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Abstract

Robust Decentralized Control of Power Systems through Excitation Systems and Thyristor

Controlled Series Capacitors

by

Lingling Fan

Doctor of Philosophy in Electrical Engineering

West Virginia University

Professor Ali Feliachi, Ph.D., Chair

The objective of this work is robust decentralized control of power systems through excita-
tion systems and Thyristor Controlled Series Capacitors (TCSC). Hence the dissertation consists of
two parts. In the first part an algorithm for the design of nonlinear decentralized excitation control
is developed based on a feedback linearization technique. Feedback linearization technique is ap-
plied in excitation control of each generator to obtain an interconnected system where subsystems
have linear system matrices and interconnections are represented by nonlinear terms. Different
ways of achieving decentralization are investigated: (1) linear robust control combined with ob-
server decoupled state space (2) disturbance accommodation control. While linear robust control
guarantees the subsystem’s stability when the interconnection terms are bounded within certain
values, disturbance accommodation control is based on linear models of the interconnection terms.
Nonlinear simulations are performed on a three-machine nine-bus power system. The simulation
results demonstrate the effectiveness of the proposed methodologies.

In the second part, indices for control signal selection and mode effectiveness and inter-
action are developed. They are applied in Thyristor Controlled Series Capacitor damping control,
which is to improve inter-area oscillation damping over a range of operating conditions, for evalu-
ating local signals. Residues not only represent the combination of state controllability and observ-
ability but also represent the eigenvalue sensitivity with respect to controller parameters. Hence
residues are suitable to be utilized to develop indices or criteria for control signal selection and
controller siting. The indices are the effectiveness of the controller over a wide range of operating
conditions and the interaction of the controller with oscillation modes other than the critical ones.
Controller configuration design is also investigated: one is lead-lag structure design and the other
is multi-step design.

Two case studies are performed to explain and demonstrate the effectiveness of the pro-
posed methodologies. The first power system is the two-area four-machine inter-area oscillation
benchmark system. A poor damping oscillation can be observed in the tie-line. Three typical
operating conditions are chosen to testify the robustness and effectiveness of the controller. The
results show that for a TCSC installed on the tie-line, the better signal is the absolute value of



active power which not only is robust but has less interaction with the other oscillation modes.
The second is the western U.S. power system (WSCC). The system has three inter-area oscillation
modes near 0.7 Hz. The proposed conditions and indices are utilized to find the optimal placement,
signal for a TCSC damping controller. Both root locus analysis and nonlinear simulation results
show that TCSC damping controller is effective in stabilizing the most critical inter-area modes.

The indices proposed in this dissertation are general and can be used for signal selection
and siting of other devices, such as Static Var Compensator, Unified Power Flow Controller and
etc. The uncertainty shown in the case studies in this dissertation are variations of load conditions.
It can also be variations of topologies. While the variation of load conditions can be considered
as unstructured uncertainty the variations of the topologies can be considered as structured un-
certainty. With variation of topologies included in case studies, the proposed indices are shown
to be applicable to both structured and unstructured uncertainty. The damping controller pro-
posed in this dissertation is to use local measurement as input signals. Local measurements can
be obtained by phasor measurement units (PMU). The feasibility of these control schemes using
PMU should be investigated using discrete control techniques. Meanwhile, the measurement errors,
control signal delays are not considered in this dissertation. Further work can take above factors
into consideration.
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1

Chapter 1

Introduction

1.1 Problem description

Modern power systems are nonlinear large-scale systems, with power plants and control

stations interconnected through transmission lines. Stability is a major concern for large-scale power

systems. When power systems are subject to a perturbation or a disturbance, such as a loss of a

generator, a loss of a line or a fault, control schemes are designed to alleviate the transient behavior

and steer the system to a stable condition. That adjustment to the new operating condition is

called transient period. If the generators maintain synchronism at the end of the transient period,

then the system is stable [4]. Stability can be further classified into transient stability and dynamic

stability. Transient stability has a unique definition when applied to power systems. It relates with

major disturbances and it may include specific countermeasures in the way of selective relay and

other emergency control or security measures [27]. The system is called transient stable for a large

disturbance, e.g., the three-phase fault, the loss of a transmission line, if following this disturbance

and countermeasure, it will settle down to a stable and viable equilibrium point. Transient stability

analysis examines the dynamic behavior of a power system for as much as several seconds following

a disturbance and is concerned with the electrical distribution network, the electrical loads, and

the electromechanical equations of motion of the interconnected generators. Transient stability can

be further classified as first swing stability and oscillation stability. The system is called first swing

stable if its synchronous generators will not lose synchronism during the first swing of their rotor

angles. The system is called oscillation stable if the following oscillations can be dampened. A

power system is dynamic stable if it remains stable when subject to small disturbances ( change

of load). Unlike transient stability, dynamic stability tends to be a property of the state of the
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Power System
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Mechanical Controller
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FACTS
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Figure 1.1: Power system controller classes

system. There is no distinct boundary between transient stability and dynamic stability.

To improve the stability of power systems, controllers are widely used in power systems.

These controllers can be categorized into two classes: controllers installed on the generator side,

e.g., Automatic Voltage Regulator (AVR)/Power System Stabilizer (PSS) and controllers installed

on the transmission line side, e.g., Flexible Alternative Current Transmission System (FACTS)

devices. There are two basic control schemes on the generator side. One is Load Frequency Control

(LFC) or turbine-governor control which is used to keep the frequency of the generator at its rated

value, e.g., 60 Hz in United State and 50 Hz in Europe. The other is excitation control. Due to the

relatively large time constant of the turbine, the LFC control cannot act fast enough to improve

transient stability of the systems. On the other hand, the excitation control can act very fast since

the exciter’s time constant is relatively small.

The excitation system plays an important role in power system control. With AVR, the

excitation system can regulate the terminal voltage. With PSS — which uses rotor speed error,

frequency error or power as input — the excitation system can provide oscillation damping to power

systems.

Most of those control schemes are based on linear power system models which are valid

around a certain operating point. A power systems is actually a nonlinear system, and therefore,

with a change of operating point, these control schemes designed for a specific operating point

may lose their effectiveness to stabilize the power system. Even when the operating point does not

change, when the feedback gains increase, the resulting stability region may vanish. This may be

due to the neglected nonlinearity creating an unstable limit cycle around an asymptotically stable
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equilibrium [34].

Large power systems have numerous subsystems, especially power plants and control sta-

tions which are located in different geographical areas. Centralized control needs all information

from every subsystem. Thus extra communication links are required, which will introduce high

cost and unreliability. Therefore, the decentralized control structure is more attractive. In the past

years, the feasibility of decentralized control has been studied and various control schemes proposed

[63].

Nonlinear control technologies have been introduced and applied in power systems. Among

them, Feedback linearization seems to be an attractive methodology. By applying feedback lin-

earization technique, nonlinear systems are mapped to linear ones while retaining some internal

dynamics. Control schemes based on linear systems can then be applied. The control law has to

be mapped back to the original nonlinear system. The mapping needs information of the whole

system. The problem then arises, that decentralized control scheme cannot be reasonably achieved.

Research has to be done to design the nonlinear controller while maintaining decentralization and

robustness.

While excitation control improves the stability of synchronous machines, FACTS-based

control is expected to stabilize tie-line oscillations. FACTS concepts were introduced into power

systems with the advent of high voltage power electronics technology, microprocessors and micro-

electronics. FACTS is designed to overcome the limitations of present mechanically controlled AC

power transmission systems. The main purpose of FACTS devices is to increase transmission capac-

ities and control abilities of power flows. By using reliable high-speed power electronics controllers,

FACTS technology also offers improvements in power system oscillation damping.

Since FACTS devices are installed in transmission lines which link distinct geographical

areas, the FACTS-based control will be able to stabilize inter-area oscillations which cannot be

controlled through generator controllers with only local measurements.

This dissertation investigates (1) the application of nonlinear control theory combined

with linear control techniques to design decentralized controllers for excitation systems and (2) the

siting, signal selection and controller design of the damping control of a Thyristor Controlled Series

Capacitor (TCSC) – a kind of device of FACTS to obtain a robust controller using only local

measurements.
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1.2 Approach

The approach of this research is described here. First, each generator is considered as

a subsystem described with a set of differential equations which includes mathematical terms of

interconnection. Feedback linearization technique is applied to the generator model, resulting in a

partially linear model, i.e., it is linear except for the interconnection terms. Two methods to handle

the nonlinear terms are investigated to achieve a robust decentralized control scheme. These two

methods are the linear robust design method and Disturbance Accommodation Control method.

Second, the purpose of FACTS-based controllers is to dampen inter-area oscillations for

a wide range of operating conditions. Several oscillation modes may exist in power systems. The

controllers are expected to dampen critical modes – the most poorly damped modes – while

having less effect on the other oscillation modes. Indices for selecting signals are proposed and a

control structure is investigated. A modal analysis method is used to identify oscillation modes,

calculate mode shapes and obtain residues of input-output channels. Residues represent the system

sensitivity with respect to the controller parameters such as gain. Therefore, residues are very useful

quantities. Based on residue’s phase and magnitude information, conditions and indices for signal

selection can then be derived and used to determine the appropriate signal for implementation.

Case studies on two power systems are performed to illustrate the effectiveness of the proposed

methodology. One is a two-area four-generator power system which presents a poorly damped

inter-area oscillation. The other is the western U.S. power system (WSCC) which contains three

0.7 Hz inter-area oscillation modes. Both linear analysis and nonlinear simulations will be performed

to the two power systems.

1.3 Outline

This dissertation is organized as follows. A literature survey is given in Chapter 2. In

Chapter 3, feedback linearization theory is introduced. Each synchronous generator is considered

as a subsystem and its excitation system is designed based on feedback linearization combined with

linear control techniques such as linear robust control and disturbance accommodation control.

In Chapter 4, a linearized power system model including TCSC is developed. TCSC

damping control is designed to dampen inter-area oscillations using local measurements. Two

indices and a constraint for signal selection and siting are proposed. Residue based controller
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structure is then designed as cascaded lead-lag units. In order to make the critical oscillation

modes be closer to the expected values, multi-step control design is also presented. Damping

enhancement of a two-area four-machine power system and the WSCC system is presented.

Chapter 5 discusses the two control schemes for the two-area four-machine power system.

Chapter 6 concludes the dissertation.
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Chapter 2

Literature survey

2.1 Introduction

In this chapter, a literature survey of work related to the problem investigated in this

dissertation is performed. The survey is organized in two sections. In the first section, work related

to improving the stability of power systems through excitation control is reviewed. Then, work

related to damping power system inter-area oscillations using Thyristor Controller Series Capacitor

(TCSC) is given.

2.2 Excitation control for stability enhancement

Synchronous generators are important elements in power systems. An exciter controls

the generated electromagnetic flux linkage of a generator. Thus the exciter will affect not only the

output voltage but the power factor and current magnitude. The conventional excitation system

control includes automatic voltage regulator (AVR) and power system stabilizer (PSS) as shown in

Fig. 2.1.

The AVR is a continuously acting proportional system consisting of sensors and amplifiers.

With the generator terminal voltage magnitude Vt as a feed back signal, the AVR helps to control

the output of the exciter so that the generator terminal voltage magnitude changes in a desired

way. The PSS is an auxiliary controller that adds damping to local electromechanical oscillations

that are destabilized by high gain, fast acting exciters. PSS is often in the form [17]

Gs(s) =
k0τ0s

1 + τ0s

1 + α1τ1s

1 + τ1s

1 + α2τ2s

1 + τ2s
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PSS

AVR Exciter Generator
-+

+Vref
Vt

∆ω
∆f
∆Pe

Figure 2.1: Diagram of conventional excitation control

The first term is a reset term to assure no permanent offset in PSS’s output due to a prolonged

fre quency error. The remaining terms are l ead-c omp ensati on pairs to improve the phase l ag through

the system from the constant reference voltage magnitude Vref to angular speed ω. Input signals

of PSS can be angular speed deviation ∆ω, frequency deviation ∆f or generated power deviation

∆Pe. The frequency domain analysis, e.g., Bode diagram was used to determine the parameters of

PSS for PSS to provide adequate phase margin at the oscillation frequency [37]. Bode diagram of

a phase-lead unit in the form of

G(s) =
1 + ατs

1 + τs
,   α > 1

is shown in Fig. 2.2 [53].

Th e p ha s e that th e l ea d u ni t G (s ) c an pr ov i d e i s given by

∠G(jω) =
1 + jατω

1 + jτω
= tan(ατω)− tan(τω)

= tan
(α− 1)τω
1 + ατ2ω2

= tan
α− 1
1
τω + ατω

≤ tan
α− 1
2
√
α

when
1

τω
= ατω,∠G(jω) = tan α− 1

2
√
α

Therefore, the corresponding values of ωmax and φmax are

ωmax =
1

τ
√
α

and

φmax = sin
−1 α− 1
α+ 1



CHAPTER 2. LITERATURE SURVEY 8

ω

20log10G(jω)

20log10α
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Phase

φmax

τ
1

Figure 2.2: Bode diagram of a phase-lead unit

Hence, if the oscillation frequency is known and the desired phase of PSS is known, the

parameters of PSS can be determined easily.

Usually PSS is designed as an auxiliary controller of a known AVR to obtain the desired

damping characteristic. PSS and AVR can also be designed simultaneously [9] [23] [46]. In [23], a

coordinated AVR/PSS called four-loop regulator was designed, which can not only damp oscillations

but also achieve voltage regulation by defining a performance index including voltage deviation and

frequency deviation. The control law is obtained by optimizing the performance index and hence

the regulator is actually a linear quadratic state feedback controller with four state variables feeding

back. To make this regulator more widely applicable in an industrial point of view, it was put in

the standard AVR and PSS structure in [9] and was tested for damping in the 10-generator 37-bus

New England power system model in [46]. Test results showed that the controller was efficient to

dampen oscillations.

As a matter of fact, part of the work of this dissertation is to design excitation control for

stability improvement. Treating AVR and PSS as a single system will certainly make the design

procedure more systematic and easier for new techniques to be applied. The proposed work uses
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feedback linearization and a decentralized control structure – These concepts will be surveyed.

2.2.1 Feedback linearization technique

Many control designs of nonlinear systems are performed using linear control system tools

applied to a linearized model of the original system around an operating point. The controller

is designed for this specific operating condition and it is expected to be effective around this

point. With significantly changing operating conditions, several controllers have to be designed

and be switched on or off according to operating conditions. Nonlinear control theories have been

investigated in power system excitation control to overcome the disadvantage of controllers based

on linear control theories. Among these theories are neural network based controller [52], variable

structure control [12] and feedback linearization control technique [41]. The neural network based

controller utilizes neural networks as a nonlinear function to map an input to an output. Though

the concept of design is easy to understand, the determination of the neural network parameters

involves heavy computation. As for large-scale power systems with all kinds of different scenarios,

the computation time will be huge and hence that kind of controller is not realistic. A variable

structure control has more than one control schemes to switch to according to certain criteria.

However since the switching cannot occur exactly at the required time, chattering usually occurs

which will deteriorate the dynamic responses of power systems.

Feedback linearization is an approach to algebraically transform a nonlinear system dy-

namics into a fully or partly linear dynamic system so that linear control techniques can be applied

[49]. The feedback linearization control technique was first applied to excitation systems to improve

power system stability of a single-machine infinite-bus power system. The original nonlinear system

has a feedback equivalence to a linear controllable system [41]. Instead of the traditional machine

angle, the rotor speed, and the transient voltage as state variables, the deduced linear model after

feedback linearization has the machine angle, the rotor speed and the generated power as state

variables and the excitation voltage as a control input. When the order of the generator model

is low, the relative degree of the output —machine rotor angle — may be the same as the order of

the system, thus no remaining dynamics exist when the mapping occurs. And the state feedback

controller can stabilize the system well. When the machine model has a high order, e.g., when

a hydro-turbine is included as discussed in [2], non-stable internal dynamics exist. More control

effort has to be done to guarantee the stability of the power system. In the case discussed in [2],

an additional signal related to the gate position is fed back to the controller. In most other high
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order cases, the internal dynamics are stable and no extra control effort is required.

Feedback linearization technique has also been applied to a multi-machine power systems.

In [48], variable structure controllers were designed to accommodate the parameter uncertainties

such as generator parameters and operating conditions. In [13], a state feedback controller was

designed. The controllers in [13] and [48] were claimed to use only local measurements. However,

to map the linear controller back to the original nonlinear system, tremendous information from

“everywhere” is needed. Research has been done on combining feedback linearization technique

and decentralization technique; see [57], [58], [22] and [59]. Those decentralization techniques are

addressed in the next section.

2.2.2 Decentralization techniques

The controller structure needs to be feasible for implementation. A decentralized structure

is a structure in which control stations use only local measurements to generate the control signals.

The class of nonlinear interconnected systems considered here consists of m interconnected

subsystems, each described by

ẋi = fi(t, xi) + gi(t, x), i = 1, 2, ...,m

where fi(t, xi) depends only on subsystem i and gi(t, x) is related with the entire remaining system,

and therefore is called the interconnection term.

Here xi(.) ∈ Rni and xi is the state variable vector of subsystem i;

x is the state variable vector of the entire system, x = (xT1 , ..., x
T
m)

T ;

m is the number of the subsystems;

n1 + ...+ nm = n is the sum of the subsystems.

