3'
PivO PivO OPiv
Tol™__# ~Ph Ph—\ /Ph
total [2+2], 80 %
S, . 3:3'=5.6:1
PVO" 7, “Tol Tol® Tol
2-2-3c, 68 % 2-2-3¢', 12 %
Ar'
PivO PivO
\__~ ~Ph N\ Ph
t-Bu Br
t-Bu
2-2-3d, 75 %; 2-2-3e, 65 %;
2-2-3d', 13 % 2-2-3¢', 19 %
cl MeO
2-2-3g, 80 %; 2-2-3h, 76 %; 2-2-3i, 68 %;
2-2-3¢", 17 % 2-2-3h", 19 % 2-2-31", 12 %
F PivO

AN
COOMe

2-2-3j, 76 %; 2-2-3k, 71 %; 2-2-31, 73 %;
2-2-3", 17 % 2-2-3k', 12 % 2-2-31I', 18 %
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2-2-3n, 74 %; 2-2-30,43 %
2-2-3n', 18 % 2-2-30', 24 %
A 2
r PivO PivO PivO
Tol N\ / Tol™ X/ Tol Y
OMe COOMe N CF;
Pivo’ 2 Tol PivO” 2 “Tol PvO 2 Tl
OMe COOMe CF3
2-2-3p, 68 %; 2-2-3p, NR 2-2-3r, NR

2-2-3p’, 10 %°

Reaction conditions: 2-2-1 (0.2 mmol) and [PPhzAu(TA-Me)]OTf in DCM (0.8 mL). "Determined
by *H NMR using 1,3,5-trimethoxybenzene as internal standard. 1 mol % of [(PPh;Au);0]OTf
was used instead of [PPh;Au(TA-Me)]OTHf.

The reaction tolerates a good substrate scope on the propargyl aryl position (Arl).
Electron-withdrawing groups (2-2-3h, 2-2-3k) were suitable for this reaction, giving the
desired cycloaddition products with good yields. The electron-donating group modified
substrate (2-2-3i) gave the dimer as one of the major products with TA-Au catalysts,
probably due to the improved ability to form a propargyl carbon cation. This problem
was resolved by using [(PPh3Au);O]JOTf as the catalyst with a longer reaction time.
Steric hindrance was not an issue in this transformation based on the fact that ortho-
substituted substrates (2-2-3I-2-2-3n) worked fine under the optimal conditions with the
formation of the desired [2+2] cycloaddition products in excellent yields and similar

isomer ratios. Poor selectivity was observed with naphthalene-substituted derivative 2-
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2-30 (1.8:1). This result implied the plausibility of -1 stacking during the [2+2]

cycloaddition process.

A greater electronic effect was observed at the alkyne terminal Ar2 position. The
electron-donating p-methoxyphenyl substituted alkyne gave the desired cyclobutane 2-
2-3p in excellent yield when [(PPh3Au);O]JOTf was used as the catalyst. However, an
electron-withdrawing group reduced the reaction rate for propargyl ester rearrangement
due to either the poor reactivity of alkyne toward tr-acid activation (lower electron
density) or the unfavored 3,3-migration (over the electronically preferred 1,2-
rearrangement). Increasing the reaction temperature to 80 °C (with dichloroethane as
the solvent) gave the allenes at low yields (< 20 %), along with a significant amount of
unidentified side products. These results suggest that the ambient [2+2] cycloaddition is
substrate-dependent, which raises the concern whether gold catalysts were involved in
the cycloaddition process. To verify the potential role of gold catalysts in the

cycloaddition step, we monitored the reaction as shown in Scheme 32.

Scheme 32. Investigation on the Role of Au in [2+2] Step

gq gr“s/l [2+2] products

2-2-3b (2-2-3b")
68 % (14 %)

BrettpPhosAuNTf, 0.5 % H OPiv

Tol”

No kinetic difference at all

Tol NN
N Ph CDCl; (0.25 M), rt, air Ph

2:21c¢ 5 min 2.2.4 20 hrs

OPiv [

quant NMR yield 0.12 M [2+2] products
2-2-3b (2-2-3b’")
silica filtration to 66 % (12 %)

remove gold cat.
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Treating propargyl ester 2-2-1c with silver-free BrettPhosAuNTf, (0.5 %) gave rapid
rearrangement (5 min) to allene 2-2-4 in quantitative NMR yield. Because allene 2-2-4
will decompose upon condensation, it is difficult to isolate 2-2-4 in pure form. Thus the
reaction mixture was divided into two parts. One part continued to react under the
identical conditions (in the presence of the gold catalyst). The other part was filtered
through a silica plug so as to completely remove the gold catalyst. The resulting solvent
was condensed to ensure a concentration that was identical to that in the case with the
gold catalyst. As reviewed by NMR, for both cases, similar reaction rates were observed,
which confirmed that the allene [2+2] cycloaddition was a thermal reaction and gold

activation was not required.”

2.2.4 Conclusion

In conclusion, with the silver-free gold catalyst, the selective [2+2] cycloaddition was
achieved with high efficiency under mild conditions (ambient temperature, open flask).
Although the minor isomers were obtained, the fact that only two isolatable cyclobutane
isomers were obtained highlighted the good selectivity and high efficiency of this
transformation. The silver-free condition was identified as the crucial factor for the
success of this transformation. The strong influence of silver salts (even in catalytic
amounts) raised a viable concern for future investigations on gold catalysis, especially

when an oxophilic catalyst may be involved.
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2.2.5 Contribution

Dr. Yijin Su and Yanwei Zhang were the researchers who had first investigated the
reaction kinetic profile. Together Dr Jijin Su, and Yanwei Zhang were responsible for the
[2+2] complexes synthesis, NMR spectrum investigation and manuscript completion for
successful submission to Organic Letters. The detailed X-ray crystallographic data
analysis of compound 2-2-3a and 2-2-3c¢’ was done by Prof. Jeffrey L. Petersen, C.

Eugene Bennett Department of Chemistry, West Virginia University.
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Chapter Three: Synthesis and characterization of bis-N-2-aryl

triazole as efficient fluorescence probe

3.1 Introduction

Small organic molecules providing strong fluorescence emission are of great
importance to the scientific community.’”> These molecular fluorophores have been
applied into a wide range of research areas, including chemistry, biology and material
science.”® In 2009, Professor Clement Sanchez and co-workers discovered a novel
photoactive crystalline highly porous titanium (IV) dicarboxylate. In the year of 2010,
Professor Martin Albrecht and co-workers reported that N-heterocyclic carbene
complexes worked not only as catalysts but also components in medicinal, luminescent,

and functional material areas. "*"®

Two notable aspects influence the efficiency of fluorescence: 1) quantum yield, and

2) the wavelengths of excitation and emission.

In 2011, Shi’'s group reported N-2-aryl-1,2,3-triazoles (NAT) as novel fluorophores
with strong emission in the high-energy UV/blue region.”” The first interest was initiated
by the attractive phenomenon that in the N-1 phenyl triazole 3.1, basically no emission
was observed while the N-2 isomer exhibited a relatively strong fluorescence emission

(A =362 nm) under the identical excitation wavelength (A = 254 nm) (Scheme 33).
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Scheme 33. Photoluminescent Spectra of N-2-aryl-1,2,3-triazoles
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Sample preparation: 1.0x107° mol L™ in MeOH, excitation at A = 254 nm with 5 nm slit, quantum
yield of 3.1 @ = 0.154, quantum yield of 3.2 ® = 0.009.

Based on this result, it is suggested that, the fluorescence is presumably resulted
from the coplanar conformation between the phenyl ring and the benzotriazole in the N-
2-aryl-triazoles (NATSs). Therefore, we decided to implement the NATs complexes as
effective fluorophores in further fluorescence study based on their fluorescence
properties. As a result, a series of new N-2-aryl-triazoles (NATS) were synthesized and

characterized (Scheme 34).

Scheme 34. Synthesis of N-2-aryl-triazoles (NATS)

RN Proline 20 %, CuCl 10 % R25 _\'
jj 'NH + X-Ar = \N2—A
=,/ K,CO3, DMSO, 85 °C g NTAT
R'l N3
Three different effects are discussed in this NATs fluorescence investigation. The

first investigation is the substituent effect on the C-4 and C-5 positions. Different
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substituted groups were introduced to the C-4 and C-5 positions in the NATs. As
discussed previously, the fluorescence emission is possibly resulted from the coplanar
structure of the NATSs. It was plausible that C-4 and C-5 substitution may influence the
fluorescence emission through the conjugation of the entire NAT molecule. Moreover,
all of these substrates presented strong emission in the UV/blue-light range with Anax at

approximately 350 nm.

Scheme 35. Fluorescence Emission Behavior of Compounds with Different C-5

Substituents
H N
N Ph™ N\ =
Ph _N N N— Ph =N
Jj; N—Ph IN'N Ph ;IN'N i Jj; N=Ph
ph” N Ph pr” N
3.3 3.4 3.5 3.6

The second investigation was focused on the N-2 position substitution. Because the
fluorescence was generated from the coplanar structure, we hypothesized that the
variation of substituted group on N-2 position could have a significant influence on

fluorescence emission.

Scheme 36. Substituted Group Effect on the N-2 Position
_N
\N@R 3.7:R=CN;3.8:R=F;3.9: R=Cl;
o SN 3.10: R = OMe; 3.11: R = NO,; 3.12: R = COPh
G R .
A PN, "
~_ 7 / ~ 7 / =
Ph” N P N N J; N O
ph” N

3.13 3.14 3.15

57



Subsequent to synthesis of the above NATs (Scheme 36), the subsequent
fluorescence study indicated that most compounds had good fluorescence emission
and the overall quantum vyield for these NATs is approximately 30 %. This result
consequently confirmed the application potential of NATs as fluorophores in further

research.

Meanwhile, the crystal structures of 3.13 and 3.14 revealed the importance of
coplanar structure in the generation of fluorescence. As shown in Scheme 37, due to
the electron repulsion between the lone pair elections of the nitrogen atoms on both
triazole and pyridine rings, the dihedral angle between the triazole ring and N-2
substituted group in 3.14 (17.9°) was much larger than in 3.13 (5.4°). As a result, the
coplanar conjugation of 3.14 was relatively weaker than 3.13. Therefore, 3.14 presented
almost no emission but 3.13 presented a relatively strong emission. This result was
sufficient to support the hypothesis that the coplanar structure was the key point in the

process of generating intense fluorescence emission in the NATSs types of compounds.

Scheme 37. X-ray Crystal Structures of 3.13 and 3.14

dihedral angle = 5.4° dihedral angle = 17.9°

good planar conjugation poor conjugation
strong emission @ = 0.28 no emission @ =0.15
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The last investigation here concerns the substituted groups on N-2 substituted
aromatic ring. Based on various electronic effects introduced by substituted groups (-Cl,
-CN, -OMe), the fluorescence intensity and the emission wavelength can be tuned to a

considerable degree.

From all these above results, the NATs compounds have been demonstrated as a
type of potential fluorophore in multiple research areas. Furthermore, we concluded that
the strong fluorescence emission of NATs compounds is resulted from the coplanar

conjugation between the triazole ring and N-2 substituted aromatic ring.

Given a molecule in the excited state, there are basically two intramolecular charge
transfer types: PICT (planar intramolecular charge transfer) and TICT (twisted
intramolecular charge transfer). When the D-A (donor-acceptor) type chromophore
forms the flat pattern, PICT state will be the major source for generation of fluorescence
emission, whereas the twisted pattern will lead to the TICT state. Several typical model

molecules have been introduced into the study of the PICT and TICT states.’®

Scheme 38. PICT and TICT in Fluorescence Emission

Planar or Twisted 122

FC TICT

As introduced, the generation of fluorescence emission for the NATs developed by

Shi’s group is generated by the PICT. However in other reported molecules, the TICT is
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the dominate mechanism for fluorescence emission. When the electron donor (D)
lacceptor (A) subgroups form a mutually perpendicular configuration, the TICT excited

state will dominate.

3.2 Synthesis and characterization of naphthalene-bridged bis-N-2-aryl triazoles
(NBTs) as efficient fluorescence probe through twisted intramolecular charge

transfer mechanism

To investigate the difference of PICT and TICT, as well as discover a new
fluorophore based on TICT mechanism, naphthalene-bridged bis-N-2-aryl triazoles

(NBTs) compounds were prepared and applied in the fluorescence study.

As mentioned, the PICT mechanism (observed in N-2 isomers, Scheme 39A)
contributed the effective fluorescence emission in NATs compounds. Herein, we
reported the design and synthesis of NBT compounds, which gave excellent
fluorescence emission, even with a twisted conformation between triazole and N-2 aryl
groups (Scheme 39B), suggesting the twisted intramolecular charge transfer (TICT) as

the plausible mechanism for the observed strong fluorescence emission.”®
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Scheme 39. N-2-aryl Triazole Fluorophores

(A) Previously reported NAT fluorophore through PICT mechanism
co-planar conformation Twisted conformation
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N\

——
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N
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Previously, we reported that N-2-aryl triazole 3.1 gave very strong fluorescence

N

emission while its N-1 isomer 3.2 gave no emission at all. Two key factors appeared to
control the fluorescence emission in these NAT dyes: N-2 substitution and coplanar
conformation between the two rings. However, the second assumption was greatly
guestioned by our recent studies of N-naphthalene triazoles. As shown in Scheme 40,
we prepared phenyl triazole 3-1la (N-2 isomer) and 3-1b (N-1 isomer); N-naphthalene
triazole 3-1c (N-2 isomer) and 3-1d (N-1 isomer). Similar to benzyl triazoles, the N-1
isomer 3-1b and 3-1d gave no fluorescence emission and N-2 isomer 3-1a and 3-1c
gave strong emission. However, a closer look of 3-1c suggests that coplanar
conformation between naphthalene and triazole ring is highly unlikely due to the steric
repulsion. In fact, in our previous research, we found the crystal structure of a similar
analog to 3-1c indicated a 49.5° dihedral angle between the naphthalene ring and
triazole ring.®° These results initiated our interest in further exploring this new class of

fluorescent dyes with the question whether the coplanar conformation is necessary.?
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Scheme 40. Fluorescence Emission of NAT with Different Aryl Groups

N-2-Aryl is crucial. Is co-planar necessary?

Emission

Besides the coplanar intramolecular charge transfer (PICT), another feasible
photochemical process associated with this type of extended aromatic ring—i.e., the
twisted intramolecular charge transfer (TICT)--was first introduced by Grabowski et al.®?
One important feature of TICT type of emission is the feasibility of the donor unit in
initiating the charge transfer. Numerous nitrogen containing heterocycles have been
studied as donors in TICT emitting molecules.®* However, to the best of our knowledge

1,2,3-triazoles have not been used as a potential donor in the TICT fluorophores and

their photochemical properties remain unknown.

To explore triazole derivatives as potential TICT emitting dyes, we prepared
anthracene substituted triazole 3-le (N-2) and 3-1f (N-1). Clearly, the anthracene
should provide a large steric repulsion that can prevent the formation of coplanar
conformation even in the N-2 isomer 3-1le. Thus the fluorescence emission should be

mainly from the twisted state. Interestingly, both N-1 and N-2 isomers gave good
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emission. However, three different emission bands were observed in the N-1 isomer 3-
1f, which was similar to the typical emission of aromatic substituted anthracene.®* This
result suggested that triazole-anthracene compounds were not good model molecules
to evaluate the triazole’s influence on TICT emission due to the notable background
emission from anthracene. To better evaluate the triazole influence in the twisted

systems, we designed the naphthalene-bridged bis-triazole (NBT).
Scheme 41. Synthesis of Naphthalene-bridged Bis-triazoles (NBTSs)

1
Ar N

— N 1
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Condition A: 20 % Cul, 40 % Proline, 4.0 eq. K,CO3, DMSO, 120 °C;
Condition B: 20 % Cul, 40 % Proline, 4.0 eq. K,CO3, DMSO, 80 °C

3-2b

As shown in Scheme 41, the bis-triazole can be readily prepared from the copper
catalyzed coupling between naphthalene di-iodide 3-2b and NH-triazole. Two different
conditions were developed to reach NBT, either in a one-pot fashion (Condition A) or
stepwise process (Condition B). With the use of these methods, both symmetrical NBT
3-3 and asymmetrical NBT 3-5 could be easily prepared. Notably, both N-1 and N-2
isomers were observed in all cases. The regioselectivity (ratio between N-2 and N-1
isomers) depends on the substituted groups (Ar), similar to what has been observed

previously in triazoles functionalization.®® The N-1 and N-2 isomers could be easily
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separated using column chromatography due to the significant polarity difference.
Perhaps, the most important question for the synthesis of NBT was how to identify the
relative position of the two triazole rings with restricted rotation. Considering the rotation
of C-N bonds, theoretically two conformers (cis and trans) could be formed.
Interestingly, during our synthesis, only one conformer was observed in nearly all cases,

which was later confirmed to be the cis-conformer via X-ray crystallography (Scheme

42).

