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ABSTRACT 

 

Ecological benefits of watershed-scale restoration in two intensively mined cold- and warm-

water ecosystems 

Rebecca Long 

Stream restoration projects are increasingly common. However, restoration projects that 

establish measurable goals, have pre- and post-restoration monitoring, and are implemented at 

the watershed scale are rare. We conducted a long-term (9-year) before-after-control-impact 

designed assessment of two watershed-scale acid mine drainage (AMD) remediation programs, 

one in a warm-water ecosystem and one in a cold-water ecosystem in West Virginia, USA. 

Restoration was strategically designed to recover biodiversity and improve the native fisheries by 

restoring chemically degraded water quality and re-establishing riverscape connectivity. We used 

analysis of variance to quantify responses in water chemistry, benthic macroinvertebrate 

communities, and fish community composition before and after restoration within and among 

treated and un-treated sites. Assessments within the warm- and cold-water watersheds show 

significant improvements post-restoration in water quality and macroinvertebrate communities in 

both watersheds. However, differences in fish community responses indicate that regionally 

degraded conditions may play a role in the ability of fish communities to recover in restored 

systems. Fish diversity increased to reference conditions in both watersheds but functional 

fisheries are not recovering. In the warm-water system, the reference sites do not meet the 

regional drainage area to species richness relationship whereas the cold-water system has intact 

reference populations within the watershed. This suggests that successful fishery restoration in 

degraded watersheds depends on the presence of a regional species pool available to repopulate 

the targeted watershed.  Furthermore, long-term changes in fish communities in the cold-water 

system indicate that fish populations may have a delayed response to restoration projects. 

Treated sites within the cold-water watershed had significant improvements in water chemistry 

and macroinvertebrates from 2008 (i.e., pre-restoration) to 2013 and remained unchanged from 

2013 to 2017. However, fish diversity and brook trout populations in treated streams increased 

significantly from 2008 to 2013 and continued to increase in 2017. The continued increase in 

brook trout populations over time suggests that restoration was successful in reestablishing 

connectivity among restored and previously intact brook trout sub-populations. Consequently, 

the full benefit of restoration may not yet be realized as fish populations continue to expand.  
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Introduction 

The degradation of streams and rivers is widespread. According to the National Rivers 

and Streams Assessment, 46% of rivers and streams in the USA are in poor biological condition 

and only 28% in good condition (EPA 2016). Urbanization, agriculture, dams, and mining can all 

affect stream ecosystems by changing their hydrologic regimes and physicochemical conditions 

which can further influence the biological communities within them. Urbanization decreases 

infiltration and increases surface runoff (Dunne and Leopold 1978), which scours habitat and 

causes a shift toward more tolerant species (Walsh 2005). Agriculture increases the input of 

nutrients from fertilizers (Carpenter et al. 1998) and increases sediment transport without 

livestock exclusion (Line et al. 2000). Dams homogenize flows and alter water temperatures 

which can cause local aquatic and riparian communities to change and allow invasive species to 

thrive (Pusey et al. 1993, Poff & Allen 1995, Bunn & Arthington 2002). Mining operations can 

alter the chemistry of downstream waters and cause biotic communities to shift to more tolerant 

communities (Pond 2008). These decreases in ecosystem function and aquatic biodiversity have 

made river restoration a necessary component of natural resource management and has become 

an increasingly lucrative business in the past few decades (Bernhardt et al. 2005, Palmer et al. 

2005, Lave et al. 2010).  

While the need for restoration is increasingly understood, the best methods used for 

restoration projects are still under question. Hydromorphological restoration methods like 

Natural Channel Design (Rosgen 1998) are the most popular methods used by managers 

worldwide (Palmer et al. 2014). These methods use channel restructuring and bank armoring to 

increase habitat and decrease bank erosion during high flow events and are designed to regulate 

chemical and biological processes by constructing a stable and self-regulating channel without 
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addressing any biotic or chemical processes (Rosgen 2011). However, in several instances, the 

re-grading of the stream bank reduced riparian vegetation and caused further erosion and incision 

(Violin et al 2011, Buchanan et al. 2012). Multiple studies have found that even when increased 

channel stability and habitat availability was achieved, biotic communities did not adequately 

respond to restoration efforts (see Palmer et al. 2014). This reflects the finding that while 

physical habitat may be ecologically important, it does not accurately measure ecological 

function (Doyle & Shields 2012) nor does it always lead to biological restoration (Jahnig et al. 

2010). 

Additionally, in-stream restoration is commonly completed without first addressing out-

of-stream sources of degradation, which are likely the cause impairment in the first place. In 

many cases, passive measures such as repairing riparian zones or constructing wetlands can 

greatly improve stream conditions before any in-stream manipulations need to be applied 

(Kauffman et al. 1997). For example, the in-stream restoration of an urban watershed resulted in 

an increase in hyporheic exchange due to the increase in hydraulic conductivity by the addition 

of large cobbles and boulders into an urban streambed (Kasahara and Hill 2006). Later, however 

(2006), Kasahara and Hill found that while hyporheic exchange may initially increase, fine 

sediments common to urban and agricultural catchments coat the cobble and decrease hydraulic 

conductivity. They found anaerobic conditions in the hyporheic zone under these structures 

which suggested streambed clogging was occurring and oxygen and nutrient exchange were no 

longer improved (Kasahara and Hill 2006). Catchment level measures need to be taken to 

decrease sediment loads in order for in-stream structures to improve nutrient processing and 

habitat availability.  
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Although site-specific restoration continues to fall short of management goals, studies 

using watershed-scale restoration are increasing but are still rare. In a meta-analysis of urban 

streams utilizing out-of-stream restoration approaches (stormwater ponds, created wetlands, 

restored riparian vegetation) with pre- and post-restoration data, investigators discovered 

significant improvements in measures of ecological attributes (136%) and biodiversity (136%) as 

compared to unrestored urban streams (Smucker & Detenbeck 2014). Similar successes have 

occurred in agricultural regions where integrated catchment management has been applied. In 

New Zealand, the partial afforestation, livestock exclusion, and buffer planting of pasture lands 

at the catchment-level resulted in reductions in water temperature, runoff, and channel erosion, 

as well as improvements in summer baseflows, periphyton organic content, and 

macroinvertebrate indices that all showed a recovery trend towards reference forested stream 

conditions (Quinn et al. 2009). In a stream impacted by acid mine drainage (AMD), 3 years post 

watershed-scale remediation showed improvements in water quality which resulted in the 

reconnection of previously isolated stream networks as well as improvements in the biodiversity 

of fish and macroinvertebrate assemblages (Watson et al. 2017).  

Many vital ecosystem processes occur over large spatial (i.e. watershed) scales and are 

important to consider in order to manage aquatic resources effectively. Multiple studies have 

characterized the important role the regional metacommunity plays in structuring local 

communities (Leibold et al. 2004) for both fish (Angermeier & Winston 1998, Martin 2010, Stoll 

et al. 2014) and macroinvertebrates (Heino et al. 2003, Brown & Swan 2010, Sundermann 2011, 

Merriam & Petty 2016). It has been shown that biological communities of even pristine streams 

are affected by the proximity to nearby degraded streams or when they are isolated within a 

degraded watershed (Martin 2010, Merovich et al. 2013, Merriam & Petty 2016). This follows 
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the finding that in order for restored communities to receive new taxa there needs to be regional 

pools with seed populations within the dispersal limitations of the species (Heino et al. 2003, 

Parkyn & Smith 2011, Sundermann 2011, Stoll et al. 2013). Additionally, because of the 

dendritic pattern of stream networks, dispersal usually involves greater distances than just 

overland distance between sites, which further constrains regional pool dispersal. This makes 

hydraulic connectivity a key component to successful stream restoration (Bernhardt & Palmer 

2011). Sundermann (2011) analyzed data from 24 river restoration projects and found 

improvements in benthic invertebrate communities where source populations of desired taxa 

were within 0-5 km of the restored site. Similarly, Lorenz and Feld (2013) found that the 

recolonization of stream organisms was achievable if good ecological conditions occurred within 

5 km upstream of restoration sites for benthic invertebrates and macrophytes and within 10 km 

of restoration sites for fish. Therefore, an absence of connectivity to regional pool sources could 

be a large contributing factor for restorations which fail to meet managers’ goals. 

Local abiotic factors (e.g. pH, temperature, habitat) are important for community 

composition, but restoration projects that focus on this alone ignore important regional 

connectivity and dispersal effects and are likely to not meet restoration goals (Altermatt 2013, 

Stoll 2014). With these considerations in mind, strategic restoration plans which consider both 

local conditions and regional connectivity of watersheds or stream networks should be more 

successful for increasing biodiversity than just treating isolated reaches where dispersal and 

recolonization may be difficult (Bond & Lake 2003, McClurg et al 2007, Louhi et al 2011, 

Sundermann et al. 2011, Stoll et al. 2013, Altermatt 2013). It is possible that through remediation 

efforts at this scale, the overall condition of the watershed could be improved. If so, it is expected 
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that strategic watershed-scale remediation can provide benefits far beyond the sites which are 

actually restored. 

The benefits of watershed-scale restoration are becoming more known as aquatic 

resource managers begin to switch their methods to this approach. Researchers utilize knowledge 

of hydrology, ecology, and geomorphology as well as social science in order to effectively 

restore streams across larger spatial scales by targeting problems at their source, sometimes 

beyond the channel, to maximize recovery. However, there are still unknowns which remain that 

are important to further develop watershed-scale management. First, long-term studies which 

assess the benefits of watershed-scale restoration are few (Palmer et al. 2014). Therefore, there 

are gaps in our long-term understanding of how biological communities respond to restoration 

efforts and the time-scales of when these responses occur.  Additionally, there is a great need for 

studies that assess pre- and post-restoration monitoring data to better understand the mechanisms 

that affect restoration success or failure within this larger spatial-scale framework.  

More particularly, long-term studies on the restoration successes/failures of acid mine 

drainage (AMD) are lacking, especially at the watershed scale. AMD is widespread in the mid-

Atlantic region and is one of the most difficult environmental challenges facing managers in the 

area. When pyrite is exposed by mining operations, it is oxidized and sulfuric acid is released 

into the water system. This results in low pH levels, which allows toxic heavy metals to leach out 

and move through the water system (Hoffert 1947). In the mid-Atlantic region alone, it is 

estimated that 4,100 km of streams are acidic due to AMD and 17% of the region’s stream length 

is affected by some type of mine drainage, predominantly in the Appalachian ecoregions 

(Stoddard 2006).  
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AMD is a legacy effect of mining, and the effects on aquatic environments are well 

known. pH can drop as low as 2.5, iron that is initially dissolved within the water column can 

precipitate out to coat the stream bed, and other toxic metals (i.e. Al, Mn) are transported 

downstream and encrust habitats (DeNicola & Stapleton 2002). This makes it difficult or 

impossible for macro-invertebrates and fish to survive and can change community compositions 

(Freund & Petty 2007, Hogsden & Harding 2012). 

Treatments for AMD and acid precipitation utilize passive and/or active treatment 

systems. Passive treatment systems are low maintenance and use limestone and settling ponds to 

reduce acidity and dissolved metals. The most common passive method is the application of 

limestone sand directly into the stream or along the bank to where it slowly erodes into the 

stream. Limestone treatment has shown to be effective in improving pH, water chemistry, and 

calcium concentrations in acid-impaired streams (McClurg 2007), but over time, high 

concentrations of aluminum and iron can form hydroxides that clog the limestone void space and 

reduce acid neutralization (Ziemkiewicz et al. 1997). In locations where passive systems are not 

effective enough, active treatment systems can be used to increase alkalinity. Active treatment 

systems intake water from the stream, treat it chemically to become alkaline, and then discharge 

the water back into the stream to reduce acidity of downstream waters.  

While passive and active treatment methods have both been shown to improve water 

chemistry, ecological recovery does not always show improvement. Some studies have found 

that limestone treatment can increase macroinvertebrate and fish species richness (Weatherley et 

al. 1991, Downey et al. 1994, Menendez et al. 1996), while others have shown little to no 

recovery after treatment (Eggleton at al. 1996, Simmons and Doyle 1996, Bradley & Ormerod 

2002, LeFevre and Sharpe 2002). McClurg et al. (2007) sampled streams in West Virginia 
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treated with limestone for acid precipitation and was unable to find any temporal trends in 

ecosystem recovery ranging from 2 to 20 years post-treatment. Although some water chemistry 

characteristics were fully recovered and native trout biomass was shown to increase, dissolved 

aluminum concentrations and macroinvertebrate and fish species richness were not recovered to 

reference conditions (McClurg et al. 2007). This suggests that even with targeted treatment of 

particularly bad reaches, regional condition of the stream networks surrounding these isolated 

reaches may inhibit restoration efforts. Expanding restoration to watershed-scale approaches 

could improve the success of these efforts (Watson et al. 2017). In 2010 and 2011, two such 

watershed-scale AMD remediation plans were implemented on Abram and Three Fork Creeks, 

West Virginia. Remediation plans involved a mixture of active and passive treatment systems, 

which were strategically placed to provide the most biologically beneficial and cost-effective 

plans for the watersheds (Petty et al. 2008, WVWRI 2007). However, the long-term ecological 

benefit of these restoration efforts remains unknown.  

Objectives 

 The goal of my research is to provide information that can be used to improve stream and 

watershed restoration. To accomplish this, my overall objective is to assess the effectiveness of 

watershed scale restoration in two West Virginia watersheds that were severely impacted by acid 

mine drainage from legacy coal mining. It was previously stated that long-term assessments of 

stream restoration projects are needed to adequately inform and improve restoration science. 