In [32], Lyapunov’s function method is utilized for design of decentralized controllers for

an interconnected system and an M-matrix condition is derived. With M-matrix condition satisfied,

the decentralized controller can stabilize the interconnected system. In the first step, the system is

decomposed into smaller isolated subsystems, by ignoring interconnections, each described by:

ẋi = fi(t, xi), i = 1, 2, ...,m

Local stabilizers are then designed for m isolated systems using existing control methods. For linear

invariant systems, pole-placement method and linear quadratic method may be used. Assume that
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the closed-loop local systems are stable, then Lyapunov function Vi exists which satisfies

V̇i =
∂Vi
∂t

+
∂Vi
∂xi

fi(t, xi) ≤ −αiφ2i (xi)°°°°∂Vi∂xi

°°°° ≤ −βi, where αi,βi are positive constants and φi(xi) is a smooth function
In the second step, the information of the interconnections are included. The interconnection terms

gi(t, x) are assumed to satisfy the bound

kgi(t, x)k ≤
mX
i=1

γijφj(xj), where γij is a constant

Then if matrix S defined by Sij =

 αi − βiγii, i = j
−βiγj, i 6= j

is an M-matrix; that is, the leading principal

minors of S are positive:

det


s11 s12 ... s1k

s21

...

sk1 ... ... skk

 > 0, k = 1, 2, ...,m,
then the system is globally uniformly asymptotically stable.

Lyapunov’s direct method is usually utilized to design decentralized control for excitation

systems; for example, in [40]. In [57] and [22], feedback linearization techniques are applied to the

subsystems to cancel or alleviate the nonlinearity. The nonlinear terms that are not measurable

and that are associated with the rest of the system are kept. These nonlinear interconnection

terms are assumed to be bounded, and their bounds are approximated by linear functions. Static

feedback controller or dynamic feedback controller are thus designed which will satisfy the Lyapunov

functions.

The above decentralization approaches are based on solving n machine Riccati equations.

The satisfactory condition is that all machines should have the same kind of controller. Then the

question is how to design the controller when one considers only one local synchronous generator’s

excitation control.

Other decentralization techniques combined with feedback linearization technique have

also been investigated. In [18], interconnections are treated as disturbance or noises. And then

H∞ design is applied to the subsystem. There exists a state feedback controller, which guarantees

that the H∞ norm of the transfer matrix from the “noise” to the desired variables is less than a

certain bound. The advantage of this approach is that only one subsystem is in consideration when

designing the nonlinear controller.
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2.2.3 Observer decoupled state space

Proposed by Zaborsky, et. al. [66], the observer decoupled state space (ODSS) concept

has been used with the feedback linearization technique to achieve decentralization. It provides

a way of recovering the information that one cannot measure locally [13]. This concept applies

a specific transformation to large, nonlinear systems with a network structure, such as a power

system. A power system will be transferred from state space Z = {z} into an observer decoupled
state space Ze = {ze}, where the state variables are locally measurable. This transformation is
diffeomorphic; that is, the original differential function is smooth and its inverse exists and is

smooth. Under proper and practical assumptions, generators are modeled by the classical model,

so the two spaces are equivalent. At equilibrium, the two coordinates coincide pair by pair for each

state variable. Everywhere else, the state vectors of the two coordinates are distinct. Hence, the

observer decoupled state space Ze can be treated as a moving target to be tracked by Z. During

the tracking process, no knowledge of the equilibrium state is needed.

Due to the structure of the power system model, subsets zei of target state zel connected

with a particular bus (node) can be computed at the local bus i using information which can be

measured at this local bus itself. So ze is decoupled as far as its observation is concerned.

The rotor angle in a power system is a good signal for feedback stability control. The

post-fault equilibrium needs to be known. Load flow is a way to calculate the equilibrium point.

Yet it takes a long time and needs information on the post-fault network, so that it is not suitable

for on-line control. In this situation, ODSS can provide a dynamic rotor angle that converges to a

desired post-fault value much faster.

2.3 TCSC damping controller for inter-area oscillations

2.3.1 Inter-area oscillations

Inter-area oscillations are electromechanical oscillations of a group of generators in one

area against a group of generators in another area [33]. These oscillations tend to be of low frequency

in the range of 0.1 to 0.8 Hz. System structure such as the tie-line impedance and the power flow

through the tie-lines determines the natural frequency and damping of the inter-area mode. For a

two-area system, the nature frequency and damping ratio of the inter-area mode decrease as the

tie-line impedance or power flow is increased. Excitation systems and load characteristics affect

the nature of inter-area oscillations too.
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Inter-area oscillations may induce instability to power systems and thus need to be damp-

ened. Yang and Feliachi [63] used controllability and observability to identify inter-area oscillations

from other oscillations. The most difficult type of oscillations to be dampened are those not con-

trollable and not observable simultaneously at one location. Since AVR/PSS uses local signals as

its feedback control signals, it might not be possible to dampen this type of inter-area oscillations.

Research has been done to solve this kind of problem. A signal from the “other” control station is

used [63]. An extra communication link is needed and the cost will increase dramatically. Thus,

new methods to control inter-area oscillations have to be pursued.

More and more FACTS devices are used nowadays to regulate power flows in power systems

and they are usually installed in transmission lines. Their controllability to inter-area oscillation is

stronger than PSS. Among FACTS devices, Thyristor Controlled Series Capacitor (TCSC) has been

used in long transmission lines to reduce the electrical distance, which will increase the amount of

power transmitted and improve the dynamic stability of the system using supplementary control

[35]. Investigators have used different supplementary control input signals for inter-area oscillation

damping purposes.

The siting, signal selection and controller design are three topics related to FACTS-based

stabilizers’ effect on inter-area oscillations. Modal analysis is the most popular tool in analysis and

synthesis of controllers.

2.3.2 Signal selection and controller siting

For some types of controllers, such as state feedback controllers, the input signals to the

controller will be the states of the power system. The controller thus is a centralized one and may

be difficult to implement. There are a lot of methods for input signal selection. For linear plant

models in state-space description, state controllability and state observability have been used as

criteria to choose input/output of the controller. These two quantities could be combined together

as residues. Another rule for input signal selection is to adapt to changing operating conditions.

The rule is that the input/output signals should be selected to yield a large minimum singular value

[65].

Most TCSC damping controllers use simple structure and simple signals. In [36], the

input signal–an emulated power swing angle synthesized from local measurements of voltage and

current — was recommended. This control signal is also used in [56] and [64]. In [14] and [38], the

input signal is synthesized from the generator’s speed. This synthesized speed requires a remote
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signal, which will need extra communication links. Local measurements are also used as signals,

such as tie-line power [15] and bus voltage magnitude [61].

Local signals are preferred. The effectiveness of these signals should be investigated to find

out the appropriate signal for inter-area oscillations. Several different indices have been proposed

for input signal selection and controller siting. As an example, modal analysis of the linearized

open-loop power system is used in [20] where controllability is used as an index for siting and

observability is used as an index for signal selection. Another index is based on an additional

damping torque coefficient induced by TCSC damping controller[62]. This is also based on modal

analysis but it is performed in the frequency domain. Modal decomposition is used to isolate the

swing mode and then the system is represented by a block diagram based on transfer functions.

Three indices are proposed in [36]. They are phase influence, maximum damping influence and

natural phase influence. These indices are used to pick the equivalent impedances to determine a

synthesized power angle.

To make the control signal robust over a wide range of operating conditions, an index

based on approximate residues of linearized models at different operating points is proposed in

[61]. This approximate residues index describes the effectiveness of the controller. If it is kept in

a small range when the operating condition changes, then the control signal is robust. Otherwise,

the control signal is not robust with respect to variation of the operating conditions.

2.3.3 Controller structure

Besides signal selection and controller siting, controller structure should be designed ap-

propriately. The conventional low-order controller is an attractive structure for control engineers.

Even when controllers are obtained by use of Linear Quadratic Gaussian method, the proposed

control law is transformed to a conventional lead-lag low-order control structure [46].

Lead-lag control structure is a widely used structure, e.g., PSSs were designed in such

control structure [37]. A lead-lag controller consists of a washout unit to eliminate the steady-state

error and lead-lag units as shown in Fig. 2.3.

The residue of the open-loop system at a certain oscillation mode has a phase which

determines the direction of movement of the oscillation mode’s root locus. The two lead-lag units

provide phase compensation to make the direction of movement to be toward the negative real axis.

There are two design requirements that should be taken into consideration. First, fixed-parameter

controllers are preferred. Second, different operating conditions are considered. To simplify the
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Figure 2.3: Lead-lag controller structure

design requirements, only two extreme conditions are considered. If in these two cases, the controller

has satisfactory performance then the controller will have satisfactory performance in all the other

cases. The assumption is that the phase compensation should be monotonic [63].

Systematic robust design methods have been applied to achieve robust controllers which

can accommodate the change of network structure and operating conditions. Reference [8] gives

a comparison of the classical phase compensation approach, the µ−synthesis approach, and a
linear matrix inequality (LMI) technique for multiple power system stabilizer design to dampen an

inter-area oscillation. The inter-area oscillation is unstable in the open-loop system and cannot be

stabilized using only one conventional PSS due to a right half zero (RHZ) close to the unstable pole.

The two conclusions are (1) a lower-order centralized design by use of LMI matches the performance

of a higher-order centralized design by use of µ−synthesis, and (2) a centralized design achieves
the same damping enhancement with much smaller gains than the decentralized gain.

The H∞ control design method is applied to design a TCSC damping controller in [55].

The uncertainty considered is the transmission strength variation and a structured uncertainty

model is built based on the loss of a transmission line while the nominal model is built based

on the nominal structure and a specific operating condition. The uncertainty model in [45] is

an unstructured uncertainty representing variations of operating conditions. Besides uncertainty,

model error is another issue to be considered in robust control. In [51] linear quadratic gaussian

(LQG) control methodology is applied to design the robust TCSC damping controller against model

error, which was modeled as white noise. However LQG method did not address uncertainties other

than white noise adequately and thus is not practical.

In a word, systematic robust control is designed based on specific uncertainty. Power

systems can possess a large number of topological configurations and steady-state operating points.

It is difficult for a controller to be robust against all the variations.

Besides linear design methods, nonlinear design methods for TCSC are also proposed. In

[15] a static neural network is established with several integral units to emulate the inverse system
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of the original nonlinear system. The Proportional, Integral and Derivative (PID) control design is

then performed to stabilize the pseudo-linear system. The disadvantage of this design is that huge

data should be collected for the parameters of the neural network to be “trained”.

2.4 Conclusion

In the literature survey, feedback linearization technique is investigated as a new control

methodology for excitation control. To achieve a decentralized control structure, it should be

utilized along with decentralized techniques or ODSS. The decentralized techniques preferred are

the simple and practical ones and the algorithms for nonlinear excitation control are developed

in Chapter 3. TCSC damping controller signal selection, siting, and controller synthesis are also

investigated and the algorithm developed are shown in Chapter 4.
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Chapter 3

Nonlinear decentralized control of

excitation systems

3.1 Introduction

Primary control, such as AVR/PSS or turbine-governor in a power system is designed to

respond to relatively minor disturbances in an automatic way. By use of set points, primary control

will stabilize system in a specified regime. However, if the post-fault operating condition is far from

the normal condition, a controller tuned in normal condition may not operate as expected.

Nonlinear control schemes have been applied to power systems to make controllers operate

in a wide range. Among them, feedback linearization technique enables the nonlinear power system

model to be transformed into a linear system model. Thus linear control techniques can be applied.

When not all information is available, a totally linear system model can not be obtained.

Instead, nonlinear interconnection terms have to be taken into consideration. The first way in

this chapter is to model the interconnection terms as bounded disturbances. Then linear robust

control method is applied. The second way is to model the interconnection terms as wave-form

type disturbances that can be expressed in state-space form. Linear quadratic regulator is then

designed.

Observer decoupled state space (ODSS) concept is also used in this chapter to obtain a

dynamic equilibrium point of rotor angle. The application of ODSS is shown in the case study.
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3.2 Feedback linearization theory

3.2.1 Input-state linearizable

Consider an n dimension system,

ẋ = f(x) + g(x)u, y = h(x) (3.1)

where x represents a n dimensional state vector, x = [x1, x2, ..., xn]T , u is the scalar control input,

f and g are nonlinear vector functions of the states, h is a scalar function of the states and y is the

output of interest. If the original system can be transformed to a canonical form when applying a

transformation z = φ(x), where
z1

z2

...

zm

 =

φ1(x)

φ2(x)

...

φm(x)

 =


h(x)

L1fh(x)

...

Lm−1f h(x)


with Lkfh(x) ,5[Lk−1f ].f(x)

Lkfh(x) 6= 0 for k = 0, ...,m− 1
Lkfh(x) = 0 for k = m, ..., n

then the system is said to be input-state linearizable.

The dynamics of the new system can be expressed in canonical form

d

dt


z1

z2

...

zm

 =


z2

z3

...

α(z) + β(z)

 = Az + bv, (3.2)

y = z1

where z = [z1, z2, ..., zm]T is called the linearizing input state. Also α(z) = Lmf h[φ
−1(z)],and

β(z) = LgL
m−1
f h[φ−1(z)] 6= 0 are called the linearizing control law, where

A =



0 1 0 .. 0

0 0 1 .. ..

.. .. .. .. ..

0 0 0 .. 1

0 0 0 .. 0


, b =



0

0

..

0

1


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( )uxfx ,=>

( )xzz =

+ x

Nonlinear
mapping

Generator
model

( )uxfx ,=> ( )uxfx ,=> ( )uxfx ,=>v→ uv=K(r-z)

( )xzz = ( )xzz =

r

Linear
controller

-

Figure 3.1: Feedback linearization diagram

The transformed linear dynamics have the canonical form. Since all linear controllable

systems are equivalent to the canonical form through a linear state transformation and pole place-

ment, therefore if the nonlinear system of Eq. 3.1 can be transformed into a linear system, it is

input-state linearizable. The diagram of feedback linearization is shown in Fig. 3.1.

3.2.2 Conditions for input-state linearization

Reference [49] gives the conditions for input-state linearization.

Theorem 3.1 The nonlinear system in Eq. 3.1, with f(x) and g(x) being smooth vector fields, is

input-state linearizable if and only if there exists a region Ω such that the following conditions hold:

• the vector field {g, adfg, ...,adn−1f g} are linearly independent in Ω

• the set {g, adfg, ...,adn−2f g} is involutive in Ω

The one-axis third order synchronous generator model has been proved to be input-state

linearizable if the state is a vector of rotor angle δ, rotor speed ω and generating power Pe.

3.3 Nonlinear synchronous generator model and its mapped linear

system

The synchronous generator is a key component in power systems. Feedback linearization

technique law varies when the model varies. There are several models available for synchronous
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generators. As the one-axis model is input-state linearizable without internal dynamics remaining,

this model has been studied in most of the literature on feedback linearization control in excitation

control [13] [59]. In this dissertation, both the one-axis model and the full-order synchronous

generator model will be studied.

3.3.1 One-axis model

Consider a power system that comprises N generating unit. Each unit is modeled using

the one-axis model. For the i-th machine in the power system, the state space model is expressed

as follows (subscript i is neglected for simplicity).

dδ

dt
= ω0 (ω − 1)

dω

dt
=

1

2H
(Pm − Pe) (3.3)

dE0q
dt

=
1

T 0d0
(Efd −E)

where

δ : rotor angle

ω: rotor speed

Pm : mechanical power

Pe : electrical power

E0q : direct axis stator EMF corresponding to the field flux linkage

Efd : stator EMF corresponding to the excitation voltage

E : stator EMF corresponding to the open circuit current, E = E0q − (xd − x0d)Id
T 0do : direct axis transient open circuit time constant

H : constant angular moment of inertia in second

The interaction of this generator with the rest of the system is through the electrical power

Pe which is given by

Pe = E
0
qIq + (x

0
d − xq)IqId

where

Id: d-axis current of the stator

Iq: q-axis current of the stator

Excitation voltage Efd is the input to the system.
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Exact feedback linearization technique are applied to the state-space model of each ma-

chine. The new state variables are defined as:

ξ1 = δ − δ0 (3.4)

ξ2 = ω0 (ω − 1)
ξ3 =

ω0
2H

(Pm − Pe)

Then

dξ1
dt

= ξ2

dξ2
dt

= ξ3 −
D

2H
ξ2 (3.5)

dξ3
dt

= v +w

where w is the interfacing term, a function of the differential of the currents, which relates to the

state variables of the rest of the system and cannot be obtained directly from the one-axis generator

model.

w = − ω0
2H

³
E0q İq + (x

0
d − xd)(Iq İd + İqId)

´
(3.6)

and

v = α+ βEfd (3.7)

where

α =
ω0
2H

1

T 0d0
EIq (3.8)

β = − ω0
2H

1

T 0d0
Iq

Then the subsystem dynamics in the coordinate system become:

ξ̇ = Aξ +Bv +Ew (3.9)

where

A =


0 1 0

0 0 1

0 0 0

 , B =

0

0

1

 , E =

0

0

1


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Figure 3.2: Block diagram of direct axis of subtransient generator model.
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Figure 3.3: Block diagram of quadrature axis of subtransient generator model.
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3.3.2 Subtransient model

In subtransient model, a synchronous generator is modeled as a voltage source behind

subtransient reactance. The model be expressed in the block diagrams in Fig. 3.2 and Fig. 3.3 [4].

Besides the swing equations, the model includes four differential equations.

Ė0q =
1

T 0d0
(KdE

0
q +EFD + xxdid −KdΨkd +E∆) (3.10)

Ψ̇kd = −Ψkd +E0q − id(x0d − xl)
Ė0d = −

1

T 0q0
(E0d +KqE

0
d − xxqiq +KqΨkq)

Ψ̇kq = − 1

T 00q0
(Ψkq −E0d − iq(x0q − xl))

where

Kd =
(xd − x0d)(x0d − x00d)

(x0d − xl)2
(3.11)

Kq =
(xq − x0q)(x0q − x00q )

(x0q − xl)2
(3.12)

xxd =
(xd − x0d)(x0d − xl)

x0d − xl
(3.13)

xxq =
(xq − x0q)(x0q − xl)

x0q − xl
(3.14)

where

id(t), iq(t) direct-axis and quadrature-axis currents

xd(t), xq(t) direct-axis and quadrature-axis reactances

x0d(t), x
0
q(t) direct-axis and quadrature-axis transient reactances

x00d(t), x
00
q(t) direct-axis and quadrature-axis subtransient reactances

E0q direct-axis stator EMF corresponding to the field flux linkage

E0d quadrature-axis stator EMF corresponding to Q circuit flux linkage

Ψkd,Ψkq direct-axis and quadrature-axis subtransient flux linkages

The outputs of the diagram Ψd, Ψq are expressed as follows.
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Ψd =
x00d − xl
x0d − xl

E0q +
x0d − x00d
x0d − xl

Ψkd + idx
00
d (3.15)

Ψq = −x
00
q − xl
x0q − xl

E0d +
x0q − x00q
x0q − xl

Ψkq − iqx00q

The electrical power generation Pe is expressed as follows.