Scheme 42. X-ray Crystallography Confirmed the Formation of Cis-conformer

cis-3-3c : X-ray

As shown in the X-ray crystal structure, the twisted conformation was
confirmed between triazole and naphthalene rings with a dihedral angle of 61.5°.
The crystal structure of mono-triazole substituted 3-4a (Ar* = Ph, with | on
naphthalene ring) was also obtained. Similarly, the dihedral angle observed for 3-4a
between these two rings is 62.9°. With all clearly characterized NBTSs, their fluorescent

properties were measured and shown in Scheme 43.
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Scheme 43. Fluorescence Emission of NBT 3-3 and 3-4a
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As shown by the solid-state crystal structures, both bis-triazole NBT 3-3 and mono-
triazole 3-4 adopted a twisted conformation. However, while N-2 isomers generally
gave good fluorescence emission, the N-1 isomers gave almost no emission in all cases.
The emission intensity of NBT 3-3 followed a clear trend of N2-N2 > N2-N1 > N1-N1
(almost no emission). Due to the rotation strain, it is impossible for NBT 3-3 to adopt a
planar conformation even in solution. Thus the observed good fluorescence emission of
the N-2 isomers likely represents the photochemical process associated TICT states.
The optical properties (emission, excitation and quantum yields) of compounds 3-3 and

3-4 were determined and summarized in Table 9.
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Table 9. Comparison of Optical Properties of Different NBTs 2

RY/R? excitation emission [0) Stokes shift
NAT
3-1a - 208 347 0.34 49
3-4a N2-TA-I 300 378 0.20 78
NBT
3-3a R'=R’=H (N1-N1) - - <0.01 -
3-3b R'=R?=H (N1-N2) 307 384 0.13 77
3-3c R'=R?=H (N2-N2) 315 393 0.24 78
3-5a R'=R?*=ClI 305 393 0.26 88
3-5b R'=R?’=OMe 315 403 0.29 88
3-5¢ R'=R*=COOMe 300 396 0.41 96
3-5d R'=R?=CN 302 403 0.47 101
3-5e R'=OMe, R*=CN 300 408 0.39 108

2Sample information: 1.0 x 10°® mol/L in dichloromethane; Quantum yields (®) were determined
based on 1.0 x 10 mol/L 9,10-diphenylanthracene in cyclohexane (@ = 0.9); Calculated photo
emission integration from the original spectra. All fluorescence data are measured under
identical conditions.

While these N-2 isomers of NBTs were identified as a new class of fluorophores, one
interesting feature offered by the naphthalene-bridge was the potential for -1 stacking
between the two triazoles.®® As revealed by the structural analysis of 3-3c, the two
triazoles in NBT are nearly parallel, with the distance just slightly longer than the sum of
the van der Waals radii. Thus, it is reasonable to expect that the substituted groups on

the triazole phenyl ring may provide various electronic effects that will influence the
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overall optical properties ®” In order to explore the substituted group influence, a series
of symmetrical and asymmetrical NBT 3-5 were prepared with various substituents on
the triazole phenyl rings. Their photochemical properties were evaluated (Table 9), and

the fluorescence spectra of some representative NBTs are shown in Scheme 44.

Among all the tested NBTs, the N-2 substitution is crucial for effective
emission. Compared with previous planar NAT 3-la, the new twisted NBT
fluorophores gave more red shift emissions approximately 400 nm (blue light).
Interestingly, although the two triazole rings are nearly parallel, changing the
substituent groups on phenyl rings did not influence the overall emission of the
NBT. For example, with either EDG (3-5b) or EWG (3-5¢ and 3-5d) substituted
NBT; there were few changes on the emission and excitation wavelengths.
Furthermore, substrate 3-5e with EDG and EWG incorporated on different rings
also gave similar emission, which strongly suggested that minimal Tr-11
interactions occurred between the two rings. Notably, the substitute groups did
help to improve the quantum vyields (up to 47 %) through the introduction of
extended conjugations.®® Overall, in comparison with NAT, this new NBT system
gave significantly higher fluorescence efficiency, which implied great potential for

future applications.
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Scheme 44. Fluorescence Emission of NBT 3-5 and 3-4a
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3.3 Conclusion

In conclusion, we herewith report a new type of triazole based fluorescence-active
compounds: naphthalene-bridged bis-triazole (NBT). Practical syntheses have been
developed and regio-isomers of compounds were characterized by X-ray
crystallography. The fluorescence studies reveal that in this twisted system, the N-2
substitution is crucial for effective fluorescence emission. Comparing with previously
reported NAT system, this new NBT gave higher fluorescence efficiency and larger
Stokes shifts, which warrants the potential as new molecule probes for chemical and

biological applications.
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3.4 Contribution

Yanwei Zhang was the researcher who had first investigated the reaction condition
and fluorescence property. Together, Yanwei Zhang and Xiaohan Ye were responsible
for substrate scope, NMR spectrum, fluorescence data and manuscript completion for
successful submission to Journal of Organic Chemistry. The detailed X-ray
crystallographic data analysis of compound 3-3c was done by Prof. Jeffrey L. Petersen,

C. Eugene Bennett Department of Chemistry, West Virginia University.
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Supporting Information

Chapter One: Triazole-Au(l) complex as chemoselective catalyst in promoting

propargyl ester rearrangements.

|. General methods and materials

All of the reactions dealing with air and/or moisture-sensitive react were carried out
under an atmosphere of nitrogen using oven/flame-dried glassware and standard
syringe/septa techniques. Unless otherwise noted, all commercial reagents and
solvents were obtained from a commercial provider and used without further purification.
'H NMR and *C NMR spectra were recorded on Varian 600 MHz spectrometers.
Chemical shifts were reported relative to internal tetramethylsilane (& 0.00 ppm) or
CDCl; (3 7.26 ppm) for *H NMR and CDCl; (5 77.0 ppm) for **C NMR. Flash column
chromatography was performed on 230-430 mesh silica gel. Analytical thin layer
chromatography was performed with precoated glass baked plates (250u) and
visualized by fluorescence and by charring after treatment with potassium
permanganate stain. HRMS were recorded on LTQ-FTUHRA spectrometer.

Substrates 1-1, 1-5 were synthesized according to the literatures as below:
1. Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766-1775.

2. Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108,

3. Arcadi, A. Chem. Rev. 2008, 108, 3266—3325.
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Representative procedure for the preparation of allene 1-2a

QAc TA-Au 1%, dry CH,Cl, :<OAC

Bu
1a Bu 2a

"
N,
R~N \N—Au——PPt:‘

_ R=H, R=Me,
OTf

To a solution of 1-1a (58 mg, 0.25 mmol) in dry CH2CI2 (2.5 mL, 0.1 M), was added
Au(l) catalyst (1.9 mg, 0.0025 mol, 1.0 mol %) at RT. The reaction mixture was stirred at
RT and monitored by TLC. After the reaction was completed (2—-10 h), the solvent was
removed under reduced pressure and the residue was purified by flash chromatography
on silica gel (ethyl acetate/hexane =1 : 20, v/v) to give 1-2a (91% yield) as colorless oil.

Il. Compounds characterization

N..__OAc
oY

1-Phenylhepta-1,2-dien-3-yl acetate (1-2a): 91% yield, *H NMR (600 MHz, CDCls): &
7.43-7.44 (m, 2H), 7.32-7.35 (m, 2H), 7.25-7.27 (m, 1H), 6.59 (t, J = 3.0 Hz, 1H), 2.33-
2.37 (m, 2H), 2.15 (s, 3H), 1.46-1.51 (m, 2H), 1.38-1.43 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H);
13C NMR (150 MHz, CDCls): 5 196.7, 168.6, 133.9, 129.2, 128.6, 127.9, 127.0, 104.5,
315, 28.3,22.1, 21.0, 13.8.

/@A YOAC

1-p-TonIhepta-1,2-d|en-3-yl acetate (1-2b): 90% vyield, *H NMR (600 MHz, CDCl;): &
7.32 (d, J =8.4 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 6.56 (t, J = 3.0 Hz, 1H), 2.31-2.35 (m,
2H), 2.33 (s, 3H), 2.13 (s, 3H), 1.45-1.48 (m, 2H), 1.34-1.40 (m, 2H), 0.89 (t, J = 7.2 Hz,
3H); **C NMR (150 MHz, CDCls): & 196.1, 168.6, 137.9, 131.0, 129.3, 127.7, 126.7,
104.4, 315, 28.3, 22.1, 21.2, 21.0, 13.8.

/©/\ YOAC

1-(4- Fluorophenyl)hepta 1,2-dien-3-yl acetate (1-2c): 87% yield, *H NMR (600 MHz,
CDCl3): & 7.39-7.41 (m, 2H), 7.00-7.03 (m, 2H), 6.55 (t, J = 3.0 Hz, 1H), 2.31-2.35 (m,
2H), 2.15 (s, 3H), 1.44-1.49 (m, 2H), 1.36-1.41 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H). C
NMR (150 MHz, CDClIs): © 196.4, 168.6, 161.8 (d, J = 246.5 Hz), 130.0 (d, J = 3.2 Hz),
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129.4 (d, J = 8.3 Hz), 126.9, 115.5 (d, J = 21.9 Hz), 103.4 (d, J = 2.7 Hz), 31.5, 28.3,
22.1,21.0, 13.8.

OB
MeO Bu

1-(4-Methoxyphenyl)hepta-1,2-dien-3-yl acetate (1-2d): 89% yield, *H NMR (600 MHz,
CDCl3): 8 7.36 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 9.0 Hz, 2H), 6.54 (t, J = 3.0 Hz, 1H), 3.81
(s, 3H), 2.28-2.34 (m, 2H), 2.14 (s, 3H), 1.44-1.47 (m, 2H), 1.35-1.39 (m, 2H), 0.90 (t, J
= 7.2 Hz, 3H). *C NMR (150 MHz, CDCls):  195.3, 168.8, 159.6, 129.0, 126.6, 126.4,
114.2, 104.0, 55.3, 31.6, 28.4, 22.1, 21.1, 13.8.

N /©/\ YOAC

1-(4- Nltrophenyl)hepta 1,2-dien-3-yl acetate (1-2e): 89% vyield, *H NMR (600 MHz,
CDClI3): & 8.18-8.20 (m, 2H), 7.56-7.58 (m, 2H), 6.63 (t, J = 3.0 Hz, 1H), 2.34-2.37 (m,
2H), 2.17 (s, 3H), 1.45-1.55 (m, 2H), 1.37-1.41 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H). BC
NMR (150 MHz, CDCl3): 6 200.2, 168.2, 147.2, 140.9, 128.3, 127.5, 124.0, 102.6, 31.4,
28.2, 22.1, 22.0, 13.8. HRMS Calculated for [C15H17NO4+Na]+: 298.1050, Found:
298.1050.

1-Cyclopropyl-3-phenylpropa-1,2-dienyl acetate (1-2f): 85% yield, *H NMR (600 MHz,
CDCls): & 7.39-7.40 (m, 2H), 7.31-7.33 (m, 2H), 7.23-7.24 (m, 1H), 6.59 (d, J = 2.4 Hz,
1H), 2.16 (s, 3H), 1.55-1.59 (m, 1H), 0.77-0.80 (m, 2H), 0.59-0.65(m, 2H). *C NMR

(150 MHz, CDCl3): 6 196.4, 168.6, 133.7, 128.7, 128.1, 127.8, 105.1, 93.0, 20.9, 11.9,
6.4, 5.9. HRMS Calculated for [C14H1402+H]+: 215.1066, Found: 215.1059.

©/\ YOCOZEt

Ethyl 1-phenylhepta-1,2-dien-3-yl carbonate (1-5a): 92% yield, *H NMR (600 MHz,
CDCl3): & 7.42-7.43 (m, 2H), 7.32-7.35 (m, 2H), 7.24-7.27 (m, 1H), 6.65 (t, J = 3.0 Hz,
1H), 4.24 (q, J = 7.2 Hz, 2H), 2.37-2.41 (m, 2H), 1.47-1.51 (m, 2H), 1.37-1.41 (m, 2H),
1.32 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H); *C NMR (150 MHz, CDCls): 5 196.4,
153.1, 133.7, 128.7, 128.3, 128.1, 127.9, 105.7, 64.5, 31.3, 28.2, 22.1, 14.2, 13.8.
HRMS Calculated for [C16H2003+Na]+: 283.1305, Found: 283.1305.

. OBoc
Oy
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t-Butyl 1-phenylhepta-1,2-dien-3-yl carbonate (1-5b): 91% vyield, *H NMR (600 MHz,
CDCl3): 8 7.41-7.42 (m, 2H), 7.31-7.34 (m, 2H), 7.23-7.26 (m, 1H), 6.63 (t, J = 3.0 Hz,
1H), 2.35-2.39 (m, 2H), 1.50 (s, 9H), 1.46-1.48 (m, 2H), 1.37-1.41 (m, 2H), 0.89 (t, J =
7.5 Hz, 3H). *C NMR (150 MHz, CDCls): 5 196.7, 151.2, 134.0, 128.6, 128.1, 128.0,
127.8, 105.2, 82.9, 31.4, 28.3, 27.9, 22.1, 13.8. HRMS Calculated for [C18H2403+Na]+:
311.1618, Found: 311.1604.

O 0

/\ \f
S

Bu

Allyl 1-phenylhepta-1,2-dien-3-yl carbonate (1-5c): 88% yield, 'H NMR (600 MHz,
CDCl3):  7.41 (d, J = 7.8 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.24-7.27 (m, 1H), 6.65 (s,
1H), 5.91-5.97 (m, 1H), 5.35 (d, J = 17.4 Hz, 1H), 5.26 (d, J = 10.2 Hz, 1H), 4.65 (d, J =
6.0 Hz, 2H), 2.30-2.34 (m, 2H), 1.47-1.53 (m, 2H), 1.36-1.43 (m, 2H), 0.89 (t, J = 6.9 Hz,
3H). *C NMR (150 MHz, CDCls): 5 196.3, 152.9, 133.7, 131.3, 128.7, 128.4, 128.1,

127.9, 119.2, 1058, 68.9, 31.3, 282, 22.1, 13.8. HRMS Calculated for
[C17H2003+Na]+: 295.1305, Found: 295.1306.

\-YOCOZEt
Bu

NO,

Ethyl 1-(3-nitrophenyl)hepta-1,2-dien-3-yl carbonate (1-5d): 92% vyield, *H NMR (600
MHz, CDCl3): 6 8.25-8.26 (m, 1H), 8.09-8.12 (m, 1H), 7.77-7.78 (m, 1H), 7.51 (t, J = 8.1
Hz, 1H), 6.70 (t, J = 3.0 Hz, 1H), 4.24 (q, J = 7.4 Hz, 1H), 2.39-2.43 (m, 2H), 1.48-1.56
(m, 2H), 1.39-1.44 (m, 2H), 1.33 (t, J = 8.1 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H). *C NMR
(150 MHz, CDCIl3): & 198.3, 152.7, 148.7, 135.9, 133.4, 129.5, 129.2, 122.7, 122.5,
103.6, 64.8, 31.3, 28.1, 22.1, 14.2, 13.7. HRMS Calculated for [C16H19NO5+Na]+:
328.1155, Found: 328.1142.

\'YOBOC
Bu

O,N

t-Butyl 1-(3-nitrophenyl)hepta-1,2-dien-3-yl carbonate (1-5e): 89% yield, 'H NMR
(600 MHz, CDCls): & 8.23-8.24 (m, 1H), 8.09-8.11 (m, 1H), 7.77 (dt, J = 7.8 Hz, 1.2 Hz,
1H), 7.50 (t, J = 8.1 Hz, 1H), 6.68 (t, J = 3.0 Hz, 1H), 2.37-2.41 (m, 2H), 1.51 (s, 9H),
1.47- 1.50 (m, 2H), 1.38-1.42 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H). **C NMR (150 MHz,
CDCIl3): & 198.6, 150.8, 148.7, 136.2, 133.4, 129.5, 128.9, 122.5, 122.4, 103.2, 83.4,
31.4, 28.2, 27.7, 22.1, 13.8. HRMS Calculated for [C18H23NO5+Na]+: 356.1468,
Found: 356.1454.
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thN\(o
\'YO
Bu
NO,

1-(3-Nitrophenylhepta-1,2-dien-3-yl diphenylcarbamate (1-5f): 85% vyield, *H NMR
(600 MHz, CDCl3): 6 8.22 (t, J = 2.1 Hz, 1H), 8.07 (dqg, J = 8.4 Hz, 1.0 Hz, 1H), 7.77 (dt,
J=7.8Hz, 1.2 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H), 7.34 (t, J = 7.8 Hz, 4H), 7.21-7.28 (m,
6H), 6.65 (t, J = 3.0 Hz, 1H), 2.30-2.34 (m, 2H), 1.31-1.41 (m, 4H), 0.85 (t, J = 7.2 Hz,
3H). *C NMR (150 MHz, CDCls): 5 198.7, 152.0, 148.6, 142.2, 136.4, 133.5, 129.5,
128.9, 128.3, 126.8, 126.4, 122.4, 122.3, 102.8, 31.6, 28.1, 21.9, 13.7. HRMS
Calculated for [C26H24N204+Na]+: 451.1628, Found: 451.1610
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Chapter Two: Further transformations from allene intermediate formed by

Triazole-Au(l) complex as promoting propargyl ester rearrangements.

