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ABSTRACT 

 

 Sensor Placement Algorithm for Maximizing Process Efficiency  
 

Prokash Paul 

 
 

Even though the senor placement problem has been studied for process plants, it has been done 

for minimizing the number of sensors, minimizing the cost of the sensor network, maximizing 

the reliability, or minimizing the estimation errors.  In the existing literature, no work has been 

reported on the development of a sensor network design (SND) algorithm for maximizing 

efficiency of the process. The SND problem for maximizing efficiency requires consideration of 

the closed-loop system, which is unlike the open-loop systems that have been considered in 

previous works. In addition, work on the SND problem for a large fossil energy plant such as an 

integrated gasification combined cycle (IGCC) power plant with CO2 capture is rare.  

 

The objective of this research is to develop a SND algorithm for maximizing the plant 

performance using criteria such as efficiency in the case of an estimator-based control system. 

The developed algorithm will be particularly useful for sensor placement in IGCC plants at the 

grassroots level where the number, type, and location of sensors are yet to be identified.  In 

addition, the same algorithm can be further enhanced for use in retrofits, where the objectives 

could be to upgrade (addition of more sensors) and relocate existing sensors to different 

locations.  The algorithms are developed by considering the presence of an optimal Kalman 

Filter (KF) that is used to estimate the unmeasured and noisy measurements given the process 

model and a set of measured variables. The designed algorithms are able to determine the 

location and type of the sensors under constraints on budget and estimation accuracy. In this 

work, three SND algorithms are developed: (a) steady-state SND algorithm, (b) dynamic model-

based SND algorithm, and (c) nonlinear model-based SND algorithm. These algorithms are 

implemented in an acid gas removal (AGR) unit as part of an IGCC power plant with CO2 

capture. The AGR process involves extensive heat and mass integration and therefore, is very 

suitable for the study of the proposed algorithm in the presence of complex interactions between 

process variables.  
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Chapter 1  
 

Introduction 

 

 

Power plants are facing increasingly higher targets for efficiency. At the same time, 

environmental emission standards are becoming tighter. Under these constraints, the sensor 

network can play an important role in meeting these goals. An optimal sensor network can help 

to achieve the desired performance in the process and power plants. However, due to the 

possibility of trillions of candidate combination of sensors, it is very difficult to find the optimal 

locations, numbers and types of sensors in a large scale plant.  

 

A number of process variables that are measured have low precision, reliability, or signal-to-

noise ratio. However, plant operators or control systems take action based on these poor 

measurements thus resulting in a suboptimal operation. The variables that are measured can be of 

two types. The first type is used for monitoring purposes. For example, if the measured variable 

is an environmental variable, then a measurement error can lead to violation of environmental 

emission limits. If the measured variable is a key variable for monitoring equipment health, an 

error can lead to undesired conditions such as equipment damage. In addition, many other 

process variables are monitored to avoid safety hazards, or unwanted products or other undesired 

conditions. Therefore, desired estimation accuracy must be achieved by the measurement 

network for these variables. The second type of measured variables is used as controlled 

variables. Some variables under this category can affect the plant efficiency. In the method 

proposed by Skogestead (2004), if the plant control structure is systematically designed by 

optimizing the economic performance, then all the controlled variables (also called primary 

controlled variables) in such control structure affect plant efficiency.  

 

Jones et al. (2014) have extended the work of Skogestad (2004) by incorporating the control 

performance of the primary controlled variables in the selection criteria. In this approach, 

optimizations are performed for maximizing an economic objective with respect to steady-state 

degrees of freedom (DOF) by considering various disturbances. The active constraints are 
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selected as primary controlled variables. In addition, depending on the remaining DOF, 

additional controlled variables are selected so that they are self-optimizing.  The self-optimizing 

controlled variables are those that when left constant, result in an acceptable economic loss in the 

face of disturbances (Skogestad, 2000). If the primary controlled variables in a plant are self-

optimizing and the plant has been optimally designed, then a deviation from the optimal values 

of the controlled variables would result in a loss in efficiency. The extent of this loss in 

efficiency depends on the magnitude and direction of the deviation. A low estimation accuracy 

of these variables will lead to a loss in efficiency. On the other hand, setting arbitrarily high 

estimation accuracy will result in undesired increase in the cost of the senor network. Therefore, 

unlike existing sensor network design (SND) methods where the desired estimation accuracy of 

all variables of interest is set by the user, no specifications are needed for estimation accuracy of 

the self-optimizing controlled variables when using the estimator-based control system.  

 

For the primary controlled variables that are active constraints, the change in the process 

efficiency with respect to a change in the variable is monotonic, at least locally. Therefore, 

specifications have to be provided by the user for either the positive or the negative estimation 

accuracy of these variables, but not necessarily for both positive and negative. This aspect is 

better explained by the following example. Consider a CO2 capture unit with an operational 

objective of 90% CO2 capture. It has been well-documented that CO2 capture can strongly affect 

plant efficiency (Figueroa, 2008). Due to inaccuracies in the measurement system, two undesired 

operational scenarios may occur while maintaining the target capture rate. In the first scenario, 

the measurement system might show that CO2 capture is less than the target (e.g. 89.8%) even 

though the actual capture is exactly 90%. In this scenario, the plant operators/control system will 

change the operating conditions to increase the amount of CO2 capture to maintain it at the set 

point thereby causing a loss in process efficiency.  For this scenario, the negative estimation 

accuracy can be determined by considering the tradeoff between efficiency and cost.  In the 

second scenario, if the measurement system shows a greater (i.e. 90.2%) CO2 capture level even 

though the actual capture is 90%, the plant operators/control system will change the operating 

conditions to decrease the CO2 capture. As a result more CO2 will be released to the 

environment, which can result in a penalty from the regulating agencies. For this scenario, the 

allowable positive estimation accuracy has to be set by the user. For many measurement 
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instruments, the estimation accuracy guaranteed by the manufacturer is the same in both positive 

and negative direction. For such instruments, the SND algorithm should automatically determine 

the limiting deviation and design the sensor network accordingly.  

 

With these motivations, a new SND algorithm has been developed assuming an estimator-based 

control system where an optimal Kalman filter (KF) (Kalman, 1961) is used to estimate the states 

in the presence of measurement and process noise. Due to the feedback loop in the control 

system, the resulting system of equations becomes very difficult to converge for any arbitrary set 

of integer variables (i.e., set of sensors). Thus, the objective of this research is to develop SND 

algorithm for optimal selection of sensor location, number, and type that can maximize the plant 

efficiency in addition to obtaining a desired precision of the key measured/unmeasured states in a 

large, highly-integrated industrial process.  

 

Chapter 2 presents existing literatures in the area of SND algorithm development. Literature has 

been reviewed mostly from the perspective of designing sensor network and inherent 

computational expense in solving large scale problems. Chapter 3 discusses state estimation in 

the presence of large model mismatch and high measurement noise. 

 

A steady-state SND (SSND) algorithm, presented in the fourth chapter, is developed using a 

sequential optimization algorithm. The algorithm follows the infeasible path method where a 

‘tearing’ approach is used to solve the feedback loops. The methodology is developed in a way 

that large-scale systems can be solved efficiently. In this work, the integer programming problem 

is solved by the genetic algorithm (GA) method while other linear and nonlinear constraints are 

satisfied by a sequential equation solver using a ‘tear’ stream approach. Chapter 4 also discusses 

in more detail how this formulation helps in satisfying the linear and nonlinear equality 

constraints for every combination of integer variables.  

 

Chapter 5 presents a dynamic model-based sensor network design (DMSND) algorithm for 

efficiency maximization of a transient system. DMSND algorithms can be computationally very 

expensive due to the study of the transient behavior for each candidate set of sensors. This 

computational expense significantly increases as the number of state variables and the number of 
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candidate sensor variables increase. In particular, the solution of the matrix Riccati equation that 

appears in KF, takes significant computational time. However, for the DMSND algorithm to be 

usable for large-scale industrial applications, an efficient algorithm is desired that can be solved 

within reasonable run times using reasonable computing resources.  With this incentive, a 

computationally efficient DMSND algorithm using the estimator-based control system approach 

has been developed in this work for maximizing the efficiency. In DMSND algorithm, KF is 

used for estimating process states (Paul et al., 2013) and particular focus is given to its 

convergence properties. In addition, several strategies have been developed to reduce 

significantly the computational expenses. This algorithm is designed to be implemented using a 

GA approach. 

 

Chapter 6 extends the DMSND algorithm for nonlinear process model thus referred to as 

nonlinear model-based SND algorithm (NDMSND). A multi-objective optimization problem has 

been solved for optimal sensor network design. Chapter 6 presents the identification of a 

nonlinear process model using input-output data and this is followed by the lexicographic 

optimization of process efficiency and budget for the sensors.  GA is used to implement the 

designed NDMSND algorithm.  

 

To achieve the objective mentioned before, the system that needs to be considered for 

developing the SND algorithm is shown in Figure 1.1. In the estimator-based control system, the 

measurement network affects the estimation accuracy assuming an optimal KF is implemented 

for estimation. As a result, the control action is affected and finally, due to the control action, the 

process efficiency is affected.   

 

Many of the SND algorithms in the existing literature have been applied to small simplified test 

problems. In this work, the developed methodology is applied to a large, highly integrated acid 

gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant 

with CO2 capture. This AGR unit comprises of a number of typical unit operations involving 

considerable mass and energy integration and, therefore, is a very good industrial case study for 

the proposed algorithm. 
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Figure 1.1: Schematic of the estimator-based control system for development of the SND 

algorithm. 
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Chapter 2  

 

Literature Review 

 

Over the last two decades, optimal sensor placement has been an area of active research.  

Researchers have primarily focused on sensor placement either for process monitoring or fault 

detection and identification purposes. Fault diagnosis is beyond the scope of this research. 

Interested readers are referred to some of the seminal works in SND by Raghuraj et al.(1999), 

Bhushan et al. (2000, 2002a, 2002b, 2008), Muslin et al. (2004) and Narasimhan et al.(2007). 

One of the popular goals for SND is to obtain the cost-optimal sensor network. Bagajewicz 

(1997, 2000), Bagajewicz and Cabrera (2002), and Chmielewski et al. (2002) have obtained a 

minimal cost SND subject to constraints on precision, error detectability, reliability, and 

resilience. Kelly and Zyngier (2008) have minimized the cost of a sensor network with 

constraints on software and hardware redundancy. Kadu et al., (2008) has presented an SND 

algorithm for maximizing estimation accuracy. A review of SND algorithms through 2000 can 

be found in the book of Bagajewicz et al. (2000). SND from an economic perspective has been 

presented by Bagajewicz and Markowski (2203) and Bagajewicz (2005a). Later, Bagajewicz 

(2005b) has extended the concept of economic value of precision by introducing the effect of 

induced bias obtained by evaluating the economic value of accuracy. Bagajewicz et al. (2005, 

2006, 2008) have also investigated economic value of data reconciliation and instrumentation 

upgrades. Peng and Chmielewski (2006, 2005) have placed sensors from the controls 

perspective.  

 

Other than different objectives considered for the SND problem, different computational 

methods have also been developed in the open literature for designing optimal SND. A tree 

search approach has been used by Bagajewicz (1997), Bagajewicz and Sanchez (2000), and 

Bagajewicz and Cabrera (2002) to solve a mixed integer problem. Later an equation-based tree 

search method for the design of a nonlinear sensor network is presented by Nguyen and 

Bagajewicz (2008, 2013). A genetic algorithm (GA) has been used by Zumoffen and Basualdo 

(2010). A graph theoretic approach has been used by Meyer et al. (1994) and Luong et al. (1994) 
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to design a sensor network for process monitoring. An approach combining the GA and graph 

theoretic approaches has been developed by Sen et al. (1998) to synthesize a non-redundant SND 

algorithm for linear processes. Madron and Veverka (1992) have adopted a Gauss-Jordan 

elimination method to optimize overall measurement cost and overall precision of a system. 

Recently, a stochastic optimization-based method is proposed by Ghosh et al. (2014) to identify 

an optimal subset of measured variables for effective statistical process monitoring. 

 

Computational expense has always been an issue for solving large-scale SND problems. Due to 

this difficulty, Chmielewski et al. (2002) has offered an alternative SND formulation to obtain a 

minimum cost sensor network. The authors have improved computational efficiency by 

converting the nonlinear programming problem into a convex program through the use of linear 

matrix inequalities.  They have applied the SND approach to both steady-state and dynamic 

processes subject to single/multiple constraints on precision, gross-error detectability, resilience, 

and reliability.  Nguyen and Bagajewicz (2008) have proposed a rigorous equation-based tree 

search method for designing nonlinear sensor networks but its performance is not satisfactory 

when dealing with large-scale problems (≥ 35 measured variables and ≥ 25 balance equations). 

Later on, they have proposed an approximate method (Nguyen and Bagajewicz, 2013) to solve a 

large-scale problem with 35 variables and 28 balance equations where the equation-based tree 

search method is used for initialization but still optimality of the solution is not guaranteed. 

Singh and Hahn
 
(2005) have obtained optimal sensor locations for stable nonlinear state 

estimation by maximizing the degree of observability based upon observability covariance 

matrix. In addition, they have presented an optimal SND approach (Singh and Hahn, 2006) for a 

nonlinear dynamic system by considering the trade-off among process information, measurement 

cost, and redundancy subject to the constraint on number of sensors. Due to the computational 

expense, they have performed the calculation of empirical Gramians for all sensor locations 

outside the optimization and then finally GA is used to solve a mixed integer nonlinear 

programming (MINLP) problem. Recently, Nguyen and Bagajewicz (2011) have presented an 

optimal SND approach based on value of information. Serpas (2012) creates a generic approach 

for finding the optimal sensor network design for nonlinear systems. In order to choose the best 

sensor network, a metric is defined. In this work, the determinant of the empirical observability 

Gramian is chosen. However, for systems that are unobservable or marginally observable, this 
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metric creates numerical problems. As a way of producing meaningful results, state space 

reduction is performed on the matrix before the determinant.  Finally, this paper incorporates 

methods from the optimization literature for efficiently solving the mixed integer nonlinear 

programming problem (MINLP) that results from the maximization of the determinant. This 

combination of proposed approaches utilizes the information provided by the observability 

Gramian in order to determine the best sensor network design. 

 

Effort has also been made to design sensor network for improving power plant performance. Lee 

and Diwekar (2012) have developed an optimal sensor placement algorithm for advanced power 

plants where a stochastic integer programming problem is solved to maximize the Fisher 

information subject to budget constraints. Recently, Sahraei et al. (2014) have presented a 

comprehensive literature review on the sensor placement methodologies and control strategies to 

improve power plant efficiency. Recently, Nguyen and Bagajewicz (2011) have proposed a SND 

algorithm for maximizing the difference between the economic value of information and cost.  

 

Literature review on state estimation using KF and adaptive KF is provided in Chapter 3.  

Review of the existing literature in the area of steady-state process model-based SND is 

discussed in Chapter 4. Chapter 5 includes the literature review on DMSND algorithm and 

computational expense in solving large scale problems. Existing work in the area of nonlinear 

state estimation, nonlinear model identification and NDMSND algorithm development are 

discussed in Chapter 6.   

 

In the following chapters, the contributions to the field of sensor network design will be 

discussed. Major contributions during the course of this work are in the area of algorithm 

development for known/unknown state estimation and SND algorithm for determining optimal 

location, number and type of measurements.  
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Chapter 3  

 

State Estimation 

 

Accurate estimation of measured/unmeasured process variables is crucial to satisfy the 

constraints on environmental emission. In this chapter, traditional and adaptive Kalman Filter 

(KF) is introduced and basic discrete KF is discussed.  Use of an adaptive KF will be presented 

that adapts process noise covariance matrix (Q) and measurement noise covariance matrix (R) at 

every time step. Performance of the traditional KF is compared with the adaptive KF by 

introducing a number of input disturbances to an acid gas removal process. 

     

3.1 Literature Review 

Kalman (Kalman, 1961) published a recursive solution to the discrete data linear filtering 

problem. Since that time, the KF has been the subject of extensive research and application. The 

KF is a set of mathematical equations that provide efficient computational means to estimate the 

measured/unmeasured state of a process which minimizes the squared error between the actual 

and the estimated states. KF supports estimation of past, present and future states even in the 

presence of measurement noise and large mismatch between the model and the actual process. A 

general idea about KF can be found in Maybeck (1979). More interested readers are referred to 

the following references Zarchan et al. (2009), Sorenson (1970), Gelb (1974), Grewal and 

Andrew (1993), Lewis (1986), and Jacobs (1993).  

 

3.1.1 Traditional KF 

For traditional KF, the process is described by equations that are in matrix or state-space form as 

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑢 + 𝑤                                                                (3.1)                                 

In Eq. (3.1) state variables represented by x are a column vector, A is the nonsingular constant 

process matrix and B is the input matrix. u is a known vector, which is sometimes called the 

control vector. The random variable w is process white noise, which is also expressed as vector. 

The process noise covariance matrix Q is related to process noise vector according to  
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𝑄 = 𝐸[𝑤𝑤𝑇]                                                                  (3.2) 

where 𝐸[. ] designates the expected value. Although process noise might not always have 

physical meaning in this work it is used as a device to represent mismatch between the linear 

model and nonlinear process as well as unmodeled process dynamics. The traditional KF 

requires that the measurements be linearly related to the states as 

𝑦𝑛𝑜𝑖𝑠𝑦 = 𝐶𝑥 + 𝑣                                                            (3.3) 

In Eq. (3.3) 𝑦𝑛𝑜𝑖𝑠𝑦 is the measurement vector, C the measurement matrix and v is the white 

measurement noise, which is also expressed as a vector. w and v are assumed to be uncorrelated. 

The measurement noise covariance matrix R is related to measurement noise vector according to 

𝑅 = 𝐸[𝑣𝑣𝑇]                                                                  (3.4) 

where R and Q are manually tuned. However, the distinguishing feature of the traditional KF is 

that R and Q are kept constant during state estimation. Therefore, good guesses for both Q and R 

are required to obtain satisfactory filter performance. However, in industrial applications, these 

matrices are unknown and it is difficult to generate good guesses for them. 

The estimation error e between actual state x and estimated state 𝑥̂  is defined as 

𝑒 = 𝑥 − 𝑥̂                                                                  (3.5) 

and the estimation error covariance matrix, 𝑃 = 𝐸[𝑒𝑒𝑇]                                                           (3.6) 

P can be calculated from the following matrix differential equation, 

 
 𝑑𝑃

𝑑𝑡
= −𝑃𝐶𝑇𝑅−1𝐶𝑃 + 𝑃𝐴𝑇 + 𝐴𝑃 + 𝑄                             (3.7) 

which in turn is used to compute Kalman gain, K.  

 𝐾 = 𝑃𝐶𝑇𝑅−1                                                                (3.8) 

Kalman gain in Eq. (3.9) is a set weight on the difference (𝑦𝑛𝑜𝑖𝑠𝑦 − 𝐶𝑥̂). The difference is called 

the measurement innovation or residual. 𝐶𝑥̂ is the predicted measurement. The residual of zero 

means that the ynoisy  and 𝐶𝑥̂ are in complete agreement.    

𝑑𝑥̂

𝑑𝑡
= 𝐴𝑥̂ + 𝐵𝑢 + 𝐾(𝑦𝑛𝑜𝑖𝑠𝑦 − 𝐶𝑥̂)                                            (3.9)                       
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 Preceding relationships are discretized to derive discrete traditional Kalman filter. Consider 

discrete measurements with time interval 𝛥𝑡.  

𝛷 = exp (𝐴𝛥𝑡)                                                (3.10) 

𝐺 = ∫ exp (𝐴𝜎)
𝛥𝑡

0
𝐵𝑑𝜎                                     (3.11) 

𝛷 and G are the discrete transition matrix and discrete input matrix respectively.  

The linear stochastic vector-difference equation (Eq. 3.12-3.13) of the discrete dynamic system 

is shown as   

      𝑥𝑘 = 𝛷𝑥𝑘−1 + 𝐺𝑢𝑘−1 + 𝑤𝑘−1                              (3.12) 

      𝑧𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘−1                                            (3.13) 

The traditional discrete KF estimates the process states based on the predictor-corrector 

approach. The traditional KF algorithm is shown below 

 

Initial Conditions 

𝑥0 𝑎𝑛𝑑 𝑃0  

Predictor: Time Update Equations 

𝑥̂𝑘
− = 𝐴𝑥̂𝑘−1 + 𝐵𝑢𝑘−1                                  (3.14) 

𝑃𝑘
− = 𝐴𝑃̂𝑘−1𝐴

𝑇 + 𝑄          (3.15) 

Corrector: Measurements Update Equations 

𝐾𝑘 = 𝑃𝑘
−𝐶𝑇(𝐶𝑃𝑘

−𝐶𝑇 + 𝑅)−1                              (3.16) 

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐶𝑥̂𝑘

−)                    (3.17) 

𝑃̂𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘
−                                                           (3.18) 

𝑥̂𝑘 , 𝑥̂𝑘
− , 𝑃̂𝑘 ,  𝑃𝑘

− , and 𝐾 denote the estimated state vector,  predicted state vector, estimated 

state covariance matrix, predicted state covariance matrix, and optimal Kalman gain, 

respectively. Looking at Eq. (3.16), as the measurement error covariance R approaches zero, the 

actual measurement 𝑦𝑘 is trusted more, and the gain K weights the residual more heavily.  

lim
𝑅𝑘0

𝐾𝑘 = 𝐶−1                                                                      (3.19) 

On the other hand, predicted state covariance matrix 𝑃𝑘
−  approaches zero, the actual 

measurement 𝑦𝑘 is trusted less, and the gain K weights the residual less heavily. Specifically, 
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lim
𝑃𝑘

−  0
𝐾𝑘 = 0                                                                         (3.20) 

It implies that the predicted measurement is trusted more while 𝑃𝑘
−  approaches zero. 

 

3.1.2 Adaptive KF 

In the traditional KF algorithm, the filter parameters (R and Q) are assumed constant. Because of 

the dynamic behavior of the process, periodic re-estimation of these matrices might be required. 

An Adaptive KF can be utilized to accomplish this.  

 

3.1.2.1 Innovation-based Estimation of R 

R can be adapted based on innovation sequences (Mehra, 1970, 1971; Mohamed and Schwarz, 

1999). This adaptation includes estimations of the variance-covariance matrix (𝐶̂𝑣) of the 

innovation sequence (𝑣), the difference between the noisy measurements 𝑧𝑘  and its predicted 

values 𝐶𝑥̂𝑘
−. The number of samples m is referred to as window size. 𝐶̂𝑣 may be computed 

through averaging inside a moving window at each time step (Mohamed and Schwarz, 1999):    

              𝑣𝑘  =  𝑧𝑘 –  𝐶𝑥̂𝑘
−                                              (3.21) 

              𝑅̂𝑘 = 𝐶̂𝑣 − 𝐶𝑃𝑘
−𝐶𝑇                                   (3.22) 

              𝐶̂𝑣 =
1

𝑚
∑ 𝑣𝑘−𝑖𝑣𝑘−𝑖

𝑇𝑚
𝑖=1                                                 (3.23)  

The outcomes must be positive definite for the innovation based estimation of R. This outcome is 

not guaranteed in the previous approach as two positive definite matrices are subtracted.  

  

3.1.2.2 Residual-based Estimation of 𝑹 

The residual based estimation of R, as proposed by Wang et al. (1999, 2000), can be used to 

ensure that the estimated 𝑅 is positive definite. This includes the estimations of the variance-

covariance matrix (𝐶̂𝑣̅) of the residual sequence 𝑣̅ , the difference between the noisy 

measurements and its estimated values. Residual based adaptive Kalman filtering is shown 

below: 

                       𝑣̅𝑘  =  𝑧𝑘 –  𝐶𝑥̂𝑘                                           (3.24) 

                       𝑅̂𝑘 = 𝐶̂𝑣̅ − 𝐶𝑃̂𝑘𝐶
𝑇                                      (3.25) 

                       𝐶̂𝑣̅ =
1

𝑚
∑ 𝑣̅𝑘−𝑖𝑣̅𝑘−𝑖

𝑇𝑚
𝑖=1                                 (3.26)             
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3.1.2.3 Adaptive Estimation of Process Noise Covariance Matrix (𝑸) 

Estimation of the process noise covariance matrix Q depends on the measurement noise 

covariance matrix 𝑅, as the estimation of 𝑅 requires the predicted state covariance 𝑃𝑘
− and hence 

Q.  If 𝑅 and  𝑃̂𝑘 are assumed to be known, Q can be calculated as (Wang et al., 1999; Ding et al., 

2007): 

                      𝑄𝑘  =  𝑄𝑘−1√𝛼                                    (3.27) 

where α is the ratio between the estimated and predicted innovation covariance (Ding et al., 

2007). 

