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Abstract 
 

Aging-Dependent Effects of Repetitive Loading Exercise and Antioxidant 
Supplementation on Oxidative Stress in Skeletal Muscle 

 
Michael J. Ryan 

 
 

Aging is associated with a reduced ability to buffer oxidants along with an 
increase in oxidant production, resulting in chronic oxidative stress. Oxidative stress is a 
putative factor responsible for reducing function ability of skeletal muscle and increasing 
oxidative damage.  The objective of this set of investigations was to evaluate the 
efficacy of reducing oxidative stress on improving muscle function the adaptive 
response of skeletal muscle to repetitive loading exercise in aging rodents. To achieve 
this objective, three methods of reducing oxidative stress were utilized; the antioxidant 
vitamins E&C were used to buffer oxidants, the nutraceutical resveratrol was used to 
inhibit oxidant production and the pharmacological agent allopurinol was used to 
attenuate oxidant production specifically through the inhibition of xanthine oxidase 
activity. This set of investigations show evidence that muscles from aged animals have 
high basal levels of xanthine oxidase, and this is further exacerbated by resistance 
exercise. Antioxidant treatment in aged rodents will reduce oxidative stress associated 
with both aging and exercise. Furthermore, an increase in xanthine oxidase activity is a 
major contributor to the oxidative stress associated with resistance exercise (i.e. 
repetitive loading). Modulation of exercise-induced oxidative stress will effect adaptation 
of the endogenous antioxidant system and different therapeutic methods of reducing 
oxidative stress in aged muscle produce slightly different results in muscle function.  
The results suggest that resistance training increases xanthine oxidase activity, which 
contributes to exercise-induced oxidative stress in muscles of aged mice. Furthermore, 
resistance exercise invokes a distinctive response in the endogenous antioxidant 
enzymes that differ from that typically observed with aerobic exercise. 
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1. Introduction 
Aging is a natural process that is regulated by both genetic and environmental factors. It 

is associated with the degenerative modifications of all cell types. Although, the rate of cellular 
degeneration associated with aging differs among tissues and species, it is a process that is 
evolutionarily conserved. One of the major sites of age‐related degeneration is in skeletal 

muscle. Loss of skeletal muscle mass and strength during senescence is termed sarcopenia. 
Sarcopenia has detrimental consequences in the elderly, as it may limit their ability to perform 
the necessary daily physical activities needed to maintain their independence. Simple daily 
tasks, such as rising from a seated position, become increasingly more difficult as muscle 
function declines. Additionally, sarcopenia is strongly associated with increased morbidity and 
mortality (4) costing families and taxpayers in excess of $18.5 billion per year (2). Given that the 
elderly is the fastest growing proportion of our population, these cost are expected to 
exponentially increase. Reducing the prevalence of sarcopenia by a mere 10% could result in 
savings of over $1.1 billion per year to the U.S. healthcare system. Understanding the 
mechanisms involved in sarcopenia is a critical step in helping clinicians develop safe and 
effective therapies designed to delay the onset of sarcopenia. Such therapies have the potential 
to assist the elderly in maintaining their independence and improve their quality of life along with 
reducing the finical burden to the American taxpayer. 

 
There are many factors that contribute to sarcopenia; reduced physical activity, altered 

hormonal status, denervation of muscle fibers, inflammation and damage caused by a lifetime of 
exposure to reactive oxygen species (ROS) (1; 3), all of which are associated with oxidative 
stress. Exercise training cannot prevent sarcopenia, but may reduce the prevalence of 
sarcopenia. Oxidants generated during exercise may play key roles (both positive and 
negatively) in the muscles’ adaptive responses to chronic exercise.  Advanced age is 
associated with an increase in oxidant production and a decreased capacity to buffer oxidants, 
resulting in a chronic state of oxidative stress. Oxidative stress damages DNA, lipids, proteins, 
and leads to elevated apoptotic signaling, thereby limiting the ability of muscle from aged 
animals to adapt appropriately to increased stresses, including exercise. Xanthine oxidase is 
one such source of oxidative stress in exercised muscles, but this oxidant activator has not 
been extensively studied in aged animals and/or humans. It is possible that buffering oxidant 
production may improve the muscle’s ability to adapt to exercise, thereby reducing the affects of 
sarcopenia.  

 
The overall goals of this project are to: (a) characterize the endogenous antioxidant 

pathways in aged skeletal muscle and their adaptive response to repetitive loading (repetitive 
stimulation of the muscle while movement is restricted), (b) to determine the effectiveness of 
dietary antioxidant supplementation to enhance the adaptive response to repetitive loading in 
aged skeletal muscle and (c) to determine the contribution of xanthine oxidase in the production 
of oxidants during repetitive isometric contractions in young adult and aged skeletal muscle.  

 
  



Michael J. Ryan                                               Chapter 1 3  
 

1.1 Central Hypothesis 
The central hypothesis of this project is that skeletal muscles from aged animals will 

show increased evidence of oxidative stress following acute bouts of resistance exercise 
(repetitive loading) that sequentially influence adaptation to chronic exercise. However, 
increased basal levels of oxidative stress associated with aging will negatively influence the 
normal adaptive response the exercise that has been established in young adult animals. 
Antioxidant supplementation will increase the aged muscles’ oxidative buffering capacity, thus 
attenuating the increase in oxidative stress associated with aging and improving adaptation to 
resistance exercise. Increased xanthine oxidase activity will be a contributing factor to the 
increase in oxidative stress in response to resistance exercise (i.e. repetitive loading) and aging. 

 
1.2  Specific Aim 1: To determine if aging negatively regulates the endogenous 

anti-oxidant pathways during adaptation to repetitive loading and if antioxidant 
supplementation will improve these adaptive responses. 

 
The dorsiflexors muscles of the left limb in young and aged rats will be loaded 3 times a 

week for 4.5 wks using 80 maximal stretch-shortening contractions per session while the 
contralateral (right) limb will serve as the intra-animal control.  The animals will receive a diet 
consisting of a vitamin complex (vitamin E & vitamin C) or a control diet. Markers of oxidative 
stress will be measured in tibialis anterior muscles. 

 
Hypothesis 1:  Dietary supplementation with Vitamin E&C would attenuate the increase 

in basal levels of oxidative stress associated with aging allowing for a more complete adaptation 
in oxidative enzymes and improvements in muscle function after 4.5 weeks repetitive loading in 
the aged rats. 

 
Sub-hypothesis 1.1: The tibialis anterior muscles from aged rats will experience greater 

levels of oxidative stress than the tibialis anterior from young adult rats. 
 
Sub-hypothesis 1.2:  Chronic repetitive loading will increase the oxidative buffering 

capacity and decrease the oxidant production of the tibialis anterior muscle, thus reducing the 
oxidative stress associated with aging. 

 
Sub-hypothesis 1.3:  Aging will attenuate the adaptive responses in the endogenous 

antioxidant pathways and this will be closely associated with attenuated functional adaptations 
to repetitive loading in skeletal muscle. 

 
Sub-hypothesis 1.4: Dietary supplementation with a vitamin complex will lessen the 

oxidant activity in tibialis anterior muscles subjected to repetitive loading.  
 
Sub-hypothesis 1.5: In muscles from aged rats, a combination of the antioxidant 

supplementation and repetitive loading exercise will reduce oxidative stress to a greater extent 
than either treatment independently. 

 
Sub-hypothesis 1.6:  In repetitively loaded muscles from both young adults and aged 

rats, antioxidant supplementation will improve muscle function as represented by increases in 
force production. 
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1.3  Specific Aim 2: To determine the efficacy of resveratrol supplementation as a 
possible countermeasure for the oxidative stress associated with aging exercise in 
skeletal muscle.  

 
The plantar flexors of the left limb from young adult and aged mice will be activated by 

20, five-second isometric contractions (10v, 100 Hz, 200 μs pulses) for 3 consecutive days. This 
protocol was selected to induce oxidative stress without causing damage to the muscle. The 
contralateral limb will serve as the intra-animal control.  Mice will be randomly assigned to either 
a control (non-supplemented) diet or a diet supplemented with 0.05% trans-resveratrol.  

 
Hypothesis 2: Fortification of normal mice chow with resveratrol will reduce the indices 

of isometric exercise-induced oxidative stress and attenuate the loss of force during acute 
repetitive isometric contractions from muscles of aged mice. 

 
Sub-hypothesis 2.1: Resveratrol supplementation will lower indices of oxidative stress 

associated with aging and acute exercise in muscle from young adults and aged mice. 
 
Sub-hypothesis 2.2: Resveratrol supplementation will improve muscle function and 

attenuate the loss of force during acute repetitive isometric contractions from muscles of both 
young adults and aged mice. 

 
1.4  Specific Aim 3: To determine: (a) the contribution of xanthine oxidase  as a 

source of oxidant production during repetitive isometric contractions in young adult and 
aged skeletal muscle, and (b) the effect of xanthine oxidase inhibition on the decreased 
functional capacity and increased apoptotic signaling associated with repetitively loaded 
skeletal muscle from aged animals. 

 
Electrically-stimulated isometric contractions (10v, 100 Hz, 200 μs pulses) of the plantar 

flexors of the left limb will be conducted for 3 consecutive days in young and aged mice. The 
animals will receive a time released xanthine oxidase inhibitor tablet (Allopurinol) prior to 
repetitive loading and its’ effects on markers of oxidative stress and apoptosis will be measured.  

 
 
Hypothesis 3: The inhibition of xanthine oxidase will eliminate the majority of isometric 

exercise-induced oxidative stress thus preserving the muscles functional capacity while 
reducing mitochondrial apoptotic signaling in aged animals after exercise.   

 
Sub-hypothesis 3.1:  Repetitive isometric contractions will increase xanthine oxidase 

activity resulting in an increase in indices of oxidative stress. Allopurinol administration will 
abolish xanthine oxidase activity thus decreasing indices of oxidative stress. 

 
Sub-hypothesis 3.2: Inhibition of xanthine oxidase (via allopurinol) will improve the 

redox environment within muscle attenuating the decrease in the functional capacity in aged 
animals after three days of isometric exercise.  

 
Sub-hypothesis 3.3:   Xanthine oxidase activity is elevated in aged muscles which in 

part, lead to increased apoptotic signaling; moreover reducing xanthine oxidase will decrease 
apoptotic signaling in aged muscle after exercise allowing for increased adaptation and 
improved force production. 
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2. Background and Significance 
2.1 Theory of oxidative stress and aging 
Aging is a naturally occurring process that causes deleterious modifications at a genetic, 

cellular, tissue, and system level in all organisms. Presently, the fundamental mechanisms of 
aging are poorly understood, but a growing body of evidence supports an increase in oxidative 
stress as one of the principal components. In 1956, Harman suggested that aging occurs 
because of the accumulation of irreversible damage from free radicals to biologically important 
macromolecules (61).  Advanced aging is associated with increases in lipid peroxidation, protein 
carbonyl formation and DNA damage.  These forms of oxidative damage lead to altered 
receptor function, ion transport systems, enzyme activation/deactivation, and altered gene 
expression.  Over the past two decades it has been shown that the accumulation of oxidative 
damage is dependent on more than just free radicals, but also all oxidizing agents or oxidants.  

 
2.2 Oxidative stress in aging muscle 
Oxidative stress is defined as a state in which the cellular production of oxidants 

exceeds the cells’ physiological buffering capacity. Concomitantly with oxidative stress, 
advanced aging is associated with a loss of muscle mass and strength, known as sarcopenia.  
Reductions in muscle strength with aging are directly correlated with decreases in muscle mass 
(3, 39, 96). Muscle strength has been reported to  decline an average of 20-40% in healthy men 
and women during the seventh and eighth decades of life (45).  Muscle fiber size, determined 
by cross sectional area, is also reduced an average of 40% between the ages of 20 and 60 (45).  
Sarcopenia is a contributing factor to the loss of independence and frailty often observed in 
older adults (157).   

 
Oxidative stress is associated with sarcopenia, however whether oxidative stress is a 

cause or a result of sarcopenia is unknown. Aging-induced oxidative stress can be an important 
mechanism hindering muscular adaptation to loading (18, 24, 79, 80).  In aged animals, the 
ability to buffer increased oxidant production is reduced in comparison to muscle from young 
animals (53).  Within skeletal muscle, oxidative stress has been shown to depress muscle 
specific force (30), alter myofilament function (5, 87, 88),and /or alter contraction-induced 
calcium release (7, 43, 48, 127). Chronic oxidative stress may also reduce muscle force by 
increasing recovery time associated with injury (86, 163). Furthermore, increases in oxidant 
production regulate redox-sensitive signaling pathways (76, 78, 92) which can lead to the up-
regulation of  catabolic gene expression (41, 101, 104, 159) and activate apoptotic pathways 
(84, 102, 137) in muscle. 

 
Oxidative stress associated with aging has been reported in most tissue types, (106, 

146, 164) including skeletal muscle (52, 55, 128, 145).  Bejma and Ji (18) demonstrated that 
skeletal muscle from aged rats had a dramatic increase (~80%) in oxidant production. 
Elevations in oxidants are associated with cellular damage and ultimately apoptosis in various 
cell types, (44, 145) including skeletal muscle cells (53, 85). Recent data from muscle biopsies 
obtained from young and aged men showed that 8-hydroxy-2'-deoxyguanosine (8-OHdG), 
protein carbonyls, the manganese isoform of  superoxide dismutase (MnSOD) and catalase 
activity are significantly higher in muscles taken from elderly men (55); similar results have been 
seen in rodents (128). The contractile proteins, actin and myosin, do not show evidence of 
increased oxidative damage (148), leading to speculation that increased oxidant production in 
muscle may have more important roles in regulating genes (i.e. transcription/translation) and 
metabolic mechanisms (i.e. electron transport chain). Muscle from aged animals has been 
shown to have a decreased quantity of full-length mitochondrial DNA and increased 
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mitochondrial deletions compared to young animals (55). Additionally, aging has been 
associated with a decrease in mitochondrial membrane integrity due to the depolarization of the 
mitochondrial membrane and decreased mitochondrial respiratory activity (112). A decrease in 
mitochondrial membrane integrity combined with a reduction in antioxidant enzyme activity 
leads to an unfavorable release and accumulation of oxidants within the cells (112).  This is 
supported by evidence that shows that the majority of oxidants produced in skeletal muscle from 
aged animals originates within the mitochondria (18). 

  
There is conflicting data on whether xanthine oxidase contributes to the increased 

oxidant production associated with advanced age. Both the heart (133) and gastrocnemius 
muscles (65) from aged rodents exhibit increased xanthine oxidase activity when compared to 
young, however this has not been observed by all (47).  The contribution of increased xanthine 
oxidase activity leading to oxidative stress and apoptotic signaling associated with aging is 
insufficiently characterized.  

 
2.3 Effects of aging on the endogenous antioxidant defenses 
It has been widely recognized that glutathione peroxidase (GPx), catalase, Copper-Zinc 

containing isoform of superoxide dismutase (CuZnSOD) and MnSOD enzymes make up part of 
the endogenous antioxidant defense system that is essential for aerobic organisms to survive. 
These enzymes form the front line in the defense against oxidant attack and work in unison with 
several other non-enzymatic molecules (i.e. cellular vitamin E&C concentrations) to avoid 
oxidative damage. Superoxide dismutase catalyzes the reduction of superoxide anion into 
hydrogen peroxide (H2O2), which is subsequently detoxified by catalase and GPx. Three 
different isoforms of superoxide dismutase have been identified; they include the previously 
mentioned CuZnSOD and MnSOD along with extra-cellular superoxide dismutase (EC-SOD).  
CuZnSOD contains Cu and Zn atoms at its catalytic site and is primarily located in cytoplasm of 
cells, though small amounts of the enzyme have been found in the mitochondrial inter-
membrane space (120).  Conversely, MnSOD is localized to the inner mitochondrial matrix and 
contains a manganese atom in its catalytically active center.  Like CuZnSOD, EC-SOD contains 
Cu and Zn atoms at its catalytic site. EC-SOD is primarily located on the extracellular side of cell 
surface membranes and throughout the extracellular matrix as well as, although to a lesser 
extent, circulating within the blood plasma  (49). It has been reported that within mouse skeletal 
muscle, the concentration of CuZnSOD is 27 times greater than that of MnSOD and 166 times 
greater than EC-SOD (105).  

 
Advanced aging is associated with a reduced capability of the endogenous antioxidant 

defenses  to convert oxidants into more inert species (74, 121). It appears that the age-
dependent increase in oxidant production overwhelms the endogenous antioxidant defense 
system resulting in oxidative stress.  As a result there is a general elevation in the activity of the 
antioxidant enzymes within aged skeletal muscle (77, 121) which is regulated primarily at the 
post-translational level (67). 

 
The most identifiable age- associated change in the endogenous antioxidant defenses is 

an increase in activity of MnSOD (55, 67, 74, 95, 98, 121). Theoretically this aging induced 
adaptation in MnSOD would be a result of the increased oxidant production from within the 
mitochondria from aged muscle. By and large there is thought to be an increase in GPx activity 
in aged muscle (67, 74, 98), however not all have reported age-dependent changes in GPx 
activity (67, 68, 121). Similar to GPx activity,  catalase activity has generally been reported to 
increase within muscle from aged animals (55, 67, 77, 95, 98). However, this response may 
slightly differ depending on the muscle being investigated (67, 98). 
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An age-associated reduction in CuZnSOD efficiency appears to be a good candidate for 

explaining increased superoxide levels leading to long-term oxidative damage and eventual loss 
of skeletal muscle. CuZnSOD deficient mice demonstrate a 30% reduction in lifespan and 
decreased muscle mass in predominantly type II muscle (gastrocnemius and plantaris) but no 
changes were observed in the soleus which is composed of primarily type I fibers (117). Recent 
data (160) also suggest that CuZnSOD levels are lower in muscle tissue of aged pigs.  
Pansarasa et al. (121) have found that humans 66-75 years of age have significantly lower total 
SOD activity, but greater MnSOD activity than younger humans, suggesting that there is a 
decrease in CuZnSOD activity. Regrettably, there is not an agreement within the scientific 
literature that there is a decrease in CuZnSOD activity with age. It has been observed that long 
lived animals (i.e. humans and naked mole rats) do not show this decrease in CuZnSOD and 
other oxidative enzymes (34, 55). In Fisher 344 rats, it has been shown that CuZnSOD activity 
increases during ageing and this increase may be due to both translational and post-
translational control (67). CuZnSOD levels increase in cells of young animals after exercise 
(66), and although Vasilaki et al. (150) report an increased level of CuZnSOD activity in muscles 
of old animals after a single bout of electrically activated muscle contractions, it is possible that 
old muscles may fail to respond in this manner when undergoing chronic repetitive loading. 
Furthermore, even if CuZnSOD does increase either similarly or greater in old vs. young 
muscles with repetitive loading, it is unknown if this will be sufficient to counteract the loading-
induced and intrinsic (age-associated) increase in oxidant production in (116) aged muscles. 

 
2.4 Oxidative stress in muscle wasting 
A consensus of the available scientific data supports the conclusion that even healthy 

aging is associated with an escalation in oxidative damage and increased oxidant production. 
This could be the primary reason for augmented myonuclear apoptosis in aged skeletal muscles 
(91, 99, 125, 126, 136). However, the exact process of how increased oxidant production may 
influence and /or regulate apoptotic signaling is unknown.  Both oxidative stress and increased 
myonuclear apoptosis have been implicated in the pathogenesis of sarcopenia. Muscle wasting, 
leading to atrophy, is accompanied by a reduction in protein synthesis, and/or an activation of 
proteolysis.  These events may be initiated and/or mediated by oxidative stress (114). 
Furthermore, oxidative stress may also contribute to the activation of myonuclear apoptotic 
cascades in skeletal muscle (136, 137). It has been suggested that a number of small, random, 
deleterious effects of increased oxidants could explain the degenerative process in skeletal 
muscle resulting in sarcopenia. Muscle atrophy has been shown to be associated with many 
different pathways of oxidant production; generation of oxidants by xanthine oxidase (90), 
production of nitric oxide (NO) via nitric oxide synthase (NOS)(72), formation of oxidants by 
increased cellular levels of reactive iron(65, 89, 161), increases in NADPH oxidase (18), and 
increased oxidant production via the mitochondrial (18, 26, 33, 99). Additional evidence 
implicating that oxidative stress is linked with muscle atrophy is the observed increase in lipid 
peroxidation, glutathione oxidation and protein carbonyl formation from atrophic muscle (56, 87, 
88, 90, 97). Furthermore, increased oxidant generation has been implicated as a reason for 
muscle dysfunction associated with sarcopenia (117).  Fulle et al. (53) have suggested the 
following mechanisms for how reactive oxygen species may contribute to muscle atrophy: (a) 
biochemical alterations of cell structures (i.e. peroxidation of cell membranes that increase 
oxidant production during physical activity), (b) the increased fragility of muscle that 
accompanies mechanical injury and subsequent inflammation, (c) reduced satellite cell/muscle 
stem cell  proliferation in conjunction with reduced protein synthesis thus limiting the antioxidant 
defense and repair capacity, and (d) reduced dietary antioxidant intake.  However, there are no 
data that address the role of oxidative stress produced by repetitive loading exercise in aged 
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muscle.  The underlying cause for increased oxidant formation associated with exercise in aged 
muscle is unknown; this information is essential to develop useful strategies for improving 
muscle adaptations to loading in elderly individuals. 

 
2.5 Mechanisms of oxidant production during exercise 
It is widely accepted that exercise increases oxidant production even though there are 

only a few studies that supply direct in vivo evidence of this.  Measuring free radicals within 
biological systems is problematic because they are highly reactive and maintain low steady-
state concentrations. Electron paramagnetic resonance  spectroscopy, also referred to as 
electron spin resonance (ESR) spectroscopy, coupled with the use of spin traps, is perhaps the 
most specific and direct method of measuring free radical species (12). Electron paramagnetic 
resonance spectroscopy has been employed to show that the concentration of free radical 
species increase after exercise in both rat muscle (38) and human blood (10). Further studies 
using 2′,7′-dichlorodihydrofluorescein as an intracellular probe for H2O2 show strong evidence 
that after exercise oxidant production is heightened (18, 72, 108).  Oxidants in muscle are 
primarily derived in the form of two molecules; superoxide and nitric oxide.  Superoxide anions 
will rapidly dismutate to H2O2 (and water) but can form hydroxyl radicals and other small-
molecular-weight oxidants or reactive oxygen species. In addition, NO originating within 
exercising muscle may act as a precursor for the formation of peroxynitrite, peroxynitrous acid, 
and other nitrogen-derived oxidizing molecules or reactive nitrogen species  (72).  

 
Skeletal muscle generates reactive oxygen species and reactive nitrogen species at low 

basal levels under resting conditions but during exercise the metabolic demand to sustain 
muscle contractions increase, resulting in an increase in oxidant production. It is generally 
accepted that there are three major sources of oxidant production with exercise; neutrophils and 
other infiltrating immune cells, mitochondrial respiration and xanthine oxidase activity (31, 72, 
100, 131).  Oxidant production from each source is dependent on the mode, duration, and 
intensity of exercise. During strenuous exercise there will be two phases of increased oxidant 
production.  The first increase in intramuscular oxidant generation will occur during and 
immediately following a bout of exercise.  This will be characterized by increases in oxidants 
within the working muscle and systemic oxidative stress is found in other tissues (144, 151).  
The second increase in oxidant generation is delayed and tends to be more localized to the 
working muscle, specifically damaged fibers. The delayed response is a product of phagocytic 
cell invasion (103, 164) resulting from injury and is not associated with an increase in the 
metabolic demand during exercise. 

 
2.5.1 Oxidant production by neutrophils and other phagocytes 
Strenuous exercise involving eccentric muscle contractions has been shown to result in 

substantial injury potentiating the release of cytokines.  Cytokines can activate neutrophils and 
other phagocytes promoting their release into the circulation.  The activated neutrophils produce 
oxidants to aid in the removal of damaged tissue and assist in the repair process after exercise. 
Neutrophil-derived oxidant production is directed at damaged tissue and can overwhelm the 
muscles endogenous antioxidant defense mechanisms (124). This process appears to be 
essential for removal of damaged tissue and muscle fiber regeneration. It is theorized that 
phagocytic oxidant production could damage neighboring healthy fibers, but there is no direct 
evidence supporting this idea. Neutrophil activation during exercise does not appear to increase 
lipid markers of oxidative stress in the circulation to any significant degree (124). Furthermore, 
stereological analysis of muscle 72 hours after repetitive loading showed there was a large 
increase in phagocytic cells within the interstitial space surrounding damaged myofibers, but the 
phagocytic infiltrates were not associated with healthy non-degenerative fibers (14).  Phagocytic 
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cells cause an increase in intramuscular oxidants hours after a bout of exercise, but evidence of 
oxidative stress in non-injured myofibers may be overestimated when assessed by means of 
muscle homogenate. Antioxidant supplementation has been suggested as a possible 
countermeasure for the increased production of oxidants via phagocytic cells.  When neutrophils 
are stimulated in vitro, antioxidant supplements such as N-acetylcysteine have been shown to 
be effective at buffering the increase in oxidants (124) , whereas vitamin E supplementation 
reduced the infiltration of neutrophils into muscle cells (124).   

 
Although there is a lack of data showing evidence that oxidants produced via 

inflammatory infiltrates cause oxidative damage to neighboring healthy cells, a more oxidizing 
redox environment may alter muscle function (5, 30).  Myofibrillar Ca2+ sensitivity appears to be 
especially susceptible to changes in the redox environment (5). The use of antioxidant 
supplements may prevent, or at least minimize, the formation of an unfavorable redox 
environment generated from neutrophils and other phagocytes. 

 
2.5.2 Oxidant production by mitochondria during exercise 
It is widely assumed that mitochondria are the major source of oxidant production during 

exercise (42, 53).  Mitochondria have been shown to produce superoxide, hydrogen peroxide, 
and possibly hydroxyl radicals. There is considerable data showing a correlation between 
increased oxidative metabolism and increased oxidant production and oxidative damage (15). It 
has been accepted for over thirty years that superoxide generation in the mitochondria is 
produced via a membrane-bound multi-enzyme redox system (27) referred to as the 
mitochondrial electron transport chain. Surprisingly, there is little direct evidence from intact 
cells that the production of oxidants via the mitochondrial electron transport chain causes 
oxidative damage (79).  Although the mitochondrial electron transport chain is very efficient, its 
own make up is based on controlling a series of alternating one-electron oxidation-reduction 
reactions that can predispose each electron carrier to side reactions with molecular oxygen.  As 
an example, ubiquinone, which excepts electrons from complex I and II of the mitochondrial 
electron transport chain, cycles between the quinone (fully oxidized form) to semiquinone (one-
electron reduction product) to quinol (fully reduced by two electrons), there is a tendency for an 
electron to pass or “leak” to oxygen generating superoxide. Nevertheless, acute bouts of 
increased oxidant production within the mitochondria (such as during exercise) are unlikely to 
cause oxidative damage because of high levels of superoxide dismutase and GPx.   

 
Early work on isolated mitochondria estimated that 2-5 % of the total O2 consumed was 

converted to oxidants via the leakage of electrons from the mitochondrial electron transport 
chain (22). Leakage of electrons is most common at complex I and complex III of the electron 
transport chain (22, 64, 115, 131). Muller et al. (115), published data that indicates that complex 
III can release superoxide to both sides of the inner mitochondrial membrane, providing a 
potential source for cytosolic superoxide generation.  Additionally, complex I-dependent 
superoxide formation is exclusively released into the matrix and no detectable levels of 
superoxide escape from intact mitochondria (115). 