This research provides the long-term requirement of an adaptive management framework where 

these results can improve these specific restoration projects as well as inform future projects with 

similar goals. Specifically, I aim to 1) quantify and compare benefits of watershed scale 

restoration to water quality and invertebrate and fish assemblages in Abram Creek (a cold-water 
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ecosystem) and Three Forks Creek (a warm-water ecosystem) and 2) determine whether 

conditions in Abram Creek (a cold-water ecosystem) have improved, declined, or remained 

constant over an eight-year period of time. Abram Creek was sampled three times, providing an 

opportunity to assess any temporal changes in response to restoration. Three Forks was not 

included in objective 2 due to only having been sampled only twice. 

Methods 

Study Area- Three Forks Creek, a warm-water ecosystem, is a 262 km2 watershed within 

the Tygart Valley River and the greater Monongahela River basin (figure 1). The geology of the 

watershed is dominated by shale and sandstone formations. The dominant land cover and land 

use within the watershed are forested (78%) and agricultural lands (12%), respectively. Three 

Forks Creek flows from an elevation of 727 meters at the headwaters to 296 meters at the mouth. 

The largest tributaries of Three Fork Creek are Birds Creek, Fields Creek, Raccoon Creek, 

Squires Creek, and Laurel Run (figure 1). All major tributaries with the exception of Laurel Run 

have been severely degraded by AMD, with a total of 73 km of stream in the watershed listed as 

impaired (Pavlick et al. 2006). Approximately 37 km2 of untreated and discharging mine pools 

are found within the headwaters of the watershed, and Three Fork Creek is the second largest 

contributor of AMD in the Monongahela River basin (USACE 1997). The West Virginia Water 

Research Institute proposed a watershed restoration plan for Three Fork Creek in 2007 and the 

project was completed in 2011 by the WVDEP Office of Abandoned Mine Land and 

Reclamation. Four active treatment dosers were placed in the most impacted tributaries, Raccoon 

Creek, Birds Creek (2), and Squires Creek (figure 2). No passive treatment systems were used on 

Three Fork Creek.  
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Abram Creek, a cold-water ecosystem, is a 115 km2 watershed within the North Branch 

Potomac River (NBPR) basin in the eastern panhandle of West Virginia (figure 2). Abram Creek 

flows north and falls from 1065 m elevation in the headwaters to 516 m elevation at its 

confluence with the NBPR. The dominant land use and land covers are forested lands (75%) and 

agricultural lands (18%), respectively. The West Virginia Department of Environmental 

Protection (WVDEP) identified 27 abandoned mine lands (AMLs) discharging into the Abram 

Creek watershed and identified this as the leading cause of impairment throughout the watershed 

(WVWRI 2007). Ten individual stream segments within the watershed were listed as impaired 

for biological and/or water quality impairment in 2004, failing to meet the stream’s designated 

uses of recreation, public water supply, and aquatic life protection (WVWRI 2007). The main 

tributaries of Abram Creek are Emory Creek, Glade Run, Laurel Run, Little Creek, and Johnny 

Cake Run. All tributaries, with the exception of Johnny Cake Run, have been impacted by AMD. 

Johnny Cake Run was the only designated trout stream prior to AMD restoration. The West 

Virginia Water Research Institute proposed a watershed restoration plan for Abram Creek in 

2007 and the project was completed in 2010 by the WVDEP Office of Abandoned Mine Land 

and Reclamation. Both active and passive restoration measures (i.e. alkaline dosers and 

limestone applications) have been strategically placed throughout the watershed to maximize 

restoration efforts (figure 2). A passive treatment system originally installed in Glade Run did 

not show desired effects after a couple years of treatment and was replaced by a limestone sand 

dumping site by WVDEP (J. Baczuk, personal communication, June 20, 2018). 

Site Selection 

 This project followed a before-after-control-impact (BACI) sampling design. Sites were 

classified into 3 categories: untreated streams impaired by AMD (AMD sites), streams treated 
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for AMD (treated sites), and unimpaired reference streams (reference sites). Targeted sites were 

strategically chosen based on treatment locations and stream confluences. Fourteen sites were 

sampled in Abram Creek in spring 2008 for water chemistry and macroinvertebrate sampling. An 

additional 3 un-impacted reference and 1 AMD site was added before fish sampling in the late-

summer of 2008. The same sites, plus the additional 4 sites, were sampled again in 2013 post-

restoration for all data collections. All 18 sites were sampled again in 2017 (table 1). In Three 

Forks Creek, 17 sites were sampled in 2008 prior to restoration. An additional 3 un-impacted 

reference sites were added before late-summer fish sampling in 2008. We sampled the same sites 

with the additional 3 un-impacted reference sites in 2017 for all data collections post-restoration 

(table 2). 

Data Collection 

Water quality was sampled during spring baseflows in 2008, 2013 (Abram Creek only), 

and 2017. Samples were collected between mid-May to mid-June each sampling year for both 

watersheds. All samples were collected using the same methods across both watersheds for each 

sampling year. We collected in-situ measurements of pH, conductivity, temperature, and 

dissolved oxygen at each site using a YSI 600 XLM multiparameter probe at each sampling 

location. We collected grab samples at the same sample sites and stored them at 4oC until 

analysis is completed at the National Research Center for Coal and Energy at West Virginia 

University. The samples were analyzed for alkalinity/acidity, sulfate, and total dissolved 

aluminum, barium, copper, chloride ion, cobalt, chromium, cadmium, calcium, sodium, nickel, 

selenium, zinc, iron, magnesium, and manganese concentrations (mg/L).  

 We collected benthic macroinvertebrate samples immediately following water sample 

collection at each site in the late spring using WVDEP standard operating procedures (WVDEP 
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2013). Kick samples were collected using a rectangular kick net (355 x 508 mm) with 500 um 

netting from 4 riffles and we combined them into a single sample for each site. We immediately 

preserved the organisms in 85% ethanol for identification in the lab. A 200 individual subsample 

was obtained and all organisms were identified to genus, if possible, using keys in Merritt and 

Cummins (2008).  

Fish assemblages were sampled at each site following WVDEP standard protocol 

procedures during late summer baseflows (WVDEP 2013). Fish sampling was completed in both 

watersheds between mid-July and mid-September in 2008, 2013 (Abram Creek only), and 2017 

using the same methods for both watersheds. We used one-pass backpack electrofishing 

techniques for all sites. One to three backpacks were used depending on stream size. Reach 

lengths were 40 times the mean stream width with a minimum of 150 m and a maximum of 300 

m. All individuals were identified to species, measured, weighed, and released.  

Statistical Analyses 

Objective 1: Quantify and compare benefits of watershed scale restoration to water quality and 

invertebrate and fish assemblages in Abram Creek (a cold-water ecosystem) and Three Forks 

Creek (a warm-water ecosystem). 

 Water chemistry–We used multivariate tests and ordination procedures to characterize 

differences in chemical signatures of site types in 2017 in both creeks. Principal components 

analysis (PCA) was used to characterize the dominant patterns of variation within the water 

chemistry dataset. Prior to analysis, all chemicals except for pH and specific conductance were 

log+1 transformed. Total acidity was removed from the analysis due to its correlation with other 

elements in the analysis (Merovich et al. 2007).  Cadmium, chromium, and selenium were 
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removed from the analysis due to all water samples being below the detection limit for these 

elements. Any concentrations below detection limit for other elements were assumed to have a 

concentration of zero for that element. Significant principal components were chosen using a 

broken stick analysis where principal components are retained when their corresponding 

eigenvalues are greater than their predicted broken stick values (Jackson 1993). Samples were 

grouped in ordination space by their stream type (reference, AMD, or treated). Non-metric 

analysis of variance using distance matrices (ADONIS) followed by pairwise permutation 

multivariate analysis of variance (MANOVA) was used to determine if PCA results differed 

between stream types. All PCA and ADONIS analyses were completed in the package vegan 

(Oksanen et al. 2013). AMD sites for Abram Creek were not included in pairwise comparisons 

due to only having one AMD site to include in analysis. 

Aquatic assemblages–We calculated the Genus-Level Index of Most Probable Stream 

Status (GLIMPSS; Pond et al. 2013), which is a genus-level macroinvertebrate index of biotic 

made for the state of West Virginia. We used one-way analysis of variance (ANOVA) to test for 

significant increases in GLIMPSS scores of treated sites since restoration in Three Forks Creek 

followed by Tukey post-tests to compare index scores of treated and reference streams post-

restoration. Due to Abram Creek having only one AMD and un-impacted reference site sampled 

in spring of 2008 for macroinvertebrates, we used one-way ANOVA to test increases in 

GLIMPSS scores within treated sites post-restoration followed by pairwise t-tests to compare 

treated and reference scores. We converted fish community data into measures of diversity using 

the Shannon Index for the 2008 and 2017 sampling years for both watersheds and then used 

repeated measures ANOVA and subsequent Tukey post-hoc tests to test for significant increases 

in restored sites after restoration. The additional un-impacted reference and AMD sites within 
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both watersheds were added before fish sampling began which allowed us to use repeated 

measures ANOVA and Tukey tests for fish metrics in both watersheds. Our hypothesis was that 

we would see significant improvements in both metrics post-restoration. 

It has been shown that species richness is strongly related to drainage area for fish in lotic 

systems. Because of this relationship, comparing species compositions between sites can be 

misleading due to the differences in drainage areas of reference sites and treated sites further 

downstream. To determine this relationship in Three Forks Creek and Abram Creek we made a 

linear model of drainage area, log transformed, for each of our sampling locations versus fish 

species richness for each creek. Previous research by our lab determined a relationship between 

fish species richness and drainage area at reference conditions for the region (i.e. no historical or 

current mining) (Martin 2010). We plotted this reference model as well as our linear models to 

determine how these restored creeks compare to regional reference conditions. 

Ecological Units- During the planning phase of these restoration projects, methods which 

give the watershed an “ecological currency” were used to determine the best and most 

economical restoration project plan (Petty et al. 2008). This method uses a measurement tool 

called “EcoUnits” (EUs) as a way to quantify useable stream miles for specific functions (Petty 

and Thorne 2005, Merovich and Petty 2007, Petty et al. 2008, Poplar-Jeffers et al. 2009, Watson 

et al. 2017). Stream segment lengths are weighted by ecological function ranging from zero to 

one. A high quality stream segment with a weighting of one indicates it is reaching 100% of 

what is expected of high quality streams in the region. Stream segments with ratings of zero 

indicate the stream is highly impaired and not functioning ecologically. In Three Forks creek, we 

calculated four EUs: diversity EU, cold-water fishery EU, warm-water fishery EU, and overall 

fishery EU (Petty et al. 2008). In Abram Creek, EUs were calculated for macroinvertebrate 
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diversity, brook trout fishery, stocked trout fishery, and overall fishery (Watson et al. 2017). 

West Virginia Stream Condition Index (WVSCI) scores were used to determine ecological 

conditions for each segment-level watershed for each measured function with condition 

weightings found in Petty 2007 (Three Forks Creek) and Watson 2017 (Abram Creek). EUs were 

calculated for each segment level watershed using these condition scores against their ecological 

potential for each segment. With this method, we obtained historical, predicted, pre-restoration, 

and current EUs for each segment which could be combined into cumulative EUs for each 

watershed. Kolmogorov-Smirnov (KS) tests were used to compare current EUs to predicted post-

restoration EUs within each watershed. 

Objective 2: Determine whether conditions in Abram Creek have improved, declined, or 

remained constant over an eight-year period of time (a cold-water ecosystem). 

Water chemistry- Select water chemistry parameters were chosen to determine if water 

chemistry has changed temporally in treated locations since restoration. We selected alkalinity in 

equivalents of mg/L of CaCO3, aluminum, magnesium, and sulfate concentrations (mg/L) based 

on earlier research on an acid remediation project which identified these chemical parameters as 

important to study in acidic systems (McClurg et al. 2007). Concentrations of these parameters 

were compared by each sampling event (2008, 2013, and 2017) with one-way ANOVA and 

Tukey post-hoc tests to determine if continued increases are occurring post-restoration (i.e. 2013 

to 2017). 

Aquatic Assemblages- For macroinvertebrates, we used one-way ANOVA and pairwise t-

tests to determine if GLIMPSS scores have increased within stream types with time since 

restoration followed by t-tests to compare indices scores between treated and reference streams. 

We converted fish community data into measures of diversity using the Shannon Index for the 
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2008, 2013, and 2017 sampling years in Abram Creek. We then used repeated measures 

ANOVA and subsequent Tukey post-hoc tests to test for significant increases in restored sites 

over time. Previous research has shown significant improvements in fish and macroinvertebrate 

diversity 3-years post-restoration in Abram Creek (Watson 2017). Our hypothesis was that with 

continued long-term study, we would continue to see significant increases of macroinvertebrate 

and fish diversity temporally after 7-years post-restoration as this ecosystem continues to 

recover. 

Eastern brook trout (Salvelinus fontinalis) are native to the Abram Creek watershed. The 

conservation of these fish are important to watershed managers and local communities alike. To 

visualize the possible expansion of the brook trout population post-restoration, ArcGIS was used 

to map site locations and symbol size indicates the number of individual brook trout found at 

each location during sampling. The natural breaks function was used to separate the symbol sizes 

into 5 classes (0, 1 , 2-14, 15-33, >33) and the same symbol size classes were used for each year 

of sampling. No statistical analysis was done.  

Ecological units- In Abram Creek, EUs were calculated for macroinvertebrate diversity, 

brook trout fishery, stocked trout fishery, and overall fishery. WVSCI scores were used to 

determine ecological conditions for each segment-level watershed for each measured function 

with condition weightings found in Watson 2017. EUs were calculated for each segment level 

watershed using these condition scores against their ecological potential for each segment. With 

this method, we obtained historical, predicted, pre-restoration, and current EUs for each segment 

which could be combined into cumulative EUs for the watershed. These scores were calculated 

post-restoration in 2013 (Watson 2017) and we calculated them again in 2017 to determine if 
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EUs are changing temporally. KS tests were used to compare current EUs to predicted post-

restoration EUs and EUs from 2013. 