Pe = iqΨd − idΨq (3.16)

The new state variables after feedback linearization are the same as those in one-axis

model. Due to the difference of the two models, differential equation of ξ3 is expressed as follows.

dξ3
dt

= − ω0
2H

dTe
dt

= − ω0
2H

 iq

³
x00d−xl

x0d−xl
Ė0q +

x0d−x00d
x0d−xl

Ψ̇kd + i̇dx
00
d

´
−id

³
−x00q−xl

x0q−xl
Ė0d +

x0q−x00q
x0q−xl

Ψ̇kq − i̇qx00q
´ + ω0

2Hi

¡
i̇qΨd − i̇dΨq

¢
(3.17)

= α+ βEfd +w

where

α = − ω0
2H

 iq ³x00d−xl

x0d−xl

1
T 0d0
(KdE

0
q + xxdid −KdΨkd +E∆) + x0d−x00d

x0d−xl
Ψ̇kd

´
−id

³
−x00q−xl

x0q−xl
Ė0d +

x0q−x00q
x0q−xl

Ψ̇kq

´ 
β = − ω0

2H

x00d − xl
x0d − xl

1

T 0d0
iq

w =
ω0
2H

¡
i̇q(Ψd − idx00q )− i̇d(Ψq + iqx00d)

¢
The study of synchronous generator models shows that the more complicate the model,

the more information should be taken care, which will increase the difficulty of implementation of

the controller. Depending on the special needs of a power system, a different study model of the

generator is to be selected with accuracy and simplicity as trade-offs. When feedback linearizing

technique is applied to one-axis model, the original third order model is mapped to a third order

model and no inner dynamics exist. However, the subtransient model has sixth order and it is also

mapped to a third order model. Inner dynamics exist. Due to the characteristics of electric circuits

of synchronous generator, these inner dynamics are stable and no control effort is necessary to take

care of the dynamics. Therefore, the control design procedure based on both models are same. The

following controller design is based on the one-axis generator model.
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P

F

w z

v y

Figure 3.4: The plant and controller interconnection

3.4 Linear robust controller design

For each subsystem, one now has a set of differential equations as shown in Eq. 3.9. Each

subsystem has an interconnection with the rest of the system. To formulate a decentralized control

problem, the interconnection is considered as a disturbance and the objective of a robust controller

is to be robust against the disturbance. This controller will use only local measurements as input

signals. One can find that from Eq. 3.6 that the steady state value of the interconnection is zero

and for each subsystem the interconnection is a single-block “uncertainty”. These characteristics

make it probable for the development of H∞ methods.

The regulated variables are variables whose dependence on the disturbance one wants

to minimize. The regulated variables can be chosen as the state variables and the control input

zi = [ξi1, ξi2, ξi3, vi]
T , i.e., zi = Ciξi +Divi,

where Ci =


1 0 0

0 1 0

0 0 1

 ,Di =

0

0

1

 .
The plant or the i-th subsystem taken into consideration is (subscript i is omitted for

simplicity):

ξ̇ = Aξ +Bv +Ew (3.18)

z = Cξ +Dv

The control objective is now to minimize the effects of the disturbance w on the regulated

variables z by finding an appropriate control input v as shown in Fig. 3.4, where P represents the

plant and F represents the controller.
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This control problem can be formulated as a H∞ control problem. The transfer matrix

from w to z, denoted by GF , is to have a H∞ norm strictly less that some bound γ. The H∞ norm

is equal to the L2 induced operator norm of the closed-loop operator, i.e.

kGF k∞ = sup
w

½kGciwk2
kwk2

, w 6= 0
¾

where Gci denotes the closed-loop operator mapping w to z; kfk2 =
³R∞
0 kf(t)k2 dt

´1/2
where k.k

denotes the Euclidian norm.

The synthesis problem is to design a controller F so that the closed-loop system is stable

and kGFk∞ < γ.

In power systems, it is not desirable to feedback w since it is a complex term as shown in

Eq. 3.6. Hence, a compensator described by a static state feedback law is designed to make the

system internally stable. Such static state feedback control exists if, and only if, the solution of a

certain algebraic Riccati equation is a positive semi-definite matrix. The design is obtained from

the following theorem [54].

Theorem 3.2 Consider the system Eq. 3.18 . Let γ > 0 . Assume that the system (A,B,C,D)

has no invariant zeros on the imaginary axis. Then the following statements are equivalent:

1. A static feedback law v = Fξ exists such that after applying this compensator to the system,

the resulting closed-loop system is internally stable and the closed-loop operator Gci has an

H∞ norm less than γ, i.e., ||Gci||∞ < γ.

2. There is a positive semi-definite solution P of the algebraic Riccati equation

0 = ATP+PA+CTC−
 BTP +DTC

ETP

T  DTD 0

0 −γ2I

−1 BTP +DTC

ETP

 (3.19)

such that Acl is asymptotically stable where:

Acl = A−
³
B E

´ DTD 0

0 −γ2I

−1 BTP +DTC

ETP


If P satisfies the conditions in part 2 then a controller satisfying the conditions in part 1

is defined by

F = −(DTD)−1 ¡DTC +BTP¢ (3.20)
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Proof of the theorem is shown in Appendix. To obtain the solution of the positive semi-

definite matrix P of the algebraic Riccati equation Eq. 3.19, Matlab Symbolic Toolbox is used.

The procedure and codes to are shown in Appendix.

The nonlinear control scheme becomes

Efd =

F


δ − δ0
ω0 (ω − 1)
ω0
2H (Tm − Te)

− α
 /β (3.21)

3.5 Observer decoupled state space (ODSS)

From Eq. 3.21, it is obvious that rotor angle is an important variable that should be

measured and fed back to the controller. The rotor angle with respect to the generator terminal

voltage can be measured through the analysis of zero sequence harmonic components of the gen-

erator terminal voltage [16]. However, in Eq. 3.21, the rotor angle of a machine with respect to

the reference machine is needed. Remote information has to be transmitted in order to obtain this

variable. In addition, the post fault equilibrium has to be known which requires a large amount

of calculation and takes a long time. ODSS technique provides a variable which can be obtained

through local measurements to replace the rotor angle offset from an equilibrium point, which is

difficult to measure.

3.5.1 Physical meaning of dynamic rotor angle reference δei

The observer decoupled state space concept applied in power systems is illustrated in the

system shown in Fig 3.5 that consists of two-machines connected with a tie-line, where Ei and Hi

are the magnitude of the voltage source and the inertia constant respectively. Assume that the

mechanical power is kept constant and both generators are modeled by classical models, i.e., a

constant voltage source behind a reactance, then the swing equations can be expressed as
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~
P_line

~

E1, H1 E2, H2

Figure 3.5: A two-generator power system

dδ1
dt

= ω0 (ω1 − 1) (3.22)

dω1
dt

=
1

2H1

µ
Pm1 − E1E2

xΣ
sin (δ1 − δ2)

¶
dδ2
dt

= ω0 (ω2 − 1)
dω2
dt

=
1

2H2

µ
Pm2 − E1E2

xΣ
sin (δ2 − δ1)

¶
where

δi : rotor angle.

ωi: rotor speed

Pmi : mechanical power

Ei : voltage source magnitude

Hi : constant angular moment of inertia in second

Define dynamic reference rotor angles by:

δe1 : Pm1 − E1E2
xΣ

sin (δ1e − δ2) = 0

δe2 : Pm2 − E1E2
xΣ

sin (δ2e − δ1) = 0

It is obvious to find that

δe1 − δ2 = δ10 − δ20
δe2 − δ1 = δ20 − δ10

where δ10, δ20 are equilibrium states.

If observation state variables δ01, δ
0
2 are defined as:

δ01 = δ1 − δ1e
δ02 = δ2 − δ2e
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then

−δ01 + δ12 = δe1 − δ1 + δ1 − δ2 = δ120
−δ02 + δ21 = δe2 − δ2 + δ2 − δ1 = δ210

In the two-generator system, the new state variable δ0i represents the shift of angle with

respect to the other machine. In multi-machine power system, the new state variable represents

the shift of rotor angle from equilibrium with respect to the equivalent rotor angle when the rest

of the system is considered as a generator.

The multi-machine power system [10] can be reduced to a two-generator system with

machine i as one of the generator and all the others are combined as another generator, see Fig.

3.6 . Assume that all the lines have no loss in real power transmission.

~
Pei~

 Hi Hi
s

Figure 3.6: Equivalent two-generator power system

Let

Hs
i =

nX
j 6=i
Hj, δ

s
i =

1

Hs
i

nX
j 6=i
Hjδj , ω

s
i =

1

Hs
i

nX
j 6=i
Hjωj (3.23)

where

δsi : rotor angle of the equivalent generator

ωsi : rotor speed of the equivalent generator

Hs
i : constant angular moment of inertia of the equivalent generator

Then the dynamics of the equivalent generator will be:

·
δsi =

1

Hs
i

nX
j 6=i
Hj

·
δj = ω0(ω

s
i − 1) (3.24)

·
ωsi =

1

Hs
i

nX
j 6=i
Hj

·
ωj =

1

2Hs
i

nX
j 6=i
(Pmj − Pej) = 1

2Hs
i

 nX
j 6=i
(Pmj) + Pei


According to the two-generator power system example,

δei = δ
s
i − δsi0 + δi0



CHAPTER 3. NONLINEAR DECENTRALIZED CONTROL OF EXCITATION SYSTEMS 31

At the equilibrium point, δei0 = δi0, which means the dynamic rotor angle reference

coincides with the rotor angle.

The dynamics of δei0 are the same as δsi in Eq. 3.24. Therefore, the dynamic rotor angle

reference δei is actually the center of the angles of the rest of the generators.

3.5.2 Calculation of the new state variable through local measurements

The generating power of each generator will be expressed using the d-axis voltage and

terminal voltage. Assume that the d-axis transient voltage is kept constant.

Pi
~

Hi Vti, α i

Figure 3.7: A synchronous machine connected with its terminal bus

Define a dynamic reference rotor angle by:

δei : Pmi − Pei = Pm0 −
E0qi0Vti
x0d

sin(δei − αi) = 0 (3.25)

Now, a new observation state variable δ0i as is defined as:

δ0i = δi − δei (3.26)

δ0i is obtained from:

Pmi − Pei = Pm0 −
E0qiVti
x0d

sin(δi − δ0i − αi) = 0 (3.27)

Note that the dynamic reference rotor angle δei is an absolute angle. It cannot be cal-

culated through measurements. Instead the new state variable δ0i can be calculated through local

measurements. Hence the controller is more attractive from an implementation point of view.

It is assumed here that the following electric variables can be measured:

Vti: terminal voltage magnitude of generator i

Pei: active power of generator i

Qei: reactive power of generator i
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Through these measurements, the angle difference between the rotor and the terminal

voltage can be obtained from Eq. 3.28.

δi − αi = tan−1 Peixqi
Qeixqi + V 2ti

(3.28)

3.6 Linear robust design and ODSS case study

A three-machine nine-bus power system [4] is used to illustrate the linear robust design

method, see Fig. 3.8. In addition, the offset of rotor angle is replaced with the new state proposed

in Eq. 3.26.

2 3 

1

Load A Load B 

Load C 

2
3

1

8

5 
6

4

7 9

Figure 3.8: A three-machine nine-bus power system
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Figure 3.9: Time response of relative rotor angles

In this power system, the rotor angle of generator #1 is chosen as reference. A three-phase

to ground fault is applied to bus 6. It is cleared after 0.2 second, with line 6-9 open. The proposed

control strategy is applied to the excitation systems of machine 2 and machine 3. The nonlinear

simulation results in Figs. 3.9, 3.10 and 3.11 show the effectiveness of the proposed controller,

which is completely decentralized and can stabilize the system.

3.7 Disturbance accommodation control

The linear robust controller design method proposed in Eq. 3.4 guarantees that the

subsystem remains stable if the interconnection is bounded within a certain value. In reality, the

interconnection terms have wave forms. If these terms can be approximately modelled, controllers

can be deduced using disturbance accommodation control (DAC) theory.
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Figure 3.10: Time response of electric torques and excitation voltages
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Figure 3.11: Time reponse of the new state variables
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3.7.1 DAC Theory

Proposed by C. D. Johnson [30], disturbance accommodation control is to model the

disturbance as a wave-form type function, build a linear model for the disturbances and then

design linear control for the system.

Definition 3.1 Wave-form Type Function:

The function w(t) can be called a wave-form type function if w is modeled as w(t) =

c1f1(t) + c2f2(t) + . . .+ cnfn(t)

where the basis functions {f1(t), f2(t), . . . , fn(t)} are completely known and the “constant” weight-
ing coefficients {c1, c2, . . . , cn} are totally unknown (and may jump in value from time to time). In

practical applications, the fi(t) typically can be represented by a linear differential equation.

Suppose each of the chosen functions fi(t) are Laplace transformable, that is

fi(s) =
Pi(s)

Qi(s)

ci are temporarily treated as constants.

w(s) = L [w(t)] = c1f1(s) + c2f2(s) + . . .+ cnfn(s) (3.29)

=
nX
i=1

ci
Pi(s)

Qi(s)

=
P (s)

Q(s)

where P (s) involves the coefficients ci and

Q(s) = sρ + qρs
ρ−1 + ...+ q2s+ q1 (3.30)

w(t) satisfies
dρw

dtρ
+ bρ

dρ−1w
dtρ−1

+, ...,+b1w = 0 (3.31)

where bi,i = 1, 2, ..., ρ are explicitly known since they are independent of ci.

To account mathematically for ci, σ(t) is added to Eq. 3.31, which becomes

dρw

dtρ
+ bρ

dρ−1w
dtρ−1

+, ...,+b1w = σ(t) (3.32)

As a consequence, there exists a linear dynamic “state model” representation of w(t).

w(t) = L(t)z(t) (3.33)

ż(t) = M(t)z(t) + σ(t)
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Figure 3.12: Interface variables w2

where L and M are known matrices respectively, and σ(t) is a sequence of completely unknown,

randomly arriving, random-intensity impulses.

3.7.2 Modeling interface variable

The interconnection terms include information from the rest of the system. To decouple

each subsystem, a model for the interface variables is proposed based on the disturbance accom-

modation control methodology. Through the simulation of the entire nonlinear power system, the

dynamic signature of the interface variables is identified. Fig. 3.12 and Fig. 3.13 show samples of

the dynamic behavior of the interconnections. The traces shown correspond to the three-machine

nine-bus system as shown in Fig. 3.8. Machine # 1 is the reference machine, so one needs only to

determine models for the interconnections of machines # 2 and #3.

It is the characteristic of power systems that the frequencies of oscillation modes change

little when the operating condition changes if the power system structure does not change much.

This characteristic is shown by two cases. In case 1, generator 2 generates 1 pu active power while

generator 3 generates 1.7 pu active power. In case 2, generator generates 1.7 pu active power while

generator 3 generates 1 pu active power. The inter-area oscillation modes are listed in Table 3.1.
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Figure 3.13: Interface variable w3

Table 3.1: Eigenvalues of Electromechanic Oscillation Modes

λ12 λ34

case 1 -0.3555 ±13.6916i -0.2440 ±13.1715i
case 2 -0.2164 ± 7.1251i -0.5180 ± 7.4003i
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The interface variable waveforms, in general, can be approximately expressed by expo-

nential sinusoidal functions. The exponential coefficients may change with disturbances, but the

frequencies remain about the same assuming that the topology of the system does not change much.

Therefore, the frequencies, once identified, are assumed constant here while the exponential terms

are left as unknown parameters. How to identify the frequencies? This can be done by data fit-

ting. First assume w(t) can be expressed in certain mathematical form with unknown parameters

(frequencies). These parameters are initialized to certain values. Then minimize the error between

the data and w(t) by using Matlab Optimization Toolbox. The parameters will be given out as

optimization results.

Based on the traces shown above, the interconnection term w(t) is modeled in the following

waveform

w(t) = c1 sin(ω1t) + c2 cos(ω1t) + c3 sin(ω2t) + c4 cos(ω2t) (3.34)

where ω1, and ω2 are the frequencies that will remain about constant, ci1, ci2, ci3, ci4 are unknown

coefficients, which will change from time to time in an unknown random fashion.

A dynamic model for w(t) is then obtained:

dw4

dt4
+ (ω21 + ω

2
2)
dw2

dt2
+ (ω21ω

2
2)w = d(t) (3.35)

where d(t) is an external forcing function, which consists of a sequence of completely unknown,

random functions.

A state space model for this waveform is then derived:

ż1 = z2 + σ1 (3.36)

ż2 = z3 + σ2

ż3 = z4 + σ3

ż4 = −(ω1ω2)2z1 − (ω21 + ω22)z3 + σ4
w = z1

where σ1,σ2,σ3,σ4 are sequence of completely unknown, randomly arriving intensity impulse func-

tions. The symbolic action of d(t) has been represented equivalently in terms of the σi, i = 1, 2, ..., 4.

d(t) = (ω21 + ω
2
2)(σ̇1 + σ2) + (σ̇1)

00 + (σ̇2)0 + σ̇3 (3.37)

The model in Eq. 3.36 can be written, in matrix form, as:
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ż = Dz +Eσ

w = Lz

where D =


0 1 0 0

0 0 1 0

0 0 0 1

0 −(ω21 + ω22) 0 (ω1ω2)
2

 ,
L =

h
1 0 0 0

i
,

E =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Substituting this interconnection model in the feedback linearized model of the i-th ma-

chine a composite model is obtained:

ξ̇ = Aξ +Hz +Bv (3.38)

ż = Dz +Eσ

w = Lz

y = Cξ

where y is the plant measurement, y = ξ, therefore C is a identity matrix.