 
The early estimations of oxidant production from the mitochondrial electron transport 

chain were obtained using isolated mitochondria in state IV respiration (22).  Furthermore, 
oxidant production during exercise was predicted by multiplying state IV respiration by the 
increase in VO2 during exercise (which in humans is ~20 times higher during exercise than 
during rest). State IV (resting) respiration is defined as oxygen consumption within isolated 
mitochondria in the presence of substrate without any ADP or inhibitors. State III (active) 
respiration is achieved by the addition of large amounts of ADP. Experiments using isolated 
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mitochondria have shown oxidant production is dramatically reduced by the addition of ADP (a 
State IV to State III conversation) (63). 

 
During exercise, muscle contractions produce an increased demand for ATP which is 

initially met by the ATP-PC system, glycolysis and glycogenolysis. Electron transport is 
stimulated as the concentration of ADP from anaerobic metabolism increases. ADP and an 
inorganic phosphate bind to ATP synthase, thus permitting protons to travel down their 
chemiosmotic gradient into the mitochondrial matrix. The energy released as protons pass 
through the channel into the inner mitochondrial matrix is utilized to bind the inorganic 
phosphate to ADP producing ATP; this process is known as oxidative phosphorylation. The 
additional ADP formed during exercise is transported into the matrix which increases the rate 
that ADP and inorganic phosphate bind to ATP synthase, thus leading to more protons traveling 
through the channel into the inner mitochondrial matrix.  As energy from the chemiosmotic 
gradient is consumed, the mitochondrial electron transport chain accelerates, pumping protons 
back out of the inner mitochondrial membrane in an attempt to maintain the gradient. 

   
As more high-energy electrons pass through the mitochondrial electron transport chain 

there is a greater demand for molecular oxygen which acts as the final electron accepter. In this 
way oxygen consumption is coupled to ADP phosphorylation by ATP synthase through the 
protons chemiosmotic gradient.  

 
The respiratory states of isolated mitochondria have been studied to gain a better 

knowledge of how mitochondria work, but one must remember that by definition in vivo there is 
no such thing as state IV respiration (15, 100).  Even during rest when the energy demand is 
low, mitochondria are constantly carrying out oxidative phosphorylation at rates that are 
proportional to the availability of ADP.  Since ADP is always present, in vivo mitochondria are 
somewhere in between state III & IV (79, 100).  It has been  suggested that  oxidant production 
from the mitochondria during exercise (when metabolic activity is high and ADP abundant) has 
been over estimated (100). 

 
In 2002, J. St-Pierre et al. (140) re-examined the rate at which mitochondria produced 

oxidants.  This data indicated that the maximum estimation of electrons flowing through the 
mitochondrial electron transport chain resulting in oxidant production was ~ 0.15%, or less than 
10% of the original minimum estimate.  Additional evidence indicating that mitochondrial 
production of oxidants might be overestimated has recently been found using 2′,7′-
dichlorodihydrofluorescein to probe for oxidant production in contracting C2C12 myotubes(108). 
2′,7′-dichlorodihydrofluorescein is a specific method for measuring H2O2 in cells. Results 
showed the 2′,7′-dichlorodihydrofluorescein was distributed evenly throughout the cells with no 
evidence of accumulation at any specific intracellular site, or localization to mitochondria. In a 
similar set of experiments myotubes differentiated from isolated skeletal muscle satellite cells 
from wild-type, heterozygous MnSOD knockout mice  (Sod2(+/-)), and MnSOD over-expressers 
(Sod2-Tg) to show oxidant production in non-contracting myotubes increased in the Sod2(+/-), 
whereas in the Sod2-Tg oxidant production decreased (149). These results suggest that in 
quiescent myotubes mitochondrial production of oxidants is largely influenced by the amount of 
antioxidant enzymes present in the system. In contrast, when the myotubes were electrically 
stimulated, oxidant production was unaltered by reducing or increasing MnSOD,  signifying that 
oxidants in contracting myotubes are primarily generated by methods outside of the 
mitochondria (149). 
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In the previously mentioned studies, simply because 2′,7′-dichlorodihydrofluorescein 
activity was not localized to the mitochondria does not mean that oxidant production is not occur 
there. Mitochondria will produce superoxide that is quickly converted into H2O2 which has the 
capability to pass through lipid membranes.  Therefore, it is impossible to rule out that the 
increase in 2′,7′-dichlorodihydrofluorescein activity was caused by increased superoxide 
production within the mitochondria, which was converted to H2O2, then diffused throughout the 
cell.  Although this explanation is possible, the previously mentioned studies do not show data 
supporting increased mitochondrial oxidant production during exercise.  Furthermore, it seems 
unlikely that H2O2 would diffuse so evenly throughout the cell. A more likely scenario is that the 
fluorescent intensity would be greatest at the source of H2O2 production and evenly dissipate 
outward from that point. Furthermore, if H2O2 was produced in the mitochondria during exercise 
and evenly diffused throughout the cell at a concentration above control levels, then it would be 
expected that mitochondria isolated from exercised muscle would show evidence of higher H2O2 
concentrations.  However, Bejma and Ji (18) failed to find any change in 2′,7′-
dichlorodihydrofluorescein oxidation in isolated mitochondria from post-exercised muscle when 
compared to pre-exercised mitochondria, although post- exercised muscle homogenate 
demonstrated a 38% (young) to 50% (aged) increase in 2′,7′-dichlorodihydrofluorescein 
oxidation post-exercise.    

 
Bejma and Ji’s (18) data support the likelihood that sources outside the mitochondria 

are, at least in part, responsible for oxidant production during exercise; nevertheless they 
suggest that mitochondria are responsible for the majority of the increased oxidant production 
associated with aging. In all likelihood, if mitochondrial oxidant production during exercise is not 
substantial enough to overwhelm the antioxidant defenses, thus failing to cause oxidative 
damage, then at least slight increases in mitochondrial derived oxidants may be involved in the 
adaptive response to exercise. Furthermore, this is not an attempt to minimize the important role 
that mitochondria play in the increased oxidant production associated with aging and disease 
states. However, the lack of evidence showing mitochondria are the primary source of oxidant 
production associated with exhaustive exercise is sufficient to warrant the investigation of 
alternative sources of oxidant production.  

 
2.5.3 Xanthine oxidase activity in exercising muscle 
Increased activity of the xanthine oxidase enzyme within the vascular endothelium (69)  

is an important source of extracellular oxidant production in the vascular endothelium (57, 69) 
and has been shown to be a contributing factor associated with oxidative stress during exercise 
(9, 46, 57, 62, 131, 152).  Vina et al. (152, 153) have shown that exhaustive exercise leads to 
an increase in blood xanthine oxidase activity in rats and humans. Furthermore, the inhibition of 
xanthine oxidase with allopurinol administration prevented exercise-induced glutathione 
oxidation (GSH/GSSG ratio) and lower indices of lipid peroxidation (MDA) after exercise. It has 
been hypothesized that the activation of xanthine oxidase enzyme during exhaustive exercise is 
similar to the process observe during ischemia–reperfusion injury (110, 123, 152). Under normal 
physiological conditions, xanthine dehydrogenase is the principal form of the enzyme, which 
oxidizes both hypoxanthine and xanthine to form uric acid via the reduction of NAD+ to NADH. 
However, during repetitive muscle contractions, the increased ATP utilization and a brief 
localized period of ischemia will facilitate adenine nucleotide degradation, thus breaking down of 
ATP to AMP and eventually hypoxanthine. Simultaneously to the increase in hypoxanthine 
xanthine dehydrogenase will be converted to xanthine oxidase either reversibly by oxidation, or 
irreversibly via proteolysis (32, 119).  Conversion of xanthine dehydrogenase to xanthine 
oxidase has been shown to be  dependent on both calcium and oxidant concentrations (111). 
During muscle contractions, intracellular calcium concentrations are elevated, which in turn may 
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activate proteases that cause the irreversible conversion of xanthine dehydrogenase to xanthine 
oxidase.  Furthermore, increased oxidant production may lead to the oxidation of Cysteine 
residues on xanthine dehydrogenase that forms disulfide bonds resulting in the reversible 
conversion to xanthine oxidase.  

 
During muscle relaxation the influx of oxygen rich blood would allow xanthine oxidase to 

catalyze the reaction of hypoxanthine and oxygen to form xanthine and superoxide.  Within the 
muscle homogenate, at least part of the increased H2O2 concentration associated with exercise 
is expected to be the result of an increased accumulation of superoxide formed by xanthine 
oxidase activity, which has been dismutated into H2O2 via a reaction catalyzed by superoxide 
dismutase. See Figure 2.1. 

 
2.6 Loading in aging muscle  
Resistance training involves progressively increasing the load or resistance applied to a 

contracting muscle or groups of muscles. This form of exercise can provide several healthy 
benefits in older adults that include; increases in muscular strength, improved range of motion, 
decreased likelihood of falling, improved body composition and increases in bone density. 
Presently, resistance training is the most effective and safe intervention to attenuate or recover 
some of the loss of muscle mass and strength that is associated with aging (81). Within skeletal 
muscle the normal adaptive response to progressive overload results in muscle satellite cell 
activation, an increase in gene transcription and synthesis of muscle-specific proteins resulting 
in muscle hypertrophy (4).  Chronic adaptation to resistance exercise over many weeks in older 
women and men has been shown to improve muscular strength and also induce muscle fiber 
hypertrophy (29, 51, 59, 93, 130, 135); however, these adaptations are generally smaller than 
that reported in young adults. The mechanisms that regulate this attenuated adaptation to 
resistance exercise in the aged (40) is not known, but one possibility is due, at least in part, to 
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elevated oxidative stress.  Previous studies have observed that after resistance training type II 
fibers are preferentially hypertrophied in both young and aged adults (29, 59, 93, 130, 135). 
Type II fibers tend to be more susceptible to oxidative damage than type I fibers (117), therefore 
the increased oxidant production associated with aging could hinder the type II fibers’ ability to 
adapt to training.  

 
Aged rodents are frequently used as models for exercise training in humans, but there 

are few studies that have examined the effects of resistance training in aged rodents.  One 
reason is the lack of sufficient and accepted training models.  Although some rodent species will 
perform endurance exercise voluntarily, resistance exercise is difficult to accomplish in rodents.   
Successful models of progressive resistance training for rats have been developed (162), which 
have included securing progressively heavier loads to their tails, while the rats ascended a 
mesh incline to receive a piece of food. Other approaches include voluntary plantar flexion to 
receive a food reward (158). Although these methods accomplish some degree of muscle 
hypertrophy and elicited a training response, the rest interval between repetitions could not be 
controlled, nor could older animals be conditioned to comply 

 
It has recently been observed in rats that aging results in an impaired ability of the tibialis 

anterior muscles to adapt chronic repetitive loading exercise (13, 35, 36). In young adult rats the 
same stimulus results in an increase in force, muscle mass, and myofiber cross-sectional area 
(36).  The aged rats have been shown to display increases in pro-apoptotic signaling in 
activated muscle satellite cells (91) along with a diminished regenerative capacity and/or limited 
local muscle remodeling (13) that limited skeletal muscle adaptation to chronic repetitive loading 
exercise.  Furthermore, this age-dependent divergence in the adaptive responses to repetitive 
loading exercise is exaggerated with increased velocity of movement (35). While the complete 
mechanisms for limiting the adaptive response to exercise in the aged muscle are unknown, it is 
hypothesized that the increased level of oxidative stress in muscles of aged animals may in part 
reduce the ability of muscle to adapt to repetitive loading. 

 
2.7 Oxidative Stress in Muscle Loading 
Resistance training has been identified as an effective means to delay the onset of 

sarcopenia, but there is still a paucity of studies that have evaluated oxidative stress during 
resistance training in humans. Studies that have evaluated high intensity or heavy resistance 
exercise have shown evidence of increased oxidant production (2, 11, 70, 109). However, few 
studies have examined oxidative stress and the long term benefits and/or consequences of 
resistance training within the increasingly oxidative environment that is associated with 
advanced age.  Studies that investigating resistance training and oxidative stress in the elderly 
have found that chronic training will reduce the occurrence of oxidative damage (122, 154); 
however theses studies did not investigate the source of oxidant production or adaptation in the 
endogenous antioxidant system. Increased oxidative stress may reduce the muscles’ ability to 
adapt to increased demands, as is the case with repetitive loading exercise.  Mitochondria and 
activated satellite cells are the most common targets for oxidative damage in exercising muscle 
(17, 138).  When activated, the normally quiescent satellite cells become more metabolically 
active and began to undergo mitosis, leaving them vulnerable to oxidant attack and thus can be 
subsequently eliminated (e.g., by myonuclear apoptosis). The inability to properly incorporate 
satellite cells as new myonuclei, may contribute to the maladaptation of skeletal muscle to 
repetitive loading seen in aged animals.  Although it is clear that oxidative damage accumulates 
with aging, the role of mitochondria in aging and oxidative damage has several unanswered 
questions (17).  
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Since aging is associated with increased oxidative stress and diminished muscular 
strength, it is likely that increases in oxidants take part in reducing muscle function during 
repetitive loading. It has recently been shown that muscle force falls within 24 hrs after repetitive 
loading, and does not recover during the first 7 days (37). It is hypothesized that the loss of 
muscular force is mediated, directly or indirectly, by the increase in oxidant production during 
repetitive loading.  This hypothesis is supported by the fact that force is diminished  in muscles 
that are exposed to exogenous oxidants (5-7, 118). 

 
Recent data have suggested that an increased production of free radicals, particularly 

during isometric or shortening contractions, may have beneficial adaptive effects (107). 
Isometric exercise could prove to be a useful tool in examining oxidative stress during exercise 
because the magnitude of damage following isometric exercise is relatively low (107).  

 
Two interventions that show promise in reducing age-related oxidative stress are 

exercise training and antioxidant supplementation. Moderate non-fatiguing exercise has been 
shown to enhance the buffering capacity of these enzymes and therefore exercise can be 
thought of as a therapeutic means for offsetting high levels of oxidative stress (75, 128, 144). 
However, the possibility exists that intensive exercise may exacerbate oxidant production in 
muscles with aging, which could be detrimental to muscle function. These experiments will help 
to shed light on the topic of resistance/anaerobic training and its effects on oxidative stress in 
aged animals. 

 
2.8 Antioxidant supplementation and oxidative stress 
The effect of dietary antioxidant supplementation on reducing exercise and age-induced 

increases in oxidative stress has been given a good deal of attention throughout the years.  In 
1952, Staton (141) reported that 30 days of supplementation with 100 mg vitamin C resulted in 
lower accounts of muscle soreness after exercise when compared to a placebo.  Harman (61) 
was one of first to suggest that nutritional supplements that are hydrogen donors could be 
beneficial in combating increases in oxidative stress and free radicals associated with aging.  
Many of the early studies that examined antioxidant supplementation and exercise centered on 
athletic performance.  The rationale is simple; exercise is associated with increased energy 
expenditure and, as a consequence, oxidant production increases with metabolism; dietary 
antioxidants may help alleviate this process. 

 
2.8.1 Vitamin E 
Vitamin E (α-tocopherol) is an antioxidant and potent free radical scavenger that is 

suggested to have a protective effect in reducing or preventing oxidative injury to tissue. The 
antioxidant activity of vitamin E is based on the ease with which the hydrogen on the hydroxyl 
group of the chromogen ring can be donated to neutralize a free radical. Vitamin E is lipid-
soluble and considered the predominant antioxidant protecting cellular membranes. Dietary 
supplementation of vitamin E has been shown to increase tissue resistance to exercise-induced 
oxidative damage, specifically lipid peroxidation (71, 113, 143).  Furthermore, rodents (28, 38) 
and humans (113) that are deficient in vitamin E show massive increases in oxidant production 
and lipid peroxidation after exercise. McBride et al. (109) examined the effects of resistance 
training and vitamin E supplementation within humans. They found indicators of oxidative stress 
(lipid peroxidation measured by MDA) to increase immediately after heavy resistance training in 
both the supplemented group and the non-supplemented groups. However, six and 24 hours 
post exercise the supplemented groups MDA levels were back to baseline, whereas MDA levels 
were still elevated in the non-supplemented group.  Although, there is opposing data that 
suggests supplementing with vitamin E could not completely protect elderly men from oxidative 
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damage caused by exercise (2). One possible reason was that exercise decreased levels of 
vitamin C in the elderly which could have reduced the effectiveness of vitamin E (2).  

 
2.8.2 Vitamin C 
Vitamin C (ascorbic acid) is a highly effective water-soluble antioxidant primarily found in 

the cytosol and extracellular fluid.  Even in small amounts, vitamin C can protect proteins, lipids, 
carbohydrates, and nucleic acids from damage by oxidants generated during normal 
metabolism. What makes vitamin C such an effective antioxidant is its ability to interact directly 
with reactive oxygen and nitrogen species; superoxide, hydroperoxyl radicals, aqueous peroxyl 
radicals, singlet oxygen, ozone, peroxynitrite, nitrogen dioxide, nitroxide radicals, and 
hypochlorous acid, thereby preventing additional substrates from oxidation (20, 60).  Jakeman 
and Maxwell (73) demonstrated that vitamin C, but not vitamin E, supplementation prior to 
eccentric exercise exerted a protective effect against muscle damage.  Opposing results 
showed consumption of 200 mg vitamin C twice daily for three days after a 90 minute shuttle-
run increased plasma concentrations of vitamin C, but the supplemented group failed to show 
improvements over the placebo group in muscle soreness, inflammatory response, or recovery 
of muscle function (147). Unfortunately neither of the preceding studies presents data on 
specific markers of oxidative stress.  

 
2.8.3 Vitamin E & C combined. 
A combination of Vitamin E & C has been shown to have a better antioxidant effect than 

either of the two vitamins alone (129).  When vitamin E is oxidized, it forms a slightly more 
stable intermediate tocopheroxyl radical.  vitamin C can reduce the tocopheroxyl radical,  
regenerating vitamin E (20, 60). In animal models of exercise, oxidants can lead to increased 
formation of protein carbonyls (2), plasma levels of MDA (109) and neutrophil chemotaxis (14); 
thus vitamin E and vitamin C supplementation may prevent these increases in cellular damage, 
neutrophil infiltration, and edema following an acute bout of exercise.   Additional data suggest 
that prior supplementation with vitamin E & C ameliorates muscle functional decrements 
(decease in maximal  force during isometric contractions) following eccentric muscle 
contractions (134). During heavy resistance training or maximal isometric contraction, there are 
brief periods of ischemia followed by reperfusion; an extreme example of this is exercise-
induced claudication, common in patients with peripheral vascular disease. Recent findings 
suggest that, neutrophil chemotaxis is caused by increased xanthine oxidase-derived oxidants 
(82).  Furthermore, vitamin E & C supplementation can inhibit oxidative damage, neutrophil 
infiltration and edema following an acute bout of contractile-induced claudication (83). Although, 
studies of exercise-induced claudication are extreme, they provide evidence that support the 
hypothesis of increased xanthine oxidase activity during exercise and the use of vitamin E & C 
supplementation to buffer oxidant production within the proposed model.   

 
In a study of professional soccer players, dietary supplementation of vitamin E & C was 

shown to reduce lipid peroxidation and muscle damage after high intensity workouts, but failed 
to enhance athletic performance (166).  Additionally, Rokitzki et al. (129) demonstrated in 
marathon runners that oral consumption of vitamin E & C for four and half weeks prior to 
competition lessened the increase in creatine kinase compared to a placebo group,  which is 
indicative of reduced muscle damage.  Supplementation schemes should take into a count the 
mode of exercise and where oxidants are being produced.  Alessio et al. (2) has shown that 
aerobic training will produce greater protein carbonyl formation than isometric contraction, 
whereas isometric contractions produced greater evidence of lipid peroxidation.  During a 
resistance exercise session increased oxidant production originating from outside the muscle 
fiber (i.e. xanthine oxidase from endothelial cells or eccentric contraction-induced damage from 



Michael J. Ryan                        Chapter 2 18  
 
phagocytic cells) may overwhelm natural cellular antioxidant defenses including membrane 
bound vitamin E, leading to lipid peroxidation. The combined supplementation of vitamin E & C 
could serve as a potent pro-oxidant scavenger, and chain-breaking antioxidant following intense 
exercise (58). 

 
2.9 Resveratrol  
Recent research has suggested that resveratrol has several beneficial health effects that 

include its use as an anti-cancer, anti-viral, anti-inflammatory, and anti-aging nutraceutical. 
Resveratrol (3,4',5-trihydroxystilbene), a phytoalexin, is produced naturally by numerous plants 
as a defense mechanism against infection by pathogens.  Resveratrol works as an antibacterial 
and anti-fungal chemical, and is part of the hypersensitive response mechanism during the 
short-term immune response.  During the hypersensitive response, resveratrol is employed to 
increase production of oxidants that assist in killing invading cells and initiate apoptosis in the 
area bordering the infection, essentially creating a physical barrier restricting the growth and 
spread of pathogens to other parts of the plant.  When induced by stress, injury, infection or UV-
irradiation, plants synthesize resveratrol from p-coumaroyl CoA and malonyl CoA (1, 132, 139). 
Resveratrol is a small fat-soluble molecule that occurs in two isoforms, a trans- (E) and a cis- 
(Z) configuration. The cis-isoform is easily oxidized and degraded when exposed to light, heat, 
and oxygen, while the trans- isoform is more stable under normal atmospheric conditions at 
room temperature (19). 

 
When taken orally, trans-resveratrol is well-absorbed by mammals (i.e. humans, rats and 

mice), but its bioavailability is low due to its rapid metabolite limitation (8, 155, 156).  When 
young adult men and women were given a 25 mg oral dose of trans-resveratrol, only traces of 
the unchanged resveratrol were detected in circulating blood plasma (155).  The bioavailability 
of resveratrol in mammals is imperative to understanding how resveratrol supplementation 
achieves its beneficial effects. There has been a great deal of cell culture research that has 
exposed the cells to non-metabolized resveratrol at concentrations that are often 10-100 times 
greater than peak concentrations observed in human plasma after oral consumption.  For that 
reason, we must be cautious in attempting to translate data attained through cell culture work to 
biological function in vivo.  In vitro experiments have shown resveratrol to be effective at 
scavenging other oxidants (142) and inhibiting low density lipoprotein (LDL) oxidation (25, 50).  
However, there is little evidence supporting the role of resveratrol as an important oxidant 
scavenger in vivo (23).  Based on the low bioavailability of resveratrol, there are other dietary 
(i.e. vitamin E & C) and endogenous antioxidants (i.e. glutathione, catalase, superoxide 
dismutase) that are present in much higher circulating and intracellular concentrations than 
resveratrol and are more likely to make a greater contribution to the oxidant defense. Given that 
after oral consumption the concentration of resveratrol is low, it has been hypothesized that 
biologically active resveratrol metabolites, which peak at concentrations around 2 mM/L in the 
plasma 30-60 minutes after consumption, could elicit much of  the beneficial effects of 
resveratrol seen in mammals (155).  

 
Even though the bioavailability of resveratrol at the tissue level is low, supplementation 

studies have shown beneficial results (16, 94).  Oral resveratrol supplementation has been 
associated with longer lifespan, reduced insulin-like growth factor-1 (IGF-I) levels, increased 
AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-c 
coactivator 1α(PPAR-α) activity, increased mitochondrial number, and improved motor function 
(16).  Treatment of mice with resveratrol has also been shown to significantly increase running 
time to exhaustion and consumption of oxygen in muscle, suggesting an improved aerobic 
capacity (94). In mammals, resveratrol supplementation modulates lifespan and metabolism 
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through the inhibition of insulin signaling pathways, AMPK, PGC-1a and activation of Sirt1 (16, 
21, 94, 165).  Recent work in skeletal muscle has also shown SIRT1 deacetylation of PGC-1α, 
will activate mitochondrial fatty acid oxidation genes (54) as well as enhance components of the 
electron transport chain, oxidative enzymes, and ATPases (94). Increases in these enzymes 
could contribute to an increased supply of ATP, which would explain the improved muscle 
endurance linked to resveratrol supplementation.  

 
2.10 Summary & Conclusion 
Advanced aging is accompanied by sarcopenia as a consequence of muscle fiber loss 

and atrophy of the individual muscle fibers. Advanced aging is also associated with an increase 
in oxidant production and a decrease ability to buffer oxidants. The resulting oxidative stress 
has been shown to contribute to the activation of myonuclear apoptosis(136, 137), a decrease 
in protein synthesis and activation of proteolysis, (114) all of which play a role in muscle 
atrophy.  Sarcopenia will inevitably lead toward circumstances in which an elderly person is 
unable to accomplish everyday tasks. Resistance training has been identified as an effective 
means to delay sarcopenia, but there is still a paucity of studies that have evaluated oxidative 
stress during resistance training in humans. Even fewer studies have examined oxidative stress 
and the long term benefits and/or consequences of resistance training within the increasingly 
oxidative environment that is associated with advanced age. The majority of human studies are 
only able to report on a few markers of oxidative stress from blood samples’, leaving one with 
only assumptions of what is happening within muscle tissue. Thus, animal models are important 
to collect larger amounts of tissue for extracting data. Unfortunately, there are even fewer 
studies that have investigated oxidative stress and resistance training in rodents than has been 
reported in humans.  The proposed studies will be amongst a limited few that have exclusively 
examined oxidative stress with resistance exercise within an aging model.   Furthermore, 
nutritional supplement companies have invested large sums of money into promoting 
antioxidant supplementation as an ergogenic aid to resistance training and aging, with only a 
minimal amount of research supporting their claims.  A better understanding of how antioxidant 
supplements can be best employed to combat oxidative stress associated with aging and 
exercise would be beneficial to all. A further understanding of potential sources of oxidant 
production associated with resistance training will also allow for better identification of potential 
supplements and/or course of supplement therapy. 