2.1 Triazole gold promoted, effective synthesis of enonoes from prypargylic

esters and alcohols

|. General methods and materials

All of the reactions dealing with air and/or moisture-sensitive reactions were carried out
under an atmosphere of nitrogen using oven/flame-dried glassware and standard
syringe/septa techniques. Unless otherwise noted, all commercial reagents and
solvents were obtained from the commercial provider and used without further
purification. 'H NMR and **C NMR spectra were recorded on Varian 600 MHz
spectrometers. Chemical shifts were reported relative to internal tetramethylsilane (&
0.00 ppm) or CDCI3 (5 7.26 ppm) for *H NMR and CDCIs (5 77.0 ppm) for **C NMR. Flash
column chromatography was performed on 230-430 mesh silica gel. Analytical thin layer
chromatography was performed with precoated glass baked plates (250u) and
visualized by fluorescence and by charring after treatment with potassium
permanganate stain. HRMS were recorded on LTQ-FTUHRA spectrometer.

Substrates 2-1-1 and 2-1-5 were synthesized according to the literature as below:

1. M. Yu, G. Zhang, L. Zhang, Org. Lett. 2007, 9, 2147-2150.

2. N. Marion, P. Carlqvist, R. Gealageas, P. Fremont, F. Maseras, S. P. Nolan, Chem.
Eur. J. 2007, 13, 6437-6451.

Representative procedure for the preparation of a,B8-unsatured ketone 2-1-4a

To a solution of 2-1-1a (288 mg, 1.25 mmol) in wet MeOH (5 mL, 0.25 M, MeOH:H20 =
100:1), was added Au(l) catalyst (1.8 mg, 0.0025 mol, 0.2 mol%) at 60 °C. The reaction
mixture was stirred at 60 °C and monitored by TLC. After the reaction was completed (4
h), the solvent was removed under reduced pressure and the residue was purified by
flash chromatography on silica gel (ethyl acetate/hexane = 1 : 20, V/V) to give 2-1-4a
(92% vyield) as colorless oil.

Representative procedure for the preparation of a,B8-unsatured ketone 2-1-4a from
2-1-ba

To a solution of 2-1-5a (94 mg, 0.5 mmol) in wet MeOH (2.5 mL, MeOH:H,0O = 100:1),
was added Au(l) catalyst (1.8 mg, 0.0025 mol, 0.5 mol%) at 60 °C. The reaction mixture
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was stirred at 60 °C and monitored by TLC. After the reaction was completed (3 h), the
solvent was removed under reduced pressure and the residue was purified by flash
chromatography on silica gel (ethyl acetate/hexane = 1 : 20, V/V) to give 2-1-4a (89%
yield) as colorless oil.

Il. Compounds characterization

PhMBu

(E)-1-phenylhept-1-en-3-one (E-2-1-4a). (Known compound, See: N. Marion, P.
Carlgvist,. Gealageas, P. Fremont, F. Maseras, S. P. Nolan, Chem. Eur. J. 2007, 13,
6437-6451) *H NMR (600 MHz, CDCl3): & 7.53-7.56 (m, 3H), 7.38-7.40 (m, 3H), 6.73 (t,
J =16.2 Hz, 1H), 2.66 (t, J = 7.5 Hz, 2H), 1.66 (quintet, J = 7.5 Hz, 2H), 1.37 (sextet, J =
7.4 Hz, 2H), 0.94 (t, J = 7.5 Hz, 3H); *C NMR (150 MHz, CDCls): & 200.8, 142.5, 134.8,
130.6, 129.1, 128.4, 126.5, 40.9, 26.7, 22.7, 14.1.

O

Ph/vkt—Bu

(E)-4,4-dimethyl-1-phenylpent-1-en-3-one (E-2-1-4b): (Known compound, See: R. S.
Ramon, S. Gaillard, A. M. Z. Slawin, A. Porta, A. D'Alfonso, G. Zanoni, S. P. Nolan,
Organometallics 2010, 29, 3665-3668) *H NMR (600 MHz, CDCls): & 7.69 (d, J = 16.2
Hz, 1H, E), 7.56-7.58 (m, 2H, E), 7.53-7.54 (m, 2H, Z), 7.37-7.40 (m, 3H, E), 7.29-7.33
(m, 3H, 2), 7.13 (d, J = 15.6 Hz, 1H, E), 6.78 (d, J = 13.0 Hz, 1H, Z), 6.45 (d, J = 13.0
Hz, 1H, Z), 1.23 (s, 9H, E), 1.20 (s, 9H, Z). 3C NMR (150 MHz, CDCls): & 204.2, 142.9,
140.1, 134.9, 130.2, 129.5, 128.8, 128.3, 128.1, 124.3, 120.8, 43.2, 26.3, 26.2 (Z+E).

O

A~

(E)-dec-6-en-5-one (E-2-1-4c): (Known compound, See: M. N. Pennell, M. G. Unthank,
P. Turner, T. D. Sheppard, J. Org. Chem. 2011, 76, 1479-1482) *H NMR (600 MHz,
CDCIz): 8 6.82 (dt, J = 16.2, 6.6 Hz, 1H), 6.10 (dt, J = 15.6, 3.6 Hz, 1H), 2.53 (t, J = 7.8
Hz, 2H), 2.20 (qd, J = 7.2, 1.2 Hz, 2H), 1.60 (quintet, J = 7.7 Hz, 2H), 1.50 (sextet, J =
7.4 Hz, 2H), 1.34 (sextet, J = 7.4 Hz, 2H), 0.95 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 7.2 Hz,
3H); *C NMR (150 MHz, CDCl3): & 200.9, 146.9, 130.5, 39.8, 34.4, 26.4, 22.4, 21.3,
13.8, 13.6.

n-Pr u
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WB“

(E)-1-p-tolylhept-1-en-3-one (E-2-1-4d): (Known compound, See: N. Marion, P.
Carlgvist, R. Gealageas, P. Fremont, F. Maseras, S. P. Nolan, Chem. Eur. J. 2007, 13,
6437-6451) 'H NMR (600 MHz, CDCI3z): 6 7.51 (d, J = 16.2, Hz, 1H), 7.43 (d, J = 7.8 Hz,
2H), 7.19 (d, J = 8.4 Hz, 2H), 6.71 (d, J = 15.6 Hz, 1H), 2.64 (t, J = 7.5 Hz, 2H), 2.37 (s,
3H), 1.66 (quintet, J = 7.7 Hz, 2H), 1.37 (sextet, J = 7.4 Hz, 2H), 0.92 (t, J = 7.5 Hz, 3H);
13C NMR (150 MHz, CDClIs): d. 200.6, 142.3, 140.8, 131.8, 129.6, 128.2, 125.3, 40.5,
26.5,22.4,21.4,13.8.

PhA\/UW

(E)-1-cyclopropyl-3-phenylprop-2-en-1-one (E-2-1-4e): (Known compound, See: G. V.
Kryshtal, G. M. Zhdankina, S. G. Zlotin, Eur. J. Org. Chem. 2005, 13, 2822-2827) 'H
NMR (600 MHz, CDClz3): 6 7.63 (d, J = 16.2 Hz, 1H), & 7.55-7.57 (m, 2H), 7.38-7.40 (m,
3H), 6.86 (d, J = 16.2 Hz, 1H), 2.22-2.27 (m, 1H), 1.15-1.17 (m, 2H), 0.95-0.99 (m, 2H);
13C NMR (150 MHz, CDCI3): & 199.9, 141.9, 134.6, 130.2, 128.8, 128.2, 126.4, 19.6,
11.3.

Ph O

%

(2)-1-cyclopropyl-3-phenylprop-2-en-1-one (Z-2-1-4e): (Known compound, See:
Kryshtal, G. M. Zhdankina, S. G. Zlotin, Eur. J. Org. Chem. 2005, 13, 2822-2827) *H
NMR (600 MHz, CDCI3): 6 7.49-7.51 (m, 2H), 7.32-7.35 (m, 3H), 6.93 (d, J = 12.6 Hz,
1H), 6.24 (d, J = 12.6 Hz, 1H), 1.88-1.92 (m, 1H), 1.10-1.13 (m, 2H), 0.81-0.83 (m, 2H);

3C NMR (150 MHz, CDClz): 5 203.7, 139.3, 135.4, 129.6, 129.5, 128.9, 128.1, 22.1,
12.5.

(E)-1-phenylhex-2-en-1-one (E-2-1-4f): (Known compound, See: N. Marion, P.
Carlgvist, R. Gealageas, P. Fremont, F. Maseras, S. P. Nolan, Chem. Eur. J. 2007, 13,
6437-6451) *H NMR (600 MHz, CDClz): & 7.91-7.93 (m, 2H), 7.52-7.54 (m, 1H), 7.45 (t,
J =7.5Hz, 2H), 7.05 (dt, J = 15.6, 7.8 Hz, 1H), 6.86 (dt, J = 15.0, 1.5 Hz, 1H), 2.28 (m,
2H), 1.54 (sextet, J = 7.3 Hz, 2H), 0.97 (t, J = 7.2 Hz, 3H); *3C NMR (150 MHz, CDClI3):
0 190.8, 149.6, 137.9, 132.4, 128.4, 128.3, 125.9, 34.7, 21.3, 13.6.
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O

A

(E)-oct-2-en-4-one (E-2-1-49): (Known compound, See: A. R. Katritzky, D. C. Oniciu, .
Ghiviriga, F. Soti, J. Org. Chem. 1998, 63, 2110-2115) 'H NMR (600 MHz, CDCI3): &
6.85 (dq, J = 16.2, 6.8 Hz, 1H), 6.11 (dq, J = 15.6, 1.6 Hz, 1H), 2.52 (t, J = 7.5 Hz, 2H),
1.90 (dd, J = 6.6, 1.8 Hz, 3H), 1.59 (quintet, J = 7.5 Hz, 2H), 1.33 (sextet, J = 7.6 Hz,
2H), 0.91 (t, J = 7.2 Hz, 3H); 3C NMR (150 MHz, CDCls):  200.7, 142.2, 131.9, 39.8,
26.4,22.4,18.2, 13.8.

WBU
F

(E)-1-(4-fluorophenyl)hept-1-en-3-one (E-2-1-4h): (Known compound, See: N. Marion,
P. Carlgvist, R. Gealageas, P. Fremont, F. Maseras, S. P. Nolan, Chem. Eur. J. 2007,
13, 6437-6451) *H NMR (600 MHz, CDCl3): & 7.50-7.54 (m, 3H), 7.08 (t, J = 8.4 Hz, 2H),
6.66 (d, J = 16.2 Hz, 1H), 2.65 (t, J = 7.5 Hz, 2H), 1.66 (quintet, J = 7.4 Hz, 2H), 1.38
(sextet, J = 7.5 Hz, 2H), 0.94 (t, J = 7.5 Hz, 3H); **C NMR (150 MHz, CDCI3): & 200.3,
163.0 (d, J = 249.8 Hz), 140.8, 130.8 (d, J = 1.8 Hz), 130.0 (d, J = 8.3 Hz), 125.9, 116.0
(d, J=21.8 Hz), 40.7, 26.4, 22.3, 13.8.

I

N-"p
2-methyloct-2-en-4-one (2-1-4i): (Known compound, See: M. Yu, G. Li, S. Wang, L.
Zhang, Adv. Synth. Catal. 2007, 349, 871-875) *H NMR (600 MHz, CDCI3): & 6.06-6.08
(m, 1H), 2.40 (t, J = 7.5 Hz, 2H), 2.14 (d, J = 1.2 Hz, 3H), 1.88 (d, J = 1.2 Hz, 3H), 1.57

(quintet, J = 7.5 Hz, 2H), 1.32 (sextet, J = 7.4 Hz, 2H), 0.91 (t, J = 7.2 Hz, 3H); **C NMR
(150 MHz, CDCl3): 8 201.2, 154.5, 123.8, 43.9, 27.5, 26.4, 22.4, 20.6, 13.8.

u

u

O

i—Pr/\)J\Bu

(E)-2-methylnon-3-en-5-one (E-2-1-4j): (Known compound, See: M. Yu, G. Li, S.
Wang, L. Zhang, Adv. Synth. Catal. 2007, 349, 871-875) *H NMR (600 MHz, CDCI3): &
6.78 (dd, J = 16.2, 6.6 Hz, 1H), 6.03 (dd, J = 16.2, 1.8 Hz, 1H), 2.53 (t, J = 7.5 Hz, 2H),
2.41-2.48 (m, 1H), 1.59 (quintet, J = 7.4 Hz, 2H), 1.32 (sextet, J = 7.4 Hz, 2H),1.07 (d, J
= 6.6 Hz, 6H), 0.91 (t, J = 7.2 Hz, 3H); *C NMR (150 MHz, CDCl3): 5 201.2, 153.1,
127.5, 39.8, 31.0, 26.4, 22.4, 21.3, 13.8.
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LR
X" ph

2-cyclohexylidene-1-phenylethanone (2-1-4k): (Known compound, See: B. Lu, C. Li,
L. Zhang, J. Am. Chem. Soc. 2005, 127, 14180-14181) *H NMR (600 MHz, CDCl3): &
7.93-7.95 (m, 2H), 7.51-7.54 (m, 1H), 7.43-7.46 (m, 2H), 6.60-6.61 (m, 1H), 2.76-2.78
(m, 2H), 2.31 (td, J = 6.3, 0.6 Hz, 2H), 1.71-1.75 (m, 2H), 1.62-1.66 (m, 4H); *C NMR
(150 MHz, CDCIs): 6 192.3, 162.7, 139.3, 132.3, 128.4, 128.3, 118.7, 38.4, 30.6, 28.9,
28.0, 26.3.

0]

@ME‘”
MeO

(E)-1-(4-methoxyphenyl)hept-1-en-3-one (E-2-1-4l); (Known compound, See: N.
Marion, P. Carlgvist, R. Gealageas, P. Fremont, F. Maseras, S. P. Nolan, Chem. Eur. J.
2007, 13, 6437-6451) *H NMR (600 MHz, CDCl3): & 7.51 (d, J = 15.6 Hz, 1H), 7.49 (d, J
= 8.4 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 16.2 Hz, 1H), 3.83 (s, 3H), 2.63 (t, J
= 7.5 Hz, 2H), 1.66 (quintet, J = 7.5 Hz, 2H), 1.38 (sextet, J = 7.4 Hz, 2H), 0.94 (t, J =
7.2 Hz, 3H); *C NMR (150 MHz, CDClz): & 200.6, 161.5, 142.0, 129.9, 127.2, 1241,
114.3, 55.3, 40.5, 26.6, 22.4, 13.9.

0]

Ph/\)LPh

(E)-chalcone (E-2-1-4m): (Known compound, See: N. Marion, P. Carlgvist, R.
Gealageas, P. Fremont, F. Maseras, S. P. Nolan, Chem. Eur. J. 2007, 13, 6437-6451)
'H NMR (600 MHz, CDCIs): & 8.00-8.02 (m, 2H), 7.80 (d, J = 15.6 Hz, 1H), 7.62-7.63 (m,
2H), 7.55-7.58 (m, 1H), 7.52 (d, J = 15.6 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.38-7.41 (m,
3H); **C NMR (150 MHz, CDCIl3): 5 190.4, 144.7, 138.2, 134.8, 132.7, 130.5, 128.9,
128.6, 128.4, 128.4, 122.1.

Ui
X" ph

3-methyl-1-phenylbut-2-en-1-one (2-1-4n): (Known compound, See: P. N. Chatterjee,
S. Roy, J. Org. Chem. 2010, 75, 4413-4423) *H NMR (600 MHz, CDCls): 5 7.92-7.94 (m,
2H), 7.50-7.53 (m, 1H), 7.42-7.45 (m, 2H), 6.74-6.75 (m, 1H), 2.21 (d, J = 1.2 Hz, 3H),
2.01 (d, J = 1.2 Hz, 3H); **C NMR (150 MHz, CDCls): & 191.8, 156.6, 139.2, 132.2,
128.4,128.1, 121.1, 27.9, 21.1.
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(E)-1-o-tolylhept-1-en-3-one (E-2-1-40): (Known compound, See: N. Marion, P.
Carlgvist, R. Gealageas, P. Fremont, F. Maseras, S. P. Nolan, Chem. Eur. J. 2007, 13,
6437-6451) *H NMR (600 MHz, CDCls): & 7.85 (d, J = 16.2 Hz, 1H), 7.56 (d, J = 7.8 Hz,
1H), 7.25 (t, J = 7.2 Hz, 1H), 7.20 (t, J = 7.5 Hz, 2H), 6.66 (d, J = 16.2 Hz, 1H), 2.65 (t, J
= 7.2 Hz, 2H), 2.43 (s, 3H), 1.67 (quintet, J = 7.5 Hz, 2H), 1.39 (sextet, J = 7.4 Hz, 2H),
0.95 (t, J = 7.2 Hz, 3H); **C NMR (150 MHz, CDCls): & 200.4, 139.6, 137.8, 133.5,
130.7,129.9, 127.1, 126.3, 126.2, 40.9, 26.4, 22.4, 19.6, 13.8.

th

(E)-1-phenyl-3-p-tolylprop-2-en-1-one (E-2-1-4p): (Known compound, See: Y. Zhang,
Y.-L. Shao, H.-S. Xu, W. Wang, J. Org. Chem. 2011, 76, 1472-1474) *H NMR (600 MHz,
CDCls): & 8.00-8.01 (m, 2H), 7.79 (d, J = 15.6 Hz, 1H), 7.53-7.57 (m, 3H), 7.47-7.50 (m,
3H), 7.22 (d, J = 7.8 Hz, 2H), 2.38 (s, 3H); *C NMR (150 MHz, CDCl3): 5 190.6, 144.9,
141.0, 138.4, 132.6, 132.2, 129.7, 128.5, 128.4, 121.1, 21.5.