3.7.3 Design of a disturbance-utilization controller for output regulator prob-

lem

The composite linear model of each subsystem is given in Eq. 3.38. Based on this stand-

alone system, a completely decentralized controller is designed. This disturbance-utilization control

scheme requires knowledge of the external interconnection terms [19]. It is called a full-information

controller, which might not be a realistic design. Hence, a second controller, an observer-based

controller, is designed. The observer is designed to reconstruct the information used by the control

scheme. These two designs are presented next.
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Full-information controller

For each subsystem, the objective is to design a local, or decentralized controller that

minimizes the following performance index (subscript i has been omitted to simplify the notation):

J =
1

2
eT (t)Se(t) +

1

2

Z T

t0

£
eT (t)Qe(t) + vT (t)Rv(t)

¤
dt (3.39)

where S,Q,R are positive-definite symmetric weighting matrices chosen by the designer,

e(t) denotes the set point error e(t) = ysp − y(t) and

y(t) =


δ − δ0

ω0(ω − 1)
ω0
2π (Pm − Pe)

 (3.40)

where

δ is the rotor angle

ω is the rotor speed

Pm − Pe is the accelerating power Pm − Pe, as Pm is the mechanical power and Pe is the
generating power of the generator.

Here the set point ysp is the initial condition, and [t0 T ] is the specified time interval of

control. The presence of the positive penalty term vT (t)Rv(t) in the integral encourages the system

to make maximum utilization of the “free energy” of the interconnection term w(t) in achieving set

point regulation forcing e(t) −→ 0.

The external interconnection w is actually not a real disturbance; thus, it is not realistic

to expect to cancel it, nor to minimize it. In particular, it is entirely possible that at least some

of the action of the external interconnection can be constructively used as an aid in carrying out

the primary control objective. To achieve this primary control objective and simultaneously make

maximum utilization of the interconnection term w(t), the designer can choose v(t) to minimize

the quadratic performance criterion given in Eq. 3.39.

Now one can introduce the augmented state vector x̃ =
h
ξ ysp z

iT
. Then the com-

posite set of equations with the condition ẏsp = 0 can be written as :

.
x̃ =


A 0 H

0 0 0

0 0 D




ξ

ysp

z

+

B

0

0

 v +


0

0

σ(t)

 (3.41)
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And the set point error e can be expressed in terms of x̃ as

e =
h
−C I 0

i
x̃ (3.42)

Eq. 3.39 can be rewritten in terms of x̃. To determine the control v(t) to minimize Eq.

3.39 subject to Eq. 3.41, the well-known results of linear quadratic optimal control theory are used.

The final expression for the interconnection term utilization controller v is obtained as:

v(ξ, z, ysp, t) = (−R−1BTKx)T ξ − (R−1BTKy)T ysp − (R−1BTKz)T z (3.43)

where matrices Kx,Ky and Kz are time-varying and may be computed, once and for all, by off-line

numerical solution of the set of matrix differential equations (Kx is symmetric and nonnegative

definite):

K̇x = (−A+BR−1BTKx)TKx −KxA−CTQC;Kx(T ) = CTSC (3.44)

K̇y = (−A+BR−1BTKx)TKy +CTQC;Ky(T ) = −CTS
K̇z = (−A+BR−1BTKx)TKz −KzD −KxH;Kz(T ) = 0

Kx,Ky,Kz can be solved by integrating the differential equations in Eq. 3.44. The Matlab source

codes are in Appendix. Kx,Ky,Kz are shown in Fig. 3.14, Fig. 3.15 and Fig. 3.16. Of course,

when the variables ξ and z are available, then the controller is called a full-information controller.

If these variables are not available, then they are replaced by ξ̂ and ẑ which are the outputs of the

observer of state variables and interconnections. The observer is designed in the next section.

Observer-based design

The external interconnection is not measurable; therefore, an observer is needed to esti-

mate this interconnection.

If the initial condition of ysp is a zero vector, and ẏsp = 0, then Eq. 3.41 becomes Eq.

3.45.  .
ξ
.
z

 =
 A H

0 D

 ξ

z

+
 B
0

 v +
 0

σ(t)

 (3.45)

Let ξ̂ and ẑ be the “output” generated by the auxiliary linear dynamic system (observer)

[10]  .

ξ̂
.
ẑ

 =
 A H

0 D

 ξ̂

ẑ

+
 B
0

 v +
 K1
K2

 (y − ŷ) (3.46)
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where y and v are the actual output and control input of the original plant respectively and ŷ = C ξ̂.

The gain matrices K1 and K2 are designed by customary procedures based on the error

dynamics associated with the observer.

εξ = ξ − ξ̂ (3.47)

εz = z − ẑ

The error dynamics can be obtained from Eq. 3.45 and Eq. 3.46. ε̇ξ

ε̇z

 =
 A+K1C H

K2C D

 εξ

εz

+
 0

σ

 (3.48)

K1 and K2 are chosen so that the transient solution of the above dynamic equations

approache zero except at the isolated impulse times of σ(t).

Linear observer design procedure can be found in reference [10]. In particular, pole-

placement methodology is used here.

With observer designed, Eq. 3.43 becomes Eq. 3.49.

v(ξ̂, ẑ, ysp, t) = −(R−1BTKx)ξ̂ − (R−1BTKy)ysp − (R−1BTKz)ẑ. (3.49)
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Finally, the nonlinear excitation control law is given by

Efd = β
−1(v(ξ̂, ẑ, ysp, t)− α) (3.50)

where α and β are given in Eq. 3.8.

3.7.4 Case study

The power system used in this case study consists of three machines and nine buses as

shown in Fig. 3.8. Two designs are performed. First, design a controller for machine # 2 only.

Second, design controllers for both machine #2 and machine # 3, using the methodology described

in this dissertation. The output of the controller is Efd while the inputs are rotor angle, rotor

speed, and accelerating power. A three-phase to ground fault is applied at time t = 5 seconds and

it is cleared at time t = 5.1 seconds.
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Figure 3.17: Time response of the relative rotor angles of the open-loop system

Case 1: At nominal conditions, machine #2 generates 1.33 pu active power while machine

#3 generates 0.85 pu active power. With no excitation controller, the dynamic response of the

system is shown in Fig. 3.17. If machine 2 is equipped with a nonlinear controller, the dynamics

of machine angles are shown in Fig. 3.18.
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Figure 3.18: Machine angles when a nonlinear controller is installed at machine #2

If both machine #2 and machine #3 are equipped with nonlinear controllers, the dynam-

ics of machine angles are shown in Fig. 3.20 and Fig. 3.21. The simulation results show that

the controllers affect the dynamic responses much more by damping the oscillations, i.e., oscilla-

tions with original frequencies vanished quickly, while an oscillation component with much lower

frequency appeared. Emergence of the low frequency oscillation is due to the estimation error of

the interconnection terms.

Case 2: With operating conditions changing, (machine #2 generates 1.00 pu power and

machine #3 generates 0.85 pu power), the dynamic responses of the power system are shown in

Fig. 3.22 and Fig. 3.23.

The case study shows that with operating condition changing, the proposed controller

can improve the dynamic performance. Therefore, the proposed controller is robust to operating

conditions.
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Figure 3.19: Excitation voltage of machine #2

3.8 Conclusion

In this chapter, mapped models of both one-axis generator model and subtransient gen-

erator model are derived when feedback linearization techniques are applied to the models. The

mapped system model can be expressed as linear subsystems with nonlinear interconnection terms.

The interconnection terms are modeled as bounded disturbances and linear robust control is then

applied. The interconnection terms can also be modeled as wave-form type disturbances and dis-

turbance accommodation control are designed. It seems that DAC has more advantage than static

feedback H∞ control since it can even deal with the interconnection term that is not bounded

but has wave-form type structure. However, if we model the interconnection term as an unstable

time-domain function, the inner-structure of the control is not stable too. That is not preferred in

control engineering. Therefore, in DAC, the interconnection term should be modeled as bounded

wave-form.
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Figure 3.20: Machine angles when nonlinear controllers are installed at machines #2 and #3
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Figure 3.21: Excitation voltages of machines #2 and #3
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Figure 3.22: Machine angles when nonlinear controllers are installed at machines #2 and #3
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Figure 3.23: Excitation voltages of machines #2 and #3
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Chapter 4

TCSC damping controller

4.1 Introduction

Thyristor controlled series capacitor (TCSC) is an important device in the FACTS family.

It is placed on transmission lines rather than being connected in shunt. Advances in high-voltage,

high-efficiency power electronics make it possible for the TCSC to flexibly adjust its equivalent

reactance, and thus make it possible for a control scheme to be applied. The series connection

scheme allows the TCSC to influence the power flow through changing the effective admittance

linking two buses and is an approach to improve transient stability limits and increase transfer

capabilities. It also has other roles such as mitigating subsynchronous resonance (SSR), damping

the power oscillations, etc. In this dissertation, its ability to dampen oscillations is investigated.

A typical configuration of TCSC is shown in Fig. 4.1. TCSC is composed of a fixed

capacitor, a thyristor-controlled reactance and metal oxide varistor (MOV) [24]. By varying the

firing angle the overall admittance is changed and due to the series connection with the transmission

line, the total admittance between the two power system buses changes too. The transmitted power

is inversely proportional to the transfer reactance resulting in the possibility to increase the transfer

limits through compensation. Assuming a 50% to 75 % series compensation, the steady-state power

flow can be adjusted from twice to four times the original value. Nevertheless, a practical limit of a

maximum compensation level of 70 % applies due to uncontrollable variations in power flow caused

by only small changes in bus voltages otherwise.

Different expressions for the equivalent admittance can be found in the literature [11].

They depend on the choice of voltage or current as an ideal sine wave. In the TCSC case, it is

more accurate to choose current through the device as sinusoidal. The equivalent reactance at the
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Figure 4.1: Configuration of a TCSC

fundamental frequency can be expressed as a variable inductance Xe given by [28]:

Xe = −Xc
·
1− k2x

k2x − 1
σ + sinσ

π
+
4k2x cos

2(σ/2)

π(k2x − 1)2
(kx tan

kxσ

2
− tan σ

2
)

¸
(4.1)

where α is the firing angle, σ = 2(π − α), kx =
p
Xc/XL, and Xc, XL are the reactances of the

capacitor and the inductor respectively.

TCSC can be controlled to work either in the capacitor or the inductor zones avoiding

steady state resonance. This mode is called venire control mode. The inductive operation results

in a high harmonic distortion which is undesirable in power systems. Therefore, if at all, this range

is only permitted for a short period of time to improve transient damping. Most time the TCSC

works in a capacitor mode and the firing angle will be αr < α < 180◦, where αr is the critical angle

that will cause resonance.

The fundamental reactance of the inductor tends to be much smaller than the capacitor

reactance. A small XL can provide well-defined charge reversal and control of the period time of

the compensating voltage. It is also advantageous in facilitating an effective protective bypass for

large surge current encountered during system faults.

In Fig. 4.2, Xc is selected to be 1.3 ohm while XL is selected to be 0.18 ohm.
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Figure 4.2: Impedance vs. firing angle α characteristic of the TCSC.
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To simplify the control problem, the equivalent reactanceXe or admittance B_tcsc is taken

as the control output shown in Fig. 4.1 . An accurate characteristic curve of the TCSC’s equivalent

reactance with respect to the firing angle is available. Based on control output, firing angle could

be immediately obtained through a lookup table which stores this nonlinear characteristic curve.

In this chapter, TCSC damping controller for inter-area oscillation is under investigation.

Modal analysis method is chosen as the analysis tool. First of all, the linear power system model

with TCSC damping controller is developed. Then conditions and indices for control signal selection

are proposed. Finally, the controller is designed using lead-lag control design scheme or multi-stage

design scheme.

4.2 Power system model with TCSC damping controller

Suppose that the k-th TCSC is installed on branch i− j, the branch current phasor Īij is
expressed by:

Īij =
Ūi − Ūj
Zij − jXck (4.2)

which can be linearized:

∆Īij =
∆Ūi −∆Ūj
Zij − jXck0 +

Ūi0 − Ūj0
(Zij − jXck)2

j∆Xck (4.3)

where subscript 0 represents initial values. The second term in this equation can be considered as

a controllable current source:

∆Īsk = Kck∆Xck (4.4)

where Kck = j
Ūi0−Ūj0

(Zij−jXck)
2 . Then the current injection at node i can be expressed by the following

equations

∆Īi = ∆Īfi −
X

∆Īsk,when node i is connected to a generator, or (4.5)

∆Īi = −
X

∆Īsk,when node i is not connected to a generator.

For a system with n generators, nc TCSCs andmTCSC nodes not connected to generators,

the network equations, after nodes other than generator nodes and TCSC nodes are eliminated,

are:  0

∆Īf

−
 Ksm

Ksf

∆Īs =
 Ymm Ymf

Yfm Yff

 ∆Ūm

∆Ūf

 (4.6)
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where Ksm is mxnc, Ksf is nxnc and the controllable current source vector is:

∆Īs = diag{Kc1,Kc2, ...,Kcnc}


∆Xc1

∆Xc2

...

∆Xcnc


s

=Kc∆Xc (4.7)

Eliminating all the TCSC nodes that are not connected to generators, the following equa-

tion can be obtained

∆Īs = Ys∆Ūf +Ac∆Xc (4.8)

where Yf= (Yff−YfmY
−1
mmYmf )

and Ac= (Ksf−YfmY
−1
mmKsm)Kc

Eq. 4.8 can be transformed into common dq0 reference frames by the transformation

matrix T =

 cos δ sin δ

sin δ − cos δ

. Substituting the simplified generator model into the transformed
equations, after a series of tedious manipulations, the following equations can be obtained

∆Iq = Lq∆E
0
q+Sq∆δ +Aq∆Xc (4.9)

∆Id = Ld∆E
0
q+Sd∆δ +Ad∆Xc

where ∆E0q is the transient EMF deviation vector; ∆δ is the power angle deviation vector. The

order of coefficient matrices Lq,Ld,Sq and Sd is nxn, where Aq and Ad are nxnc. All of them are

determined by system parameters and initial operating conditions.

Linear differential equations describing the dynamic behavior of the system can be ob-

tained:
∆δ̇

∆ω̇

∆Ė
0
q

∆Ėfd

=


0 ω0 0 0

−T−1J K1 −T−1J D −T−1J K2 0

−T−1d0K4 0 −T−1d0K3 −T−1d0
−T−1A KAK5 0 −T−1A KAK6 −T−1A




∆δ

∆ω

∆E0q
∆Efd

+


0

−T−1J Kp

−T−1d0Kq

−T−1A KAKv

∆Xc
(4.10)

where TJ ,D,T0do,KA,andTA are nxn order diagonal matrices, in which the corresponding symbols

are

TJi –— Inertia time constant;

Di –— Damping coefficient;

T0d0i –— Field winding time constant;
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KAi –— AVR gain;

TAi –— AVR time constant

The order of coefficient matrices K1,K2,K3,K4,K5 and K6 are nxn, and Kp,Kq and

Kv are nxnc. They have the following expressions

K1= Iq0(xq−x0q)Sd+
h
E0q0+Id0(xq−x0d)

i
Sq

K2= Iq0(xq−x0q)Ld+
h
E0q0+Id0(xq−x0d)

i
Lq + Iq0

Kp= Iq0(xq−x0q)Ad+
h
E0q0+Id0(xq−x0d)

i
Aq

K3= 1+ (xd−x0d)Ld
K4= (xd−x0d)Sd
Kq= (xd−x0d)Aq
K5=Ud0xqSq +Uq0x

0
dSd

K6=Ud0xqLq +Uq0(x
0
dLd−1)

Kv=Ud0xqAq+Uq0x
0
dAd

In which E0q0, Iq0, Id0,Uq0 and Ud0 are nxn order diagonal matrices.

The linear model can be expressed in a concise way as:

ẋ(t) = Ax(t) +Bu(t) (4.11)

y(t) = Cx(t)

where y(t) is the output vector.

4.3 Modal analysis

Given an interconnected system P with N control stations:

ẋ(t) = f(x)+
NX
k=1

gk(x)uk(x) (4.12)

yk(t) = hk(x), k = 1, 2, ..., N

where x is a (Nx1) state vector;

uk is a (rkx1) control input vector at control station k;

rk is the number of the control inputs at control station k;

yk is a (lkx1) output vector at control station k;
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lk is the number of the control outputs at control station k.

Let m be the number of the operating conditions. The objective is to control the system

over a set of m operating conditions. With Eq. 4.12 linearized around these operating points, m

linearized models (P1(s), P2(s), . . . , Pm(s)) are obtained.

The state space representation of Pi(s) ( i = 1, 2, ...,m) is:

ẋi = Aixi+Biui (4.13)

yi = Cixi

where

ui =
h
ui1 ui2 ... uiN

i
yiT =

h
yiT1 yiT2 ... yiTN

i
The input vector ui and output vectors yi have dimensions rx1 and lx1, respectively,

where r =
PN
k=1 rk and l =

PN
k=1 lk.

The corresponding input and output matrices are:

Bi =
h
Bi1 Bi2 ... BiN

i
CiT =

h
CiT1 CiT2 ... CiTN

iT
The modal form of the model is:

α̇i = Λiαi+Γiui (4.14)

yi = Ωiαi

where

αi is a Nx1 vector

Λi =WiAiVi

Vi =
h
vi1 vi2 ... viN

i
is the matrix of the right eigenvectors

Wi = (Vi)−1

Γi =WiBi =


wiH1 B

i

wiH2 B
i

...

wiHN B
i


The controllability indices are obtained from the rows of Γi. The j-th mode of the system

is controllable if wiHj B
i is a nonzero vector. |Γijk| indicates the relative controllability of the j-th

mode through the k-th input. Similarly, the observability indices are found from the columns of

the matrix Ωi, which is given by:
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Ωi = CiVi =
h
Civi1 Civi2 ... Civin

i
The j-th mode of the system is observable if Civij is a nonzero vector. |Ωikj| indicates the

relative observability of the j-th mode in the k-th control output.