                     𝛼 =
𝑡𝑟𝑎𝑐𝑒{𝐶̂𝑣−𝑅𝑘}

𝑡𝑟𝑎𝑐𝑒{𝐶𝑃𝑘
−𝐶𝑇}

                   (3.28) 

 

3.2 Algorithm 

3.2.1 Adaptation of R 

Figure 3.1 shows the algorithm used in this work for the residual-based estimation of R. The state 

vector and the state error covariance matrix are initialized to calculate 𝑥̂𝑘
− and 𝑃𝑘

− for the next 

time step. In the time update equations, u is known and a good guess is made for Q based on the 

knowledge of discrepancy between the model and the actual process. A series of measurements 

is used where the window size for measurement is preset to m for calculating adaptive R. If the 

current time instant is less than m the algorithm follows the steps 𝑖 − 𝑖𝑖𝑖 in traditional KF with 

fixed R. Once the window size measurements are available the algorithm follows steps 𝑖 − 𝑣𝑖  in 

residual-based adaptation of R.      
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Figure 3.1: Algorithm for residual-based estimation of R. 

 

3.2.2 Adaptation of Q 

Figure 3.2 shows the algorithm used in this work for adaptive estimation of Q. The state is 

initialized as a zero vector and the state error covariance matrix is initialized as a null matrix. 

The same value of Q as used in the adaptation of R is used to make initial guess. The time update 

equations predict 𝑥̂𝑘
− and 𝑃𝑘

− for the current time step.  Predicted state is used to compute 

innovation sequence. 𝐶̂𝑣 is computed through averaging inside a moving window at each time 

Measurement update equations 

Time update equations 

i. 𝑥̂𝑘
− = 𝐴𝑥̂𝑘−1 + 𝐵𝑢 

ii. 𝑃𝑘
− = 𝐴𝑃̂𝑘−1𝐴

𝑇 + 𝑄 (fixed) 

if  𝑘 < 𝑚 

Fixed 𝑅 

(Traditional KF) 

i. 𝐾𝑘 = 𝑃𝑘
−𝐶𝑇(𝐶𝑃𝑘

−𝐶𝑇 + 𝑅)−1              

ii. 𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐶𝑥̂𝑘

−) 

iii. 𝑃̂𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘
−   

 

if  𝑘 ≥ 𝑚 

Window size, m (fixed) 

Adaptation of 𝑅 

(Residual-based) 

i. 𝐾𝑘 = 𝑃𝑘
−𝐶𝑇(𝐶𝑃𝑘

−𝐶𝑇 + 𝑅𝑘−1)
−1              

ii. 𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐶𝑥̂𝑘

−) 

iii. 𝑃̂𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘
− 

iv.  𝑣̅𝑘  =  𝑧𝑘 –  𝐶𝑥̂𝑘     

v. 𝐶̂𝑣̅ =
1

𝑚
∑ 𝑣̅𝑘−𝑖𝑣̅𝑘−𝑖

𝑇𝑚
𝑖=1  

vi. 𝑅̂𝑘 = 𝐶̂𝑣̅ + 𝐶𝑃̂𝑘𝐶
𝑇 

Initial guess 

𝑥0, 𝑃0 and 𝑄0 

 

Initial 

guess of 

R 
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step. Window size remains variable until the number of sample reaches n. It should be noted that 

the adaptive estimation of Q uses fixed R obtained from final iteration of Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Algorithm for adaptive estimation of Q. 

 

3.3 Working Approach 

Starting with a detailed nonlinear process model of the AGR process in Aspen Plus Dynamics
®
 

(APD
®
), a continuous-time, linear model is generated by running a control design interface 

(CDI) script that linearizes the nonlinear model around the steady-state operation conditions. The 

Measurement update equations 

Fixed 𝑅  

(Traditional KF) 

v. 𝛼 =
𝑡𝑟𝑎𝑐𝑒{𝐶̂𝑣−𝑅}

𝑡𝑟𝑎𝑐𝑒{𝐶𝑃𝑘
−𝐶𝑇}

              

vi. 𝐾𝑘 = 𝑃𝑘
−𝐶𝑇(𝐶𝑃𝑘

−𝐶𝑇 + 𝑅)−1              

vii. 𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐶𝑥̂𝑘

−) 

viii. 𝑃̂𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘
− 

ix. 𝑄𝑘  =  𝑄𝑘−1√𝛼   

 

Time update equations 

i. 𝑥̂𝑘
− = 𝐴𝑥̂𝑘−1 + 𝐵𝑢 

ii. 𝑃𝑘
− = 𝐴𝑃̂𝑘−1𝐴

𝑇 + 𝑄𝑘−1 

Initial guess of 

𝑥0, 𝑃0and 𝑄0 

 

iii.     𝑣𝑘  =  𝑧𝑘 –  𝐶𝑥̂𝑘
−           

iv.  𝐶̂𝑣 =
1

𝑚
∑ 𝑣𝑘−𝑖𝑣𝑘−𝑖

𝑇𝑚
𝑖=1     

Adapted R (fixed) 

obtained from 

final iteration of 

Figure (2) 

 

𝑧𝑘 

Noisy 

measurements 

 

if 𝑘 < n; window size, m, is variable 

if 𝑘 ≥ n; window size, m, is fixed at n 
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linear model is discretized in MATLAB
®
 for use in the KF algorithm. The measurement data 

used in this work are generated by the nonlinear APD process model. The working approach is 

shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Flowsheet of the working approach. 

 

3.4 Case Study 

The application of the algorithm presented in Figures 3.1 and 3.2 is illustrated in this study for 

acid gas removal (AGR) process as part of the IGCC plant with CO2 capture that has been 

presented by Bhattacharyya et al. (2011). The AGR process involves extensive heat and mass 

integration and therefore, is very suitable for the study of the designed estimators in the presence 

of complex interactions between process variables. Figure 3.4 shows the configuration of the 

AGR unit and subsequent CO2 compression system. 

The AGR process is a dual-stage unit that is selective to both H2S and CO2 capture. Chilled 

solvent is used to remove H2S in the first stage followed by a second stage that removes CO2. 

Most of the H2S in the syngas entering the AGR process is absorbed in the semi-lean solvent as it 

passes through the H2S absorber. The tail gas from the Claus sulfur capture unit is recycled to the 
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 Implementation of traditional and adaptive KF algorithm 

Aspen Plus Dynamics
®
:  

 Control system design and simulation of the 

nonlinear process model 
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H2S absorber. The off-gas from the top of the H2S absorber is sent to the CO2 absorber. A 

portion of the loaded solvent (about 30% in the base case) from the bottom of the CO2 absorber 

is chilled, and sent to the H2S absorber. The remaining portion of the loaded solvent from the 

bottom of the CO2 absorber is heated and then flows through the H2 recovery drum. After that it 

goes through a series of three flash vessels, high pressure (HP), medium pressure (MP), and low 

pressure (LP), to recover CO2 for compression in preparation for storage or sequestration. The 

semi-lean solvent leaving the LP flash vessel is cooled by exchanging heat with the loaded 

solvent and is then chilled before returning to the CO2 absorber. The rich solvent from the 

bottom of the H2S absorber is heated and then sent to a flash vessel. The vapor from the flash 

vessel is recycled back to the H2S absorber. The bottom stream from the flash vessel goes to the 

solvent stripper. Make-up solvent is mixed with the stripped solvent and sent to the top tray of 

the CO2 absorber.   

 

 

Figure 3.4: Configuration of the AGR and CO2 compression units (Bhattacharyya et al., 

2011). 
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In the results presented below, focus was the H2S absorber as shown in Figure 3.4. The H2S 

absorber model consists of 332 state variables, 2 input variables (pressure of the feed gas, and 

opening of the feed gas valve), and 10 output variables (H2S and CO2 molar concentration in the 

15
th

 and 20
th

 stages of the H2S absorber, flowrate of the top and bottom outlet streams from the 

H2S absorber, H2S and CO2 molar concentration in the top and bottom outlet streams from the 

H2S absorber). 

 

3.5 Results and Discussion 

All the results presented below are generated by introducing a 5.5% step increase in the feed gas 

flowrate to the H2S absorber. 

  

3.5.1 Adaptive R 

The innovation-based estimation of 𝑅 is discarded as the estimated 𝑅 is found to be negative 

definite in certain cases for this process. The results, shown in Figures 3.5-3.6 in terms of 

deviation variables, are based on the residual-based adaptive estimation of R. In this study, Q is 

manually tuned and then kept constant for all the cases presented in Figures 3.5-3.6. For the 

adaptive KF, the initial R is same as the 𝑅 used in the traditional KF. In these studies, the initial 

R is chosen such that the performance of the adaptive KF can be tested where the initial guess of 

𝑅 is poor. Figures 3.5 and 3.6 show the performance of the traditional as well as the adaptive KF 

for estimating CO2 and H2S composition in the top outlet stream from the H2S absorber. In both 

figures, the traditional KF fails to filter out the noise while the estimation of the adaptive KF 

matches nearly perfectly with the actual, noise-free data from the nonlinear process model.   



19 
 

 

Figure 3.5: Comparison of the filter estimates for the CO2 composition (deviation variable) 

in the H2S absorber top outlet stream. 
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Figure 3.6: Comparison of the filter estimates for the H2S composition (deviation 

variable) in the H2S absorber top outlet stream. 
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3.5.2 Adaptive 𝑸 

Figures 3.7-3.8 show the results when Q is adapted.  Here, R is set constant to the value obtained 

from the final iteration of the residual-based adaptive estimation of 𝑅. For the adaptive KF, the 

initial Q is the same as the Q used in the traditional KF. In these studies, the initial Q is chosen 

such that the performance of the adaptive KF can be tested where the initial guess of 𝑄 is poor. 

Figure 3.7 compares the estimation from the adaptive and traditional KFs for the flowrate of the 

H2S absorber bottom stream. The estimation from the adaptive KF matches very well with the 

actual data; whereas, the traditional KF with constant Q mainly follows the linear model.  

 

 

Figure 3.7: Comparison of the filter estimates for the H2S absorber bottom stream flowrate 

(deviation variable). 

 

Figure 3.8 compares the estimation of the H2S mole fraction in the H2S absorber bottom stream. 
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Figure 3.8: Comparison of the filter estimates for the H2S composition (deviation variable) 

in the H2S absorber bottom stream. 

 

3.6 Conclusion 

In this chapter, the key variables that capture the environmental performance of an AGR process 

are estimated by adapting R and Q separately. R is first adapted based on the residual sequence 

and then it is used to adapt Q. Results show that the estimation accuracy of the adaptive KF is 

much superior to the traditional KF. The adaptive KF estimates the key performance variables 

very accurately, even in the presence of a high noise-to-signal ratio and large mismatches 

between the linear and nonlinear process models. 
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Chapter 4  

 

Steady State SND Algorithm 

 

SND is a constrained optimization problem requiring systematic and effective solution 

algorithms for determining where best to locate sensors. In this chapter, a SND algorithm is 

developed for maximizing plant efficiency for an estimator-based control system while 

simultaneously satisfying accuracy requirements for the desired process measurements. The 

SND problem formulation leads to a mixed integer nonlinear programming (MINLP) 

optimization that is difficult to solve for large-scale system applications. A simultaneous solution 

approach is described where all the constraints are satisfied at the same time. Thus simultaneous 

approach is not appropriate for problems involving thousands of process variables. Therefore, a 

sequential approach is developed to solve the MINLP problem where the integer problem for 

sensor selection is solved using the genetic algorithm while the nonlinear programming problem 

including convergence of the ‘tear stream’ in the estimator-based control system is solved using 

the direct substitution method. The SND algorithm is then successfully applied to a large-scale, 

highly integrated chemical process.  

 

4.1 Literature Review 

Most of the SND algorithms that have been presented in the existing literature have considered 

static process conditions. These algorithms will be called steady-state SND (SSND) algorithms.  

Some of the most popular works in the area of SSND have been reviewed in Bagajewicz (2000). 

Among the earlier works on SSND are those by Vaclavek and  Loucka (1976), Kretsovalis and 

Mah (1987), and Madron and Veverka (1992). A linear steady state process was used by Ali 

(1993) and Ali and Narasimhan (1993, 1995 and 1996) to introduce the concept of reliability for 

sensor placement. Some of the recent works are the design of non-redundant observable linear 

sensor networks (Carnero et al., 2001, 2005) and redundant sensor network (Nabil and 

Narasimhan, 2012) for minimizing the loss of operational profit due to measurement error. 
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To the best of our knowledge, there is no SND algorithm in the existing literature for 

maximizing process efficiency. The main difference in the SND algorithm for maximizing 

efficiency is due to consideration of the closed loop system. It should be noted that all existing 

SND algorithms have been developed considering open-loop systems, i.e. the performance of the 

sensor network does not affect the process. In a closed-loop system, the measurements from the 

sensor network passes through the estimator, and the controllers take action based on the 

estimated values. This, in turn, affects the process and therefore the measured variables. As a 

result the estimator output and the control action differ from before. This continues until the 

process reaches its new steady state.   

 

Due to the feedback loop in the control system, the resulting system of equations becomes very 

difficult to converge for any arbitrary set of integer variables (i.e., set of sensors). A sequential 

optimization algorithm is developed that follows the infeasible path method where a ‘tearing’ 

approach is used to solve the feedback loops. The methodology is developed in a way that large-

scale systems can be solved efficiently.  

 

In this work, the integer programming problem is solved by GA while other linear and nonlinear 

constraints are satisfied by a sequential equation solver using a ‘tear’ stream approach. As 

discussed below in more detail, this formulation helps in satisfying the linear and nonlinear 

equality constraints for every combination of integer variables.  

 

Many of the SND algorithms in the existing literature have been applied to small simplified test 

problems. In this work, the developed methodology is applied to a large, highly integrated acid 

gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant 

with CO2 capture. This AGR unit comprises of a number of typical unit operations involving 

considerable mass and energy integration and, therefore, is a very good industrial case study for 

the proposed algorithm. 

 

The following organization is adopted in the rest of this chapter. First the SND algorithm for 

efficiency maximization for an estimator-based control system is developed. This is followed by 
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a discussion of the solution approaches to the SND problem. Finally, the application of the SND 

algorithm to the AGR case study is presented.   

 

4.2 Development of the SSND Algorithm 

Figure 4.1 shows the estimator-based control system that is used to develop the SSND algorithm.  

Perturbed by a disturbance, 𝑢𝑑, the estimator receives the noisy measurements, 𝑦𝑛𝑜𝑖𝑠𝑦,𝛽, from the 

sensor network and estimates the process variables of interest for use in control (𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡) and 

monitoring (𝑦̂𝑚𝑜𝑛). The controller(s) then implement(s) the corrective action on the process 

based on the estimated controlled variables.  

 

 

 

 

 

 

 

Figure 4.1: Schematic of the estimator-based control system for development of the SSND 

algorithm. 

 

For developing the SSND algorithm, first the set of equations corresponding to each block of the 

estimator-based control system is organized. The estimator block in Figure 4.1 is considered to 

be a continuous Kalman filter. The process and measurement models as appear in Eq. (3.1) and 

(3.3) are rewritten in terms of actual state   
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= 𝐴𝑥𝑎𝑐𝑡 + 𝐵𝑢 + 𝑤                                                            (4.1)                      

𝑦𝑛𝑜𝑖𝑠𝑦 = 𝐶𝑥𝑎𝑐𝑡 + 𝜈                                                                    (4.2)                                             

In Eq. (4.1), 𝐴 (𝑛 × 𝑛) and 𝐵 (𝑛 × 𝑚) are the constant nonsingular transition matrix and input 

matrix, respectively. Eq. (4.2) defines the relationship between the measurement vector (𝑦𝑛𝑜𝑖𝑠𝑦)  
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and the state vector (𝑥𝑎𝑐𝑡).  𝐶 (𝑙 × 𝑛) is the measurement matrix. The mismatch between the 

nonlinear process and the linear state space model is captured by the random variable 𝑤, 

typically known as the process noise vector. The random variable 𝜈 in Eq. (4.2) represents 

measurement noise. Process noise (𝑤) and measurement noise (𝑣) are assumed to be 

uncorrelated, Gaussian, white noise sequences with zero-mean.      

 

Traditional KF is used to estimate the states and disturbances of the process. Table 4.1 shows the 

equations that characterize the closed loop blocks: estimator, comparator, and controller. Linear 

differential equations (Eq. 4.3) are used to estimate the states 𝑥̂ of the controlled variables and 

other key performance variables of the process in the presence of noisy measurements, 𝑦𝑛𝑜𝑖𝑠𝑦 

and Kalman gain, 𝐾. Kalman gain can be obtained by first integrating the nonlinear matrix 

differential Riccati equation (Eq. 4.4) for the state covariance matrix, 𝑃, and then solving the 

matrix equation (Eq. 4.5) for the Kalman gain. 𝑄 and 𝑅 are kept constant during state estimation. 

Since the tuning parameters are unknown, a good guess is crucial for both of them.  

 

Table 4.1: Equations Characterizing the Estimator, Comparator and Controller Block (in 

Figure 4.1) 

Estimator (KF) Comparator 

 
𝑑 𝑥̂

𝑑𝑡
= 𝐴𝑥̂ + 𝐵𝑢 + 𝐾(𝑦𝑛𝑜𝑖𝑠𝑦 − 𝐶𝑥̂)                    (4.3) 

 𝑑𝑃

𝑑𝑡
= −𝑃𝐶𝛽

𝑇𝑅−1𝐶𝛽𝑃 + 𝑃𝐴𝑇 + 𝐴𝑃 + 𝑄             (4.4) 

𝐾 = 𝑃𝐶𝛽
𝑇𝑅𝛽

−1                                         (4.5) 

Estimated measurements: 

  𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡 = 𝐶𝑐𝑜𝑛𝑡𝑥̂                                  (4.6)    

Error function:  

 𝜀(𝑡) = 𝑦𝑐𝑜𝑛𝑡,𝑠𝑒𝑡 − 𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡                    (4.7)                                             

Controller (proportional- only) 

Control action:     
𝑑𝑢𝑐

𝑑𝑡
= 𝐾𝑐

𝑑𝜺(𝒕)

𝑑𝑡
             (4.8)   

 

The comparator receives the estimated measurements (Eq. 4.6) and compares them with the set 

point of the controlled variables of interest and calculates the error functions, 𝜀(𝑡) (Eq. 4.7). In 



26 
 

this case, a proportional-only (P) controller has been assumed mainly for simplicity. Eq. (4.8) 

shows the time variant proportional control action, where 𝐾𝑐 is the proportional gain.  

 

For simplicity and reduction of computational expense, the SSND algorithm is developed under 

steady-state assumptions. In addition to the steady-state versions of the equations shown in Table 

4.1, the inequality constraints shown in Eqs. (4.9) and Eq. (4.10) are also considered. In Eq. 

(4.9), parameter b denotes the budget ($) for the sensor where the left side of the inequality 

represents total cost of placed sensors  for obtaining measurements and 𝑐𝑖 denotes the cost of 

individual sensor i.   

                                                          ∑ 𝑐𝑖𝛽𝑖∀𝑖   ≤  𝑏           ∀𝑖 ∈ 𝑁𝑠                                                 (4.9) 

                                                       |𝑦𝑚𝑎,𝑎𝑐𝑡 −  𝐶𝑚𝑎𝑥̂| < 𝑡𝑜𝑙1                                                 (4.10) 

𝛽𝑖 takes on a value of 1 if a sensor is placed to measure the process variable, otherwise it is 0.  In 

Eq. (4.10), 𝑡𝑜𝑙1 is the tolerance limit vector on the estimation error and the left side of the 

inequality is the vector of actual minus vector of estimated value ( 𝐶𝑚𝑎𝑥̂) of process monitoring 

variables as well as active constraints.  The objective function is defined as the deviation of the 

actual efficiency of the plant from the optimal efficiency. The optimal efficiency, 𝜂𝑜𝑝𝑡, is the 

maximum efficiency when the plant runs under optimal operating conditions with no estimator 

and measurement errors. Therefore, 𝜂𝑜𝑝𝑡 is the maximum efficiency that can be attained. The 

efficiency of the process in the presence of estimator-based control system is denoted by 

𝜂(𝑥𝑎𝑐𝑡, 𝛽). It should be noted that one down-side of the steady-state assumption is that the KF is 

essentially being used to estimate steady-state bias.  

 

The SSND objective is to maximize 𝜂(𝑥𝑎𝑐𝑡, 𝛽) for a given budget for sensors. This is equivalent 

to the minimization of the squared error between the maximum efficiency and the actual 

efficiency of the plant with the sensors in place. Therefore, after some substitutions and 

rearrangement, the SSND problem is given by: 
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𝑀𝑖𝑛(𝜂𝑜𝑝𝑡 − 𝜂(𝑥𝑎𝑐𝑡, 𝛽))2 

                                                          s. t. 

𝐴𝑥𝑎𝑐𝑡 + 𝐵𝑢 + 𝑤 = 0 

𝐶𝛽 = [𝐶𝑖𝑗]𝛽𝑖≠0
 ;    𝜈𝛽 = [𝑣𝑖]𝛽𝑖≠0 

𝑖 = 1, 2, …… 𝑙;   𝑗 = 1, 2, ……𝑛 

𝑦𝛽 = 𝐶𝛽𝑥𝑎𝑐𝑡 + 𝑣𝛽                                                        (4.11) 

𝐴𝑃 + 𝑃𝐴𝑇 − 𝑃𝐶𝛽
𝑇𝑅𝛽

−1𝐶𝛽𝑃 + 𝑄 = 0 

𝐾 = 𝑃𝐶𝛽
𝑇𝑅𝛽

−1 

𝐴𝑥̂ + 𝐵𝑢 + 𝐾(𝑦𝛽 − 𝐶𝛽𝑥̂) = 0 

∑ 𝑐𝑖𝛽𝑖∀𝑖   ≤  𝑏 

𝛽𝑖 = 0,1          ∀𝑖 ∈ 𝑁𝑠 

𝑦𝑚𝑎 −  𝐶𝑚𝑎𝑥̂ < 𝑡𝑜𝑙 

 

𝑁𝑠 is the set of all candidate sensors. In this formulation, the variable 𝑦𝑛𝑜𝑖𝑠𝑦 in Eq. (4.2) is 

replaced by 𝑦𝛽  as the set of available measurements. 𝐶𝛽 is the measurement matrix of the 

available sensors and the corresponding measurement noise is 𝜈𝛽. It should be noted that 𝛽 is the 

set of integer variables while the remaining variables are continuous. Therefore the SSND is a 

mixed integer nonlinear programming (MINLP) problem which can be solved by two solution 

approaches: a simultaneous solution approach or a sequential solution approach.    

 

4.3 Solution Approach 

4.3.1 Simultaneous Solution Approach 

In the simultaneous approach, all the constraints are satisfied at the same time. However, the 

developed algorithm has a large number of variables including the actual states, outputs, 

estimated states, and the elements of the state covariance matrix, 𝑃. If there are n state variables 

and ∑𝛽𝑖 integer variables, then the total number of continuous and integer variables in the SSND 

problem is 2𝑛 + 2∑𝛽𝑖. In addition, the solution of 𝑛 × 𝑛 matrix Riccati equations and 
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computation of steady state Kalman gain matrix of identical dimension results in extensive 

computational complexity. In the case of a very large size problem involving more than a 

thousand states, this approach becomes computationally very expensive. Furthermore, it 

becomes very difficult to make an initial guess for the continuous variables, especially for P for 

every possible combination of integer variables (i.e. selected sensors). A bad initial guess can 

result in high computational expense and in the worst case can lead to failure. One typical 

approach to solve the MINLP problem is to separate the integer programming (IP) problem from 

the nonlinear programming (NLP) problem. But again, the convergence of the NLP problem is 

extremely difficult because of the reason mentioned above. Based on our extensive testing of a 

number of case studies, this approach is found to be suitable for small problems with very few 

states and candidate sensor locations. Since our objective is to apply the SSND algorithm to large 

systems, this approach was not pursued further. Instead, a sequential modular approach described 

in the following section was developed.     

 

4.3.2 Sequential Solution Approach 

In this approach, the MINLP problem for SSND is solved by solving the IP problem by GA 

while the NLP problem is solved sequentially as described below.  

 

 

 

 

 

 

 

 

Figure 4.2: Sequential solution approach to the SND problem for the estimator-based 

control systems. 
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The proposed sequential approach is similar to the sequential modular approach used for solving 

process flowsheeting problems. In this approach, each estimator-based control loop is opened by 

tearing a stream and then the blocks are solved sequentially until a convergence criterion is 

satisfied. The proposed approach is shown in Figure 4.2.  While the tear stream location can be 

any location such that the loop is opened, the location chosen in this work, as shown in Figure 

4.2, helps to reduce the total number of tear variables and helps to generate initial guesses for the 

tear variables (i.e. the inputs). 