Results 

Objective 1: Quantify and compare benefits of watershed scale restoration to water quality and 

invertebrate and fish assemblages in Abram Creek (a cold-water ecosystem) and Three Forks 

Creek (a warm-water ecosystem). 

Water chemistry -PCA analysis for Three Forks Creek and Abram Creek were similar 

with well-defined water chemistry signatures for each site type. In Three Forks Creek, broken 

stick analysis resulted in two principal components (PCs) which together accounted for 73.1% of 

the variance in water chemistry. PC1 accounted for 48.7% of the variance and was strongly 

correlated with conductivity, sulfate, aluminum, cobalt, copper, iron, magnesium, manganese, 

nickel and zinc in the positive direction (figure 3, table 5). pH and alkalinity was strongly 

correlated with PC1 in the negative direction (figure 3, table 5).  PC2 explained 24.4% of the 

variance of water chemistry and was strongly correlated with calcium, sodium, magnesium, and 

TSS in the positive direction and negatively correlated with aluminum (figure 3, table 5). 

ADONIS showed water chemistry differs by treatment type (p<.01) and pairwise permutation 

MANOVAs show that each stream type has a significantly different water signature from other 

stream types (all comparisons, p< .01) (figure 3). 

In Abram Creek, broken stick analysis resulted in three PCs which together accounted for 

67.3% of the variance in water chemistry (table 6). Only PC1 and PC2 were included in the 

visual interpretation (figure 3). PC1 accounted for 34.6% of the variance and was strongly 

correlated with conductivity, sulfate, calcium, cobalt, magnesium, manganese, nickel, and zinc in 

the positive direction and alkalinity and barium in the negative direction. PC2 accounted for 

21.3% of variance and was strongly correlated with cobalt in the positive direction, and 
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alkalinity, chlorine, barium, calcium, and sodium in the negative direction. Lastly, PC3 

accounted for 11.4% of variation and was strongly correlated with chlorine and iron in the 

negative direction. Global ADONIS showed that water chemistry differs by stream type (F= 

6.91, p< .01) and pairwise permutation MANOVAs showed significant differences in water 

chemistry signatures between reference and treated sites (p< .01).  

 Aquatic assemblages- Macroinvertebrates in Three Forks and Abram Creek responded 

similarly to AMD remediation in each watershed. Comparisons of GLIMPSS scores show 

recovery toward reference conditions among treated sites (figure 4). One-way ANOVA indicated 

GLIMPSS scores differ by both year (F= 28.54, p< .01) and stream type (F=60.57, p< .01) in 

Three Forks Creek. Tukey post-tests showed a significant increase in GLIMPSS in treated 

streams from pre- (2008) to post-treatment 2017 (t= -6.16, df= 27, p< .01) but did not reach 

reference conditions in 2017 (t= 3.99, df= 27, p< .01). However, 2017 treated sites were not 

significantly different from 2008 reference conditions (t= 2.72, df= 27, p= .06). Additionally, 

reference streams were not different from one another from 2008 to 2017 (t=-0.571, df= 27, p= 

.94). Raw data for macroinvertebrates in Three Forks Creek are provided in appendices 6 and 7. 

 GLIMPSS scores in Abram Creek responded very similarly to Three Forks Creek (figure 

4). One-way ANOVA within treated sites showed GLIMPSS scores differ by year (F= 11.48, p< 

.01) and stream type (F= 29.81, p< .01). Pairwise comparisons showed a significant increase in 

GLIMPSS scores in treated sites from pre- (2008) to post-restoration (2017) (t= 2.92, df= 30, p< 

.01). Although scores in treated sites post-restoration did not reach reference conditions in 2017 

(t=2.92, df= 30, p= .03), post-restoration scores were not statistically different than reference 

conditions in 2008 (pre-restoration) (t= 2.33, df= 30, p= .11). GLIMPSS scores in reference sites 
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were not different in 2008 and 2017 (t= -0.47, df= 30, p= .97). Raw data for macroinvertebrates 

in Abram Creek are provided in appendices 3 and 5. 

Fish communities responded differently to restoration than macroinvertebrates in both 

Three Forks and Abram Creeks. Appendices 1 and 2 provide raw fish data for Three Forks and 

Abram Creeks. In Three Forks Creek, fish diversity was variable among treated sites post-

restoration (figure 5). One-way repeated measures ANOVA showed significant differences in 

diversity between years (F= 9.66, p< .01) and between types (F= 25.29, p< .01). Tukey post-hoc 

tests show a significant increase in diversity in treated streams from pre- (2008) to post-

restoration (2017) (t= -3.683, df= 29, p< .01). Tukey tests also showed no significant differences 

in diversity between reference streams pre- and post-restoration (t= -0.442, df= 29, p= .97) as 

well as treated sites post-restoration and reference streams for 2008 (t= 1.917, df= 29, p= .24) 

and 2017 (t=2.37, df= 29, p= .11).  

Abram Creek showed a similar increase in fish diversity post-restoration (figure 5). In 

Abram Creek, one-way repeated measures ANOVA showed significant differences in fish 

diversity between years (F=9.16, p< .01) and by stream type (F=11.88, p< .01). Tukey post-hoc 

tests show significant increases in fish diversity post-restoration in treated sites compared to pre-

restoration (t= -3.474, df= 27, p< .01). Additionally, fish diversity in treated sites post-restoration 

is not different than reference sites (t= 1.406, df= 27, p= .51). Reference sites did not show a 

change in diversity from pre- to post-restoration (t=-0.04, df= 27, p= 1.00).  

Our linear models of drainage area to fish species richness show an interesting story 

(figure 6). When compared to regional intact fisheries, both Three Forks Creek and Abram Creek 

fail to reach expected drainage area to fish species richness relations post-restoration. On 

average, reference conditions of drainage area versus richness in the region shows an increase of 
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3.2 species with every unit increase of drainage area and has a y-intercept of 0.6. Both 

watersheds have a lower slope than the regional curve for reference conditions. The linear model 

of drainage area versus species richness in Three Forks Creek showed a strong positive 

relationship (R2= 0.59, df= 18, p< .01) (figure 6). On average, Three Forks Creek increases 2.5 

species per unit increase in drainage area and has an intercept of -3.5. Abram Creek also showed 

a positive relationship between drainage area and species richness (R2= 0.31, df= 16, p= .01) 

(figure 6). On average, species richness increases 0.85 with each unit increase in drainage area 

and has a y-intercept of 1.37.  

Ecological Units- EUs in Three Forks Creek reached predictions for macroinvertebrate 

diversity but was below predictions for all fishery EUs (figure 7). KS tests showed post-

restoration diversity EUs did not accumulate at a different rate than predicted EUs for post-

restoration (D= 0.08, p= .27) but also for pre-restoration EUs (D= 0.09, p= .17). Overall fishery 

EUs were much lower post-restoration than predicted but still accumulated more quickly than 

pre-restoration EUs (D= 0.56, p< .01). Similarly, cold-water fishery EUs and warm-water fishery 

EUs were much lower than predicted post-restoration but accumulated more quickly than pre-

restoration EUs for cold-water (D= 0.60, p< .01) and warm-water fisheries (D= 0.58, p< .01). In 

total, 68% of historical diversity EUs and 19% of historical overall fishery EUs have been 

recovered. Overall fishery EUs were 84% lower than predicted post-restoration. 

 Like other metrics, Abram Creek EUs are responding similarly to Three Forks Creek EUs 

(figure 8). Diversity EUs increased from 14.49 cumulative miles pre-restoration to 25.76 

cumulative miles post-restoration. Historically Abram Creek had 34.66 functioning miles for 

macroinvertebrate diversity, so 74% of historic stream miles are now functional post-restoration 

as compared to 42% before the restoration project. KS tests show significant increases in the 
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accumulation of diversity units from pre- and post-restoration (D= 0.42, p< .01). Additionally, 

post-restoration EUs in 2017 did not accumulate differently than what was predicted post-

restoration (D=0.18, p= .65). Like Three Forks Creek, Abram Creek fishery EUs did not recover 

to predicted EUs after restoration. Historically, it was expected that 34.66 cumulative miles of 

EUs existed in the watershed before any mining activity. It was degraded to 10.35 miles pre-

restoration and restored to only 14.97 miles in 2017. KS tests show that EUs did not accumulate 

at predicted rates post-restoration (D=0.36 p= .03) nor were they different than pre-restoration 

(D=0.30, p= .10). When split into stocked and brook trout EUs, stocked trout increased post-

restoration (D= 0.52, p< .01) from pre-restoration EUs, but was much lower than predicted EUs 

(D=0.36, p= .02). Stocked trout EUs increased by 33% post-restoration but only reached 47% of 

historical values. Brook trout EUs did not increase from pre-restoration EUs (D= 0.24, p= .29) so 

did not reach predicted EUs (D= 0.52, p< .01). Only 8.90 of historical 30.72 brook trout EUs 

were calculated to be functional post-restoration. 

Objective 2: Determine whether conditions in Abram Creek have improved, declined, or 

remained constant over a nine-year period of time. 

Water chemistry- Water quality parameters have not significantly changed since 

restoration was complete. One-way ANOVA followed by paired t-tests indicate the 

concentrations of alkalinity, aluminum, magnesium and sulfate have not significantly changed 

since restoration (i.e. 2013 to 2017) (figure 10). This tells us that any temporal ecological 

changes which occur are independent of changes in water chemistry post-restoration. 

Aquatic assemblages- GLIMPSS scores follow similar patterns to water quality in treated 

sites (figure 11). One-way ANOVA within treated sites indicated that scores in treated streams 

differed by year (p<.01). Pairwise-tests show scores increased significantly in treated streams 
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from 2008 to 2013 (p= .04), and is not statistically different from 2013 to 2017 (p= .65). Pairwise 

t-tests indicated GLIMPSS scores did not reach reference conditions in 2013 (p< .01) or 2017 

(p= .01).  

In contrast to macroinvertebrates, we are seeing a continued increase in fish diversity 

temporally (figure 13). Diversity increased significantly (p= .03) from pre-treatment (2008) to 3-

years post treatment (2013) and again from 3- to 7-years (2017) post treatment within and 

downstream of treated segments (p= .04). We found no significant difference in fish diversity 

between reference and treated streams in either 2013 or 2017.  

 Brook trout populations were also found to increase and spread throughout the watershed 

(figure 13). A total of 88 brook trout were found in 5 sample locations prior to restoration (i.e. 

2008). The number of sites occupied by brook trout increased to 6 in 2013 and 11 in 2017, with 

131 individuals being captured in 2017. 23 brook trout were found in the two most southern 

headwater sites in 2017 where previous years found none. Four of the 11 sites found to occupy 

brook trout in 2017 had only one brook trout in the sample. The majority of brook trout were 

found in the headwaters and tributaries rather than the main stem of Abram Creek. 

Ecological Units- Ecological units are not showing any temporal changes post-restoration 

(figure 12). Historically, 34.66 cumulative stream miles of macroinvertebrate diversity EUs were 

predicted to have existed in Abram Creek before mining. Before restoration, only 41% of 

possible EU’s remained. In 2013, diversity EU’s increased to 25.54 cumulative miles or 74% of 

historical EUs which surpassed the predicted EUs of 67% of historical EUs. In 2017, little 

changed and 74% of historic diversity EUs have been recovered. KS tests did not show any 

changes in EU accumulation between 2013 and 2017 (D = 0.09, p= .99). Brook trout EUs did not 

show any further recovery to predicted conditions in 2017 and was actually lower than 2013. In 
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2013, 33% of historic brook trout EUs were recovered but was only 54% of what was predicted 

post-restoration. Similarly in 2017, only 47% of predicted EUs were recovered for brook trout. 

Kolmogorov-Smirnov tests show that brook trout EUs are not accumulating at a different rate 

than pre-restoration EUs for either year (2013: D= 0.24, p= .29; 2017: D= 0.24, p= .29). Stocked 

trout and overall fishery show similar results. Stocked trout EUs only achieved 78% of predicted 

EUs in 2013 and decreased to 51% in 2017. KS tests show that although stocked trout EUs 

accumulated similarly to predicted in 2013 (D= 0.27, p= .17), EUs accumulated at a lower rate 

than predicted in 2017 (D= 36, p= .03), but 2013 and 2017 EUs accumulated similarly (D= 0.30, 

p= .10). Overall fishery EUs achieved 85% of predicted EUs in 2013 but only 66% in 2017. 

Similar to the stocked trout fishery, overall fishery EUs did not accumulate differently from 

predicted in 2013 (D= 0.27, p= .17) but accumulated differently in 2017 (D= 0.36, p= .03). 

Additionally, overall fishery EUs did not accumulate differently in 2017 than pre-restoration (D= 

0.30, p= .10).  

Discussion 

 The number of stream restoration plans which properly identify goals, have pre- and post-

restoration monitoring, and are planned to the appropriate scale (i.e. watershed-scale) are few. 

While there has been a recent increase in projects with pre- and post-restoration monitoring, few 

projects have used watershed scale approaches or appropriate timescales to achieve restoration 

goals (Hilderbrand et al. 2005, Palmer et al. 2014). The overall objective of our study was to 

determine the effectiveness of two stream restoration projects in West Virginia which were 

completed at the watershed scale, have pre- and post-monitoring ecological data, and had 

predetermined goals for stream chemistry and associated ecological functions. 
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Objective 1: Quantify and compare benefits of watershed scale restoration to water quality and 

invertebrate and fish assemblages in Abram Creek (a cold-water ecosystem) and Three Forks 

Creek (a warm-water ecosystem). 

 Three Forks and Abram Creeks were severely degraded pre-restoration. It was estimated 

that while historically there were approximately 40 km of fishable water, only 5 km remained 

due to extensive pre-law mining within the Three Forks Creek watershed (Petty et al. 2008) and 

a total of 73 km of streams within the watershed were considered impaired pre-restoration 

(Pavlick et al. 2006). The goals of this stream restoration project set by the WVDEP were to 

improve water chemistry and aesthetics in order to increase recreational use while also restoring 

macroinvertebrate and fish communities (WVDEP 2013).  