The oscillation modes can be identified using observability and controllability. For inter-

area oscillation mode, it will not be both controllable and observable at one area.

Assume that all eigenvalues of the A matrix are distinct. Under this assumption, open-

loop transfer function Gi(s) can be expressed in terms of the residue matrix:

Gi(s) =
mX
j=1

Rij
s− λj (4.15)

Rij is a (mxr) residue matrix associated with λj and it is given by:

Rij= Ω
i
jΓ
i
j= C

ivijw
iH
j B

i (4.16)

If the system model Pi(s) is a SISO model, the residue of the j-th mode in control station k is a

scalar defined by

Rikj = Ω
i
kjΓ

i
jk

The residue is proportional to the sensitivity of the j-th mode to the controller gain. It is also

called functional sensitivity.

Consider a plant G(s) and a feedback control loop:

H(s) = kh(s) (4.17)

where k is a scalar representing the gain of the controller and h(s) a given structure in SISO case.

To investigate the eigenvalue sensitivity, assume that the gain k has a small deviation ε

which is very small; thus, the shift ∆λi of the eigenvalue λi is also very small.

By assuming that closed-loop system G0(s) = G(S)
1+kh(s)G(s) has n distinct poles, G

0(s) can

be expressed as:

G0(s) =
N(s)

D(s)
=

R1
s− λ1 +

R2
s− λ2 + ...+

Rn
s− λn (4.18)

=

Pn
i=1(Ri

Qn
j 6=i(s− λj))Qn

j=1(s− λj)

where Ri is the residue of the eigenvalue λi.
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G (s)
+ Y(s)U (s)

 h (s)

ε

k

-

G'(s)

+
+

Figure 4.3: Closed-loop feedback system

Assume that the gain k has a small deviation ε which is very small, then the closed-loop

feedback control system G(s)00 is:

G00(s) =
Y (s)

U(s)
=

G0(s)
1 +G0(s)εh(s)

=
N(s)

D(s) + εh(s)N(s)
(4.19)

The closed loop system eigenvalues λc can be determined from D(s) + εh(s)N(s) = 0:

nY
j=1

(λc − λj) + εh(s)
nX
i=1

(Ri

nY
j 6=i
(λc − λj)) = 0 (4.20)

The shift ∆λd of the eigenvalue λd can be expressed as:

∆λd = λcd − λd (4.21)

=
−εh(λcd)

Pn
i=1(Ri

Qn
j 6=i(λcd − λj))Qn

j 6=i(λcd − λj)

=
−εh(λcd)Rd

Qn
j 6=d(λcd − λj)Qn

j 6=d(λcd − λj)
− εh(λcd)

Pn
i=1,i6=d(Ri

Qn
j 6=i(λcd − λj))Qn

j 6=d(λcd − λj)

= −εh(λcd)Rd −
εh(λcd)

Pn
i=1,i6=d(Ri

Qn
j 6=i(λcd − λj))Qn

j 6=d(λcd − λj)

= −εh(λcd)Rd −
εh(λcd)(λcd − λd)

Pn
i=1,i6=d(Ri

Qn
j 6=i,j 6=d(λcd − λj))Qn

j 6=d(λcd − λj)
= −εh(λcd)Rd +M(λcd)

where λcd is the eigenvalue of the closed-loop system G00(s) corresponding to λd in G0(s).
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The second term M(λcd) of Eq. 4.21 includes ε(λcd—λd). According to the assumption

that both ε and ∆λd are very small, the second term is negligible; therefore, M(λcd) ∼= 0.
Thus ∆λd can be expressed as

∆λd = −Rdεh(λd) (4.22)

Define the eigenvalue sensitivity as:

Sλd
=

dλd
dH(λd)

(4.23)

Therefore, when the absolute value of scalar ε is very small, the eigenvalue sensitivity Sλd

of the eigenvalue λd to the feedback loop can be represented as

Sλd
= |Rd| (4.24)

which means that the eigenvalue shift is proportional to the magnitude of the residue.

4.4 Robust residue-based damping controller

4.4.1 Signal selection

Residue phase constraint

Residues relate an eigenvalue’s sensitivity to the control parameters. Consider a dynamic

controller with a transfer function H(s) = kh(s), where k is the control gain. The sensitivity of a

mode λd with respect to the gain of the controller is given by:

dλd
dk

= Rdh(λd) (4.25)

where Rd is the residue of this mode.

Changing the gain k of this controller, the mode λd will have a departure angle ∆∠λd on
the root locus given by:

∆∠λd = ∠Rd +∠h(λd) (4.26)

The controller is to provide a phase compensation to make the eigenvalue shift toward

the negative real-axis. There are two issues: (1) different eigenvalues might have close frequencies

and affected by the same controller; in this case, their departure angles have to be such that all of
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Figure 4.4: Residue plot

these eigenvalues are shifted to the left, and (2) for a single mode at different operating conditions

(see Fig. 4.4), the departure angles have to be within a narrow angle. Therefore, the residue

phases of oscillation modes at close frequencies are to be bundled together within a narrow angle

(<90 degree). Meanwhile, the residue phases of a certain oscillation mode at different operating

conditions are to be bundled together within a narrow angle (<90 degree). Then the controller can

be effective to the close oscillation modes in different operating conditions [63].

The index to assess the effectiveness

As the operating point changes, the residue changes. Assume that H(s) can compensate

residue phase angle corresponding to the critical mode completely over the operating condition

range. Then only the magnitude of the residue plays the role in effectiveness consideration.

An index of effectiveness proportional to residue magnitude is used in [20]. The different

types of input signals have significant different base values of this index. By adjusting the gain of

the controller, some shift of the eigenvalue can be achieved by the different types of input signals.

Therefore, it is logical to use residue ratios of the critical modes as the index of signal effectiveness

over a range. Assume eigenvalue λd is the critical mode; the residue magnitude of the mode

at operating condition i of k-th control station |Rikd| over the residue magnitude at the nominal
condition i0 |Ri0kd| is an index for the effectiveness of a control signal over a wide range of operating
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conditions. This index ρi, for operating condition i, is defined as:

ρi =
Siλd

Si0λd

=
|Rikd|
|Ri0kd|

, at kth control station (4.27)

If ρi, i ∈ <, remains constant for a set of operating points < = {1, ...,m}, then it means
that the corresponding signal is effective in the operating range <. On the other hand if the ratios
change, then that signal is not effective for this set of operating conditions.

The index to assess the interaction

Assume that eigenvalue λd is the critical mode and define an index ,

SIiλj
=
Siλj
Siλj

=
|Rikj |
|Rikj |

, j 6= d at kth control station (4.28)

which is the ratio of the sensitivity of other mode to the critical mode. Thus this index assesses

the interaction of the other modes with respect to the critical mode. It is independent of the

coefficient of the input signals. The smaller the value of the index, the less the interaction between

the controller and the other modes.

4.4.2 Controller design

Lead-lag controller

A dynamic compensator is needed in the case when static feedback control cannot provide

adequate damping. The design of a dynamic compensator, as developed by Yang and Feliachi in

[63], starts with residue phase compensation. To make the controller robust, different operating

conditions should be considered, and the phase is compensated for all of these operating conditions.

The least damped critical modes should be considered first. To achieve this compensation,

a local controller Kk(s) at control station k with the following form may be used:

Kk(s) = kl
τwks

1 + τwks

mkY
j=1

1 + akjτkjs

1 + τkjs
(4.29)

It consists of a gain kl, a washout stage to eliminate the steady state error, and mk phase

lead/lag stages. In each phase-lead/lag stage, akj is determined by the maximal compensation

angle (determined by residue) of this stage Φkj at frequency ωkj:

Φkj(ωkj) = sin
−1
µ
akj − 1
akj + 1

¶
(4.30)
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where ωkj can be either the imaginary part of a critical mode or a frequency where phase margin

is needed. The time constant τkj is evaluated from

τkj =
1

ωkj
√
akj

(4.31)

The gain kl is chosen according to the following criteria:

1. with this gain, the closed-loop system should have damping ratio of the critical modes greater

than 5%,

2. small gain is preferred since large gain will induce nonlinearity and create an unstable limit

cycle.

Multi-step controller design

Conventional lead-lag controller design is based on the residue of the open-loop system.

However, with the gain of the controller increasing, the residue also changes and the controller may

no longer provide accurate phase compensation. This problem can be overcomed by designing the

controller in several steps [44]. At each step, the residue will be calculated and a controller designed

based on this updated residue.

For example, in order to design a controller to achieve the damping of the critical mode

(whose original damping is σ0) to a certain value σ, n steps are needed.

∆σ1 +∆σ2 + . . . +∆σn = σ − σ0 (4.32)

where ∆σi represents the damping increase at step i.

Then the design procedure is as the followings:

Step 1: Based on the residue of the open-loop system, design controller k1h1(s) to improve

the critical mode’s damping by ∆σ1. Assume that with h1(s) the angle of the root locus of the

critical mode will be -180◦. Then

k1 =
∆σ1

|Rd| |h1(λd)| (4.33)

where Rd is the residue of the critical mode of the open-loop system and λd is the eigenvalue of the

critical mode of the open-loop system.

Step 2: The closed-loop system becomes G(s)
1+G(s)k1h1(s)

shown in Fig. 4.5.

Based on the residue of this closed-loop system, design controller k2h2(s) to improve the

critical mode’s damping by ∆σ2, i.e., with h2(s) the angle of the root locus of the critical mode
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G (s)
+ Y (s)U (s)

 h1 (s)k1

Figure 4.5: Closed-loop system diagram

will be -180◦, and the gain k2 will be

k2 =
∆σ2¯̄

R0d
¯̄ ¯̄
h2(λ

0
d)
¯̄ (4.34)

where R0d is the residue of the critical mode of the closed-loop system and λ0d is the eigenvalue of

the critical mode of the closed-loop system.

. . .

Step n: The critical mode’s damping becomes improved by ∆σn for knhn(s).

The controller becomes:

H(s) = k1h1(s) + k2h2(s) + . . . + knhn(s)

Assume

hi(s) =
Di(s)

Ni(s)
=

Di(s)

(1 + T1s)(1 + T2s)
(4.35)

If Ni(s) keeps unchanged, that means the time constants T1 and T2 are kept constant

during all n steps, then the final realization is:

H(s) =
Ks0 +Ks1s+Ks2s

2

(1 + T1s)(1 + T2s)
(4.36)

4.5 Case study — a two-area four-machine power system

The two-area four-machine power system has a single tie-line connecting node 3 of area

1 to node 13 of area 2, see Fig. 4.6. All four machines have DC type exciters. The parameters
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Figure 4.6: Two-area test power system

Table 4.1: The dominant oscillation modes

Number Eigenvalues

17, 18 −0.5186± 6.8821i
19, 20 −0.5114± 6.8404i
25, 26 −0.0286± 3.0860i
31, 32 −0.6109± 2.0368i
33, 34 −0.9741± 2.0282i
40, 41 −0.2492± 0.6450i
42, 43 −0.4202± 0.4539i
44, 45 −0.4027± 0.4501i

and initial load flow solutions are shown in Appendix. A TCSC is installed in the mid-point of the

transmission line, between nodes 101 and 102, providing a 40% compensation of the line reactance

during steady state.

Under nominal conditions, when the tie-line active power, from area 1 to area 2, is 4 pu,

and there is no TCSC damping signal, this system has the dominant eigenvalues shown in Fig.

4.7. The numerical values are shown in Table 4.1 There is an inter-area mode corresponding to

eigenvalues No. 25 and 26, which is stable, but poorly damped, with a damping ratio of less than

0.05.

Several feedback signals have been investigated in the literature, amongst which are syn-

thesized angle, tie-line active power, bus voltage magnitude and synthesized machine speed. The
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Figure 4.7: Eigenvalues of the open-loop system

Table 4.2: Three Operating Conditions (values in pu)

Case # Load at Bus 4 Load at Bus 14 Tie-Line Power

1 9.76 17.17 4.010
2 11.76 15.17 1.865
3 16.76 10.17 -3.069

local measurements discussed here are voltage magnitude of bus 101, tie-line active power and

current magnitude from bus 101 to bus 102.

4.5.1 Operating conditions

Three cases, described in Table 4.2, are investigated. Case 1 is the nominal condition

when a 4 pu real power flows from area 1 to area 2. The second case corresponds to the tie-line

carrying only half of the nominal power, i.e., 2 pu, and the third case is a reversal in the power

flow direction.

For these three cases and using three different input signals, which are |V |, P and |I|, the
residues of the inter-area mode, i.e., eigenvalue −0.0286± 3.0860i, are given in Table 4.3.
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Table 4.3: Residues’ magnitude and phase of the inter-area mode

Case # Residue
Input: |V| Input: P Input: |I|

1 0.0113 74.12◦ 0.0938 -84.00◦ 0.1427 -90.95◦

2 0.0012 55.01◦ 0.0837 -94.04◦ 0.0835 -94.79◦

3 0.0155 66.41◦ 0.1496 87.16◦ 0.1915 -97.66◦

From Table 4.3, the phase of residue did not change much for the three operating conditions

when voltage magnitude or current magnitude is selected as the input signal. However, for the input

signal corresponding to the active power flow, the angle of the residue in case 3 is (87◦), with a

big difference from that of case 1 (-84◦) or case 2 (-94◦). This is due to the reversed power flow in

case 3. If the absolute value of active power flow is selected as the input signal, the residue phase

in cases 1 and 2 will not change while in case 3 it becomes -93◦. This makes the design of phase

compensation controller much easier, see Table 4.4.

4.5.2 Indices for signal selection

Fig. 4.8 shows the effectiveness index for three input signals when the tie-line active power

changes from 1.5 pu to 4.0 pu. In this range, the variation of the index corresponding to power

flow is the smallest, i.e., the active power flow signal is much more robust when compared to the

voltage and current magnitude signals.

Fig. 4.9 shows the interaction index SIλi
where λi corresponds to an oscillation mode

31, eigenvalue −0.6109 + 2.0368i. The maximum value of the index corresponding to |V | as input
signal is more than 0.8, that is, the controller has almost similar effects on mode 31 and inter-area

oscillation mode 25. It is obvious that in this range using |I| as input signal the control will have
least interaction with this specified oscillation mode.

Fig. 4.10, Fig 4.11, Fig. 4.12 show the interaction index SIλi
where λi corresponds to

oscillation mode 33 (−0.9741+2.0282i), mode 42 (−0.4202+0.4539i), mode 44 (−0.4027±0.4501i).
Notice that the controller has little effects on mode 42 and 44 whatever the input signal is since the

index has small scale (x 10−3). For mode 33, at most conditions, the controller has small effects.

Therefore the interaction that should be taken into consideration is between the controller and

mode 31.

The effective index suggests that |P| is better than |V| and |I|, while interaction index
suggests that |I| is the best. In this case, the effectiveness of the controller is treated with the
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Figure 4.8: Variation of proposed effectiveness index vs. the tie-line active power
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Figure 4.11: SIiλ42 vs. the tie-line active power
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Table 4.4: Angle of residues with input signal: |P|

Case # Residue’s angle

1 -84◦

2 -94◦

3 -93◦

highest priority, therefore |P| is chosen as the best input signal for inter-area oscillation damping.
In the following section, the damping controller will be designed based on input signal being the

absolute value of tie-line power flow.

4.5.3 Damping controller design

Lead-lag controller

The damping controller is designed using the absolute value of the active tie-line power

flow. It will then be compared to a design in [47] performed using the voltage signal. The angles

of the residues of the inter-area mode are shown in Table 4.4.

Based on Table 4.4, the desired compensation phase is selected to be -90◦. Two stages

of lead-lag units are used with each providing 45◦ phase compensation. With these two stages of

lead-lag units as a dynamic compensator, the root locus will leave the inter-area mode in the left

half plane; thus, the control will dampen the mode.

The designed dynamic compensator is:

K(s) = k
3s

1 + 3s

1 + 0.69s

1 + 0.15s

1 + 0.69s

1 + 0.15s
(4.37)

The bode plot of the open-loop system for the three operating conditions (solid lines) and

controller (dotted line) are shown in Fig. 4.13. The compensator can provide satisfactory stability

margins for all three cases.

Fig. 4.14 shows the root loci of the system with the proposed controller at three operating

points. The root loci can be used to choose gain. The criteria to choose gain is (1) with this gain,

the closed-loop system should have damping ratios greater than 5%, (2) small gain is preferred

since high gain will induce nonlinearity and create an unstable limit cycle. Therefore, gain k is

chosen to be 0.6 since in all three cases, the inter-area mode will have greater than 5% damping

ratio.



CHAPTER 4. TCSC DAMPING CONTROLLER 70

Figure 4.13: Robust desgin illustration
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Figure 4.14: Root locus with absolute value of active power flow as variable ( gain = 0 to 2, with
a step of 0.1 )



CHAPTER 4. TCSC DAMPING CONTROLLER 72

Figure 4.15: Root locus with voltage magnitude as variable, (gain = 0 to 10, each step 1)

For comparison, the transfer function for a controller using voltage magnitude as input

signal [47] is:

K(s) = 100
s

1 + s

1 + 0.1s

1 + 0.5s

1 + 0.1s

1 + 0.5s
(4.38)

Fig. 4.15 shows the root loci of the system with this controller (Eq. 4.38) at three

operating points. The inter-area mode is damped well at the nominal point, but this is not the

case for the second operating condition.

Nonlinear simulation results are presented to illustrate the effectiveness of the proposed

methodologies. At time t = 0.1 second, a three-phase line to ground fault is applied on line 3-15.

The fault is cleared at time t = 0.15 second. Figs. 4.16, 4.17, 4.18, 4.19 show the simulation results

for the nominal case and case 2 or 3 respectively when absolute value of the active tie-line power

is used as a control signal. The simulation results demonstrate that the controller improves the

damping of inter-area oscillations in all three cases.