V/\AB“

(E)-1-cyclopropylhept-1-en-3-one (E-2-1-4q): (Known compound, See: M. N. Pennell,
M. G. Unthank, P. Turner, T. D. Sheppard, J. Org. Chem. 2011, 76, 1479-1482) H
NMR (600 MHz, CDCIs): 6 6.31 (dd, J = 15.6 Hz, 9.6 Hz, 1H), 6.21 (d, J = 15.6 Hz, 1H),
2.48 (t, J = 7.5 Hz, 2H), 1.53-1.61 (m, 3H), 1.34 (sextet, J = 7.4 Hz, 2H), 0.95-0.99 (m,
2H), 0.91 (t, J = 7.5 Hz, 3H), 0.64-0.66 (m, 2H); *C NMR (150 MHz, CDClz): 5 199.8,
152.0, 127.2, 40.0, 26.5, 22.4, 14.5, 13.8, 8.8.

Ok

N
1-cyclohexylidenehexan-2-one (2-1-4r): (Known compound, See: M. Yu, G. Li, S.
Wang, L. Zhang, Adv. Synth. Catal. 2007, 349, 871-875) *H NMR (600 MHz, CDCI3): &
5.97 (s,1H), 2.79 (t, J = 5.4 Hz, 2H), 2.40 (t, J = 7.2 Hz, 2H), 2.16 (t, J = 6.3 Hz, 2H),

1.54-1.69 (m, 8H), 1.32 (sextet, J = 7.4 Hz, 2H), 0.91 (t, J = 7.5 Hz, 3H); **C NMR (150
MHz, CDCls): 8 202.1, 161.4, 121.0, 44.2, 38.1, 29.9, 28.8, 27.9, 26.4, 26.3, 22.4, 13.9.

u
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OMe
(E)-1-(2-methoxyphenyl)hept-1-en-3-one (E-2-1-4s): *H NMR (600 MHz, CDCl3): &
7.91 (d, J = 16.8 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 8.1 Hz, 1H), 6.96 (t, J =
7.5 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.78 (d, J = 16.2 Hz, 1H), 3.89 (s, 3H), 2.67 (t, J =
7.5 Hz, 2H), 1.66 (quintet, J = 7.5 Hz, 2H), 1.38 (sextet, J = 7.4 Hz, 2H), 0.94 (t, J=7.5
Hz, 3H); *3C NMR (150 MHz, CDCls): & 201.2, 158.3, 137.5, 131.5, 128.3, 126.9, 123.5,

120.7, 111.1, 55.4, 40.1, 26.6, 22.4, 13.9.

Cl
(E)-1-(2-chloro-5-nitrophenyl)hept-1-en-3-one (E-2-1-4t): *H NMR (600 MHz, CDCla):
0 8.04 (d, J = 1.8 Hz, 1H), 7.67 (dd, J = 7.8 Hz, 1.8 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H),
7.50 (d, J = 16.2 Hz, 1H), 6.80 (d, J = 15.6 Hz, 1H), 2.67 (t, J = 7.5 Hz, 2H), 1.67
(quintet, J = 7.5 Hz, 2H), 1.38 (sextet, J = 7.4 Hz, 2H), 0.95 (t, J = 7.2 Hz, 3H); 13C NMR
(150 MHz, CDCl3s): 6 199.5, 148.3, 137.8, 134.8, 132.4, 132.0, 128.8, 128.2, 124.5, 41.3,

26.1, 22.3, 13.8;, HRMS Calculated for [C13H14CINOs+Na]+: 290.05599, Found:
290.05585.

O

(E)-1-(naphthalen-4-yl)hept-1-en-3-one (E-2-1-4u): (Known compound, See: R. S.
Ramoén, N. Marion, S. P. Nolan, Tetrahedron, 2009, 65, 1767-1773) *H NMR (600 MHz,
CDCls): 6 8.40 (d, J = 16.2 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.88 (t, J = 9.0 Hz, 2H),
7.76 (d,J=7.2 Hz, 1H), 7.57 (t, J=7.5 Hz, 1H), 7.52 (t, I = 7.5 Hz, 1H), 7.48 (t, J = 7.8
Hz, 1H), 6.83 (d, J =16.2 Hz, 1H), 2.73 (t, J = 7.5 Hz, 2H), 1.72 (quintet, J = 7.5 Hz, 2H),
1.42 (sextet, J = 7.4 Hz, 2H), 0.97 (t, J = 7.5 Hz, 3H); **C NMR (150 MHz, CDCI3): &
200.4, 139.1, 133.7, 132.0, 131.6, 130.6, 128.8, 128.7, 126.8, 126.2, 125.4, 125.0,
123.3,41.1, 26.5, 22.5, 13.9.
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[ll. NMR spectra
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2.2 Ambient intermolecular [2+2] cycloaddition of allene intermediate

|. General methods and materials

All of the reactions dealing with air and/or moisture-sensitive reactions were carried out
under an atmosphere of nitrogen using oven/flame-dried glassware. Unless otherwise
noted, all commercial reagents were obtained from the commercial provider and used
without further purification. Anhydrous solvents were used after general distillation
strategies (Na for THF and CaHzfor DCM). All gold complexes were synthesized from
HAuClI4, which was purchased from Strem. XPhos was purchased from Acros and used
as received (stored at 4 oC and handled in glovebox). *H NMR, and **C NMR spectra
were recorded on Varian 600 MHz and Agilent 400 MHz spectrometers. Chemical shifts
were reported relative to internal tetramethylsilane (& 0.00 ppm) or CDCl3 (& 7.26 ppm)
for *H and CDCl; (3 77.0 ppm) for *3C. Flash column chromatography was performed on
230-430 mesh silica gel. HRMS were recorded on LTQ-FTUHRA spectrometer.

General procedure of propargyl ester

(1) n-BuLi (1.2eq.), THF, -780C OPiv
(2) Ar,CHO, 1.0eq.
Ar1 — A
(3) Hy0 0.5eq. TN N
(4) PivCl 2.5eq., TEA 2.0eq. r2

Reaction conditions: To a solution of alkyne (12 mmol) in anhydrous THF (50 mL) at —
78 °C under N2 was added n-BuLi (2.5 M solution in hexanes, 5.0 mL, 12.5 mmol). The
reaction was stirred at this temperature for 20 min then aldehyde (10 mmol) was added
to the mixture and was allowed to warm to room temperature gradually and stirred for
an additional hour (TLC monitored untill the aldehyde was consumed completely). 10
Mins after addition of 0.5 eq. of H20, PivCl (25 mmol) and TEA (20 eq.) were added at
room temperature and stirred for 6 h. The mixture was extracted with EtOAc (3 x 20 mL),
and the combined organic phases were washed with water and brine, dried with
anhydrous MgSOs4, and filtered. The filtrate was concentrated, and the residue was
purified through silica gel flash column chromatography (hexanes/ethyl acetate = 20/1)
to yield the desired pivalate ester (70 % - 90 %).
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Il. Compounds characterization

OPiv
5 C

3-phenyl-1-(p-tolyl)prop-2-yn-1-yl pivalate (2-2-1c). Pale yellow solid; 1tH-NMR (CDClz, 400MHz,
ppm) & = 7.47-7.44 (m, 4H), 7.32-7.27 (m, 3H), 7.19 (d, J = 8.0 Hz, 2H), 6.64 (s, 1H), 2.36 (s, 3H),
1.23 (s, 9H); 13C-NMR (CDCls, 100MHz, ppm) & = 177.22, 138.51, 134.59, 131.86, 129.25, 128.60,
128.21, 127.39, 122.35, 86.53, 86.0, 65.71, 38.76, 26.99, 21.19; HRMS calcd for C21H2202Na
[M+Na]+: 329.1512, found 329.1512.

OPiv

A

1,3-diphenylprop-2-yn-1-yl pivalate (2-2-1d). Pale yellow solid; *H-NMR (CDCls, 400MHz, ppm) &
= 7.58-7.56 (m, 2H), 7.48-7.45 (m, 2H), 7.42-7.34 (m, 3H), 7.33-7.24 (m, 3H), 6.68 (s, 1H), 1.24 (s,
9H); 13C-NMR (CDCls, 100MHz, ppm) 6 = 177.20, 137.49, 131.88, 128.68, 128.65, 128.58, 128.24,
127.38, 122.27, 86.72, 85.81, 65.80, 38.79, 26.99; HRMS calcd for C20H2002Na [M+Na]+: 315.1356,
found 315.1356.

OPiv
(s C

1-(4-(tert-butyl)phenyl)-3-phenylprop-2-yn-1-yl pivalate (2-2-1e). Pale yellow solid; *H-NMR
(CDCls, 400MHz, ppm) 6 = 7.51-7.45 (m, 4H), 7.42-7.39 (m, 2H), 7.33-7.28 (m, 3H), 6.65 (s, 1H),
1.33 (s, 9H), 1.24 (s, 9H); 13C-NMR (CDCls, 100 MHz, ppm) & = 177.29, 151.65, 134.44, 131.89,
128.61, 128.22, 127.11, 125.53, 122.40, 86.50, 86.06, 65.63, 38.82, 31.30, 27.03; HRMS calcd for
C24H2802Na [M+Na]+: 371.1982, found 371.1982.

OPiv
S
Br O

1-(4-bromophenyl)-3-phenylprop-2-yn-1-yl pivalate (2-2-1f). Pale yellow solid; *H-NMR (CDCls,
400MHz, ppm) & = 7.54-7.51 (m, 2H), 7.47-7.43 (m, 4H), 7.34-7.31 (m, 3H), 6.62 (s, 1H), 1.23 (s,
9H); *C-NMR (CDCls, 100 MHz, ppm) & = 177.11, 136.62, 131.89, 131.78, 129.14, 128.86, 128.30,
122.82, 122.01, 87.09, 85.22, 65.19, 38.79, 26.97; HRMS calcd for C20Hi19BrO2Na [M+Na]-:
393.0461, found 393.0461.

167



OPiv

s
AT e

1-(4-chlorophenyl)-3-phenylprop-2-yn-1-yl pivalate (2-2-1g). Pale yellow solid; *H-NMR (CDCls,
400MHz, ppm) & = 7.53-7.49 (m, 2H), 7.47-7.44 (m, 2H), 7.38-7.35 (m, 2H),7.33-7.30 (m, 3H), 6.63
(s, 1H), 1.23 (s, 9H); **C-NMR (CDCls, 100 MHz, ppm) & = 177.13, 147.0, 136.10, 134.63, 131.90,
128.85, 128.83, 128.30, 122.04, 87.07, 85.30, 65.15, 38.80, 26.97; HRMS calcd for C20H19ClO2Na
[M+Na]+: 349.0966, found 349.0967.

OPiv

s
F

1-(4-fluorophenyl)-3-phenylprop-2-yn-1-yl pivalate (2-2-1h). Pale yellow solid; *H-NMR (CDCls,
400MHz, ppm) & = 7.58-7.53 (m, 2H), 7.48-7.45 (m, 2H), 7.34-7.30 (m, 3H), 7.10-7.05 (m, 2H), 6.65
(s, 1H), 1.23 (s, 9H); *C-NMR (CDCls, 100 MHz, ppm) & = 177.15, 162.85 (d, J = 236.7 Hz), 133.44
(d, J = 3.8 Hz), 131.87, 129.37 (d, J = 8.4 Hz), 128.80, 128.28, 122.10, 115.53 (d, J = 21.3 Hz),
86.94, 85.54, 65.17, 38.77, 26.96; HRMS calcd for C2oHisFO2Na [M+Na]+: 333.1261, found
333.1262.

OPiv
s
MeO O

1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-yl pivalate (2-2-1i). Pale yellow solid; *H-NMR (CDCls,
400MHz, ppm) & = 7.52-7.49 (m, 2H), 7.48-7.45 (m, 2H), 7.33-7.30 (m, 3H), 6.93-6.90 (m, 2H), 6.63
(s, 1H), 3.82 (s, 3H), 1.22 (s, 9H); *C-NMR (CDCls, 100 MHz, ppm) & = 177.29, 159.87, 131.86,
129.72, 128.97, 128.62, 128.23, 122.35, 113.91, 86.52, 86.05, 65.57, 55.28, 38.77, 26.99; HRMS
calcd for C21H2203Na [M+Na]+: 345.1461, found 345.1461.

OPiv

F
U

1-(3-fluorophenyl)-3-phenylprop-2-yn-1-yl pivalate (2-2-1j). Pale yellow solid; *H-NMR (CDCls,
400MHz, ppm) & = 7.48-7.45 (m, 2H), 7.39-7.28 (m, 6H), 7.07-7.03 (m, 1H), 6.66 (s, 1H), 1.25 (s,
9H); *C-NMR (CDCls, 100 MHz, ppm) & = 177.07, 162.80 (d, J = 245.9 Hz), 139.92 (d, J = 6.8 Hz),
131.90, 130.15 (d, J = 8.3 Hz), 128.86, 128.29, 122.98 (d, J = 3.0 Hz), 122.00, 115.63 (d, J =21.2
Hz), 114.37 (d, J = 22.8 Hz), 87.05, 85.15, 65.06 (d, J = 2.2 Hz), 38.81, 26.98; HRMS calcd for
C20H19FO2Na [M+Na]+: 333.1261, found 333.1262.
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MeOOC O

methyl 4-(3-phenyl-1-(pivaloyloxy)prop-2-yn-1-yl)benzoate (2-2-1k). Pale yellow solid; *H-NMR
(CDCls, 400MHz, ppm) & = 8.09-8.06 (m, 2H), 7.66-7.62 (m, 2H), 7.48-7.45 (m, 2H), 7.35-7.29 (m,
3H), 6.71 (s, 1H), 3.92 (s, 3H), 1.25 (s, 9H); *C-NMR (CDCls, 100 MHz, ppm) & = 177.05, 166.61,
142.28, 131.89, 130.39, 129.94, 128.88, 128.28, 127.25, 121.96, 87.29, 85.08, 65.26, 52.17, 38.81,
26.96; HRMS calcd for C20H2002Na [M+Na]+: 373.1410, found 373.1411.

OPiv

1-(2-methylphenyl)-3-phenylprop-2-yn-1-yl pivalate (2-2-11). Pale yellow solid; *H-NMR (CDCls,
400MHz, ppm) & = 7.66-7.63 (m, 1H), 7.45-7.42 (m, 2H), 7.31-7.28 (m, 3H), 7.27-7.24 (m, 2H), 7.22-
7.19 (m, 1H), 6.75 (s, 1H), 2.48 (s, 3H) 1.24 (s, 9H); *C-NMR (CDCls, 100 MHz, ppm) & = 177.08,
136.27, 135.46, 131.83, 130.77, 128.68, 128.59, 128.21, 127.83, 126.14, 122.37, 86.52, 85.64,
64.20, 38.87, 27.04, 19.07; HRMS calcd for C21H2202Na [M+Na]+: 329.1512, found 329.1513.

Br OPiv

AN

1-(2-bromophenyl)-3-phenylprop-2-yn-1-yl pivalate (2-2-1m). Pale yellow solid; *H-NMR (CDCls,
400MHz, ppm) & = 7.84-7.81 (m, 1H), 7.60-7.57 (m, 1H), 7.48-7.45 (m, 2H), 7.40-7.35 (m, 1H), 7.33-
7.28 (m, 3H), 7.25-7.19 (m, 1H), 6.88 (s, 1H), 1.25 (s, 9H); *C-NMR (CDCls, 100 MHz, ppm) & =
176.73, 136.56, 133.09, 131.90, 130.23, 129.47, 128.75, 128.22, 127.65, 123.28, 122.13, 87.09,
84.83, 65.55, 38.84, 27.05; HRMS calcd for C20H19BrO2Na [M+Na]+: 393.0461, found 393.0462.