 

Since the NLP problem is solved sequentially, the objective function in the GA is modified to 

introduce the penalty term for the estimation error in the process monitoring variables and active 

contraints.  Figure 4.3 shows the algorithm for the sequential solution approach.     

 

The SSND algorithm is developed under the assumption of perfect implementation of control 

action in the feedback control loop, i.e., implementation error due to the actuator and any 

associated hardware/software is neglected. The developed algorithm is solved using GA. The 

flowsheet in Figure 4.3 starts with the specification of GA parameters and proceeds with the 

creation of an initial population in the first generation (denoted by Gen in Figure 4.3). Each 

solution set 𝛽 in the population consists of decision variables, i.e., locations of sensors. A 

counter is set to reduce excessive computational time for those solution sets that fail to satisfy the 

convergence criterion. The estimator-based feedback control loop starts with  𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0  and 

an initial guess for the tear stream (𝑢𝑐). The initial guess is generated by considering the process 

model and assuming perfect control and measured disturbances. Input, 𝑢, is obtained by 

augmenting the disturbance vector, d, with 𝑢𝑐. In Step 1, the process model is solved to calculate 

the actual states, 𝑥𝑎𝑐𝑡 ,  using the augmented vector 𝑢. In Steps 2 and 3, those rows of the 

measurement matrix and measurement noise vector that correspond to 𝛽𝑖 = 0 (𝑖th row) are 

rejected. As a result, the dimension of 𝐶𝛽 and 𝜈𝛽 reduces to ∑𝛽𝑖 𝑏𝑦 𝑛 and∑𝛽𝑖  𝑏𝑦 1 , 

respectively. This is followed by Step 4, where noisy measurements are obtained by using the 

linear algebraic measurement equations and adding measurement noise 𝜈𝛽. Step 5 involves 

solving the algebraic Riccati equation to obtain the process noise covariance matrix (𝑃) and it is 

followed by the calculation of the steady-state Kalman gain matrix (𝐾) in Step 6. Once the 

steady-state gain is available, the estimated states, 𝑥̂, can be computed in Step 7 that are then  
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Figure 4.3: Algorithm to simulate feedback control system with an estimator. 
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Create initial population 

(each individual is 𝛽 ) 

𝑢 =  
𝑢𝑑
𝑢𝑐

  

Is 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =0?  

GA operator: selection, 

cross-over, mutation 

𝑢𝑐 = 𝑢𝑐_𝑛𝑒𝑤 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0 

Is Gen =1? 
 

1. 𝐴𝑥𝑎𝑐𝑡 + 𝐵𝑢 + 𝑤 = 0 

2. 𝐶𝛽 = [𝐶𝑖𝑗]𝛽𝑖≠0
 

3. 𝜈𝛽 = [𝑣𝑖]𝛽𝑖≠0 

4. 𝑦𝛽 =  𝐶𝛽𝑥𝑎𝑐𝑡 +  𝑣𝛽  

5. 𝐴𝑃 + 𝑃𝐴𝑇 − 𝑃𝐶𝛽
𝑇𝑅𝛽

−1𝐶𝛽𝑃 + 𝑄 = 0 

6. 𝐾 = 𝑃𝐶𝛽
𝑇𝑅𝛽

−1 

7. 𝐴𝑥 + 𝐵𝑢 + 𝐾(𝑦𝛽 − 𝐶𝛽𝑥̂) = 0 

8. 𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡 = 𝐶𝑐𝑜𝑛𝑡𝑥̂ 

9. 𝐸𝑠𝑡𝑒𝑟𝑟 =  𝑦𝑠𝑒𝑡 −  𝑦𝑐𝑜𝑛𝑡,𝑒𝑠𝑡    
10. 𝑢𝑐_𝑛𝑒𝑤 = 𝐾𝑐  𝐸𝑠𝑡𝑒𝑟𝑟 + 𝑢𝑐 

 

 

(𝜂𝑜𝑝𝑡 − 𝜂(𝑥𝑎𝑐𝑡 , 𝛽))2 + 𝐸𝑇𝑊𝐸 

Fitness function calculation: 

|𝐸𝑟𝑟| < 𝑡𝑜𝑙 𝑜𝑟, 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 > 𝑁𝑐  

 

 
Check 

termination 

criteria 

Print result 

 Stop 

  𝑦𝑚𝑎,𝑒𝑠𝑡 = 𝐶𝑚𝑎𝑥̂ 

𝐸 =  𝑦𝑚𝑎 −  𝑦𝑚𝑎,𝑒𝑠𝑡 

𝑢𝑐 = 𝑢𝑔𝑢𝑒𝑠𝑠 

Gen=Gen+1 
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used in Step 8, to obtain estimated controlled variables, 𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡. In the Step 9, the error is 

determined from the difference between the setpoint and the estimated controlled variables. 

Based on this error, in Step 10, the P-only controller computes necessary control action 𝑢𝑐_𝑛𝑒𝑤. 

Until |𝐸𝑟𝑟| satisfies the tolerance or the counter is less than the pre-specified number for the 

iteration loop, the entire computation loop is repeated with the updated 𝑢𝑐. It should be noted 

that when |𝐸𝑟𝑟| satisfies the tolerance and the tolerance is set at a low enough value, the solution 

represents the steady state of the entire system. The steady-state solution for a particular 

candidate set of sensors is achieved after a number of iterations. Then the feasible candidate set 

is assigned a fitness value based on the objective function. The infeasible set of sensors that does 

not satisfy the estimation accuracy in monitoring variables as well as in active constraints 

penalizes the objective function by adding 𝐸𝑇𝑊𝐸 where 𝑊 is a weighting factor. The GA 

continues until the convergence criterion is satisfied.   

 

The SSND algorithm presented here uses the ‘direct substitution’ method for tear stream 

convergence. For highly interacting systems, other algorithms for tear stream convergence such 

as Broyden’s method or Newton’s method might be necessary. 

 

4.4 Genetic Algorithm 

The GA is based on the principle of biological evolution (Haupt, 2004). GA creates the initial 

solution sets and ranks them according to their fitness value. Solution sets with higher fitness 

values survive and act as parents to produce children for the next generation. Breeding is 

performed based on the pre-specified cross-over, mutation, and selection criteria. Over 

successive generations, the population "evolves" toward an optimal solution. The proposed 

SSND problem is very suitable for the GA because: 

 The problem is a combinatorial optimization problem. 

 The GA can handle the inequality constraints with mixed integer linear programming 

problem.  

 The SSND problem is expected to have many extrema and therefore, a global search is 

necessary. 
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4.5 Case Study 

This section illustrates the application of the proposed SSND methodology to a large-scale 

chemical process unit, specifically a selective, dual-stage, chilled Selexol
TM 

solvent-based acid 

gas removal (AGR) unit as shown in Figure 4.4. A short description of the AGR unit is provided 

in section 3.4 of previous chapter. Interested readers are referred to Bhattacharyya et al. (2011) 

for detail description. 

 

 

Figure 4.4: Locations of primary control variables (labeled from 1-12) in AGR unit 

(Bhattacharyya et al., 2011) considered for implementation of SSND algorithm. 

 

For evaluating performance of AGR processes, usually measures such as $/tonne CO2 captured 

or avoided is considered (Bhattacharyya et al., 2011). The dollar cost includes both operating and 

capital costs. From the sensor placement perspective, since we are mainly interested in the 

operating costs, amount of CO2 captured per unit power consumption is considered to be the 
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measure for efficiency of this AGR process. Thus  𝜂(𝑥𝑎𝑐𝑡, 𝛽) is defined for the AGR unit by the 

following equation:     

                                         𝜂(𝑥𝑎𝑐𝑡, 𝛽) = 
𝐹𝐶𝑂2,𝑖𝑛(𝑥𝑎𝑐𝑡)−𝐹𝐶𝑂2,𝑜𝑢𝑡(𝑥𝑎𝑐𝑡)

𝑎𝐹𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑥𝑎𝑐𝑡)+∑ 𝑃𝑐
3
𝑐=1 (𝑥𝑎𝑐𝑡)

                                         (4.12) 

  

The numerator in Eq. (4.12) represents the amount of CO2 captured while the denominator is the 

MWh power consumption. The variables in Eq. (4.12) are a function of 𝑥𝑎𝑐𝑡 in the estimator-

based control system.  

 

The primary controlled variables for the AGR process have been identified by Jones et al. (2014) 

and the locations are labeled from 1-12 in Figure 4.4.  

 

Table 4.2: List of Primary Controller Variables and Pairings (Jones et al., 2014) 

  Active Constraints                                                          Manipulated Variables 

1.  CO2 Capture 1.  Low Pressure Flash Pressure 

2.  Water Content of Solvent at Stripper Bottom 2.  Steam Flowrate 

3.  Stripper Pressure 3.  Stripper Vapor Flowrate 

4.  Stripper Top Temperature 4.  Stripper Condenser Duty 

5.  Semi-lean Solvent Cooler Outlet Temperature 5.  Semi-lean Solvent Cooler Duty 

6.  Loaded Solvent Cooler Outlet Temperature 6.  Loaded Solvent Cooler Duty 

7.  Lean Solvent Cooler Outlet Temperature 7.  Lean Solvent Cooler Duty 

8.  H2 Cooler Outlet Temperature 8.  H2 Cooler Duty 

 Self-optimizing Controlled Variables                             Manipulated Variables 

9.  Pressure of the H2 Recovery Unit  9.  H2 recovery  outlet valve position 

10.  Pressure of the HP Flash Vessel 10.  HP Compressor Brake Power 

11.  Pressure of the MP Flash Vessel 11.  MP Compressor Brake Power 

12.  N2 Flowrate to H2S Concentrator 12.  Valve opening of the N2 feed valve 

 

The list of the primary control variables is given in Table 4.2. An estimator-based control system 

has been implemented for active constraints and self-optimizing controlled variables as shown in 

Table 4.2. The interested reader is referred to Jones et al. (2014)
 
for details of the primary 

controlled variables and their selection method. 
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There are a number of operational constraints in the AGR unit considered as process monitoring 

variables and estimation accuracy must be satisfied for these variables. In this framework, it is 

easy to include more monitored variables for which estimation accuracy must be satisfied. 

However, in this case, for simplicity and testing, only two variables are considered for process 

monitoring purposes as shown in Table 4.3.  

 

Table 4.3: List of Process Monitoring Variables 

Constraint Value 

Maximum Allowable Solvent Temperature 175°C 

Minimum Stripper Pressure 276 kPa 

 

Figure 4.5 is the block diagram of the workflow based on the three different software platforms 

used, namely Aspen Plus
® 

(AP), Aspen Plus Dynamics
®
 (APD) and MATLAB

® 

 

 

 

 

 

 

 

 

 

 

                                      

 

Figure 4.5: SSND workflow 

 

Aspen Plus
®

 

Steady-state design of the AGR process 

MATLAB
®

 

 Implementation of the SP algorithm 

for efficiency maximization 

Aspen Plus Dynamics
®

  

 Control system design and simulation 

of the nonlinear process model 

 Opening the primary controlled 

variables loop 

 Generation of the linear continuous-

time model  
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AP
®
 has been used to develop the steady-state process model of the AGR unit. The model is then 

exported to APD
®
 for designing the control system and obtaining a stable dynamic model. 

Details about this model can be found in the works of Bhattacharyya et al. (2011) and Jones et al. 

(2014). Starting with this nonlinear process model of the AGR process in APD
®
, a continuous-

time, linear model is generated by running a control design interface (CDI) script that linearizes 

the nonlinear model around the steady-state operation conditions. All the primary controlled 

variable loops are kept open during the linearization of the model. The linear state-space model 

of the AGR unit, the algebraic measurement equations for candidate sensor locations, the 

primary controlled variables, and variables that appear in the objective functions are then 

exported to MATLAB
®
. It should be noted that even though all primary controlled variables 

have to be estimated by the measurement framework, sensors are not necessarily placed on all 

primary controlled variables. This is because measurement of some of these variables can be 

difficult and/or expensive and can have time delay, high noise, and/or low estimation accuracy. 

On the other hand, it may be possible to estimate these variables satisfactorily by placing sensors 

elsewhere in the process and within the budget constraint. The optimal selection is done by the 

SSND algorithm. In addition, satisfactory estimation of all other variable used for estimation 

purposes is desired. Therefore, the candidate sensor locations include other variables in addition 

to the primary controlled variables. The SSND algorithm described above is implemented in 

MATLAB
®
.  

 

The AGR process contains 1505 states. Two disturbances, including the change in the syngas 

flowrate and CO2 concentration at the inlet of the AGR unit, have been considered. The flowrate 

disturbance is simulated by changing the inlet pressure of the syngas to the AGR unit. Four 

different types of commonly used sensors have been considered. These are temperature, 

pressure, flow, and composition (CO2 and H2S) sensors. They are denoted by T, P, F,  𝑦𝐻2𝑆 

and 𝑦𝐶𝑂2
, respectively in the discussion below. The process flowsheet of the AGR unit is 

reviewed and the candidate sensor locations are identified based on the criteria mentioned below: 

 

For columns including the H2S and CO2 absorbers, solvent stripper and H2S concentrator, 

candidate T, P,  𝑦𝐻2𝑆 and  𝑦𝐶𝑂2
 sensor locations are shown in Table 4.4. As all columns are 
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modeled using an equilibrium-stage assumption, temperatures of the liquid and vapor phases 

leaving a stage are the same. Therefore, only one T and P are considered for all these trays. 

 

1. For the heat exchangers, T and P are measured at both inlet and outlet. Since the mass/molar 

flowrate and composition does not change across the heat exchangers in the AGR unit, these 

variables are measured only at the outlet. 

2. For each recycle stream, one flow meter is considered. 

3. In all mixer blocks, no pressure drop has been considered. Therefore T, F,  𝑦𝐻2𝑆 and  𝑦𝐶𝑂2
 

vary, but P is constant.  

4. For splitter blocks, F changes, but T, P,  𝑦𝐻2𝑆 and  𝑦𝐶𝑂2
  are constant.  

5. Across the pump and valve, only P changes. There may be some changes in the temperature 

but that is neglected.  

6. For compressors, both P and T change across the compressor. 

 

After this analysis, 169 measurements are identified as potential locations for sensor placement. 

Tables 4.4 and 4.5 show the distribution of these candidate sensors in the AGR unit.   

 

Table 4.4: Candidate Sensor Locations in the Equipment Items in the AGR Unit 

 Equipment Sensors  

H2S Absorber 
𝑇2, 𝑇8, 𝑇14, 𝑇20, 𝑇26, 𝑃7, 𝑃16, 𝑃25, (H2S)5, (H2S)16, (H2S) 25, (CO2)5, (CO2)16, 

(CO2)25 
14 

CO2 Absorber 𝑇2, 𝑇8, 𝑇14, 𝑃3, 𝑃9, 𝑃15, (H2S)2, (H2S)8, (H2S) 14, (CO2)2, (CO2)8, (CO2)14 12 

H2S Concentrator 𝑇3, 𝑇5, 𝑃4, (H2S)1, (H2S)5, (CO2)1, (CO2)5 7 

Acid Gas K.O. 𝑇, 𝑃 2 

Selexol Stripper 𝑇1, 𝑇3, 𝑇7, 𝑇10,  𝑃1, 𝑃3, 𝑃9, (H2S)3, (H2S)9, (CO2)3, (CO2)9 11 

 Total 46 
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Table 4.5: Candidate Sensor Locations in the Process Streams in the AGR Unit 

                                         Streams 

Sensors T P F H2S analyzer CO2 analyzer 

No. 50 36 18 3 16 

Total 123 

 

As mentioned previously, P-only control has been considered in this work. It is required to 

obtain the tuning parameters of estimator-based controllers so that the closed-loop system in 

MATLAB
®
 remains similar to the APD

®
 model. The tuning parameter, in this case the 

proportional gain, is determined by using both Ziegler-Nichols (1942) and Cohen-Coon (1953) 

approximate model tuning rules. It should be noted that for the APD
®
 model, PID tuning 

parameters were obtained by Ziegler-Nichols and Cohen-Coon rules. In this case, the Ziegler-

Nichols tuning rule outperforms the Cohen-Coon rule as latter one is more aggressive. The 

Ziegler-Nichols tuning rule is similar to the APD
®
 model. Table 4.6 shows the rules that have 

been used to calculate the gain for the proportional controller. 

 

Table 4.6: Approximate Model Tuning Rules (Ogunnaike, 1994) 

Tuning Rules Controller Type 𝑲𝒄 

Ziegler-Nichols Proportional controller 
1

𝐾𝑝
(
𝜏

𝛼
) 

Cohen-Coon Proportional controller 
1

𝐾𝑝
(
𝜏

𝛼
) [1 +

1

3
(
𝛼

𝜏
)] 

 

 

Process gain (𝐾𝑝), time constant (𝜏) and time delay (𝛼) are obtained from the nonlinear process 

model in APD
®
.  Table 4.7 presents the list of controllers and the corresponding tuning 

parameters obtained from the aforementioned tuning rules.  
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Table 4.7: Tuning Parameters 

Primary Controlled 

Variables 𝑲 𝝉 (min) 𝜶 (min) 

𝑲𝒄 

(Ziegler-

Nichols) 

𝑲𝒄 

(Cohen-

Coon) 

CO2 Capture 17.48 10.94 3.41 0.18 0.20 

Water Content of Solvent at 

Stripper Bottom 
0.127 66.14 0.457 1132.77 1135.37 

Stripper Presser 0.102 0.355 0.06 57.86 61.12 

Stripper Top Temperature 241.02 0.095 0.06 0.0066 0.0079 

Semi lean Solvent Cooler 

Outlet Temperature 
0.556 0.0862 0.06 2.58 3.18 

Loaded Solvent Cooler Outlet 

Temperature 
1.72 0.0884 0.06 0.854 1.05 

Lean Solvent Cooler Outlet 

Temperature 
11.36 0.0765 0.06 0.112 0.14 

H2 Cooler Outlet Temperature 72.59 0.108 0.06 0.0248 0.0294 

Pressure of the H2 Recovery 

Unit  
0.161 5.87 0.432 83.97 86.03 

Pressure of the HP Flash 

Vessel 
0.0173 3.81 0.543 403.37 422.55 

Pressure of the MP Flash 

Vessel 
0.0194 3.41 0.496 353.76 370.89 

N2 Flowrate to H2S 

Concentrator: 𝐹𝑁2
 

115.85 0.237 0.06 0.0342 0.037 

 

As mentioned earlier, four types of sensors were considered: flow, pressure, temperature, and 

composition sensors.  Flow sensors are further classified based on the phase of the stream and 

range of the flowrate. Table 4.8 shows the types of sensors, range, % inaccuracy, typical cost 

range, and the cost used in the work.  The data provided in this table have been obtained from 

Liptak and Liptak (2003). The cost of the sensors includes the price for measuring device, 

transmitter, other accessories as well as installation cost.  
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Table 4.8: Cost of Sensors (Liptak, 2003) 

 

Due to the large size of the SSND problem, considerable computational time is required to solve 

the constrained optimization problem on a single computer processor. For reducing the 

computation time, parallel computing was performed using the Distributed Computing Server 

(DCS
®
) and the Parallel Computing

®
 toolbox from Mathworks

®
. The proposed algorithms were 

Types Range Inaccuracy $ Cost Considered 

Flow sensor 

(plate + flanges + 

flanged meter + 

transmitter) 

Gas 

phase 

5–20 cm 

pipe 

0.25 𝑡𝑜 0.5−
+  % −

+  

of actual flow 

$1500-

3500 
$3400 

Gas 

phase 

20-50 cm 

pipe 

$3500-

8000 
$7000 

Liquid 

phase 

1-35 cm 

pipe 

$1000-

6000 
$5300 

Liquid 

phase 

70-100 cm 

pipe 

$10,000-

15,000 
$14,000 

Pressure measurement device 

(integral with a transmitter) 

0 to 69 

bars 

0.1 to 1% 

of span 

$1500-

3700 
$2500 

Temperature 

(thermocouple integral with a 

transmitter) 

-174.4 to 

2337𝑜𝐶 
1−

+   to 2.8𝑜𝐶 
$700 - 

2000 
$1000 

H2S analyzer 

(includes installation cost) 

0 to 

500ppm 
1% of full scale 

$65,000-

145,000 
$70,000 

CO2 analyzer 

(explosion-proof NDIR analyzer 

with recorder, includes installation 

cost) 

0 to 

50ppm 

1% to 2% 

of full scale 
$10,000 $10,000 
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implemented in a MATLAB
®
 program running on a computer cluster with 32 Intel

® 
Xeon

® 
 2.10 

GHz processors with 64 GB RAM.  

 

The methods for the GA operators and the values for the parameters are intuitively chosen in 

accordance with the scale of the problem using the guidelines provided in the literature 
 
(Haupt 

and Haupt, 2004). Table 4.9 shows the key parameters in the GA specification. 

 

Table 4.9: Set-up Parameters in GA 

Parameters  

Generations 250 

Selection Stochastic uniform selection method 

Crossover Scattered crossover method 

Population size 75 

Mutation rate 0.01 

 

4.5 Results 

The efficiency of the AGR unit, defined as the amount of CO2 capture per unit power 

consumption, is considered as the objective function in the SND algorithm. The maximum 

efficiency of the AGR unit as calculated from the dynamic model in APD
®
 is 766.18 mol CO2 

capture/MWh when the plant runs under optimal operating conditions with no estimator and 

measurement errors. However, the value of the objective function without any measurements 

(i.e., estimator only) is the minimum value of the efficiency and is found to be 715.65 mol CO2 

capture/MWh. It is noted that the difference between the maximum and the minimum efficiency 

defined this way is a measure of the goodness of the process model.  

 

Table 4.10 presents the results of eleven case studies for different budgets ($) for the sensor 

network. These case studies show that as the budget increases the number of sensors increases. 

Consequently, the number of available measurements also increases and/or costlier sensors are 

selected, which in turn can provide higher estimation accuracy for the process variables of 

interest as well as increased efficiency of the plant. Most of the CPU time is consumed for 
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solving the matrix Riccati equation involving process covariance matrix of dimension 

1505×1505. In addition, as this problem considers 169 potential sensor locations, a large 

combinatorial problem is solved for each budget constraint. It is also observed from the case 

studies that the computational time depends on the initial population used by the GA. For the 

Cases 1-6 in Table 4.10, the computational time increases as the budget decreases. This is 

because of the higher number of sensors that can be considered without violating the budget 

constraint. For the lower budget cases, i.e. Cases 7-11, the initial population is created using the 

solution set of sensors obtained from the higher budget case studies.  The computation time is 

significantly less for the lower budgets case studies. Using the DCS
®
 and Parallel Computing

®
 

toolbox reduces the computation time by a factor of 6 compared to the non-parallel case studies.  

 

Table 4.10: Number of Sensors and the Value of the Objective Function for Different 

Budgets 

Cases 
Budget (Cost 

of Sensors, $) 

Number of 

Sensors 

Efficiency 

(molCO2/MWh)  

1 431,900 75 766.0058  

2 322,600 66 766.0058  

3 229,400 64 766.0058  

4 187,900 62 766.0058  

5 149,000 56 765.11  

6 118,700 46 762.6422  

7 71,200 25 758.2536  

8 63,700 25 756.7611  

9 60,200 23 752.0415  

10 59,700 24 750.0721  

11 42,500 17 742.8588  
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Figure 4.6 shows how the optimal objective function value changes with the change in the 

budget. The figure shows that beyond 149K budget (Case 5), the value of the objective function 

changes negligibly.       

 

 

Figure 4.6: Objective function vs. cost of sensors. 

 

Figures 4.7-4.9 illustrate the underlying reason for the increase in efficiency as the budget for 

sensors increases. In short, the impact of the budget on the estimation accuracy of a few key 

input-output variables is presented. As the budget increases, the estimation accuracy of the 

controlled variables improves. As a result, the values of the manipulated variables approach the 

values that were obtained for the maximum efficiency case. The vertical axes denote deviation 

variables and are calculated with respect to the values that were obtained for the maximum 

efficiency case. 
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Figure 4.7: Manipulated variable: semi-lean solvent cooler duty (left); Controlled variable: 

semi lean solvent cooler outlet temperature (right) against budget. 

 

Figure 4.7 shows how the semi-lean solvent cooler duty changes with the increase in sensor cost. 

In the semi-lean solvent cooler, the NH3-refrigerant is used for chilling the solvent. As shown on 

the right-hand side axis of Figure 4.7, for lower budgets, the estimate of the temperature at the 

outlet of the refrigeration cooler deviates more on the negative side, i.e., it leads to a cooler 

temperature which is suboptimal. As a result, higher refrigeration duty is required at lower 

budget leading to loss in efficiency. Regardless of the noise in the measurements obtained from 

sensors, the estimated value of the controlled variable approaches to the optimal value as the 

sensors budget increases beyond $149K as shown in Figure 4.7.      
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Figure 4.8: Manipulated variable: power of the MP compressor (left); Controlled variable: 

pressure of the MP flash vessel (right) against budget. 