 Water chemistry results indicate significant improvements post-restoration in treated sites 

within the watersheds. Although still intermediary between AMD impaired and reference 

conditions alkalinity and pH increases with consequent decreases in heavy metals have pushed 

chemical conditions toward reference conditions. Some chemicals, like sulfate and magnesium, 

are extremely difficult to reduce with this type of AMD remediation (i.e. in-stream treatment) 

and are still elevated post-treatment in Three Forks Creek (table 3) and Abram Creek (table 4) 

(Freund & Petty 2007). This combined with increased levels of TSS and Na, highly correlated 

with PC2 (figure 3), are the likely reasons for separation of chemical signatures between 

reference and treated sites. Due the extent of impairment, our results show it is unlikely that 

water chemistry will ever fully reflect unimpaired reference conditions with this type of in-

stream treatment. Even so, it should be noted that the water quality improvements throughout the 

watersheds are extensive and have not only improved conditions within the creeks themselves, 

but likely the rivers to which they drain. 
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 Macroinvertebrate communities are showing large improvements post-restoration in both 

watersheds and their responses are very similar. Both watersheds are showing a significant 

increase of GLIMPSS in treated sites post-restoration which are approaching reference 

conditions. This is reflected in how both watersheds show that while treated sites were 

significantly different than reference sites in 2017, they were not different than reference sites 

from 2008. This suggests the improvement of the macroinvertebrate communities in the treated 

sites could be inflating the communities at the watershed scale even though reference scores 

were not statistically different from pre- to post-restoration. Additionally, GLIMPSS scores in 

both watersheds show that reference and treated sites have significantly different scores in 2017. 

This difference in the genus level measure suggests that although improvements are being made 

functionally and we are seeing increases in EPT values, certain taxa may not be returning to 

these sites. McClurg et al. (2007) found that in treated acidic streams, there was considerable 

variation in benthic macroinvertebrate communities based on the distance to treatment. Mixing 

zones which were less than 2 km downstream of treatment caused highly variable water quality 

and benthic macroinvertebrate communities which more closely resembled untreated acidic sites 

rather than unimpacted reference sites and treated sites further downstream from treatment. Site 

locations within Three Forks Creek and Abram Creek vary throughout the watersheds in 

proximity to treatment and the variability in community structures may be reflected in this 

relationship. Additionally, if treated and reference streams are isolated within the watershed, it is 

possible that a surrounding metacommunity with a deflated species pool could be affecting the 

ability of certain taxa to reach these streams (Merriam & Petty 2016). 

 Fish diversity is greatly improving throughout the Three Forks Creek watershed. Prior to 

restoration, fish were only found in reference sites not impacted by acid mine drainage and many 
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considered the main stem of Three Forks Creek to be “dead”. Now we are seeing fish diversity 

improve in treated sites as reference sites are now connected to more of the watershed and as 

water quality allows fish movement in and out of the watershed. However, within treated sites 

there is high variability in diversity. Many impacted tributaries and upstream main stem sites 

have no fish or are dominated by one or two tolerant species (e.g. creek chub, Semotolis 

atromaculatus, and blacknose dace, Rhinichthys atratulus). As water quality improves 

downstream, more species were found within our sites (appendix 1). Like Three Forks Creek, 

Abram Creek is also showing great improvements in fish diversity across treated sites and were 

not different from reference diversity scores. Variability, however, is less in Abram Creek. Only 

one site in Abram Creek has a diversity score of zero compared to multiple sites in Three Forks 

Creek. A few explanations of this discrepancy could be 1) Abram Creek is less than half the size 

of Three Forks Creek so distance for source populations to travel to occupy treated sites may be 

less (Lorenz & Feld 2013), 2) the state of the regional species pool could be different between 

the two watersheds depending on the regional condition surrounding the watersheds (Martin 

2010, Merriam & Petty 2016) or 3) the volume of AMD in some locations just may be so 

extensive that in-stream treatment is not effective enough to restore a functioning fishery (Freund 

& Petty 2007). The effect of regional species pools on the ability of restored streams to be 

repopulated has become more explored recently (Martin 2010, Merriam & Petty 2016) and may 

be an interesting factor to further explore. Additionally, it is important to note improvements of 

diversity do not indicate species’ abundances which is likely the discrepancy in our results 

between the apparent diversity improvements and the failure to recover functional fisheries with 

EUs and our linear models. 
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The possible effect of the regional species pool on species composition in these restored 

sites is possibly seen in figure 8, the linear models of drainage area to fish species richness. Fish 

communities show a strong relationship with drainage area in stream networks (Allan 2004, 

Guégan et al. 1998, Martin 2010, Matthews & Robinson 1998, Palmer & White 1994). Species 

richness typically increases with drainage area and Three Forks and Abram Creek is no 

exception. Although this relationship is well documented, the comparison between our two 

watersheds and regional reference conditions are showing discrepancies. While Abram Creek has 

a similar y-intercept to reference conditions, the reduced y-intercept for Three Forks Creek 

indicates a delay in species richness in smaller drainages amongst treated and untreated AMD 

sites. As discussed earlier, many treated sites of small drainages and close to treatment had either 

no fish or only one species when sampled and all untreated AMD sites had no fish. We do know 

the proximity to treatment creates variable water chemistry and it is well known that most fish 

species cannot tolerate even low levels of dissolved metals (Pinder & Morgan 1995, Welsh & 

Perry 1997, Maret & MacCoy 2002). While this could indicate a delayed response in fish 

richness as water quality improves downstream, we do not see the same response in Abram 

Creek. 

We are also seeing a reduced slope in the relationship between richness and drainage area 

for both watersheds. Continued elevated levels of sulfates and specific conductivity in treated 

sites are likely affecting the ability of fish to repopulate the watershed. Freund and Petty (2007) 

found both sulfate concentrations and specific conductance to be strong predictors of fish 

presence in the mining area of Appalachia. The continued elevation of these chemical 

parameters, even in treated sites, is likely reducing the effect of drainage area to richness in both 

watersheds. These results follow earlier studies which have found that while there is a decrease 
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in heavy metals and increase in alkalinity, even low levels of these chemicals can combine to 

cause biological impairment even if none of the individual concentrations exceed water quality 

criteria (Freund & Petty 2007). 

It is possible the differences seen are because we are comparing a cold-water system 

(Abram Creek) to a warm-water system (Three Forks Creek). The only reference streams within 

both watersheds are small tributaries which provide the core populations which sustain cold-

water fisheries (Hense 2007, Huntsman & Petty 2014). Abram Creek has an intact, functional 

headwater tributary in which to sustain core populations of cold-water fish. Warm-water 

fisheries tend to develop further downstream with larger drainages and higher temperatures but 

sites with these characteristics in Three Forks Creek are all downstream of AMD and treatment. 

Healthy tributaries in Abram Creek may be keeping the cold-water fishery intact by being the 

source for treated locations in the watersheds (i.e. sinks) while warm-water fisheries in Three 

Forks struggle to gain a foothold due to no known intact warm-water fisheries within the Three 

Fork Creek regional species pool. Our results indicate that cold-water fisheries may be easier to 

restore than warm-water fisheries if core habitat remains intact in some of the headwaters. 

Regional condition of the Three Forks watershed is likely hindering the ability of full 

recovery of fish species within the watershed. When looking at the linear relationship between 

species richness and drainage area, you can see that unlike Abram Creek, reference sites not 

impacted by AMD within the Three Forks watershed are not reaching the expected reference 

condition. This discrepancy not only suggests watershed-level impairment, but also that the 

regional conditions which surround the Three Forks Creek watershed may be affecting the ability 

of the fish community to recover. Merovich et al. (2013) shows the impact of mining on 

ecological integrity in the Tygart and Cheat watersheds which both drain north into the 
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Monongahela River. The Tygart watershed has good water quality and ecological integrity in the 

upstream sections but poor conditions in the lower sections of the watershed due to extensive 

pre-law mining. Three Forks Creek is located in the lower (i.e. northern) section of the Tygart 

Valley watershed and is surrounded by other HUC-10 watersheds which show poor conditions. 

Due to the extensive mining and reduced conditions of the Three Forks watershed and beyond, 

regional conditions may restrict the ability of Three Forks Creek to recover. Additionally, Three 

Forks Creek flows into the Tygart River below the dam which creates Tygart Lake. This 

blockage to fish movement may be further hindering the ability of fish to move into Three Forks 

Creek from the upper parts of the watershed where conditions are better into the lower part of the 

watershed which is more impacted by mining. This is not seen in the reference sites of Abram 

Creek. Abram Creek connects to the North Branch of the Potomac River. Although the North 

Branch also has its history with AMD and is also dammed, it still has intact fisheries in its 

tributaries (Savage River, for example) to supply a regional species pool to help populate both 

Abram Creek’s reference and sink habitats. Future restoration projects may need to consider the 

condition of regional species pools to determine if the ecological restoration of fish is a plausible 

goal. 

From a different perspective, fishery related EUs for Three Fork Creek and Abram Creek 

came up short of predictions for the restoration projects. Our fish diversity results show diversity 

scores significantly improving and reaching our reference conditions in both watersheds but EUs 

and our linear models indicate we are not achieving a functioning fishery. This indicates that 

although diversity is improving, fisheries are not developing which could indicate a density 

issue. It was predicted that the majority of the historic warm-water fishery would be recovered in 

Three Fork Creek post-restoration, and the warm-water fishery was predicted to have a better 
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recovery than the cold-water fishery due to warm-water habitats being far enough downstream of 

treatment to have stable conditions for fish. Our findings show that the fishery has not had much 

of a recovery when compared to pre-restoration with warm-water EUs only accumulating 1.3 

additional functioning stream miles post-restoration. Similarly, Abram Creek only recovered 0.3 

miles of brook trout EUs and 4.2 miles of stocked trout EUs. These findings along with our 

linear models showing a depressed fishery tell us that although these restoration projects 

successfully recovered macroinvertebrate (i.e. WVSCI) EUs and fish diversity has increased, it 

was not able to recover a functional fishery within the watershed. It will likely require out of 

stream (i.e. at source) treatment to recover functioning fisheries in watersheds with this extensive 

of impairment.  

Objective 2: Determine whether conditions in Abram Creek have improved, declined, or 

remained constant over an eight year period of time. 

 We are not seeing any temporal changes in Abram Creek for water quality since sampling 

in 2013. Although liming dosers are adjusted as needed to meet water quality goals, treatment 

has not significantly changed since restoration began in 2011. Even with increases in alkalinity 

throughout treated sites, some difficult to treat compounds, like aluminum, magnesium, and 

sulfate, have not decreased in concentration post-restoration. The continued presence of these 

chemicals are likely the reason for benthic macroinvertebrates to have continued GLIMPSS 

scores which are lower than reference sites within the watershed. Freund and Petty (2007) found 

benthic macroinvertebrate communities were highly correlated with water quality parameters 

which are common in mined watersheds. Their relationship to water quality, even with the 

reconnection of reference streams to the rest of the watershed, will likely continue to suppress 

macroinvertebrate taxa with low tolerance to water chemistry changes. 
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 Fish, however, are continuing to change post-restoration within the Abram Creek 

watershed. Diversity increased and communities improved two years post-restoration and we are 

still seeing improvement six years post-restoration. It is also interesting that in addition to the 

increase in fish diversity from 2013 to 2017 the variability within treated sites is decreasing 

temporally as more taxa are occupying more treated sites and being less dominated by one or two 

taxa through time.  

This temporal spread of fish throughout the watershed is well represented in figure 13 

which shows how brook trout populations have expanded to use more of the watershed through 

time. Before restoration, brook trout could only occupy two reference tributaries which were not 

affected by AMD. Additionally, these tributaries were isolated from each other due to acidic 

conditions throughout the main stem of Abram Creek which caused a block to movement. When 

fish were sampled post-restoration in 2013, there was little change in brook trout populations but 

by 2017, brook trout were not only moving throughout the watershed, but also occupying many 

more locations throughout the watershed. Surprisingly, brook trout are being found in the 

headwater tributaries of Abram Creek which have large inputs of AMD (figure 13) as well as 

being close to the liming dosers which can cause highly variable water quality for up to 2 km 

downstream (McClurg 2007). 

This continued movement of fish through time from our reference (source) populations to 

our treated sites (sinks) is suggesting inflation of the fish community at the watershed scale. 

McClurg (2007) showed that the limestone treatment of streams at the reach scale resulted in no 

temporal improvements of ecological functions due to treating localized areas which still drain 

highly acidic watersheds. Our study shows that through the reconnection of healthy tributaries to 

the rest of the watershed, fish communities can live in locations which are still suffering from 



 

31 

 

water quality parameters which are usually not ideal. These source-sink dynamics between 

reference streams and treated streams are likely the reason we are seeing continued 

improvements in the Abram Creek watershed (Pullium 1988). Because reference streams where 

brook trout and other sensitive fish are able to reproduce are still present within the watershed, 

populations can be sustained outside of these reference conditions due to mass effects. 

It could also be argued that this restoration could be forming ecological traps. Ecological 

traps are newer idea to ecology, and even less studied in stream restoration. Ecological traps are 

a result of environmental change and occur when low quality habitats become as attractive as or 

more attractive than higher quality habitats to organisms. Robertson and Hutto (2006) state three 

scenarios with which an area has to fulfill at least one of to be considered an ecological trap. 