Figs. 4.20, 4.21 and 4.22 show the simulations results for the nominal case 1 and case 2

respectively when voltage magnitude is used as a control signal.
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Figure 4.16: Dynamic response of relative rotor angles in case 1
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Figure 4.17: Dynamic response of relative rotor angles in case 2
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Figure 4.18: Dynamic response of relative rotor angles in case 3
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Figure 4.19: Dynamic response of u — B_tcsc
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Figure 4.20: Dynamic response of relative rotor angles in case 1
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Figure 4.21: Dynamic response of relative rotor angles in case 2
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Figure 4.22: Dynamic response of u — B_tcsc

The simulation results in Fig. 4.20, 4.21, 4.22 show that the controller improves the

damping of inter-area oscillations while in case 2 the controller loses its effectiveness.

Multi-step control design

The lead-lag controller using absolute value of active power is designed based on the residue

of the open-loop system. To achieve better performance, multi-step controller design method is

used. Without the controller, the open-loop system has an inter-area oscillation mode corresponding

to eigenvalues −0.0286± j3.086. The damping of the mode is expected to be improved to 0.2286.
The open-loop system residue of the inter-area oscillation is already known as Table 4.3. The

compensation angle is chosen to to 84◦ and the number of the lead units is two. Therefore, each

unit will provide 42◦ leading angle. The parameters of the lead units are obtained through Eq.

4.30 and Eq. 4.31. With a washout unit, the transfer function of the lead units is

h1(s) =
s

1 + s

µ
1 + 5.0476 ∗ 0.1294s

1 + 0.1294s

¶2
(4.39)
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Table 4.5: One-step design approach

Original Expected Computed

−0.0286± j3.086 −0.2286± j3.086 −0.1668± j2.9825

Table 4.6: Two-step design approach

Step Expected Computed Gain ki ai

1 −.1286± j3.086 −0.2286± j3.086 0.2562 5.0476

2 −.2286± j3.086 −.1952± j2.9954 0.5123 3.4197

Now the gain of the controller is

k1 =
∆σ

|Rd| |h1(λd)| =
0.2

0.0938 ∗ |−0.8938 + j4.0642| = 0.5124

The controller is called Controller 1 and its transfer function is expressed in Eq. 4.40.

H1(s) = 0.5124
s

1 + s

µ
1 + 5.0476 ∗ 0.1294s

1 + 0.1294s

¶2
(4.40)

Table 4.5 shows the one-step design approach results of eigenvalues. With the controller

expressed in Eq. 4.40, the closed-loop system has an inter-area oscillation mode of eigenvalue

−0.1668±j2.9825. The damping of the mode differs from what is expected. To reduce the difference,
two-step design is utilized.

Table 4.6 shows the two-step design approach. The two-step design approach gives a closer

result to the expected value. The controller is called Controller 2 and its transfer function is

H2(s) = 0.2562
s

1 + s

µ
1 + 5.0476 ∗ 0.1294s

1 + 0.1294s

¶2
+ 0.5123

s

1 + s

µ
1 + 3.4197 ∗ 0.1294s

1 + 0.1294s

¶2
(4.41)

The root locus with controllers are shown in Fig. 4.23. Compared with the one-step design

based controller, the two-step design based controller has more ability to increase the damping of

the mode.

4.6 Case study — the western U.S. power system

4.6.1 Introduction

The western U.S. power system (WSCC) has long been attracting researchers’ interest.

It is an interconnected power system that covers the western half of the United States, portions



CHAPTER 4. TCSC DAMPING CONTROLLER 78

Figure 4.23: Root locus of two types of design

of western Canada and northern Mexico. The model used in this dissertation does not include

northern Mexico. With some key transmission lines heavily loaded, disturbances have profound

effects, e.g., the July 2, 1996 outage affected 3 percent of the customers [3]. Meanwhile, this system

has been subjected to low frequency oscillations, especially oscillations around 0.7 Hz, when large

power is transferred from Arizona and Nevada to Southern California. Power system stabilizers were

designed to dampen this troublesome 0.7 Hz mode [63]. The InterMountain High Voltage Direct

Current (HVDC) project has also aimed at dampening inter-area oscillations by power modulation

of converter control [42].

In [29], a 19-generator 49-bus model exhibiting characteristics and structure similar to

that of the WSCC system was studied. An energy approach is used to identify the two groups

of machines that are involved in an inter-area oscillation. TCSC was then installed on a certain

key transmission line for inter-area oscillation damping purpose. The paper focuses mainly on the

identification of the generator groups involved in the oscillations.

In this case study, the damping enhancement by TCSC in the WSCC system is proposed.

The proposed controller uses only a local signal so that communication links are avoided, which

will reduce the cost and increase the reliability. The controller should be robust, i.e., the fixed
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controller structure that works well at various operating conditions. The proposed control signal

selection index and the condition that deals with robustness are used as guidelines for siting and

controller design.

4.6.2 WSCC system

The reduced WSCC model developed by Smith and co-workers [50] is used in this paper.

It is a 19-machine, 46 bus power system. There are seven areas, Canada (CN), Arizona (AZ), South

California and South (SS), Pacific Northwest and North (PN), Montana (MT), Utah (UT), and

North California (NC). Two HVDC links, one from North West to South, the other from Utah to

South, are modeled as injected power sources. Two cases of tie-line power flows are investigated

in this paper. Case 1 is based on the power flow. Case 2 has a reversed flow between Utah and

Arizona. The tie-line flows are shown in Figure 4.24.

Modal analysis is based on Case 1. Since there are 19 generators, the open-loop system

has 18 electromechanical oscillation modes. 13 of them are local modes and five are inter-area

oscillation modes. The eigenvalue analysis of these oscillation modes are shown in Table 4.7 and

Table 4.8.

Mode shapes of observability vector [63] are used to identify oscillation patterns, which

are shown in Table 4.9.

From Table 4.9, it is found that for oscillation mode 54 (0.96Hz), the SS, MT and PN

areas swing against NC and UT areas; that is, the west and east ends of the system swing against

the areas in between the two ends. For mode 56 (0.83 Hz), the SS, UT and CN areas swing against

PN, AZ and MT areas. For mode 58 (0.73 Hz), SS and NC swing against AZ, CN, MT and UT;

that is, the southwest against the east. For mode 60 (0.67Hz), AZ and CN in the north and the

south ends of the system swing against the areas in between. For mode 62 (0.35 Hz), the south AZ

and SS swing against the north.

It has been shown that inter-area mode 58 (0.73 Hz) has the largest residue at machine

SOUTH_G1. The PSS on this machine can effectively improve the damping of this inter-area

mode. Inter-area mode 56 (0.86 Hz) has the largest residue at machine BUTAH_G1, and therefore

the PSS on BUTAH_G1 can improve the damping of this mode. However, inter-area mode 60

(0.67 Hz) has small value of its residues at all machines and therefore it is difficult to be dampened

by PSSs using local signals. Hence mode 60 is the most critical oscillation mode.

A method is proposed in [63] to improve the damping of mode 60 by PSSs on machine
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Table 4.7: Eigenvalue analysis results of local oscillation modes

Mode Real part Frequency Observability (0.0001) Main participating generators

4 -0.1955 2.3401 101 MONTA_GM
26 MONTA_G1

16 -1.3161 2.2319 53 ARIZO_G2
20 -0.3303 2.2049 21 NORTH_G2
22 -0.2047 2.1082 14 BUTAH_G1

6 BUTAH_GM
28 -0.1135 2.0127 26 PACNW_GM

16 PACNW_G1
30 -0.8128 1.8560 26 ARIZO_G1
32 -0.4015 1.7987 26 NORTH_G1
34 -0.3289 1.7397 74 CANADA_G1
36 -0.2282 1.7081 146 PACNW_GM

7 NORTH_G1
6 PACNW_GM

38 -0.3463 1.6190 10 SOUTH_G1
4 SOUTH_GM

46 -0.5141 1.4803 13 NOCAL_G1
4 NOCAL_GM

48 -0.4205 1.3692 7 SOUTH_G2
6 SOUTH_G1

52 -0.2296 1.1687 84 MONTA_G1
39 MONTA_GM
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Table 4.8: Eigenvalue analysis results of inter-area oscillation modes

Mode Real part Frequency (Hz) Most Participant Machines

54 -0.0583 0.9606 NOCAL_GM, NOCAL_G1
SOUTH_G1, SOUTH_G2

56 0.0034 0.8293 ARIZO_GM, CANAD_GM
NORTH_GM, MONTA_GM
BUTAH_GM, BUTAH_G1
SOUTH_G1, SOUTH_G2

58 0.0009 0.7319 NOCAL_GM, NOCAL_G1
BUTAH_GM, BUTAH_G1
SOUTH_GM, SOUTH_G1, SOUTH_G2

60 0.0053 0.6741 MONTA_GM MONTA_G1
CANAD_GM CANAD_G1
BUTAH_GM BUTAH_G1

62 -0.0856 0.3514 ARIZO_GM ARIZO_G1 ARIZO_G2
CANAD_GM
MONTA_GM MONTA_G1
NORTH_GM, NORTH_G1 NORTH_G2
SOUTH_G1, SOUTH_G2

Table 4.9: Mode shapes of inter-area oscillation modes

Mode No.

Machine 54 56 58 60 62 90
ARIOZO_GM -5.6 27.6 -37.5 137.7 -23.2 28.1
CANAD_GM -13.4 -155.4 -30.9 136.1 155.4 28.1
NOCAL_GM -8.3 -139.1 141.1 -44.6 148.8 27.8
NORTH_GM 170.8 25.5 155.5 -43.6 154.7 27.9
MONTA_GM 168.6 26.5 -49.6 -43.7 154.4 27.6
BUTAH_GM -16.4 -157.1 -37.8 -42.8 150.7 26.9
SOUTH_GM 174.4 -152.6 139.5 142.2 -23.2 27.9
PACNW_GM 169.1 25.1 148.8 -43.6 154.6 27.8
ARIZO_G1 -8.4 25.5 -38.4 135.7 -24.0 28.0
ARIZO_G2 -7.2 26.4 -37.7 136.2 -23.9 28.0
CANAD_G1 -16.3 -157.7 -32.7 134.5 154.8 28.0
NOCAL_G1 -18.3 -146.8 135.7 -48.9 147.6 27.8
MONTA_G1 162.2 21.5 -52.7 -47.0 153.5 27.6
BUTAH_G1 -17.7 -158.3 -38.8 -43.7 150.4 26.9
NORTH_G1 167.7 23.2 151.8 -45.2 154.1 27.9
NORTH_G2 169.0 24.4 153.0 -44.4 154.3 27.9
PACNW_G1 166.3 22.8 146.4 -45.2 154.1 27.9
SOUTH_G1 165.0 -159.5 134.4 138.8 -24.3 27.9
SOUTH_G2 169.5 -156.7 136.2 140.4 -24.0 27.8



CHAPTER 4. TCSC DAMPING CONTROLLER 83

PACNW_G1 and ARIZO_G1 using generator speed difference as input signals. Here, TCSC’s

ability to dampen the inter-area oscillation mode is analyzed and discussed.

4.6.3 Damping enhancement via TCSC

TCSC is used to enhance damping in the WSCC reduced system. Its siting, control

signal selection and controller design are the issues to be addressed. Since the power system is

a nonlinear system with loading conditions changing frequently, therefore, when linear systems

tools are applied, different operating conditions have to be taken into account. The constraint and

the index for effective and robust design are going to be used as a guideline for siting and signal

selection.

4.6.4 TCSC siting and signal selection

A TCSC is to be installed on a key transmission line. The control signals for oscillation

damping are chosen to be local measurements, such as active power or current magnitude. With

PT and CT installed, the instantaneous waveforms of current and voltage can be obtained. The

abc waveforms are transformed into qd-axis values which are easy for calculation of power and

magnitude and hence easy for control purposes.

Tables 4.10 and 4.11 show the Case 1 and Case 2 residues of three inter-area oscillation

modes near 0.7 Hz when active power flow is used as input control signal for TCSC installed on

different transmission lines.

Table 4.10: Residues when active power through tie-lines used as input signal of the controller in
case 1

Line Mode 56 Mode 58 Mode 60

PACNW_MN—CANAD_MN -.0000-.0000i .0000-.0000i .0000+.0000i
NORTH_MN—MONTA_MN -.0004-.0011i -.0011-.0045i -.0019-.0080i
MONTA_TX—BUTAH_MN .0000+.0000i .0000+.0000i .0000+.0000i
NORTH_MN—PACNW_MN -.0000-.0000i -.0000-.0000i -.0000-.0000i
NORTH_TX—BUTAH_MN -.0022-.0392i -.0280-.1145i .0000+.0000i
NOCAL_MN—SOCAL_TX -.0000-.0000i .0000-.0000i .0000+.0000i
ARIZO_MN—SOUTH_MN -.0353-.2335i -.1182-.4752i -.0021-.0064i
ARIZO_TX—BUTAH_MN -.0118-.0383i -.0018-.0102i -.0050-.0255i

The greater the magnitude of the residues, the more effective is the controller. Although

the transmission line between AZ and SS seems to be the best placement for mode 56 and mode 58,
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Table 4.11: Residues when active power through tie-lines used as input signal of the controller in
case 2

Line Mode 56 Mode 58 Mode 60

PACNW_MN—CANAD_MN .0000+.0000i .0000+.0000i .0000+.0000i
NORTH_MN—MONTA_MN .0000+.0001i -.0012-.0045i -.0042-.0177i
MONTA_TX—BUTAH_MN -.0098-.0298i -.0109-.0478i -.0029-.0160i
NORTH_MN—PACNW_MN .0000+.0000i .0000+.0000i -.0000-.0000i
NORTH_TX—BUTAH_MN -.0000-.0000i .0000+.0000i -.0000-.0000i
NOCAL_MN—SOCAL_TX .0000+.0003i .0027+.0124i .0009+.0043i
ARIZO_MN—SOUTH_MN -.0258-.1150i -.0172-.0617i -.0000-.0001i
ARIZO_TX—BUTAH_MN .0198+.0625i .0063+.0281i .0153+.0764i

it is not a good place for mode 60. In Case 2, the residue of mode 60 is very small which means that

the controller will hardly have any effect on this oscillation mode. Instead, the transmission line

between AZ and UT has an effect on all three oscillation modes, especially on mode 60. Therefore,

the transmission line between AZ and UT is chosen to be the place to install a TCSC.

Tables 4.12 and 4.13 show the residues of three inter-area oscillation modes near 0.7

Hz when current magnitude is used as an input control signal for TCSC installed on different

transmission lines.

Table 4.12: Residues when current magnitude used as input signal of the controller in case 1

Line Mode 56 Mode 58 Mode 60

PACNW_MN—CANAD_MN -.0000-.0000i .0000+.0000i .0000+.0000i
NORTH_MN—MONTA_MN -.0004-.0010i -.0011-.0044i -.0018-.0078i
MONTA_TX—BUTAH_MN .0000+.0000i .0000+.0000i .0000+.0000i
NORTH_MN—PACNW_MN -.0000-.0000i -.0000-.0000i -.0000-.0000i
NORTH_TX—BUTAH_MN -.0024-.0409i -.0289-.1171i .0000-.0000i
NOCAL_MN—SOCAL_TX -.0000-.0000i .0000-.0000i .0000+.0000i
ARIZO_MN—SOUTH_MN -.0419-.2698i -.1383-.5463i -.0026-.0081i
ARIZO_TX—BUTAH_MN -.0110-.0358i -.0015-.0088i -.0046-.0234i

According to the residue phase constraint, that is, the residue phases of close modes at

different operating conditions are to be bundled together within a narrow angle, it is obvious that

current magnitude as input control signal meets the requirement while active power does not. That

is, because in Case 2, the line flow of AZ to UT is reversed. The residue phases of the channel

when active power is used as an input signal have big differences. However, the residue phases of

the channel when current magnitude is used as an input signal do not have significant differences.
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Table 4.13: Residues when current magnitude used as input signal of the controller in case 2

Line Mode 56 Mode 58 Mode 60

PACNW_MN—CANAD_MN .0000+.0000i .0000+.0000i .0000+.0000i
NORTH_MN—MONTA_MN -.0000-.0001i -.0011-.0044i -.0042-.0176i
MONTA_TX—BUTAH_MN -.0095-.0289i -.0105-.0459i -.0028-.0152i
NORTH_MN—PACNW_MN .0000+.0000i .0000+.0000i -.0000-.0000i
NORTH_TX—BUTAH_MN -.0000-.0000i .0000+.0000i -.0000-.0000i
NOCAL_MN—SOCAL_TX .0000-.0002i -.0026-.0117i -.0009-.0043i
ARIZO_MN—SOUTH_MN -.0239-.1075i -.0161-.0579i -.0000-.0001i
ARIZO_TX—BUTAH_MN -.0231-.0727i -.0075-.0335i -.0181-.0900i

TCSC controller design

Based on the previous analysis, the transmission line between AZ and UT is selected to

be equipped with a TCSC. Also, the current magnitude is chosen as the best input control signal

for inter-area oscillation damping. The task now is to design a controller. A simple controller, a

lead-lag control structure, is designed in this case as the following.

H(s) = 10
s

1 + s

1 + 0.4s

1 + 0.108s

1 + 0.4s

1 + 0.108s

The root locus is shown in Fig. 4.25.

Root locus shows that all three roots near 0.7 Hz mode will move toward left plane when

the gain increases.

Simulation results

Simulations are performed using Power System Toolbox. At 0.1 second, a three-phase

fault is applied at bus PACNW_F1. It is cleared 50ms later.

Simulation results show that with TCSC damping controller, the tie line power flow has

better performance.