 

Figures 4.8-4.9 show how the compressor brake power changes as budget changes. Figure 4.8 

and Figure 4.9 show the brake power of the MP and HP CO2 compressors, respectively. In both 

the cases, at lower budget, the estimated flash vessel pressures are lower than the optimal value. 

As a result, the compressors consume more power than the optimal case leading to decrease in 

the efficiency. As before, even in the presence of process and measurement noise, the estimated 

value of pressure approaches the optimal value as the sensors budget increases beyond $149K 

(labeled in Figures 4.8-4.9). 
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Figure 4.9: Manipulated variable: power of the HP compressor (left); Controlled variable: 

pressure of the HP flash vessel (right) against budget. 

 

Table 4.11 shows the optimal set of sensors for $149K. It should be noted that if the number of 

controlled variables and/or variables for monitoring purposes are changed, the optimal budget is 

expected to change.  
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Table 4.11: Optimal Set of Sensors 

Temperature Sensor Pressure Measuring Device 

1. a
H2S Absorber2  30. aH2S Absorber16 

2. a
H2S Concentrator5 31. aCO2 Absorber9 

3. Acid Gas K.O. Drum Vapor Outlet 32. Syngas Cooler Inlet 

4. a
CO2 Absorber8 33. Off Gas from Top of H2S Absorber 

5. a
CO2 Absorber14 34. Clean Syngas at the Top of CO2 Absorber 

6. a
Selexol Stripper1 35. Semi-lean Solvent Cooler Inlet 

7. a
Selexol Stripper3 36. Rich Solvent Heater Inlet 

8. a
Selexol Stripper7 37. Rich Solvent at Selexol Stripper Inlet 

9. Inlet to H2O K.O. Drum 38. Lean Solvent at the inlet to CO2 Absorber    

10. Off Gas from Top of H2S Absorber 39. Inlet to H2 Recovery Flash Vessel 

11. Off Gas Cooler Outlet Temperature 40. H2 Recovery Flash Vessel 

12. Off Gas at the Inlet to CO2 Absorber 41. Stripped Gas Compressor Outlet 

13. Clean Syngas at the Top of CO2 Absorber 42. Acid Gas K.O. Drum Liquid Outlet 

14. Rich Solvent at H2S Absorber Bottom 43. H2 Recovery Compressor Outlet 

15. Rich Solvent Heater Inlet 44. HP Flash Vessel Outlet 

16. H2 Recovery Flash Vessel Outlet 45. Outlet of 1
st
 LP CO2 Compressor 

17. HP Flash Vessel Outlet 46. Outlet of 2
nd

 MP CO2 Compressor 

18. MP Flash Vessel Outlet 47. Glycol Absorber Top Outlet 

19. Semi-lean Solvent Cooler Inlet Flow Sensor 

20. H2S Concentrator Vapor Outlet 48. Semi-lean Solvent to  H2S absorber 

21. Stripped Gas Compressor Outlet 49. H2S Concentrator Vapor Outlet 

22. 1st
 LP CO2 Compressor Outlet 50. H2O K.O. Drum Bottom Outlet 

23. 2nd
 LP CO2 Compressor Outlet CO2 Analyzer 

24. 5th
 LP CO2 Compressor Outlet 51. aLiquid Phase in H2S Absorber16  

25. 1st
 HP CO2 Compressor Outlet 52. aLiquid Phase in Selexol Stripper16 

26. 1st
 MP CO2 Compressor Inlet 53. H2S Absorber Bottom 

27. Vapor of CO2 Flash Vessel 54. LP Flash Vessel Bottom 

28. Liquid of CO2 Flash Vessel 55. Acid Gas K.O. Drum Liquid Outlet 

29. Tail Gas to H2S Absorber  56. MP Flash Vessel Vapor  

a. Subscript at the end of location denotes stage number 

 

4.6 Conclusions 

A SSND algorithm is developed in this work for maximizing plant efficiency using an estimator-

based control system while estimating other variables of interest for a given sensor network 

budget. We have considered two solution approaches for the SSND problem. A concise 

description is presented for the simultaneous solution approach that can be used for small-scale 

processes with a few unit operations. A sequential approach is developed for solving the SSND 
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problem for large-scale highly-integrated plants.  In this approach, the GA is used to solve the IP 

problem while the NLP problem is solved by using a tear-stream approach. The direct 

substitution method is used to solve the ‘tear stream’ in the estimator-based control system. The 

SSND algorithm is then implemented for a highly-integrated AGR unit as part of an IGCC 

power plant with pre-combustion CO2 capture. For solving this large-scale problem, a 

MATLAB
®
 cluster is used for parallel computation leading to significant reduction in 

computation time. The results show that as the budget for sensors increases, the number of 

sensors used and the plant efficiency achieved both increase until a threshold is reached beyond 

which the budget has minimal impact on plant efficiency. The study also shows that an 

estimation error in the primary controlled variables, when selected from an economic 

perspective, can lead to loss in efficiency. However, a further decrease in estimation error below 

a certain threshold is wasteful since the sensor network budget increases while having minimal 

impact on the plant efficiency. This SSND algorithm is currently developed for grassroots plants, 

but can be readily enhanced for retrofitting.  However, a SSND algorithm can result in a 

suboptimal transient efficiency profile. Therefore, in the next chapter we have developed a 

dynamic model-based SND (DMSND) algorithm for maximizing process efficiency. 
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Chapter 5  

 

Dynamic Model-Based SND Algorithm 

 

 

A dynamic model-based sensor network design (DMSND) algorithm has been developed for 

maximizing system efficiency for an estimator-based control system. The algorithm synthesizes 

the optimal sensor network in the face of disturbances or setpoint changes. Computational 

expense of the large-scale combinatorial optimization problem is significantly reduced by 

parallel computing and by using a combination of three novel strategies: multi-rate sampling 

frequency, model order reduction, and use of an incumbent solution that enables early 

termination of evaluation of infeasible sensor sets. The developed algorithm is applied to an 

AGR unit as part of an IGCC power plant with carbon capture. Even though there are more than 

one thousand process states and more than one hundred candidate sensor locations, the optimal 

sensor network design problem for maximizing process efficiency could be solved within couple 

of hours for a given budget. 

  

5.1 Literature Review 

DMSND algorithms are limited in the existing literature. Kadu et al. (2008) have considered a 

discrete linear time invariant system with multi-rate extension of the basic Kalman filtering 

algorithm to show the effect of various measurement sampling rates on state estimation. To find 

Pareto optimal solutions for the optimal sensor network, they solved dual objective functions 

including maximizing the quality of estimates and minimizing the measurement cost subject to a 

constraint on system detectability. Mellefont and Sargent (1978) developed an implicit 

enumeration algorithm using a linear stochastic system for selection of measurements to be used 

in optimal feedback control. This algorithm minimizes both the measurement cost and a 

quadratic function of the covariance of state prediction error with minimum number of 

measurements.  
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Computational expense is an issue for solving large-scale SND problems. Due to this difficulty, 

Chmielewski et al. (2002) have developed an alternative SND formulation to obtain the 

minimum cost sensor network. The authors improved computational efficiency by converting the 

nonlinear programming problem into a convex program through the use of linear matrix 

inequalities.  They applied the SND approach to both steady-state and dynamic processes subject 

to single/multiple constraints on precision, gross-error detectability, resilience, and reliability.  

Nguyen and Bagajewicz (2008) have proposed a rigorous equation-based tree search method for 

designing nonlinear sensor networks but its performance is not satisfactory when dealing with 

large-scale problems (≥ 35 measured variables and ≥ 25 balance equations). Later on, the same 

authors have proposed an approximate method (Nguyen and Bagajewicz, 2013) to solve a large-

scale problem with 35 variables and 28 balance equations where the equation-based tree search 

method was used for initialization but still optimality of the solution is not guaranteed. Singh and 

Hahn
 
(2006) presented an optimal SND approach where due to the computational expense; they 

have performed the calculation of empirical Gramians for all sensor locations outside the 

optimization loop.  

 

DMSND algorithms are computationally very expensive due to the study of the transient 

behavior of the process for each candidate set of sensors. This computational expense 

significantly increases as the number of state variables and the number of candidate sensor 

variables increases. In particular, the solution of the matrix Riccati equation takes significant 

computational time. However, for the DMSND algorithm to be usable for large-scale industrial 

applications, an efficient algorithm is desired that can be solved within reasonable run times 

using standard computing resources.  With this incentive, a computationally efficient DMSND 

algorithm for the estimator-based control system has been developed in this work for 

maximizing the efficiency of large-scale processes. In this DMSND algorithm, the Kalman filter
 

(KF) is used for estimating process states (Paul et al., 2013) and particular focus is given to its 

convergence properties. In addition, several strategies have been developed for significantly 

reducing the computational expenses for solving large-scale DMSND problems.   

 

Therefore, in this current work we have developed a computationally efficient DMSND 

algorithm for maximizing process efficiency. 
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5.2 Features of the DMSND Algorithm 

Distinguishing features of the DMSND algorithm developed in this work over the SSND 

algorithm presented earlier (Paul et al., 2015) are given below: 

 

 Feedback loop: The SSND algorithm considers the single steady-state operating point in 

the analysis and uses an infeasible path solution method involving trial and error to 

satisfy a tolerance limit on the tear stream for the estimator-based control system. In 

contrast, the DMSND algorithm resembles the real-world dynamic scenario expected for 

an estimator-based control system, i.e., it implements control actions by repeated 

feedback through the estimator until a new steady-state condition is reached.  

 

 Transient response: The DMSND algorithm provides satisfactory estimation accuracy of 

all desired process variables during transients unlike the SSND algorithm that provides 

satisfactory estimation accuracy only under steady-state operation. It should be noted that 

satisfactory estimation accuracy under steady-state condition does not necessarily yield 

optimal performance during transient operation.  

 

 Strategies for reducing computational expense: Due to the presence of the feedback 

loop in the estimator-based control system and due to the large number of state variables 

and candidate sensors, the computational expense of solving the DMSND problem is 

significantly greater than for the SSND problem. Thus, strategies for reducing 

computational expense are the key to solving this large-scale DMSND problem 

successfully. To this end, three strategies have been developed and applied in this work. 

First, use of the reduced order model (ROM) in the DMSND algorithm significantly 

reduces the computational cost. Second, an approach, called multi-rate discretization 

(MRD) has been developed in this work.  Furthermore, the best feasible solution known 

at any point during iteration (the incumbent solution) is used to terminate evaluation of 

infeasible sensor sets. These approaches will be expanded on later in this paper. To the 

best of our knowledge, none of these strategies have been considered in the open 

literature for DMSND algorithms. As will be seen later in this paper, the computational 

advantage obtained by using these strategies makes the solution of the large scale 
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combinatorial problem feasible with minimal loss of accuracy. In fact, it is observed that 

the DMSND algorithm is solved much faster than the SSND algorithm presented 

previously by the authors (Paul et al., 2015).   

   

Multiple strategies have been developed for reducing computational expenses for DMSND 

algorithm. Subsequently, the discrete-time DMSND algorithm for efficiency maximization is 

developed by incorporating these strategies. Finally, the algorithm is applied to an AGR unit as 

part of an IGCC power plant.  

 

5.3 Development of DMSND Algorithm 

5.3.1 Continuous Estimator-Based Control System 

The estimator-based control system as shown in Figure 4.1 is used to develop the DMSND 

algorithm. The algorithm considers the dynamic response of the estimator-based control loops 

subject to disturbances and/or setpoint changes. The set of equations governing each block of the 

estimator-based feedback loop is the same as Eq. (3.1), (3.3), (3.7)-(3.9) presented in Chapter 3. 

The error is calculated by Eq. (5.1) which is then used to calculate control action. DMSND 

algorithm assumes PI control law. 

 

Comparator:    Estimated measurements:  𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡 = 𝐶𝑐𝑜𝑛𝑡𝑥̂                                              (5.1)    

 Error function:  𝜀(𝑡) = 𝑦𝑐𝑜𝑛𝑡,𝑠𝑒𝑡 − 𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡                                               (5.2)                                             

 

Proportional-Integral (PI) Controller:     𝑢 =  𝐾𝑐  𝜀(𝑡) +
1

𝜏𝐼
∫ 𝜀(𝑡)𝑑𝑡

𝑡

0
                                (5.3)   

It should be noted that the SSND algorithm in Paul et al. (2015) used a proportional-only 

controller. 

 

5.3.2 Objective Function 

Eq. (5.4) denotes the objective function where Δηest,i denotes the deviation from the optimal plant 

efficiency at any time instant i.  k denotes the time instant that it takes for the process to reach its 
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new steady-state following the introduction of a disturbance (due to disturbance rejection by the 

controllers) or a change in the controller setpoint(s). The integer problem is solved subject to the 

constraints on budget and estimation accuracy as denoted by Eqs. (5.6) and (5.7), respectively, 

where ci denotes the cost of a sensor of type i.  

𝑀𝑖𝑛 ∑ (Δ𝜂𝑒𝑠𝑡,𝑖)
2𝑘

𝑖=1                                                                                                                                 (5.4) 

    ∑ 𝑐𝑖𝛽𝑖∀𝑖   ≤  𝑏   ;    𝛽𝑖 = 0,1          ∀𝑖 ∈ 𝑁𝑠                                                                             (5.6) 

     ∑ 𝐸𝑠𝑡𝑒𝑟𝑟𝑖
2𝑘

𝑖=1 < 𝑡𝑜𝑙1                                                                                                            (5.7) 

The variables in Eq. (5.4) are a function of xact in the estimator-based control system and are 

defined as:  

 Δ𝜂𝑒𝑠𝑡 = 𝜂𝑜𝑝𝑡 − 𝜂(𝑥𝑎𝑐𝑡, 𝛽) (5.8) 

 𝐸𝑠𝑡𝑒𝑟𝑟 = 𝑦𝑚𝑎,𝑎𝑐𝑡 − 𝑦̂𝑚𝑎  (5.9) 

As shown in Eq. (5.8), Δηest is the difference between the optimal efficiency (ηopt) and η(xact,β), 

the efficiency obtained in the estimator-based system. Eq. (5.9) is used to calculate the 

estimation error in key variables, denoted by Esterr, by comparing the actual values with the 

estimated values of process variables.    

 

5.4 Strategies for Reduction in Computational Expenses  

As stated above, due to the feedback loop in the estimator-based control system, the 

computational expense is very high especially because the high-dimensional nonlinear matrix 

Riccati equation (Eq. 4.4) is solved for every discrete point in time for each candidate set of 

sensors until the process variables reach new steady state. Thus, for a process involving 

thousands of states, solving the DMSND problem is extremely time-consuming. To reduce the 

computational time, several strategies have been considered and are presented below.  
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5.4.1 Multi-Rate Discretization (MRD) 

Multiple-measurement sampling times (Holsapple et al., 2007) can be considered for reducing 

computational expense. Intuitively the rich work in the area of numerical integration of stiff 

equations can be utilized for selecting the sampling times. However, there are number of 

complications for selecting sampling times while solving the SND problem in a process with an 

estimator-based control system. First and foremost, this is a differential algebraic equation 

(DAE) system with integer variables. Thus many of the tools available in the existing literature 

cannot be readily applied. Furthermore, the discrete-time system has one-epoch latency between 

the process and the estimator-based control system. Second, as the sampling intervals of the 

estimator, process, and the controllers are expected to be the same for the current work, stability 

of the closed-loop system including the estimator-based control system should be accounted for 

while selecting the sampling time. Because of the integer variables, i.e. selection of different 

sensors at different iterations, the desired profile of sampling intervals needs to be determined for 

each combination of sensors. Another complication is that if the discrete-time model has been 

obtained by using numerical data collected at given intervals, it may be impractical to reidentify 

the model for every combination of sensors (trillions of them) as the sampling interval changes. 

Even for a linear model, the calculation of the matrix exponential required for discretization as 

the interval changes can be computationally prohibitive. Thus the benefit of MRD on reduction 

of computational expense may not be realized if the sampling interval is adopted for every 

combination of sensors. Furthermore, as the process and measurement noises are considered to 

be Gaussian white noise with zero-mean, adequate sampling is needed to represent the 

distribution well during simulation. While all of the above methods can be very involved tasks 

and may not yielding much benefit on computational expense, the following heuristics worked 

quite well for the comprehensive example problem described in Section 5.7. The heuristic 

approach is based on the rate of change of the process variables in the face of disturbance or 

setpoint change. During fast transients, a higher sampling rate is needed thereby increasing 

computational expense. Once the process approaches the new steady-state condition, the rate of 

change in controlled variables decreases considerably and therefore, the sampling frequency are 

decreased accordingly.  
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5.4.2 Reduced Order Model (ROM) 

Reduced order models that approximate a full-order model can considerably lower the 

computational cost. Depending on the methodology used for ROM development, the state 

variables in the ROM may not represent true states. Therefore, it should be ensured that the 

dynamic and steady-state responses of the ROM for the desired output variables are satisfactory 

in comparison to the full-order model. Several methods are available in the open literature and 

applications of these methods are problem specific. Two widely used methods for order 

reduction of very large-scale linear dynamic systems are the balanced truncation method and the 

Hankel norm approximation method. Both methods are based on Hankel singular value (HSV) 

decomposition.  Interested readers are referred to the rich literature in this area (Glover, 1984; 

Safonov et al., 1990; Antoulas, 1999; Antoulas and Sorenseen, 2001; Willcoxand Peraire, 2002; 

Meyer, 1990). Both methods guarantee two of the most important ROM properties: (i) 

preserving stability of the original system and (ii) satisfying the global error bound (Eq. 5.10).  

 ‖𝑆 − 𝑆𝑟‖∝ ≤ 2(∑ 𝜎𝑖
𝑛
𝑖=𝑟+1 )    (5.10) 

where Sr(Ar,Br,Cr) denotes the ROM of the original system S(A,B,C). σi  denotes the HSVs of the 

full-order process model. r is the reduced order. The optimal order of the ROM is selected either 

directly or indirectly by choosing a cut-off value for σr to obtain the  r
th

 ROM. One common 

approach is to look for large “gaps” in the relative magnitude of σr-1/σr.. The cut-off value for σr 

should be selected such that the constraint(s) considered for model order reduction is satisfied. 

One common approach is to consider a constraint as shown in Eq. (5.11) that ensures that the 

squared difference between the full-order model and ROM outputs satisfies the tolerance.       

 ∑ ∑ (𝑦(𝑖, 𝑗) − 𝑦𝑟(𝑖, 𝑗))
2𝑝

𝑖=0
𝑚
𝑗=1 ≤ 𝑡𝑜𝑙  (5.11) 

In Eq. (5.11), p denotes number of samples, m denotes the number of measurements, y(i,j) is the 

i
th 

sample of the j
th

 measurement for the full-order system and yr(i,j) is the i
th 

sample of the j
th 

measurements for the ROM.  
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5.4.3 Termination Using Incumbent Solution 

An incumbent solution is defined as the best value of the integral deviation from the optimal 

efficiency that has been obtained so far. For a given set of sensors, if the integral deviation from 

the optimal efficiency exceeds the incumbent solution, then the sensor set being evaluated is 

inferior to the sensor set corresponding to the incumbent solution and therefore, the evaluation of 

this sensor set is terminated. If the current result is superior to the existing incumbent solution, 

then the current results become the new incumbent solution.  Let a system subjected to a 

disturbance/setpoint change take time tss to reach a new steady state with an incumbent solution 

equal to Δηest,incum.  If an inferior sensor set exceeds the incumbent solution at the termination 

time tterm and results in ∑ (Δ𝜂𝑒𝑠𝑡,𝑖)
2𝑘

𝑖=1 , then the optimization problem is reformulated as: 

𝑀𝑖𝑛 [∑ (Δ𝜂𝑒𝑠𝑡,𝑖)
2𝑘

𝑖=1 + 𝜆1 ∑ 𝐸𝑠𝑡𝑒𝑟𝑟2𝑘
𝑖=1 + 𝜆2 (

𝛥𝜂𝑒𝑠𝑡,𝑖𝑛𝑐𝑢𝑚

𝑡𝑠𝑠
−

∑ (Δ𝜂𝑒𝑠𝑡,𝑖)
2𝑘

𝑖=1

𝑡𝑡𝑒𝑟𝑚
)
2

]                  (5.12) 

Note that the constraint Eq. (5.7) is eliminated due to this reformulation of the objective function. 

The third term in Eq. (5.12)  
𝛥𝜂𝑒𝑠𝑡,𝑖𝑛𝑐𝑢𝑚

𝑡𝑠𝑠
−

∑ (Δ𝜂𝑒𝑠𝑡,𝑖)
2𝑘

𝑖=1

𝑡𝑡𝑒𝑟𝑚
 is the penalty term for exceeding the 

incumbent solution. Considering convergence issues and computational expense, the estimation 

error and the penalty term are included in the objective function. In Eq. (5.12), λ1 and λ2 are the 

weighting factors for estimation error and incumbent solution, respectively. 

 

5.5 Discrete-Time Estimator-Based Control System 

A discrete-time version of the estimator-based control system is developed and used in the 

DMSND algorithm.   

𝛷 = exp (𝐴𝛥𝑡)  (5.13) 

𝐺 = ∫ exp (𝐴𝜎)
𝛥𝑡

0
𝐵𝑑𝜎 (5.14) 

𝛷 and G are the discrete transition matrix and discrete input matrix respectively.  
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Figure 5.1: Reduced-order estimator-based control-loop configuration in conjunction with 

full-order process model. 

 

The process block diagram is shown in Figure 5.1 and is characterized by full n
th

-order linear 

model and the additive n
th

-order process noise WF. The estimator in this case considers reduced-

order matrices:  discrete process matrix Φr, input matrix Gr, and output matrix Cr. Usually, good 

guesses for the process and measurement noise variance-covariance matrices, Q∈ℜn 
and R∈ℜm

, 

respectively, are required for achieving the desired estimation accuracy for the variables of 

interest. The reduced-order matrices in the estimator block provide computational efficiency 

while solving matrix Riccati equation. In addition, a good guess is only needed for the reduced 

order process noise variance-covariance matrix Qr (diagonal matrix of dimension r) instead of Q. 

Even though Qr is a lower dimensional matrix in comparison to the full-order model, it is 

difficult to provide a good estimate as the states in the ROM do not represent true states.  As 

exact knowledge of Q (and similarly Qr) and R are very difficult, if not impossible (especially 

that of Q), and Q and R are expected to evolve in the real life as the plant keeps operating, the 

sensor network has to still perform satisfactorily as long as the errors are within certain bounds. 

𝑧𝛽,𝑘 = 𝐶𝐹,𝛽𝑥𝐹,𝑘 +   𝜈𝛽 

Sensors: 

𝐶𝐹,𝛽 = [𝐶𝐹,𝑖𝑗]𝛽𝑖≠0
 ;    𝜈𝛽 = [𝑣𝑖]𝛽𝑖≠0   

  𝑖 = 1, 2, …… 𝑙;   𝑗 = 1, 2, ……𝑛    

 

𝑢𝑘−1 =  
𝑢𝑑,𝑘−1

𝑢𝑐,𝑘−1
   

 

𝑥𝐹,𝑘 = 𝛷𝐹𝑥𝐹,𝑘−1 

+𝐺𝐹𝑢 𝑘−1 +𝑤𝐹,𝑘−1 

Process:  

 

𝛥𝑢𝑐,𝑘−1 = 𝐾𝑐 [(𝜀𝑘−1 − 𝜀𝑘−2) +
𝛥𝑡

𝜏𝐼
𝜀𝑘−1] 

𝑢𝑐,𝑘−1 = 𝛥𝑢𝑐,𝑘−1 +𝑢𝑐,𝑘−2 

Controller: Proportional-integral 
𝑦𝑐𝑜𝑛𝑡,𝑠𝑒𝑡,𝑘−1 

𝜀𝑘−1 = 𝑦𝑐𝑜𝑛𝑡,𝑠𝑒𝑡,𝑘−1 − 𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡,𝑘−1 

𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡,𝑘 

𝑦̂𝑚𝑜𝑛,𝑘 

 𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡,𝑘 = 𝐶𝑟,𝑐𝑜𝑛𝑡𝑥̂𝑟,𝑘 

Estimator (Kalman Filter): Guess 𝑥0 𝑎𝑛𝑑 𝑃̂0  

Initial conditions:𝑥0 𝑎𝑛𝑑 𝑃0  

Predictor: Time update equations 

𝑥̂𝑟,𝑘
− = 𝛷𝑟𝑥̂𝑟,𝑘−1 + 𝐺𝑟𝑢𝑘−1                           

𝑃𝑘
− = 𝛷𝑟𝑃̂𝑘−1𝛷𝑟

𝑇 + 𝑄𝑟   

Corrector: Measurements update 

equations 

𝐾𝑘 = 𝑃𝑘
−𝐶𝑟,𝛽

𝑇 (𝐶𝑟,𝛽𝑃𝑘
−𝐶𝑟,𝛽

𝑇 + 𝑅𝑟)
−1

                       

𝑥̂𝑟,𝑘 = 𝑥̂𝑟,𝑘
− + 𝐾𝑘(𝑧𝛽,𝑘 − 𝐶𝑟,𝛽𝑥̂𝑘

−)  

𝑃̂𝑘 = (𝐼 − 𝐾𝑘𝐶𝑟,𝛽)𝑃𝑘
−   

 

𝑢𝑑,𝑘−1 
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This is typically a consideration made after sensor placement and therefore not considered in the 

DMSND algorithm. The authors of this paper (Paul et al., 2013) have looked into possibility of 

adapting Q and R for a case similar to the example considered here where optimal performance 

of the filter was obtained even in the presence of inaccurate knowledge of Q and R. Interested 

readers are referred to our previous work for more information. 