F  OPiv

A

1-(2-fluorophenyl)-3-phenylprop-2-yn-1-yl pivalate (2-2-1n). Pale yellow solid; *H-NMR (CDCls,
400MHz, ppm) & = 7.60-7.71 (m, 1H), 7.49-7.46 (m, 2H), 7.37-7.28 (m, 4H), 7.22-7.18 (m, 1H), 7.11-
6.90 (m, 1H), 6.90 (s, 1H), 1.24 (s, 9H); *C-NMR (CDCls, 100 MHz, ppm) & = 176.85, 160.21 (d, J =
249 Hz), 131.92, 130.60 (d, J = 8.4 Hz), 129.27 (d, J = 3.8 Hz), 128.77, 128.24, 124.78, 124.22 (d, J
= 3.8 Hz), 122.12, 115.66 (d, J = 20.5 Hz), 86.86, 84.67, 60.32 (d, J = 5.3 Hz), 38.78, 26.97; HRMS
calcd for C20H19FO2Na [M+Na]+: 333.1261, found 333.1262.
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1-(naphthalen-2-yl)-3-phenylprop-2-yn-1-yl pivalate (2-2-10). Pale yellow solid; *H-NMR (CDCls,
400MHz, ppm) & = 8.04 (s, 1H), 8.04-7.81 (m, 3H), 7.68-7.65 (m, 1H), 7.51-7.45 (m, 4H), 7.32-7.27
(m, 3H), 6.85 (s, 1H), 1.25 (s, 9H); **C-NMR (CDCls, 100 MHz, ppm) & = 177.17, 134.80, 133.33,
133.03, 131.87, 128.70, 128.55, 128.25, 128.24, 127.65, 126.76, 126.50, 126.32, 124.93, 122.23,
87.03, 85.81, 66.01, 38.81, 26.99; HRMS calcd for C24H2202Na [M+Na]+: 365.1512, found 365.1512.

OPiv
SN

3-(4-methoxyphenyl)-1-(p-tolyl)prop-2-yn-1-yl pivalate (2-2-1p). Pale yellow solid; *H-NMR
(CDCl3, 400MHz, ppm) & = 7.46-7.44 (m, 2H), 7.42-7.37 (m, 2H), 7.20-7.18 (m, 2H), 6.85-6.80 (m,
2H), 6.62 (s, 1H), 3.80 (s, 3H), 2.36 (s, 3H), 1.22 (s, 9H); **C-NMR (CDCls, 100 MHz, ppm) & =
177.28, 159.86, 138.43, 134.83, 133.38, 129.22, 127.38, 114.45, 113.84, 86.53, 84.66, 65.86, 55.26,
38.77, 27.00, 21.20; HRMS calcd for C22H2403Na [M+Na]+: 359.1618, found 359.1618.

OMe

OPiv
T

methyl 4-(3-(pivaloyloxy)-3-(p-tolyl)prop-1-yn-1-yl)benzoate (2-2-1q). Pale yellow solid; *H-NMR
(CDCls, 400MHz, ppm) & = 7.98 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2
H), 7.21 (d, J = 8.0 Hz, 2H), 6.63 (s, 1H), 3.91 (s, 3H), 2.37 (s, 3H), 1.23 (s, 9H); **C-NMR (CDCls,
100 MHz, ppm) & = 177.17, 166.41, 138.72, 134.20, 131.77, 129.91, 129.38, 129.34, 127.36, 126.99,
88.98, 85.65, 65.58, 52.21, 38.78, 26.98, 21.20; HRMS calcd for C2sH2404Na [M+Na]+: 387.1567,
found 387.1567.

COOMe

OPiv

(9
/

O CF3

1-(p-tolyl)-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl pivalate (2-2-1r). Pale yellow solid; *H-
NMR (CDClz, 400MHz, ppm) & = 7.56 (s, 4H), 7.45 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.63
(s, 1H), 2.37 (s, 3H), 1.24 (s, 9H); contaminant: "H-NMR (CDCls, 400MHz, ppm) & = 7.68 (d, J = 8.4
Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 1.29 (s, 9H); HRMS calcd for C22H21F302Na [M+Na]+: 397.1386,
found 397.1388.
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Il General procedure of [2+2] cycloaddition

Reaction conditions: To a solution of 2-2-1¢ (61.2 mg, 0.20 mmol) in dry CH2Cl2 (0.8 mL, 0.25
M), was added [PPhsAu(TA-Me)]OTf (1.5 mg, 0.002 mol, 1.0 mol%) at RT. The reaction mixture was
stirred at room temperature. After the reaction was completed (20 h), 0.1 mmol of 1,3,5-
trimethoxybenzene (16.8mg) was added into the reaction mixture, and the solvent was removed
under reduced pressure and the crude 1H NMR give the crude yield: 66 % of 2-2-3c, and 13 % of 2-
2-3c¢’. Purification of 2-2-3c and 2-2-3c¢’: After silica column (Ethyl Acetate / Hexane = 1 / 10), crude
product containing 2-2-3c and 2-2-3¢’ in the test tube was further purification by slow evaporation.
Pure 2-2-3c was obtained in the bottom of test tube and was washed with hexane. The pure 2-2-3¢’
was obtained by prepared TLC of the residue in the test tube.

IV. Compounds characterization

(2)-2-(4-methylbenzylidene)-1,5-diphenyl-3-(p-tolyl)pent-4-yn-1-one (2-2-2b). Yellow liquid; *H-
NMR (CDCls, 400MHz, ppm) & = 7.73 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.33-7.24 (m, 6H),
7.23-7.15 (m, 2H), 7.11-7.07 (m, 3H), 6.99 (d, J= 8.0 Hz, 2H), 6.84(d, J = 8.0 Hz, 2H), 5.19 (s, 1H),
2.28 (s, 3H), 2.12 (s, 3H); "*C-NMR (CDCIs, 100 MHz, ppm) & = 199.55, 139.50, 137.66, 136.93,
136.50, 135.45, 132.80, 132.45, 131.55, 131.39, 129.47, 129.28, 128.83, 128.73, 128.30, 128.12,
128.05, 127. 98, 123.20, 88.46, 86.53, 43.24, 21.06, 21.04;

(22,32)-2-(4-methylbenzylidene)-1-phenyl-3-(phenyl(pivaloyloxy)methylene)-4-(p-tolyl)
cyclobutyl pivalate (2-2-3b). Colorless Solid; *H-NMR (CDCls, 600MHz, ppm) & = 7.20-7.18 (m,
2H), 7.17 (d, J = 9.6 Hz, 2H), 7.14-7.12 (m, 2H), 7.10 (s, 1H), 7.03-6.99 (m, 6H), 6.96 (d, J = 9.6 Hz,
2H), 6.68 (d, J = 7.2 Hz, 2H), 6.57 (d, J = 7.2 Hz, 2H), 5.71 (s, 1H), 2.48 (s, 3H), 2.25 (s, 3H), 2.03 (s,
3H), 2.02 (s, 3H); *C-NMR (CDCls, 125 MHz, ppm) & = 169.57, 169.06, 141.52, 138.07, 137.85,
136.20, 135.53, 133.40, 132.17, 131.83, 129.32, 129.21, 129.03, 127.85, 127.70, 127.58, 127.50,
127.41, 127.07, 126.76, 126.39, 90.65, 57.37, 21.68, 21.22, 20.91;

2-2-3b and 2-2-3b’: 2-2-1b (61.2 mg, 0.20 mmol) was used, and the NMR show that: 66 % yield of
2-2-3b [*H-NMR (CDClIs, 400MHz, ppm) & = 6.66 (d, J = 8.0 Hz, 2H), 6.53 (d, J = 8.0 Hz, 2H), 5.67
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(s, 1H), 2.22 (s, 3H), 2.15 (s, 3H), 1.52 (s, 9H), 1.17 (s, 9H)], and 13 % yield of 2-2-3b’ [*H-NMR
(CDCls, 400MHz, ppm) & = 4.34 (s, 1H), 2.15 (s, 3H), 1.42 (s, 9H)].

(2Z,32)-2-(4-methylbenzylidene)-1-phenyl-3-(phenyl(pivaloyloxy)methylene)-4-(p-tolyl)cyc

lobutyl pivalate (2-2-3c). Colorless Solid; *H-NMR (CDCls, 400MHz, ppm) & = 7.24-7.21 (m, 2H),
7.15-7.10 (m, 5H), 7.04-6.97 (m, 6H), 6.93 (d, J= 8.4 Hz, 2H), 6.65 (d, J = 7.6 Hz, 2H), 6.53 (d, J =
7.6 Hz, 2H), 5.66 (s, 1H), 2.23 (s, 3H), 2.01 (s, 3H), 1.52 (s, 9H), 1.17 (s, 9H); “*C-NMR (CDCls, 100
MHz, ppm) 6 = 176.99, 176.27, 141.57, 138.23, 137.65, 136.68, 135.34, 133.99, 132.23, 131.94,
129.37, 129.19, 128.97, 127.74, 127.73, 127.61, 127.58, 127.49, 127.33, 126.71, 126.68, 126.46,
90.12, 57.26, 39.53, 27.66, 27.27, 21.20, 21.19, 20.92; HRMS calcd for Cs2H4404Na [M+Na]+:
635.3132, found 635.3134.

PivO OPiv
Ph—\. /~Ph
Tol® ol

(1Z,1'2)-(3,4-di-p-tolylcyclobutane-1,2-diylidene)bis(phenylmethanylylidene)bis

(2,2-dimethylpropanoate) (2-2-3¢’). Colorless solid; *H-NMR (CDCls, 400MHz, ppm) & = 7.16 (d, J
= 5.2 Hz, 4H), 7.01 (s, 10H), 6.85 (d, J = 5.2Hz, 4H), 4.33 (s, 2H), 2.16 (s, 6H), 1.42 (s, 18H); **C-
NMR (CDCls, 100 MHz, ppm) & = 177.56, 140.17, 135.88, 135.63, 133.05, 132.15, 128.65, 128.26,
127.87, 127.54, 126.70, 59.47, 39.42, 27.39, 21.03; HRMS calcd for C42H4404Na [M+Na]+: 635.3132,
found 635.3134.

PivO OPiv
Ph—\\. .~/ ~Ph
Tol®  Tol

2-2-3d and 2-2-3d’: 2-2-1d (58.5 mg, 0.20 mmol) was used, and the NMR show that: 79 % yield of
2-2-3d [*H-NMR (CDCls, 400MHz, ppm) & = 6.79-6.74 (m, 5H), 5.73 (s, 1H), 1.53 (s, 9H), 1.15 (s,
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9H)], and 13 % yield of 2-2-3d’ [*H-NMR (CDCls, 400MHz, ppm) & = 4.42 (s, 1H), 1.43 (s, 9H)].
HRMS calcd for CaoH4004H [M+H]+: 585.2999, found 585.3002.

2-2-3e and 2-2-3e’: 2-2-1e (34.8 mg, 0.10 mmol) was used, and the NMR show that: 65 % yield of 2-
2-3e ['H-NMR (CDCls, 400MHz, ppm) & = 6.71 (d, J = 8.0 Hz, 2H), 6.62 (d, J = 8.0 Hz, 2H), 5.67 (s,
1H), 1.51 (s, 9H), 1.21 (s, 9H), 1.10 (s, 9H), 1.04 (s, 9H)], and 19 % yield of 2-2-3e’ ['H-NMR (CDCls,
400MHz, ppm) & =4.40 (s, 1H), 1.42 (s, 9H), 1.16 (s, 9H)].

PivO
N\~ Ph

pivo’ by, \r//\

Bu
2-(4-(tert-butyl)benzylidene)-4-(4-(tert-butyl)phenyl)-1-phenyl-3-(phenyl(pivaloyloxy)methy

lene)cyclobutyl pivalate (2-2-3e). Colorless solid; *H-NMR (CDCls, 400MHz, ppm) & = 7.23-7.14
(m, 8H), 7.12-7.09 (m, 2H), 7.04-6.95 (m, 8H), 6.71 (d, J = 8.4 Hz, 2H), 6.61 (d, J = 8.4 Hz, 2H), 5.66
(s, 1H), 1.51 (s, 9H), 1.21 (s, 9H), 1.10 (s, 9H), 1.04 (s, 9H); *C-NMR (CDCls, 150 MHz, ppm) & =
177.0, 176.3, 150.7, 141.6, 137.0, 133.9, 132.3, 131.9, 129.1, 128.9, 127.7, 127.6, 127.5, 127.4,
127.2, 126.7, 126.4, 125.2, 123.8, 110.0, 90.2, 57.2, 39.5, 34.5, 34.0, 31.3, 31.1, 31.1, 29.7, 27.6,
27.4, 27.2; HRMS calcd for CagHs604H [M+H]+: 697.4251, found 697.4252.

(12,1'2)-(3,4-bis(4-(tert-butyl)phenyl)cyclobutane-1,2-diylidene)bis(phenylmethanylylidene)

bis(2,2-dimethylpropanoate) (2-2-3e’). Colorless solid; *H-NMR (CDCls, 400MHz, ppm) & = 7.21 (d,
J = 8.4 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 6.96 (s, 5H), 4.40 (s, 1H), 1.42 (s, 9H), 1.16 (s, 9h); **C-
NMR (CDCls, 150 MHz, ppm) & = 177.6, 149.2, 135.3, 133.0, 132.9, 128.3, 127.7, 127.4, 126.7,
125.2,124.7,58.7, 39.4, 34.2, 31.9, 31.3, 31.1, 29.7, 27.6, 27.4; HRMS calcd for C4sHs604H [M+H]+:
697.4251, found 697.4254.

2-2-3f and 2-2-3f: 2-2-1f (74.0 mg, 0.20 mmol) was used, and the NMR show that: 74 % yield of 2-
2-3f [1H-NMR (CDCls, 400MHz, ppm) & = 6.86 (d, J = 8.0 Hz, 2H), 6.66 (d, J = 8.0 Hz, 2H), 5.66 (s,
1H), 1.51 (s, 9H), 1.17 (s, 9H)], and 16 % yield of 2-2-3f [1H-NMR (CDCls, 400MHz, ppm) & = 4.32
(s, 1H), 1.42 (s, 9H)].
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Br

Br

2-(4-bromobenzylidene)-4-(4-bromophenyl)-1-phenyl-3-(phenyl(pivaloyloxy)methylene)cycl

obutyl pivalate (2-2-3f). Colorless solid; *H-NMR (CDCls, 400MHz, ppm) & = 7.24 (s, 1H), 7.21-7.17
(m, 2H), 7.11-7.01 (m, 11H), 6.86 (d, J = 8.0 Hz, 2H), 6.66 (d, J = 8.0Hz), 5.65 (s, 1H), 1.51 (s, 9H),
1.17 (s, 9H); *C-NMR (CDCls, 150 MHz, ppm) & =177.1, 176.2, 143.4, 142.6, 139.8, 135.9, 134.1,
133.7, 133.6, 132.9, 132.2, 131.4, 131.0, 130.7, 130.2, 129.8, 128.7, 128.5, 128.4, 128.0, 127.9,
127.8, 127.3, 126.5, 125.6, 125.5, 121.9, 120.2, 89.7, 56.9, 39.6, 39.5, 27.6, 27.2; HRMS calcd for
Ca0H38Br204H [M+H]+: 741.1210, found 741.1211.

(12,1'2)-(3,4-bis(4-bromophenyl)cyclobutane-1,2-diylidene)bis(phenylmethanylylidene)

bis(2,2-dimethylpropanoate) (2-2-3f). Colorless solid; *H-NMR (CDCls, 400MHz, ppm): & = 7.18-
7.11 (m, 4H), 7.07-6.96 (m, 5H), 4.31 (s, 1H), 1.42 (9H); **C-NMR (CDCls, 150 MHz, ppm) d = 177.7,
140.5, 137.1, 132.7, 131.2, 130.9, 130.1, 128.5, 127.8, 126.8, 120.6, 59.1, 39.5, 27.4; HRMS calcd
for CaoH3sBr204H [M+H]+: 741.1210, found 741.1213.

2-2-3g and 2-2-3¢g’: 2-2-1g (32.6 mg, 0.10 mmol) was used, and the NMR show that: 80 % yield of
2-2-3g [1H-NMR (CDCls, 400MHz, ppm) & = 6.72 (s, 4H), 5.67 (s, 1H), 1.51 (s, 9H), 1.17 (s, 9H)],
and 17 % yield of 2-2-3g’ [tH-NMR (CDCls, 400MHz, ppm) 6 = 4.33 (s, 1H), 1.42 (s, 9H)].

PivO
N\~ “Ph

Piv0” bpy C 1

Cl

Cl

2-(4-chlorobenzylidene)-4-(4-chlorophenyl)-1-phenyl-3-(phenyl(pivaloyloxy)methylene)cycl

obutyl pivalate (2-2-3g). Colorless solid; *H-NMR (CDCls, 400MHz, ppm) & = 7.21-7.15 (m, 4H),
7.12-7.06 (m, 8H), 7.03-7.01 (m, 3H), 6.71 (s, 4H), 5.66 (s, 1H), 1.51 (s, 9H), 1.17 (s, 9H); *C-NMR
(CDCls, 150 MHz, ppm) & = 177.1, 176.2, 143.3, 142.5, 139.7, 136.0, 133.6, 133.5, 133.3, 132.9,

174



131.9, 130.6, 130.4, 129.7, 129.6, 129.3, 128.7, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.7,
127.3, 127.2, 126.8, 126.5, 125.5, 122.5, 89.8, 56.9, 39.6, 39.5, 27.6, 27.3; HRMS calcd for
Ca0H38Cl204H [M+H]+: 653.2220, found 653.2222.