 
The major goal of this research is to better understand the role of oxidative stress in the 

adaptive hypertrophic response to repetitive loading in muscle and how it changes with advance 
aging. It is hypothesized that skeletal muscles from aged animals will show increased evidence 
of oxidative stress, while exercise (repetitive loading) and antioxidant supplementation would 
increase the aged muscles’ oxidative buffering capacity and decrease the muscles oxidant 
production, thus attenuating the increase in oxidative stress associated with aging.   
Furthermore, resistance exercise (i.e. repetitive loading) and aging will be associated with an 
increase in xanthine oxidase activity which could be a contributing factor to oxidative stress.  
Hopefully the results from the proposed investigations will lead to further translational studies 
that promote a safe and more effective combination of resistance training and antioxidant 
treatment in the elderly population. The long term goal is developing an effective treatment for 
sarcopenia, which, in turn, will have a great benefit to the individual and their quality of life 
during their later years.  Furthermore, such a treatment may potentially have a great economical 
value to society, given the expanding costs associated with caring for the increasing elderly 
population.  
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Abstract  
We have examined whether aging attenuates oxidant buffering capacity and 

decreases oxidant production after chronic repetitive loading (RL).  The dorsiflexors from 
one limb of young adult and aged rats were loaded 3 times per week for 4.5 weeks using 
80 maximal stretch-shortening contractions per session.   RL increased H2O2 in the tibialis 
anterior muscle of young and aged rats and decreased the ratio of reduced/oxidized 
glutathione and lipid peroxidation in aged but not young adult animals.  Glutathione 
peroxidase (GPx) activity and catalase activity increased with RL in muscles from both 
young and aged rats.  RL increased CuZnSOD and MnSOD protein concentration and 
CuZnSOD activity in muscles from young animals but not old animals.  There were no 
changes in protein content for GPx-1 and catalase or mRNA for any of the enzymes 
studied. These data show that aging reduces the adaptive capacity of muscles to buffer 
increased oxidants imposed by chronic repetitive loading.  
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Introduction 
Oxidative stress is an important mechanism that may at least in part underlie the 

aging-induced attenuation of muscle physiological adaptation to increased loading (5; 6; 
35; 36).  Increased oxidant production is buffered in muscles of young animals and 
humans, but it is possible that aging reduces the ability for muscles to buffer oxidants.  
This is important because when the buffering of oxidants is compromised, oxidant stress 
will arise which can lead to cellular damage.  Oxidative stress depresses muscle specific 
force (7), and  alters myofilament function as a result of muscle loading (41; 42) or 
contraction-induced calcium release (2; 19; 61). Oxidative stress may also contribute to 
loss of muscle force by reducing recovery from injury (40). Increases in oxidant production 
have also been shown to stimulate redox-sensitive signaling pathways (32; 33; 46), up-
regulate catabolic gene expression in muscle (17; 49; 51) and activate apoptosis (38; 50) 
in muscle. 

 
 It is clear that muscle atrophy is associated with increases in oxidants and 

oxidative stress (43; 47) evident by increases in  lipid peroxidation, glutathione oxidation, 
protein carbonyls, free iron content, and xanthine oxidase levels. Oxidative stress is also 
elevated with both aging and loading in chondrocytes (52), synovial cells (74) and muscle 
cells (21). The generation of oxidants and oxidative stress has been implicated in 
mechanisms of muscle dysfunction and sarcopenia (55).  However, there are no data that 
address the role of cumulative oxidative stress in repetitive loading in aging muscles.  
Furthermore, the underlying cause for increased oxidant formation in aging muscle is 
unknown, but this information is essential if we are to develop useful strategies for 
improving adaptations to loading in aging. 

 
The mitochondrial theory of aging predicts that an increase in oxidative stress is 

responsible for cellular damage and ultimately apoptosis and cell death of various cell 
types (18) including skeletal muscle cells (22; 39). Although actin and myosin proteins do 
not appear to have increased oxidative damage with aging in rats (71), recent data 
showed that 8-hydroxy-2'-deoxyguanosine (8-OHdG), protein carbonyls, MnSOD activity 
and catalase activity were significantly higher in muscle biopsies obtained from older men 
as compared to young men (24). Full-length mitochondrial DNA was also lower and 
mitochondrial DNA deletions were prominent in muscles from old as compared to young 
men (23). These data support the conclusion that even healthy aging is associated with 
oxidative damage to proteins and DNA in skeletal muscle. This may be a primary reason 
for increased nuclear apoptosis that has been reported in aged muscles (45; 58; 59; 65).  
Oxidative stress may reduce the muscle’s ability to adapt to increased demands, as is the 
case in repetitive loading.  Although mitochondria may be the intrinsic initiators of oxidative 
stress, mitochondria, along with activated satellite cells may be the target for oxidative 
stress in loaded muscle.  If activated satellite cells are reduced or eliminated (e.g., by 
apoptosis) muscle adaptation to loading would be reduced or eliminated.  Although it is 
clear that oxidative damage accumulates with aging, the role of mitochondria in aging and 
oxidative damage still has several unanswered questions, including the involvement of 
mitochondria in apoptosis (4). 

 
Because aging is associated with increases in oxidative stress, it is likely that 

oxidants have a role in reducing muscle function in aging and repetitive loading.  Cutlip 
and colleagues have recently shown that muscle force falls within 24 hrs, and does not 
recover during the first 7 days of repetitive loading (14). We hypothesize that loss of 
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muscular force is mediated, directly or indirectly, by the increase in oxidant activity during 
repetitively loading.  This is known to occur in muscles exposed to exogenous ROS (1; 2; 
57). An aging-associated reduction in CuZnSOD appears to be a good candidate for 
explaining increased superoxide levels leading to long-term oxidative damage and 
eventual loss of skeletal muscle, because CuZnSOD deficient animals have a lower life 
span and decreased muscle mass (55). Recent data (73) also suggest that CuZnSOD 
levels are lower in muscles and other tissues of old rodents, whereas, long lived animals 
do not show this decrease in CuZnSOD and other oxidative enzymes (8).  CuZnSOD 
levels increase in cells of young animals after exercise (26), and although Vasilaki et al. 
(72) report an increased level of CuZnSOD in muscles of old animals after a single bout of 
electrical stimulation, it is possible that old muscles may fail to respond in this manner with 
chronic repetitive loading. Furthermore, even if CuZnSOD does increase either similarly or 
greater in old vs. young muscles with repetitive loading, it is not known if this will be 
sufficient to counteract the loading-induced oxidant and intrinsic oxidant produced by 
aging mitochondria (54) in old muscles. 

 
It has been widely recognized that GPx-1, catalase, CuZnSOD and MnSOD 

enzymes provide a defense system, which are essential for the survival of aerobic 
organisms.  Moderate non-fatiguing exercise has been shown to enhance the buffering 
capacity by increasing the specific activity of these enzymes and therefore exercise is 
thought to be a therapeutic tool for offsetting high levels of oxidative stress (31).  However, 
the possibility exists that intensive exercise may exacerbate oxidant production in muscles 
with aging, which may be detrimental to muscle function.  

 
Aging rodents are frequently used as models for exercise training in humans, but 

there are few studies that have examined the effects of resistance training in aged rats.  
We have recently observed that repetitive loading results in a mal-adaptation in tibialis 
anterior muscles of old rats, whereas the same stimulus in the tibialis anterior muscle from 
young adult rats results in an increase in force, muscle mass, and myofiber cross-sectional 
area (13).  While the mechanisms for these mal-adaptations to exercise in the aged 
muscle are unknown, we hypothesized that the increased level of oxidative stress in 
muscles of aged animals may in part reduce the ability of muscle to adapt to repetitive 
loading.   

 
In this study we tested the hypothesis that: (I) tibialis anterior (TA) muscles from 

aged rats would show greater evidence of oxidative stress compared to muscles from 
young adult animals, (ii) chronic repetitive loading would increase the TA muscles’ 
oxidative buffering capacity and decrease the muscles oxidant production, thus 
attenuating the increase in oxidative stress associated with aging, and  (III) aging would 
attenuate adaptive responses in antioxidant pathways and this would be closely 
associated with attenuated hypertrophic adaptations to repetitive loading in aging.  

 
Methods 
The left TA muscles of old (30 months of age; n=8) and young (12 weeks of age; 

n=8) Fischer 344 Brown x Norway rats were subjected to repetitive loading exercise, 
which consisted of 3 sessions per week for 4.5 weeks, of 80 super-physiological eccentric 
/ concentric contraction cycles per session (12). Muscle functional data were collected 
from a subset of four animals per group.  The right TA was used as a contra-lateral control 
for each animal.  The sessions were performed on a custom-built dynamometer by 
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electrically stimulating the common peroneal nerve, causing contraction of the dorsi flexor 
muscles and moving the footplate through plantar flexion (15).   This method has been 
previously shown to produce a hypertrophic response in young adult rats (11).  All animals 
had free access to rat chow and water.  At the end of the 4.5 week loading period the rats 
were anesthetized with 2% isoflurane and the chronically loaded and control muscles were 
quickly removed, cleaned of excess connective tissue and weighed. The animals were 
euthanized by an overdose of pentobarbital.  A section of each muscle was obtained for 
the determination of the ratio of reduced glutathione (GSH) to oxidized glutathione 
(GSSG). The remaining muscle was quickly frozen in liquid nitrogen and stored in a -80°C 
freezer until analysis. 

 
RNA Isolation.  Sixty micrograms of the TA muscle was homogenized in 1ml of 

Tri-Reagent (Molecular Research Center, Cincinnati, OH) with a motorized blade 
homogenizer.  Muscle homogenates were transferred to sterile 1.5ml Eppendorf tubes and 
centrifuged at 12,000 rpm for 10-minutes at 4˚C.  Supernatants were transferred to a 
sterile 1.5ml tube then 100μl of 1-bromo-3-chloropropane (BCP, Molecular Research 
Center, Cincinnati, OH) was added to the supernatant.  The sample was vortexed for 15s 
and incubated at room temperature for 15-minutes.  The samples were centrifuged 
(12,000 rpm for 15-minutes at 4˚C) and the top aqueous phase that contains RNA was 
transferred to a sterile 1.5ml tube followed by addition of 500μl isopropanol and incubation 
at room temperature for 10-minutes.  Samples were centrifuged at 12,000 rpm for 8-
minutes at 4˚C, which collected the solubilized RNA into a small pellet.  The RNA pellet 
was washed in 1ml of 75% ethanol and centrifuged at 7500 rpm for 5-minutes at 4˚C.  The 
supernatant was removed and the RNA pellet was air dried in a fume hood and re-
suspended in 22μl of sterile distilled H2O.  The RNA was treated with DNAse I using a 
DNA-free kit (Ambion, Austin, TX) and quantified using a BioRad SmartSpec 3000.  RNA 
purity was accessed using a mimimum 260:280 ratio of 1.7.  Samples with values less 
than this were re-treated for DNA contamination and quantified. 

 
Reverse Transcription-Polymerase Chain Reaction (RT-PCR).  Two 

micrograms of total RNA were reversed transcribed using random primers (Invitrogen/Life 
Technologies, Bethesda MD) via the following protocol.  1.0μl of random primers and 1.0μl 
of 10mM dNTP mixture were added to 2μg of RNA.  Samples were heated to 65˚C for 5-
minutes followed by 3˚C for 5-minutes in a Biometra T3 thermocycler.  7.0μl of a master 
mix containing 5x First Strand buffer, DTT, and RNase-Out, were added to each sample.  
Tubes were returned to the thermocycler and incubated at 25˚C for 10-minutes followed by 
42˚C for 2-minutes.  1.0μl of SuperScript II reverse transcriptase was added to each tube 
and lightly mixed by pipetting the solution up and down.  Samples were returned to the 
thermocycler to be incubated at 42˚C for 50-minutes, 70˚C for 15-minutes, and then 
cooled to 3˚C until removed for storage.  This procedure yielded 20μl of complimentary 
DNA (cDNA) which was stored at -80˚C or used for PCR analyses. 

 
Primers for the genes of interest were constructed according to the following primer 

sequences: CuZnSOD sense-5’-AGGCCGTGTGCGTGCTGA-3’; anti-sense-5’-
CCCAATCACACCACAAGCCA-3’; GPx-1 sense-5’-CCTCGTGGCCTGGTGGTCCT-3’; 
anti-sense-5’-AGGGGTTGCTAGGCTGCTTGGA-3’.  The following primers were 
previously published from our lab: MnSOD sense-5'-GCGGGGGCCATATCAATCAC AG-
3’; anti-sense-5'-GGCGGCAATCTGTAAGCGACCT-3'; Catalase sense- 5'-
CGGGAACCCAATAGGAGATAAA-3'; anti-sense-5'-CCACGAGGGTCACGAACTGT-3' 
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(67; 69). To make certain analyzes were done in the linear range of amplification, 
preliminary tests were done to determine the proper number of PCR cycles.  PCR 
products were verified by restriction digestion based on predicted PCR sequences.  To 
control for any loading errors, the signal from the gene of interest was expressed as a ratio 
to the 18S RNA signal from the same PCR product.  49μl of a master mix containing, 10X 
PCR buffer with MgCl2, 5mM dNTPs, 100ng/ml of primer pairs, 18S primer pairs, and 
1.0μl of Taq DNA polymerase, were combined with 1.0 μl of cDNA for PCR amplification.  
Amplification of PCR products were performed in a thermocycler using: a denaturing step 
at 95˚C for 45s, an annealing step for 45s, and an extension step at 72˚C for 45s.  

Following amplification, 20 l of each reaction were electrophoresed on 1.5% agarose gels.  
Gels were stained with ethidium bromide to visualize the PCR products.  The PCR signals 
were recorded via a digital camera (Kodak 290) and the signals were quantified in arbitrary 
units as optical density x band area, using 1D Kodak image analysis software (Eastman 
Kodak Company, Rochester, NY). 

 
Protein Fractionation.  Seventy-five mg of TA muscle samples were separated for 

cytoplasmic and nuclear protein fractions, using methods reported previously by our lab 
(66; 70).  However, a lower concentration of dithioreitol (DTT) was used in these 
experiments to prevent later interference with enzyme activity assays.  Muscle samples 
were homogenized in 500 µl of ice-cold lysis buffer (10 mM NaCl, 1.5 mM MgCl2, 20mM 
HEPES at pH 7.4, 20% glycerol, 0.1% Triton X-100, and 10µM dithioreitol) with a 
mechanical homogenizer.  Muscle homogenates transferred to 1.5ml Eppendorf tubes and 
centrifuged at 800 rpm for 5-minutes at 4°C.  Supernatants were collected and centrifuged 
three more times at 3500g for 5-minutes at 4°C.  The resulting supernatant was collected 
as nuclei-free cytosolic fraction and divided into two equal portions; the first portion was 
frozen at -80°C until needed, in the second portion protease inhibitor cocktail containing 
104mM 4-[2-aminoethyl]-benzenesulfonylflouride hydrochloride (AEBSF), 0.8mM 
aprotinin, 2mM leupeptin, 4mM bestatin, 1.5 mM pepstatin A and 1.4 mME-64 (Sigma-
Aldrich, St. Louis, Mo, USA)  was added before the sample was frozen at -80°C.  Protein 
concentrations for each sample were determined in triplicate via a DC protein 
concentration assay (Bio Rad, Hercules, CA). The cytosolic fraction was used in the 
following assays: H2O2 concentration, Catalase activity, GPx activity, CuZn & MnSOD 
activity and western immunoblots. 

 
Western Immunoblots.  The protein content of glutathione peroxidase-1 (GPx-1), 

catalase, copper-zinc superoxide dismutase, (CuZnSOD) and manganese superoxide 
dismutase (MnSOD) was measured in the cytosolic muscle fractions.  30μg of protein was 
loaded into each well of a 4-12% gradient polyacrylamide gel (Novex, Invitrogen) and 
separated by routine SDS-polyacrylamide gel electrophoresis (PAGE) for 1.5 hours at 
20°C followed by transfer to a nitrocellulose membrane.  All membranes were blocked in 
5% non-fat milk protein (NFM) for 1-hour at room temperature.  In general, membranes 
were incubated in appropriate dilutions of primary antibodies (diluted in 1% NFM in tris-
buffered saline with 0.05% Tween-20 (TBS-T) overnight in a 4°C cold room.  Membranes 
were washed in TBS-T followed by incubation in appropriate dilutions of secondary 
antibodies (diluted in 5% NFM in TBS-T) conjugated to horseradish peroxidase.  Signals 
were developed using a chemi-luminescent substrate (ECL Advanced, Amersham 
Bioscience) and visualized by exposing the membranes to X-ray films (BioMax MS-1; 
Eastman Kodak).  Digital records were captured by a Kodak 290 camera and protein 
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bands quantified using 1-D analysis software (Eastman Kodak, USA).  Bands were 
quantified as optical density (OD) x band area and expressed in arbitrary units.     

  
H2O2 levels. A fluorescent hydrogen peroxide (H2O2) (Cell Technology, Mountain 

View, CA) detection kit was used to determine the amount of H2O2 in the muscle tissue. 
Reagents and standards were prepared as recommended by the manufacturer.  Briefly, 
50μL of controls, samples or H2O2 dilutions were mixed with 50μL of the reaction cocktail 
in each well to initiate the reaction.  The plate was incubated in the dark for 10 minutes, at 
20ºC and fluorescence was detected with an excitation at 530nm and measured at 590nm.  
All analyses were done in duplicate and samples were normalized to muscle protein 
concentration in each sample via a DC protein concentration assay (Bio-Rad, Hercules, 
CA).  

 
GSH/GSSG Ratio. A BIOXYTECH GSH/GSSG-412 (Oxis Research) assay was 

performed to determine the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio.  
Muscle tissue (~ 40 mg) was homogenized immediately after dissection in 530 µl cold 5% 
metaphosphoric acid (MPA) for the GSH sample and for the GSSG sample ~ 40 mg of 
muscle tissue was homogenized immediately after dissection in 500 µl cold 5% 
metaphosphoric acid and 30µl of M2VO scavenger. Homogenates were then frozen in 
liquid nitrogen and stored at -80°C until analyzed.   

 
 Samples were thawed and cold 5% MPA was added to each sample, 290µl and 

350µl for GSSG and GSH, respectively.  Samples were mixed, and then centrifuged at 
1000 x g for 10 minutes. For the GSSG sample, 25µl MPA extract and 350µl GSSG buffer 
were added to each tube then placed on ice until use.  10µl MPA extract and 600µl of 
assay buffer was added to the GSH sample then placed on ice. 50µl of sample and 50µl of 
chromogen and enzyme were mixed in a cuvette followed by 5 minute incubation at room 
temperature.  50µl of NADPH was added to each cuvette and the absorbance of each 
sample was read every 60 s at 412 nm for 3 minutes.  The concentration for each sample 
was determined via a DC protein concentration assay (Bio Rad, Hercules, CA). Signals 
from each sample were normalized to the corresponding protein content of that sample.  

 
8-hydroxy-2’-deoxyguanosine (8-OHdG). Oxidized DNA was determined by a 

BIOXYTECH 8-OhdG ELISA (enzyme linked immunoassay) (Oxis Research).  DNA was 
extracted from the muscle via DNeasy Tissue Kit (Qiagen).   DNA was used if it had a 
minimum 260:280 ratio of 1.8. 50µl of purified DNA was mixed with 50µl of primary 
antibody. Samples were then incubated at 37° C for one hour. The wells were washed 
then incubated in 100µl of secondary antibody at 37°C for one hour.  100µl of chromogen 
was added to each well, shaken then incubated at room temperature in the dark for 15 
minutes. The reaction was terminated and the samples were read at an absorbance of 450 
nm. Samples were normalized to the DNA concentration measured via a plate reader (ND-
1000, NanoDrop, Wilmington, DE).  All analyses were done in duplicate. 

 
Lipid peroxidation. Malondialdehyde (MDA) and 4-hydroxyalkenals (HAE) were 

measured using reagents from Oxis International, CA (Bioxytech LPO-586).  A 75-100 mg 
section of each muscle was homogenized in 500µl of buffer containing ice-cold 
phosphate-buffered saline (PBS, 20 mM, pH 7.4) and 5 µL 0.5 M butylated hydroxytoluene 
(BHT) in acetonitrile per 1 ml of tissue homogenate.  Assay reagents were added following 
the manufacturer’s recommendations. Briefly, the muscle homogenate was centrifuged at 
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3000 g at 4°C for 10 minutes and the supernatant was used for the assay and protein 
determination. After incubation in the appropriate reagents, the sample was incubated at 
45°C for 60 minutes, and then centrifuged at 15,000g for 10 minutes.   An absorbance 
reading of the supernatant was obtained at 586nm.  Samples were normalized for 
differences in the amount of muscle protein in each sample as determined by a DC protein 
concentration assay (Bio-Rad, Hercules, CA).  

 
Catalase Activity. A catalase activity assay kit (# 219265, EMD/Calbiochem, San 

Diego, CA) was used to determine the activity level of catalase in repetitively loaded and 
control muscles, according to the manufacturer’s recommendations.  After the appropriate 
incubations, the samples were read at absorbance of 520nm. All analyses were completed 
in duplicate and samples were normalized to muscle protein in each sample via a DC 
protein concentration assay (Bio-Rad, Hercules, CA).  

 
Manganese Superoxide Dismutase (MnSOD) and Copper-Zinc Superoxide 

Dismutase (CuZnSOD). A commercially available SOD Assay Kit II (#574601, 
EMD/Calbiochem, San Diego, CA) was used to measure total and MnSOD activity. 
CuZnSOD was determined by subtracting the value for MnSOD activity from the total SOD 
activity.  The assay was preformed with modifications to the manufacturer’s directions and 
all samples and standards were measured in duplicate.  Briefly, the muscle was 
homogenized in a buffer (20mM HEPES buffer, pH 7.2, containing 1mM EGTA, 210mM 
mannitol, and 70 mM sucrose) and centrifuged at 1000g for 10 minutes. The assay was 
performed in a 96-well plate with each sample being treated with and without 10µL of 3 
mM potassium cyanide.   Potassium cyanide was used to inhibit CuZnSOD, resulting in 
the detection of only MnSOD activity.  The reagents and samples were protected from 
white light and incubated at 26°C for 20 minutes with periodic shaking.  The absorbance 
was measured at 450 nm using a 96-well plate reader (Dynex Tech., Chantilly VA., USA). 

 
Glutathione Peroxidase (GPx). A commercially available cellular GPx Assay Kit 

(#35319, EMD/Calbiochem, San Diego, CA) was used to measure GPx activity in the 
cytosolic fractions of the muscle homogenates.  The assay was performed with slight 
modifications to the manufacturer’s directions.  Briefly, a portion of each muscle was 
homogenized in a buffer containing 50mM Tris-HCl, pH 7.5, 5 mM EDTA, 1mM DTT. The 
homogenate was centrifuged at 10,000g for 15 min at 4°C and the supernatant was used 
for the assay.  All reagents and sample were equilibrated to 25°C and the remaining assay 
procedures followed manufacturer’s specifications.  The absorbance was measured at 340 
nm using a 96-well plate reader (DYNEX technologies, Chantilly Va., USA).  Each sample 
and control was performed in duplicate. 

 
Statistical analyses.  Statistical analyses were performed using an SPSS 13.0 

software package. A multiple analyses of variance (MANOVA) were used to examine 
differences between age and treatment (RL).  Statistical significance was accepted at P < 
0.05. Data are reported as mean ± standard error mean (SEM). 

 
Results 
Body Mass. The average body mass of the young animals was 326.5 ± 14.7 g 

before muscle loading, and 317.2 ± 12.2 g after the 4.5 weeks of training, but this did not 
represent a significant change in body mass. However, the body mass of aged animals 
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had a small but significant decrease from 597.3 ± 17.9 g before training to 558.3 ± 13.3 g 
after the 4.5 weeks of training. 

 
 Muscle Wet Weight.  Repetitive loading for 4.5 weeks resulted in a significant 

increase in tibialis anterior muscle wet weight in the exercised limb of both the young adult 
(11.5 ± 1.6%, p<0.001) and the aged adult (7.5 ± 1.9%, p<0.05) rats as compared with the 
contra-lateral control muscle. (Figure 3.1) 

 
Insert Figure 3.1 
 
Muscle Functional Measurements. Maximal isometric muscle force, positive 

work, and negative work were used to measure the functional capacity of the dorsiflexors, 
of which the greatest contributor is the tibialis anterior muscle.  There was no significant 
difference between the young adult and the aged animals for maximal Isometric force 
(Figure 3.2A), positive work (Figure 3.2B) or negative work (Figure 3.2C) observed at the 
start of the study. However, 14 loading sessions increased maximal force (51± 5.6%), 
positive work, (32 ± 3.9%) and negative work (37± 7.4%) as compared to the first session 
for young adult animals.  In contrast, there was no significant change in any of the 
parameters used to assess functional changes in muscles of the aged animals over the 
training period.  

 
Insert Figure 3.2 
 
H2O2.   Muscle levels of H2O2 were elevated in the loaded muscles as compared to 

the age-matched control limb (p<0.001), suggesting a treatment effect and that chronic 
loading elevated oxidative stress.  Both control and experimental muscles had higher 
levels of H202 than their treatment matched muscles of young adult rats (p<0.001). This 
suggests a systemic aging effect of oxidative stress on muscles. (Figure 3.3) H2O2 
concentration data expressed as a µmol/mg protein are discussed in the Limitation and 
Future Directions section within chapter 7. (Figure 7.2) 

 
Insert Figure 3.3 
 
GSH/GSSG ratio. There was no training-induced difference in the GSH/GSSG 

ratio in muscles from young adult animals when comparisons were made to the control 
muscles. However, there was a significant reduction in the GSH/GSSG ratio of both 
control (p<0.05) and loaded (p<0.01) muscles of aged muscles as compared to treatment-
matched muscles in the young adult animals. The GSH/GSSG ratio was lower (p<0.05) in 
the loaded muscles of the aged rats as compared to the young adult rats. (Figure 3.4) 
These data suggest that aging increased oxidative stress and therefore lowered the 
GSH/GSSG ratio as compared to muscles in young adult animals and that aging reduced 
that ability to tolerate increased oxidative stress in chronically loaded skeletal muscles.  

 
Insert Figure 3.4 
 
Lipid Peroxidation. Aging increased the level of lipid oxidation as shown by 

greater MDA + HAE levels in control muscles of old rats as compared to muscles from 
young adult animals (p<0.01; Figure 3.5).  Repetitive loading appeared to activate 
adaptive responses in muscles of old animals because MDA + HAE levels were lower in 
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the loaded than control muscles of aged animals. No significant difference in MDA + HAE 
levels was observed among the control or chronically loaded muscles of young adult 
animals.   

 
Insert Figure 3.5 
 
DNA Damage.  Aging induced a significantly (p<0.05) increased basal level of 

DNA damage because the amount of 8-OHdG detected in control muscles was 
significantly greater in aged vs. young adult muscles. Repetitive loading reduced the level 
of 8-OHdG in muscles of old animals to that which was measured in muscles of young 
adult animals. Chronic loading did not change 8-OHdG in muscles of young adult animals. 
(Figure 3.6) These data imply that chronic loading offsets the level of oxidative stress-
induced DNA damage in aging rats.  

 
Insert Figure 6 
 
GPx Activity.  There was a loading effect but no age effect on GPx activity. 

Chronic repetitive loading increased GPx activity in muscles from both young and aged 
animals (p<0.001), but no differences were found between young and aged rodents. No 
significant differences were found among GPx-1 mRNA or protein levels within any of the 
muscle samples. 

 
Insert Figure 3.7 
 
Catalase activity. Catalase activity increased with repetitive loading in muscles 

from the young adult rats (p<.05), but there was no significant change in catalase levels in 
muscles of the aged animals. Catalase activity was higher in control muscles of aged vs. 
young adult animals, and it  increased in loaded muscles of aged animals as compared to 
young adult animals (p<.05). (Figure 3.8) No differences were found between catalase 
mRNA or protein levels within any of the TA muscles.  

 
Insert Figure 3.8 
 
CuZn Superoxide dismutase activity. CuZnSOD protein levels increased by 

100% (p<0.05) (Figure 3.9A) and CuZnSOD enzyme activity (Figure 3.9B) increased by 
43% in (p<0.05) in repetitively loaded muscles from young animals as compared to the 
contra-lateral control muscles.  However, these appeared to be post-translationally 
regulated because no differences in CuZnSOD mRNA levels in control or loaded muscles 
from young animals were observed. Aging suppressed any loading-induced changes in 
CuZnSOD, because there were no differences in mRNA, protein, or enzyme activity in the 
chronically loaded muscles compared to control muscles from aged animals. 