Finally, the DMSND problem results in following optimization problem: 

𝑀𝑖𝑛 [∑(Δ𝜂𝑒𝑠𝑡,𝑖)
2

𝑘

𝑖=1

+ 𝜆1 ∑𝐸𝑠𝑡𝑒𝑟𝑟2

𝑘

𝑖=1

+ 𝜆2 (
𝛥𝜂𝑒𝑠𝑡,𝑖𝑛𝑐𝑢𝑚

𝑡𝑠𝑠
−

∑ (Δ𝜂𝑒𝑠𝑡,𝑖)
2𝑘

𝑖=1

𝑇𝑡𝑒𝑟𝑚
)

2

] 

       s.t.        

                 𝑥𝐹,𝑘 = 𝛷𝐹𝑥𝐹,𝑘−1 + 𝐺𝐹𝑢 𝑘−1 + 𝑤𝐹,𝑘−1 (5.15) 

𝐶𝐹,𝛽 = [𝐶𝐹,𝑖𝑗]𝛽𝑖≠0
 ;    𝜈𝛽 = [𝑣𝑖]𝛽𝑖≠0  ;     𝑖 = 1, 2, …… 𝑙;   𝑗 = 1, 2, ……𝑛    

𝑧𝛽,𝑘 = 𝐶𝐹,𝛽𝑥𝐹,𝑘 +   𝜈𝛽  

𝑥𝑟,𝑘
− = 𝛷𝑟𝑥𝑟,𝑘−1 + 𝐺𝑟𝑢𝑘−1                           

𝑃𝑘
− = 𝛷𝑟𝑃̂𝑘−1𝛷𝑟

𝑇 + 𝑄𝑟  

𝐾𝑘 = 𝑃𝑘
−𝐶𝑟,𝛽

𝑇 (𝐶𝑟,𝛽𝑃𝑘
−𝐶𝑟,𝛽

𝑇 + 𝑅𝑟)
−1

                                                       

𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧𝛽,𝑘 − 𝐶𝑟𝑥𝑘

−)   

𝑃̂𝑘 = (𝐼 − 𝐾𝑘𝐶𝑟,𝛽)𝑃𝑘
−   

 𝑦̂𝑐𝑜𝑛𝑡,𝑘 = 𝐶𝑟,𝛽𝑥̂𝑘 

𝜀𝑘 = 𝑦𝑐𝑜𝑛𝑡,𝑠𝑒𝑡 − 𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡,𝑘 

𝛥𝑢𝑐,𝑘 = 𝐾𝑐 [(𝜀𝑘 − 𝜀𝑘−1) +
𝛥𝑡

𝜏𝐼
𝜀𝑘] 

𝑢𝑐,𝑘 = 𝛥𝑢𝑐,𝑘 +𝑢𝑐,𝑘−1 

𝑢 𝑘 = [
𝑢𝑑,𝑘
𝑢𝑐,𝑘

]  

∑ 𝑐𝑖𝛽𝑖∀𝑖   ≤  𝑏   ;    𝛽𝑖 = 0,1          ∀𝑖 ∈ 𝑁𝑠   
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5.6 DMSND Algorithm  

The DMSND algorithm shown in Figure 5.2 includes all of the strategies mentioned in the 

previous section for reducing computational expense. The optimization problem is solved using 

the GA. In the first generation of GA, the algorithm creates an initial population consisting of 

candidate sets (β) of sensors. For every candidate set, the initial control action uc,k-1(deviation 

variable) is zero. As the disturbances perturb the process or the controller setpoint(s) is(are) 

changed, controlled variables deviate from the setpoint. Estimated controlled variables are 

obtained from the estimator given the available measurements (selected by GA) and discrete 

process model.   The estimator, controller equations, and process model are solved sequentially 

at every discrete point in time in the face of disturbance/setpoint change. Control action 

continues until the new steady-state condition is reached. Over the period of process response, 

the efficiency profile is calculated corresponding to a sensor set that is then scored by a fitness 

function (objective function). Some sets of sensors with higher fitness values are classified as 

elite and the GA proceeds to the next generation. The remaining sets of sensors in the next 

generation are obtained by selection, cross-over and mutation based on their fitness. The set of 

candidate sensors evolves over the successive generations and the algorithm is halted once it 

satisfies the termination criteria. The final set of sensors obtained from this algorithm yields 

optimal efficiency given the budget constraints and constraints on estimation accuracy. It should 

be noted that the lower budget case studies comply with the budget constraints but fail to satisfy 

the estimation accuracy.   

 

The incorporation of the incumbent solution concept in the DMSND algorithm brings additional 

advantages in optimization. At the end of every time instant, the cumulative deviation of the 

efficiency from the optimal value is calculated and compared with the incumbent. If for a 

candidate set, the cumulative deviation exceeds the incumbent, Δηest,incum, further computation is 

terminated for that set. Otherwise the sequential control action proceeds in a regular fashion and 

ends up at the new fitness value once it reaches the new steady-state time tterm.  The new fitness 

value is then used as the new incumbent for the subsequent evaluation of the candidate set of 

sensors. 
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Figure 5.2: Flowchart of the DMSND algorithm incorporating termination using 

incumbent solution. 

Gen=Gen+1 

𝑌𝑒𝑠 
Print result Stop 𝑆𝑎𝑡𝑖𝑠𝑓𝑦 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛  

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

𝑁𝑜 

𝛥𝜂𝑒𝑠𝑡,𝑘 > Δ𝜂𝑒𝑠𝑡,𝑖𝑛𝑐𝑢𝑚  

𝑡𝑖𝑚𝑒 > 𝑡𝑠𝑠 

𝑌𝑒𝑠 

𝑌𝑒𝑠 

𝑁𝑜 𝑡𝑡𝑒𝑟𝑚 = 𝑡𝑖𝑚𝑒 

1. 𝑥𝑎𝑐𝑡,𝑘 = 𝛷𝐹𝑥𝑎𝑐𝑡,𝑘−1 + 𝐺𝐹𝑢𝑘−1 + 𝑤𝐹,𝑘−1 

2. 𝑧𝛽,𝑘 = 𝐶𝐹,𝛽𝑥𝑎𝑐𝑡,𝑘 +  𝜈𝛽 

3. Estimator: 𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡,𝑘, 𝑦̂𝑚𝑜𝑛,𝑘 

4. 𝜀𝑘 = 𝑦𝑐𝑜𝑛𝑡,𝑠𝑒𝑡,𝑘 − 𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡,𝑘  

5. 𝛥𝑢𝑐,𝑘 = 𝐾𝑐  (𝜀𝑘 − 𝜀𝑘−1) +
𝛥𝑡

𝜏𝐼
𝜀𝑘 , 𝑢𝑐,𝑘 = 𝛥𝑢𝑐,𝑘 + 𝑢𝑐,𝑘−1 

6. Δ𝜂𝑒𝑠𝑡,𝑘 = ∑ (𝜂𝑜𝑝𝑡,𝑖 − 𝜂(𝑥𝑎𝑐𝑡)𝑖)
𝑘
𝑖=1   

7. 𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 + 𝛥𝑡 

Specification of GA parameters, Gen =1 

 𝑆𝑡𝑎𝑟𝑡 

𝑁𝑜 

Yes Create initial population 

(Each candidate set is 𝛽 ) 

GA operator: selection, cross-

over, mutation 

 𝑖𝑠 𝐺𝑒𝑛 = 1 ? 

𝑢𝑐,𝑘−1 = 0 

𝑢𝑘−1 =  
𝑢𝑑,𝑘−1

𝑢𝑐,𝑘−1
  

𝑡𝑖𝑚𝑒 = 0 

 𝑖𝑠 𝑡𝑖𝑚𝑒 = 0 ? 
Yes 

𝑁𝑜 

𝑢𝑐,𝑘−1 = 𝑢𝑐,𝑘 

Objective: [∑(Δ𝜂𝑒𝑠𝑡,𝑖)
2

𝑘

𝑖=1

+ 𝜆1 ∑𝐸𝑠𝑡𝑒𝑟𝑟2

𝑘

𝑖=1

+ 𝜆2 (
𝛥𝜂𝑒𝑠𝑡,𝑖𝑛𝑐𝑢𝑚

𝑡𝑠𝑠
−

∑ (Δ𝜂𝑒𝑠𝑡,𝑖)
2𝑘

𝑖=1

𝑡𝑡𝑒𝑟𝑚
)

2

] 

𝑁𝑜 

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒, 𝑢𝑑,𝑘−1 

Δ𝜂𝑒𝑠𝑡,𝑖𝑛𝑐𝑢𝑚 = Δ𝜂𝑒𝑠𝑡,𝑘 , 𝑡𝑡𝑒𝑟𝑚 = 𝑡𝑠𝑠 
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The designed algorithm results in an MINLP problem. The optimization problem has been 

decomposed such that the integer problem is solved at upper level by using GA (Haupt and 

Haupt, 2004). 

 

5.7 Case Study 

This section illustrates the application of the DMSND algorithm on AGR unit in Figure 5.3. A 

short description of AGR process is given in section 3.4 of Chapter 3. Details of the modeling of 

this unit can be found in Bhattacharyya et al. (2011). 

 

 

Figure 5.3: Locations of primary control variables (labeled from a-j) in AGR unit 

(Bhattacharyya et al., 2011) considered for implementation of DMSND algorithm. 
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The DMSND algorithm involves using three software platforms: Aspen Plus
®
, Aspen Plus 

Dynamics
® 

(APD), and MATLAB
®
. The steady-state AGR process model is designed in Aspen 

Plus and then exported to APD for control system design and dynamic simulation. The nonlinear 

model in APD is linearized around the nominal operating condition by using a featured built-in 

tool called control design interface (CDI). It should be noted that all the primary controlled 

variable loops are kept open during the linearization while the loops are closed in MATLAB 

during the SP algorithm implementation. Thus the model obtained from APD is that of the open-

loop system. The CDI script calls the controlled variables as output and control variables as 

input. APD generates the linear state-space model of the AGR unit, which along with the 

algebraic measurement equations for candidate sensor locations, the primary controlled 

variables, and variables that appear in the objective functions, are then exported to MATLAB
®
. 

Implementation of the DMSND algorithm for optimization is performed in MATLAB
®
.  

 

Even though all primary controlled variables have to be estimated by the measurement 

framework, sensors are not necessarily placed on all primary controlled variables. This is 

because measurement of some of these variables can be difficult and/or expensive and can have 

time delay, high noise, and/or low estimation accuracy. On the other hand, it may be possible to 

estimate these variables satisfactorily by placing sensors elsewhere in the process and within the 

budget constraint. 

 

The AGR process model has 1505 state variables. Variations in the syngas flowrate and CO2 

composition in the syngas to the unit are considered as disturbances. The flowrate disturbance is 

simulated by changing the inlet pressure of the syngas to the AGR unit. It should be noted that 

even though the study considered two disturbances, the SP algorithm is generic and additional 

disturbances and change in the controller setpoints can be readily implemented. 

 

Figueroa et al. (2008) have investigated how CO2 capture affects plant efficiency. Efficiency of 

the AGR unit is defined in Eq. (5.16) where the numerator represents the amount of CO2 

captured while the denominator is the MWh power consumption. 

   𝜂(𝑥𝑎𝑐𝑡, 𝛽) = 
𝐹𝐶𝑂2,𝑖𝑛(𝑥𝑎𝑐𝑡)−𝐹𝐶𝑂2,𝑜𝑢𝑡(𝑥𝑎𝑐𝑡)

𝑎𝐹𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑥𝑎𝑐𝑡)+∑ 𝑃𝑐
3
𝑐=1 (𝑥𝑎𝑐𝑡)

   (5.16) 
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Four different types of commonly used sensors have been considered: temperature (T), pressure 

(P), flow (F), and composition ( zH2S and zCO2
). The AGR process flowsheet is studied and 126 

candidate sensors are identified for potential placement. Tables 5.1 and 5.2 show the distribution 

of these candidate sensors in the AGR unit.  

 

In our previous paper (Paul et al., 2015), every sixth tray of the H2S absorber was considered for 

placement of a temperature sensor while in this work we have considered every fourth
 
tray due to 

a lower price of temperature sensors.  For the H2S absorber, this results in a total of 15 candidate 

sensor locations, one more than considered in Paul et al. (2015). For the other three separation 

columns, a broader distribution of trays has been considered for locating candidate sensors; 

however, the total number of candidate sensors for each remains unchanged. As shown in Table 

5.1, a total of 47 candidate sensor locations are identified for the AGR equipment. For the AGR 

process streams, the measurements, which are not sensitive to disturbance changes or, dependent 

on input changes, are eliminated.  As shown in Table 5.2, this results in a total of 79 candidate 

sensor locations in the AGR process streams in this work, compared to the 117 candidate stream 

locations in Paul et al. (2015). Eliminating these stream measurements, results in an additional 

decrease in computational expense.   

 

Table 5.1: Candidate Sensor Locations in the Equipment Items in the AGR Unit 

 Equipment Sensors No. 

H2S Absorber 
𝑇4, 𝑇8, 𝑇12, 𝑇16, 𝑇20, 𝑇24, 𝑃7, 𝑃16, 𝑃25, (H2S)5, (H2S)16, (H2S) 25, 

(CO2)5, (CO2)16, (CO2)25 
15 

CO2 Absorber 
𝑇4, 𝑇8, 𝑇12, 𝑃3, 𝑃9, 𝑃15, (H2S)2, (H2S)8, (H2S) 14, (CO2)2, (CO2)8, 

(CO2)14 
12 

H2S Concentrator 𝑇3, 𝑇5, 𝑃4, (H2S)1, (H2S)5, (CO2)1, (CO2)5 7 

Acid Gas Knockout 𝑇, 𝑃 2 

Solvent Stripper 𝑇1, 𝑇4, 𝑇8, 𝑇10,  𝑃1, 𝑃3, 𝑃9, (H2S)3, (H2S)9, (CO2)3, (CO2)9 11 

         Total = 47 
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Table 5.2: Candidate Sensor Locations in the Process Streams in the AGR Unit 

Sensor Types T P F  zH2S  zCO2
 

No. of Sensors 29 20 14 2 14 

Total 79 

 

The range of inaccuracy of commercially available sensors can be found in Liptak (2003).  

Estimator-based control action is implemented for the primary controlled variables that have 

been identified by Jones et al. (2014) for this AGR unit. Table 5.3 shows the values of the tuning 

parameters for these controllers obtained using the Cohen-Coon method (Cohen and Coon, 1953; 

Ogunnaike and Ray, 1994). The tuning parameters remain unchanged for all iterations.  

 

Table 5.3: Controller Tuning Parameters 

Controller 

Label in 

Figure 5.3 

Controlled variable 
Proportional 

gain (𝑲𝒄) 

Reset time 

(𝝉𝑰), min 

a Loaded Solvent Cooler Outlet Temperature 0.199 4.21 

b Pressure of the H2 Recovery Unit 5.598 1.37 

c Stripper Pressure 1.016 0.21 

d Stripper Top Temperature 0.001 0.02 

e Semi-lean Solvent Cooler Outlet Temperature 0.262 0.11 

f Lean Solvent Cooler Outlet Temperature 0.004 0.009 

g Stripper Temperature T11
*
 4.15e-5 20 

h 
Water Concentration in Solvent at Stripper 

Bottom 
9.285 30 

i Pressure of High-Pressure (HP) Flash Vessel 30.516 1 

j 
Pressure of Medium-Pressure (MP) Flash 

Vessel 
17.754 1 

* = Subscript denotes stage number 

To reduce computation expense, the strategies mentioned above are implemented when applying 

the DMSND algorithm to the AGR unit. For determining the MRD strategy, the initial 



64 
 

measurement sampling time is kept small and chosen on an ad hoc basis. It is observed that the 

primary controlled variables currently under consideration require almost seven hours to reject 

the impact of the applied disturbance and more than 90% of the transient occurs within the first 

four hours. Therefore, for the first four hours, the sampling frequency is set to 200 times an hour 

(Δt1 = 0.005hr) and then decreased to 50 times an hour (Δt2 =0.02hr). By using the larger 

discretization time, the MRD strategy reduces the computational expense by about 75% after 

time =4 hr.   This heuristic approach is found to be satisfactory for the current problem for all 

combinations of sensors studied in this work.  

 

For ROM, the balanced model truncation using the square root method is considered. Figure 5.4 

shows the semi-log plot of squared error, ∑ ∑ (𝑦(𝑖, 𝑗) − 𝑦𝑟(𝑖, 𝑗))
2𝑝

𝑖=0
𝑚
𝑗=1  vs. order of the model 

(k). The optimal ROM is found to be of order 82 with the tolerance set at 1×10
-3 

for Eq. (5.11).  

 

 

Figure 5.4: Approximation error as a function of reduced order (k). 

 

In this AGR case study, the optimal efficiency profile in terms of moles of CO2 captured per 

MWh of power consumed (Eq. 5.16) is obtained by using the nonlinear model of the optimally 
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designed AGR unit in the absence of any noise. The developed sensor placement algorithm is 

implemented by using the GA available in the global optimization toolbox in MATLAB. GA 

creates initial population of the candidate set of sensors and over the successive generation it 

reaches the optimal set of sensors. 

 

In this work, the value of the weighting factors in Eq. (5.15) is chosen by trial and error by 

considering the desired weight for estimation accuracy versus incumbent solution. In this case 

study, following values are considered:  λ1 =  
1 0
0 1.0 × 10−3.

  and λ2 =1.0 × 10−3. 

  

5.8 Results 

The process efficiency, defined by Eq. (5.16), is calculated over the period of the process 

response. The integral squared error (ISE) due to the deviation from optimal efficiency is 

obtained. Pareto optimal solutions shown in Figure 5.5 are obtained by plotting log10(ISE) as a 

function of budget (cost of sensors). It shows that beyond a threshold budget (S5), there is only a 

small decrease in ISE/budget. Thus the measurements corresponding to the threshold budget are 

considered to be the optimal set. 

 

Figure 5.5: Pareto ISE plot for optimal sensor sets for different budgets as calculated by 

the DMSDN algorithm. 
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It should be noted that the results presented for each budget consider estimation accuracy on 

process operational constraints, the maximum allowable solvent temperature of 175
º
C, and 

minimum stripper pressure of 276 kPa. It is expected that the budget will increase substantially if 

grater estimation accuracy is desired for a larger number of variables.   

 

Table 5.4 presents detail comparison of the results for different budgets, in terms of number of 

sensors, types, etc.   

 

Table 5.4: Analysis of Sensor Sets Obtained from the DMSDN Algorithm for S3- S7 Budgets 

Sensors Cost($)/ 

sensor 

Available 

locations 

Solution Sensor Sets 

S3 

$118,600 

S4 

$161,200 

S5 

$180,400 

S6 

$282,600 

S7 

$411,600 

 

Temperature  1,000 45 24 22 27 24 26 

Pressure  2,200 31 13 16 17 13 18 

Flow  4,000 14  4  6 9 10  4 

H2S Analyzer 70,000 12  0  0  0   1  3 

CO2 Analyzer 10,000 24  5  8  8 12 12 

Selected locations 126 46 52 61 60 63 

 

Figure 5.5 shows that as the budget is increased, it leads to diminishing returns. At lower 

budgets, a smaller number of measurements are selected. Thus, estimation of controlled variables 

suffers and results in poor control performance which in turn affects the efficiency. With the 

increase in budget, process efficiency approaches the optimal performance profile. At higher 

budgets, solution sets S5- S7 show that locations and types decrease ISE only marginally and the 

total number of sensors is not very different but the locations are different. In addition, it is 

observed that the number of H2S analyzers keeps increasing with higher budgets. As shown in 

Table 5.4, it can be noted that the H2S analyzers are much more costly than any other type of 

sensors including CO2 analyzers.  



67 
 

 

  

Figure 5.6: Comparison of DMSDN estimator-based efficiency for different budgets with 

the optimal efficiency. 

 

Figure 5.6 shows the comparison of the efficiency profile for different budgets. The optimal 

efficiency profile is calculated in the absence of measurement noise and without opening the 

primary controlled variables. It is observed that the profile for $180,400 corresponding to S5 in 

Figure 5.5 closely follows the optimal performance. The profiles for lower budget cases deviate 

substantially from the optimal profile. In Table 5.4, it is noted that the optimal set, S5 does not 

include H2S analyzer. This is mainly due to the higher cost of an H2S sensor. It should be noted 

that one H2S analyzer is equivalent to the cost of 70 temperature sensors. It is observed that a 

number of temperature and pressure sensors is selected by the DMSND algorithm at a lower cost 

than a single H2S sensor still achieving satisfactory estimation accuracy. 
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The impact of different disturbances such as total pressure (𝐷𝑃), flowrate of CO2 (𝐷𝐶𝑂2
) and H2S 

(𝐷𝐻2𝑆) in the inlet syngas is presented in Table 5.5. In Table 5.5, the measure of deviation from 

the optimal profile is given in terms of integral absolute error (IAE). 

     

Table 5.5: Impact of Single and Multiple Disturbances for Optimal Sensor Set S5 

Disturbances 
IAE 

(𝐦𝐨𝐥 𝐂𝐎𝟐𝐜𝐚𝐩𝐭𝐮𝐫𝐞/𝐌𝐖𝐡)𝐡𝐫 

𝐷𝑃 3.17 

𝐷𝑃 and  𝐷𝐶𝑂2
 4.97 

𝐷𝑃, 𝐷𝐶𝑂2
 and 𝐷𝐻2𝑆 4.94 

  

5.8.1 Transient Performance of the SSND vs. DMSND  

Figure 5.7 shows the performance comparison of the sensor network obtained by SSND 

algorithm (Paul et al., 2015) and DMSND algorithm.  

 

Figure 5.7: Comparison of the efficiency profile using the sensor sets obtained by the SSND 

and DMSND algorithms. 

740

750

760

770

780

790

800

810

820

830

840

850

0 2 4 6 8 10

m
o
l 

C
O

2
 c

a
p

tu
re

/M
W

h
 

hr 

Performance of sensor netwok

obtained by DSND

Performance of sensor netwok

obtained by SSND



69 
 

The efficiency obtained using the sensor sets from the SSND algorithm approaches the optimal 

efficiency at steady state as would be expected, but the transient profile is significantly inferior to 

that obtained using the DMSND algorithm.   

 

5.8.2 Impact of Strategies for Reducing Computational Time  

It is found that the computational time for a single sensor network budget is significantly reduced 

by using the incumbent solution strategy. Figure 5.8 shows one of the cases where the incumbent 

solution interrupts the evaluation of an inferior sensor set in the first generation of GA.  

 

 

Figure 5.8: AGR efficiency profiles obtained for different candidate set of sensors. 

 

For instance, assume that a Sensor set_1 in Figure 5.8a results in a profile that deviates from the 

optimal profile by ISE of 8.45×10
3
.  In this case, 8.45×10

3 
is used as incumbent (better fitness) at 

that instant and in Figure 5.8b the evaluation of the next Sensor set_2 is interrupted after 1.615 hr 

(marked by dash line) due to exceeding the incumbent ISE. However, the efficiency profile for 

the additional time (after 1.615 hr in Figure 5.8b) was shown to illustrate that further evaluation 

of the sensor set would have resulted in significant deviation from the optimal profile. The 

incumbent ISE gets updated towards the lower value over the successive generation. It should be 

noted that, in this case, Figure 5.8a and Figure 5.8b both show infeasible sensor sets.  
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5.8.3 Impact of Various Strategies for Reducing Computational 

The impact of the various strategies for reducing DMSND computational time for the AGR case 

study is presented in Table 5.6. In Table 5.6, ‘FOM’ denotes full-order model and ‘worker’ 

denotes the number of processors used in the parallel computation.  