PivO OPiv

Cl Cl
2-(4-chlorobenzylidene)-4-(4-chlorophenyl)-1-phenyl-3-(phenyl(pivaloyloxy)methylene)cycl

obutyl pivalate (2-2-3g’). Colorless solid; *H-NMR (CDCls, 400MHz, ppm) & = 7.20 (d, J = 8.4 Hz,
2H), 7.05-6.95 (m, 7H), 4.33 (s, 1H), 1.42 (s, 9H); HRMS calcd for CaoH3s8Cl204H [M+H]+: 653.2220,
found 653.2223.

2-2-3h and 2-2-3h’: 2-2-1h (62.0 mg, 0.20 mmol) was used, and the NMR show that: 76 % yield of
2-2-3h [1H-NMR (CDCls, 400MHz, ppm) & = 6.43 (t, J = 8.8 Hz, 2H), 5.68 (s, 1H), 1.52 (s, 9H), 1.16
(s, 9H)], and 19 % yield of 2-2-3h’ [*H-NMR (CDCls, 400MHz, ppm) & = 4.35 (s, 1H), 1.42 (s, 9H)].

2-(4-fluorobenzylidene)-4-(4-fluorophenyl)-1-phenyl-3-(phenyl(pivaloyloxy)methylene)cycl

obutyl pivalate (2-2-3h). Colorless solid; *H-NMR (CDCls, 400MHz, ppm) & = 7.24-7.19 (m, 4H),
7.12-7.05 (m, 6H), 7.02-7.00 (m, 3H), 6.85-6.80 (m, 2H), 6.77-6.73 (m, 2H), 6.41 (t, J = 8.8 Hz, 2H),
5.68 (s, 1H), 1.52 (s, 9H), 1.16 (s, 9H); **C-NMR (CDCls, 150 MHz, ppm) & = 177.1, 176.3, 163.0,
162.0, 161.4, 160.4, 142.1, 138.5, 136.3, 133.7, 131.1, 131.1, 131.0, 130.9, 130.8, 130.8, 128.2,
128.0, 127.8, 127.6, 127.4, 126.5, 126.2, 125.6, 115.4, 115.3, 114.0, 113.9, 110.0, 90.0, 56.7, 39.5,
30.0, 27.6, 27.2; HRMS calcd for CaoH3sF204H [M+Na]+: 621.2811, found 621.2814.
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3,4-bis(4-fluorophenyl)cyclobutane-1,2-diylidene)bis(phenylmethanylylidene)

bis(2,2-dimethylpropanoate (2-2-3h’). Colorless solid; *H-NMR (CDCls, 400MHz, ppm) & = 7.24-
7.20 (m, 2H), 7.05-6.95 (m, 5H), 6.72-6.69 (m, 2H), 4.34 (s, 1H), 1.42 (s, 9H); *C-NMR (CDCls, 150
MHz, ppm) 6 = 177.8, 162.4, 160.8, 140.3, 133.8, 132.7, 131.7, 130.0, 129.9, 128.3, 127.6, 126.8,
114.9, 114.7,59.0, 39.5, 27.4; HRMS calcd for CaoH3sF204H [M+H]+: 643.2632, found 643.2630.

2-2-3i and 2-2-3i’: 2-2-1i (64.4 mg, 0.20 mmol), [(PPh3Au)s0]OTf, 1 mol % was used instead of
[PPhsAu(TA-Me)OTf] 1 mol %, and the NMR show that: 68 % vyield of 2-2-3i [*H-NMR (CDCls,
400MHz, ppm) & = 6.71 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 9.6Hz, 2H), 6.29 (d, J = 8.4 Hz, 2H), 5.64 (s,
1H), 3.72 (s, 3H), 3.54 (s, 3H), 1.52 (s, 9H), 1.17 (s, 9H)], and 12 % yield of 2-2-3i’ ['H-NMR (CDCls,
400MHz, ppm) 6 = 6.58 (d, J = 8.8 Hz, 2H), 4.31 (s, 1H), 3.64 (s, 3H), 1.42 (s, 9H)].

(22,32)-2-(4-methoxybenzylidene)-4-(4-methoxyphenyl)-1-phenyl-3-(phenyl(pivaloyloxy)m
ethylene)cyclobutyl pivalate (2-2-3i).

Colorless Solid; *H-NMR (CDCls, 400MHz, ppm) & = 7.24-7.18 (m, 4H), 7.12-7.09 (m, 3H), 7.07-6.97
(m, 6H), 6.71 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 9.6Hz, 2H), 6.29 (d, J = 8.4 Hz, 2H), 5.64 (s, 1H), 3.72
(s, 3H), 3.54 (s, 3H), 1.52 (s, 9H), 1.17 (s, 9H); **C-NMR (CDCls, 100 MHz, ppm) & = 177.09, 176.36,
159.23, 157.73, 141.21, 136.72, 136.70, 133.94, 130.90, 130.42, 127.91, 127.73, 127.71, 127.62,
127.51, 127.45, 127.42, 127.08, 126.44, 126.40, 113.76, 112.49, 90.34, 56.93, 55.22, 55.19, 54.92,
54.90, 39.51, 27.67, 27.30; HRMS calcd for C42H440eNa [M+Na]+: 667.3030, found 667.3031.

2-2-3j and 2-2-3j": 2-2-1j (62.0 mg, 0.20 mmol), and the NMR show that: 76 % vield of 2-2-3j ['H-
NMR (CDCls, 400MHz, ppm) & = 6.58 (d, J = 7.6 Hz, 1H), 6.50-6.43 (m, 2H), 5.69 (s, 1H), 1.52 (s,
9H), 1.18 (s, 9H)], and 17 % vyield of 2-2-3)’ [*H-NMR (CDCls, 400MHz, ppm) & = 4.39 (s, 1H), 1.43
(s, 9H)].HRMS calcd for CaoHssF204aNa [M+Na]+: 643.2630, found 643.2633.

2-2-3k and 2-2-3k’: 2-2-1k (70.0 mg, 0.20 mmol), and the NMR show that: 71 % vyield of 2-2-3k [*H-
NMR (CDClz, 400MHz, ppm) & = 6.86 (d, J = 7.6 Hz, 2H), 5.78 (s, 1H), 3.84 (s, 3H), 3.75 (s, 3H),
1.54 (s, 9H), 1.17 (s, 9H)], and 11 % yield of 2-2-3k’ ['"H-NMR (CDCIls, 400MHz, ppm) & = 4.48 (s,
1H), 3.82 (s, 3H), 1.44 (s, 9H)]. HRMS calcd for C44H440sH [M+H]+: 701.3109, found 701.3111.

2-2-3| and 2-2-3I’: 2-2-1l (61.2 mg, 0.20 mmol), and the NMR show that: 73 % yield of 2-2-3k [*H-
NMR (CDClIz, 400MHz, ppm) 6 = 6.64 (t, J = 7.6 Hz, 1H), 6.55 (d, J = 7.6 Hz, 1H), 6.31 (d, J = 7.6 Hz,
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1H), 6.14 (s, 1H), 2.39 (s, 3H), 2.31 (s, 3H),1.49 (s, 9H), 0.92 (s, 9H)], and 18 % yield of 2-2-3k’ [‘H-
NMR (CDCls, 400MHz, ppm) & = 4.72 (s, 1H), 1.90 (s, 3H), 1.45 (s, 9H)].

(2Z,32)-2-(2-methylbenzylidene)-1-phenyl-3-(phenyl(pivaloyloxy)methylene)-4-(o-tolyl)cycl

obutyl pivalate (2-2-3l). Colorless solid; note: 12 % of 3k’ is contained in the 3k, so the *C NMR
can not be characterized. *H-NMR (CDClz, 400MHz, ppm) & = 7.33-7.31 (m, 2H), 7.12-6.98 (m, 12H),
6.82-6.74 (m, 2H), 6.64 (t, J = 7.6 Hz, 1H), 6.55 (d, J = 7.6 Hz, 1H), 6.31 (d, J = 7.6 Hz, 1H), 6.14 (s,
1H), 2.39 (s, 3H), 2.31 (s, 3H), 1.49 (s, 9H), 0.92 (s, 9H); HRMS calcd for C42H4404Na [M+Na]+:
635.3132, found 635.3133.

2-2-3m and 2-2-3m’; 2-2-1m (74.0 mg, 0.20 mmol), and the NMR show that: 63 % yield of 2-2-3m
[*H-NMR (CDCl3, 400MHz, ppm) & = 6.62-6.56 (m, 2H), 6.44 (s, 1H), 6.41-6.36 (m, 1H), 1.52 (s, 9H),
1.00 (s, 9H)], and 18 % yield of 2-2-3m’ [*"H-NMR (CDCls, 400MHz, ppm) & = 6.80 (dt, J1= 2.0 Hz, J2
=8.0Hz, 1H), 5.13 (s, 1H), 1.45 (s, 9H)].

(2Z,32)-2-(2-bromobenzylidene)-4-(2-bromophenyl)-1-phenyl-3-(phenyl(pivaloyloxy)methy

lene)cyclobutyl pivalate (2-2-3m). *H-NMR (CDCls, 400MHz, ppm) & = 7.52 (d, J = 1.2 Hz, 1H),
7.50 (s, 1H), 7.50-7.37 (m, 2H), 7.23-7.19 (m, 2H), 7.18-7.08 (m, 4H), 7.05-7.00 (m, 4H), 6.96-6.86
(m, 2H), 6.62-6.56 (m, 2H), 6.44 (s, 1H), 6.41-6.36 (m, 1H), 1.52 (s, 9H), 1.00 (s, 9H); *C-NMR
(CDCls, 100 MHz, ppm) & = 176.71, 176.37, 142.20, 141.12, 137.96, 134.64, 134.38, 133.71, 132.82,
131.64, 131.17, 130.03, 128.80, 128.27, 127.95, 127.66, 127.62, 127.57, 126.94, 126.80, 126.66,
125.88, 125.43, 124.90, 124.68, 124.57, 89.50, 55.52, 39.40, 39.31, 27.59, 27.27; HRMS calcd for
CaoHz8Br20sNa [M+Na]+: 763.1029, found 763.1028.

2-2-3n and 2-2-3n’: 2-2-1n (62.0 mg, 0.20 mmol), and the NMR show that: 74 % yield of 2-2-3n [*H-
NMR (CDCls, 400MHz, ppm) & = 6.52 (t, J = 8.0 Hz, 1H), 6.25 (t, J = 8.0 Hz, 1H), 6.14 (s, 1H), 1.53
(s,9H), 1.20 (s, 9H)], and 18 % yield of 2-2-3n’ [*H-NMR (CDCls, 400MHz, ppm) & = 4.97 (s, 1H),
1.43(s, 9H)].
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(22,32)-2-(2-fluorobenzylidene)-4-(2-fluorophenyl)-1-phenyl-3-(phenyl(pivaloyloxy)methyle

ne)cyclobutyl pivalate (2-2-3n). *H-NMR (CDCls, 400MHz, ppm) & = 7.25-7.23 (m, 2H), 7.15-7.00
(m, 11H), 6.94 (d, J = 10.8 Hz, 1H), 6.83-6.78 (m, 1H), 6.71 (d, J = 8.0 Hz, 1H), 6.69-6.57 (m, 1H),
6.51-6.43 (m, 2H), 5.68 (s, 1H),1.52 (s, 9H), 1.17 (s, 9H); *C-NMR (CDCls, 100 MHz, ppm) & =
177.08, 176.08, 163.79, 161.35, 160.72, 142.92, 140.49, 137.55, 137.47, 136.93, 135.92, 133.72,
129.69, 129.61, 128.50, 128.42, 128.38, 127.94, 127.89, 127.74, 127.71, 127.26, 126.76, 126.56,
125.56, 125.53, 125.32, 125.22, 125.20, 125.09, 125.06, 116.17, 115.95, 115.63, 115.41, 114.66,
114.45, 113.15, 112.94, 89.63, 57.01, 56.99, 39.59, 27.59, 27.20; HRMS calcd for C4oHzsF204Na
[M+Na]+: 643.2630, found 643.2631.

2-2-30 and 2-2-30’: 2-2-10 (68.4 mg, 0.20 mmol), and the NMR show that: 43 % yield of 2-2-30 [*H-
NMR (CDClIs, 400MHz, ppm) & = 65.92 (s, 1H), 1.58 (s, 9H), 1.15 (s, 9H)], and 24 % yield of 2-2-30’
[*H-NMR (CDCls, 400MHz, ppm) & = 5.13 (s, 1H), 1.11 (s, 9H)].

(32,42)-2-(naphthalen-2-yl)-4-(naphthalen-2-ylmethylene)-1-phenyl-3-(phenyl(pivaloyloxy)

methylene)cyclobutyl pivalate (2-2-30). *H-NMR (CDCls, 400MHz, ppm) & = 7.70 (s, 1H), 7.68-
7.65 (m, 1H), 7.56-7.48 (m, 5H), 7.43-7.31 (m, 5H), 7.27-7.25 (m, 1H), 7.21-7.17 (m, 2H), 7.15-7.12
(m, 1H), 6.98-6.85 (m, 7H), 5.92 (s, 1H), 1.58 (s, 9H), 1.15 (s, 9H); **C-NMR (CDCls, 100 MHz, ppm)
0=177.13,176.32, 142.43, 139.83, 136.54, 133.90, 133.21, 133.04, 132.70, 132.66, 132.61, 131.98,
129.00, 128.65, 128.21, 128.03, 127.72, 127.64, 127.61, 127.57, 127.42, 127.26, 127.14, 126.88,
126.86, 126.51, 126.48, 126.39, 126.20, 126.09, 125.05, 124.99, 90.09, 57.68, 39.61, 29.69, 27.72,
27.27; HRMS calcd for C4gsH4404Na [M+Na]+: 685.3312, found 685.3314.

2-2-3p and 2-2-3p’: 2-2-1p (67.2 mg, 0.20 mmol), and the NMR show that: 66 % yield of 2-2-3p [*H-
NMR (CDCls, 400MHz, ppm) & = 5.58 (s, 1H), 3.65 (s, 3H), 3.63 (s, 3H), 2.23 (s, 3H), 2.04 (s, 3H),
1.51 (s, 9H), 1.15 (s, 9H)], and 10 % yield of 2-2-3p’ ['H-NMR (CDCls, 400MHz, ppm) & = 4.29 (s,
1H), 3.65 (s, 3H), 2.18 (s, 3H), 1.41 (s, 9H)].
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OMe

(4-methoxyphenyl)(3-(4-methoxyphenyl)-2-(4-methylbenzylidene)-3-(pivaloyloxy)-4-(p-toly

lcyclobutylidene)methyl pivalate (2-2-3p). *H-NMR (CDCls, 400MHz, ppm) & = 7.16-7.12 (m, 4H),
7.06 (s, 1H), 7.04 (d, J = 5.6 Hz, 2H), 6.93 (d, J = 5.6 Hz), 6.57 (d, J = 6.4Hz, 2H), 6.52 (d, J = 6.4Hz,
2H), 5.57 (s, 1H), 3.66 (s, 3H), 3.65 (s, 3H), 2.24 (s, 3H), 2.05 (s, 3H), 1.51 (s, 9H), 1.15 (s, 9H)**C-
NMR (CDCls, 100 MHz, ppm) & = 177.0, 176.4, 159.3, 159.1, 158.7, 141.5, 138.7, 137.4, 135.3,
132.4, 132.3, 130.8, 129.7, 129.3, 129.2, 129.1, 129.0, 128.9, 128.8, 128.2, 128.0, 127.9, 127.8,
127.1, 126.6, 125.8, 1249, 113.8, 113.1, 113.0, 110.0, 90.0, 57.1, 55.1, 39.5, 39.4, 27.7,
27.4;HRMS calcd for CaaH4s0OsNa [M+H]+: 673.3524, found 673.3527.

2-2-3q and 2-2-3q’: 2-2-1q (72.8 mg, 0.20 mmol), and the NMR show that no reaction occur.

2-2-3r and 2-2-3r’: 2-2-1r (90 mg, 0.20 mmol), and the NMR show that no reaction occur.