 
Insert Figure 3.9 
 
MnSOD.  MnSOD protein levels were increased by 75% in the loaded muscles of 

the young animals as compared to their contra-lateral control muscles (p<0.01) as 
determined by western blot analyses (Figure 3.10); however,  the increase in MnSOD 
protein did not  affect the activity levels nor was it driven by the alterations in MnSOD 
mRNA. No changes in any of the variables were seen in the aged animals. 
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Insert Figure 3.10 
 
Discussion  
Chronic adaptation to resistance exercise over many weeks in older women and 

men has been shown to improve muscular strength and also induce muscle fiber 
hypertrophy (20; 63). However, it is not clear if the lower extent of muscle hypertrophy that 
generally results from chronic loading in aging (16)  is due, at least in part, to elevated 
levels of oxidants. In this study, we found increases in muscle hypertrophy and muscle 
force and work in chronically loaded muscles of young adult rats. Although there was 
some degree of muscle enlargement in old animals with repetitive loading for 4.5 weeks, 
there was no improvement in muscle function, suggesting that muscle hypertrophy (based 
on muscle-wet weight) may not have been a result of increases in contractile proteins in 
muscles of aged rats. Although this varies slightly from a previous study using the same 
protocol, where  a decrease in muscle mass and function was observed in old animals  
(10), it is likely that different cohorts of animals obtained from the NIA colony have slightly 
different responses and adaptive capabilities. Nevertheless, the current study and the 
previous study (9) are generally consistent in showing an attenuated functional response 
to repetitive loading with aging. While we cannot rule out the possibility that part of the 
increase in muscle wet weight may have been the result of increases in collagen or other 
contractile proteins, we did not detect evidence of inflammation (e.g., macrophages) or 
infiltrates in the loaded muscles of aged animals (Baker et al, unpublished observations).  

 
Findings of the current study are that control muscles of aged rats had higher 

levels of oxidative stress as indicated by elevated H2O2, 8-OHdG and MDA+HAE as 
compared to control muscles of young adult animals.  These findings are consistent with 
observations from other laboratories showing that aging is associated with increased 
levels of oxidative stress in skeletal muscles and may be related, at least in part to 
reduced muscle function with aging (3; 53; 64). 

 
While chronic adaptation to loading, that was 3 times weekly for 4.5 weeks, 

increased oxidant levels of H2O2, aging did not prevent improvement in several indices of 
oxidative stress in loaded skeletal muscles of aged rodents (e.g., lipid peroxidation, and 
oxidative damage to DNA). Nevertheless, there was only a partial ability to adapt to 
greater levels of oxidative stress with aging. Of particular note, CuZnSOD and MnSOD 
were not different in the chronically loaded muscles of aged rodents compared to the 
control muscles, despite increased oxidative loads (e.g., H2O2) and evidence of oxidative 
damage.  We speculate that a failure to elevate CuZnSOD as part of an adaptive process 
for repetitive loading may be critically important for explaining the increased DNA and lipid 
oxidative damage with aging, because reduced levels of this anti-oxidant protein has been 
shown to coincide with reduced muscle mass and function (55). 

 
In contrast, the adaptation was more complete in muscles of young adult animals. 

For example, indices of oxidative stress (GSH/GSSG ratio) and oxidative damage (MDA 
+HAE and 8-OHdG) were similar in control and chronically loaded muscles from young 
animals. This suggests that the tibialis anterior muscles were able to efficiently adapt and 
buffer the increase in oxidant production in muscles of young adult animals.  Furthermore, 
there was no significant difference in oxidative stress markers from the non-exercised 
control muscle.  Adaptation in chronically loaded muscles from young adult animals 
appeared to occur via an increase in catalase and CuZnSOD activity, two enzymes that 
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are primarily located in the cytosol.   This implies that the increase in oxidant production 
may not be primarily originating from the mitochondria, but may instead be generated in 
the cytosol, possibly through the xanthine oxidase pathway. We speculate that an increase 
in signaling of the xanthine oxidase pathway could increase the production of superoxide 
in the cytosol, thus increasing the localized stimuli for CuZnSOD production and activity as 
well as an increase in H2O2 production.  We have found that acute bouts of repetitive 
loading increased xanthine oxidase activity in tibialis anterior muscle homogenate from 
mice (unpublished data). 

 
In the present study, enzyme activity for CuZnSOD increased by about 43%, which 

is similar to previous findings from our lab using the same electrically evoked repetitive 
loading model (56).  The lack of an increase in CuZnSOD mRNA would suggest post 
transcriptional modification that activates protein synthesis.  Similarly, Hollander and 
colleagues (27; 29) found increases in CuZnSOD protein levels without changes in mRNA 
after a single bout of endurance exercise. The current study differed from data presented 
by Hollander et al (28; 30), in that previously they showed no increase in CuZnSOD 
enzyme activity after an acute bout of exercise, where the present study shows increases 
in enzyme activity. This may be a result of a cumulative effect resulting from chronic 
adaption to repetitive stimulation over the 4.5 week period of the present study. 

 
Xanthine oxidase-mediated oxidative stress in the cytosol has been shown to 

increase activation of NF-ĸB signaling resulting in an increase in the transcription of mRNA 
for MnSOD.  The lack of a detectable increase in MnSOD mRNA in the current study does 
not mean that it did not occur.  There are two possible explanations; first protein levels for 
MnSOD are controlled by post translational modifications, similar to that found in 
CuZnSOD, and secondly, that transcription of MnSOD mRNA initially increased within the 
tibialis anterior, which in turn led to an increase in MnSOD protein levels which acted as a 
negative feedback regulatory mechanism to slow down transcription of MnSOD mRNA.    
Either possibility would explain the results we found in the current study. 

 
Various stages of post-translational modulation are required to make the MnSOD 

enzyme catalytically active.  We speculate that without increased oxidant production within 
the mitochondria, the MnSOD protein would not have the stimulus needed for modification 
to its active form, thus we did not find any changes in MnSOD activity levels.  The lack of 
an increase in MnSOD activity also helps support our suggestion that the mode of 
exercise we tested did not substantially increase oxidant production within the 
mitochondria. 

 
Chronic exercise has been shown to either maintain or increase levels of GPx 

activity at least in aerobic high volume, low intensity types of exercise (25; 37).  While 
generally, high-intensity exercise training has been shown to be more effective than low-
intensity exercise in increasing of muscle GPx activity (62). Therefore, it was not surprising 
that repetitive muscle loading induced an increase in GPx activity in muscles from both the 
young adult and aged animals. However, there were no significant changes in the mRNA 
or protein levels for GPx-1 between either young vs. aged or control vs. exercise, this data 
suggests that repetitive loading induced a post-transcriptional increase in GPx activity 
within skeletal muscles of both young and aged animals.  Similarly to GPx activity, 
catalase activity increased with repetitive loading exercise.  GPx is an enzyme that is 
primarily thought to be responsible for reducing H2O2 and/or organic hydroperoxides to 
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water or alcohol and is located in both the cytosol and the mitochondria. Catalase 
catalyzes the breakdown of H2O2 to form water and O2 (34; 48). The current data suggests 
that intense resistance training will lead to an increase in GPx and catalase activity in 
response to exercise induced H2O2 accumulation. 

 
In conclusion, the data in this study show that muscles from aged rats have higher 

levels of oxidative stress and oxidative damage (e.g., to DNA and lipids) than muscles of 
young adult rats. Mechanical loading further exacerbates oxidative stress in muscles of 
aged rodents, but this appears to be well buffered in muscles of young adult animals. In 
response to high intensity chronic loading, there is a partial adaptation of oxidative 
enzymes to attempt to compensate for the increased oxidative insult in muscles of aged 
rats. However, this adaptation is incomplete, because CuZnSOD and MnSOD do not 
increase in chronically loaded muscles of aged rodents, but increase significantly after 
chronic adaptation to loading in muscles of young adult animals. The increases in GPx 
and catalase activity appear to be in response to loading induced elevations in H2O2. 
These data show that aging reduces the adaptive capacity of muscles to buffer the 
increased oxidant production imposed by chronic repetitive loading. This may compromise 
the muscles’ abilities to hypertrophy or to improve muscle function in aged animals. 
Furthermore, it is possible that greater unbuffered levels of oxidative stress in muscles of 
old animals may trigger increased levels of apoptosis that are associated with lower 
muscle mass and attenuated hypertrophic adaptation in aging (44; 60; 68). 
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Figure Legends 
Figure 3.1 Repetitive loading induces muscle hypertrophy in the Tibialis 

Anterior Muscle.  Data are expressed as tibialis anterior muscle wet weight in grams.  *, 
significance difference between age-matched control and RL TA muscle assigned at 
p<0.05; †, a significant difference (p<0.05) from young treatment-matched control 
muscles. 

 
Figure 3.2 Repetitive loading increased muscle functional measurements 

in young adult dorsiflexor muscles while maintaining function in aged dorsiflexor 
muscles.  (A) Maximal force generated from the young and aged dorsiflexor muscles 
during each of the 14 training sessions.  Data are expressed as the average maximum 
force for all animals in Newtons (N) produced during each exercise session ± SE.  Solid 
line represents the linear regression for all age-matched points. *, a significant difference 
(p<0.05) between young adult and aged dorsiflexor muscles.  (B) Positive work generated 
from a single eccentric /concentric movement preformed at the start of each training 
session from the young and aged dorsiflexor muscles during each of the 14 training 
sessions.  Data is expressed as the mean ± SEM. Solid line represents the linear 
regression for all age-matched points. *, a significant difference (p<0.05) between young 
adult and aged dorsiflexor muscles.  (C) Negative work generated from a single eccentric 
/concentric movement preformed at the start of each training session from the young and 
aged dorsiflexor muscles during each of the 14 training sessions.  Data is expressed as 
the mean ± SEM. Solid line represents the linear regression for all age-matched points. *, 
a significant difference (p<0.05) between young adult and aged dorsiflexor muscles. 

 
Figure 3.3 Concentration of hydrogen peroxide (H2O2) are elevated with RL 

& aging.  The H2O2 concentration was determined by a fluorometric assay.  Data is 
expressed as Relative Fluorescent Unit (RFU) per mg of total protein in TA homogenate.  
The normalized data are presented as mean ± SEM. *, significant difference (p<0.05) of 
repetitively loaded (RL) muscle from contra-lateral control muscle.  †, significant difference 
(p<0.05) from young treatment- matched control.  

 
Figure 3.4 Ratio of reduced glutathione to oxidized glutathione 

(GSH/GSSG).  Data are depicted as the ratio of GSH to GSSG normalized to total protein 
content.  Lower ratios are an indication of increased oxidative stress. The normalized data 
are presented as mean ± SEM. *, significant difference (p<0.05) of RL muscle from contra-
lateral control muscle.  †, significant difference (p<0.05) from young treatment- matched 
control.  

 
Figure 3.5 Repetitive loading decreases lipid peroxidation in tibialis 

anterior muscles of aged rats.  Data are combined malondialdehyde (MDA) and 4-
hydroxyalkenals (HAE) normalized to total protein content. The data are presented as 
mean ± SEM.  *, significant difference (p<0.05) of RL muscle from contra-lateral control 
muscle.  †, significant difference (p<0.05) from young treatment- matched control.  

 
Figure 3.6 Aging increased the quantity of DNA damage while RL had no 

effect.  Data is expressed as ng concentration of 8-hydroxy-2’-deoxyguanosine (8-OHdG) 
per ml of TA homogenate per µg of DNA.  The normalized data are presented as mean ± 
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SEM. *, denotes significant difference (p<0.05) of RL TA muscle from contra-lateral control 
muscle.  †, significant difference (p<0.05) from young treatment- matched control.  

 
Figure 3.7 Glutathione peroxidase (GPx) activity decreased with repetitive 

loading. Data is expressed as mU of GPx per ml of homogenate per mg of protein.  The 
normalized data are presented as mean ± SEM. *, significant difference (p<0.05) of RL TA 
muscle from contra-lateral control muscle; †, significant difference (p<0.05) from young 
treatment- matched control. 

 
Figure 3.8 Catalase activity increased with repetitive loading and aging. 
Data is expressed as units (U) of catalase per ml of homogenate per mg of protein.  

The normalized data are presented as mean ± SEM. *, significant difference (p<0.05) of 
RL TA muscle from contra-lateral control muscle; †, significant difference (p<0.05) from 
young treatment- matched control. 

   
Figure 3.9 CuZn superoxide dismutase (CuZnSOD) protein levels and 

activity increased with repetitive loading in the tibialis anterior muscles of young 
but not old rats.  (A) CuZn Superoxide dismutase (CuZnSOD) protein expression was 
determined in the total cytosolic fraction by western immunoblot. The data is expressed as 
optical density (OD) x band area, and expressed in arbitrary units. The inserts show 
representative blots for CuZnSOD and β-tubulin in young and aged (control and RL) TA 
muscle. The normalized data are presented as mean ± SEM. *, significant difference 
(p<0.05) of RL TA muscle from contra-lateral control muscle.  (B) CuZnSOD activity data 
is expressed as U of CuZnSOD per ml of homogenate per mg of protein.  The normalized 
data are presented as mean ± SEM. *, significant difference (p<0.05) of RL TA muscle 
from contra-lateral control muscle.  

 
Figure 3.10 Mn superoxide dismutase (MnSOD) protein levels increased 

with repetitive loading in tibialis anterior muscles of young rats. Mn Superoxide 
dismutase (MnSOD) protein expression was determined in the total cytosolic fraction by 
western immunoblot. The data is expressed as optical density (OD) x band area, and 
expressed in arbitrary units. The inserts show representative blots for MnSOD and β-
tubulin in young and aged (control and RL) TA muscle. The normalized data are presented 
as mean ± SEM. *, denotes significant difference (p<0.05) of RL TA muscle from contra-
lateral control muscle.  
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Figure 3.1 
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Figure 3.2  
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Figure 3.3 
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Figure 3.4 
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Figure 3.5 
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Figure 3.6 
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Figure 3.7 
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Figure 3.8 
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Abstract  
 
Aging is associated with increased oxidative stress that can be further elevated in 

skeletal muscle levels of oxidative stress are further elevated with exercise. The purpose of this 
study was to determine if dietary antioxidant supplementation would improve muscle function 
and cellular markers of oxidative stress in response to chronic repetitive loading in aging.  The 
dorsiflexors of the left limb of aged and young adult Fischer 344 Brown x Norway rats were 
loaded 3 times a week for 4.5 weeks using 80 maximal stretch-shortening contractions per 
session. The contralateral limb served as the intra-animal control. The rats were randomly 
assigned to a diet supplemented with Vitamins E&C or normal non-supplemented rat chow.  
Biomarkers of oxidative stress were measured in the tibialis anterior muscle.  Repetitive loading 
increased the muscle wet weight in all groups and maximal isometric force, negative and 
positive work in the young adult tibialis anterior muscle. Only positive work increased in the 
aged animals that were supplemented with Vitamin E&C. Markers of oxidative stress (H2O2, 
GSH/GSSG ratio, malondialdehyde and 8-OHdG) increased in the tibialis anterior muscles from 
aged and young adult animals with repetitive loading, but Vitamin E&C supplements attenuated 
this increase.  MnSOD activity increased with supplementation in the young adult animals.  
CuZnSOD and catalase activity increased with supplementation in young adult and aged 
animals and GPx activity increased with exercise in the non-supplemented young adult and 
aged animals.  The increased levels of endogenous antioxidant enzymes after Vitamin E&C 
supplementation appear to be regulated by post-transcriptional modifications that are affected 
differently by age, exercise and supplementation. These data suggest that antioxidant 
supplementation improves indices of oxidative stress associated with repetitive loading exercise 
and aging and improve the positive work output of muscles in aged rodents. 
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Introduction 
Aging causes deleterious modifications at genetic, cellular, tissue, and system levels in 

all organisms. Presently, the fundamental mechanisms of aging are poorly understood, but a 
growing body of evidence supports the idea that oxidative stress is an important contributing 
factor to deterioration of organ and cell function that is associated with aging (2, 13, 17, 38, 43). 

  
The age-associated loss of skeletal muscle mass and strength (i.e. sarcopenia), is an 

unavoidable part of aging. Sarcopenia is likely mediated, at least in part, by a lifetime of damage 
from oxidants.  This is likely because aging is associated with an increase in oxidant production 
and a decrease in the capacity to buffer oxidants, resulting in a chronic state of oxidative stress. 
Oxidative stress can damage biomolecules (DNA, lipids and proteins), decrease muscle protein 
synthesis, elevate apoptotic signaling and protein degradation (13).  Although exercise is one 
approach that may counterbalance sarcopenia, oxidative stress that is developed during muscle 
contractions may limit the ability of muscle from aged animals to hypertrophy in response to 
exercise (6, 28, 38).   

 
Vitamin E (i.e., α-tocopherol) and Vitamin C (i.e., ascorbic acid) are antioxidants that are 

thought to have a protective effect by either reducing or preventing oxidative damage. Lipid 
soluble Vitamin E prevents lipid peroxidation chain reactions in cellular membranes by 
interfering with the propagation of lipid radicals. Vitamin C is a water-soluble antioxidant found in 
the cytosol and extracellular fluid that can interact directly with free radicals, thus preventing 
oxidative damage (5). Due to their different sub-cellular locations, a combination of Vitamins E 
and C has been shown to have a better antioxidant effect than either of the two vitamins alone 
(35, 37).  

 
Oxidants generated near cellular membranes can oxidize Vitamin E forming a 

tocopheroxyl radical. Vitamin C may reduce the Vitamin E radical, thereby regenerating Vitamin 
E. This reaction forms the semi-dihydroascorbate (Vitamin C radical), which in turn is reduced 
by a glutathione (GSH)(37).  Rodents (7) and humans (3) that are deficient in Vitamin E show 
massive increases in pro-oxidant production and lipid peroxidation after exercise. Furthermore, 
low plasma concentrations of Vitamin E, associated with nutritional deficiencies often seen in the 
elderly (16, 25), have been shown to contribute to a decline in physical function within these 
individuals (3). In contrast, dietary supplementation of Vitamin E has been shown to increase 
tissue resistance to exercise-induced oxidative damage (19, 23, 30).  In addition, recent data 
suggests that antioxidant supplementation can stimulate muscle protein synthesis in aged rats, 
possibly through the protection of leucine metabolism (27).  Furthermore, Vitamin E and C 
supplementation combined with resistance training has been shown to both increase fat free 
mass and muscle mass index in older adults more than resistance training alone (24).  

 
Indicators of oxidative stress (lipid peroxidation measured by malondialdehyde (MDA)) 

have been shown to increase immediately after heavy resistance training in humans (30). MDA 
levels returned to baseline in subjects who consumed a diet that was supplemented with 
Vitamin E, whereas MDA levels continued to be elevated 24 hours after resistance exercise in 
the non-supplemented subjects (30).  However, this is not a universal finding because dietary 
supplementation with Vitamin E does not completely protect elderly men from oxidative damage 
caused by exercise (1). This may be due to low levels of Vitamin C in the elderly, which could 
reduce the effectiveness of Vitamin E to protect against exercise-induced damage in the elderly 
(1).  Thus, both Vitamins E and C may be important for effectively protecting muscles in aged 
people against oxidative damage. 
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Vitamin C is a highly effective water-soluble antioxidant primarily found in the cytosol 
and extracellular fluid.  Even in small amounts, Vitamin C can protect proteins, lipids, 
carbohydrates, and nucleic acids from damage by pro-oxidants generated during normal 
metabolism.  Vitamin E and glutathione also rely on Vitamin C for restoration back to their 
reduced isoforms.  Vitamin C supplementation has been reported to have a protective effect 
against exercise-induced muscle damage (20). Though some studies have shown that taking 
antioxidants such as Vitamins E and C will prevent damage to tissues by reducing oxidant 
production, chronic use of these antioxidants could hinder the positive adaptive response that 
exercise has on the endogenous antioxidant defense system (36).  It is not clear if Vitamin C 
has a direct role in muscle recovery from exercise, or if it has an indirect role in this process. 

 
Resistance training has been shown to be an effective means of increasing muscular 

size and strength, although the extent of the increase is attenuated with aging.  However, 
repetitive mechanical resistant-type loading exacerbates oxidative stress in muscles of aged 
rodents, whereas it appears to be well buffered in muscles of young adult animals (38). 
Oxidative stress increases in skeletal muscle after acute exercise; however, chronic exercise 
enhances the endogenous antioxidant defenses and decreases production of pro-oxidants 
resulting in lower indices of oxidative stress. Previous data have shown that aging reduces the 
adaptive capacity of muscle to buffer the increased oxidant production imposed by chronic 
repetitive loading. The reduced buffering capacity may compromise the muscles’ abilities to 
hypertrophy and/or to improve muscle function in aged animals.  

 
Although more work is needed in this area, the combined data suggest that antioxidant 

supplementation may be a potential strategy for reducing exercise-induced oxidative stress and 
reduce sarcopenia in the elderly. However, this is not a straight forward issue, because although 
Vitamin E and C supplementation will reduce oxidative stress post exercise, the reduction in 
oxidative stress may inhibit redox sensitive pathways that are associated with the positive 
adaptation to exercise.  

 
Previous work suggests that there is only a partial ability for endogenous antioxidant 

enzymes to compensate for the increased oxidative insult in tibialis anterior muscles of aged 
rats in response to chronic repetitive loading as compared to young adult animals (38). The 
current study tested the hypothesis that dietary supplementation with Vitamins E and C would 
lessen oxidant activity and oxidative damage in tibialis anterior muscles of aged rats subjected 
to chronic repetitive loading.  Furthermore, in this study we assessed whether dietary 
supplementation with Vitamins E and C would attenuate the increase in basal levels of oxidative 
stress associated with aging allowing for a more complete adaptation in oxidative enzymes and 
improvements in muscle function after 4.5 weeks repetitive loading in the aged rats.  

 
Methods 
Experimental design. The left tibialis anterior muscles of young (12 weeks of age; 

n=14) and old (30 months of age; n=14) Fischer 344 Brown x Norway rats were subjected to 
repetitive loading exercise.  Seven animals from each age group were randomly assigned to a 
diet supplemented with Vitamin E (30,000 mg/kg) and  Vitamin C (2% by weight), or normal 
non-supplemented (NS) rat chow containing 126 mg/kg of Vitamin E and 0% Vitamin C. All 
animals had free access to rat chow and water. The non-supplemented animals were a subset 
of animals described in another study (38).  All experimental procedures carried approval from 
the Institutional Animal Use and Care Committee from West Virginia University School of 
Medicine. The animal care standards were followed by adhering to the recommendations for the 
care of laboratory animals as advocated by the American Association for Accreditation of 
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Laboratory Animal Care (AAALAC) and fully conformed to the American Physiological Society's 
"Guiding Principles for Research Involving Animals and Human Beings." 

 
 Muscle function.  Maximal isometric muscle force, positive work, and negative 

work were assessed in the left exercised and right control limbs on a custom-built dynamometer 
(9).   The dorsi flexor muscle group was activated indirectly through electrical stimulation of the 
common peroneal nerve via platinum stimulating electrodes (Grass Medical Instruments, Quincy 
MA, USA). Muscle stimulation for all protocols was a 120 Hz square wave pulse at 200 µs pulse 
duration, and 4 volts.  Dorsiflexor isometric force was measured at an ankle angle of 90 deg 
using a 300 ms stimulation duration. Positive and negative work was calculated from stretch-
shortening contractions (9). The stretch-shortening contraction was performed by activating the 
dorsiflexor muscles for 300 ms then moving the load cell fixture from 70° to 140° at an angular 
velocity of 500°/s.  The load cell fixture was immediately returned to 70°.  Activation was 
continued for 300 ms after cessation of the movement. The change in force output over a 
training session was assessed by averaging the first three sessions as a pre value and the last 
three sessions as a post value and calculating the percent difference between the two. 

 
Unilateral repetitive loading exercise. Repetitive loading consisted of 3 sessions per 

week for 4.5 weeks, of 80 stretch/shortening (i.e., eccentric / concentric) contraction cycles per 
session (9). This method has been previously shown to produce a hypertrophic response in 
young adult rats (9) although aging attenuates the hypertrophic response to these loading 
conditions (9, 38).   

 
Muscle preparation.  Forty-eight hours after the last exercise session, the tibialis 

anterior of both loaded and control limbs were removed with the animal under anesthesia (2% 
isoflurane). The rats were then euthanized, via an overdose of ketamine/xylazine (30%/70%, 
v/v). The tibialis anterior muscles were washed in phosphate buffered saline (PBS) (137 mM 
NaCl, 2.7 mM KCl, 10 mM sodium phosphate dibasic, 2 mM potassium phosphate monobasic 
and a pH of 7.4), blotted dry then weighed.  A section of the muscle was obtained for the 
determination of the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). The 
remaining muscle was snap frozen in liquid nitrogen and stored at -80°C.  

 
RNA Isolation.  Sixty micrograms of frozen muscle was homogenized in 1ml of Tri-

Reagent (Molecular Research Center, Cincinnati, OH) with a motorized blade homogenizer.  
The RNA was isolated according to our standard procedures (31, 38).  The RNA was treated 
with DNAse I using a DNA-free kit (Ambion, Austin, TX) and quantified using a BioRad 
SmartSpec 3000.  The RNA samples were quantified if their 260:280 ratio was 1.7 or greater. 

 
Reverse Transcription-Polymerase Chain Reaction (RT-PCR).  Two micrograms of 

total RNA were reversed transcribed using 1.0μl of random primers, 1.0μl  of 10mM dNTP, and 
1.0μl of SuperScript II reverse transcriptase (Invitrogen/Life Technologies, Bethesda MD) as 
previously described (38).    The resulting complimentary DNA (cDNA) was stored at -80˚C or 
used for PCR analyses. 

 
 Primers for the genes of interest were designed as follows: CuZnSOD sense-5’-

AGGCCGTGTGCGTGCTGA-3’; anti-sense-5’-CCCAATCACACCACAAGCCA-3’; GPx-1 sense-
5’-CCTCGTGGCCTGGTGGTCCT-3’; anti-sense-5’-AGGGGTTGCTAGGCTGCTTGGA-3’.  The 
primers for MnSOD and catalase were the same as previously published by our lab (38). 
Preliminary experiments were conducted to ensure that the number of PCR cycles were 
completed in the linear range of amplification for each gene of interest.  PCR products were 
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verified by restriction digestion based on predicted PCR sequences. Routine PCR amplification 
was conducted using PCR buffer, MgCl2, 5mM dNTPs, 100ng/ml of primer pairs, 18S primer 
pairs, 1.0μl of Taq DNA polymerase, and1.0 μl of cDNA (38).  Amplification of PCR products 
were performed in a thermocycler using: a denaturing step at 95˚C for 45s, an annealing step 
for 45s, and an extension step at 72˚C for 45s.  20µl of each PCR product was separated by 
electrophoresis on 1.5% agarose gels.  The gels were stained with ethidium bromide to 
visualize the PCR products. The signal from each PCR gene product was expressed as a ratio 
to the 18S signal from the same PCR product.  The PCR signals were recorded via a digital 
camera (Kodak 290) and the signals were quantified in arbitrary units as optical density x band 
area, using 1D Kodak image analysis software (Eastman Kodak Company, Rochester, NY). 