Stream restoration projects fit well into the scenario where a settlement cue is changed so that an 

organism may see it as an attractive habitat but the suitability of the habitat for that settlement 

purpose has not changed (Robertson and Hutto 2006). Whereas source-sink dynamics is 

population based, the idea of ecological traps is based on a behavioral modification where 

environmental ques are changed which attract species to populate an area that is still unsuitable 

for other reasons (Robertson and Hutto 2006). In the treated tributaries within our watersheds, 

pH and alkalinity have increased but metals and conductivity remain elevated. In Abram Creek 

particularly, where we are seeing the expansion of brook trout, alkalinity is high enough for 

brook trout to live (i.e. above 7 mg CaCO3/L (Petty et al. 2005)) and move into the small 

tributaries for spawning, but continued elevated conductivity and metal concentrations are likely 

hindering recruitment. Therefore we are “attracting” brook trout to repopulate some tributaries 

which are not fully functional which may hinder the local population due to low recruitment 

success. While this may be a negative result of restoration, we are hopeful that restoring at the 
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watershed scale has improved the linkage of high quality source habitats which can support the 

local populations even with the existence of traps. 

Our results indicate that with the treatment of acidic watersheds at the watershed scale, 

fish communities can improve dramatically but, because of the apparent delay in fish response to 

restoration, it takes long-term monitoring in order to see these improvements. Many restoration 

projects monitor biological changes only a few years post-restoration. Our results from 2013 

show improvements in fish populations post-restoration but populations did not reach reference 

conditions with only a few years to recover and repopulate the watershed. It took monitoring six 

years post-restoration to detect these changes and it is likely that changes will continue into the 

future. 

A study by Watson (2017) measured restoration “success” using a method which turns 

ecological attributes into “ecological currency” (Petty et al. 2008). Watson (2017) found that 

although predicted goals for macroinvertebrate diversity were met by this restoration project, the 

other EUs, stocked trout, brook trout, and overall fishery, did not meet predicted goals. We 

continued this study using 2017 data to determine if any temporal trends were present in 

recovering predicted EUs for this restoration project. Our results show that there were no 

significant changes between 2013 and 2017 and the same predicted EUs were not met. This 

makes sense by the previous results in our study. Macroinvertebrates were not shown to 

significantly change from 2013 to 2017 and the calculation of EUs for all categories is based on 

WVSCI scores from macroinvertebrates. Our results show that even though macroinvertebrates 

are not changing, fish are continuing to change. Brook trout populations expanded throughout 

the watershed in 2017 even though the brook trout EUs are showing lower cumulative brook 

trout fishery units in 2017 than 2013. Because EUs for brook trout are predicted by the WVSCI 
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scores of high quality streams they usually occupy, it may not be adequately predicting that 

brook trout can still be found in sink habitats where water quality is not as high. It is possible that 

through the remediation of acidic streams at the watershed scale, brook trout and other sensitive 

populations can not only be reconnected to each other within reference streams, but also expand 

into streams which we may not usually predict their presence.  

Management Implications 

 Future research on these watersheds should focus on the discrepancy between increased 

fish diversity to reference conditions and the continued lack of functional fisheries. Density 

metrics which explore species abundances as well as documenting the presence/absence of 

certain species or functional groups of fish may help explain why fisheries in both watersheds 

are not fully recovering. This data will be needed if managers plan to improve the fisheries of 

Abram and Three Forks Creek. Additionally, further macroinvertebrate analysis can give 

valuable insight into what taxa are not returning to our treated locations and whether or not 

functional diversity in our treated locations is comparable to our reference sites. This information 

could help managers predict the ability of AMD restoration to repopulate sensitive taxa. 

Historically, stream restoration projects have focused at the reach-scale without concern 

of watershed or regional-scale processes which surround them. Multiple studies have found these 

site-specific, reach scale approaches are not seeing the biological uplift expected due to the strict 

focus of habitat improvement rather than the reconnection of isolated populations or not fully 

addressing the sources of impairment at the watershed-scale (McClurg 2007, Palmer et al. 2014). 

In a study of fish populations in the central Appalachians, Martin (2010) found that local 

biological conditions were independent of local conditions for stream fishes. This finding 

supports that site-specific restorations are not going to find the biological improvements only by 
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improving habitat or water quality at the local scale. Further, with macroinvertebrates, although 

they are usually a good indicator of local water quality (Freund and Petty 2007), regional 

processes (i.e. dispersal) dictate the communities that will reside there (Merriam & Petty 2016).  

 Our results clearly show the benefits of focusing restorations at the watershed-scale. 

Some biological and chemical attributes are still not fully recovered in either watershed, but that 

is expected due to the severity of impairment which AMD causes and the infeasibility of 

complete restoration in these systems. Still, macroinvertebrate indices and fish diversity were 

greatly improved in both Abram Creek and Three Fork Creek due to the improved water 

chemistry and reconnection of isolated tributaries which serve as sources to repopulate the 

watersheds. Our results indicate that restoration projects which focus at the watershed scale to 

improve connections to good conditions both locally and regionally are expected to be more 

successful than improving local conditions alone. Our results, especially at Abram Creek, also 

show that it may take long time frames to see the full benefits of restoration and for biological 

communities to fully recover.  

 Regional impairment beyond the watershed may also affect the ability of a stream to 

recover. Three Forks Creek is showing great improvements for macroinvertebrates throughout 

our restored reaches, but fish are still struggling to repopulate the watershed due to high regional 

impairment and a blockage to fish movement (i.e. Tygart Lake dam). Although this restoration 

project was largely focused on improving water quality before reaching the Tygart River, future 

restoration projects may need to focus regionally to reconnect healthy watersheds to restored 

areas. Additionally, the differences in recovery between macroinvertebrates and fish in our 

watersheds suggest that monitoring both fish and macroinvertebrates should be a part of 

ecological monitoring programs. Macroinvertebrates can give managers a good idea of local 
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conditions but fish may be able to tell a larger story of regional condition both within the 

watershed and beyond. 

 Our results can help watershed managers by showing that long-term monitoring and 

regional-scale thinking can help to improve restoration projects. With the completed cycle of our 

adaptive management framework, our results can be used to address successes, shortcomings, 

and where changes can be made to continue to improve the ecological condition of these 

watersheds. Our results also show that even with huge improvements, full recovery of 

macroinvertebrate and fisheries to reference conditions of systems highly degraded by AMD 

may not be possible without at-source treatment. Even so, our results show that watershed-scale 

restoration leads to many ecological improvements and regional-scale processes play a large role 

in ecosystem recovery. 
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Figures

 

Figure 1. Map of Three Forks Creek, West Virginia with site locations, site types (i.e. treated, 

AMD, and reference), and treatment locations. 
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Figure 2. Map of Abram Creek, West Virginia with site locations, site types (i.e. treated, AMD, 

and reference), and treatment locations. 
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Figure 3. Scatter plots of principal components (PC) 1 and 2 scores for every water chemistry 

sample in Three Forks Creek and Abram Creek. Points are colored and shaped by site types 

(red=AMD, green=reference, blue=treated). Vectors show the correlations of each chemical 

parameter by both direction and degree of correlation (i.e. length of vectors).  
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Figure 4. Genus-level index of most probable stream status (GLIMPSS) scores pre- (2008) and 

post-restoration (2017) for the reference and treated sites of Three Fork Creek and Abram Creek. 

Lowercase letters show significant differences as identified by one-way ANOVA followed by 

Tukey post tests (Three Forks) or pairwise t-tests (Abram) between scores of treatment types 

within each plot. Reference GLIMPSS scores seen for Abram Creek in 2008 were taken from a 

survey in 2013.  
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Figure 5. Fish diversity scores for the reference and treated sites of Three Forks Creek and 

Abram Creek pre- (2008) and post-restoration (2017). Lowercase letters denote significant 

differences as identified by repeated measures ANOVA and Tukey post-hoc tests of scores 

within and between treatment types in each plot. 
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Figure 6. Plot of the relationship between fish species richness and log drainage area for Three 

Forks Creek (dark solid line), Abram Creek (light solid line) and regional reference conditions 

(dashed line). Stream types are indicated by shape for AMD, reference, and treated streams and 

color indicates the watershed the points belong to (i.e. dark grey= Three Forks Creek, light grey= 

Abram Creek). 
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Figure 7. Ecological Units in Three Forks Creek for diversity, overall fishery, cold-water fishery, 

and warm-water fishery. Diversity units in this figure represent macroinvertebrate diversity. 

Overall fishery units represent a combination of trout and warm-water fisheries. 
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Figure 8. Ecological Units (EU) in Abram Creek for diversity, brook trout, stocked trout, and  

overall fishery. Diversity units in this figure represent macroinvertebrate diversity. Overall 

fishery units represent a combination of native brook trout and stocked trout. 
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Figure 9. Concentrations of alkalinity (CaCO3 mg/L equivalents), aluminum (mg/L), magnesium 

(mg/L), and sulfate (mg/L) in treated sites of Abram Creek in 2008 (pre-restoration), 2013 (post-

restoration), and 2017 (post-restoration). Lowercase letters denote significant differences 

indicated by one-way ANOVA and t-tests between concentrations of each chemical within 

treated sites. 
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Figure 10. GLIMPSS scores for treated streams and reference streams in Abram Creek for sites 

sampled in 2008, 2013, and 2014. Lowercase letters show significant or non-significant 

differences between scores of treatment types. 
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Figure 11. Shannon diversity of fish communities in treated and reference streams in Abram 

Creek. Lowercase letters show significant or non-significant differences between scores of 

treatment types. 
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Figure 12. Ecological Units (EU) in Abram Creek for diversity, brook trout, stocked trout, and 

overall fishery. This figure includes both 2013 and 2017 data. Diversity units in this figure 

represent macroinvertebrate diversity. Overall fishery units represent a combination of native 

brook trout and stocked trout. 
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Figure 13. Distribution of brook trout throughout the Abram Creek watershed. Symbols are site 

locations and sized based on the number of brook trout found at each site. Red dots indicate no 

brook trout were found at that sample location. 
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Tables 

Table 1. Site names, GPS coordinates, drainage area in km2, and stream type of all sites in the 

Three Forks Creek watershed. 
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Table 2. Site names, GPS coordinates, drainage area in km2, and stream type of all sites in the 

Abram Creek watershed. 
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Table 3. Chemical summary table of water chemistry samples in treated sites pre- (2008) and 

post-restoration (2017) in Three Forks Creek. Mean concentrations and standard deviations (SD) 

of each selected chemical parameter among all treated sites is listed. 
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Table 4. Chemical summary table of water chemistry samples in treated sites pre- (2008) and 

post-restoration (2017) in Abram Creek. Mean concentrations and standard deviations (SD) of 

each selected chemical parameter among all treated sites is listed. 
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Table 5. Factor loadings of each chemical parameter analyzed post-restoration (2017) for 

principal components (PC) 1 and 2 in Three Forks Creek.  
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Table 6. Factor loadings of each chemical parameter analyzed post-restoration (2017) for 

principal components (PC) 1, 2 and 3 in Abram Creek.  
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Table 7. GLIMPSS scores for each site sampled in Three Forks Creek for the 2008 (pre-

restoration) and 2017 (post-restoration) sampling years. 
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Table 8. GLIMPSS scores for each site sampled in Abram Creek for the 2008 (pre-restoration), 

2013 (post-restoration) and 2017 (post-restoration) sampling years. 
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Table 9. Fish diversity for each site sampled in Three Forks Creek for the 2008 (pre-restoration) 

and 2017 (post-restoration) sampling years. 
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Table 10. Fish diversity for each site sampled in Abram Creek for the 2008 (pre-restoration), 

2013 (post-restoration) and 2017 (post-restoration) sampling years. 

 

 

 

 

 

 

 

 

 



 

71 

 

Appendices 

Appendix 1. Fish species counts for sampling sites in Abram Creek for all sampling years (i.e. 2008, 2013, 2017). CACO = Catostomus commersoni 

(white sucker), MIDO = Micropterus dolomieu (smallmouth bass), RHAT = Rhinichthys atratulus (blacknose dace), SAFO = Salvelinus fontinalis 

(brook trout), SEAT = Semotilus atromaculatus (creek chub), LECY = Lepomis cyanellus (green sunfish), COCA = Cottus caeruleomentum (Blue 

Ridge sculpin), ETFL = Etheostoma flabellare (fantail darter), OMNY = Oncorhynchus mykiss (rainbow trout), HYNI = Hypentelium nigricans 

(northern hogsucker), LEMA = Lepomis macrochirus (bluegill), AMRU = Ambloplites rupestris (rock bass), MIPU = Micropterus punctulatus 

(spotted bass), CAAN = Campostoma anomalum (central stoneroller). 

site 
stream 
type 

sampling 
year CACO MIDO RHAT SAFO SEAT LECY COCA ETFL OMNY HYNI LEMA AMRU MIPU CAAN 

Abram Creek HW Right    
Fork 

treated 2017 1 1 27 18 88 0 0 0 0 0 0 0 0 0 

Little Creek 
 

treated 2017 0 0 0 5 0 0 0 0 0 0 0 0 0 0 

Emory Creek HW Right Fork reference 2017 0 0 65 1 0 0 0 0 0 0 0 0 0 0 

Unnamed Tributary 2 Emory 
Creek 

reference 2017 0 0 43 52 0 0 0 0 0 0 0 0 0 0 

Laurel Run at Mouth 
 

treated 2017 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Glade Run at Mouth 
 

treated 2017 3 0 127 21 16 1 0 0 0 0 0 0 0 0 

Abram Creek at Vindex 
 

treated 2017 0 0 3 0 4 0 0 0 0 0 0 0 0 0 

Emory Creek at Mouth 
 

treated 2017 0 0 77 12 16 0 0 0 0 0 0 0 0 0 

Upper Johnnycake Run 
 

reference 2017 4 0 141 9 4 0 179 8 0 0 0 0 0 0 

Johnnycake Run at Mouth reference 2017 13 0 43 15 12 0 41 2 0 0 0 0 0 0 

Abram Creek at Mouth 
 

treated 2017 0 14 10 0 12 0 0 0 2 0 0 0 0 0 

Abram Creek at Laytons treated 2017 1 26 50 0 15 0 0 0 0 1 0 0 0 0 

Abram Creek above Emory treated 2017 1 42 45 0 44 0 0 0 0 0 0 0 0 0 

Abram Creek above 
Johnnycake 

treated 2017 5 0 108 1 41 0 2 10 0 0 0 0 0 0 

Abram Creek above Glade treated 2017 0 0 102 1 88 2 0 0 0 0 2 0 0 0 
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Abram Creek above Laurel treated 2017 1 1 27 6 42 0 0 0 0 0 0 0 0 0 