 

Table 5.6: Impact of Various Strategies for Reducing Computational Time for AGR Case 

Study 

Lower level (each candidate sensor set) 

Strategies used to reduce computation time  Computation time 

None 

(FOM + constant sampling rate) 
17 min 19 sec 

MRD-only 11 min 28 secs 

ROM-only 5.71 sec 

MRD+ROM 3.02 sec 

Upper level (case study: each budget) 

(Above strategies are inclusive)  

Strategies used to reduce computation time Computation time (approximate) 

Case study without incumbent 

(parallel computation with 4 workers) 
8 hr 30 min  

Case study with incumbent 

(parallel computation with 4 workers) 
3 hr 30 min – 4 hr 

Case study with incumbent 

(computation with 1 worker, i.e. no parallelization) 
9-10 hr 
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5.8.4 Performance Comparison of ROM with FOM 

Figure 5.9 shows that the efficiency profile obtained using ROM is very similar to that obtained 

using the FOM. The integral absolute errors (IAEs) for the full- and reduced-order models have 

been compared at the top-right corner in Figure 5.9. Again the difference is very small. 

 

 

Figure 5.9: Comparison of efficiency profile for the optimal sensor set using ROM and 

FOM. 

 

Table 5.7 shows the list of 61 measurements in optimal sensor set S5 obtained from the DMSND 

algorithm.  The set includes 27 temperature sensors, 17 pressure sensors, 9 flow sensors, and 8 

CO2 analyzers. The SSND algorithm in previous work (Paul et al., 2015) found an optimal set of 

56 measurements. The comparison shows that a total of 22 measurements (shown as bold in 

Table 5.7) are the same for both the algorithms. At several locations, the DMSND algorithm 

placed a sensor similar to the SSND algorithm (italic) but selected a different type. It is also 
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observed that the DMSND algorithm selected several stages in the towers similar to the SSND 

algorithm but it selected different stage numbers.    

 

It should be noted that the solution to the SND problem is not necessarily unique. Furthermore, 

the optimal set of sensors can change depending on the disturbances and set point changes and 

their magnitudes and characteristics. The developed algorithm is generic and can be readily used 

to study the impact of such changes.  
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Table 5.7: List of Optimal Set of Sensors 

Temperature Sensor 

1. 8
H2S absorber* 

2. 12
H2S absorber* 

3. 20
H2S absorber* 

4. Acid gas knockout drum vapor outlet 

5. 8
CO2 absorber* 

6. 12
CO2 absorber* 

7. 1
Solvent stripper* 

8. 10
Solvent stripper* 

9. Syngas cooler outlet 

10. Off gas from top of H2S absorber 

11. Semi-lean solvent cooler inlet 

12. Rich solvent heater inlet 

13. Solvent Stripper bottom outlet 

14. H2 recovery flash vessel outlet 

15. MP flash vessel outlet 

16. H2S concentrator vapor outlet 

17. Stripper gas compressor outlet 

18. Stripped gas cooler outlet 

19. Steam to solvent stripper 

20. H2 recovery cooler outlet 

21. 2nd
  MP CO2 compressor outlet 

22. Vapor of CO2 flash vessel 

23. Glycol absorber top outlet 

24. 1st
 MP CO2 compressor inlet 

25. 3rd
 MP CO2 compressor outlet 

26. 1st
 HP CO2 compressor outlet 

27. Tail gas to H2S absorber 

 

Pressure Measuring Device: 

28. 7H2S absorber* 

29. 25
H2S absorber* 

30. 4H2S concentrator* 

31. 3CO2 absorber* 

32. 9CO2 absorber* 

33. 15
CO2 absorber* 

34. 1Solvent stripper* 

35. 9Solvent stripper* 

36. Lean/rich heat exchanger inlet (rich solvent) 

37. Lean/rich heat exchanger inlet (lean solvent) 

38. Lean Selexol pump outlet 

39. H2 recovery flash vessel 

40. MP flash vessel outlet 

41. Acid gas K.O. bottom outlet 

42. H2 recovery cooler outlet 

43. 1st
 MP CO2 compressor inlet 

44. 1st
 HP CO2 compressor outlet 

Flow sensor 

45. Rich solvent heater inlet 

46. H2S concentrator liquid outlet 

47. H2S concentrator vapor outlet 

48. Solvent Stripper bottom outlet 

49. H2 recovery inlet 

50. HP flash vessel inlet 

51. LP flash vessel bottom  

52. Inert stripping gas to H2S concentrator 

53. H2O K.O. drum bottom outlet 

 

CO2 analyzer 

54. 14 
Liquid phase in CO2 absorber* 

55. Clean syngas  

56. Liquid phase in H2S absorber bottom 

57. H2S concentrator liquid outlet 

58. MP flash vessel vapor 

59. LP flash vessel liquid 

60. H2S concentrator vapor outlet 

61. H2 recovery compressor inlet 

*Superscript at the beginning of each location denotes stage number 
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5.9 Conclusion 

In this work, a DMSND algorithm has been developed for efficiency maximization of an 

estimator-based control system.  The computational expense is significantly reduced by 

developing three strategies: MRD, ROM, and use of an incumbent solution to terminate 

evaluation of infeasible sensor sets.  The algorithm is applied to a large-scale acid gas removal 

unit as part of an IGCC power plant with CO2 capture.  It is observed that the computational time 

for a single sensor network budget is reduced by more than half by using the incumbent solution. 

For a given set of sensors, the use of MRD and ROM reduces the DMSND algorithm 

computation time from about 17 min to 3 sec for a typical sensor set. The use of the ROM results 

in a very minor deviation from the efficiency profile obtained by using the full-order model. The 

results show that beyond a threshold budget for the sensor network, the efficiency obtained using 

the estimator-based control system approaches the optimal efficiency. With further increase in 

budget, there is minor change in the efficiency profile. It is observed that the sensor network 

obtained using the SSND algorithm can result in suboptimal transient performance even though 

the steady-state performance approaches the optimal efficiency as expected.    
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Chapter 6  
 

Nonlinear Dynamic Model-Based SND Algorithm 

  

 

The SND algorithms that have been presented in earlier chapters have been developed using a 

linear process model. Also, a single objective has been considered for optimization. In this 

chapter, a nonlinear dynamic model-based SND (NDMSND) algorithm is developed for multi-

objective optimization for an estimator-based control system while satisfying accuracy 

requirements for key process variables. A lexicographic approach is used for multi-objective 

optimization. First the process efficiency is maximized followed by the minimization of sensor 

budget. The NDMSND algorithm is developed using an unscented KF (UKF) for estimating the 

key process variables. The NDMSND algorithm can be used to determine optimal location, 

number and type of sensors for a highly nonlinear system for which a linear model can lead to 

inaccuracies.   

 

6.1 Literature Review 

There are very few works published in the area of NDMSND. Wouwer et al. (2000) have 

presented an approach to the selection of optimal sensor locations using a nonlinear distributed 

parameter model of a catalytic fixed-bed reactor for on-line estimation of states and unknown 

parameters. Karim et al. (2008) have presented a SND methodology for nonlinear continuous-

stirred tank reactor using EKF for dynamic data reconciliation. They use genetic algorithm to 

solve the constrained optimization problem. Alonso et al. (2004) have studied optimal location 

and type of sensors in a low dimensional nonlinear convection-diffusion-reaction process 

through an efficient guided search algorithm that minimizes orthonormality distortion. Georges 

(1995) has used an approach based on nonlinear observability functions (Scherpen, 1993) for 

determining sensor location. Lopez and Alvarez (2004) have presented geometric approach to 

determine the degree of estimability for nonlinear systems. However, geometric approaches 

(Isidori,1995; Hermann and Kerner, 1977) are computationally expensive for determining sensor 

locations. Nguyen and Bagajewicz (2008) have investigated NDMSND using an equation-based 

tree search method for the design of a nonlinear sensor network. Singh and Hahn (2005) have 
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performed an observability analysis of a system over an operating region for placing a single 

sensor. The authors later extended the analysis and considered measurement redundancy for 

placing multiple sensors (Singh and Hahn, 2006).  

 

There is hardly any work on SND for efficiency maximization using nonlinear, dynamic models. 

The main difference in the SND algorithm for efficiency maximization is due to consideration of 

the estimator-based control system as mentioned earlier. In previous chapters, the SND 

algorithms have been developed where the cost of sensor sets are used as inequality constraints. 

Thus the optimization terminates once the sensor set reaches the maximum efficiency and the 

cost of the sensor set is below or equal to some pre-specified budget. However this does not 

guarantee that the sensor sets obtained are cost optimal. There may exist other set of sensors that 

can achieve equal or almost the same efficiency at much lower budget. Therefore, multi-

objective optimization where process efficiency is maximized at the minimum budget seems 

appropriate. A lexicographic approach is used to solve the multi-objective SND problem. First, 

optimization is performed to maximize process efficiency for a given budget. Then the cost of 

the sensors is minimized subject to the maximum efficiency obtained from the first optimization.  

 

The NDMSND algorithms are computationally very expensive due to the study of the nonlinear 

transient behavior of the process for each candidate set of sensors. This computational expense 

significantly increases as the number of state variables and the number of candidate sensor 

variables increase. In particular, the solution of the matrix Riccati equation takes significant 

computational time. However, for the NDMSND algorithm to be usable for large-scale industrial 

applications, an efficient algorithm is desired that can be solved within reasonable run times 

using standard computing resources.  With this incentive, a reduced order nonlinear model is 

identified for developing computationally efficient NDMSND algorithm for maximizing the 

efficiency of large-scale processes. In this NDMSND algorithm, the UKF is used for estimating 

nonlinear process variables and particular focus is given to its convergence properties.  

 

Usually, nonlinear states are estimated by extended KF (EKF) (Anderson and Moore, 1979). In 

the last two decades, UKF (Julier and Uhlmann, 2004) has emerged as a popular alternative to 

EKF. Similar to EKF, UKF also implicitly assumes the prior density as Gaussian whose mean 
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and covariance are obtained by propagating a set of sigma points. This results in a better 

approximation of the moments (Julier and Uhlmann, 2004) and also avoids numerical issues 

related to the linearization step of EKF. Several modifications have been proposed in the 

literature to account for the non-Gaussianity. These include Gaussian Sum Filter (GSF) 

(Sorenson and Alspach, 1971; Soderstrom, 2002), Gaussian Sum UKF (Straka et al., 2011), 

Gaussian Sum Particle Filter (Dunik and Simandl, 2005) and Unscented GSM (Kottakki et al., 

2014). These approaches are based on the result that a Gaussian sum can approximate any 

density to an arbitrary degree of accuracy (Sorenson and Alspach, 1971).  

 

In this chapter, a NDMSND algorithm has been developed that results in a MINLP problem. The 

NDMSND algorithm is solved by splitting the problem into two parts. The integer programming 

part is solved by GA while other linear and nonlinear equations in Figure 6.1 are solved 

sequentially. As discussed below in more detail, this formulation helps in satisfying the linear 

and nonlinear equality constraints for every combination of integer variables.  

 

This following organization is adopted in this paper. First the nonlinear state estimation 

algorithms, namely EKF and UKF, are presented. Then the method of system identification and 

multiobjective optimization using lexicographic ordering are discussed briefly. Subsequently, the 

NDMSND algorithm for efficiency maximization for an estimator-based control system is 

presented. This is followed by a discussion on the solution approach to the NDMSND problem. 

Finally, the application of the NDMSND algorithm to the AGR case study is presented.   

 

6.1.1 EKF: 

For a general nonlinear system,  

                                                              𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1) + 𝑤𝑘−1                                       (6.1) 

                                                                   𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘                                                    (6.2) 

𝑥𝑘 and 𝑧𝑘 are the state and measurement vectors, respectively. 𝑓(. ) and ℎ(. ) are the process and 

measurement nonlinear vector functions. Random vectors 𝑤 and 𝑣 are the model uncertainties 

and measurement noise which are both assumed to be zero-mean, white noise with known 

covariance and uncorrelated with the initial state 𝑥0. 

The following assumptions are made: 
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𝐸[𝑤𝑘] = 0       𝐸[𝑤𝑘𝑤𝑘
𝑇] = 𝑄𝑘       𝐸[𝑤𝑘𝑤𝑗

𝑇] = 0 for 𝑘 ≠ 𝑗       𝐸[𝑤𝑘𝑥0
𝑇] = 0 for all k 

𝐸[𝑣𝑘] = 0       𝐸[𝑣𝑘𝑣𝑘
𝑇] = 𝑅𝑘         𝐸[𝑣𝑘𝑣𝑗

𝑇] = 0 for 𝑘 ≠ 𝑗         𝐸[𝑣𝑘𝑥0
𝑇] = 0 for all k 

𝐸[𝑤𝑘𝑣𝑗
𝑇] = 0 for all k and j 

The designed algorithm for nonlinear state estimation using EKF is presented below: 

The initial conditions are: 

𝑥0
𝑎 = 𝜇0 with error covariance 𝑃0  

𝑥0
𝑎 is the initial optimal estimate states 

Predictor: 

                                                                  𝑥𝑘
𝑓

= 𝑓(𝑥𝑘−1
𝑎 )                                                           (6.3) 

                                                  𝑃𝑘
𝑓

= 𝐽𝑓(𝑥𝑘−1
𝑎 )𝑃𝑘−1𝐽𝑓

𝑇(𝑥𝑘−1
𝑎 ) + 𝑄𝑘−1                                      (6.4) 

where 𝑥𝑘
𝑓
 is forecast nonlinear states, 𝑃𝑘

𝑓
 is forecast error covariance, 𝐽𝑓 is Jacobian of 𝑓(. ), and 

𝑄𝑘 is process noise covariance matrix 

Corrector: 

                                                     𝑥𝑘
𝑎 = 𝑥𝑘

𝑓
+ 𝐾𝑘(𝑧𝑘 − ℎ(𝑥𝑘

𝑓
))                                                (6.5) 

                                           𝐾𝑘 = 𝑃𝑘
𝑓
𝐽𝐻
𝑇(𝑥𝑘

𝑓
)(𝐽𝐻(𝑥𝑘

𝑓
)𝑃𝑘

𝑓
𝐽𝐻
𝑇(𝑥𝑘

𝑓
) + 𝑅𝑘)

−1
                                 (6.6) 

                                                         𝑃𝑘 = (𝐼 − 𝐾𝑘𝐽𝐻(𝑥𝑘
𝑓
))𝑃𝑘

𝑓
                                                  (6.7) 

where 𝑃𝑘 is posterior error covariance, 𝐽𝐻 is Jacobian of ℎ(. ), and 𝑅𝑘 is measurement noise 

covariance matrix. 

 

6.1.2 UKF: 

The Unscented Transformation (UT) is the central technique of the UKF for the nonlinear 

function y = f(x), where x and y are L × 1 vectors, and f represents the nonlinear functions. Here, 

x is a random variable which is typically assumed to be normally distributed (Gaussian) with 

mean, 𝑥̅, and covariance, 𝑃𝑥. The UT provides a statistical alternative to the analytical 
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linearization approach using Jacobian matrices which is used in the EKF. The UT uses a small 

set of deterministically selected points, called sigma-points, which are selected, based on the a 

priori conditions, i.e., the points are selected from the assumed prior distribution. The spread of 

these points or the confidence level from the prior distribution is determined based on the 

selected scaling parameters for the UT. The values of the scaling parameters affect the spread of 

the sigma-points as well as the weight vectors that are used in reconstructing the a posteriori 

(after the transformation) statistics.  

 

The scaling of the UT can be fully represented by three scaling parameters (Julier and Uhlmann, 

1997; Wan and van der Merwe, 2002). The primary scaling parameter, 𝛼𝑠𝑐, determines the 

spread of the sigma-points. Smaller α leads to a tighter (closer) selection of sigma-points, while 

larger 𝛼𝑠𝑐 gives a wider spread of sigma-points. The secondary scaling parameter, 𝛽𝑠𝑐, is used to 

include information about the prior distribution (for Gaussian distributions, 𝛽𝑠𝑐 = 2 is optimal). 

The tertiary scaling parameter, 𝜅𝑠𝑐, is usually set to 0 (Julier and Uhlmann, 1997). Using these 

three scaling parameters, an additional scaling parameter, λ, and weight vectors, 𝑊𝑚 (mean) and  

𝑊𝑐 (covariance) are defined. 

 

Off-line calculations (each step completed once before filtering): 

Define scaling parameters and weight vectors 

𝜆 = 𝛼𝑠𝑐
2 (𝐿 + 𝜅) − 𝐿                                                    (6.8) 

𝑊0
𝑚 =

𝜆

𝐿+𝜆
                                                              (6.9) 

𝑊0
𝑐 =

𝜆

𝐿+𝜆
+ 1 − 𝛼𝑠𝑐

2 + 𝛽𝑠𝑐                                           (6.10) 

𝑊𝑖
𝑚 = 𝑊𝑖

𝑐 =
1

2(𝐿+𝜆)
 , 𝑖 = 1,2, …… ,2𝐿                                   (6.11) 

 

Initialization (each step completed once before filtering): 

𝑄𝑘 = 𝐸[𝑤𝑘𝑤𝑘
𝑇],   𝑅𝑘 = 𝐸[𝑣𝑘𝑣𝑘

𝑇]                                            (6.12) 

𝑥̂0 = 𝐸[𝑥0], 𝑃0 = 𝐸[(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)
𝑇]                                       (6.13) 
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Executing the filter recursively (each step at every discrete-time): 

Step 1: Generate the Sigma-Points 

√𝑃𝑘−1 = 𝑐ℎ𝑜𝑙(𝑃𝑘−1) (Lower Cholesky decomposition) 

𝑥𝑘−1 = [𝑥̂𝑘−1       𝑥̂𝑘−1 + (√𝐿 + 𝜆 √𝑃𝑘−1 )𝑖       𝑥̂𝑘−1 − (√𝐿 + 𝜆 √𝑃𝑘−1 )𝑖    ]            (6.14) 

 

Step 2: Prediction Transformation 

𝑥𝑘|𝑘−1
(𝑖)

= 𝑓(𝑥𝑘−1
(𝑖) , 𝑢𝑘),   𝑖 = 1,2, …… .2𝐿                                    (6.15) 

𝑥̂𝑘|𝑘−1 = ∑ 𝑊𝑖
𝑚2𝐿

𝑖=0 𝑥𝑘|𝑘−1
(𝑖)

                                                      (6.16) 

𝑃𝑘|𝑘−1 = 𝑄𝑘−1 + ∑ 𝑊𝑖
𝑐2𝐿

𝑖=0 (𝑥𝑘|𝑘−1
(𝑖) − 𝑥̂𝑘|𝑘−1) (𝑥𝑘|𝑘−1

(𝑖) − 𝑥̂𝑘|𝑘−1)
𝑇               (6.17) 

 

Step 3: Observation Transformation 

ψ𝑘|𝑘−1
(𝑖)

= ℎ (𝑥𝑘|𝑘−1
(𝑖)

, 𝑢𝑘)                                                  (6.18) 

𝑦̂𝑘|𝑘−1 = ∑ 𝑊𝑖
𝑚2𝐿

𝑖=0 ψ𝑘|𝑘−1
(𝑖)

                                                 (6.19) 

𝑃𝑘
𝑦𝑦

= 𝑅𝑘−1 + ∑ 𝑊𝑖
𝑐2𝐿

𝑖=0 (ψ𝑘|𝑘−1
(𝑖) − 𝑦̂𝑘|𝑘−1) (ψ𝑘|𝑘−1

(𝑖) − 𝑦̂𝑘|𝑘−1)
𝑇            (6.20) 

𝑃𝑘
𝑥𝑦

= ∑ 𝑊𝑖
𝑐2𝐿

𝑖=0 (x𝑘|𝑘−1
(𝑖) − 𝑥̂𝑘|𝑘−1) (ψ𝑘|𝑘−1

(𝑖) − 𝑦̂𝑘|𝑘−1)
𝑇                          (6.21) 

 

 

Step 4: Measurement update 

𝐾𝑘 = 𝑃𝑘
𝑥𝑦

(𝑃𝑘
𝑦𝑦

)−1                                                      (6.22) 

𝑥̂𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝑦̂𝑘|𝑘−1)                                           (6.23) 

𝑃𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝑃𝑘
𝑦𝑦

𝐾𝑘
𝑇                                                          (6.24) 
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6.1.3 System Identification 

For the nonlinear SND, the nonlinear process model needs to be identified by using the input-

output data.  Several methodologies have been developed for nonlinear model identification in 

different application areas.  

 

6.1.3.1 Neural Network Method  

One of the widely used methods for identifying nonlinear model is the neural network (Narendra, 

1997). The neural network model coupled with the linear state space model can be used for 

representing nonlinear, dynamic systems (Sentoni et al., 1998). In this work, a linear in 

parameter (LIP) method is used for nonlinear model identification. 

 

6.1.3.2 Linear in Parameter Method 

The LIP method is widely used in different areas of application because of its simple structure 

and well-developed characteristic.  The general form of LIP can be written as  

 

𝑦(𝑘) = 𝑥(𝑘)𝐻                                                       (6.25) 

Where, 𝐻 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌                                                    (6.26) 

 

y(k) is the output at time instant k. x(k) is the regression vector. The parameter vector H is 

estimated by least squares method. 

  

A nonlinear process model of any degree can be obtained using the LIP method. NAARX 

(Nonlinear additive auto-regressive with exogenous input) models are represented by:  

                  

𝑦(𝑘) = ∑𝑓𝑖(𝑢(𝑘 − 𝑖))

𝑔

𝑖=0

 + ∑𝑠𝑗(𝑦(𝑘 − 𝑗))

ℎ

𝑗=1

                                              (6.27) 

 

In Eq. (6.27) f  and s are the polynomials of order 𝑁1and 𝑁2. The input memory g and the output 

memory h are determined by number of sampling. In this work, NAARX model including cross-

terms is considered: 
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𝑦(𝑘) = ∑𝐻1(𝑖, 𝑛1)𝑢(𝑘 − 𝑖)𝑛1

𝑔

𝑖=0

+ ∑𝐻2(𝑗, 𝑛2)𝑦(𝑘 − 𝑗)𝑛2

ℎ

𝑗=1

+ ∑∑𝐻3(𝑖, 𝑗)𝑢(𝑘 − 𝑖)𝑢(𝑘 − 𝑗)

ℎ

𝑗=1

𝑔

𝑖=0

+ ⋯∑…

𝑔

𝑖=0

∑ 𝐻𝑛1+1(𝑖, … , 𝑙1)𝑢(𝑘 − 𝑖)…𝑢(𝑘 − 𝑙1),

𝑔

𝑙1=0

      

𝑛1 = 1:𝑁1, 𝑛2 = 1:𝑁2                                   (6.28) 

 

6.1.4 Multi-Objective Optimization 

Multi-objective optimization techniques are used to handle problems where more than one 

objective is to be maximized or minimized. This type of problem usually has at least two 

conflicting objectives. It is difficult to reach their optimal values simultaneously. Attaining one 

will result in degrading the other(s). Interactions among different objectives give rise to a set of 

compromised solutions, largely known as trade-off solutions.  There exist several multi criteria 

decision problems where the Pareto-optimality is not guaranteed (Miettinen, 2002). A 

lexicographic approach is one such technique that can guarantee Pareto-optimality of multi-

objective optimization problems. Several mathematical nonlinear lexicographic optimizations 

have been reported by Behringer (1977).  This type of optimization is studied by arranging 

objective functions in lexicographic order i.e. one goal is more important than other. First the 

most important goal is optimized. Therefore, a lexicographic optimization can be written as: 

 

Min 𝑓1(𝑥), 𝑓2(𝑥), . . .  𝑓𝑘(𝑥)                                                                                        (6.29) 

s.t.                                           

    x ∈ S 

 

where 𝑓1(𝑥) is the most important objective function and 𝑓𝑘(𝑥) is the least important. In 

lexicographic ordering, if the most important objective function has a unique solution, then the 

other objectives do not impact the solution obtained in the optimization of most important 

function. 

 

In the NDMSND algorithm, more importance is given to process efficiency maximization than to 

minimization of budget for sensors. Thus, first an optimal set of sensors is determined that 

results in minimum deviation from optimal efficiency subject to budget constraints and 
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estimation accuracy. Later, the budget for the sensor is minimized subject to the previously 

obtained optimal value for the efficiency.   

 

6.2 Nonlinear Model-Based SND Algorithm Development 

The estimator-based control system that is used to develop the NDMSND algorithm is shown in 

Figure 6.1.  The process is perturbed by a disturbance 𝑢𝑑. The estimator receives the noisy 

measurements, 𝑦𝑛𝑜𝑖𝑠𝑦,𝛽, from the sensor network and estimates the controlled variables 

(𝑦̂𝑐𝑜𝑛𝑡,𝑒𝑠𝑡) and the variables for monitoring (𝑦̂𝑚𝑜𝑛) process performance. The controller(s) then 

implement(s) the corrective action on the process based on the estimated controlled variables.  