 
 Muscle Protein Fractionation.  Cytoplasmic and nuclear protein fractions were 

obtained from 75  mg of frozen tibialis anterior using  methods as reported previously by our lab 
(38, 42).  Muscle samples were homogenized in 500 µl of ice-cold lysis buffer (10 mM NaCl, 1.5 
mM MgCl2, 20mM HEPES at pH 7.4, 20% glycerol, 0.1% Triton X-100, and 10µM dithioreitol) 
with a mechanical homogenizer.  A lower concentration of dithioreitol was used than in previous 
studies (38, 42),  to prevent interference with subsequent enzyme activity assays.  Muscle 
homogenates were centrifuged at 800 rpm for 5-minutes at 4°C.  The supernatants were 
collected and centrifuged three times at 3500g for 5-minutes at 4°C.  The resulting supernatant 
was collected as the nuclei-free cytosolic fraction and divided into two equal portions; the first 
portion was frozen at -80°C until needed, and  a protease inhibitor cocktail containing 104mM 4-
[2-aminoethyl]-benzenesulfonylflouride hydrochloride (AEBSF), 0.8mM aprotinin, 2mM 
leupeptin, 4mM bestatin, 1.5 mM pepstatin A and 1.4 mME-64 (Sigma-Aldrich, St. Louis, Mo, 
USA)  was added to the second portion before it was frozen at -80°C.  Protein concentrations 
for each sample were determined in triplicate via a DC protein concentration assay (Bio-Rad, 
Hercules, CA). The cytosolic fraction was used in the following assays: H2O2 concentration, 
catalase activity, GPx activity, CuZnSOD and MnSOD activity and western immunoblots.  

 
Western immunoblots.  The protein content of glutathione peroxidase-1 (GPx-1), 

catalase, copper-zinc superoxide dismutase, (CuZnSOD) and manganese superoxide 
dismutase (MnSOD) was measured in the cytosolic protein fractions.  Thirty μg of protein was 
loaded into each well of a 4-12% gradient polyacrylamide gel (Novex, Invitrogen) and separated 
by routine SDS-polyacrylamide gel electrophoresis (PAGE) for 1.5 hours at 20°C and 
transferred to a nitrocellulose membrane.  The membranes were blocked in 5% non-fat milk 
protein (NFM) for 1-hour at room temperature then incubated in appropriate dilutions of primary 
antibodies (diluted in 1% NFM in Tris-buffered saline with 0.05% Tween-20 (TBS-T) overnight at 
4°C.  The membranes were washed in TBS-T followed by incubation in appropriate dilutions of 
secondary antibodies (diluted in 5% NFM in TBS-T) that were conjugated to horseradish 
peroxidase.  The protein signals were developed using a chemiluminescent substrate (ECL 
Advanced, Amersham Bioscience) and visualized by exposing the membranes to X-ray films 
(BioMax MS-1; Eastman Kodak).  Digital records were captured by a Kodak 290 camera and 
protein bands quantified using 1-D analysis software (Eastman Kodak, USA).  The bands were 
quantified as optical density (OD) x band area and expressed in arbitrary units.     

  
 Hydrogen peroxide (H2O2) levels. A fluorescent H2O2 detection kit (Cell Technology, 

Mountain View, CA) was used to determine the amount of H2O2 in the muscle tissue. Reagents 
and standards were prepared as recommended by the manufacturer.  Briefly, 50μL of controls, 
samples, or H2O2 dilutions were mixed with 50μL of the reaction cocktail in each well to initiate 
the reaction.  The plate was incubated in the dark for 10 minutes, at 20°C and fluorescence was 
detected with an excitation at 530nm and measured at 590nm.  All analyses were done in 
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duplicate and the samples were normalized to muscle protein concentration in each sample via 
a DC protein concentration assay (Bio-Rad, Hercules, CA).  

 
 GSH and GSH/GSSG Ratio. Glutathione (GSH), oxidized glutathione (GSSG) and the 

GSH/GSSG ratio were determined by a BIOXYTECH GSH/GSSG-412 (Oxis International, 
Beverly Hills, CA) assay.  Muscle tissue (~40 mg) was homogenized immediately after 
dissection in 530 µl cold 5% metaphosphoric acid (MPA) for the GSH sample and for the GSSG 
sample ~40 mg of muscle tissue was homogenized immediately after dissection in 500 µl cold 
5% metaphosphoric acid (MPA) and 30µl of M2VO scavenger. Homogenates were then frozen 
in liquid nitrogen and stored at -80°C until analyzed.   

 
 The assay was preformed as described by the manufacturer. Briefly, cold 5% MPA 

was added to each sample mixed, and centrifuged at 1000 x g for 10 minutes. 50µl of sample 
and the appropriate buffer and 50µl of chromogen and enzyme were mixed and incubated at 
room temperature.  50µl of NADPH was added and the absorbance of each sample was read 
every 60 sec at 412 nm for three minutes.  The protein concentration for each sample was 
determined via a DC protein concentration assay (BIO RAD). Signals from each sample were 
normalized to the corresponding protein content of that sample.  

 
 Oxidative DNA damage as measured by 8-hydroxy-2’-deoxyguanosine (8-OHdG). 

DNA was extracted from the muscle via DNeasy Tissue Kit (Qiagen, Valencia, CA). DNA was 
used if it had a minimum 260:280 ratio of 1.8.   Oxidized DNA was determined on 50 µl of DNA 
by a BIOXYTECH 8-OhdG ELISA (enzyme linked immunoassay) according to the 
manufacturer’s recommendations (Oxis International, Beverly Hills, CA).  Briefly, DNA was 
incubated with the primary antibody, washed, and then incubated in secondary antibody.  The 
chromogen was added to each well, and incubated at room temperature in the dark for 15 
minutes. The reaction was terminated and the samples were read at an absorbance of 450 nm. 
Samples were normalized to the DNA concentration measured via a spectrophotmeter (ND-
1000, NanoDrop, Wilmington, DE).  All analyses were done in duplicate. 

 
Lipid peroxidation. Malondialdehyde (MDA) and 4-hydroxyalkenals (HAE) were 

measured as an indication of lipid peroxidation using the method and reagents from Oxis 
International, CA (BIOXYTECH LPO-586).  Briefly, ~100 mg of muscle was homogenized in ice-
cold PBS, containing 5 µL 0.5 M butylated hydroxytoluene (BHT) in acetonitrile per 1 ml of 
tissue homogenate.  The muscle homogenate was centrifuged at 3000 g at 4°C and the 
supernatant was used for the assay and protein determination. The muscle sample was 
incubated in the appropriate reagents according to the manufacturer’s instructions, and 
centrifuged at 15,000 g. An absorbance reading of the supernatant was obtained at 586nm.  
Samples were normalized for differences in the amount of muscle protein in each sample as 
determined by a DC protein concentration assay (Bio-Rad, Hercules, CA).  

 
Catalase Activity. A catalase activity assay kit (# 219265, EMD/Calbiochem, San 

Diego, CA) was used to determine the activity level of catalase in repetitively loaded and control 
muscles, according to the manufacturer’s recommendations.  All analyses were completed in 
duplicate and samples were read at an absorbance of 520nm. The data were normalized to 
muscle protein in each sample via a DC protein concentration assay (Bio-Rad, Hercules, CA).  

 
Manganese Superoxide Dismutase (MnSOD) and Copper-Zinc Superoxide 

Dismutase (CuZnSOD). A commercially available assay (#574601, EMD/Calbiochem, San 
Diego, CA) was used to measure total SOD and MnSOD activity. CuZnSOD was calculated by 
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subtracting the value for MnSOD activity from the total SOD activity.  The assay was performed 
with modifications to the manufacturer’s directions and all samples and standards were 
measured in duplicate.  Briefly, the muscle was homogenized in 20mM HEPES buffer, pH 7.2, 
containing 1mM EGTA, 210mM mannitol, and 70 mM sucrose and centrifuged at 1000g for 10 
minutes. The assay was performed in a 96-well plate with each sample being treated with and 
without 10µL of 12 mM potassium cyanide.   Potassium cyanide was used to inhibit CuZnSOD, 
resulting in the detection of only MnSOD activity.  The reagents and samples were protected 
from white light and incubated at 26°C for 20 minutes with periodic shaking.  The absorbance 
was measured at 450 nm using a 96-well plate reader (Dynex Tech., Chantilly VA., USA). 

 
 Glutathione Peroxidase (GPx). A commercially available cellular GPx assay 

(#35319, EMD/Calbiochem, San Diego, CA) was used to measure GPx activity in the cytosolic 
fractions of the muscle homogenates.  The assay was performed with several modifications to 
the manufacturer’s directions.  Briefly, a portion of each muscle was homogenized in a buffer 
containing 50mM Tris-HCl, pH 7.5, 5 mM EDTA, 1mM DTT. The homogenate was centrifuged 
at 10,000g for 15 min at 4°C and the supernatant was used for the assay.  All reagents and 
samples were equilibrated to 25°C and the remaining assay procedures followed manufacturer’s 
guidelines.  The absorbance was measured at 340 nm using a 96-well plate reader (DYNEX 
technologies, Chantilly Va., USA).  Each sample and control was performed in duplicate. 

 
 Statistical analyses.  Statistical analyses were performed using an SPSS 18.0 

software package. Statistical significance of the data was calculated by a multiple analyses of 
variance (MANOVA).  When significant F scores were indentified from the MANOVA, 
subsequent protected one-way analysis of variance followed by Tukey post-hoc tests were used 
to identify differences between means. Statistical significance was accepted at p< 0.05. Data 
are reported as mean ± standard error mean (SEM). 

 
Results 
Body Weight.  The average body weight of the aged animals was significantly (p<0.05) 

more than the young animals. A subset of the control non-supplemented animals used in this 
study was included in data reported previously (38). The body weight characteristics of all of the 
animals examined in this study are shown in Table 4.1. Bodyweight did not change over the 
course of the study in either the control or Vitamin E&C supplemented animals.  

 
Insert Table 4.1 
 
Muscle Wet Weight.  Repetitive loading for 4.5 weeks resulted in a significant increase 

in tibialis anterior muscle wet weight in the exercised limb of both the young adult (690 ± 20 mg 
vs. 780 ± 40 mg, p<0.05) and the aged adult (670 ± 30 mg vs. 720 ± 30 mg, p<0.05) non-
supplemented rats as compared with the contra-lateral control muscle. Similar results were 
observed in the exercised limb from Vitamin E&C supplemented rats, where the muscle wet 
weight of the tibialis anterior muscle from young adult rats increased 17.8% (720 ± 30 mg vs. 
850 ± 40 mg, p<0.05) and 7.7% (670 ± 30 vs. 720 ± 20 mg, p<0.05) in the aged adults (Figure 
4.1). 

 
Insert Figure 4.1 
 
Muscle Function. Maximal force, positive work and negative work were greater in 

control non-exercised muscles from young adult compared to aged rats. Maximal isometric 
force increased (p<0.05) by 48% in the young adult non-supplemented (0.053 ± 0.003 N/g body 
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weight vs. 0.082 ± 0.03 N/g body weight) and 40% Vitamin E&C supplemented (0.055± 0.007 
N/g body weight vs. 0.079 ± 0.006 N/g body weight) animals (Figure 2A) after the 14 repetitive 
loading sessions. Negative work was also similarly increased (p<0.05) by 35.7% in the young 
adult non-supplemented (2.93 ± 0.29 J/g body weight vs. 4.11 ± 0.22 J/g body weight) and 
31.9% Vitamin E&C supplemented (2.92 ± 0.21 J/g body weight vs. 4.03 ± 0.36 J/g body 
weight) animals at the end of the training period. Positive work increased (p<0.05) in the trained 
vs. control muscles of both the young adult non-supplemented (35.9%)(2.42 ± 0.13 J/g body 
weight vs. 3.45 ± 0.14 J/g body weight) and Vitamin E&C supplemented (30.6%) (2.51 ± 0.37 
J/g body weight vs. 3.39 ± 0.2 J/g body weight 9) rats. Furthermore, positive work increased by 
37.7% in the control non-exercised muscles of aged rats that consumed the Vitamin E&C 
supplemented diet (1.54 ± 0.3 J/g body weight vs. 2.34 ± 0.24 J/g body weight) compared to 
non-supplemented animals. 

 
Maximal isometric force and negative work were unchanged by exercise training in aged 

rats in either dietary group (Figure 4.2A and 4.2B).  Positive work improved in the aged animals 
that consumed the Vitamin E&C diet, but it did not change in the muscles of the aged non-
supplemented animals during the training period (Figure 4.2C).  

 
Insert Figure 4.2 
 
H2O2.   Muscle levels of H2O2 were elevated in the loaded muscles by 37.7% in young 

adult (543 ± 35 RFU/mg protein vs. 748 ± 45 RFU/mg protein) and 44.8% in aged muscles of 

the non-supplemented animals (696 ± 46 RFU/mg protein vs. 1008 ± 75 RFU/mg protein), 

suggesting a treatment effect and that chronic loading elevated oxidative stress.  Vitamin E&C 

supplementation lowered H2O2 in both control and repetitively loaded tibialis anterior muscle 

from young adult and aged rats (Figure 4.3). H2O2 concentration data expressed as a µmol/mg 

protein are discussed in the Limitation and Future Directions section within chapter 7. (Figure 

7.2) 

Insert Figure 3 
 
Total Glutathione.  Total glutathione in the tibialis anterior muscle was 33% lower in the 

non-exercised muscles of aged as compared with young adult rats (p<0.05). Vitamin E&C 
lowered the total glutathione concentration by 41% in the non-exercised control muscles from 
young adult animals (243 ± 46 µM/mg protein vs. 141 ± 18 µM/mg protein), but it did not alter 
total glutathione levels in non-exercised muscles of aged animals (Figure 4.4A). In the young 
adult non-supplemented animals, muscle levels of total glutathione were not improved with 
exercise training, however, exercise training increased total glutathione by 43% as compared to 
control muscles in young adult animals that were fed the vitamin E&C supplemented diet (141 ± 
18 vs. 203 ± 10 µM/mg protein) (Figure 4.4A).  In contrast, Vitamin E&C supplementation did 
not alter total glutathione in exercised muscles from aged rats (Figure 4.4A). 

 
GSH/GSSG ratio.  The GSH/GSSG ratio was not increased by training in muscles from 

young adult non-supplemented animals when comparisons were made to the control muscles 
(Figure 4B).  However, the tibialis anterior muscles from the aged non-supplemented animals 
had a significant reduction in the GSH/GSSG ratio in the loaded (p<0.05) muscles as compared 
to exercise-matched muscles in the young adult animals. The GSH/GSSG ratio was lower 
(p<0.05) in the loaded and control muscles of the aged non-supplemented rats as compared to 
the young adult non-supplemented rats.  The combination of Vitamin E&C supplementation and 
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repetitive loading significantly increased (p<0.05) the GSH/GSSG ratio by 36.1% in exercised 
tibialis anterior muscles from the young adult (16.9 ± 1.4 vs. 23 ± 2) animals as compared to the 
intra-animal control muscles. Vitamin E&C supplementation did not improve GSH/GSSG in the 
unexercised control muscles from young adult or aged animals (Figure 4.4B).  

 
 
Insert Figure 4.4 
 
Lipid Peroxidation. Aging increased the level of lipid oxidation by 79.6% as shown by 

greater MDA + HAE levels in control muscles from aged non-supplemented rats as compared to 
muscles from young adult non-supplemented animals (1.67 ± 0.2 µM/mg protein vs. 2.99 ± 1.7 
µM/mg protein, p<0.01; Figure 4.5A).  Repetitive loading appeared to activate adaptive 
responses in muscles of aged non-supplemented animals because MDA + HAE levels were 
lower in the loaded than control muscles of aged animals. Furthermore, Vitamin E&C 
supplementation suppressed the increase in lipid peroxidation associated with aging, but a 
combination of exercise and supplementation showed no greater decline in lipid peroxidation 
than either treatment did individually. No significant difference in MDA + HAE levels was 
observed among the control or chronically loaded muscles of either the non-supplemented or 
Vitamin E&C supplemented young adult animals, or the aged Vitamin E&C supplemented 
animals.   

 
DNA Damage.  The aged muscle showed a 33.4% increase (p<0.05) in the basal level 

of oxidative DNA damage (2.86 ± 0.28 ng/µg DNA vs. 3.82 ± 0.2 ng/µg DNA) as indicated by 
the increase in 8-OHdG detected in control muscles from aged non-supplemented animals as 
compared to the control muscles from young adult non-supplemented animals. Chronic 
repetitive loading did not change 8-OHdG in muscles of young adult (non-supplemented or 
Vitamin E&C) or aged non-supplemented animals. In young adult animals, Vitamin E&C 
supplementation lowered 8-OHdG levels in control muscles by 38.4% (2.86 ± 0.28 ng/µg DNA 
vs. 1.76 ± 0.2 ng/µg DNA) and by 19.9% in exercised muscles (2.59 ± 0.33 ng/µg DNA vs. 2.08 
± 0.28 ng/µg DNA). In aged rats, Vitamin E&C reduced 8-OHdG levels in control muscles by 
40.1% (3.82 ± 0.2 ng/µg DNA vs. 2.29 ± 0.28)  and by 20.4% in exercised muscles (4.13 ± 0.16 
ng/µg DNA vs. 3.29 ± 0.29 ng/µg DNA) when compared to animals that consumed the non-
supplemented control diet (Figure 4.5B).  

 
Insert Figure 4.5 
 
Glutathione Peroxidase (GPx).   
Enzyme Activity. There was a loading effect but no age effect on GPx activity in the rat 

non-supplemented tibialis anterior muscle. Chronic repetitive loading significantly increased 
GPx activity in muscles from both young adult (123%; 52.1 ± 13.1 mU/mg protein vs. 116.2 ± 
18.3 mU/mg protein) and aged non-supplemented animals (71.8%; 67.5 ± 21 mU/mg protein vs. 
116 ± 18.5 mU/mg protein). GPx activity was similar in muscles from non-supplemented young 
and aged rodents. Vitamin E&C supplementation lowered total GPx activity in the tibialis 
anterior muscle from both control (60%; 52.1 ± 13.1 mU/mg protein vs. 23 ± 6.3 mU/mg protein) 
and exercised muscles (194%; 116.2 ± 18.3 mU/mg protein vs. 45.6 ± 13 mU/mg protein) from 
young adult rats. GPx activity was also reduced in control (48%; 67.5 ± 21 mU/mg protein vs. 
34.7 ± 8 mU/mg protein) and exercised muscles (100%; 116 ± 18.5 mU/mg protein vs. 33.4 ± 13 
mU/mg protein) from aged animals. Repetitive loading exercise increased GPx activity in the 
muscles from young rats in the Vitamin E&C supplementation group, but had it no additive effect 
in the muscles from aged supplemented animals (Figure 4.6A).  
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GPx protein abundance. Protein levels for GPx-1 increased with Vitamin E&C 

supplementation in both young adult and aged muscle. Exercise did not have a significant effect 
on GPx-1 protein concentrations (Figure 4.6B).   

 
Changes in GPx mRNA. No significant differences were found among GPx-1 mRNA 

within any of the non-supplemented muscle samples. There was a 41.8% reduction in GPx-1 
mRNA expression in the Vitamin E&C supplemented tibialis anterior muscle from young control 
muscle, which was reversed in the exercised muscle from young Vitamin E&C supplemented 
animals. Vitamin E&C supplementation reduced GPx-1 mRNA expression in both control and 
exercised muscles from aged animals (Figure 4.6C). 

 
Insert Figure 4.6 
 
Catalase.  
Enzyme Activity. Catalase activity was significantly greater in the tibialis anterior 

muscle from all groups of the aged animals when compared to their treatment matched young 
adult counterparts. Repetitive loading did not significantly alter catalase activity in muscles from 
the non-supplemented young adult rats or aged rats, nor did it alter catalase activity in the 
muscle from young adult animals that were feed the Vitamin E&C supplemented diet. Catalase 
activity was significantly higher in control muscles of aged vs. young adult animals, and it 
increased in loaded muscles of aged animals as compared to young adult animals (p<0.05)  
(Figure 4.7A).   

 
Catalase protein abundance.  Repetitive loading exercise did not alter catalase protein 

abundance in the tibialis anterior muscles of any group. Similarly, catalase protein abundance 
was not altered by aging within the non-supplemented animals. Vitamin E&C supplementation 
increased catalase protein content by ~60% in the young adult control muscles as well as the 
aged control (~292%) and exercised (~246%) muscles when compared to their age-matched 
non-supplemented counterparts as determined by western blot analyses (Figure 4.7B).  

 
Changes in catalase mRNA. Catalase mRNA was significantly greater in muscles of 

young vs. aged rats. Exercise did not produce any significant changes in muscle catalase 
mRNA levels within the any of the animal groups. Supplementation with Vitamin E&C reduced 
catalase mRNA levels from both control and exercised tibialis anterior muscle in the young adult 
by 24.7% and 22.6%, respectively. In a similar fashion to young animals, catalase mRNA 
expression was 44.4% and 43.9%, lower in control and exercised muscles, respectively, of 
Vitamin E&C treated aged animals (Figure 4.7C). 

 
Insert Figure 4.7 
 
Copper-Zinc Superoxide Dismutase (CuZnSOD)  
Enzyme Activity. Repetitive loading increased CuZnSOD enzyme activity (p<0.05) by 

64.1% (2.34 ± 0.33 mU/mg protein vs. 3.84 ± 0.5 mU/mg protein in non-supplemented and 
35.7% (8.33 ± 1.2 mU/mg protein vs. 11.31 ± 2.18 mU/mg protein) in Vitamin E&C 
supplemented muscles from young adult animals as compared to the contra-lateral control 
muscles. No significant changes in enzyme activity were observed as a result of repetitive 
loading in the tibialis anterior muscle from aged animals. Surprisingly, Vitamin E&C 
supplementation increased CuZnSOD enzyme activity in control (255%; 2.34 ± 0.33 mU/mg 
protein vs. 8.33 ± 1.2 mU/mg protein) and repetitive loaded tibialis anterior muscles (195%; 3.84 
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± 0.5 mU/mg protein vs. 11.31 ± 2.18 mU/mg protein) of young animals. CuZnSOD enzyme 
activity was increased (20%; 4.32 ± 1.1 mU/mg protein vs. 5.2 ± 0.75 mU/mg protein) in 
repetitively loaded muscles of aged rats as compared to muscles that were obtained from non-
supplemented old animals (Figure 4.8A).   

 
 CuZnSOD protein abundance. CuZnSOD protein abundance was not different 

between muscles obtained from non-supplemented or Vitamin E&C supplemented young adult 
rats. CuZnSOD protein abundance was 118% greater (p<0.05) in non-exercised Vitamin E&C 
supplemented compared to non-supplemented control muscles from aged animals (1.88 ± 0.85 
vs. 4.12 ± 0.89) (Figure 4.8B).  

 
Changes in CuZnSOD mRNA. CuZnSOD mRNA content was lower in both non-

exercised and exercised muscles of aged rats in the Vitamin E&C supplemented group 
compared to aged rats in the non-supplemented group or in young adult animals of either diet 
group (Figure 4.8C).   

 
Insert Figure 4.8 
 
Manganese Superoxide Dismutase (MnSOD)  
Enzyme Activity. Vitamin E&C supplementation significantly increased MnSOD activity 

levels within both the control and repetitive loaded tibialis anterior muscle from the young adult 
animals. No changes in MnSOD activity were found in muscles from the aged animals (Figure 
4.9A).  

 
MnSOD protein abundance. MnSOD protein levels were 113% greater (p<0.05) in the 

repetitive loaded muscles of the young adult non-supplemented animals as compared to their 
contra-lateral control muscles (p<0.05). Nevertheless, aging prevented any loading-induced 
increase in MnSOD protein abundance in the tibialis anterior muscle. Young and aged animals 
that were given the Vitamin E&C diet had greater MnSOD protein abundance in the non-
exercised control muscle as compared to non-exercised muscles from non-supplemented 
animals. Repetitive loading decreased MnSOD protein abundance in the supplemented animals 
from both age groups (Figure 4.9B).  

 
Changes in MnSOD mRNA. The changes that were observed in MnSOD protein levels 

did not seem to be driven by the alterations in MnSOD mRNA. The only significant changes in 
MnSOD mRNA levels were found in the aged Vitamin E&C supplemented animals, where 
supplementation lowered mRNA levels in the tibialis anterior muscles from exercise control and 
repetitively loaded limbs (Figure 4.9C).  

 
Insert Figure 4.9 
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Discussion 
Oxidative damage has long been implicated as a factor that progresses the aging 

process (17). Oxidative damage occurs in both type I and type II fiber types of aged animals 
(12), and is thought to underlie at least part of the deterioration in skeletal muscle with aging (4, 
38).  The aim of this study was to investigate the efficacy of dietary antioxidant supplementation 
to improve oxidative stress in skeletal muscle in aged rodents in response to repetitive loading. 
We chose to examine the tibialis anterior muscle, because it is composed of predominantly type 
II fibers, which are thought to be more susceptible to oxidative stress than type I fibers because 
their antioxidant defenses are less extensive. It was hypothesized that dietary supplementation 
with Vitamin E&C would lessen the oxidant activity and oxidative damage in tibialis anterior 
muscles in an age-dependent manner.  The sub-hypothesis was that Vitamins E&C 
supplementation would attenuate the increase in basal levels of oxidative stress associated with 
aging, allowing for improved adaptation in oxidative enzymes and muscle function after 4.5 
weeks of repetitive loading in the aged rats.  The novel results of this investigation show that 
dietary supplementation with Vitamins E&C reduced oxidant levels in repetitively loaded 
muscles of aged rats, but there was no improvement in accumulation of muscle mass in the 
tibialis anterior muscle over 4.5 weeks of loading. Specifically, fortifying normal rat chow with 
Vitamin E&C, lowered the concentrations of H2O2, increased the ratio of GSH/GSSG, reduced 
indices of oxidative damage to DNA (8-OHdG) and cellular lipids (malondialdehyde & 4-
hydroxyalkenals) in repetitively loaded tibialis anterior muscles from young adult and aged rats.  
Vitamin E&C supplementation did not improve maximal force production after more than four 
weeks of repetitive loading in muscles of aged animals. However, importantly, positive work 
output improved after exercise training in the dorisflexors of aged animals that received the 
Vitamin E&C supplemented diet.   

 
Age-Related Adaptations of Muscle Weight to Repetitive Loading. Tibialis anterior 

muscle mass increased in response to 4.5 weeks of repetitive loading in aged rats (38), but the 
exercise-trained muscle in the aged animals only improved to a point that was similar to control 
untrained levels in the young adult animals.  These results are consistent with previous 
observations in rodents using the same loading approach as the current study (38), or other 
models of loading in rodents (11) and humans (22)  all showing that aging attenuates, but does 
not prevent muscle adaptation to loading  until very old ages (6, 33).  To our knowledge, this is 
the first report that has evaluated the aging-specific effects of repetitive resistance training in 
combination with Vitamin E&C supplementation on changes in muscle weight.  Contrary to our 
expectations, fortifying the diet with Vitamins E&C in an attempt to reduce oxidative stress 
during repetitive loading exercise did not provide any additive effect to improvements in muscle 
weight in either young adult or aged rats.  This implies that oxidative stress associated with 
aging may not be a limiting factor for protein accumulation in repetitively loaded muscles of 
aged animals. An alternative explanation is that the level of Vitamin E&C supplementation was 
too low to fully overcome any limitations to protein accumulation that occur in response to 
repetitive loading in muscles of aged rodents.  Likely the antioxidant capacity of muscles in 
young adult animals was already sufficient to balance loading-induced increases in oxidative 
stress, so that elevating antioxidants via Vitamins E&C did not provide any greater improvement 
in muscle hypertrophy.  