Emory Creek HW Left Fork AMD 2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unnamed Tributary 1 Emory 
Creek 

AMD 2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Abram Creek HW Right Fork treated 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Little Creek 
 

treated 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Emory Creek HW Right Fork reference 2008 0 0 71 0 0 0 0 0 0 0 0 0 0 0 

Unnamed Tributary 2 Emory 
Creek 

reference 2008 0 0 84 30 0 0 0 0 0 0 0 0 0 0 

Laurel Run at Mouth 
 

treated 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Glade Run at Mouth 
 

treated 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Abram Creek at Vindex 
 

treated 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Emory Creek at Mouth 
 

treated 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Upper Johnnycake Run 
 

reference 2008 7 0 84 33 5 0 56 4 0 0 0 0 0 0 

Johnnycake Run 
 

reference 2008 46 0 329 13 59 0 110 38 0 0 0 0 0 0 

Abram Creek at Mouth 
 

treated 2008 0 3 3 1 5 0 0 0 0 0 0 3 0 0 

Abram Creek at Laytons treated 2008 5 1 21 1 19 0 0 0 0 0 0 0 0 0 

Abram Creek above Emory treated 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Abram Creek above 
Johnnycake 

treated 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Abram Creek above Glade treated 2008 0 0 0 0 4 0 0 0 0 0 0 0 0 0 

Abram Creek above Laurel treated 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Emory Creek HW Left Fork AMD 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unnamed Tributary 1 Emory 
Creek 

AMD 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Abram Creek HW Right Fork treated 2013 0 0 0 0 91 0 0 0 0 0 0 0 0 0 

Little Creek 
 

treated 2013 0 0 0 0 46 0 0 0 0 0 0 0 0 0 

Emory Creek HW Right Fork reference 2013 0 0 58 0 0 0 0 0 0 0 0 0 0 0 

Unnamed Tributary 2 Emory 
Creek 

reference 2013 0 0 53 3 0 0 0 0 0 0 0 0 0 0 

Laurel Run at Mouth 
 

treated 2013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Glade Run at Mouth 
 

treated 2013 0 0 120 11 30 0 0 0 0 0 0 0 0 0 

Abram Creek at Vindex 
 

treated 2013 0 0 0 0 69 0 0 0 0 0 0 0 0 0 

Emory Creek at Mouth 
 

treated 2013 0 0 94 9 46 0 0 0 0 0 0 0 0 0 

Upper Johnnycake Run 
 

reference 2013 3 0 86 9 8 0 64 7 0 0 0 0 0 0 

Johnnycake Run at Mouth reference 2013 88 0 351 11 74 0 72 57 0 0 0 0 0 0 

Abram Creek at Mouth 
 

treated 2013 1 13 29 1 28 0 0 4 0 0 0 0 0 2 

Abram Creek at Laytons treated 2013 2 7 42 0 27 0 0 0 0 0 0 0 0 0 

Abram Creek above Emory treated 2013 0 26 15 0 36 0 0 0 0 0 0 0 0 0 

Abram Creek above 
Johnnycake 

treated 2013 2 0 133 0 91 0 0 3 0 0 0 0 0 0 

Abram Creek above Glade treated 2013 1 0 89 0 116 0 0 0 0 0 0 0 0 0 

Abram Creek above Laurel treated 2013 1 0 71 0 87 2 0 0 0 0 0 0 1 0 

Emory Creek HW Left Fork AMD 2013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unnamed Tributary 1 Emory 
Creek 

AMD 2013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix 2. Fish species counts for sampling sites in Three Forks Creek for both sampling years (i.e. 2008, 2017). AMNA = Ameiurus natalis 

(yellow bullhead), AMNE = Ameiurus nebulosus (brown bullhead), AMRU = Ambloplites rupestris (rock bass), CAAN = Campostoma anomalum 

(central stoneroller), CACO = Catostomus commersoni (white sucker), COBA = Cottus bairdii (mottled sculpin), ETBL = Etheostoma blennioides 

(greenside darter), ETFL = Etheostoma flabellare (fantail darter), HYNI = Hypentelium nigricans (northern hogsucker), LECY = Lepomis cyanellus 

(green sunfish), LEGI = Lepomis gibbosus (pumpkinseed sunfish), LEMA = Lepomis macrochirus (bluegill), MIDO = Micropterus dolomieu 

(smallmouth bass), MISA = Micropterus salmoides (largemouth bass), NOMI = Nocomis micropogon (river chub), NORU = Notropis rubellus 

(rosyface shiner), PECA = Percina caprodes (logperch), PINO = Pimephales notatus (bluntnose minnow), RHOB = Rhinichthys obtusus (blacknose 

dace), SATR = Salmo trutta (brown trout), SAVI = Sander vitreus (walleye), SEAT = Semotilus atromaculatus (creek chub). 

site year A
M

N
A
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O

M
I 

N
O

R
U

 

P
EC

A
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R
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SA
TR

 

SA
V

I 

SE
A
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Three Forks 
at Mouth 

2017 4 0 20 0 0 0 36 0 3 13 0 1 14 1 4 0 2 0 0 0 0 0 

Raccoon at 
Mouth 

2017 0 0 3 0 0 0 1 0 0 15 0 3 1 0 1 0 0 0 0 0 1 53 

Upper 
Raccoon 
Creek 

2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Raccoon HW 
 

2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Upper Birds 
Creek 

2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Birds Creek 
HW 

 

2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Brains Creek 
 

2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 11 

Boyd Run 
 

2017 0 0 0 0 12 0 0 0 0 0 0 5 0 4 0 0 0 0 11 2 0 48 

Squires 
Creek 

 

2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Birds Creek 
 

2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 

Fields Creek 
 

2017 0 1 0 0 4 21 0 0 0 0 0 0 0 3 0 0 0 0 14 0 0 137 

Stacks Creek 2017 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 68 0 0 49 
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Three Forks 
above 
Laurel 

2017 0 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 151 

Laurel Creek 
 

2017 0 0 0 0 11 222 0 0 6 0 0 1 4 0 0 0 0 0 128 1 0 345 

Three Forks 
at TF 
Bridge 

2017 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 359 

Three Forks 
above 
Raccoon 

2017 0 0 8 0 1 0 4 0 6 9 0 1 3 1 2 0 1 0 0 0 0 17 

Cooks Run 
 

2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 248 0 0 321 

UNT Laurel 
Creek 

2017 0 0 0 0 0 107 0 0 0 0 0 0 0 0 0 0 0 0 110 0 0 150 

Three Forks 
at 
Thornton 

2017 3 0 13 1 0 0 21 4 4 33 0 2 19 0 1 2 0 15 0 0 1 0 

Unnamed 
Tributary 
Birds 
Creek at 
58 

2017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Three Forks 
at Mouth 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Raccoon at 
Mouth 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Upper 
Raccoon 
Creek 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Raccoon HW 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Upper Birds 
Creek 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Birds Creek 
HW 

 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Brains Creek 
 

2008 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 

Boyd Run 2008 0 0 0 0 41 0 0 0 0 0 0 1 0 2 0 0 0 0 51 6 0 103 



 

76 

 

 

Squires 
Creek 

 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Birds Creek 
 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fields Creek 
 

2008 0 0 0 0 31 0 0 0 0 0 0 1 0 1 0 0 0 0 67 0 0 377 

Stacks Creek 
 

2008 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 154 0 0 132 

Three Forks 
above 
Laurel 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Laurel Creek 2008 0 0 0 0 4 288 0 0 0 1 0 2 0 1 0 0 0 0 87 2 0 142 

Three Forks 
at Three 
Forks 
Bridge 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Three Forks 
above 
Raccoon 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cooks Run 2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 0 0 97 

UNT Laurel 
Creek 

2008 0 0 0 0 0 98 0 0 0 2 0 0 0 0 0 0 0 0 30 0 0 237 

Three Forks 
at 
Thornton 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unnamed 
Tributary 
Birds 
Creek at 
58 

2008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix 3. Benthic macroinvertebrate data for Abram Creek by sample location in 2008. With the exception of Chironomidae, macroinvertebrates 

were identified to genus if possible. UNK=unknown. 
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Year 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 

Oligochaeta 4 4 5 1 22 1 12 2 0 0 2 2 9 4 

Planorbidae 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Lymnaeidae 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Snails(UNK) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Gammarus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Caecidotea 1 0 0 0 0 0 0 1 0 0 0 0 0 0 

Baetidae(UNK) 2 0 5 6 3 0 6 0 0 0 1 0 0 0 

Accentrella 2 0 3 3 5 0 5 0 0 0 0 0 0 0 

Baetis 0 0 2 0 0 0 17 0 0 0 0 0 0 0 

Plauditus 67 0 58 112 7 0 0 0 0 0 0 0 0 0 

Heterocloeon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Centroptilum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Heptageniidae(UNK) 0 0 1 0 2 0 0 0 0 0 0 0 0 0 

Epeorus 0 0 0 0 5 0 0 0 0 0 0 0 0 0 

Heptagenia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenonema/Maccaffertium 0 0 0 0 3 0 1 0 0 0 0 0 0 0 

Cinygmula 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Stenacron 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isonychia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptophelbiidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paraleptophlebia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Ephemerellidae(UNK) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Ephemerella 0 0 0 0 8 0 0 1 0 0 0 0 0 0 

Drunella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tricorythodes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ephemera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ameletus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Mayfly 1 1 2 2 1 0 2 0 0 0 0 0 0 2 

Hydropsychidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydropsyche 0 0 2 5 0 0 0 0 0 0 0 0 0 0 

Diplectrona 0 6 0 0 3 0 3 2 0 2 5 0 0 0 

Ceratopsyche 0 1 0 0 0 0 3 0 0 0 0 0 0 0 

Cheumatopsyche 0 0 0 0 3 0 2 0 0 0 0 0 0 0 

Wormaldia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chimarra 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

Dolophilodes 0 0 0 0 10 0 5 0 0 0 0 0 0 0 

Rhyacophilla 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

UNK (Polycentropodidae) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Polycentropus 1 0 1 0 0 0 0 1 0 0 0 0 1 0 

Cyrnellus 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Lepidostoma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pycnopsyche 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Hydatophylax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptoceridae(UNK) 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydroptilidae (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydroptila 0 0 0 0 4 0 1 0 0 0 0 0 0 0 

Orthotrichia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ochrotrichia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Agapetus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Glossosoma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neophylax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phryganeidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unkown Caddisfly 1 0 0 0 0 0 0 0 0 2 0 0 0 0 

Chloroperlidae(UNK) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 



 

79 

 

Haploperla 0 0 2 0 3 0 4 0 0 0 0 0 0 0 

Sweltsa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Alloperla 3 1 1 2 0 2 3 1 0 0 0 0 0 0 

Allocapnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leuctra 20 1 35 17 23 1 17 0 0 0 0 0 0 3 

Acroneuria 0 0 2 1 1 0 1 0 0 0 0 0 0 0 

Agnetina 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Beloneuria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hansonoperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paragnetina 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Pteronarcys 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Perlodidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isoperla 0 0 0 0 1 0 2 0 0 0 0 0 0 0 

Yugus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tallaperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Peltoperla 0 0 0 0 4 0 0 0 0 0 0 0 0 0 

Amphinemuera 1 1 1 0 3 0 35 0 0 1 0 0 0 0 

Paranemoura 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Taeniopteryx 0 0 1 0 10 0 1 0 0 0 0 0 0 0 

Taeniopterygidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Stonefly 4 3 4 2 8 0 14 0 0 0 0 0 0 0 

Gomphidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lanthus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stylogomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aeshnidae (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Boyeria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Calopteryx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Elmidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Optioservus 4 0 2 0 0 0 0 2 0 0 0 0 0 0 

Promoresia 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Oulimnius 0 0 0 0 4 0 1 0 0 0 0 0 0 0 

Ancyronyx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenelmis 0 0 0 0 0 0 2 0 0 0 0 0 0 0 



 

80 

 

Dubiraphia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ectopria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psephenus 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Anchytarsus 0 0 1 0 0 2 0 0 0 0 0 0 0 0 

Curculionidae(UNK) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Dytiscidae(UNK) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Peltodytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Beetle 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Nigronia 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Sialis 0 3 1 0 0 0 0 4 2 0 2 0 1 0 

UNK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hemiptera (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mesovelia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chironomidae 46 32 46 46 33 3 43 20 3 17 20 9 79 30 

Tipulidae(UNK) 0 0 0 0 0 0 2 0 0 1 0 0 0 0 

Antocha 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Tipula 0 0 1 1 0 0 0 0 0 0 1 0 0 0 

Hexatoma 0 0 2 4 0 0 2 0 1 0 0 0 0 0 

Dicranota 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Molophilus 0 2 1 0 0 0 0 0 0 1 0 0 0 0 

Limnophila 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pseudolimnophila 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

Pedicia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Limonia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chrysops 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Simuliidae(UNK) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Simulium 0 0 0 0 32 0 5 1 0 0 0 0 0 0 

Prosimulium 0 0 0 0 2 0 0 0 0 0 0 0 0 1 

Empididae(UNK) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Chelifera 1 0 1 0 2 0 1 0 0 0 0 0 1 1 

Clinocera 0 0 0 0 0 0 4 0 0 0 0 0 0 0 

Hemerodromia 2 0 4 1 0 0 1 0 0 0 0 0 0 0 

Ceratopogonidae(UNK) 0 2 0 0 0 0 1 0 0 1 0 0 0 0 
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Bezzia 1 0 2 1 0 0 1 1 1 0 3 0 2 3 