V Possible role of gold in allene [2+2] step

Reaction conditions: To a solution of 2-2-1¢ (61.2 mg, 0.20 mmol) in dry, base-washed CDCl3
(0.8 mL, 0.25 M), was added XphosAuNTf2 (2.0 mg, 0.002 mol, 1.0 mol%) at RT. The reaction
mixture was monitored by *H NMR. After 2-2-1c was transformed into allene 2-2-4 completely
(around 5 mins), around half of reaction mixture went through the short silica gel column to remove
the XphosAuNTfz immediately, and another 3 portions of dry, based washed CDCls to washed the
column, and the major part of solvent was removed in vacuo (make the concentration around 0.12M).
1H NMR show that the 2+2 cycloaddition of allene 2-2-4 was consumed completely in 20 hours with
or without XphosAuNTf2 (the same concentration, 0.12M).
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Tol OPv  cDCly (0.12vm) o Ph
- +
Ph Air, r.t., time PivO Ph %Tol
2:2-4 2-2-3c
- yield . yield . yield
time time 3¢(3c" time 3¢(3c")
with gold 1.0 h 35 % (8.5 %) 5h 50 % (12 %) 20h 68 % (14 %)
without gold 1.0h 34 % (8 %) 5h 48 % (12 %) 20h 66 % (12 %)
Tol/\,omu
Ph

1-phenyl-3-(p-tolyl)propa-1,2-dien-1-yl pivalate (2-2-4). 'H-NMR (CDCls, 400MHz, ppm) & = 7.43-
7.39 (m, 4H), 7.33 (t, J = 7.6 Hz, 2H), 7.28-7.24 (m, 1H), 7.16 (d, J = 8.0 Hz, 2H), 6.96 (s, 1H), 2.35

(s, 3H), 1.37 (s, 9H).
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VI. NMR spectra

181



e g

#E

OPiv

Ph

Me

2-2-4

b e

To

182



Crude NMR Spectrum

[1,3,5-trimethoxybenzene (0.1 mmol) was used as internal standard]
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Chapter Three: Synthesis and characterization of bis-N-2-aryl triazole as efficient

fluorescence probe

I. General methods and materials and compounds characterization:

All of the reactions dealing with air and/or moisture-sensitive reactions were carried
out under an atmosphere of nitrogen using oven dried glassware and standard
syringe/septa techniques. Unless otherwise noted, all commercial reagents and
solvents were obtained from the commercial provider and used without further
purification. Chemical shifts were reported relative to internal tetramethylsilane (6 0.00
ppm) or CDCl; (d 7.26 ppm) for *H NMR and CDCl; (8 77.0 ppm) or d6-DMSO (3 39.5
ppm) for *C NMR.

Representative procedure for the preparation of 2-(anthracen-9-yl)-4-phenyl-
2H-1,2,3-triazole (3-1e) (Condition A) To a solution of 9-bromoanthracene (514 mg,
2.0 mmol, 1.0 eq.) in dry DMSO (4 ml, 0.5 M), were added successively 4-Phenyl-1,2,3-
NH-triazole (725 mg, 5.0 mmol, 2.5 eq.) and Cul (76 mg, 20%), L-Proline (92 mg, 40%),
and K,CO3 (1.1 g, 8.0 mmol, 4.0 eq.) under N, atmosphere. The mixture was stirred at
120°C and monitored by TLC. After the reaction is completed, the reaction was
guenched with brine and extracted with ethyl acetate for three times. Organic phases
were combined and the solvent was removed under vacuum. The residue was purified
by flash silica gel chromatography (Hexane - EtOAc v/v 20:1), giving desired product as
yellow solid (yield: 340 mg, 53%). *H NMR (400 MHz; CDCls): d 8.66 (s, 1H), 8.37 (s,
1H), 8.32 (dd, J = 5.8, 3.3 Hz, 1H), 8.09 (dd, J = 7.1, 1.9 Hz, 2H), 8.00-7.98 (m, 2H),
7.79 (dd, J = 5.8, 3.3 Hz, 1H), 7.51-7.44 (m, 7H); *C NMR (100 MHz; CDCls): & 148.94,
134.1, 132.5, 131.3, 129.5, 129.00, 128.85, 128.70, 128.2, 127.6, 127.2, 126.2, 125.7,
122.6; HRMS Calculated for Co,H1sNs [M+H]™: 322.1338, Found: 322.1342.

Representative procedure for the preparation of 1-(anthracen-9-yl)-4-phenyl-
1H-1,2,3-triazole (3-1f) (Condition A) To a solution of 9-bromoanthracene (514 mg, 2.0
mmol, 1.0 eq.) in dry DMSO (4 ml, 0.5 M), were added successively 4-Phenyl-1,2,3-NH-
triazole (725 mg, 5.0 mmol, 2.5 eq.) and Cul (76 mg, 20%), L-Proline (92 mg, 40%), and
K>,CO3 (1.1 g, 8.0 mmol, 4.0 eqg.) under N, atmosphere. The mixture was stirred at 120
°C and monitored by TLC. After the reaction is completed, the reaction was quenched
with brine and extracted with ethyl acetate for three times. Organic phases were
combined and the solvent was removed under vacuum. The residue was purified by
flash silica gel chromatography (Hexane - EtOAc v/v 15:1), giving desired product as
light yellow solid (yield: 237 mg, 37%). *H NMR (400 MHz; CDCls): & 8.69 (s, 1H), 8.20
(s, 1H), 8.11 (d, J = 7.6 Hz, 2H), 8.03 (d, J = 8.4 Hz, 2H), 7.55-7.51 (m, 5H), 7.43-7.40
(m, 2H); **C NMR (100 MHz; CDCls): & 147.8, 131.2, 130.3, 129.8, 129.0, 128.46,
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128.35, 128.0, 127.4, 126.7, 125.97, 125.89, 124.0, 122.1; HRMS Calculated for
CooHisN3 [M+H]+: 322.1338, Found: 322.1342.

Representative procedure for the preparation of 1,8-bis(4-phenyl-2H-1,2,3-
triazol-2-yl)naphthalene (3-3c) (Condition A) To a solution of 1,8-diiodonaphthalene
(760 mg, 2.0 mmol, 1.0 eq.) in dry DMSO (4 ml, 0.5 M), were added successively 4-
Phenyl-1,2,3-NH-triazole (725 mg, 5.0 mmol, 2.5 eq.) and Cul (76 mg, 20%), L-Proline
(92 mg, 40%), and K,CO3 (1.1 g, 8.0 mmol, 4.0 eq.) under N, atmosphere. The mixture
was stirred at 120 °C and monitored by TLC. After the reaction is completed, the
reaction was quenched with brine and extracted with ethyl acetate for three times.
Organic phases were combined and the solvent was removed under vacuum. The
residue was purified by flash silica gel chromatography (Hexane - EtOAc v/v 5:1), giving
desired product as light yellow solid (yield: 472 mg, 57%). *H NMR (400 MHz; CDCls): d
8.12 (dd, J = 8.4, 1.2 Hz, 2H), 7.96 (dd, J = 7.4, 1.2 Hz, 2H), 7.71 (dd, J = 8.2, 7.4 Hz,
2H), 7.48-7.51 (m, 4H), 7.28-7.22 (m, 6H); **C NMR (100 MHz; CDCl5): & 148.3, 136.1,
135.6, 131.7, 130.2, 129.4, 1285, 128.3, 127.0, 125.9, 121.1; HRMS Calculated for
CosH18Ng [M+H]": 415.1666, Found: 415,1672.

Representative procedure for the preparation of 2-(8-iodonaphthalen-1-yl)-4-
phenyl-2H-1,2,3-triazole (3-4a) (Condition B) To a solution of 1,8-diiodonaphthalene
(760 mg, 2.0 mmol, 1.0 eq.) in dry DMSO (4 ml, 0.5 M), were added successively 4-
Phenyl-1,2,3-NH-triazole (290 mg, 2.0 mmol, 1.0 eq.) and Cul (38 mg, 10%), L-Proline
(46 mg, 20%), K,CO3 (552 mg, 4.0 mmol, 2.0 eq.) under N, atmosphere. The mixture
was stirred at 80 °C and monitored by TLC. After the reaction is completed, the reaction
was quenched with brine and extracted with ethyl acetate for three times. Organic
phases were combined and the solvent was removed under vacuum. The residue was
purified by flash silica gel chromatography (Hexane - EtOAc v/v 10:1), giving desired
product as light yellow solid (yield: 401 mg, 51% ). *H NMR (400 MHz; CDCl;): & 8.29
(dd, J = 7.4, 1.2 Hz, 1H), 8.21 (s, 1H), 8.04 (dd, J = 8.3, 1.3 Hz, 1H), 7.97 (dd, J = 8.3,
1.1 Hz, 1H), 7.94-7.91 (m, 2H), 7.68 (dd, J = 7.2, 1.6 Hz, 1H), 7.59 (dd, J = 8.1, 7.3 Hz,
1H), 7.49-7.45 (m, 2H), 7.42-7.38 (m, 1H), 7.19 (dd, J = 8.1, 7.4 Hz, 1H); **C NMR (100
MHz; CDCls): & 149.1, 143.0, 137.2, 135.8, 132.6, 132.0, 130.1, 129.5, 129.1, 128.92,
128.75, 128.73, 127.4, 126.2, 125.2, 86.5; HRMS Calculated for CigH2oNsl [M+H]™:
398.0149, Found: 398.0155.

Representative procedure for the preparation of 1,8-bis(4-phenyl-1H-1,2,3-
triazol-1-yl)naphthalene (3-3a) To a solution of 1,8-diazidonaphthalene (420 mg, 2.0
mmol, 1.0 eq.) in 1.1 t-BuOH/H,O (5 ml, 0.4 M), were added successively
phenylacetylene (1.02 g, 10.0 mmol, 5.0 eq.) and CuSO, (128 mg, 40%), and L-
Ascorbic acid sodium salt (237.6 mg, 60%) under N, atmosphere. The mixture was
stirred at 80°C and monitored by TLC. After the reaction is completed, the reaction was
guenched with brine and extracted with ethyl acetate for three times. Organic phases
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were combined and the solvent was removed under vacuum. The residue was purified
by flash silica gel chromatography (Hexane - EtOAc v/v 5:1), giving desired product as
light yellow solid (yield: 712 mg, 86%). *H NMR (400 MHz; CDCls): & 8.25 (dd, J = 8.3,
1.2 Hz, 1H), 7.75 (t, J = 7.8 Hz, 1H), 7.66 (dd, J = 7.6, 1.2 Hz, 1H), 7.56 (s, 1H), 7.47-
7.43 (m, 2H), 7.25-7.21 (m, 3H); *3C NMR (100 MHz; d6-DMSO): 5 146.4, 135.7, 132.1,
131.7, 130.5, 129.4, 128.7, 128.0, 127.0, 125.8, 124.4; HRMS Calculated for C,sH1sNg
[M+H]": 415.1665, Found: 415.1677.

Representative procedure for the preparation of 2,3'-(naphthalene-1,8-
diyl)bis(5-phenyl-2H-1,2,3-triazole) (3-3b) 2-(8-azidonaphthalen-1-yl)-4-phenyl-2H-
1,2,3-triazole is prepared from 1l-azido-8-iodonaphthalene under condition B. Then to a
solution of 2-(8-azidonaphthalen-1-yl)-4-phenyl-2H-1,2,3-triazole (624 mg, 2.0 mmol,
1.0 eq) in 1:1 t-BuOH/H,0 (5 ml, 0.4 M), were added successively phenylacetylene (510
mg, 5.0 mmol, 2.5 eq.) and CuSO4 (64 mg, 20%), and L-Ascorbic acid sodium salt
(118.8 mg, 30%) under N, atmosphere. The mixture was stirred at 120 °C and
monitored by TLC. After the reaction is completed, the reaction was quenched with
brine and extracted with ethyl acetate for three times. Organic phases were combined
and the solvent was removed under vacuum. The residue was purified by flash silica gel
chromatography (Hexane - EtOAc v/v 3:1), giving desired product as light yellow solid
(yield: 605 mg, 73%). *H NMR (400 MHz; CDCls): 8 8.17 (dd, J = 7.5, 5.2 Hz, 2H), 7.84
(d, J=7.2Hz, 1H), 7.79 (d, J = 7.1 Hz, 1H), 7.72 (t, J = 7.8 Hz, 2H), 7.63 (s, 1H), 7.52
(s, 1H), 7.45 (ddd, J = 12.2, 6.4, 2.7 Hz, 4H), 7.26-7.24 (t, J =3.0 Hz 3H), 7.18 (t, J = 2.8
Hz, 3H); *C NMR (100 MHz; CDCls): 5 149.0, 146.9, 135.8, 135.0, 132.4, 132.0, 131.1,
130.8, 129.7, 129.1, 128.52, 128.48, 128.38, 128.25, 128.08, 127.7, 126.16, 126.12,
126.04, 125.5, 122.3, 121.6, 116.0; HRMS Calculated for CosH1gNe [M+H]": 415.1665,
Found: 415.1672.

Representative procedure for the preparation of 1,8-bis(4-(4-chlorophenyl)-2H-
1,2,3-triazol-2-yl)naphthalene (3-5a) (Condition A) To a solution of 1,8-
diiodonaphthalene (760 mg, 2.0 mmol, 1.0 eq.) in dry DMSO (4 ml, 0.5 M), were added
successively 4-(4-chlorophenyl)-1,2,3-NH-triazole (898 mg, 5.0 mmol, 2.5 eq.) and Cul
(76 mg, 20%), L-Proline (92 mg, 40%), and K,COs3 (1.1 g, 8.0 mmol, 4.0 eq.) under N
atmosphere. The mixture was stirred at 120 °C and monitored by TLC. After the reaction
is completed, the reaction was quenched with brine and extracted with ethyl acetate for
three times. Organic phases were combined and the solvent was removed under
vacuum. The residue was purified by flash silica gel chromatography (Hexane - EtOAc
vlv 5:1), giving desired product as light yellow solid (yield: 580 mg, 60%). *H NMR (400
MHz; CDCP): 5 8.14 (dd, J = 8.4, 1.1 Hz, 2H), 7.95 (dd, J = 7.4, 1.2 Hz, 2H), 7.72 (dd, J
= 8.1, 7.6 Hz, 2H), 7.56 (s, 2H), 7.42-7.39 (m, 4H), 7.24-7.22 (m, 4H); *C NMR (100
MHz; CDCl3): 6 147.1, 136.0, 135.3, 134.3, 131.44, 131.41, 130.4, 128.7, 127.8, 127.07,
127.00, 126.0, 121.0; HRMS Calculated for C,sH1NsClo [M+H]": 483.0887, Found:
483.0897.
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Representative procedure for the preparation of 1,8-bis(4-(4-methoxyphenyl)-
2H-1,2,3-triazol-2-yl)naphthalene (3-5b) (Condition A) To a solution of 1,8-
diiodonaphthalene (760 mg, 2.0 mmol, 1.0 eq.) in dry DMSO (4 ml, 0.5 M), were added
successively 4-(4-methoxyphenyl)-1,2,3-NH-triazole (875 mg, 5.0 mmol, 2.5 eq.) and
Cul (76 mg, 20%), L-Proline (92 mg, 40%), and K,CO3 (1.1 g, 8.0 mmol, 4.0 eq.) under
N, atmosphere. The mixture was stirred at 120 °C and monitored by TLC. After the
reaction is completed, the reaction was quenched with brine and extracted with ethyl
acetate for three times. Organic phases were combined and the solvent was removed
under vacuum. The residue was purified by flash silica gel chromatography (Hexane -
EtOAc v/v 5:1), giving desired product as light yellow solid (yield: 607 mg, 64%). ‘H
NMR (400 MHz; CDCls3): 6 8.10 (dd, J = 8.4, 1.2 Hz, 2H), 7.94 (dd, J = 7.4, 1.2 Hz, 2H),
7.69 (dd, J = 8.2, 7.4 Hz, 2H), 7.50 (s, 2H), 7.44-7.40 (m, 4H), 6.80-6.76 (m, 4H), 3.80
(s, 6H); **C NMR (100 MHz; CDCls): & 159.6, 148.0, 136.0, 135.6, 131.1, 130.0, 127.2,
126.9, 125.9, 122.2, 121.2, 113.8, 55.1; HRMS Calculated for CygH2oNgO2 [M+H]":
475.1877, Found: 475.1883.

Representative procedure for the preparation of dimethyl 4,4'-(2,2'-
(naphthalene-1,8-diyl)bis(2H-1,2,3-triazole-4,2-diyl))dibenzoate (3-5¢) (Condition A)
To a solution of 1,8-diiodonaphthalene (760 mg, 2.0 mmol, 1.0 eq.) in dry DMSO (4 ml,
0.5 M), were added successively 4-(1H-1,2,3-triazole-4-yl)-benzoic acid methyl ester
(2.015 g, 5.0 mmol, 2.5 eq.) and Cul (76 mg, 20%), L-Proline (92 mg, 40%), and K,CO3
(1.1 g, 8.0 mmol, 4.0 eq.) under N, atmosphere. The mixture was stirred at 120 °C and
monitored by TLC. After the reaction is completed, the reaction was quenched with
brine and extracted with ethyl acetate for three times. Organic phases were combined
and the solvent was removed under vacuum. The residue was purified by flash silica gel
chromatography (Hexane - EtOAc v/v 5:1), giving desired product as light yellow solid
(yield: 456 mg, 43%). *H NMR (400 MHz; CDCl5): 5 8.15 (d, J = 8.2 Hz, 2H), 7.96 (d, J =
7.4 Hz, 2H), 7.86 (d, J = 8.2 Hz, 4H), 7.73 (t, J = 7.8 Hz, 2H), 7.62 (s, 2H), 7.51 (d, J =
8.3 Hz, 4H), 3.91 (s, 6H); **C NMR (100 MHz; CDCls): & 166.5, 147.2, 136.0, 135.2,
133.5, 132.01, 131.96, 130.5, 129.82, 129.69, 127.2, 126.0, 125.5, 121.0, 52.1; HRMS
Calculated for C3oH22NgO4 [M+Na]*: 553.1595, Found: 553.1600.