 
Age-Dependent Adaptations to Antioxidant Supplementation on Muscle function 

After Repetitive Loading.  Repetitive loading increased maximal isometric dorsiflexor force 
production by >40%, positive work (work performed during the concentric portion of each 
contraction) by >31%, and negative work (work performed during the eccentric portion of each 
contraction) by >30% in young adult rats.   The repetitively loaded tibialis anterior muscle weight 



Michael J. Ryan                        Chapter 4         77  
 
was not improved by the antioxidant supplementation, and since this muscle provides the 
greatest contribution to dorsiflexion, it is not surprising that Vitamin E&C supplementation did 
not further improve maximal dorsiflexion isometric force, or positive and negative work in the 
dorsiflexors of young adult rats. In contrast to the young adult rats, non-supplemented aged rats 
were unable to improve maximal force, positive or negative work over the training period. While 
Vitamin E&C supplementation did not improve either maximal force or negative work, the 
positive work was improved by ~ 38% in the aged rats that received the Vitamin E&C fortified 
diet. These findings indicate that although muscle size was not enhanced (and therefore 
maximal isometric force was not improved) by the antioxidant diet in the aged animals, the high 
oxidant environment of the aged muscle likely contributed to a rapid loss of force during each 
contraction in the non-supplemented animals. Vitamin E&C supplementation likely buffered (at 
least in part) the additional oxidant production imposed by repetitive loading, such that force 
was better maintained during each shortening contraction. As reactive oxygen species are 
mediators of muscle fatigue (34), it is therefore possible that Vitamin E&C acts to lower 
oxidative stress and thereby reducing fatigue within each contraction, and in doing so, improves 
positive work in muscles of aged animals. 

 
Aging Increases Oxidative Stress but Vitamin E&C Reduces Oxidative Stress in 

Loaded Muscles. Several studies report an age-related increase of lipid peroxidation,  oxidative 
modification to proteins, and DNA damage  (4, 8, 13, 38, 41).  Similarly, the results of the 
current study suggest that the tibialis anterior muscles from aged rats are under greater 
oxidative stress than muscles from young adult rats. In addition to the age-associated increase 
in oxidative stress, repetitive loading also elevated the oxidative load in skeletal muscles.  

 
H2O2. The increase that we observed in cytosolic H2O2 content in the exercised tibialis 

anterior muscle is consistent with previous data showing that muscle contractions increase 
oxidant production (4, 10, 23, 29, 30, 38). Hydrogen peroxide is a relatively stable pro-oxidant 
that in biological systems is most commonly produced from the dismutation of superoxide.  It is 
commonly assumed that during exercise most of the increases in H2O2 are the result of 
superoxide production.  

 
In general, this study supports the idea that Vitamin E&C supplementation increases the 

ability of the muscle to buffer oxidant production associated with aging and exercise. To the 
authors knowledge the current data are the first to show that Vitamin E&C supplementation 
directly lowers cytosolic H2O2 concentrations in both control and exercised tibialis anterior 
muscle from young adult and aged animals. It has been previously shown via electron spin 
resonance spectroscopy that Vitamin E supplementation lowers the concentrations of free 
radicals produced during 30 min of exhaustive swimming exercise, however this study did not 
further distinguish the type or location of radicals being produced (23).  Furthermore, no 
difference was reported in the muscles of non-exercised control animals (23). The majority of 
the data that report a decrease in oxidant production after exercise with Vitamin E&C 
supplementation have measured oxidative damage to lipids, protein and DNA, but they 
generally have failed to measure oxidant production (7, 19, 20, 24, 30, 35).  In the current study, 
Vitamin E&C supplementation lowered cytosolic H2O2 concentrations in the aged muscle to the 
same level as the young adult, and both the young adult and aged muscle from the 
supplemented animals were lower than the control limb of the young adult non-supplemented 
tibialis anterior muscle. These data suggest that fortification of the rat’s diet with Vitamins E&C 
was effective at increasing the oxidant buffering capacity, but combining exercise with 
supplementation did not further increase the buffering capacity of the tibialis anterior muscle to 
oxidative stress.  
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Glutathione. Total glutathione, and especially reduced glutathione (GSH), have 

important roles in protecting cells from oxidant damage. This protective function is achieved by 
direct conjugation with radicals as well as functioning as an electron donor in redox reactions. 
The redox reaction oxidizes GSH to GSSG while H2O2 and other peroxides are reduced (26).  
The ratio of reduced to oxidized glutathione (GSH/GSSG) is a good indicator of the redox status 
of the muscle.   The results of this study show that aging decreased both the total GSH 
abundance and the GSH/GSSG ratio in skeletal muscle. This suggests a reduced potential for 
buffering oxidative stress in aged muscles. In addition, the GSH/GSSG ratio was further lowered 
in repetitively loaded muscles of non-supplemented aged rats as compared to muscles in young 
adult animals. This indicates that aging reduced the ability to tolerate increased oxidative stress 
in chronically loaded skeletal muscles.  

 
Interestingly, total GSH was lower in muscles from Vitamin E&C supplemented young 

adult rats as compared to non-supplemented animals. In contrast, Vitamin E&C supplemented 
aged rats did not further reduce skeletal muscle GSH abundance. Nevertheless, Vitamin E&C 
supplementation increased the GSH/GSSG ratio in the both the young adult and aged tibialis 
anterior muscle after chronic repetitive loading exercise. These data are consistent with the 
H2O2 data, and together this is indicative of increases in oxidant production during exercise. 
These data suggest that aging increased oxidative stress and therefore lowered the GSH/GSSG 
ratio as compared to muscles in young adult animals, and that aging reduced that ability to 
tolerate increased oxidative stress in chronically loaded skeletal muscles. Furthermore, Vitamin 
E&C supplementation provided an effective buffer against oxidant stress in response to loading.  
It is not clear why the decrease in cytosolic H2O2 concentrations did not increase the 
GSH/GSSG ratio of non-exercised tibialis anterior muscle from young adult or aged animals 
receiving Vitamin E&C supplementation. 

 
Oxidative Damage to DNA. Oxidative DNA damage (8-OHdG) increased with aging but 

not with repetitive loading exercise. This is consistent with previous data which indicate that 
aging is associated with increases in oxidative DNA damage  (32, 38, 39). Furthermore, long-
term exercise does not appear to elevate oxidative damage to DNA (38, 39), although the 
mode, duration and intensity of the exercise along with sampling procedures, may play a 
significant role in determining the effect that chronic exercise has on increased oxidative DNA 
damage in skeletal muscle.  For example, in contrast to our current study using repetitive 
loading as a model of resistance exercise, 8 weeks of treadmill running resulted in an 
attenuation of the age-associated increase in 8-OHdG levels, and increased the activity of DNA 
repair in aged rats (32). It is likely that the differences in these studies are the result of the 
difference in the mode of exercise (high intensity, low duration vs. low intensity, high duration). 
Furthermore, chronic aerobic exercise has been shown to increase the mitochondria’s oxidant 
buffering capacity and reduce oxidant production via the mitochondrial electron transport chain, 
whereas chronic resistance training has not been shown to elicit the same degree of adaptation 
within the mitochondria. It is also important to note that mitochondrial DNA is more susceptible 
to oxidative damage than nuclear DNA, so aerobic exercise-induced changes of oxidative stress 
may provide significant protection to mitochondria DNA, whereas this would likely not occur with 
resistance types of exercise. In the current study, Vitamin E&C supplementation decreased the 
8-OHdG content in both young adult and aged muscle. This suggests that the antioxidant diet 
had a profound effect on buffering and reducing oxidative stress, resulting in lower DNA 
damage in muscles of both young adult and aged animals. Previous work has shown that 
Vitamin E supplementation decreased 8-OHdG in muscle of young men but supplementation 
failed to show a similar effect in elderly men (39).  The variability of the subjects’ heath/dietary 
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status might explain some of the variability in the different responses of subjects to antioxidant 
supplementation.  

 
Lipids.  In contrast to DNA, the current data suggests that the increase in cellular 

damage to lipids associated with aging can be attenuated after chronic repetitive loading. The 
beneficial effects of exercise on lowering levels of lipid peroxidation has been observed in 
previous investigations (1, 30, 38). The current study shows evidence that Vitamin E&C 
supplementation is as effective at reducing the elevated concentrations of MDA + HAE 
associated with aging as chronic repetitive loading alone. The current data is in agreement with 
previous work showing that aging increases oxidative stress (2, 4, 21) and that Vitamin 
supplementation (especially Vitamin E) protects lipids from oxidative damage (23) observed 
during exercise and aging. However, there was not an additive effect of combining exercise with 
Vitamin E&C supplementation. 

 
Adaptation of Antioxidant Systems to Repetitive Loading and Antioxidant 

Supplementation.  The current investigation measured transcription, protein levels and enzyme 
activity levels of endogenous antioxidant enzymes catalase, glutathione peroxidase, MnSOD 
and CuZnSOD . Overall the results do not support the likelihood that transcriptional control is a 
mechanism leading to increases in activity of the endogenous antioxidant enzymes. Instead,  
these data are consistent with the previously suggested notion that the endogenous antioxidant 
enzymes activities are regulated via various levels of post-transcriptional and/or post-
translational controls (18, 38).  However, the current data do not support the view that Vitamin 
E&C supplementation inhibits the positive adaptations to exercise within all of the endogenous 
antioxidant enzymes (36). The data in the current study suggest that there is an age-dependent 
effect of repetitive loading and Vitamin E&C supplementation within the tibialis anterior muscle. 
Vitamin E&C supplementation increased activity levels of catalase, MnSOD and CuZnSOD in 
both the exercise and control limbs from the young adult animals. There was no change in 
MnSOD activity but CuZnSOD and catalase also increased in the muscles of aged rats 
supplemented with Vitamins E&C. Although this not a universal finding (15, 36) our data are 
consistent with reports that antioxidant vitamin supplementation increases the activities of the 
enzymatic antioxidants in both healthy (40) as well as diseased animals with chronic elevations 
in oxidative stress (14).    

 
Antioxidant supplementation has been previously reported to have a detrimental effect 

on producing expected antioxidant adaptations to chronic training (15, 36). However, any 
detrimental effect may be due in part to the method of administering the supplement. For 
example, antioxidant supplementation after chronic training that is provided in a concentrated 
form (oral gavage or pill) likely induces a bolus effect and may reduce intestinal absorption.  
Whereas, in this study, rather than one mega dose, we provided the fortification of the animal’s 
food which would more likely represent more constant systemic levels of Vitamin E&C. It is not 
currently known how the endogenous antioxidants enzyme levels would respond to the long-
term effects of a diet fortified with Vitamin E&C taken throughout a period of chronic exercise, as 
compared to a single supplemented dose of Vitamin E&C that would be given after adaptation 
to chronic exercise.  

 
Conclusion 
The current study provides data to show that chronic exercise and Vitamin E&C 

supplementation lower indices of oxidative damage (i.e. 8-OHdG, MDA + HAE) associated with 
aging. However, repetitive loading and Vitamin E&C supplementation affected DNA damage 
and lipid peroxidation differently. This raises the possibility that aging and repetitive loading 
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exercise increase oxidant production via different mechanisms. Several potential mechanisms 
exist that include elevations of oxidative stress via neutrophils and other infiltrating immune 
cells, mitochondria respiration, NADPH oxidase or xanthine oxidase activity. This possibility 
warrants additional studies, because previous work has suggested that  aging increases oxidant 
production via the mitochondrial electron transport chain whereas exercise induced increase in 
muscle oxidants originate from multiple sources (4). 

 
Assessing effectiveness of Vitamin E&C supplementation in preventing exercise-induced 

oxidative stress has been difficult to determine from previous studies. This is the result of a wide 
variance in study designs and experimental conditions (i.e. subject/ animal species, 
experimental conditions, length of study, dose of supplement, means of supplement 
administration and mode of exercise). Nevertheless, the data in our current study clearly show 
that Vitamin E&C supplementation lessens the oxidant activity and oxidative damage in tibialis 
anterior muscles from young and aged rats subjected to chronic repetitive loading.  
Furthermore, Vitamin E&C supplementation attenuated basal levels of oxidative stress 
associated with aging. Muscle size and other functional measurements were unaffected by 
Vitamin E&C supplementation, in aged rats,  but there were important improvements in positive 
work in the aged animals after 4.5 week of repetitive loading that received the dietary 
supplementation. Additional studies are required to determine if skeletal muscles in elderly 
humans who supplement their diet with Vitamin E&C during chronic resistance types of muscle 
loading, will respond in a similar fashion to the rodents in the current study.  
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Table Legend 
Table 4.1 Body Mass of Young and Aged Rats Pre and Post 14 sessions of 

repetitive loading.  Data are mean ± SEM and presented as the mass of the rats before the 
first exercise session and after the 14th training session in grams.  †, indicates a significant 
difference (p<0.05) from young exercise and diet-matched control rats. NS, non-supplemented 
diet. 

 
Figure Legends 
Figure 4.1 Repetitive loading induces muscle hypertrophy in the Tibialis Anterior 

Muscle.  Tibialis anterior muscle wet weight is reported for young and aged rats that received 
no dietary supplement (NS) or a diet supplemented with Vitamin E&C (Vit E&C). Data are 
expressed as mean ± SEM.  *, significant difference between age-matched control and 
repetitive loaded TA muscle assigned at p<0.05; †, a significant difference (p<0.05) from young 
exercise and diet-matched control muscles; §, significant difference (p<0.05) from age-matched 
animals on the non-supplemented diet. 

 
Figure 4.2 Repetitive loading increased muscle functional measurements in young 

adult dorsiflexor muscles while maintaining function in aged dorsiflexor muscles.  (A) 
Maximal isometric force generated in the dorsiflexors from young and aged rats during each of 
the 14 training sessions.  Data are expressed as the average maximum isometric force for all 
animals in Newtons (N) normalized to body mass (BM) in grams (g) produced during each 
exercise session ± SEM. There was no significant difference in muscle wet weight of the 
animals in the two diet groups. (B) Negative work generated from a single eccentric/concentric 
movement performed at the start of each training session from the young and aged dorsiflexor 
muscles during each of the 14 training sessions.  There was not a significant difference between 
diets. (C) Positive work generated from a single eccentric /concentric movement preformed at 
the start of each training session from the young and aged dorsiflexor muscles during each of 
the 14 training sessions.  §, indicates that there was a significant difference (p<0.05) from age-
matched animals on the non-supplemented (NS) diet. Data are expressed as the mean ± SEM. 
The solid line represents the linear regression for all age-matched points. Maximal isometric 
force, negative work and positive work generated from the young animals was significantly 
different (p<0.05) from aged dorsiflexor muscles at all time points.    

 
Figure 4.3 Vitamin E&C supplementation attenuated the increase in hydrogen 

peroxide (H2O2) concentration associated with exercise & aging.  The H2O2 concentration 
was determined fluorometrically.  The data are expressed as mean ± SEM of relative 
fluorescent units (RFU) per mg of total protein homogenate.  *, significant difference (p<0.05) 
between age-matched repetitively loaded muscle and contra-lateral control muscle; †, a 
significant difference (p<0.05) between young exercise and diet-matched control muscles; §, 
significant difference (p<0.05) between age-matched muscles from animals on the non-
supplemented (NS) diet. 

 
Figure 4.4 Ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) & total 

glutathione content.  (A) Data are depicted as the ratio of GSH to GSSG normalized to total 
protein content.  Lower ratios are an indication of increased oxidative stress. (B) Data indicate 
total glutathione concentration normalized to total protein content. The normalized data are 
presented as mean ± SEM.  *, significant difference (p<0.05) between age-matched repetitively 
loaded muscle and contra-lateral control muscle; †, a significant difference (p<0.05) between 
young exercise and diet-matched control muscles; §, significant difference (p<0.05) between 
age-matched muscles from animals on the non-supplemented (NS) diet. 
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Figure 4.5 Vitamin E&C supplementation decreased evidence of oxidative damage 

associated with repetitive loading exercise and aging. (A) The data represent oxidative 
damage as indicated by malondialdehyde (MDA) plus 4-hydroxyalkenals (HAE) normalized to 
total protein content. (B) Data are provided as mean ± SEM and they are expressed as the 
nannogram concentration of 8-hydroxy-2’-deoxyguanosine (8-OHdG) per µg of DNA; *, 
significant difference (p<0.05) of repetitively loaded muscle from contra-lateral control muscle; 
†, a significant difference (p<0.05) from young exercise and diet-matched control muscles; §, 
significant difference (p<0.05) from age-matched animals on the non-supplemented (NS) diet. 

 
Figure 4.6 Glutathione peroxidase (GPx) regulation with repetitive loading and 

Vitamin E&C supplementation. (A) Total GPx activity was expressed as mU of GPx per ml of 
muscle homogenate normalized per mg of protein in the homogenate.  (B) GPx-1 protein 
expression was determined in the total cytosolic fraction by western immunoblots. The data are 
expressed as optical density (OD) x band area, and presented as relative optical density. The 
inserts show representative blots for GPx-1 and β-tubulin in young and aged (control and 
repetitive loading) tibialis anterior muscle. (C) GPx-1 mRNA expression was determined by RT-
PCR. The data are expressed as optical density (OD) x band area, and presented as relative 
optical density. The inserts show representative gels for GPx-1 mRNA and 18s rRNA in young 
and aged (control and repetitively loaded) muscle. All data are presented as mean ± SEM; *, 
significant difference (p<0.05) between  age-matched repetitively loaded muscle and contra-
lateral control muscle; †, a significant difference (p<0.05) between young exercise and diet-
matched control muscles; §, significant difference (p<0.05) between age-matched animals on 
the non-supplemented (NS) diet; C, control; RL, repetitively loaded; Y, young; A, aged; E&C, 
diet supplemented with Vitamin E&C. 

 
Figure 4.7 Catalase regulation with repetitive loading and Vitamin E&C 

supplementation. (A) Catalase activity was determined at 520 nm and expressed as nM of 
catalase per ml of homogenate normalized per mg of protein in homogenate.  (B) Catalase 
protein expression was determined in the total cytosolic fraction by western immunoblots. The 
data are expressed as optical density (OD) x band area, and presented as relative optical 
density. The inserts show representative blots for catalase and β-tubulin in young and aged 
(control and repetitively loaded) muscles. (C) Catalase mRNA expression was determined by 
RT-PCR. The data are expressed as optical density (OD) x band area, and presented as 
relative optical density. The inserts show representative gels for catalase mRNA and 18s rRNA 
in young and aged (control and repetitively loaded) muscles.  All data are presented as mean ± 
SEM; *, significant difference (p<0.05) between age-matched repetitively loaded muscle and 
contra-lateral control muscle; †, a significant difference (p<0.05) between young exercise and 
diet-matched control muscles; §, significant difference (p<0.05) between age-matched animals 
on the non-supplemented (NS) diet; E&C, diet supplemented with Vitamin E&C; C, control; RL, 
repetitively loaded; Y, young; A, aged.  

 
Figure 4.8 CuZn superoxide dismutase (CuZnSOD) regulation with repetitive 

loading and Vitamin E&C supplementation. (A) CuZnSOD activity was expressed as mU of 
CuZnSOD per ml of homogenate normalized per mg of protein in homogenate.  (B) CuZnSOD 
protein expression was determined in the total cytosolic fraction by western immunoblot. The 
data are expressed as optical density (OD) x band area, and presented as relative optical 
density. The inserts show representative blots for CuZnSOD and β-tubulin in young and aged 
(control and repetitive loading) TA muscle. (C) CuZnSOD mRNA expression was determined by 
RT-PCR. The data are expressed as optical density (OD) x band area, and presented as 
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relative optical density. The inserts show representative gels for CuZnSOD mRNA and 18s 
rRNA in young and aged (control and repetitively loaded) muscle. All data are presented as 
mean ± SEM; *, significant difference (p<0.05) between  age-matched repetitively loaded 
muscle and contra-lateral control muscle; †, a significant difference (p<0.05) between young 
exercise and diet-matched control muscles; §, significant difference (p<0.05) between age-
matched animals on the non-supplemented (NS) diet; E&C, diet supplemented with Vitamin 
E&C; C, control; RL, repetitively loaded; Y, young; A, aged. 

 
Figure 4.9 Mn superoxide dismutase (MnSOD) regulation with repetitive loading 

and Vitamin E&C supplementation. (A) MnSOD activity was determined after inhibiting 
CuZnSOD activity by potassium cyanide. MnSOD was expressed as mU of MnSOD per ml of 
homogenate normalized per mg of protein in homogenate.  (B) MnSOD protein expression was 
determined in the total cytosolic fraction by western immunoblot. The data are expressed as 
optical density (OD) x band area, and presented as relative optical density. The inserts show 
representative blots for MnSOD and β-tubulin in young and aged (control and repetitively 
loaded) muscle. (C) MnSOD mRNA expression was determined by RT-PCR. The data are 
expressed as optical density (OD) x band area, and presented as relative optical density. The 
inserts show representative gels for MnSOD mRNA and 18s rRNA in young and aged (control 
and repetitive loaded) muscle. All data are presented as mean ± SEM; *, significant difference 
(p<0.05) between  age-matched repetitively loaded muscle and contra-lateral control muscle; †, 
a significant difference (p<0.05) between young exercise and diet-matched control muscles; §, 
significant difference (p<0.05) between age-matched animals on the non-supplemented (NS) 
diet; E&C, diet supplemented with Vitamin E&C; C, control; RL, repetitively loaded; Y, young; A, 
aged. 
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Abstract 
  
This study tested the hypothesis that resveratrol supplementation would lower oxidative 

stress in exercised muscles of aged mice. Young (3 mo) and aged (27mo) C57BL/6 mice 
received a control, or a 0.05% trans-resveratrol supplemented diet. Twenty maximal electrically-
evoked isometric contractions of the plantar flexors of one limb were obtained in anesthetized 
mice for 3 consecutive days. Resveratrol supplementation blunted the exercise-induced 
increase in xanthine oxidase activity in muscles from young (25%) and aged (53%) mice.  
Resveratrol lowered H2O2 levels in control (13%) and exercised (38%) muscles from aged 
animals, and increased the ratio of GSH/GSSG in exercised muscles from young (38%) and 
aged (135%) mice. Resveratrol prevented the increase in lipid oxidation, increased catalase 
activity, and increased MnSOD activity in exercised muscles from aged mice. These data show 
that dietary resveratrol reduces muscle indicators of oxidative stress in response to isometric 
contractions in aged mice. 
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Introduction 
The causes of decreased muscle function associated with advanced aging are 

multifactoral and include, muscle atrophy (sarcopenia), alterations in motor unit activity and 
declines in metabolic efficiency. Exercise is a countermeasure that is partially effective in 
reversing the loss of muscle function. While muscles in aged mammals will effectively adapt to 
chronic resistance exercise, via improved muscular strength and muscle fiber hypertrophy, 
these adaptations are generally smaller than that reported in muscles from younger adult 
humans and animals (30, 41). The mechanisms that regulate this attenuated adaptation to 
resistance exercise with advanced aging (12)  are unknown, but it is possible that this may be 
mediated, at least in part, by the detrimental systemic effects associated with elevated oxidative 
stress (16).   

 
The additive effects of an increase in oxidant production and an attenuated antioxidant 

buffering capacity leaves aged skeletal muscles more vulnerable to oxidative stress and  
subsequently, oxidative damage.  Age-related increases in oxidative stress have been 
associated with diminished muscular strength and physical performance (6).  Specifically, 
elevated levels of oxidants have been shown to depress muscle force (2), alter myofilament 
function (2, 28, 29) and increase recovery time following injury (27, 38).  

 
The xanthine oxidase system has been shown to be an important source of oxidant 

production in the vascular endothelium (23) and also a contributing factor to oxidative stress 
during strenuous exercise (17, 42, 47).  A high demand on anaerobic metabolism, coupled with 
intermittent localized obstruction of blood flow and subsequent reperfusion within contracting 
muscles raises the question as to whether xanthine oxidase may also be an important source of 
oxidant production during intense resistance exercises. Previous studies have observed that 
after resistance training, type II fibers are preferentially hypertrophied in both young and aged 
muscle (30, 40).  Additionally, type II fibers tend to be more susceptible to oxidative damage 
than type I fibers (35), therefore the increased oxidant production associated with aging could 
preferentially limit the ability of type II fibers to adapt to exercise training.   

 
Resveratrol (3,4',5-trihydroxystilbene), is a fat-soluble phytoalexin that over the past few 

years has gained recognition as an effective antioxidant and anti-aging nutraceutical (5, 37, 39).  
In vitro experiments with high doses of resveratrol have shown resveratrol to be effective at 
scavenging oxidants (46) and inhibiting low density lipoprotein (LDL) oxidation (10).  Whereas 
high concentrations of resveratrol appear to be an effective antioxidant (8, 46),  there is 
currently little evidence to show that a low concentration of resveratrol supplementation is an 
effective oxidant scavenger in vivo (9).  Resveratrol appears to improve muscle function in 
response to aerobic exercise. However, it is not clear if this is related to an antioxidant function 
of this compound. Furthermore, it is not known if resveratrol would reduce oxidative stress, 
including xanthine oxidase activity, oxidative damage, and/or muscle fatigue associated with 
acute resistance types of exercise. This is an important question to be considered in designing 
exercise programs for the elderly, because resistance types of exercise have been shown to 
develop considerable oxidative stress (41) and this coupled with an age-related elevation in the 
basal levels of oxidative stress within skeletal muscle may increase the susceptibility of aged 
muscle to oxidative damage with exercise.   

 
 The objective of this investigation was to evaluate the efficacy of dietary resveratrol to 

attenuate oxidative stress that is induced via isometric contractions in muscles of aged rodents. 
Isometric exercise provides an approach that eliminates the potential for oxidant production to 
be the result of muscle damage related to inflammatory cell infiltration that has been observed in 
the muscles of aged animals in response to concentric and eccentric repetitive loading exercise 
(4). In the present investigation, it was hypothesized that resveratrol would reduce the indices of 
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isometric exercise-induced oxidative stress in muscles of aged mice.  Furthermore, we 
hypothesized that resveratrol supplementation would improve muscle function and attenuate the 
loss of force during acute repetitive isometric contractions from muscles of aged mice. 

 
Methods 
Animals. Experiments were conducted on 16 young adult (3-5 month) and 16 aged (26-

28 month) C57BL/6 mice obtained from the National Institute on Aging colony (Harlan, 
Indianapolis, IN). The mice were housed in pathogen-free conditions at ~20oC. All mice had free 
access to water and either a control diet (N=8 young adult & N=8 aged) (AIN-76A Rodent Diet, 
Research Diets Inc, New Brunswick, NJ), or an identical diet that contained 0.05% resveratrol ( 
N=8 young adult & N=8 aged) (Research Diets Inc, New Brunswick, NJ) for a total 10 days. The 
mice were given the experimental diet (control or resveratrol) for seven (7) days prior to the first 
exercise session and then kept on the same diet throughout the three (3) days exercise.  
Resveratrol was purchased from Orchid Pharmaceuticals (Nungambakkam, India). All 
experimental procedures carried approval from the Institutional Animal Use and Care 
Committee from West Virginia University School of Medicine. The animal care standards 
followed the recommendations for the care of laboratory animals as advocated by the American 
Association for Accreditation of Laboratory Animal Care (AAALAC) and fully conformed to the 
American Physiological Society's "Guiding Principles for Research Involving Animals and 
Human Beings." 