 

 

 

 

 

 

 

Figure 6.1: Schematic of the UKF-based control system for development of the NDMSND 

algorithm. 

 

For developing the NDMSND algorithm, first the set of equations corresponding to each block 

of the estimator-based control system is organized. The estimator block in Figure 6.1 is 

considered to be a UKF. 

 

The NDMSND algorithm is designed for multi-objective optimization where process efficiency 

is maximized followed by minimization of budget for sensors. Thus priority-based optimization 

is performed by using lexicographic ordering as shown below: 

 

 

 

𝑢𝑑  

 Sensori 

 Sensor1 

𝑦 = 𝑓(𝑥𝑎𝑐𝑡) 𝑢𝑐 

𝑢𝑑  

𝜀 

𝑦𝑛𝑜𝑖𝑠𝑦,𝛽 

Actual 

data 

 𝑦̂mon 

 

𝑦𝑠𝑒𝑡 

 

 

Estimator: 

UKF 

Controller Nonlinear Process 

Disturbance 
  𝑦̂cont,est 

 Sensor2 
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STEP A1  

𝑀𝑖𝑛 ∑ (Δ𝜂𝑒𝑠𝑡,𝑖)
2𝑘

𝑖=1                                                                                                        (6.30)                                                    

        ∑ 𝑐𝑖𝛽𝑖∀𝑖   ≤  𝑏   ;    𝛽𝑖 = 0,1          ∀𝑖 ∈ 𝑁𝑠                                                           (6.31)             

        ∑ 𝐸𝑠𝑡𝑒𝑟𝑟𝑖
2𝑘

𝑖=1 < 𝑡𝑜𝑙1                                                                                           (6.32)                                                 

 

STEP A2  

𝑀𝑖𝑛 ∑ 𝑐𝑖𝛽𝑖∀𝑖                                                                                                                   (6.33)                     

    ∑ (Δ𝜂𝑒𝑠𝑡,𝑖)
2𝑘

𝑖=1   ≤ Optimal value obtained from STEP A1                                      (6.34)             

 ∑ 𝐸𝑠𝑡𝑒𝑟𝑟𝑖
2𝑘

𝑖=1 < 𝑡𝑜𝑙1                                                                                               (6.35) 

                                                                                  

In STEP A1, the integer problem is solved subject to the constraints in each block of Figure 6.1.  

The additional constraints on the budget and the estimation accuracy are represented by Eqs. 

(6.31) and (6.32), respectively, where ci denotes the cost of a sensor of type i. The variables in 

Eq. (6.30) are a function of xact in the estimator-based control system.  

 

In STEP A2, the budget for the sensors is minimized subject to the same constraints as those in 

STEP A1 except that the additional constraints on the deviation in efficiency and the estimation 

accuracy as denoted by Eqs. (6.34) and (6.35), respectively.  Δ𝜂𝑒𝑠𝑡 and 𝐸𝑠𝑡𝑒𝑟𝑟 are defined as, 

 Δ𝜂𝑒𝑠𝑡 = 𝜂𝑜𝑝𝑡 − 𝜂(𝑥𝑎𝑐𝑡, 𝛽) (6.36) 

 𝐸𝑠𝑡𝑒𝑟𝑟 = 𝑦𝑚𝑎,𝑎𝑐𝑡 − 𝑦̂𝑚𝑎  (6.37) 

As shown in Eq. (6.36), Δηest is the difference between the optimal efficiency (ηopt) and η(xact,β), 

the efficiency obtained in the estimator-based system. Eq. (6.37) is used to calculate the 

estimation error in key variables, denoted by Esterr, by comparing the actual values with the 

estimated values of process variables.    

 

The constraint on estimation accuracy in Eq. (6.32) is eliminated and the objective function is 

reformulated for STEP A1 as follows, 
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STEP B1 

𝑀𝑖𝑛  𝜆1 ∑ (Δ𝜂𝑒𝑠𝑡,𝑖)
2𝑘

𝑖=1 + 𝜆2 ∑ 𝐸𝑠𝑡𝑒𝑟𝑟2𝑘
𝑖=1                                                                        (6.38) 

               ∑ 𝑐𝑖𝛽𝑖∀𝑖   ≤  𝑏   ;    𝛽𝑖 = 0,1          ∀𝑖 ∈ 𝑁𝑠                                                                           

In Eq. (6.38), λ1 and λ2 are the weighting factors for deviation in efficiency and estimation 

accuracy, respectively. 

 

Similarly, STEP A2 is reformulated as, 

 

STEP B2 

𝑀𝑖𝑛[𝜆1́ ∑ 𝑐𝑖𝛽𝑖∀𝑖  + 𝜆2́ ∑ 𝐸𝑠𝑡𝑒𝑟𝑟2𝑘
𝑖=1 ]                                                                                           (6.39)                     

      ∑ (Δ𝜂𝑒𝑠𝑡,𝑖)
2𝑘

𝑖=1   ≤ 𝑘′×Optimal value obtained from STEP 1        

In Eq. (6.39), 𝜆1́ and 𝜆2́ are the weighting factors for budget and estimation accuracy, 

respectively. In STEP B2, the deviation in efficiency remains within a bound for the goal factor 

𝑘′. 

6.3 NDMSND Algorithm 

The NDMSND algorithm shown in Figure 6.2 is solved using the GA. In the first generation of 

GA, the algorithm creates an initial population consisting of candidate sets (β) of sensors. For 

every candidate set, the initial control action uc,k-1(deviation variable) is zero. As the disturbances 

are introduced, and/or the process or the controller setpoint(s) is(are) changed, controlled 

variables deviate from the setpoint. Estimated controlled variables are obtained from the 

estimator (UKF) given the available measurements (selected by GA) and nonlinear process 

model.   The estimator, controller equations, and process model are solved sequentially at every 

discrete point in time in the face of disturbance/setpoint change. Control action continues until 

the new steady-state condition is reached. Over the period of process response, the efficiency 

profile is calculated corresponding to a sensor set that is then scored by a fitness function 

(objective function). Some sets of sensors with higher fitness value are classified as elite and the 

GA proceeds to the next generation. The remaining sets of sensors in the next generation are 

obtained by selection, cross-over, and mutation based on their fitness. The set of candidate 

sensors evolves over the successive generations and the algorithm is halted once it satisfies the 
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termination criteria. The final set of sensors obtained from this algorithm yields optimal 

efficiency given the budget constraints and constraints on estimation accuracy. It should be noted 

that the lower budget case studies may fail to satisfy the estimation accuracy. This step does not 

guarantee the minimization of budget. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Flowchart of the NDMSND algorithm for maximizing efficiency. 
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Figure 6.3: Flowchart of the NDMSND algorithm for minimizing budget for sensors. 
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Figure 6.3 shows the algorithm for minimizing budget for sensors. The estimation accuracy and 

the efficiency obtained for optimal set of sensors for different budgets are used as constraints. 

The same optimal set of sensors is obtained if the solution is unique and no lower budget can 

achieve the previously obtained maximum efficiency within the given tolerance.   

 

6.4 Case Study 

This section illustrates the application of the NDMSND algorithm in the nonlinear AGR process 

as part of an IGCC power plant with CO2 capture (see Section 3.4). The nonlinear model of the 

AGR process is identified by a NAARX model as mentioned before. The nonlinear models, 

involving 62 dominant state variables, are 2
nd

 degree polynomials including cross terms. 

Measurement equations are also 2
nd

 degree polynomials obtained by NAARX model. Additive 

Gaussian white noise is used for process model to capture the un-modeled process dynamics and 

for measurement equations to characterize measurement noise. Variations in the syngas flowrate 

are considered as the disturbance. The flowrate disturbance is simulated by changing the inlet 

pressure of the syngas to the AGR unit. It should be noted that even though the study considered 

only one disturbance, the SND algorithm is generic and additional disturbances and change in 

the controller setpoints can be readily implemented. 

 

Efficiency of the AGR unit is defined in Eq. (6.40) where the numerator represents the amount of 

CO2 captured while the denominator is the MWh power consumption. 

   𝜂(𝑥𝑎𝑐𝑡, 𝛽) = 
𝐹𝐶𝑂2,𝑖𝑛(𝑥𝑎𝑐𝑡)−𝐹𝐶𝑂2,𝑜𝑢𝑡(𝑥𝑎𝑐𝑡)

𝑎𝐹𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑥𝑎𝑐𝑡)+∑ 𝑃𝑐
3
𝑐=1 (𝑥𝑎𝑐𝑡)

   (6.40) 

Four different types of commonly used sensors have been considered: temperature (T), pressure 

(P), flow (F), and composition ( zH2S and zCO2
).  

 

The AGR process flowsheet is studied and 42 potential sensors are being considered in the 

current formulation of the NDMSND algorithm. A smaller number of measurement locations is 

considered for reducing computational expense while using UKF to estimate the states. Table 6.1 

shows the distribution of these candidate sensors in the AGR unit.  
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Table 6.1: Candidate Sensor Locations in the AGR Unit 

Temperature Sensors Flow Sensors 

1. Syngas Cooler Inlet 

2. Inlet to H2O K.O. Drum 

3. Top Outlet of H2O K.O. Drum 

4. Clean Syngas at the Top of CO2 absorber 

5. Stripped Gas Cooler Outlet 

6. Off Gas from Top of H2S Absorber 

7. Rich Solvent at H2S Absorber Bottom 

8. Rich Solvent at inlet to H2S Concentrator 

9. N2 Gas Flow to H2S Concentrator 

10. H2S Concentrator Vapor Outlet 

11. Stripped Solvent at the Bottom of Selexol 

Stripper 

12. Stripped Solvent at the Bottom of Selexol 

Stripper 

23. Inlet to H2O K.O. Drum 

24. Clean Syngas at the Top of CO2 absorber 

25. Off Gas from Top of H2S Absorber 

26. H2S Concentrator Vapor Outlet 

27. Stripped Solvent at the Bottom of Selexol 

Stripper 

28. Top Outlet of Acid Gas K.O 

CO2 Analyzers 

29. H2O K.O. Drum Bottom Outlet 

30. Off Gas from Top of H2S Absorber 

31. H2S Concentrator Vapor Outlet 

32. Top Outlet of Acid Gas K.O 

33. Selexol Stripper Top Outlet 

Pressure Sensors H2S Analyzers 

13. Inlet to H2O K.O. Drum 

14. Top Outlet of H2O K.O. Drum 

15. Clean Syngas at the Top of CO2 absorber 

16. Loaded solvent at the bottom of CO2 

absorber 

17. Rich Solvent at inlet to H2S Concentrator 

18. Stripped Solvent at the Bottom of Selexol 

Stripper 

19. Top Outlet of Acid Gas K.O 

20. Valve Outlet at the Bottom of Acid Gas 

K.O. Drum 

21. Selexol Stripper Top Outlet 

22. Stripped Solvent at the Bottom of Selexol 

Stripper 

34. H2O K.O. Drum Bottom Outlet 

35. Loaded solvent at the bottom of CO2 

absorber 

36. Off Gas from Top of H2S Absorber 

37. Rich Solvent at H2S Absorber Bottom 

38. H2S Concentrator Vapor Outlet 

39. Stripped Solvent at the Bottom of Selexol 

Stripper 

40. Top Outlet of Acid Gas K.O 

41. Valve Outlet at the Bottom of Acid Gas 

K.O. Drum 

42. Selexol Stripper Top Outlet 
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The range of inaccuracy of commercially available sensors can be found in Liptak (2003).  

Estimator-based control action is implemented for the primary controlled variables that have 

been identified by Jones et al. (2014) for this AGR unit.  

 

The developed NDMSND algorithm is implemented by using the GA available in the global 

optimization toolbox in MATLAB. GA creates an initial population of the candidate set of 

sensors and over the successive generation it reaches the optimal set of sensors. 

 

In this work, the value of the weighting factors in Eq. (6.38) is chosen by trial and error by 

considering the trade-off between the desired weight for estimation accuracy versus deviation in 

efficiency. In this case study, the following values are considered:  λ1 =0.1 and λ2 =  
1 0
0 10

  . 

 

6.5 Results 

6.5.1 Nonlinear AGR Model 

The identified nonlinear AGR model matches the process transient response of the rigorous AGR 

model in APD
®
 within acceptable limits. Figures 6.5a and 6.5b show the response in process 

variables, COS molar holdup in cooler located immediately after the HP CO2 compressor and 

H2O molar holdup on first tray of CO2 absorber, respectively, subject to sequential step change 

in multiple disturbances for the pressure (Figure 6.4a) and the CO2 flowrate (Figure 6.4b) in 

inlet syngas.  

 

Figures 6.7a and 6.7b show the response in process variables, CO2 molar holdup on first tray of 

CO2 absorber and CO2 molar holdup on fifth tray of SELEXOL stripper, respectively, subject to 

a single step change in the same disturbances as shown in Figures 6.6a and 6.6b. 
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Figure 6.4: Sequential change in disturbances: (a) Pressure and (b) CO2 flowrate in inlet 

syngas. 

 

  

Figure 6.5: Response in (a) COS molar holdup in cooler located immediately after HP CO2 

compressor and (b) H2O molar holdup on first 1st tray of CO2 absorber. 
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Figure 6.6: Step change in disturbances: (a) Pressure and (b) CO2 flowrate in inlet syngas. 

 

 

  

Figure 6.7: Response in (a) CO2 molar holdup on first tray of CO2 absorber and (b) CO2 

molar holdup on fifth tray of SELEXOL stripper. 

 

6.5.2 NDMSND Results 

Table 6.2 shows the results of the case studies for different budgets while maximizing CO2 

capture efficiency. The case studies are performed subject to the disturbance of 0.3 bar step 

increase in inlet syngas pressure. The disturbance rejection period is 6 hr.  The case studies in 

Table 6.2 show that as the budget increases, the number, location and type of sensors change, 

which improve the estimation accuracy of the controlled variables. This, in turn, increases 
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efficiency (by decreasing deviation Δ𝜂𝑒𝑠𝑡 up to the goal factor, 𝑘′ =1.12. Table 6.3 shows the 

results while minimizing budget.  

 

Table 6.2:  Number of Sensors, Value of Objective Functions and Integral Deviation from 

Optimal Efficiency for Different Budget While Maximizing Efficiency 

Case Study Total no. Budget Fitness (Objective) ∑𝜟𝜼𝒆𝒔𝒕 (𝐦𝐨𝐥 𝐂𝐎𝟐/𝐌𝐖𝐡) 

1a 24 $321,600 92.84 8.17 

2a 21 $65,400 230.62 14.79 

3a 22 $47,200 441.61 21.05 

 

Table 6.3: Number of Sensors, Value of Objective Function and Integral Deviation from 

Optimal Efficiency for Different Budget While Minimizing Budget 

Case Study Total no. Budget Fitness (Objective) ∑𝜟𝜼𝒆𝒔𝒕  (𝐦𝐨𝐥 𝐂𝐎𝟐/𝐌𝐖𝐡) 

1b 24 $151,200 95.99 8.44 

2b 22 $63,400 246.79 15.12 

3b 20 $40,400 547.63 23.07 

 

It should be noted that the GA terminates optimization once the maximum efficiency is found 

below a pre-specified budget (linear inequality constraints).  Thus the maximum efficiency 

obtained at that budget does not guarantee the minimal cost of the sensors. Different sets of 

sensors with different cost might result in similar efficiency. The results of different case studies 

presented in Table 6.3 show that almost similar efficiency can be achieved even with lower 

budget.    

 

Table 6.4 shows the analysis of sensor sets obtained from multi-objective optimization. It is 

observed that while maximizing efficiency, GA selects more expensive sensors for achieving 

desired estimation accuracy in comparison to the sensors that are selected while minimizing the 

cost. At higher budget of $321,600, four H2S analyzers are selected which account for more than 

half of the budget but the corresponding Step 2 solution (cost minimization) only selects one H2S 

analyzer.  In this case, the sensor network cost is reduced to $151,200 while the value of the 

fitness function is almost same for both steps (efficiency and budget optimization). In the 2
nd

 

case study in Tables 6.2 and 6.3, the budget reduction is not significant, but the efficiency values 

are similar. Interestingly, instead of selecting more CO2 analyzers, the Step 2 sensor placement 
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algorithm selects more flow sensors for a budget of $63,400 in comparison to Step 1 sensor 

placement that selects more CO2 analyzers for a budget of $65,400.             

 

Table 6.4: Analysis of Sensor Sets in Table 6.2 and 6.3 

Sensors Cost 

Solution Sets from Table 6.2 

(Maximizing Efficiency) 

Solution Sets from Table 6.3 

(Minimizing Budget) 

$321,600 $65,400 $47,200 $151,200 $63,400 $40,400 

Temperature $1000 8 8 10 8 8 9 

Pressure $2200 8 7 6 6 7 7 

Flow $4000 4 3 6 5 5 4 

H2S Analyzer $70,000 4 --- --- 1 --- --- 

CO2 Analyzer $10,000 --- 3 --- 4 2 --- 

 

  

6.5.3 Transient Performance of the SSND vs. NDMSND  

Figure 6.8 shows the performance comparison of the sensor network obtained by the SSND 

algorithm (Paul et al., 2015) and the NDMSND algorithm. The efficiency obtained using the 

sensor sets from the SSND algorithm approaches the optimal efficiency at steady state as would 

be expected, but the transient profile is significantly inferior to that obtained using the NDMSND 

algorithm.   
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Figure 6.8: Comparison of the efficiency profile using the sensor sets obtained by the SSND 

and NDMSND algorithms. 

 

6.5.4 Transient Performance of the DMSND vs. NDMSND  

Figure 6.9 shows the performance comparison of the sensor network obtained by DMSND 

algorithm and NDMSND algorithm. The efficiency obtained using the sensor sets from the 

NDMSND algorithm and DMSND algorithm matches at steady state and compares well during 

transient response. However, due to use of the nonlinear model and UKF, the desired estimation 

accuracy is obtained even at lower budget in NDMSND algorithm.    
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Figure 6.9: Comparison of the efficiency profile using the sensor sets obtained by the 

DMSND and NDMSND algorithms. 

 

6.5.5 Performance Comparison of Case Study-1a with -1b 

Figure 6.10 shows that the efficiency profile obtained for Case Study-1a is very similar to that 

obtained for Case Study-1b. The fitness (objective) values for Case Study-1a and -1b have been 

compared in Tables 6.2 and 6.3, respectively. Again the difference is very small.  
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Figure 6.10 Comparison of efficiency profile for the optimal sensor set using case study-1b 

and -1a. 

 

6.5.6 Net Present Value (NPV) Analysis 

The (partial) net present value (denoted pNPV) for the AGR system can be calculated by the 

following equation by just considering the sensors cost and operating cost due to cost of 

electricity due to CO2 capture: 

𝑝𝑁𝑃𝑉 = −𝑏𝑢𝑑𝑔𝑒𝑡($) − 𝑃 (
(1+𝑖)𝑛−1

𝑖(1+𝑖)𝑛
) (

1

1+𝑖
)                                                                          (41) 

𝑃 =
𝑀𝑊ℎ×1000

𝑚𝑜𝑙 𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒
×

𝑚𝑜𝑙 𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒

𝑦𝑒𝑎𝑟
×

𝑝𝑟𝑖𝑐𝑒 ($) 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦  

𝐾𝑊ℎ
                                                    (42) 

   

  Following assumptions are made: plant life=10 yr, period of operation (n)=9 yr, i=0.1   

Obviously, pNPV will be negative, and therefore, a lower value is preferred. 
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Figure 6.11: (a) pNPV vs. budget, (b) deviation in efficiency vs. budget. 

 

Figure 6.11(a) shows the change in pNPV ($ million) with the increase in budget ($ thousand). 

Figure 6.11(b) shows the deviation in efficiency with increase in budget. It is observed that the 

pNPV has the least negative value at a sensor budget of $150,200 even though the CO2 capture 

efficiency is slightly lesser than that achieved at a sensor budget of $321,600.  Thus the final 
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optimal senor set is the one that is obtained at a sensor budget of  $150,200. The pNPV analysis 

is therefore a nice tool to evaluate the trade-off between the cost of sensors and process 

efficiency.  

 

Table 6.5 : Optimal Set of Sensors at $151,200 

Temperature 

1. Syngas Cooler Inlet 

2. Clean Syngas at the Top of CO2 Absorber 

3. Stripped Gas Cooler Outlet 

4. Rich Solvent at H2S Absorber Bottom 

5. Rich Solvent at Inlet to H2S Concentrator 

6. N2 Gas Flow to H2S Concentrator 

7. H2S Concentrator Vapor Outlet 

8. Stripped Solvent at the Bottom of Selexol Stripper 

Pressure 

9. Top Outlet of H2O K.O. Drum 

10. Loaded Solvent at the Bottom of CO2 Absorber 

11. Rich Solvent at Inlet to H2S Concentrator 

12. Stripped Solvent at the Bottom of Selexol Stripper 

13. Valve Outlet at the Bottom of Acid Gas K.O. Drum 

14. Selexol Stripper Top Outlet 

Flow 

15. Inlet to H2O K.O. Drum 

16. Clean Syngas at the Top of CO2 Absorber 

17. Off Gas from Top of H2S Absorber 

18. H2S Concentrator Vapor Outlet 

19. Stripped Solvent at the Bottom of Selexol Stripper 

H2S Analyzer 

20. H2S Concentrator Vapor Outlet 

CO2 Analyzer 

21. H2O K.O. Drum Bottom Outlet 

22. Off Gas from Top of H2S Absorber 

23. H2S Concentrator Vapor Outlet 

24. Top Outlet of Acid Gas K.O 
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It should be noted that the solution to the NDMSND problem is not necessarily unique. 

Furthermore, the optimal set of sensors can change depending on the disturbances and set point 

changes and their magnitudes and characteristics. The developed algorithm is generic and can be 

readily used to study the impact of such changes. Table 4.4 shows that list of optimal set of 

sensors at $151,200. 

 

6.6 Conclusion 

In this work, a NDMSND algorithm has been developed for efficiency maximization of an 

estimator-based control system.  UKF is used to estimate primary controlled variables in the 

presence of a nonlinear process model and noisy measurements. The nonlinear model is obtained 

by the LIP method. The NDMSND algorithm solves a lexicographic optimization where CO2 

capture efficiency is maximized followed by budget minimization. The algorithm is applied to a 

large-scale acid gas removal unit as part of an IGCC power plant with CO2 capture.  It is 

observed that lexicographic optimization helps to achieve almost the same efficiency even at 

lower budgets for each case study. The pNPV analysis helps to identify the final optimal set of 

sensors by evaluating the trade-off between the cost of sensors and process efficiency of all sets 

of sensors obtained by multi-objective optimization. 
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Chapter 7  

 

Suggestions for Future Work 

 

 

The SND algorithm can be developed to optimize different performance criteria to achieve 

efficient plant operation. A systematic design of the SND algorithm is crucial for any process 

plant. But the challenges usually encountered while developing SND algorithm are the 

computational expense and the limitation of available resources.  

 

Computational expense has always been an issue while solving large scale problems especially 

by using GA. Alternative approaches such as tree search method should be investigated for 

developing SND algorithm for efficiency maximization. A systematic approach is needed for 

determining the variable step size. Variable step size for solving dynamic model-based SND 

algorithm for reducing computational expense should be investigated and included in the SND 

algorithm.  

 

Limitations of the available resources further increase computational expense. The GA available 

in MATLAB has some restrictions in solving integer problems (IP/MINLP). Development of a 

GA code that can handle linear and nonlinear equality constraints is encouraged. This would 

result in more efficient implementation of the SND algorithm in the GA framework. In this 

work, the developed algorithm has been parallelized by using a distributed computing server and 

implemented in a remote cluster computer.  It is expected that the computation time will decrease 

with the increase in number of workers in parallelization. But an anomaly is observed with the 

use of the GA available in MATLAB. This is an area of further investigation for efficient 

implementation of SND algorithm while using GA to find optimal set of sensors. 

 

The SSND algorithm developed in this work, considers P-only controller for the primary control 

variables. However, estimator-based control action can be improved by using PI/PID control 

laws for those variables. The approaches used for reducing computational expense in the 
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DMSND algorithm, including reduced order model, and using incumbent solution can also be 

utilized in the SSND algorithm to achieve the advantage of computational efficiency.  

 

The DMSND algorithm in this work considers traditional KF for estimating key variables for 

process control and monitoring. In traditional KF, the covariance matrices Q and R remains 

fixed. Thus good guesses for Q and R are required to obtain satisfactory filter performance. 

However, in real-life applications, these matrices are unknown and it is difficult to generate good 

guesses for them. To address this issue, the use of an adaptive KF can be investigated where Q 

and R are updated at every time instant based on the estimation error in the previous time 

instants.   