Dasyhelea 1 4 7 0 0 0 1 0 0 0 0 0 0 0 

Culicoides 1 0 2 0 0 0 0 0 0 0 0 0 0 0 

Ceratopogon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Blepharicera 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Psychodidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Unknown Diptera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydracarina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collembola (UNK) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Bourletiella 0 0 0 0 0 0 0 0 0 0 0 0 3 0 

Isotomorus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isotomidae(UNK) 0 1 0 0 1 0 0 0 0 0 0 1 1 0 
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Appendix 4. Benthic macroinvertebrate data for Abram Creek by sample location in 2013. With the exception of Chironomidae, macroinvertebrates 

were identified to genus if possible. UNK=unknown. 
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Year 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 

Oligochaeta 5 4 4 3 6 4 1 4 6 0 0 2 3 0 0 2 2 0 

Planorbidae 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Lymnaeidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Snails(UNK) 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Gammarus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 

Caecidotea 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

Baetidae(UNK) 9 0 7 4 13 3 0 0 17 0 0 0 1 7 0 0 7 7 

Accentrella 5 0 7 6 19 0 10 0 13 8 0 0 2 11 0 0 0 9 

Baetis 2 0 4 3 2 2 0 0 5 0 0 0 1 3 12 0 27 8 

Plauditus 43 2 61 92 39 0 69 0 86 10 0 0 1 28 0 0 0 71 

Heterocloeon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Centroptilum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Heptageniidae(UNK) 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 

Epeorus 0 0 2 1 0 1 0 0 0 0 0 0 0 1 2 0 7 1 

Heptagenia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 

Stenonema/Maccaffertium 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 

Cinygmula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenacron 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isonychia 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptophelbiidae(UNK) 0 0 0 0 2 0 0 0 0 0 0 0 0 8 0 0 0 5 

Paraleptophlebia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 2 
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Ephemerellidae(UNK) 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 

Ephemerella 0 0 0 0 3 5 0 0 0 0 0 0 0 5 3 0 0 11 

Drunella 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 2 

Tricorythodes 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ephemera 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Ameletus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Mayfly 0 0 0 0 0 1 0 0 0 0 0 0 0 3 18 0 4 2 

Hydropsychidae(UNK) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydropsyche 1 0 0 0 5 1 0 0 1 6 0 2 9 0 0 0 0 0 

Diplectrona 0 6 0 0 0 2 3 4 2 11 2 0 14 1 13 1 3 1 

Ceratopsyche 3 2 10 3 0 0 0 0 0 0 0 0 0 7 0 0 0 2 

Cheumatopsyche 1 0 1 3 0 6 2 0 0 0 0 0 1 5 0 1 0 0 

Wormaldia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chimarra 0 0 2 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 

Dolophilodes 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 21 

Rhyacophilla 0 2 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 

UNK (Polycentropodidae) 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 

Polycentropus 5 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 1 0 

Cyrnellus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lepidostoma 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Pycnopsyche 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

Hydatophylax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptoceridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydroptilidae (UNK) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydroptila 0 0 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 0 

Orthotrichia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ochrotrichia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Agapetus 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 6 0 

Glossosoma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neophylax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 

Phryganeidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unkown Caddisfly 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Chloroperlidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Haploperla 4 0 3 1 7 10 4 0 5 0 11 0 0 1 2 0 14 5 

Sweltsa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Alloperla 3 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 

Allocapnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leuctra 17 2 39 40 7 10 5 2 10 4 1 10 21 9 15 8 14 1 

Acroneuria 0 0 1 2 0 1 0 0 0 0 0 0 0 0 5 1 1 2 

Agnetina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Beloneuria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hansonoperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paragnetina 2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pteronarcys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Perlodidae(UNK) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Isoperla 0 0 0 1 0 3 0 0 0 0 0 0 0 1 0 0 0 2 

Yugus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 

Tallaperla 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Peltoperla 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 

Amphinemuera 12 2 5 10 13 22 5 0 12 6 9 3 93 0 23 0 24 2 

Paranemoura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Taeniopteryx 1 0 0 0 2 0 1 0 3 0 0 0 3 1 0 0 0 0 

Taeniopterygidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Stonefly 6 0 0 5 5 1 0 0 2 4 14 0 0 2 2 0 0 5 

Gomphidae(UNK) 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 

Lanthus 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Stylogomphus 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aeshnidae (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Boyeria 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Calopteryx 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Elmidae(UNK) 0 0 0 0 1 0 0 0 0 0 0 0 0 6 0 0 2 0 

Optioservus 1 0 0 0 1 1 0 0 0 0 0 0 0 5 0 0 6 0 

Promoresia 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Oulimnius 0 0 0 0 1 0 1 0 0 0 0 0 1 2 0 0 6 0 

Ancyronyx 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenelmis 0 0 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Dubiraphia 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 

Ectopria 0 2 0 0 0 0 0 0 0 0 0 0 0 0 6 0 1 0 

Psephenus 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Anchytarsus 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 

Curculionidae(UNK) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dytiscidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Peltodytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Beetle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nigronia 0 0 0 0 0 1 0 0 0 0 0 2 1 0 1 0 3 1 

Sialis 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 

UNK 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hemiptera (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mesovelia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chironomidae 32 7 24 10 25 88 19 14 25 14 29 74 59 48 46 31 54 40 

Tipulidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 

Antocha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 

Tipula 0 0 1 0 0 1 0 0 0 0 1 1 1 0 2 1 0 0 

Hexatoma 2 0 3 1 2 5 0 0 0 0 0 0 0 0 3 0 0 1 

Dicranota 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Molophilus 5 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Limnophila 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 1 0 

Pseudolimnophila 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 5 0 

Pedicia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Limonia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Chrysops 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Simuliidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Simulium 0 0 0 0 2 0 0 0 0 0 0 1 0 10 0 0 0 4 

Prosimulium 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Empididae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chelifera 1 0 0 0 0 1 0 0 0 1 0 1 3 0 5 0 0 0 

Clinocera 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 

Hemerodromia 2 0 1 4 1 1 1 0 0 0 0 1 0 3 0 0 0 2 

Ceratopogonidae(UNK) 2 0 0 1 0 2 0 0 1 0 0 0 0 0 1 0 2 0 
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Bezzia 15 3 1 0 1 1 1 2 0 0 0 0 0 0 0 1 0 0 

Dasyhelea 4 0 0 1 3 4 5 0 0 0 0 0 0 0 0 3 0 0 

Culicoides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ceratopogon 1 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 

Blepharicera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psychodidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Diptera 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 

Hydracarina 0 0 1 1 0 5 0 0 0 0 1 0 0 1 0 0 0 0 

Collembola (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bourletiella 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

Isotomorus 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Isotomidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

87 

 

Appendix 5. Benthic macroinvertebrate data for Abram Creek by sample location in 2017. With the exception of Chironomidae, macroinvertebrates 

were identified to genus if possible. UNK=unknown. 
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Year 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 

Oligochaeta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Planorbidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lymnaeidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Snails(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Gammarus 0 0 0 0 0 0 0 0 0 1 0 0 0 0 21 0 0 0 

Caecidotea 1 0 0 0 0 0 0 0 0 0 0 8 0 0 0 1 0 0 

Baetidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Accentrella 3 22 4 2 3 5 3 6 7 0 4 0 2 2 0 3 0 8 

Baetis 1 4 1 1 0 4 4 44 2 0 1 0 0 82 38 26 16 10 

Plauditus 72 42 56 18 123 0 109 4 122 3 2 0 5 2 3 37 10 48 

Heterocloeon 0 6 0 0 3 0 1 0 1 0 0 0 0 0 0 0 0 0 

Centroptilum 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Heptageniidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Epeorus 1 0 4 0 0 0 0 2 0 0 0 0 0 6 9 4 0 4 

Heptagenia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenonema/Maccaffertium 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 

Cinygmula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenacron 2 0 0 0 0 0 0 1 0 0 0 0 0 0 2 1 3 3 

Isonychia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptophelbiidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paraleptophlebia 0 0 1 0 0 0 0 6 1 0 0 0 0 10 28 9 13 9 

Ephemerellidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Ephemerella 0 0 1 0 1 0 0 1 0 0 0 0 0 1 4 0 3 3 

Drunella 0 0 1 0 0 0 0 4 0 0 0 0 0 0 0 0 2 0 

Tricorythodes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ephemera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ameletus 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 

Unknown Mayfly 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydropsychidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 38 0 0 0 0 0 0 

Hydropsyche 4 3 2 1 0 0 4 1 1 1 4 0 7 0 0 1 0 0 

Diplectrona 0 0 0 2 4 3 3 0 1 0 2 0 0 3 4 0 4 1 

Ceratopsyche 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Cheumatopsyche 1 0 2 0 0 1 0 1 0 2 0 0 0 0 0 1 3 2 

Wormaldia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Chimarra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dolophilodes 2 0 0 0 0 0 0 10 0 0 0 0 0 1 4 4 39 8 

Rhyacophilla 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 3 1 

UNK (Polycentropodidae) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Polycentropus 0 2 2 2 0 1 2 0 0 0 0 0 0 1 0 0 0 1 

Cyrnellus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lepidostoma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pycnopsyche 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydatophylax 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

Leptoceridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydroptilidae (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydroptila 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Orthotrichia 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Ochrotrichia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Agapetus 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 

Glossosoma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Neophylax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phryganeidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Unkown Caddisfly 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chloroperlidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Haploperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Sweltsa 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 

Alloperla 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 

Allocapnia 0 0 0 0 1 0 0 0 0 0 0 0 7 0 0 4 0 0 

Leuctra 70 74 59 7 11 2 10 45 8 1 15 55 46 20 13 20 19 32 

Acroneuria 10 1 11 0 0 0 0 2 0 0 0 0 0 3 2 2 0 0 

Agnetina 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Beloneuria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Hansonoperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Paragnetina 1 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pteronarcys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Perlodidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 

Isoperla 0 1 7 5 2 0 1 1 3 0 2 0 1 4 0 3 0 0 

Yugus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Tallaperla 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 10 0 

Peltoperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Amphinemuera 1 2 5 10 16 1 8 0 8 0 3 0 74 15 6 14 0 1 

Paranemoura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Taeniopteryx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Taeniopterygidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Unknown Stonefly 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Gomphidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lanthus 3 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Stylogomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aeshnidae (UNK) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Boyeria 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Calopteryx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Elmidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Optioservus 8 9 8 0 0 0 0 0 1 1 0 0 0 0 0 4 4 0 

Promoresia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 

Oulimnius 0 0 0 0 1 0 0 1 0 0 0 0 0 10 1 11 4 8 

Ancyronyx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenelmis 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Dubiraphia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Ectopria 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 

Psephenus 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Anchytarsus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Curculionidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dytiscidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Peltodytes 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Beetle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nigronia 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

Sialis 0 0 0 1 0 2 0 0 1 1 0 0 0 0 0 0 0 0 

UNK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hemiptera (UNK) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mesovelia 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Chironomidae 15 13 15 26 11 6 37 54 19 19 4 72 47 32 42 33 30 32 

Tipulidae(UNK) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Antocha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tipula 0 1 1 1 0 0 0 0 0 0 4 0 0 2 0 0 1 0 

Hexatoma 5 1 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Dicranota 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 

Molophilus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Limnophila 0 0 1 0 0 0 0 0 0 0 0 5 0 0 4 3 0 0 

Pseudolimnophila 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pedicia 0 0 0 0 0 0 0 1 0 0 0 0 11 0 0 0 0 0 

Limonia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chrysops 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Simuliidae(UNK) 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 4 0 

Simulium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prosimulium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Empididae(UNK) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Chelifera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Clinocera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hemerodromia 0 0 0 0 0 0 0 2 0 5 1 0 0 0 0 0 0 0 

Ceratopogonidae(UNK) 0 0 0 3 0 0 0 0 0 2 0 0 0 3 0 0 0 0 

Bezzia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Dasyhelea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Culicoides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ceratopogon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Blepharicera 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psychodidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Diptera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydracarina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collembola (UNK) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Bourletiella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isotomorus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isotomidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix 6. Benthic macroinvertebrate data for Three Fork Creek by sample location in 2008. With the exception of Chironomidae, 

macroinvertebrates were identified to genus if possible. UNK=unknown. 
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Year 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 

Turbellaria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Oligochaeta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aeolosomatidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nematoda 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nemertea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hirudinea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Corbiculidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sphaeriidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unionidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Clams 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ancylidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Planorbidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Physidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lymnaeidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Snails(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cambarus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Orconectes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Gammarus 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Hyalella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Crangonyx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stygobromus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Asellidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Caecidotea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Lirceus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Baetidae(UNK) 0 0 0 0 0 0 0 0 3 0 1 13 0 0 

Accentrella 0 0 0 0 0 0 0 0 23 14 0 19 0 0 

Baetis 0 14 0 0 0 0 0 0 22 13 0 6 0 0 

Plauditus 0 0 0 0 0 0 0 0 29 10 0 18 0 0 

Procloeon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Acerpenna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Diphetor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Heterocloeon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Centroptilum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Caenis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Heptageniidae(UNK) 0 0 0 0 0 0 0 0 0 1 0 4 0 0 

Epeorus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Heptagenia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenonema/Maccaffertium 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Cinygmula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenacron 0 0 0 0 0 0 0 0 0 0 0 2 0 0 

Leucrocuta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isonychia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptophelbiidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paraleptophlebia 0 0 0 0 0 0 0 0 1 4 0 0 0 0 

Leptophlebia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Habrophlebiodes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ephemerellidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ephemerella 0 1 0 0 0 0 0 0 0 9 0 0 0 0 

Serratella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Drunella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dannella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eurylophella 0 0 0 0 0 0 0 0 0 2 0 0 0 0 