 
Isometric Exercise.   Mice were anesthetized with a mixture of oxygen (97%) and 

isoflurane gas (3%) using a small animal anesthetic system (Isotec 5, Ohmeda). The left knee 
was secured in flexion by placing a metal rod on the lateral side of the knee. The left foot was 
secured to a footplate connected to a servomotor (Cambridge Technology Inc. Model 6350*350, 
Cambridge, MA.  The ankle joint was aligned with the axis of rotation of the servomotor.  
Electrically evoked contractions of the plantar flexor muscles were accomplished by electrically 
stimulating (10v, 100 Hz, 200 μs pulses) the tibial nerve via inserting platinum electrodes (Grass 
Medical Instruments) through the skin so that they were flanking either side of the nerve. The 
left plantar flexor muscle group from each animal was subjected to 20, electrically evoked, five 
second isometric contractions (10v, 100 Hz, 200 μs pulses) with a 25 second recovery period 
between contractions, resulting in a daily 10 minute session for three consecutive days. The 
contralateral limb served as an intra-animal control.   

 
Muscle functional data were collected as a force x time curve during isometric 

contractions for each session.  The exercise sessions were performed on a custom-built mouse 
dynamometer.  Briefly, the mouse was placed on a heated plate (37°C) with its right side down. 
Dynamic Muscle Control (DMC) software (Aurora Scientific Inc., Aurora, Ontario, Canada) was 
used to control the servomotor providing for the angular position of the foot.  Muscle 
contractions were stimulated using a High-Power Bi-Phase Current Stimulator (Aurora Scientific 
Inc., Aurora, Ontario, Canada). Data files from the DMC software were analyzed by the 
Dynamic Muscle Analysis software (Aurora Scientific Inc., Aurora, Ontario, Canada).   

 
Muscle levels of hydrogen peroxide (H2O2).  H2O2 content in control and exercised 

mouse gastrocnemius muscles was measured by a fluorescent assay according to the 
manufacture’s recommendations (Cell Technology, Mountain View, CA). The sample 
fluorescence was detected at an excitation of 530nm and measured at 590nm.  All analyses 
were completed in duplicate. The data from the tissue samples were normalized to the muscle 
protein concentration of each sample, as measured by a DC protein concentration assay (Bio-
Rad Hercules, CA). Each sample and standard was performed in duplicate. 
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Total Glutathione & reduced glutathione/oxidized glutathione (GSH/GSSG) content 

of aged & exercised muscles.   A BIOXYTECH GSH/GSSG-412 (Oxis International, CA) 
assay kit was used to determine the total glutathione and the GSH/GSSG ratio in control and 
exercised gastrocnemius muscles of young and aged mice. For total GSH measurements, 
approximately 40 mg of fresh muscle was homogenized immediately after dissection in 530 µl of 
cold 5% metaphosphoric acid (MPA).  GSSG was obtained on tissue samples after 
homogenization in 500 µl cold 5% metaphosphoric acid (MPA) and 30µl of a M2VO scavenger. 
The tissue homogenates were flash frozen and stored at -80°C until time of analysis.   

 
 The assay was conducted according to the recommendations of the  manufacturer and 

as described previously (41). The reaction was imitated by adding 50µl of NADPH and the 
absorbance of each sample was read every 60 sec at 412 nm for three minutes.  The protein 
concentration of each sample was measured with a DC protein concentration assay (Bio-Rad 
Hercules, CA). The optical density from each sample was normalized to the protein content of 
the respective sample. Each sample and standard was performed in duplicate. 

 
 Muscle levels of Xanthine Oxidase activity.   An Amplex Red® xanthine oxidase 

assay (#A22182, Invitrogen, Eugene, OR) was used to measure xanthine oxidase activity, 
xanthine and hypoxanthine concentration in the gastrocnemius muscle homogenates by 
following the manufacturer’s suggestions.  Briefly, tissue homogenates were mixed with 100 μM 
Amplex Red®, 0.4 U/mL horseradish peroxidase and 200 μM hypoxanthine and incubated at 
37°C in the dark. Fluorescence was measured in a microplate reader using an excitation of 530 
nm and emission detection at 590 nm. Each sample was corrected for background fluorescence 
and then normalized to protein concentrations (Bio-Rad Hercules, CA) of the original samples. 
Hypoxanthine and xanthine were measured in the same manner; however, xanthine oxidase 
was used in the assay instead of hypoxanthine. Relative concentrations of hypoxanthine and 
xanthine concentrations were determined by comparing sample values relative fluorescent units 
(RFU). Each sample and standard was performed in duplicate. 

 
Muscle levels of lipid peroxidation. Malondialdehyde (MDA) and 4-hydroxyalkenals 

(HAE) were measured using Bioxytech LPO-586 reagents (Oxis International, CA)  as an 
indicator for the levels of lipid peroxidation in the gastrocnemius muscle samples as described 
previously (41).  Briefly, ~75mg of muscle was homogenized in ice-cold PBS containing 0.5 M 
butylated hydroxytoluene in acetonitrile.  The tissue samples were homogenized and the 
supernatant was used for the lipid peroxidation assay and also to determine the protein content 
of the sample. The resulting optical density signals were measured with an absorbance at 
586nm (DYNEX technologies, Chantilly Va., USA).  The protein content of the sample was 
determined (Bio-Rad, Hercules, CA) and used to normalize the optical density of each sample.  
Each sample and standard was performed in duplicate. 

 
Glutathione Peroxidase in exercised and control muscles. Cellular glutathione 

peroxidase  was used to measure glutathione peroxidase activity in gastrocnemius muscle 
homogenates according to the manufacture’s recommendations (#35319, EMD/Calbiochem, 
San Diego, CA), and as previously described (41).  Briefly, muscle samples were homogenized 
in PBS (pH 7.5) containing 5mM EDTA and 1mM DTT, and then centrifuged. The supernatant 
was used for the glutathione peroxidase assay. The resulting absorbance was measured at 340 
nm (DYNEX technologies, Chantilly Va., USA).  Each sample and standard was performed in 
duplicate. 

 
Catalase activity. The activity of catalase was determined in gastrocnemius muscle 

homogenates (# 219265, EMD/Calbiochem, San Diego, CA) as described previously (41). The 
samples were read on a microplate reader (DYNEX technologies, Chantilly, VA) at an 
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absorbance of 520nm. All analyses were measured in duplicate and the samples were 
normalized to the corresponding protein concentration (Bio-Rad Hercules, CA).  

 
Activity levels of Manganese Superoxide Dismutase (MnSOD) and Copper-Zinc 

Superoxide Dismutase (CuZnSOD). Superoxide dismutase was measured using a 
commercially available SOD Assay Kit II (#574601, EMD/Calbiochem, San Diego, CA). Both 
total SOD and MnSOD activity were obtained. CuZnSOD was determined from assuming that 
CuZnSOD was the result of subtracting MnSOD activity from the total SOD activity.  The assay 
was performed with slight modifications to the manufacturer’s directions and all samples and 
standards were measured in duplicate as described previously by our laboratory (41).  Briefly, 
gastrocnemius muscle samples were homogenized in (20mM HEPES buffer, containing 1mM 
EGTA, 210mM mannitol, and 70 mM sucrose and the insoluble material was discarded. The 
supernatant was incubated either with, or, without, 12 mM potassium cyanide to inhibit 
CuZnSOD and extracellular SOD activity.  The sample absorbance was measured at 450 nm 
using a 96-well plate reader (Dynex Tech., Chantilly VA., USA). 

 
mRNA levels of endogenous antioxidant enzymes. mRNA for GPX-1, Catalase, 

MnSOD and CuZnSOD were measured in the gastrocnemius muscle using reverse 
transcription-polymerase chain reaction (RT-PCR) according to methods previously published 
by our laboratory (41, 44).  Briefly, total RNA was reversed transcribed using random primers, 
dNTP, and SuperScript II reverse transcriptase (Invitrogen/Life Technologies, Bethesda, MD).   
The primers for CuZnSOD, MnSOD, GPx-1, and catalase have been previously described (41). 
The signal from the gene was expressed as a ratio to the 18S signal from the same PCR 
product.  The PCR product from each reaction was separated by agarose gel electrophoresis. 
The gels were stained with ethidium bromide and the resulting signals were digitally captured 
(Kodak 290) and the signals were quantified using 1D Kodak image analysis software (Eastman 
Kodak Company, Rochester, NY). 

 
Statistical analysis. All statistical analyses were performed using SPSS software 

package (version 13, Chicago, IL). Comparison of means was determined using analyses of 
variance (ANOVA) to examine the main effect of aging, exercise and resveratrol 
supplementation. Pair-wise comparisons were assessed post hoc using least significant 
difference (LSD) tests. Statistical significance was established at p < 0.05. Data are reported as 
mean ± standard error mean (SEM). 

 
Results 
Body Weights and Food Intake. The average body weight of the aged animals was 

significantly (p<0.05) more than the young animals (33.0 ± 0.8g vs. 25.5 ± 0.7g). There was not 
a significant difference in body weight between non-supplemented and resveratrol 
supplemented animals, in either age group.  Similarly, there was no observed difference in food 
intake between the control and resveratrol supplemented diets. While young adult animals had 
a similar food consumption (3.1 ± 0.3 g/day) as aged animals (3.8 ± 0.4 g/day),  when 
normalized to body weight, the young animals received a greater amount of resveratrol per day 
(156.1 ± 18.1 g resveratrol/kg BW vs. 113.5 ± 26.5 g resveratrol/kg BW). 

 
Muscle Functional Measurements. Maximal isometric plantar flexion force was 

recorded for each evoked contraction. Data was plotted as a force x time curve for each 
isometric contraction from each session. Representative data of the first and last contraction 
from the third day in the young adult (Figure 5.1C&D) and aged (Figure 5.1E&F) mice is shown 
in Figure 5.1. The greatest contributor to plantar flexion is the gastrocnemius muscle.  The 
maximal isometric force recorded on the third day (which was the first contraction of that day) 
was normalized to the animal’s body weight. Maximal plantar flexion isometric force normalized 
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to body weight was 25% and 27% greater in young adult than aged animals that consumed the 
control or the resveratrol supplemented diet, respectively. Resveratrol supplementation did not 
have a significant influence on maximal isometric force in either the young adult or the aged 
animals (Figure 5.1A).  

 
The fatigability of the plantar flexors within each training session was assessed by 

comparing the net loss of force from the first contraction of the session to subsequent 
contractions. Neither aging, nor resveratrol, had any significant affect on the maximal force 
produced during the first five contractions of the exercise session. However, after the fifth 
contraction, on the third day, the aged animals on the control diet and the aged animals on the 
resveratrol diet showed a greater maintenance of force than young animals on the control diet 
(p<0.05). No significant differences in fatigability were observed in the aged animals that 
received control, or resveratrol supplemented diets, whereas, young animals who were 
supplemented with resveratrol showed an improved maintenance of force over the exercise 
session (Figure 5.1B). 

 
Insert Figure 5.1 
 
Muscle levels of H2O2.   H2O2 was measured in gastrocnemius muscle homogenates as 

an indicator of oxidant production in basal and exercised conditions. Muscle homogenate levels 
of H2O2 were elevated in isometrically exercised muscles by 31% in young adult mice (1848 vs. 
2428 RFU/mg protein) and 19% in aged in the animals (3689 vs. 4401 RFU/mg protein) on the 
control diet compared to the age-matched non-exercised control limb (p<0.05) (Figure 5.2). This 
indicates that acute isometric exercise elevated muscle oxidant production.  Control and 
repetitively loaded muscles from aged animals had 99% and 81%  higher levels of H2O2,  
respectively, than their treatment matched muscles from young adult mice (p<0.05)(Figure 5.2). 
Fortifying the standard diet with resveratrol lead to a 24% (p<0.05) increase in H2O2 in the 
young exercised gastrocnemius muscles. Resveratrol significantly lowered H2O2 levels in both 
control and exercised muscles by 13% and 38% respectively, from aged animals (p<0.05) 
(Figure 2). Isometric exercise did not affect muscle levels of H2O2 in the young adult mice that 
received a diet supplemented with resveratrol. However, resveratrol significantly reduced H2O2 
by 15% in the exercised muscles of aged mice compared with non-exercised mice fed the 
control diet (3190 vs. 2693 RFU/mg/protein) (Figure 5.2). 

 
Insert Figure 5.2 
 
Hypoxanthine & Xanthine Oxidase activities.  Hypoxanthine, a product of purine 

degradation and a substrate for xanthine oxidase was measured in young adult and aged 
gastrocnemius muscles. Hypoxanthine increased by 36% (p<0.05) with aging. Furthermore, 
isometric exercise increased muscle levels of hypoxanthine by 21% (p<0.05) in young adult 
mice and by 20% (p<0.05) in aged mice. Resveratrol supplementation blunted the increase in 
hypoxanthine in muscles from both young adult and aged mice, but it did not reduce the 
elevated levels of hypoxanthine associated with aging (Figure 5.3A).  

 
The activity of xanthine oxidase in gastrocnemius muscles from aged animals was 

elevated by 168% compared to muscles from young adult mice (258.9 vs. 692.3 RFU/mg 
protein, p<0.05; Figure 5.3B). Resveratrol supplementation lowered xanthine oxidase activity in 
the non-exercised muscle from aged mice by 16% (692.3 vs. 582.9 RFU/mg protein, p<0.05; 
Figure 5.3B), but it had no effect on the non-exercised control muscle from young adult mice. 
Compared to the contralateral control muscles, isometric exercise increased xanthine oxidase 
activity by 38% (p<0.05) in gastrocnemius muscles from young adult mice and by 18% (p<0.05) 
in muscles from aged animals on the control diet. Resveratrol supplementation blunted the 
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increase in xanthine oxidase activity associated with exercise in the young adult muscle by 25% 
(p<0.05) and reduced xanthine oxidase activity in the aged gastrocnemius by 53% (p<0.05) 
(Figure 5.3B). Resveratrol supplementation in the aged isometrically-exercised animals resulted 
in a 50% (p<0.05) reduction in muscle xanthine oxidase activity when compared to the non-
exercised muscle (Figure 5.3B). 

 
Insert Figure 5.3 
 
The concentration of glutathione.  Total glutathione decreased by 26% (p<0.05) in the 

control diet, non-exercised gastrocnemius muscle of aged mice (115 ± 18 µM/mg protein) 
compared with young adult muscle (156 ± 26). However, in the exercised gastrocnemius muscle 
form the mice receiving the control diet there was no significant difference between the young 
adult (153 ± 15 µM/mg protein) and the aged muscles (126 ± 17 µM/mg protein). Exercise alone 
failed to produce any changes in total glutathione within either age group receiving the control or 
the resveratrol fortified diet.  A combination of resveratrol and exercise produced a 27% 
(p<0.05) increase in total glutathione in the young adult animals (195 ± 27 µM/mg protein) when 
compared to the young exercised animals that did not receive the fortified diet (153 ± 15 µM/mg 
protein), but no difference were observed in the aged animals.  Resveratrol supplementation in 
the non-exercised limb did not produce any significant differences in either age group. 

 
The ratio of reduced to oxidized glutathione (GSH/GSSG).  The GSH/GSSG ratio 

was 31% lower in control, non-exercised muscles of aged mice (9.5 ± 1.3) compared with young 
mice (13.9 ± 2.5). This reduction in the GSH/GSSG ratio is indicative of an increase in oxidants 
as a result of both aging and exercise and may also be the result of impaired GSH metabolism 
and replenishment (11). The GSH/GSSG ratio was not altered by resveratrol in non-exercised 
control muscles from either young adult, or aged mice (Figure 4B). Isometric exercise 
decreased the GSH/GSSG ratio by 39% (p<0.05) and 43% (p<0.05) in the muscles of young 
and aged mice that were fed the control diet (Figure 5.4B). However, resveratrol 
supplementation prevented the exercise-induced decrease in the GSH/GSSG ratio in the 
gastrocnemius muscle, such that GSH/GSSG was 38% and 135% greater in muscles from 
resveratrol treated exercised young and aged mice, respectively, as compared to muscles from 
age-matched mice on the control diets.   

 
Insert Figure 5.4 
 
Muscle lipid peroxidation levels. Aging increased total amounts of lipid peroxidation in 

non-exercised control gastrocnemius muscles by 57% as shown by the greater MDA + HNE 
levels from control muscles from aged non-supplemented rats compared to control muscles 
from young adult non-supplemented animals (2.86 vs. 4.49 µM/mg protein, p<0.05; Figure 5.5).  
Three days of isometric exercise failed to alter lipid peroxidation levels within muscles from the 
young adult mice but it increased MDA + HAE levels by 63% (4.49 vs. 7.31 µM/mg protein, 
p<0.05; Figure 5.5) in the muscles from aged non-supplemented mice. Resveratrol 
supplementation completely prevented the increase in MDA + HNE levels associated with 
exercise in the muscles from aged mice, but resveratrol did not blunt the increase in lipid 
peroxidation associated with aging. Both control and isometrically exercised muscles from aged 
resveratrol supplemented animals showed a ~53% (p<0.05) increase in MDA + HAE levels 
when compared to their young adult counterparts. Resveratrol supplementation had no effect on 
lipid peroxidation in the young adult animals. 

 
Insert Figure 5.5 
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Glutathione peroxidase (GPx) and catalase enzyme activity and mRNA abundance. 

There was no apparent aging, or exercise effect on GPx activity in the non-supplemented 
gastrocnemius muscle.  Furthermore, resveratrol supplementation did not lead to any changes 
in GPx activity in the control, or exercised muscle from young adult animals. However, GPx 
activity increased 15% (p<0.05) in control and 12% (p<0.05) in exercised muscles from aged 
mice with resveratrol supplementation (Figure 5.6A). There were no significant changes that 
were found among GPx-1 mRNA within any of the muscle samples (Figure 5.6B). 

 
Catalase activity was higher in the gastrocnemius muscle from the aged animals when 

compared to their treatment matched young adult counterparts. Neither isometric exercise, nor 
resveratrol supplementation, showed any significant changes in catalase activity within muscles 
from young adult animals. There was a 42% increase (p<0.05) in catalase activity with isometric 
exercise in the aged animals on the standard diet and a 19% increase (p<0.05) with the 
resveratrol supplemented diet. Resveratrol supplementation increased catalase activity within 
the aged animals by 50% (p<0.05) in the non-exercised control and 25% (p<0.05) in the 
isometrically exercised gastrocnemius muscle (Figure 5.6C).  Similar to the enzyme activity 
data, catalase mRNA content was greater in the gastrocnemius muscle from all groups of the 
aged animals when compared to their treatment matched young adult counterparts. 
Supplementation with resveratrol increased catalase mRNA levels in the gastrocnemius muscle 
from both young adult and aged animals. However, exercise did not produce any significant 
changes in catalase mRNA levels within any of the groups (Figure 5.6D).  

 
Insert Figure 5.6 
 
Superoxide dismutase enzyme activity and mRNA levels. Isometric exercise 

increased CuZnSOD enzyme activity (p<0.05) by 27% in non-supplemented and 19% in 
resveratrol supplemented muscles from young adult animals, compared to their contra-lateral 
control muscles.  Within the gastrocnemius muscles from the aged animals, exercise increased 
CuZnSOD activity by 25% (p<0.05) in the animals fed the standard diet, but no differences were 
observed between the control and exercised muscles of resveratrol supplemented animals.  No 
significant changes in enzyme activity were observed as a result of aging in any of the groups 
(Figure 5.7A).  No significant differences were found among CuZnSOD mRNA within any of the 
muscle samples (Figure 5.7B). 

 
MnSOD activity was 10% greater in the non-exercised control gastrocnemius muscle 

from aged animals compared to young animals (0.89 vs. 0.80 U/mg protein).  Surprisingly, 
isometric exercise lead to a decrease in MnSOD activity in the gastrocnemius muscle from 
young adult animals feed the standard diet, whereas exercise had no affect on MnSOD activity 
in the muscles from aged animals. Resveratrol supplementation increased MnSOD activity by ~ 
10-15% in all groups and removed any differences between groups due to aging, or exercise 
(Figure 5.7C). While isometric exercise did not induce any changes in mRNA transcription for 
MnSOD, resveratrol feeding lead to a ~90% increase in MnSOD transcription in exercised and a 
~50% increase in control muscles from both age groups (Figure 5.7D). 

 
Insert Figure 5.7 
 
Discussion 
Oxidative stress is elevated with aging in most tissues, including skeletal muscle (14, 25, 

41). Increased reactive oxygen species (ROS) production may contribute to aging-induced 
skeletal muscle wasting (i.e., sarcopenia) (15, 41). Although exercise is a useful approach to 
counter aging-induced sarcopenia, it also increases oxidative stress levels within the exercising 
muscles (15, 25, 33). The additive effects of an increase in oxidant production and an 



Michael J. Ryan                 Chapter 5     107  

 
attenuated antioxidant buffering capacity potentially leaves aged skeletal muscles more 
vulnerable to oxidative damage. The novel data in this study show that dietary resveratrol 
reduces oxidative stress, including xanthine oxidase activity, in control and exercised muscles of 
aged mice.  

 
Xanthine oxidase as one source of exercise-induced oxidant stress 
Although it is clear that oxidative stress is elevated in response to both acute exercise 

and aging, it has not been conclusively established that xanthine oxidase contributes to the 
increased oxidant production with advanced age in skeletal muscle. In the present study, we 
show that both xanthine oxidase activity and hypoxanthine levels are elevated in gastrocnemius 
muscles from aged mice, compared to young adult mice.  This is consistent with data showing 
that xanthine oxidase activity was higher in the gastrocnemius muscles from aged rats when 
compared to young animals (18), and in plasma from older vs. young adult humans (3).  
Nevertheless, this contrasts with other data in humans that have shown an absence of age-
associated increases in endothelial xanthine oxidase in antecubital venous cells from the young 
and older subjects (13).  

 
We anticipated that our model of repetitive maximal isometric contractions would 

increase oxidant stress in the exercised muscles. Our data show that repeated isometric 
exercise increased hypoxanthine levels, xanthine oxidase activity, and H2O2 production in the 
gastrocnemius muscles of both young and aged mice. These data are consistent with previous 
evidence that xanthine oxidase is, at least in part, responsible for oxidant production during 
exhaustive exercise  

 
Resveratrol reduces oxidative stress 
Resveratrol has been shown to exert a variety of health benefits that include the direct 

scavenging of ROS (46), the inhibition of xanthine oxidase (24, 26) and the activation of 
intracellular pathways that improve metabolism and induce mitochondrial biogenesis (5, 32). 
The current study suggests that resveratrol supplementation lowers muscle indices of oxidative 
stress (H2O2, xanthine oxidase activity, GSH/GSSG ratio and lipid peroxidation) associated with 
both normal aging and isometric exercise in aged mice. In fact, muscle xanthine oxidase activity 
and H2O2 production were lower in exercised muscles from aged mice, than in muscles of age-
matched non-exercised, non-supplemented control muscles. In addition, resveratrol 
supplementation abolished the increase in xanthine oxidase activity and H2O2 production 
associated with isometric contractions in muscles from young mice. Together these data 
suggest that there may be an additive benefit to combining resveratrol supplementation with 
isometric exercise, especially in aged skeletal muscle.  

 
As expected, the short duration of resveratrol supplementation in the current study 

affected H2O2 concentrations, xanthine oxidase activity, and lipid peroxidation to a greater 
degree with exercise than aging. It is therefore likely that aging and isometric exercise may 
regulate oxidant production via different mechanisms. For example, isometric exercise 
increased the activity of the cytosolic antioxidant enzymes, catalase and CuZnSOD, along with 
an increase in xanthine oxidase activity, implying that at least part of the increase in H2O2 
production with isometric exercise is not originating from the mitochondria. This possibility is in 
agreement with observations showing that aging increases oxidant production via mitochondrial 
sources, whereas exercise increases oxidants in muscles from multiple sources, including 
xanthine oxidase (6).  

 
Resveratrol’s putative role in reducing oxidative stress is likely a combination of many 

factors. When taken orally, trans-resveratrol is well-absorbed by mammals, but its bioavailability 
is low due to its rapid first pass metabolism (48).  Therefore,  its role as a direct scavenger of 
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reactive oxygen species (9) is likely to be limited. The most likely mechanism by which 
resveratrol can attenuate the increase in oxidative stress due to aging and exercise lies in its 
ability to induce transcriptional changes via the activation of silent mating type information 
regulation 2 homolog (Sirt1) (37). Sirt1 is a NAD+ dependent histone deacetylase that is 
upstream of a wide variety of cellular pathways involved in energy homeostasis, longevity, cell 
survival and apoptosis. Increases in Sirt1 transcription have been shown to occur after 3 days of 
resveratrol supplementation (45). Sirt1 activation sequentially leads to energetic adaptations 
within the muscle by activating the metabolic regulators PPARγ co-activator (PGC-1α) and AMP 
kinase (AMPK) and in turn enhancing components of the mitochondrial electron transport chain, 
β-oxidation and ATPases (5, 32). Although speculative, one possibility is that resveratrol might 
reduce uncoupling of the mitochondrial electron transport chain, leading to an increased 
availability of ATP and decreased superoxide formation. Previous findings have demonstrated 
that increases in post-exercise concentrations of hypoxanthine are accurate predictors of 
muscle energy depletion (7) and adenine nucleotide degradation during exercise (43).  Our 
current data show increased hypoxanthine concentrations after exercise, which is indicative of 
elevated ATP utilization and depletion (43). Resveratrol supplementation decreased 
hypoxanthine levels following exercise, and this is consistent with the idea that resveratrol 
increased ATP availability to the exercising muscles. Nevertheless, the data in this study do not 
provide insight into whether greater ATP availability and/or improvement in mitochondria 
function are important outcomes for reducing oxidative stress after resveratrol supplementation.   

 
Antioxidant enzymes and resveratrol 
To our knowledge, this is the first investigation to examine the effects of resveratrol 

supplementation on the regulation of the endogenous antioxidant system in response to 
isometric exercise in young and aged animals. Our study measured transcription and activity 
levels of the endogenous antioxidant enzymes catalase, glutathione peroxidase, MnSOD and 
CuZnSOD. In general, the results do not support transcriptional control as a mechanism for 
altering the activity levels of the endogenous antioxidant enzymes within the muscles of non-
supplemented animals. Instead,  these data are consistent with previous data that indicate the 
activity of the endogenous antioxidant enzymes are regulated via various levels of post-
transcriptional and/or post-translational controls (21, 41).  Insufficient tissue was available in this 
study to determine if the protein levels of endogenous antioxidant enzymes had been altered by 
short-term resveratrol treatment. 

 
Several studies have shown that there is no aging-induced change in MnSOD or 

CuZnSOD activity, although loss of CuZnSOD  exacerbates muscle loss with aging (35). 
Furthermore, over-expression of antioxidant enzymes does not improve life span (49).  Our data 
indicate that aging did not alter the activity of GPx and CuZnSOD; however, aging increased the 
enzyme activity of MnSOD and catalase and catalase mRNA content. This increase in catalase 
transcription may be attributed to an attempt to compensate for the inability of the glutathione 
system to buffer H2O2. Age-related increases in catalase activity have been proposed as a 
potential  means to counterbalance the depletion of glutathione levels in metabolically active 
tissues (34).  Differences in age-dependent transcriptional control of the other endogenous 
antioxidant enzymes between our current study and that reported in other studies (20, 41) may 
be due to differences in environmental conditions,  animal models, or the muscles that were 
investigated.  