 

The NDMSND algorithm could be further extended for very large scale problems involving 

thousands of nonlinear equations. The computational expense could be decreased by using an 

incumbent solution approach. Variable step size could also be considered for efficient 

implementation of the algorithm.  The NDMSND algorithm is developed assuming each 

candidate sensor set being evaluated from one steady-state to new steady-state following any 

disturbance/setpoint change. It results in an inefficient search for the optimal sensor sets.  
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Appendix A 

 

A.1 Integrated Gasification Combined Cycle (IGCC) Plant with CO2 

Capture 

 

The IGCC power plant with CO2 capture that is considered in this work is based upon the work 

of Bhattacharyya et al, 2011.  A simplified block flow diagram of the process is shown in Figure 

A.1.   

 

 

Figure A.1: Block Flow Diagram of IGCC with Carbon Capture (Bhattacharyya et al, 

2011). 

 

The coal is gasified to generate the raw syngas.  This syngas mainly consists of carbon 

monoxide, carbon dioxide, hydrogen, water, hydrogen sulfide, and nitrogen.  This raw syngas is 

then sent to a series of water-gas shift reactors.  The shifted syngas is then sent to the acid gas 
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removal unit (AGR) where carbon dioxide and hydrogen sulfide are selectively removed from 

the syngas.  The carbon dioxide is sent to a series of compressors where it is pressurized and sent 

for sequestration. The hydrogen sulfide-rich stream is sent to the Claus unit.  The cleaned syngas 

is then sent to the gas turbine (GT) for power production.  The hot tail gas from the GT is then 

sent to a heat recovery steam generation unit (HRSG) where it is used to raise three pressures of 

steam for additional power production. 

 

A.2 Optimal Sensor Sets from SSND 

Tables A1-A6 present the list of optimal sensors at different budgets obtained from SSND 

algorithm. 

 

       Table A.1: Optimal Set of Sensors at $322,600 

Temperature Sensor
 

1. a
H2S Absorber8 

2. a
H2S Absorber14 

3. a
H2S Absorber26 

4. a
CO2 Absorber2 

5. a
Selexol Stripper1 

6. Inlet to H2O K.O. Drum 

7. Off Gas from Top of H2S Absorber 

8. Loaded Solvent at the Bottom of CO2 Absorber 

9. Rich Solvent at H2S Absorber Bottom 

10. H2 Recovery Flash Vessel Outlet 

11. Semi-lean Solvent Cooler Inlet 

12. Semi-lean Solvent Cooler Outlet 

13. H2S Concentrator Vapor Outlet 

14. Stripped Gas Compressor Outlet 

15. Acid Gas K.O. Drum Liquid Outlet 

16. H2 Recovery Compressor Outlet 
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17. 1st
 LP CO2 Compressor Inlet 

18. 2nd
 LP CO2 Compressor Outlet 

19. 3rd
 LP CO2 Compressor Outlet 

20. 4th
 LP CO2 Compressor Inlet 

21. 5th
 LP CO2 Compressor Inlet 

22. 1st
 HP CO2 Compressor Outlet 

23. Vapor Outlet of MP CO2 Flash for H2O Removal 

24. 3rd
 MP CO2 Compressor Inlet 

25. 3rd
 MP CO2 Compressor Outlet 

26. Liquid of CO2 Flash Vessel 

27. Tail Gas to H2S Absorber 

Pressure Sensor 

28. aSelexol Stripper1 

29. aSelexol Stripper3 

30. Syngas Cooler Inlet 

31. Clean Syngas at the Top of CO2 Absorber 

32. Semi-lean Solvent Cooler Inlet 

33. Rich Solvent at Selexol Stripper Inlet 

34. Stripper Solvent at Lean/Rich H.E. Inlet 

35. Inlet to H2 Recovery Flash Vessel 

36. MP Flash Vessel  Inlet 

37. LP Flash Vessel  Inlet 

38. Recycle Pump Outlet 

39. Recycle Stream at CO2 Absorber Inlet 

40. Stripped Gas Compressor Outlet 

41. Acid Gas K.O. Drum Liquid Outlet 

42. HP Flash Vessel Outlet 

43. Valve Outlet at the Top of MP Flash Vessel  

44. Outlet of 1
st
 LP CO2 Compressor 

45. Outlet of 2
nd

 MP CO2 Compressor 
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46. 1st
 HP CO2 Compressor Outlet 

47. 2st
 HP CO2 Compressor Intlet 

Flow Sensor 

48. Syngas Inlet 

49. Rich Solvent at H2S Absorber Bottom 

50. Stripped Solvent at the Bottom of Selexol Stripper 

51. HP Flash Vessel Intlet 

52. H2 Recovery Flash Vessel Outlet 

53. HP Flash Vessel Outlet 

54. LP Flash Vessel Bottom 

55. Steam to the Selexol Stripper 

56. H2O K.O. Drum Bottom Outlet 

CO2 Analyzer 

57. aLiquid Phase in H2S Absorber5 

58. aLiquid Phase in H2S Concentrator5 

59. a 
Liquid Phase in CO2 Absorber8 

60. a 
Liquid Phase in CO2 Absorber14 

61. H2S Absorber Bottom 

62. H2S Concentrator Liquid Outlet 

63. Stripped Solvent at the Bottom of Selexol Stripper 

64. Valve Outlet at the Bottom of Acid Gas K.O. Drum 

65. H2 Recovery Top Outlet 

H2S Analyzer 

66. aH2S Absorber16 
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Table A.2: Optimal Set of Sensors at $229,400 

Temperature Sensor 

1. a
H2S Absorber2  

2. a
H2S Concentrator3 

3. a
CO2 Absorber8 

4. a
Selexol Stripper3 

5. Off Gas at the Inlet to CO2 Absorber 

6. Clean Syngas at the Top of CO2 Absorber 

7. Loaded Solvent Cooler Outlet 

8. Rich Solvent at H2S Absorber Bottom 

9. Stripped Solvent at the Bottom of Selexol Stripper 

10. Solvent Cooler Outlet 

11. H2 Recovery Flash Vessel Outlet 

12. HP Flash Vessel Outlet 

13. MP Flash Vessel Outlet 

14. Stripped Gas Cooler Outlet 

15. Steam to the Selexol Stripper 

16. H2 Recovery Compressor Outlet 

17. H2 Recovery Cooler Outlet 

18. HP Flash Vessel Vapor K.O. Drum Outlet 

19. 1st
 LP CO2 Compressor Outlet 

20. 2nd
 LP CO2 Compressor Outlet 

21. 4th
 LP CO2 Compressor Inlet 

22. 5th
 LP CO2 Compressor Outlet 

23. 1st
 MP CO2 Compressor Inlet 

24. 2nd
 MP CO2 Compressor Inlet 

25. 2nd
 MP CO2 Compressor Outlet 

26. 1st
 HP CO2 Compressor Outlet 

27. Liquid of CO2 Flash Vessel 
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Pressure Sensor 

28. aH2S Absorber16 

29. Acid Gas K.O. Drum Vapor Outlet 

30. aCO2 Absorber3 

31. aCO2 Absorber15 

32. aSelexol Stripper3 

33. Semi-lean Solvent Cooler Inlet 

34. Lean Solvent at the inlet to CO2 Absorber    

35. Inlet to H2 Recovery Flash Vessel 

36. H2 Recovery Flash Vessel 

37. MP Flash Vessel  Inlet 

38. Stripped Gas Compressor Outlet 

39. Valve Outlet at the Bottom of Acid Gas K.O. Drum 

40. H2 Recovery Top Outlet 

41. H2 Recovery Compressor Outlet 

42. Valve Outlet at the Top of HP Flash Vessel  

43. Valve Outlet at the Top of LP Flash Vessel  

44. Outlet of 2
nd

 MP CO2 Compressor 

45. Glycol Absorber Inlet 

46. 2st
 HP CO2 Compressor Intlet 

47. Tail Gas to H2S Absorber 

Flow Sensor 

48. Rich Solvent at H2S Absorber Bottom 

49. HP Flash Vessel Intlet 

50. LP Flash Vessel Bottom 

51. H2S Concentrator Vapor Outlet 

52. Selexol Stripper Top Outlet 

53. Steam to the Selexol Stripper 

54. MP Flash Vessel Top Outlet 

55. H2O K.O. Drum Bottom Outlet 
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56. aLiquid Phase in H2S Absorber5 

CO2 Analyzer 

57. a 
Liquid Phase in CO2 Absorber8 

58. Loaded Solvent at the Bottom of CO2 Absorber 

59. H2S Absorber Bottom 

60. HP Flash Vessel Bottom Outlet 

61. LP Flash Vessel Top 

62. H2S Concentrator Vapor Outlet 

63. Selexol Stripper Top Outlet 

64. Glycol Absorber Top Outlet 

 

 

Table A.3: Optimal Set of Sensors at $187,900 

Temperature Sensor 

1. a
H2S Absorber14 

2. a
H2S Absorber20 

3. a
H2S Absorber26 

4. Acid Gas K.O. Drum Vapor Outlet 

5. a
CO2 Absorber2 

6. a
CO2 Absorber14 

7. a
Selexol Stripper3 

8. a
Selexol Stripper10 

9. Off Gas Cooler Outlet Temperature 

10. Clean Syngas at the Top of CO2 Absorber 

11. Loaded Solvent Cooler Outlet 

12. Loaded Solvent Chiller Outlet 

13. Rich Solvent at H2S Absorber Bottom 

14. Rich Solvent Heater Inlet 

15. Solvent Cooler Outlet 

16. MP Flash Vessel Outlet 
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17. Semi-lean Solvent Cooler Outlet 

18. Stripped Gas Cooler Outlet 

19. H2 Recovery Top Outlet 

20. H2 Recovery Cooler Outlet 

21. HP Flash Vessel Vapor K.O. Drum Outlet 

22. 1st
 LP CO2 Compressor Inlet 

23. 2nd
 LP CO2 Compressor Outlet 

24. 3rd
 LP CO2 Compressor Outlet 

25. 5th
 LP CO2 Compressor Inlet 

26. 5th
 LP CO2 Compressor Outlet 

27. 1st
 MP CO2 Compressor Inlet 

28. 2nd
 MP CO2 Compressor Inlet 

29. Vapor Outlet of MP CO2 Flash for H2O Removal 

30. 3rd
 MP CO2 Compressor Inlet 

31. 1st
 HP CO2 Compressor Outlet 

32. 2nd
 HP CO2 Compressor Inlet 

33. Tail Gas to H2S Absorber  

Pressure Sensor 

34. aH2S Concentrator4 

35. Acid Gas K.O. Drum Vapor Outlet 

36. aCO2 Absorber9 

37. aSelexol Stripper3 

38. Semi-lean Solvent Cooler Inlet 

39. H2 Recovery Flash Vessel 

40. LP Flash Vessel  Inlet 

41. Valve Outlet at the Bottom of Acid Gas K.O. Drum 

42. H2 Recovery Top Outlet 

43. H2 Recovery Compressor Outlet 

44. Valve Outlet at the Top of MP Flash Vessel  

45. Valve Outlet at the Top of LP Flash Vessel  

46. Outlet of 2
nd

 MP CO2 Compressor 
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47. Glycol Absorber Top Outlet 

48. 1st
 HP CO2 Compressor Outlet 

Flow Sensor 

49. Off Gas from Top of H2S Absorber 

50. H2S Concentrator Liquid Outlet 

51. MP Flash Vessel Top Outlet 

52. N2 Gas Flow to H2S Concentrator 

53. H2O K.O. Drum Bottom Outlet 

CO2 Analyzer 

54. aLiquid Phase in H2S Absorber16  

55. Off Gas from Top of H2S Absorber 

56. a 
Liquid Phase in CO2 Absorber14 

57. Stripped Solvent at the Bottom of Selexol Stripper 

58. HP Flash Vessel Bottom Outlet 

59. LP Flash Vessel Top 

60. Valve Outlet at the Bottom of Acid Gas K.O. Drum 

61. Selexol Stripper Top Outlet 

62. Glycol Absorber Top Outlet 

 

 

Table A.4: Optimal Set of Sensors at $118,700 

Temperature Sensor 

1. a
H2S Concentrator5 

2. Acid Gas K.O. Drum Vapor Outlet 

3. a
CO2 Absorber8 

4. a
CO2 Absorber14 

5. a
Selexol Stripper7 

6. Off Gas at the Inlet to CO2 Absorber 

7. Rich Solvent at H2S Absorber Bottom 
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8. H2S Concentrator Liquid Outlet 

9. Stripper Solvent at Lean/Rich H.E. Inlet 

10. Semi-lean Solvent Cooler Inlet 

11. Semi-lean Solvent Cooler Outlet 

12. H2S Concentrator Vapor Outlet 

13. Acid Gas K.O. Drum Liquid Outlet 

14. H2 Recovery Compressor Outlet 

15. HP Flash Vessel Vapor K.O. Drum Outlet 

16. 1st
 LP CO2 Compressor Inlet 

17. 2nd
 LP CO2 Compressor Outlet 

18. 3rd
 LP CO2 Compressor Outlet 

19. 2nd
 MP CO2 Compressor Inlet 

20. 2nd
 MP CO2 Compressor Outlet 

21. Glycol Absorber Top Outlet 

22. 3rd
 MP CO2 Compressor Outlet 

23. Liquid of CO2 Flash Vessel 

Pressure Sensor 

24. aH2S Absorber16 

25. aH2S Absorber25 

26. aSelexol Stripper1 

27. Off Gas from Top of H2S Absorber 

28. Clean Syngas at the Top of CO2 Absorber 

29. Stripper Solvent at Lean/Rich H.E. Inlet 

30. Lean Selexol Pump Outlet 

31. Lean Solvent at the inlet to CO2 Absorber    

32. H2 Recovery Flash Vessel 

33. MP Flash Vessel  Inlet 

34. LP Flash Vessel  Inlet 

35. Stripped Gas Compressor Outlet 

36. H2 Recovery Top Outlet 
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37. Valve Outlet at the Top of HP Flash Vessel  

38. Valve Outlet at the Top of MP Flash Vessel  

39. Outlet of 2
nd

 MP CO2 Compressor 

40. Tail Gas to H2S Absorber 

Flow Sensor 

41. Syngas Inlet 

42. Rich Solvent at H2S Absorber Bottom 

CO2 Analyzer 

43. Off Gas from Top of H2S Absorber 

44. a 
Liquid Phase in CO2 Absorber8 

45. H2S Concentrator Liquid Outlet 

46. Selexol Stripper Top Outlet 

 

 

 

Table A.5: Optimal Set of Sensors at $60,200 

Temperature Sensor
 

1. a
H2S Absorber2  

2. Off Gas at the Inlet to CO2 Absorber 

3. Stripped Solvent at the Bottom of Selexol Stripper 

4. Solvent Cooler Outlet 

5. Stripped Gas Compressor Outlet 

6. HP Flash Vessel Vapor K.O. Drum Outlet 

7. 2
nd

 LP CO2 Compressor Outlet 

8. 5
th

 LP CO2 Compressor Outlet 

9. 2
nd

 MP CO2 Compressor Inlet 

10. Vapor Outlet of MP CO2 Flash for H2O Removal 

11. 2nd
 HP CO2 Compressor Inlet 
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Pressure Sensor 

12. aH2S Absorber25 

13. aCO2 Absorber3 

14. aSelexol Stripper3 

15. Rich Solvent at Selexol Stripper Inlet 

16. H2 Recovery Flash Vessel 

17. H2 Recovery Compressor Outlet 

18. MP Flash Vessel Top Outlet 

19. Tail Gas to H2S Absorber  

Flow Sensor 

20. H2S Concentrator Liquid Outlet 

21. Selexol Stripper Top Outlet 

22. Steam to the Selexol Stripper 

CO2 Analyzer 

23. aLiquid Phase in H2S Concentrator1 

 

 

 

Table A.6: Optimal Set of Sensors at $42,500 

Temperature Sensor
 

1. a
H2S Absorber8 

2. Stripper Solvent at Lean/Rich H.E. Inlet 

3. H2 Recovery Compressor Outlet 

4. HP Flash Vessel Vapor K.O. Drum Outlet 

5. 5
th

 LP CO2 Compressor Outlet 

6. 2
nd

 MP CO2 Compressor Inlet 

7. 3
rd

 MP CO2 Compressor Outlet 

8. Tail Gas to H2S Absorber  
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Pressure Sensor 

9. Syngas Cooler Inlet 

10. Lean Selexol Pump Outlet 

11. H2 Recovery Flash Vessel 

12. Acid Gas K.O. Drum Liquid Outlet 

13. H2 Recovery Top Outlet 

14. Valve Outlet at the Top of MP Flash Vessel  

15. 2st
 HP CO2 Compressor Inlet 

Flow Sensor 

16. Steam to the Selexol Stripper 

CO2 Analyzer 

17. Glycol Absorber Top Outlet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



122 
 

Appendix B 

Figure B.1 shows co-simulation of AGR process model in APD
®
 and the estimator in 

MATLAB
®
 Simulink. It mimics the real-life scenario for estimator-based control system. The 

measurements from nonlinear model in APD
®
 are sent to MATLAB

®
 where KF estimates the 

controlled variables. Then control action is calculated in MATLAB
®

 based on the error 

(deviation from set point) and sent to APD
®
 as control input. The syngas pressure, 55.06 bar at 

the inlet to H2S absorber, is used as disturbance to the process. A step increase is introduced to 

inlet syngas to perturb the AGR process.  

The estimator based control performance is further illustrated in Figure B.2. The comparison of 

H2S capture efficiency profile between optimal process (no measurement noise) and estimator 

based control system have been presented. Even though the transient behavior of the estimator-

based system deviates from the optimal profile, at steady state almost the same efficiency is 

obtained.   
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Figure B.1: Co-simulation using nonlinear AGR process in Aspen Tech
®
 and Estimator in MATLAB

®
 on Simulink Platform.

 

Estimator 
(Traditional KF) 

Process  

 

Measurements 

Figure B.1: Co-simulation of process model in APD
®
 and Estimator in MATLAB

®
. 
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Figure B.2:  Comparison of H2S capture efficiency profile between optimal process 

(Nonlinear model and no measurement noise) and process with estimator based control 

system. 
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Appendix C 

 

The optimal set of sensors at different budget obtained from NDMSND algorithm 

 

Table C.1: Optimal Set of Sensors at $321,600 

Temperature 

1. Syngas Cooler Inlet 

2. Inlet to H2O K.O. Drum 

3. Top Outlet of H2O K.O. Drum 

4. Clean Syngas at the Top of CO2 Absorber 

5. Off Gas from Top of H2S Absorber 

6. Rich Solvent at Inlet to H2S Concentrator 

7. Stripped Solvent at the Bottom of Selexol Stripper 

8. Stripped Solvent at the Bottom of Selexol Stripper 

Pressure 

9. Inlet to H2O K.O. Drum 

10. Top Outlet of H2O K.O. Drum 

11. Clean Syngas at the Top of CO2 Absorber 

12. Stripped Solvent at the Bottom of Selexol Stripper 

13. Top Outlet of Acid Gas K.O 

14. Valve Outlet at the Bottom of Acid Gas K.O. Drum 

15. Selexol Stripper Top Outlet 

16. Stripped Solvent at the Bottom of Selexol Stripper 

Flow 

17. Inlet to H2O K.O. Drum 

18. Clean Syngas at the Top of CO2 Absorber 

19. H2S Concentrator Vapor Outlet 

20. Stripped Solvent at the Bottom of Selexol Stripper 

H2S Analyzer 

21. H2O K.O. Drum Bottom Outlet 

22. Loaded Solvent at the Bottom of CO2 Absorber 

23. Rich Solvent at H2S Absorber Bottom 

24. Top Outlet of Acid Gas K.O 
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Table C.2: Optimal Set of Sensors at $65,400 

Temperature 

1. Syngas Cooler Inlet 

2. Inlet to H2O K.O. Drum 

3. Clean Syngas at the Top of CO2 Absorber 

4. Stripped Gas Cooler Outlet 

5. Off Gas from Top of H2S Absorber 

6. Rich Solvent at H2S Absorber Bottom 

7. Stripped Solvent at the Bottom of Selexol Stripper 

8. Stripped Solvent at the Bottom of Selexol Stripper 

Pressure 

9. Inlet to H2O K.O. Drum 

10. Loaded Solvent at the Bottom of CO2 Absorber 

11. Rich Solvent at Inlet to H2S Concentrator 

12. Stripped Solvent at the Bottom of Selexol Stripper 

13. Top Outlet of Acid Gas K.O 

14. Valve Outlet at the Bottom of Acid Gas K.O. Drum 

15. Selexol Stripper Top Outlet 

Flow 

16. Inlet to H2O K.O. Drum 

17. Clean Syngas at the Top of CO2 Absorber 

18. Off Gas from Top of H2S Absorber 

CO2 Analyzer 

19. H2O K.O. Drum Bottom Outlet 

20. Off Gas from Top of H2S Absorber 

21. Selexol Stripper Top Outlet 
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Table C.3: Optimal Set of Sensors at $63,400 

Temperature 

1. Syngas Cooler Inlet 

2. Top Outlet of H2O K.O. Drum 

3. Stripped Gas Cooler Outlet 

4. Off Gas from Top of H2S Absorber 

5. Rich Solvent at H2S Absorber Bottom 

6. Rich Solvent at Inlet to H2S Concentrator 

7. N2 Gas Flow to H2S Concentrator 

8. Stripped Solvent at the Bottom of Selexol Stripper 

Pressure 

9. Inlet to H2O K.O. Drum 

10. Top Outlet of H2O K.O. Drum 

11. Stripped Solvent at the Bottom of Selexol Stripper 

12. Top Outlet of Acid Gas K.O 

13. Valve Outlet at the Bottom of Acid Gas K.O. Drum 

14. Selexol Stripper Top Outlet 

15. Stripped Solvent at the Bottom of Selexol Stripper 

Flow 

16. Clean Syngas at the Top of CO2 Absorber 

17. Off Gas from Top of H2S Absorber 

18. H2S Concentrator Vapor Outlet 

19. Stripped Solvent at the Bottom of Selexol Stripper 

20. Top Outlet of Acid Gas K.O 

CO2 Analyzer 

21. H2S Concentrator Vapor Outlet 

22. Top Outlet of Acid Gas K.O 
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Table C.4: Optimal Set of Sensors at $47,200 

Temperature 

1. Syngas Cooler Inlet 

2. Inlet to H2O K.O. Drum 

3. Top Outlet of H2O K.O. Drum 

4. Clean Syngas at the Top of CO2 Absorber 

5. Stripped Gas Cooler Outlet 

6. Off Gas from Top of H2S Absorber 

7. N2 Gas Flow to H2S Concentrator 

8. H2S Concentrator Vapor Outlet 

9. Stripped Solvent at the Bottom of Selexol Stripper 

10. Stripped Solvent at the Bottom of Selexol Stripper 

Pressure 

11. Inlet to H2O K.O. Drum 

12. Stripped Solvent at the Bottom of Selexol Stripper 

13. Top Outlet of Acid Gas K.O 

14. Valve Outlet at the Bottom of Acid Gas K.O. Drum 

15. Selexol Stripper Top Outlet 

16. Stripped Solvent at the Bottom of Selexol Stripper 

Flow 

17. Inlet to H2O K.O. Drum 

18. Clean Syngas at the Top of CO2 Absorber 

19. Off Gas from Top of H2S Absorber 

20. H2S Concentrator Vapor Outlet 

21. Stripped Solvent at the Bottom of Selexol Stripper 

22. Top Outlet of Acid Gas K.O 
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Table C.5: Optimal Set of Sensors at $40,400 

Temperature 

1. Syngas Cooler Inlet 

2. Inlet to H2O K.O. Drum 

3. Clean Syngas at the Top of CO2 Absorber 

4. Off Gas from Top of H2S Absorber 

5. Rich Solvent at H2S Absorber Bottom 

6. Rich Solvent at Inlet to H2S Concentrator 

7. N2 Gas Flow to H2S Concentrator 

8. H2S Concentrator Vapor Outlet 

9. Stripped Solvent at the Bottom of Selexol Stripper 

Pressure 

10. Inlet to H2O K.O. Drum 

11. Clean Syngas at the Top of CO2 Absorber 

12. Rich Solvent at Inlet to H2S Concentrator 

13. Stripped Solvent at the Bottom of Selexol Stripper 

14. Top Outlet of Acid Gas K.O 

15. Valve Outlet at the Bottom of Acid Gas K.O. Drum 

16. Stripped Solvent at the Bottom of Selexol Stripper 

Flow 

17. Clean Syngas at the Top of CO2 Absorber 

18. Off Gas from Top of H2S Absorber 

19. H2S Concentrator Vapor Outlet 

20. Top Outlet of Acid Gas K.O 
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