This case study shows inter-area oscillation damping enhancement in the WSCC system

by a TCSC. First, siting of the TCSC is investigated, and second a robust damping controller, i.e., a

controller that operates at various loading conditions, was designed. The proposed methodologies

are based on transfer function residues. An index is given to identify the most effective signal

to feedback, and a condition to guarantee control robustness is derived based on the phases of

the residues. A reduced order model of the WSCC system is used to demonstrate the proposed
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Figure 4.25: Root locus of the system with TCSC controller
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Figure 4.26: Generator rotor speeds of WSCC reduced system with no TCSC
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Figure 4.27: Generator rotor speeds of WSCC reduced system with TCSC

techniques. Specifically, a TCSC is recommended to dampen the WSCC’s near 0.7 Hz inter-area

modes. An optimal placement of TCSC is found and the effective control input was also found

as current magnitude. Nonlinear simulations were performed and the system responses with and

without the controller were compared. Both root locus and simulations results show the proposed

methodology was effective.

4.7 Conclusion

In this chapter, TCSC damping controller for inter-area oscillation is studied. The condi-

tions and indices for control signal selection are proposed and controller is designed using lead-lag

control design scheme or multi-stage design scheme.

The proposed methodologies are tested in a two-area four-machine power system and

demonstrated to be effective. A large-scale power system — WSCC system is also studied. The

optimal location of TCSC and its control signal are chosen based on the proposed conditions and

indices.
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Figure 4.28: Tie-line power flow of WSCC reduced system with no TCSC
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Figure 4.29: Tie-line power flow of WSCC reduced system with TCSC
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Figure 4.30: TCSC damping controller output
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Chapter 5

Interaction between excitation and

TCSC damping controllers

Two types of controller have been addressed and tested. They were not installed in power

systems simultaneously. Theoretically, the nonlinear excitation control itself is already sufficient

for transient stability control. Yet in reality, the nonlinear excitation control has to make com-

promise with decentralization and feasibility. For example, in this dissertation, the unmeasurable

components in feedback linearization compensation law are treated as noise or disturbance. Hence,

the nonlinear excitation control is not strict and itself may not be sufficient in some situation. It is

worthwhile to see their combined function in power system. The two-area four-machine power sys-

tem model is used here with subtransient generator model. First, nonlinear feedback linearization

controller and TCSC damping controller are designed separately. Then the two types of controllers

are installed in the power system simultaneously and their interactions are investigated.

The two-area four-machine power system has the same parameters as the one used in

case studies in Chapter 3 except the exciters are different. Generator 1 and Generator 4 have DC

type exciters, while Generator 3 has a simplified excitation system, and Generator 2 has a IEEE

type ST3 compound source rectifier exciter. The open-loop system will be unstable when subject

to a three-phase ground fault at bus 15. Nonlinear excitation control output will be added to

the excitation system output to provide both rotor angle stability control and generator terminal

voltage control. The nonlinear control is the combination of feedback linearization and linear robust

control by feedback back the rotor angle offset.

Three tests are performed to show the interaction between the two types of controllers.
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Table 5.1: Test descriptions

Test number Description

1 open-loop system
2 power system with nonlinear excitation control solely
3 power system with both excitation and TCSC damping control
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Figure 5.1: Open-loop system poles.

Fig. 5.1 gives the poles of the open-loop system. There is a pole located in the right half

plane. The oscillation mode corresponding to this pole is the critical mode.

Fig. 5.2 gives the open-loop system performance. The system is unstable.

Fig. 5.3 and Fig. gives 5.4 the closed-loop system performance with nonlinear excitation

controllers installed. The simulation results show that with nonlinear excitation controllers, the

dynamic performance of the power system has been improved. However, the oscillation modes need

to be dampened faster. Therefore, TCSC damping controller is designed.

Fig. 5.5 gives the root locus diagram with TCSC damping controller installed while the

gain of the controller varies. Fig. 5.6 and Fig. gives 5.7 the closed-loop system performance with

TCSC damping controller installed. TCSC damping controller is designed based on the residue of

the critical mode while its control input is active power flow of the tie-line. The damping of the
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Figure 5.2: Open-loop power system dynamic performance.
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Figure 5.3: Dynamic performance of relative rotor angles.
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Figure 5.4: Dynamic response of excitation controller system output.

oscillations are greater than the damping of the oscillations in the system with excitation control

only.

The conclusion drawn from the above tests is as follows:

The two types of controllers can work well with each other. If TCSC damping controller is

needed, it should be designed based on the power system linearized model including the nonlinear

excitation control.
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Figure 5.6: Dynamic performance of relative rotor angles.
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96

Chapter 6

Conclusions

This dissertation addresses two categories of decentralized control design for power sys-

tems. One is excitation control to improve power system stability and the other is TCSC damping

control to improve inter-area oscillation damping.

In the first part of the dissertation, an algorithm to design decentralized nonlinear con-

trollers based on feedback linearization is developed. First, feedback linearization technique is

applied in excitation control for each generator to obtain an interconnected system where subsys-

tems have linear system matrices and interconnections are represented by nonlinear terms. Second,

different ways of achieving decentralization are developed:

(1) linear robust control combined with observer decoupled state space

(2) disturbance accommodation control

While linear robust control guarantees the subsystem’s stability when the interconnection

terms are bounded within certain values, disturbance accommodation control is based on linear

models of the interconnection terms. The offset of rotor angles from equilibrium point is an im-

portant variable to feed back into the controllers. However, since the post equilibrium point is

usually unknown, observer decoupled state space concept is utilized to obtain a variable which can

be calculated through local measurements to replace the offset of rotor angles. Thus the resulting

controllers have decentralized structure.

Nonlinear simulations are performed on a three-machine nine-bus power system. The

simulation results demonstrate the effectiveness of the proposed methodologies.

In the second part of the dissertation, indices for control signal selection and mode effec-

tiveness and interaction are developed. A TCSC damping controller using a local signal is designed

to dampen inter-area oscillations over a range of operating conditions. Residues not only represent
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the combination of state controllability and observability but also represent the eigenvalue sensi-

tivity with respect to controller parameters. Therefore residues are utilized to develop criteria for

control signal selection and controller siting. Conditions and indices for TCSC damping controller

siting and signal selection are proposed. The indices are the effectiveness of the controller over a

wide range of operating conditions and the interaction of the controller with other oscillation modes

than critical modes. Controller configuration design is also investigated: one is lead-lag structure

design and the other is multi-step design.

Two case studies are performed to explain and demonstrate the effectiveness of the pro-

posed methodologies. The first power system is the two-area four-machine inter-area oscillation

benchmark system. A poor damping oscillation can be observed in the tie-line. Three typical

operating conditions are chosen to testify the robustness and effectiveness of the controller. The

results show that for a TCSC installed on the tie-line, the better signal is the absolute value of

active power which not only is robust but has less interaction with the other oscillation modes.

Besides this small system, a larger power system — a model of the WSCC system is used.

The system has three inter-area oscillation modes near 0.7 Hz. The proposed conditions and

indices are utilized to find the optimal placement, signal for a TCSC damping controller. Both root

locus analysis and nonlinear simulation results show that TCSC damping controller is effective in

stabilizing the most critical inter-area modes.

The indices proposed in this dissertation are general and can be used for signal selection

and siting of other FACTS devices, such as Static Var Compensator, Unified Power Flow Controller

and etc. The uncertainty shown in the case studies in this dissertation are variations of load

conditions. It can also be variations of topologies. While the variation of load conditions can

be considered as unstructured uncertainty the variations of the topologies can be considered as

structured uncertainty. With variation of topologies included in case studies, the proposed indices

are shown to be applicable to both structured and unstructured uncertainty. The damping controller

proposed in this dissertation is to use local measurement as input signals. Local measurements can

be obtained by phasor measurement units (PMU). The feasibility of these control schemes using

PMU should be investigated using discrete control techniques. Meanwhile, the measurement errors,

control signal delays are not considered in this dissertation. Further work can take above factors

into consideration.

Further works can also include the implementation of the nonlinear excitation control

schemes of this dissertation. The mapping process of Feedback Linearization is not detailed in this

dissertation and the measurements used are assumed to be available and accurate. They may not
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however not be accurate and measurement errors should be taken into consideration. Hence the

mapped linear subsystem will have multiple sources of uncertainties. This could be formulized as

a robust c ontrol proble m.
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Appendix A

Synchronous generator models

The swing equation is the most important part of a synchronous generator model. It

describes the rotor motion in accordance with Newton’s No.2 law, i.e., the acceleration of an object

equals the force over the inertia. The swing equation is expressed in the following equations.

dδ

dt
= ω0 (ω − 1)

dω

dt
=

1

2H
(Pm − Pe) (A.1)

where ω0 is the rated rotor angular speed 2π · 60 rad/s, δ is in rad, ω is in pu. Pm is the input

mechanical power from the turbine to the generator in pu, Pe is the output electrical power of the

generator in pu, and H is the constant angular moment of inertia in second.

Besides the swing equation, synchronous generator models include electrical equations

which can be described in different ways from the simplified classical model to the most detailed

7th order model. By use of Park’s transformation, the variables such as voltage and current are

expressed in the d and q axis components as shown in Fig. A.1

In stability study, generator model can be classical model, transient models such as two-

axis model or one-axis model.

A.1 Classical generator model

In classical representation, a synchronous generator is modeled as a constant voltage source

behind transient reactance as shown in Fig. A.2, where x0d is the direct axis transient reactance and

δ is considered the angle between the rotor position and the terminal voltage Vt∠α. The magnitude
of the voltage source E is kept constant during the transient.
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Figure A.2: Classical equivalent circuit of a generator
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A.2 Two-axis generator model

In two-axis generator model, a synchronous generator is represented as voltage source

behind transient reactance by assuming x0d ≈ x0q. E0q, E0d are q and d axis stator voltage respectively.
Besides swing equation, there are two differential equations that describe the field voltage and Q

circuit as shown in Eq. A.2.

I∠θ

x'd

(Eq'+jE'd)∠δ

+

-

+

-

    Vt∠α

Figure A.3: Transient equivalent circuit of a generator

dE0q
dt

=
1

T 0d0
(Efd −E) (A.2)

dE0d
dt

=
1

T 0q0
(−E0d − (xq − x0q)Iq)

where Efd is the excitation voltage, E = E0d + (x
0
d − xd)Id, Pe = E0dId +E0qIq − (x0q − x0d)IdIq.

A.3 One-axis generator model

The one-axis generator model is similar to the two-axis generator model except the dy-

namics of E0d are ignored. Without the assumption x
0
d ≈ x0q, the generator and the network interface

equations are:

E0q = Vq − x0dId
0 = Vd + xqIq

The electrical power equation can be expressed as Pe = E0qIq − (xq − x0d)IdIq.
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Appendix B

Proof of Theorem 3.2

The proof of Theorem 3.2 are given detailly in Chapter 3 of [54]. Here the brief proof is

given.

B.1 Intuitive proof of necessity part

The control objective is clearly to make the H∞ norm as small as possible, which can be

expressed in mathematical form as

inf
f
sup
w 6=0

½kzu,wk2
kwk2

|w ∈ Ll2, f : Lm2 → Ln2 causal and u = f(w)
¾

for the initial condition x(0) = 0

If the norm is smaller than some bound γ > 0 then

inf
f
sup
w 6=0

n
kzu,wk22 − γ2 kwk2 |w ∈ Ll2, f causal and u = f(w)

o
≤ 0

for the initial condition x(0) = 0. The internal stability of H∞ control requires the control be stable

for all initial conditions. Thus for an arbitrary initial condition x(0)=ξ, define

C(u,w, ξ) = kzu,wk22 − γ2 kwk2

C∗(ξ) = sup
w
inf
u

n
C(u,w, ξ)|u ∈ Lm2 , w ∈ Ll2 such that xu,w,ξ ∈ Ln2

o
for arbitrary initial state x(0)=ξ

It has been proved that C∗(ξ) = ξTPξ for all ξ ∈ <n.
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Define C(u,w, ξ, t) =
R∞
t kzu,w,ξ,t (τ)k2 − γ2 kw(τ)k2 dτ , the system is time-invariant and

therefore

C∗(ξ, t) = sup
w
inf
u

n
C(u,w, ξ, t)|u ∈ Lm2 , w ∈ Ll2 such that xu,w,ξ,t ∈ Ln2

o
= ξTPξ

u is indeed a casual function of w. Then the last “sup-inf” problem can be rewritten

0 = sup
w|[0,t]

inf
u|[0,t]

sup
w|(t,∞)

inf
u|(t,∞)]

Z ∞

0
kzu,w,ξ,t (τ)k2 − γ2 kw(τ)k2 dτ − ξTPξ

= sup
w|[0,t]

inf
u|[0,t]

Z ∞

0
kzu,w,ξ,t (τ)k2 − γ2 kw(τ)k2 dτ + xT (t)Px(t)− ξTPξ

where u ∈ Ln2 , w ∈ Ll2 should be such that xu,w,ξ ∈ Ln2 . Differentiate this expression with respect
to t and take the derivative at t=0, we then obtain

0 = sup
w(0)

inf
u(0)

kz(0)k2 − γ2 kw(0)k2 + d

dt
xT (t)Px(t) |t=0

Now we can obtain a static “sup-inf” problem which can be solved explicitly.

0 = sup
w(0)

inf
u(0)


ξ

u(0)

w(0)


T 

ATP + PA+CTC BTP +CTD ETP

PB +DTC DTD 0

PE 0 −γ2I




ξ

u(0)

w(0)


Next define q = u+ (DTD)−1(BTP +DTC)ξ

p = w− γ−2ETPξ
Denote the right hand side of the algebraic Riccati equation Eq. 3.19 by R(P ).By using

Schur complements we can then rephrase the “sup-inf” problem in the form

0 = sup
p
inf
q


ξ

q

p


T 

R(P ) 0 0

0 DTD 0

0 0 −γ2I



ξ

q

p


The above equality should be true for all initial conditions ξ ∈ <n. This implies R(P ) = 0.
The optimal p and q are zero, i.e.

w∗(t) = γ−2ETPx∗(t),

u∗(t) = −(DTD)−1(BTP +DTC)x∗(t).
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B.2 Proof of sufficiency part

This part will show if there exists a matrix P satisfying the condition in part (2) of

Theorem 3.2, then the feedback suggested as the theorem satisfies condition (1). Assume that P

satisfies the conditions in part (2) of Theorem 3.2. Moreover, set γ = 1. The implications will only

be proven under this assumption.

Define the following system:

ΣU :


ẋU = AUxU +BUuU +Ew,

yU = C1,UxU + w,

zU = C2,UxU +D21,UuU ,

where

AU = A−B(DT1D1)−1(DT1 C +BTP ),
BU = B(D

T
1D1)

−1/2,

C1,U = −ETP,
C2,U = C −D1(DT1D1)−1(DT1 C +BTP ),
D21,U = D1(D

T
1D1)

−1/2

Lemma B.1 The system ΣU is inner. Denote the transfer matrix of ΣU by . We decompose GU:

GU

 w

uU

 =

 G11,U G12,U

G21,U G22,U

 w

uU

 =

 zU

yU


compatible with the size of w, uU , zU , yU . Then G21,U is invertible as a rational matrix and its

inverse is in H∞. Moreover G22,U is strictly proper.

The proof of the lemma will not be shown here.

Lemma B.2 Assume that the conditions in part (2) of theorem 3.2 are satisfied. In that case the

compensator
P
F described by the feedback law u = Fx, where F is given by Eq. 3.20 satisfies

condition (1) of theorem 3.2.

Proof: The transfer matrix GF is equal to G11,U and moreover, A+BF is equal to AU .

This implies that the compensator
P
F is internally stabilizing. Because G21,U is invertible over

H∞ the following inequalities can be derived:



APPENDIX B. PROOF OF THEOREM 3.2 110

kG11,Uk2∞ +
°°°G−121,U°°°−2∞ ≤

°°°°°°
 G11,U

G21,U

°°°°°°
2

∞
≤ 1

From the above inequalities, we have kGFk∞ < 1.
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Appendix C

Solution of Riccati equation 3.19

The following procedure shows how to obtain the solution of Riccati equation 3.19 by use

of Matlab Symbolic Toolbox.

First of all, the elements of matrix P and γ are defined as symbols. And the other matrices

known are initialized.

syms P11 P12 P13 P21 P22 P23 P31 P32 P33 gama

P=[P11 P12 P13; P21 P22 P23; P31 P32 P33];

A = [0 1 0; 0 0 1; 0 0 0];

B = [0;0;1]; E = [0;0;1];

C = eye(3) ; D =[0;0;1];

Secondly, the right part of the Riccati equation are calculated.

x = A.’*P+P*A+C.’*C- [ B’*P + D’*C; E’*P].’*inv([D’*D, 0; 0,-gama^2])

*[ B’*P + D’*C; E’*P]

The result is shown as

x=[...

1-P31^2+P31^2/gama^2, P11-P31*P32+P31/gama^2*P32,...

P12-P31*(P33+1)+P31/gama^2*P33;

P11-P31*P32+P31/gama^2*P32, P12+P21+1-P32^2+P32^2/gama^2,...

P13+P22-P32*(P33+1)+P32/gama^2*P33;

P21-P31*(P33+1)+P31/gama^2*P33, P22+P31-P32*(P33+1)+P32/gama^2*P33,...

P23+P32+1-(P33+1)^2+P33^2/gama^2];

Let γ = 2, and the right part of the Riccati equation are calculated again.

gama = 2;
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x =[...

1-3/4*P31^2, P11-3/4*P31*P32, P12-P31*(P33+1)+1/4*P31*P33;

P11-3/4*P31*P32, P12+P21+1-3/4*P32^2, P13+P22-P32*(P33+1)+1/4*P32*P33;

P21-P31*(P33+1)+1/4*P31*P33, P22+P31-P32*(P33+1)+1/4*P32*P33,...

P23+P32+1-(P33+1)^2+1/4*P33^2];

Now the results of the elements of matrix P are solved by function solve.

S = solve(...

’1-3/4*P31^2=0’,...

’P11-3/4*P31*P32=0’,...

’P12-P31*(P33+1)+1/4*P31*P33=0’,...

’P11-3/4*P31*P32 =0’,...

’P12+P21+1-3/4*P32^2 = 0’, ...

’P13+P22-P32*(P33+1)+1/4*P32*P33=0’,...