Attenella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Siphlonuridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tricorythodes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ephemera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Hexagenia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ameletus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neoephemeridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Oligoneuriidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Baetisca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Mayfly 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydropsychidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Parapsyche 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydropsyche 0 0 0 1 0 0 0 0 0 0 3 1 0 0 

Diplectrona 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Ceratopsyche 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Cheumatopsyche 0 0 0 0 0 0 0 0 3 0 0 5 0 0 

Philopotamidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wormaldia 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Chimarra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dolophilodes 0 0 0 0 0 0 1 0 5 28 0 24 0 0 

Rhyacophilla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

UNK (Polycentropodidae) 0 0 1 0 0 1 0 0 1 1 1 0 0 0 

Polycentropus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cernotina 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Cyrnellus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lepidostoma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Limnephilidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pseudostenophylax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ironoquia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Apatania 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pycnopsyche 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydatophylax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Goera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptoceridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ceraclea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Oecetis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Odontoceridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Hydroptilidae (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydroptila 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Orthotrichia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ochrotrichia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Palaeagapetus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stactobiella 0 0 0 0 0 0 0 0 1 0 0 4 0 0 

Leucotrichia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Oxyethira 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Agapetus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Glossosoma 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Brachycentrus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Helicopsychidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lype 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psychomyia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neophylax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Molanna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phryganeidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unkown Caddisfly 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Chloroperlidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Haploperla 0 0 0 0 0 0 0 0 0 3 0 0 0 0 

Utaperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sweltsa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Suwallia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Alloperla 0 0 0 0 0 0 0 0 3 0 0 0 0 0 

Capniidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paracapnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Capnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Allocapnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leuctridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paraleuctra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leuctra 0 2 0 2 0 1 3 11 10 13 12 18 0 2 

Zealeuctra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Perlidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



 

96 

 

Acroneuria 0 0 0 0 0 0 0 0 3 4 0 0 0 0 

Agnetina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eccoptura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Beloneuria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hansonoperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Claassenia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neoperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paragnetina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Attaneuria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Perlesta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pteronarcys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Perlodidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isoperla 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Diura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cultus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Remenus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Malirekus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Diploperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Yugus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tallaperla 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

Peltoperla 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Viehoperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Soyedina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Amphinemuera 0 1 0 0 0 0 1 0 4 0 0 3 1 0 

Ostrocerca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Zapada 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paranemoura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Shipsa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Taeniopteryx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Taeniopterygidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Stonefly 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Gomphidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Gomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Lanthus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Progomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stylogomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dromogomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Arigomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cordulegaster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aeshnidae (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aeshna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Boyeria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Epiaeschna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Calopteryx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Calopterygidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Libellulidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cornagrion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Argia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Coenagrionidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lestes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unkown Dragonfly 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

Elmidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Optioservus 1 3 2 0 0 1 0 0 11 9 0 3 1 0 

Promoresia 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Gonielmis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Oulimnius 0 1 0 1 0 0 1 0 1 3 0 0 0 0 

Ancyronyx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Microcylloepus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Macronychus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenelmis 0 1 0 0 0 0 0 0 2 0 0 0 0 0 

Dubiraphia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psephenidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ectopria 0 1 0 0 0 0 0 0 0 1 0 0 0 0 

Psephenus 0 1 0 0 0 0 0 0 1 0 0 0 0 0 

Dicranopselaphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Donacia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Pyrrhalta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrothassa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Disonycha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anchytarsus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Curculionidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Steremnius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dytiscidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Celina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Agabus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrovatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Staphylinidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Peltodytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Carabidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrophilidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrochus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrophilus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Crenitis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tropisternus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrobius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Laccobius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Berosus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Georyssidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Helichus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dineutus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tenebrionidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Helophoridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Noteridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lutrochus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Beetle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nigronia 0 1 0 0 0 0 0 3 0 0 0 1 0 0 

Corydalus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sialis 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Crambus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Pyralidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cossidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Simyra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tortricidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

UNK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hemiptera (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Corixidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

UNK (Gerridae) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trepobates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Saldidae 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Veliidae (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rhagovelia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Microvelia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mesovelia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hebrus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Merragata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chironomidae 2 181 1 60 4 62 185 174 52 61 14 34 178 34 

Tipulidae(UNK) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Antocha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prionocera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tipula 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Hexatoma 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Dicranota 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

Rhabdomastix 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Molophilus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Limnophila 0 1 0 0 0 0 0 0 2 0 0 3 0 0 

Pilaria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptotarsus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cryptolabis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pseudolimnophila 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pedicia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Brachypremna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Erioptera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Limonia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tabanus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chrysops 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dolichopodidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Simuliidae(UNK) 0 4 0 0 0 0 0 0 2 3 8 6 0 0 

Simulium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prosimulium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cnephia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Greniera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Atherix 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Empididae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chelifera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Clinocera 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Hemerodromia 0 1 0 2 0 2 2 2 1 2 4 1 1 0 

Wiedemannia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ceratopogonidae(UNK) 0 10 0 7 0 0 0 0 0 1 1 0 0 0 

Bezzia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dasyhelea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Culicoides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Atrichopogon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Forcipomyia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Probezzia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Serromyia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Monohelea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ceratopogon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Blephariceridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Blepharicera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sciomyzidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dixa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stratiomyidae (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stratiomys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Euparyphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Odontomyia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Nemotelus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Caloparyphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Protoplasa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Muscidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Limnophora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ephydridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Parydra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thaumaleidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psychodidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pericoma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psychoda 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anopheles 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Diptera 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Hydracarina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hygrobatoidea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pisauridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lycosidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collembola (UNK) 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

Sminthuridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bourletiella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sminthurides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Agrenia bidenticulata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydroisotoma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isotomorus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isotomidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neanuridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Podura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Poduridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

UNK (Copepoda) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cyclopoida 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Daphnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Appendix 7. Benthic macroinvertebrate data for Three Forks Creek by sample location in 2017. With the exception of Chironomidae, 

macroinvertebrates were identified to genus if possible. UNK=unknown. 
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Year 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 

Turbellaria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Oligochaeta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aeolosomatidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nematoda 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nemertea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hirudinea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Corbiculidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sphaeriidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unionidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Clams 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ancylidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Planorbidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Physidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lymnaeidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Snails(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cambarus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Orconectes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Gammarus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hyalella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Crangonyx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stygobromus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Asellidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Caecidotea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lirceus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Baetidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Accentrella 20 37 49 3 1 35 2 0 0 0 7 12 1 16 9 26 0 0 2 17 
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Baetis 38 41 21 10 0 10 38 2 0 0 19 11 0 6 47 6 0 1 3 36 

Plauditus 21 14 27 2 3 12 1 0 0 0 9 26 0 9 4 25 0 0 0 4 

Procloeon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Acerpenna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Diphetor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Heterocloeon 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 

Centroptilum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Caenis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Heptageniidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Epeorus 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 6 

Heptagenia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenonema/Maccaffertium 0 0 1 0 0 0 0 0 0 0 2 1 0 0 0 8 0 0 0 2 

Cinygmula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenacron 0 0 0 0 0 0 4 0 0 0 0 0 0 2 3 5 0 0 0 3 

Leucrocuta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isonychia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptophelbiidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paraleptophlebia 0 0 0 0 0 0 3 1 0 0 12 2 0 0 2 0 0 0 2 5 

Leptophlebia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Habrophlebiodes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ephemerellidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ephemerella 1 0 1 0 0 0 0 0 0 0 1 4 0 0 6 1 0 0 0 8 

Serratella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Drunella 0 0 0 0 0 0 2 0 0 0 3 1 0 0 7 0 0 0 0 0 

Dannella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eurylophella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Attenella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Siphlonuridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tricorythodes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ephemera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hexagenia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ameletus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Neoephemeridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



 

104 

 

Oligoneuriidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Baetisca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Mayfly 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydropsychidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Parapsyche 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydropsyche 12 0 2 1 3 0 4 7 0 0 0 0 0 0 0 2 0 0 0 0 

Diplectrona 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ceratopsyche 1 3 5 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Cheumatopsyche 3 0 0 0 0 0 35 1 0 0 1 4 0 3 1 3 0 0 0 1 

Philopotamidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wormaldia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chimarra 0 1 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Dolophilodes 1 1 0 0 0 0 0 0 0 0 14 7 0 11 4 20 0 1 0 0 

Rhyacophilla 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 

UNK (Polycentropodidae) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Polycentropus 0 0 0 0 1 0 0 0 0 0 3 0 0 1 0 0 0 0 0 0 

Cernotina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cyrnellus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lepidostoma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Limnephilidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pseudostenophylax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ironoquia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Apatania 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pycnopsyche 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydatophylax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Goera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptoceridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ceraclea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Oecetis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Odontoceridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydroptilidae (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Hydroptila 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Orthotrichia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Ochrotrichia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Palaeagapetus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stactobiella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Leucotrichia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Oxyethira 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Agapetus 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Glossosoma 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Brachycentrus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Helicopsychidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lype 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psychomyia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neophylax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Molanna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phryganeidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unkown Caddisfly 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chloroperlidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Haploperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

Utaperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sweltsa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Suwallia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Alloperla 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Capniidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paracapnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Capnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Allocapnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leuctridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paraleuctra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leuctra 4 3 0 2 0 10 5 5 12 163 10 11 36 47 11 5 1 1 7 17 

Zealeuctra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Perlidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Acroneuria 0 0 2 1 2 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 

Agnetina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eccoptura 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Beloneuria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hansonoperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Claassenia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neoperla 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paragnetina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Attaneuria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Perlesta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pteronarcys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Perlodidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Isoperla 3 0 0 0 0 1 0 0 0 0 0 1 0 10 1 0 0 0 1 0 

Diura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cultus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Remenus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Malirekus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Diploperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Yugus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tallaperla 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Peltoperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Viehoperla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Soyedina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Amphinemuera 0 1 0 3 0 3 0 3 2 0 0 0 0 0 2 0 0 0 4 1 

Ostrocerca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Zapada 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paranemoura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Shipsa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Taeniopteryx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Taeniopterygidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Stonefly 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

Gomphidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Gomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lanthus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Progomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stylogomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Dromogomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Arigomphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cordulegaster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aeshnidae (UNK) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aeshna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Boyeria 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Epiaeschna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Calopteryx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Calopterygidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Libellulidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cornagrion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Argia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Coenagrionidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lestes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unkown Dragonfly 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Elmidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Optioservus 43 44 40 9 10 4 13 0 0 0 6 59 0 2 27 3 0 0 1 10 

Promoresia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Gonielmis 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Oulimnius 0 1 1 0 0 1 2 0 0 0 0 4 0 0 4 0 0 0 2 2 

Ancyronyx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Microcylloepus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Macronychus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stenelmis 26 14 3 6 3 0 11 0 0 0 0 1 1 0 0 0 0 0 0 0 

Dubiraphia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psephenidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ectopria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

Psephenus 0 0 0 0 0 0 0 0 0 0 1 2 0 0 2 0 0 0 0 0 

Dicranopselaphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Donacia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pyrrhalta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrothassa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Disonycha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Anchytarsus 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Curculionidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Steremnius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dytiscidae(UNK) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Celina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Agabus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrovatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Staphylinidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Peltodytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Carabidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrophilidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrochus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrophilus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Crenitis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tropisternus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydrobius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Laccobius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Berosus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Georyssidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Helichus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dineutus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tenebrionidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Helophoridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Noteridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lutrochus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Beetle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nigronia 0 0 0 2 0 1 0 0 0 3 1 0 0 0 0 1 0 1 0 1 

Corydalus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sialis 0 0 0 0 0 0 0 3 3 0 1 0 0 0 0 0 0 0 1 0 

Crambus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pyralidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cossidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Simyra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Tortricidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

UNK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hemiptera (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Corixidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

UNK (Gerridae) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Trepobates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Saldidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Veliidae (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rhagovelia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Microvelia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mesovelia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hebrus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Merragata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chironomidae 14 27 30 12 14 22 49 17 9 44 100 28 150 74 41 75 182 22 23 73 

Tipulidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Antocha 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prionocera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tipula 0 0 0 1 1 0 0 0 0 0 2 0 0 1 12 1 0 0 0 0 

Hexatoma 0 0 0 1 0 0 1 0 0 0 2 1 0 0 0 0 0 0 0 1 

Dicranota 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 

Rhabdomastix 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Molophilus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Limnophila 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6 0 0 2 0 

Pilaria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leptotarsus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cryptolabis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pseudolimnophila 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pedicia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Brachypremna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Erioptera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Limonia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tabanus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chrysops 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Dolichopodidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Simuliidae(UNK) 0 0 0 0 0 0 2 0 0 0 3 0 0 0 1 6 0 0 0 0 

Simulium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prosimulium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cnephia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Greniera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Atherix 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Empididae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 6 1 0 0 0 

Chelifera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Clinocera 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hemerodromia 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

Wiedemannia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ceratopogonidae(UNK) 1 0 0 0 1 0 0 1 0 0 1 2 3 0 0 0 0 1 0 1 

Bezzia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dasyhelea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Culicoides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Atrichopogon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Forcipomyia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Probezzia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Serromyia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Monohelea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ceratopogon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Blephariceridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Blepharicera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sciomyzidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dixa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stratiomyidae (UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stratiomys 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Euparyphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Odontomyia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nemotelus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Caloparyphus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Protoplasa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Muscidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Limnophora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ephydridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Parydra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thaumaleidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psychodidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pericoma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Psychoda 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anopheles 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Unknown Diptera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 

Hydracarina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hygrobatoidea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pisauridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lycosidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collembola (UNK) 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 

Sminthuridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bourletiella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sminthurides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Agrenia bidenticulata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hydroisotoma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isotomorus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isotomidae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neanuridae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Podura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Poduridae(UNK) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

UNK (Copepoda) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cyclopoida 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Daphnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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