Representative procedure for the preparation of 4,4'-(2,2'-(naphthalene-1,8-
diyl)bis(2H-1,2,3-triazole-4,2-diyl))dibenzonitrile (3-5d) (Condition A) To a solution
of 1,8-diiodonaphthalene (760 mg, 2.0 mmol, 1.0 eq.) in dry DMSO (4 ml, 0.5 M), were
added successively 4-(2H-1,2,3-triazol-4-yl)-benzonitrile (850 mg, 5.0 mmol, 2.5 eq.)
and Cul (76 mg, 20%), L-Proline (92 mg, 40%), and K,CO3 (1.1 g, 8.0 mmol, 4.0 eq.)
under N, atmosphere. The mixture was stirred at 120 °C and monitored by TLC. After
the reaction is completed, the reaction was quenched with brine and extracted with ethyl
acetate for three times. Organic phases were combined and the solvent was removed
under vacuum. The residue was purified by flash silica gel chromatography (Hexane -
EtOAc v/v 5:1), giving desired product as light yellow solid (yield: 389 mg, 42%). ‘H
NMR (400 MHz; CDCls): 6 8.18 (d, J = 8.2 Hz, 2H), 7.97 (d, J = 7.4 Hz, 2H), 7.76 (dd, J
= 9.7, 6.0 Hz, 2H), 7.63 (s, 2H), 7.63-7.53 (m, 8H); **C NMR (100 MHz; CDCl5): 5 146.3,
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136.0, 135.0, 133.5, 132.4, 131.9, 130.7, 128.4, 127.1, 126.1, 120.7, 118.3, 112.0;
HRMS Calculated for CogH16Ng [M+Na]™: 487.1390, Found: 487.1396.

Representative procedure for the preparation of 3-5e (Condition B and
Condition A) To a solution of 1,8-diiodonaphthalene (760 mg, 2.0 mmol, 1.0 eq.) in dry
DMSO (4 ml, 0.5 M), were added successively 4-(4-methoxyphenyl)-1,2,3-NH-triazole
(350 mg, 2.0 mmol, 1.0 eq.) and Cul (38 mg, 10%), L-Proline (46 mg, 20%), K,CO3 (552
mg, 4.0 mmol, 2.0 eq.) under N, atmosphere. The mixture was stirred at 80 °C and
monitored by TLC. After the reaction is completed, the reaction was quenched with
brine and extracted with ethyl acetate for three times. Organic phases were combined
and the solvent was removed under vacuum. The residue was purified by flash silica gel
chromatography (Hexane - EtOAc v/v 10:1), giving desired intermediate 2-(8-
iodonaphthalen-1-yl)-4-(4-methoxyphenyl)-2H-1,2,3-triazole as light yellow solid (yield:
563 mg, 66%). To a solution of 2-(8-iodonaphthalen-1-yl)-4-(4-methoxyphenyl)-2H-
1,2,3-triazole (854 mg, 2.0 mmol, 1.0 eq.) in dry DMSO (4 ml, 0.5 M), were added
successively 4-(2H-1,2,3-triazol-4-yl)-benzonitrile (850 mg, 5.0 mmol, 2.5 eq.) and Cul
(76 mg, 20%), L-Proline (92 mg, 40%), and K,COg3 (1.1 g, 8.0 mmol, 4.0 eq.) under N
atmosphere. The mixture was stirred at 120 °C and monitored by TLC. After the reaction
is completed, the reaction was quenched with brine and extracted with ethyl acetate for
three times. Organic phases were combined and the solvent was removed under
vacuum. The residue was purified by flash silica gel chromatography (Hexane - EtOAc
vlv 5:1), giving desired product as light yellow solid (yield: 498 mg, 53%). *H NMR (400
MHz; CDCl3): 6 8.16-8.12 (m, 2H), 7.96-7.94 (m, 2H), 7.73 (ddd, J = 8.3, 7.4, 1.0 Hz,
2H), 7.65 (s, 1H), 7.59-7.57 (m, 2H), 7.52-7.49 (m, 3H), 7.39-7.37 (m, 2H), 6.77-6.75 (m,
2H), 3.82 (s, 3H); *C NMR (100 MHz; CDCl;): & 159.8, 148.1, 146.3, 136.0, 135.39,
135.24, 133.9, 132.3, 132.05, 132.01, 131.05, 131.01, 130.6, 130.2, 127.13, 127.05,
126.27, 126.11, 125.9, 121.8, 121.0, 118.6, 113.9, 111.5, 55.28; HRMS Calculated for
CasH19N7O [M+Na]™: 492.1543, Found: 492.1550.

UV absorption spectra The UV-Vis spectra were measured in a 10.00mm quartz
cell. All samples were measured as 10 mol/L solution of bis-N-2-aryl triazole in CH,Cl,.
The wavelength range is between 200-600 nm.

Fluorescence excitation and emission spectra Fluorescence emission and
excitation spectra were measured in a 10.00 mm quartz cell. All samples were
measured as a 10° mol/L solution of bis-N-2-aryl triazole in CH,Cl,. The emission
spectra are obtained with an excitation wavelength around 300 to 310 nm, and the
excitation spectra are obtained with the emission Anax according to different compounds.

Quantum vyield Quantum vyield were calculated by using the standard 9,10-
diphenylanthracene which excited at 340 nm (® = 0.9) in cyclohexane. Quantum yields
were calculated by using the following equation, where ® is the quantum yield, Int is the
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area of emission peak, A represents absorbance at the excitation wavelength and n is
reflective index of the solvent. The subscript reference is the respective values of the
standard 9,10-diphenylanthracene. The absorption of bis-N-2-aryl triazole and 9,10-
diphenylanthracene were less than 0.05 (Conc.= 10°° mol/L).

Int X Argterence X ?

® = Dreference X

Inteterence X A X Mygference”
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Il. ORTEP drawing of the crystal structures

'
/20 ciNg
4 X
& cial

Figure 1. Perspective view of the molecular structures of the two independent
molecules of 3c (CysHisNg) with the atom labeling scheme for the non-
hydrogen atoms. The thermal ellipsoids are scaled to 30% probability. CCDC
number: 1037989
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Figure 2. Perspective view of the molecular structure of 4a (CigH12N3l) with the atom
labeling scheme for the non-hydrogen atoms. The thermal ellipsoids are
scaled to enclose 30% probability. CCDC number: 1037988.
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Figure 3. Perspective view of the molecular structure of 5e (CzgH19N;O) with the atom
labeling scheme for the non-hydrogen atoms. The thermal ellipsoids are
scaled to enclose 30% probability. CCDC number: 1038048.

285



lll. The data of fluorophores with emission spectra

Sample preparation: To a 100 ml volumetric flask was added the NBT (0.01 mmol) in
100 ml Dichloromethane. After the NBT was absolutely dissolved, the 100ul triazole
solution has been transferred to another 10 ml volumetric flask by using single-channel
pipetter (20-200 pl), and was then diluted with additional 9.9 ml Dichloromethane.

Integrated emission area: All the areas were integrated from the original spectra by FL
Solution 2.0 software at the wavelength range that was 300 nm to 600 nm with an
excitation wavelength around 300 to 310 nm.

Quantum vyield determination: All the quantum yields of samples were determined
based on conc.= 10° mol/L 9,10-diphenylanthracene in cyclohexane (¢ = 0.9).
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N-2-Aryl is crucial. Is co-planar necessary?
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Figure 4. Fluorescence emission of NAT with different aryl groups: sample preparation:
10°® mol/L in DCM.

Table 1. Comparison of optical properties of NATSs.

Absorption  Excitation Emission Stokes @
(nm) (Amax) (Amax) Shift (nm)
3-la 295 (0.027) 298 347 49 0.34
3-1b 292 (0.009) - - - <0.1
3-1c 296 (0.021) 293 379 86 0.32
3-1d 286 (0.008) - - - <0.1
3-le 365 (0.029) 368 420 52 0.43
3-1f 366 (0.022) 367 418° 51 0.27

& Three different emission bands were observed in 3-1f fluorescence spectra.
Peak A=418 is the highest one. The other two peaks A= 392 and 436.
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Figure 5. Fluorescence emission of NBT 3-3 and triazole iodide 3-4a : sample
preparation: 10° mol/L in DCM.

Table 2. Comparison of optical properties of NBT 3-3 and 3-4a

Absorption Excitation  Emission Stokes ®
(nm) (Amax) (Amax) Shift (nm)
3-3a 282 (0.079) - - - <0.01
3-3b 307 (0.073) 307 384 77 0.13
3-3c 310 (0.063) 315 393 78 0.24
3-4a  297(0.064) 300 378 78 0.20
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Figure 6. Fluorescence emission of NBT 3-5 and triazole iodide 3-4a: sample
preparation: 10 mol/L in DCM.

Table 3. Comparison of optical properties of NBT 3-5 and 3-4a

Absorption Excitation Emission S_tokes o
(nm) (Amax) (Amax) Shift (nm)
3-4a  297(0.064) 300 378 78 0.20
3-5a 306 (0.061) 305 393 88 0.26
3-5b 313 (0.061) 315 403 88 0.27
3-5¢c 300 (0.080) 300 396 96 0.41
3-5d 303 (0.068) 302 403 101 0.47
3-5e 300 (0.067) 300 408 108 0.39
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V. Excited state lifetime

All the sample are tested under same conditions as described above (section I1). All the
complexes were fitted with one exponential using DAS6.

1E+05 [chi.sq. = 6.337017

1E+04

n 1lE+03
s
I
5
0
U 1E+02
1E+01
1E+00
1597 1652 1707 1761 1816 1871 1926 1980 2035 2090 2145 2199 2254
Channels
: 10:[
2 . WW‘WHWV%WW‘WwM- Aodaags e ’ ¢ - o e
; 1GM 1652 1707 1761 1816 1871 1926 1980 2035 209%0 2145 2199 2254
Calculated using 1 exponential
The initial paramters are:
Shift Value =0 ch; 0 sec
Shift Limit = 40 ch; 2.194787E-09 sec
T1 Estimate = 12.91663 ch; 7.087312E-10 sec
A Free
B1 Free

Prompt and decay LO = 1597 ch; 8.762689E-08 sec
Prompt and decay HI = 2294 ch; 1.258711E-07 sec

Background on prompt = 0 (manual)
Time calibration = 5.486969E-11 sec/ch

The fitted parameters are:
Hi reduced to: 2254 ch

SHIFT =0.552488 ch; 3.031484E-11 secS.Dev = 3.574068E-12 sec
Tl =10.33031 ch; 5.668208E-10 secS.Dev =6.771148E-12 sec
A =3.857545 S.Dev = 0.1000181
Bl =0.1259739 [100.00 Rel. Ampl][ 1.00 Alpha] S.Dev = 2.429185E-04
Average Life Time = 5.668208E-10 sec

CHISQ = 6.337017 [ 654 degrees of freedom ]
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1E+05{Chi.Sq. = 1.55091 Q N

1E+04

1E+03

Counts

1E+02

1E+01

1E+00
1615 1633 1650 1668 1686 1703 1721 1739 1756 1774 17%2 1809

Channels

Std. Dev.

Calculated using 1 exponential

The initial paramters are:

Shift Value =0 ch; 0 sec

Shift Limit = 40 ch; 2.194787E-09 sec
T1 Estimate = 15.02722 ch; 8.245389E-10 sec
A Free

B1 Free

Prompt and decay LO = 1615 ch; 8.861454E-08 sec
Prompt and decay HI = 1867 ch;  1.024417E-07 sec

Background on prompt = 0 (manual)
Time calibration = 5.486969E-11 sec/ch

The fitted parameters are:
Hi reduced to: 1827 ch

SHIFT =1.104386 ch; 6.059733E-11 secS.Dev = 1.883257E-12 sec
Tl =14.56462 ch; 7.99156E-10 sec S.Dev = 3.201433E-12 sec

A =1.621187 S.Dev = 0.2953923
B1 =9.869412E-02 [ 100.00 Rel.Ampl][ 1.00 Alpha] S.Dev = 1.800729E-04
Average Life Time = 7.99156E-10 sec

CHISQ = 1.55091 [ 209 degrees of freedom ]
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1E+05 Chi.sq.

93.08318|

1E+04

1E+03

Counts

1E+02

1E+01 4/

OMe

OMe

1E+00

1604 1676 1748 1820 1892 1964 2036 2109 2181 2253 2325 2397
Channels

LN

3 r’ \1’:576 1748 1820 1882 1964 2036 2109 2181 2253 2325 2387
Calculated using 1 exponential
The initial paramters are:
Shift Value = 0 ch; 0 sec
Shift Limit = 40 ch; 2.194787E-09 sec
T1 Estimate = 48.82361 ch; 2.678936E-09 sec
A Free
B1 Free

Prompt and decay LO = 1604 ch; 8.801098E-08 sec
Prompt and decay HI = 2509 ch; 1.37668E-07 sec

Background on prompt = 0 (manual)
Time calibration = 5.486969E-11 sec/ch

The fitted parameters are:
Hi reduced to: 2469 ch

SHIFT =6.276135 ch; 3.443696E-10 secS.Dev = 6.684059E-12 sec
Tl =43.90302 ch; 2.408945E-09 secS.Dev =1.631257E-11 sec
A =4.041021 S.Dev =0.1016247
B1 =0.1070184 [100.00 Rel. Ampl][ 1.00 Alpha] S.Dev = 7.564617E-05
Average Life Time = 2.408945E-09 sec

CHISQ =93.08318 [ 862 degrees of freedom ]
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1E+05 Chi.Sq. = 2.872091]

1E+04

1E+03

Counts

1E+02

1E+01

1E+00
1591 1666 1740 1815 1890 1964 2039 2114 2188 2263 2338 2412 2487

Channels

Std. Dev.

Calculated using 1 exponential

The initial paramters are:

Shift Value =0 ch; 0 sec

Shift Limit = 40 ch; 2.194787E-09 sec
T1 Estimate = 26.07678 ch; 1.430825E-09 sec
A Free

B1 Free

Prompt and decay LO = 1591 ch; 8.729767E-08 sec
Prompt and decay HI = 2527 ch; 1.386557E-07 sec

Background on prompt = 0 (manual)
Time calibration = 5.486969E-11 sec/ch

The fitted parameters are:
Hi reduced to: 2487 ch

SHIFT =1.012082 ch; 5.553263E-11 secS.Dev = 2.595552E-12 sec

T1 =23.8283 ch; 1.307451E-09 secS.Dev =5.174642E-12 sec

A =1.111919 S.Dev = 6.266093E-02
B1 =7.393724E-02 [ 100.00 Rel.Ampl][ 1.00 Alpha] S.Dev = 1.202585E-04
Average Life Time = 1.307451E-09 sec

CHISQ = 2.872091 [ 893 degrees of freedom ]
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1E+05 Chi.Sq. = 1.729513]

1E+04

1E+03

Counts

1E+02

1E+01

1E+00
1599 1647 1694 1742 1789 1837 1884 1932 1979 2027 2074 2122 2169

Channels

Std. Dev.

Calculated using 1 exponential

The initial paramters are:

Shift Value =0 ch; 0 sec

Shift Limit = 40 ch; 2.194787E-09 sec
T1 Estimate = 29.85876 ch; 1.638341E-09 sec
A Free

B1 Free

Prompt and decay LO = 1599 ch; 8.773662E-08 sec
Prompt and decay HI = 2209 ch; 1.212071E-07 sec

Background on prompt = 0 (manual)
Time calibration = 5.486969E-11 sec/ch

The fitted parameters are:
Hi reduced to: 2169 ch

SHIFT = 1.210837 ch; 6.643825E-11 secS.Dev =2.213482E-12 sec
Tl =28.58036 ch; 1.568195E-09 secS.Dev = 4.21055E-12 sec

A =1.481617 S.Dev = 0.1002949
B1 =6.720192E-02 [ 100.00 Rel.Ampl][ 1.00 Alpha] S.Dev = 1.043928E-04
Average Life Time = 1.568195E-09 sec

CHISQ = 1.729513 [ 567 degrees of freedom ]
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1E+05 Chi.Sq. = 2.016362]

1E+04

1E+03

Counts

1E+02

1E+01

1E+00
1604 1659 1714 1769 1824 1879 1934 1990 2045 2100 2155 2210 2265

Channels

Std. Dev.

Calculated using 1 exponential

The initial paramters are:

Shift Value =0 ch; 0 sec

Shift Limit = 40 ch; 2.194787E-09 sec
T1 Estimate = 45.05786 ch; 2.472311E-09 sec
A Free

B1 Free

Prompt and decay LO = 1604 ch; 8.801098E-08 sec
Prompt and decay HI = 2305 ch; 1.264746E-07 sec

Background on prompt = 0 (manual)
Time calibration = 5.486969E-11 sec/ch

The fitted parameters are:
Hi reduced to: 2265 ch

SHIFT =0.8243643 ch; 4.523261E-11 secS.Dev = 2.415798E-12 sec

Tl =4452381 ch; 2.443007E-09 secS.Dev =5.735076E-12 sec

A =0.6034257 S.Dev = 9.464832E-02
B1 =5.459966E-02 [ 100.00 Rel.Ampl][ 1.00 Alpha] S.Dev = 7.483848E-05
Average Life Time = 2.443007E-09 sec

CHISQ = 2.016362 [ 658 degrees of freedom ]
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V NMR spectra
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