’P21-P31*(P33+1)+1/4*P31*P33=0’,...

’P22+P31-P32*(P33+1)+1/4*P32*P33=0’,...

’P23+P32+1-(P33+1)^2+1/4*P33^2=0’);

P = [S.P11(1), S.P12(1), S.P13(1);

S.P21(1), S.P22(1), S.P23(1);

S.P31(1), S.P32(1), S.P33(1)];

P32= 3;

P =[ 1/2*P32*3^(1/2), -1/2+3/8*P32^2, 2/3*3^(1/2)

-1/2+3/8*P32^2, 1/48*3^(1/2)*(-32-12*P32+9*P32^3),...

-P32-13/12-3/8*P32^2+9/64*P32^4

2/3*3^(1/2), P32, -1/3*3^(1/2)+1/4*3^(1/2)*P32^2-4/3];

P =[2.5981 2.8750 1.1547

2.8750 6.3148 3.9323

1.1547 3.0000 1.9864];

F=-inv(D.’*D)*(D.’*C+B.’*P)

And finnally the feedback gain matrix F is

F=[ -1.1547 -3.0000 -2.9864];
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Appendix D

Solving Kx, Ky, Kz

Eq. 3.44 is a set of differential equations. To obtain Kx, Ky, and Kz, the differential

equations will be integrated with respect of time. Matlab source codes are shown in this appendix.

a1=0.3312; w1=7;

a2=1.3669; w2=13;

A=[0 1 0;0 0 1; 0 0 0];

B=[0;0; 1];

H1=[0 0 0 0; 0 0 0 0; 1 0 0 0];

D=[0 1 0 0 ; 0 0 1 0; 0 0 0 1; -(w1*w2)^2 0 -(w1^2+w2^2) 0];

E=[1; 1 ; 1 ;1];

% S, Q, R, T are given

% Design a Disturbance-Utilization Controller for the Output Regulator Problem

C = [0,1,0];

S = 10;

Q=diag([100,100,10]);R=1;T=10;t=0;

Q= 100;

ysp=zeros(3,1);

dt=0.002; T=20;

% Initialization

Mx(:,:,1)=C.’*S*C;

My(:,:,1)=-C.’*S;

Mz(:,:,1)=zeros(3,4);

u(1)=0;
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t=0;

for i=1:floor(T/dt)

temp1= (-A+B*inv(R)*B.’*Mx(:,:,i)).’*Mx(:,:,i)-Mx(:,:,i)*A-C.’*Q*C;

temp2= (-A+B*inv(R)*B.’*Mx(:,:,i)).’*My(:,:,i)+C.’*Q;

temp3= (-A+B*inv(R)*B.’*Mx(:,:,i)).’*Mz(:,:,i)-Mz(:,:,i)*D-Mx(:,:,i)*H1;

Mx(:,:,i+1)=-temp1*dt+Mx(:,:,i);

My(:,:,i+1)=-temp2*dt+My(:,:,i);

Mz(:,:,i+1)=-temp3*dt+Mz(:,:,i);

end

Kx=flipdim(Mx,3);

Ky=flipdim(My,3);

Kz=flipdim(Mz,3);
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Appendix E

Two-area four-generator test system

data

The two-area four-generator test system is used as the benchmark power system to inves-

tigate the nature of inter-area oscillations in [33]. The system data is collected in Table B.1, B.2,

B.3 and B.4, with parameters in pu and SB = 100MVA.

Table E.1: Bus Data

bus # |V| ∠V P_gen Q_gen P_load Q_load G_shunt B_shunt bus type

1 1.03 18.5 7.00 1.61 0.00 0.00 0.00 0.00 1
2 1.01 8.80 7.00 1.76 0.00 0.00 0.00 0.00 2
3 1.0 -6.1 0.00 0.00 0.00 0.00 0.00 3.00 3
4 0.97 -10 0.00 0.00 16.76 1.00 0.00 0.00 3
10 1.0103 12.1 0.00 0.00 0.00 0.00 0.00 0.00 3
11 1.03 -6.8 7.16 1.49 0.00 0.00 0.00 0.00 2
12 1.01 -16.9 7.00 1.39 0.00 0.00 0.00 0.00 2
13 1.0 -31.8 0.00 0.00 0.00 0.00 0.00 5.00 3
14 0.97 -38 0.00 0.00 10.17 1.00 0.00 0.00 3
15 0.97 -38 0.00 0.00 0.50 0.00 0.00 0.00 3
20 0.9876 2.1 0.00 0.00 0.00 0.00 0.00 0.00 3
101 1.05 -19.3 0.00 0.50 0.00 0.00 0.00 1.00 2
102 1.05 -19.3 0.00 0.50 0.00 0.00 0.00 1.0 2
110 1.0125 -13.4 0.00 0.00 0.00 0.00 0.00 0.00 3
120 0.9938 -23.6 0.00 0.00 0.00 0.00 0.00 0.00 3
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Table E.2: Transformer and Line Data

From To R X B Tap ratio Tap phase

1 10 0.0 0.0167 0.00 1.00 0.00
2 20 0.0 0.0167 0.00 1.00 0.00
3 4 0.0 0.004 0.00 0.00 0.00
3 20 0.001 0.01 0.0175 1.0 0.00
3 101 0.011 0.11 0.1925 1.0 0.00
10 20 0.0025 0.025 0.0437 1.0 0.00
11 110 0.0 0.0167 0.0 1.0 0.00
12 120 0.0 0.0167 0.0 1.0 0.00
13 14 0.0 0.005 0.0 1.0 0.00
13 15 0.0 0.01 0.0 1.0 0.00
13 102 0.011 0.11 0.1925 1.0 0.00
101 102 0.00 -0.088 0.00 1.0 0.00
13 120 0.001 0.01 0.0175 1.0 0.00
110 120 0.0025 0.025 0.0437 1.0 0.00

Table E.3: Generator Data

xd xq xl x0d x0q x00d x00q Ra T 0d0 T 0q0 T 00d0 T 00q0 H D Rating
(s) (s) (s) (s) (MVA)

1.8 1.7 0.2 0.3 0.55 0.25 0.25 .0025 8.0 0.4 0.03 0.05 6.5 2.0 900

Table E.4: Exciter Data

Ka Ta Tb Tc Vrmax Vrmin Ke Te E1 E2

20 0.06 0 0 5 -5 1 0 -2 7
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Appendix F

WSCC system data

The WSCC system reduced model was developed by J.R. Smith and co-workers [50].

Table F.1: Bus Data (1)

bus # bus name |V| P_gen Q_gen P_load Q_load G_shunt B_shunt bus type

5 PACNW_GM 1.049 38.84 25 0 0 0 0 1
1 CANAD_GM 1.049 101.08 73.2 0 0 0 0 2
14 ARIZO_GM 1.049 110.11 62 0 0 0 0 2
17 SOUTH_GM 1.049 74.98 93.75 0 0 0 0 2
10 NOCAL_GM 1.049 65.93 78 0 0 0 0 2
7 NORTH_GM 1.049 117.09 101.80 0 0 0 0 2
3 MONTA_GM 1.049 8.31 25 0 0 0 0 2
12 BUTAH_GM 1.049 30.69 25 0 0 0 0 2
4 MONTA_G1 1.03 15.08 4.75 0 0 0 0 2
13 BUTAH_G1 1.04 16.79 16 0 0 0 0 2
15 ARIZO_G1 1.049 27.04 34 0 0 0 0 2
16 ARIZO_G2 1.049 5.60 16 0 0 0 0 2
11 NOCAL_G1 1.049 12.73 5 0 0 0 0 2
8 NORTH_G1 1.049 6.68 8 0 0 0 0 2
9 NORTH_G2 1.049 9.40 16 0 0 0 0 2
6 PACNW_G1 1.049 11.41 35 0 0 0 0 2
18 SOUTH_G1 1.049 25.40 7.5 0 0 0 0 2
19 SOUTH_G2 1.049 21.77 5.25 0 0 0 0 2

7
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Table F.2: Bus Data (2)

bus # bus name |V| P_gen Q_gen P_load Q_load G_shunt B_shunt bus type

20 ARIZO_MN 1.049 0 0 100.26 57.28 0 0 3
21 CANAD_MN 1.049 0 0 107.04 48 0 0 3
22 NOCAL_MN 1.049 0 0 104.99 43.25 10 0 3
23 MONTA_MN 1.049 0 0 11.68 4.00 0 0 3
24 BUTAH_MN 1.049 0 0 44.46 16.06 10 0 3
25 NOTRTH_MN 1.049 0 0 47.94 26.69 0 0 3
26 PACNW_MN 1.049 0 0 92.68 40.13 20 0 3
27 SOCAL_TX 1.049 0 0 117.61 54.03 70 0 3
28 SOUTH_MN 1.049 0 0 64.39 23.67 0 0 3
29 CLILO_DC 1.049 0 0 18.40 60 0 30 2
30 SYLMR_DC 1.049 0 0 -18.40 15 0 18 3
31 INTMT_DC 1.049 0 0 4.0 20 0 14 3
32 ADLAN_DC 1.049 0 0 -4.0 5 0 14 3

FAULT BUSES
33 ARIZO_F1 1.0 0 0 0 0 0 0 3
34 ARIZO_F2 1.0 0 0 0 0 0 0 3
35 CANAD_F1 1.0 0 0 0 0 0 0 3
36 NOCAL_F1 1.0 0 0 0 0 0 0 3
37 NORTH_F1 1.0 0 0 0 0 0 0 3
38 NORTH_F2 1.0 0 0 0 0 0 0 3
39 PACNW_F1 1.0 0 0 0 0 0 0 3
40 SOUTH_F1 1.0 0 0 0 0 0 0 3
41 SOUTH_F2 1.0 0 0 0 0 0 0 3
42 MONTA_F1 1.0 0 0 0 0 0 0 3
43 BUTAH_F1 1.0 0 0 0 0 0 0 3

Other buses
44 ARIZO_TX 1.049 0 0 0 0 0 0 3
45 MONTA_TX 1.049 0 0 0 0 0 0 3
46 NORTH_TX 1.049 0 0 0 0 0 0 3
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Table F.3: Transformer Data

From To from bus name To bus name R X B Tap ratio Tap phase

20 44 ARIZO_MN ARIZO_TX 0.0 0.02 0.00 1.0 0.00
20 33 ARIZO_MN ARIZO_F1 0.0 0.002 0.00 1.0 0.00
20 34 ARIZO_MN ARIZO_F2 0.0 0.005 0.00 1.0 0.00
20 14 ARIZO_MN ARIZO_GM 0.0 0.0007 0.00 1.0 0.00
21 1 CANAD_MN CANAD_GM 0.0 0.001 0.00 1.0 0.00
21 35 CANAD_MN CANAD_F1 0.0 0.005 0.00 1.0 0.00
22 36 NOCAL_MN NOCAL_F1 0.0 0.01 0.00 1.0 0.00
22 10 NOCAL_MN NOCAL_GM 0.0 0.0008 0.00 1.0 0.00
23 42 MONTA_MN MONTA_F1 0.0 0.005 0.00 1.0 0.00
23 45 MONTA_MN MONTA_TX 0.0 0.02 0.00 1.0 0.00
24 43 BUTAH_MN BUTAH_F1 0.0 0.004 0.00 1.0 0.00
25 29 NORTH_MN CLILO_DC 0.0 0.0033 0.00 1.0 0.00
25 37 NORTH_MN NORTH_F1 0.0 0.003 0.00 1.0 0.00
25 38 NORTH_MN NORTH_F2 0.0 0.003 0.00 1.0 0.00
25 7 NORTH_MN NORTH_GM 0.0 0.0009 0.00 1.0 0.00
25 46 NORTH_MN NORTH_TX 0.0 0.02 0.00 1.0 0.0
26 39 PACNW_MN PACNW_F1 0.0 0.0007 0.00 1.0 0.0
26 5 PACNW_MN PACNW_GM 0.0 0.002 0.00 1.0 0.0
30 28 SYLMR_DC SOUTH_MN 0.0 0.0033 0.00 1.0 0.0
28 40 SOUTH_MN SOUTH_F1 0.0 0.005 0.00 1.0 0.0
28 41 SOUTH_MN SOUTH_F2 0.0 0.008 0.00 1.0 0.0
28 17 SOUTH_MN SOUTH_GM 0.0 0.0008 0.00 1.0 0.0
24 31 BUTAH_MN INTMT_DC 0.0 0.0033 0.00 1.0 0.0
32 28 ADLAN_DC SOUTH_MN 0.0 0.0033 0.00 1.0 0.0
23 3 MONTA_MN MONTA_GM 0.0 0.0007 0.00 1.0 0.0
24 12 BUTAH_MN BUTAH_GM 0.0 0.0007 0.00 1.0 0.0
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Table F.4: Line Data

From To from bus name To bus name R X B Tap ratio Tap phase

21 26 PACNW_MN CANAD_MN 0.0019 0.021 0.22 0.0 0.0
23 25 NORTH_MN MONTA_Mn 0.0019 0.0155 0.0952 0.0 0.0
45 24 MONTA_TX BUTAH_mM 0.0085 0.0995 0.50 0.0 0.0
25 26 NORTH_MN PACNW_MN 0.00025 0.00282 0.018 0.0 0.0
25 26 NORTH_MN PACNW_MN 0.0003 0.00279 0.009 0.0 0.0
24 26 NORTH_TX BUTAH_MN 0.008 0.084 0.334 0.0 0.0
26 22 PACNW_MN NOCAL_MN 0.003 0.018 0.018 0.0 0.0
27 22 NOCAL_MN SOCAL_TX 0.0035 0.0246 0.292 0.0 0.0
27 28 SOCAL_TX SOUTH_MN 0.0001 0.00075 0.04 0.0 0.0
20 28 SOUTH_MN ARIZO_MN 0.002 0.0155 0.032 0.0 0.0
44 24 BUTAH_MN ARIZO_TX 0.0092 0.109 0.5 0.0 0.0
34 16 ARIZO_F2 ARIZO_G2 0.00007 0.007 0.0 0.0 0.0
15 33 ARIZO_G1 ARIZO_F1 0.0001 0.002 0.0 0.0 0.0
2 35 CANAD_G1 CANAD_F1 0.0006 0.0073 0.0 0.0 0.0
36 11 NOCAL_F1 NOCAL_G1 0.00007 0.0055 0.0 0.0 0.0
37 8 NORTH_F1 NORTH_G1 0.00008 0.0053 0.0 0.0 0.0
38 9 NORTH_F2 NORTH_G2 0.00007 0.0063 0.0 0.0 0.0
39 6 PACNW_F1 PACNW_G1 0.00002 0.0005 0.0 0.0 0.0
40 18 SOUTH_F1 SOUTH_G1 0.00007 0.006 0.0 0.0 0.0
41 19 SOUTH_F2 SOUTH_G2 0.00007 0.004 0.0 0.0 0.0
42 4 MONTA_F1 MONTA_G1 0.00007 0.006 0.0 0.0 0.0
43 13 BUTAH_F1 BUTAH_G1 0.00007 0.006 0.0 0.0 0.0

Table F.5: Generator of Classical Model

Bus x0d H D Rating
Name (MVA)

ARIZO_GM 0.2561 6.11 0 9000
CANAD_GM 0.1875 5.5 0 9000
NOCAL_GM 0.25 4.375 0 8000
NORTH_GM 0.2561 6.67 0 9000
MONTA_GM 0.25 2.5 0 2000
BUTAH_GM 0.25 2.67 0 6000
SOUTH_GM 0.25 4.44 0 9000
PACNW_GM 0.25 4 0 3000
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Table F.6: Generator of Detail Model

Bus xd xq xl x0d x0q Ra T 0d0 T 0q0 H D Rating
Name (s) (s) (MVA)

ARIZO_G1 1.7 1.6 0.0 0.25 0.5 .0 6.0 0.8 3.83 0 3118
ARIZO_G2 1.7 1.6 0.0 0.25 0.5 .0 6.0 0.8 3.23 0 640
CANAD_G1 0.9 0.6 0.0 0.25 0.5 .0 8.0 1.0 5.1 0 880
NOCAL_G1 1.7 1.6 0.0 0.25 0.5 .0 6.0 0.8 5.36 0 1500
MONTA_G1 1.7 1.6 0.0 0.25 0.5 .0 6.0 0.8 4.1 0 2398
BUTAH_G1 0.9 0.6 0.0 0.25 0.5 .0 8.0 1.0 2.88 0 1982
NORTH_G1 0.9 0.6 0.0 0.25 0.5 .0 8.0 1.0 2.4 0 737
NORTH_G2 0.9 0.6 0.0 0.25 0.5 .0 8.0 1.0 2.98 0 1137
PACNW_G1 1.7 0.9 0.0 0.37 0.75 .0 8.0 1.0 4.82 0 2208
SOUTH_G1 1.7 1.6 0.0 0.25 0.5 .0 6.0 0.8 5.156 0 3004
SOUTH_G2 1.7 1.6 0.0 0.25 0.5 .0 6.0 0.8 3.8044 0 2500

Table F.7: Exciter Data

Generator Ka Ta Tb Tc Vrmax Vrmin Ke Te E1 E2

ARIZO_G1 15 0.02 0 0 5 -5 1 0 -2 7
ARIZO_G2 15 0.02 0 0 5 -5 1 0 -2 7
CANAD_G1 10 0.02 0 0 5 -5 1 0 -3 6
NOCAL_G1 15 0.02 0 0 5 -5 1 0 -2 7
MONTA_G1 10 0.02 0 0 5 -5 1 0 -3 6
BUTAH_G1 20 0.02 0 0 5 -5 1 0 -3 6
NORTH_G1 10 0.02 0 0 5 -5 1 0 -3 6
NORTH_G2 10 0.02 0 0 5 -5 1 0 -3 6
PACNW_G1 10 0.02 0 0 5 -5 1 0 -3 6
SOUTH_G1 20 0.02 0 0 5 -5 1 0 -3 6
SOUTH_G2 20 0.02 0 0 5 -5 1 0 -3 6
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