 
Short-term adaptation of antioxidant enzymes to isometric exercise in both young adult 

and aged animals appeared to occur via an increase in catalase and CuZnSOD activity, two 
enzymes that are primarily located in the cytosol. Catalase activity increased only in the aged 
animals after isometric contraction whereas, CuZnSOD increased in muscles from both the 
young adult and aged mice after isometric contractions.  However, isometric contractions did not 
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have an effect on mRNA content for any of the endogenous antioxidant enzymes (GPx, 
catalase, CuZnSOD or MnSOD) investigated in the current study. These observations are 
similar to previous data from our lab (41), where 4.5 weeks of repetitive loading exercise in the 
rat tibialis anterior muscle increased the activity of both catalase and CuZnSOD without 
changing mRNA content for these enzymes.  

 
The absence of changes in mRNA suggests that post-transcriptional modifications might 

be responsible for either enhancing the capacity of the active site of the antioxidant enzymes, or 
perhaps reducing protein degradation leading to increased enzyme content. Similarly, it has 
been shown that increases in CuZnSOD protein levels occur without changes in mRNA content 
after a single bout of endurance exercise (19).  

 
Resveratrol supplementation increased the endogenous antioxidant enzymes, catalase 

and MnSOD (39), which are located in close proximity to the sites of electron transport 
production of  ATP. For example, MnSOD is localized to the mitochondrial matrix where it 
protects the mitochondria from oxidative damage. In addition, catalase is found in low 
concentrations in the cytosol and it is thought to be contained mainly within peroxisomes, which 
are sites of fatty acid oxidation.  This fits well with previous observations showing that 
resveratrol supplementation increases the transcription and the activity of both catalase (31, 37) 
and MnSOD (37, 39). Furthermore, resveratrol can increase mitochondrial components of 
aerobic metabolism via its activation of Sirt1 (5, 37).  

 
No effect of resveratrol on muscle force 
The data in the current study show that resveratrol supplementation did not improve the 

maximal isometric force output of the plantar flexors muscle group from either the young adult, 
or aged animals, at any point of the acute three-day exercise regime. Furthermore, maximal 
isometric force did not change significantly from the first to the third exercise session (Figure 
1A) in either young adult or aged mice. This is not surprising, given the relatively short duration 
of the supplementation and exercise intervention in this study. We did not anticipate that this 
short exercise period would result in hypertrophic adaptations, and therefore they were not 
measured. 

  
Resveratrol does not improve muscle fatigability in aged mice 
Muscle fatigability was measured as the relative decline in maximal isometric force by 

comparing the first and twentieth contraction in the third exercise session. Muscles from aged 
animals in either the control, or the resveratrol group had significantly greater fatigue resistance 
than muscles from young animals that where fed a control diet (Figure 1B). The greater relative 
decrease in fatigue over the 20 contractions may be due to an age dependent shift in muscle 
fiber type towards a greater percentage of type I fibers (22, 36). The larger sized fibers from the 
young adult animals would produce a greater maximal force and have a greater rate of ATP 
utilization (increased cross bridge cycling, greater calcium release and therefore greater ATP 
utilization by sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pumps, greater heat 
production) than the aged muscle, therefore having  greater relative decline in force over time. 
However, the similar relative changes in hypoxanthine observed during exercise in the young 
adult and the aged animals would imply that if ATP utilization was greater in the young animals, 
then young muscle possess a mechanism that limited purine degradation even though ATP 
supplies were not fully restored. Further research is needed to fully understand the age-
dependent difference in muscle fatigue found in the current model of isometric exercise. 

 
The plantar flexor muscles from young adult animals supplemented with resveratrol had 

a significantly lower decline in muscle force over the 20 contractions (-27.5 ± 1.6%) than 
animals that were fed the control diet (-37.4 ± 7.9%).  The decline in maximal isometric force 
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was similar in resveratrol supplemented young adult animals and aged animals from either 
control (-42.9 ± 4.1%), or resveratrol diet (44.4 ± 5.1%) groups.  

 
Previous studies have reported that resveratrol supplementation improved mitochondria 

function and reduced fatigue associated with aerobic exercise (5, 32). Our data show for the first 
time that resveratrol reduces muscle fatigue in response to repetitive anaerobic (isometric) 
contractions, and therefore this effect is not activity specific. However, the effect of resveratrol 
with regard to repetitive exercise occurs only in muscles of young animals. It is possible that 
resveratrol increased the availability of ATP, by enhancing the density and efficiency of the 
mitochondrial electron transport chain, by increasing β-oxidation and by increasing ATPase 
content (5, 32, 37) in muscles of young mice.  This possibility is plausible because increases in 
hypoxanthine have been shown to be predictors of muscle ATP exhaustion (7) and 
hypoxanthine concentrations were lower in muscles from resveratrol supplemented mice in our 
current study.  However, this investigation does not provide any direct evidence for this possibly, 
because we did not measure mitochondrial density or efficiency, nor did we measure skeletal 
muscle ATP content.  

 
If resveratrol has an age-specific effect on fatigue resistance, it might be argued to act in 

a muscle fiber-type specific manner. For example, there is a well known increase in type I 
muscle fibers with aging, and muscles with a high percentage of type I fibers (e.g. soleus) 
appear to be more resistant to resveratrol-induced increases in mitochondrial enzymatic activity 
and oxidative capacity than the gastrocnemius muscle (primarily composed of type II fibers) 
(32). Nevertheless, fiber type specific responses cannot explain all of the effects of resveratrol, 
because even if there were some age-induced shift towards type I fibers, the gastrocnemius 
muscle, in the aged mouse still has a high percentage of type II fibers. Furthermore, 
mitochondria volume density is not a good predictor of fatigue resistance to isometric exercise 
(1), and therefore improvements in mitochondria number, or size, would be anticipated to have 
minimal, or no effects on isometric fatigability. 

 
Another possibility to account for the improved fatigue resistance to maximal isometric 

exercise in muscles from young animals is that resveratrol could directly diminish exercise-
induced oxidant production which, have been shown to be a mediator of muscle fatigue (38). 
However, we do not regard this as a strong putative mechanism, because resveratrol decreased 
the exercise-induced elevation in H2O2 levels and other indices of oxidative stress in muscles 
from both young and aged mice yet, despite clear reductions in oxidative stress, resveratrol did 
not improve muscle fatigue resistance in aged animals. These findings indicate that acute 
increases in oxidative stress, including modulation of H2O2, are not sufficient to moderate acute 
fatigue responses to maximal isometric exercise in skeletal muscle with aging.    

 
Conclusion 
The current data suggest that resveratrol supplementation reduces oxidant production 

and oxidative damage in gastrocnemius muscles from young adult and aged mice subjected to 
short-term isometric exercise.  Resveratrol supplementation also diminishes the basal levels of 
oxidative stress associated with aging.  Functional measurements of maximal isometric force 
and rate of fatigue were unaffected by resveratrol supplementation in the aged animals. Further 
work is required to understand the role that fortifying a normal diet with resveratrol may have on 
the adaptive response of skeletal muscle to long-term exercise with aging.  
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Figure Legends 
Figure 5.1  
Maximal plantar flexor isometric force after 3 consecutive days of isometric 

exercise.  (A) Data are expressed as the mean ± SEM of the maximal isometric force recorded 
on the third day of exercise by the left plantar flexor muscles normalized to the body weight of 
the animal.  † signifies a difference (p<0.05) from young adult diet-matched muscles. (B) Data 
are expressed as the mean ± SEM of the relative difference between the maximal isometric 
force on the first contraction and the force produced on subsequent contractions. All force 
measurements were normalized to body weight. * indicates a significant difference (p<0.05) in 
the aged non-supplemented control and resveratrol supplemented diet from young non-
supplemented control diet. ‡ indicates a significant difference (p<0.05) in the young adult 
animals in the resveratrol supplemented diet group, from animals in the young adult non-
supplemented control diet group. (C-F) Representative force x time curves from the third 
consecutive exercise session in the resveratrol treated young adult and aged animals. Force (in 
grams) is shown on the y-axis and time (in seconds) is shown on the x-axis. (C) First contraction 
of the 3rd day in a young adult animal. (D) Twentieth contraction of the 3rd day in a young adult 
animal. (E) First contraction of the 3rd day in an aged animal. (F) Twentieth contraction of the 
third day in an aged animal. 

 
Figure 5.2  
Resveratrol attenuated the increase in hydrogen peroxide (H2O2) concentration 

associated with exercise and aging.  The H2O2 concentration was determined fluorometrically 
in muscles of mice after three days of isometric exercise. The animals were fed a control diet, or 
a diet containing 0.05% resveratrol.  Data are expressed as relative fluorescent units (RFU) per 
mg of total protein in the gastrocnemius homogenate.  The normalized data are presented as 
mean ± SEM. * significant difference (p<0.05) of isometrically exercised muscle from contra-
lateral control muscle; † a significant difference (p<0.05) from young exercise and diet-matched 
control muscles; § significant difference (p<0.05) from age-matched animals on the non-
supplemented diet. 

 
Figure 5.3  
Resveratrol attenuated the increase in xanthine oxidase and hypoxanthine.  

Relative concentrations of hypoxanthine (A) and enzymatic activity of xanthine oxidase (B) were 
determined fluorometrically.  Data are expressed as µ moles of hypoxanthine per mg protein or 
relative fluorescent units (RFU) per mg of total protein in gastrocnemius homogenates.  The 
normalized data are presented as mean ± SEM. * significant difference (p<0.05) between 
isometrically exercised muscles from contra-lateral control muscles; † a significant difference 
(p<0.05) from young exercised and diet-matched control muscles; § significant difference 
(p<0.05) from age-matched animals in the control (non-supplemented) diet group. 

 
Figure 5.4  
Total glutathione content & ratio of reduced glutathione to oxidized glutathione 

(GSH/GSSG).  (A) Data indicate total glutathione concentration normalized to total protein 
content.  (B) Data are depicted as the ratio of GSH to GSSG normalized to total protein content.  
Lower GSH/GSSG ratios are an indication of increased oxidative stress. The normalized data 
are presented as mean ± SEM. * significant difference (p<0.05) of isometrically exercised 
muscle from contra-lateral control muscle; † a significant difference (p<0.05) from young 
exercise and diet-matched control muscles; § significant difference (p<0.05) from age-matched 
animals on the non-supplemented diet. 
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Figure 5.5  
Resveratrol supplementation decreased lipid peroxidation associated with 

isometric exercise, but not aging. The level of lipid peroxidation was estimated from 
malondialdehyde (MDA) plus 4-hydroxyalkenals (HAE) levels that were normalized to total 
protein content in the muscle sample. The normalized data are presented as mean ± SEM. *, 
significant difference (p<0.05) of isometrically exercised muscles from contra-lateral control 
muscles; †, a significant difference (p<0.05) from young exercised and diet-matched control 
muscles; §, significant difference (p<0.05) from age-matched animals on the non-supplemented 
diet. 

Figure 5.6  
Glutathione peroxidase (GPx) activity, GPx-1 mRNA, catalase activity and catalase 

mRNA regulation with isometric exercise and resveratrol supplementation (A) Total GPx 
activity is expressed as mU of GPx per ml of homogenate normalized per mg of protein in 
homogenate.  (B) GPx-1 mRNA expression was determined by RT-PCR. The data are 
expressed as optical density (OD) x band area, and expressed as a relative optical density. The 
inserts show representative gels for GPx-1 mRNA and 18s rRNA in young and aged (control 
and isometric exercised) gastrocnemius muscle. (C) Total catalase activity is expressed as nM 
of activity per min normalized per mg of protein in the homogenate.  (D) Catalase mRNA 
expression was determined by RT-PCR. The data are expressed as optical density (OD) x band 
area, and expressed as a relative optical density. The inserts show representative gels for 
catalase mRNA and 18s mRNA in muscles from young and aged (control and isometrically 
exercised) mice. For all graphs the data are presented as mean ± SEM; *, significant difference 
(p<0.05) of isometrically exercised muscles from contra-lateral control muscles; †, a significant 
difference (p<0.05) from young exercise and diet-matched control muscles; §, significant 
difference (p<0.05) from age-matched animals on the non-supplemented diet. YCC, Young-
control diet-control non-exercise; YCE, Young- control diet-exercised; YRC, Young-resveratrol-
control non-exercise; YRE, Young-resveratrol-exercised; ACC, Aged-control diet-control non-
exercise; ACE, Aged- control diet-exercised; ARC, Aged-resveratrol-control non-exercised; 
ARE, Aged-resveratrol-exercised. 

 
Figure 5.7 
Superoxide dismutase activity and mRNA regulation with isometric exercise and 

resveratrol supplementation. (A) Copper-Zinc superoxide (CuZnSOD) activity was expressed 
as U of CuZnSOD per mg of protein in the homogenate. A unit was defined as the amount of 
enzyme needed to exhibit 50% dismutation of the superoxide radical. (B) CuZnSOD mRNA 
expression was determined by RT-PCR. The data are expressed as optical density (OD) x band 
area, and reported as relative optical density. The inserts show representative gels for 
CuZnSOD mRNA and 18s rRNA in gastrocnemius muscles from young and aged (control and 
isometric exercised) mice.  (C) Manganese superoxide dismutase (MnSOD) activity was 
determined expressed as U of MnSOD per mg of protein in homogenate. A unit was defined as 
the amount of enzyme needed to exhibit 50% dismutation of the superoxide radical.  (D) 
MnSOD mRNA expression was determined by RT-PCR. The data are expressed as optical 
density (OD) x band area, and expressed as relative optical density. The inserts show 
representative gels for MnSOD mRNA and 18s rRNA in gastrocnemius muscles from young and 
aged (control and isometric exercised) mice. For all graphs the normalized data are presented 
as mean ± SEM; *, significant difference (p<0.05) of isometrically exercised muscles from 
contra-lateral control muscles; †, a significant difference (p<0.05) from young exercise and diet-
matched control muscles; §, significant difference (p<0.05) from age-matched animals on the 
non-supplemented diet. YCC, Young-control diet-control non-exercise; YCE, Young- control 
diet-exercised; YRC, Young-resveratrol-control non-exercise; YRE, Young-resveratrol-
exercised; ACC, Aged-control diet-control non-exercise; ACE, Aged- control diet-exercised; 
ARC, Aged-resveratrol-control non-exercised; ARE, Aged-resveratrol-exercised.  



Michael J. Ryan                 Chapter 5     113  

 
 
Figure 5.1 
 



Michael J. Ryan                 Chapter 5     114  

 
Figure 5.2 

 
 
 

  



Michael J. Ryan                 Chapter 5     115  

 
 
Figure 5.3 

 
 
 

  



Michael J. Ryan                 Chapter 5     116  

 
Figure 5.4   

 
Figure 5.5 

 
 
 
 
 
 
 
      



Michael J. Ryan                 Chapter 5     117  

 
  Figure 5.6 

 
 
 
 
 
 
 
 
 
 
 

  



Michael J. Ryan                 Chapter 5     118  

 
 
                Figure 5.7 



Michael J. Ryan                 Chapter 5     119  

 
 

Reference List 
 

 1.  Alway SE. Is fiber mitochondrial volume density a good indicator of muscle fatigability to 
isometric exercise? J Appl Physiol 70: 2111-2119, 1991. 

 2.  Andrade FH, Reid MB, Allen DG and Westerblad H. Effect of hydrogen peroxide and 
dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J 
Physiol 509 ( Pt 2): 565-575, 1998. 

 3.  Aranda R, Domenech E, Rus AD, Real JT, Sastre J, Vina J and Pallardo FV. Age-
related increase in xanthine oxidase activity in human plasma and rat tissues. Free Radic 
Res 41: 1195-1200, 2007. 

 4.  Baker BA, Mercer RR, Geronilla KB, Kashon ML, Miller GR and Cutlip RG. 
Stereological analysis of muscle morphology following exposure to repetitive stretch-
shortening cycles in a rat model. Appl Physiol Nutr Metab 31: 167-179, 2006. 

 5.  Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard 
JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, 
Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw 
RJ, Navas P, Puigserver P, Ingram DK, de Cabo R and Sinclair DA. Resveratrol 
improves health and survival of mice on a high-calorie diet. Nature 444: 337-342, 2006. 

 6.  Bejma J and Ji LL. Aging and acute exercise enhance free radical generation in rat 
skeletal muscle. J Appl Physiol 87: 465-470, 1999. 

 7.  Bianchi GP, Grossi G, Bargossi AM, Fiorella PL and Marchesini G. Can oxypurines 
plasma levels classify the type of physical exercise? J Sports Med Phys Fitness 39: 123-
127, 1999. 

 8.  Bisht K, Wagner KH and Bulmer AC. Curcumin, resveratrol and flavonoids as anti-
inflammatory, cyto- and DNA-protective dietary compounds. Toxicology 2009. 

 9.  Bradamante S, Barenghi L and Villa A. Cardiovascular protective effects of resveratrol. 
Cardiovasc Drug Rev 22: 169-188, 2004. 

 10.  Brito P, Almeida LM and Dinis TC. The interaction of resveratrol with ferrylmyoglobin 
and peroxynitrite; protection against LDL oxidation. Free Radic Res 36: 621-631, 2002. 

 11.  Chen CN, Brown-Borg HM, Rakoczy SG, Ferrington DA and Thompson LV. Aging 
impairs the expression of the catalytic subunit of glutamate cysteine ligase in soleus 
muscle under stress. J Gerontol A Biol Sci Med Sci 65: 129-137, 2010. 

 12.  Degens H and Alway SE. Control of muscle size during disuse, disease, and aging. Int J 
Sports Med 27: 94-99, 2006. 

 13.  Eskurza I, Kahn ZD and Seals DR. Xanthine oxidase does not contribute to impaired 
peripheral conduit artery endothelium-dependent dilatation with ageing. J Physiol 571: 
661-668, 2006. 



Michael J. Ryan                 Chapter 5     120  

 
 14.  Figueiredo PA, Powers SK, Ferreira RM, Appell HJ and Duarte JA. Aging impairs 

skeletal muscle mitochondrial bioenergetic function. J Gerontol A Biol Sci Med Sci 64: 21-
33, 2009. 

 15.  Fulle S, Protasi F, Di Tano G, Pietrangelo T, Beltramin A, Boncompagni S, Vecchiet 
L and Fano G. The contribution of reactive oxygen species to sarcopenia and muscle 
ageing. Experimental Gerontology 39: 17-24, 2004. 

 16.  Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 11: 
298-300, 1956. 

 17.  Hellsten Y, Hansson HA, Johnson L, Frandsen U and Sjodin B. Increased expression 
of xanthine oxidase and insulin-like growth factor I (IGF-I) immunoreactivity in skeletal 
muscle after strenuous exercise in humans. Acta Physiol Scand 157: 191-197, 1996. 

 18.  Hofer T, Marzetti E, Xu J, Seo AY, Gulec S, Knutson MD, Leeuwenburgh C and 
Dupont-Versteegden EE. Increased iron content and RNA oxidative damage in skeletal 
muscle with aging and disuse atrophy. Exp Gerontol 43: 563-570, 2008. 

 19.  Hollander J, Bejma J, Ookawara T, Ohno H and Ji LL. Superoxide dismutase gene 
expression in skeletal muscle: fiber-specific effect of age. Mech Ageing Dev 116: 33-45, 
2000. 

 20.  Hollander J, Bejma J, Ookawara T, Ohno H and Ji LL. Superoxide dismutase gene 
expression in skeletal muscle: fiber-specific effect of age. Mech Ageing Dev 116: 33-45, 
2000. 

 21.  Hollander J, Bejma J, Ookawara T, Ohno H and Ji LL. Superoxide dismutase gene 
expression in skeletal muscle: fiber-specific effect of age. Mech Ageing Dev 116: 33-45, 
2000. 

 22.  Holloszy JO, Chen M, Cartee GD and Young JC. Skeletal muscle atrophy in old rats: 
differential changes in the three fiber types. Mech Ageing Dev 60: 199-213, 1991. 

 23.  Houston M, Estevez A, Chumley P, Aslan M, Marklund S, Parks DA and Freeman BA. 
Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and 
oxidative impairment of nitric oxide-dependent signaling. J Biol Chem 274: 4985-4994, 
1999. 

 24.  Huang XF, Li HQ, Shi L, Xue JY, Ruan BF and Zhu HL. Synthesis of resveratrol 
analogues, and evaluation of their cytotoxic and xanthine oxidase inhibitory activities. 
Chem Biodivers 5: 636-642, 2008. 

 25.  Ji LL, Leeuwenburgh C, Leichtweis S, Gore M, Fiebig R, Hollander J and Bejma J. 
Oxidative stress and aging. Role of exercise and its influences on antioxidant systems. 
Ann N Y Acad Sci 854: 102-117, 1998. 

 26.  Jia Z, Zhu H, Misra BR, Mahaney JE, Li Y and Misra HP. EPR studies on the 
superoxide-scavenging capacity of the nutraceutical resveratrol. Mol Cell Biochem 313: 
187-194, 2008. 



Michael J. Ryan                 Chapter 5     121  

 
 27.  Kaneko T, Tahara S, Taguchi T and Kondo H. Accumulation of oxidative DNA damage, 

8-oxo-2'-deoxyguanosine, and change of repair systems during in vitro cellular aging of 
cultured human skin fibroblasts. Mutat Res 487: 19-30, 2001. 

 28.  Kondo H, Kodama J, Kishibe T and Itokawa Y. Oxidative Stress During Recovery from 
Muscle Atrophy. FEBS Lett 326: 189-191, 1993. 

 29.  Kondo H, Miura M and Itokawa Y. Antioxidant Enzyme-Systems in Skeletal-Muscle 
Atrophied by Immobilization. Pflugers Arch 422: 404-406, 1993. 

 30.  Kryger AI and Andersen JL. Resistance training in the oldest old: consequences for 
muscle strength, fiber types, fiber size, and MHC isoforms. Scand J Med Sci Sports 17: 
422-430, 2007. 

 31.  Kumar A, Kaundal RK, Iyer S and Sharma SS. Effects of resveratrol on nerve functions, 
oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci 80: 
1236-1244, 2007. 

 32.  Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq 
N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P and Auwerx J. 
Resveratrol improves mitochondrial function and protects against metabolic disease by 
activating SIRT1 and PGC-1alpha. Cell 127: 1109-1122, 2006. 

 33.  McArdle A and Jackson MJ. Exercise, oxidative stress and ageing. J Anat 197 Pt 4: 539-
541, 2000. 

 34.  Meng Q, Wong YT, Chen J and Ruan R. Age-related changes in mitochondrial function 
and antioxidative enzyme activity in fischer 344 rats. Mech Ageing Dev 128: 286-292, 
2007. 

 35.  Muller FL, Song W, Liu YH, Chaudhuri A, Pieke-Dahl S, Strong R, Huang TT, Epstein 
CJ, Roberts LJ, Csete M, Faulkner JA and Van Remmen H. Absence of CuZn 
superoxide dismutase leads to elevated oxidative stress and acceleration of age-
dependent skeletal muscle atrophy. Free Radic Biol Med 40: 1993-2004, 2006. 

 36.  Pansarasa O, Felzani G, Vecchiet J and Marzatico F. Antioxidant pathways in human 
aged skeletal muscle: relationship with the distribution of type II fibers. Exp Gerontol 37: 
1069-1075, 2002. 

 37.  Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, 
Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko 
N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, 
Ingram DK, Wolf NS, Ungvari Z, Sinclair DA and de Cabo R. Resveratrol delays age-
related deterioration and mimics transcriptional aspects of dietary restriction without 
extending life span. Cell Metab 8: 157-168, 2008. 

 38.  Reid MB. Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radic 
Biol Med 44: 169-179, 2008. 

 39.  Robb EL, Winkelmolen L, Visanji N, Brotchie J and Stuart JA. Dietary resveratrol 
administration increases MnSOD expression and activity in mouse brain. Biochem 
Biophys Res Commun 372: 254-259, 2008. 



Michael J. Ryan                 Chapter 5     122  

 
 40.  Roman WJ, Fleckenstein J, Straygundersen J, Alway SE, Peshock R and Gonyea 

WJ. Adaptations in the Elbow Flexors of Elderly Males After Heavy-Resistance Training. J 
Appl Physiol 74: 750-754, 1993. 

 41.  Ryan MJ, Dudash HJ, Docherty M, Geronilla KB, Baker BA, Haff GG, Cutlip RG and 
Alway SE. Aging-Dependent Regulation of Antioxidant Enzymes and Redox Status in 
Chronically Loaded Rat Dorsiflexor Muscles. J Gerontol A Biol Sci Med Sci 63: 1015-1026, 
2008. 

 42.  Sachdev S and Davies KJA. Production, detection, and adaptive responses to free 
radicals in exercise. Free Radic Biol Med 44: 215-223, 2008. 

 43.  Sahlin K, Tonkonogi M and Soderlund K. Plasma hypoxanthine and ammonia in 
humans during prolonged exercise. Eur J Appl Physiol Occup Physiol 80: 417-422, 1999. 

 44.  Siu PM and Alway SE. Mitochondria-associated apoptotic signalling in denervated rat 
skeletal muscle. J Physiol 565: 309-323, 2005. 

 45.  Smith JJ, Kenney RD, Gagne DJ, Frushour BP, Ladd W, Galonek HL, Israelian K, 
Song J, Razvadauskaite G, Lynch AV, Carney DP, Johnson RJ, Lavu S, Iffland A, 
Elliott PJ, Lambert PD, Elliston KO, Jirousek MR, Milne JC and Boss O. Small 
molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in 
vivo. BMC Syst Biol 3: 31, 2009. 

 46.  Stojanovic S, Sprinz H and Brede O. Efficiency and mechanism of the antioxidant action 
of trans-resveratrol and its analogues in the radical liposome oxidation. Arch Biochem 
Biophys 391: 79-89, 2001. 

 47.  Vina J, Gimeno A, Sastre J, Desco C, Asensi M, Pallardo FV, Cuesta A, Ferrero JA, 
Terada LS and Repine JE. Mechanism of free radical production in exhaustive exercise 
in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB Life 49: 
539-544, 2000. 

 48.  Wenzel E, Soldo T, Erbersdobler H and Somoza V. Bioactivity and metabolism of trans-
resveratrol orally administered to Wistar rats. Mol Nutr Food Res 49: 482-494, 2005. 

 49.  Zhang Y, Ikeno Y, Qi W, Chaudhuri A, Li Y, Bokov A, Thorpe SR, Baynes JW, 
Epstein C, Richardson A and Van RH. Mice deficient in both Mn superoxide dismutase 
and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of 
pathology but no reduction in longevity. J Gerontol A Biol Sci Med Sci 64: 1212-1220, 
2009. 

 
 



Michael J. Ryan              Chapter 6     123 
 

 

 
 
 
 
 

Chapter 6 
 

 

 

Inhibition of xanthine oxidase reduces oxidative stress and 
improves muscle function in exercised skeletal muscle from aged 

mice 
 

 

Michael J. Ryan, Janna R. Jackson and Stephen E. Alway 

 

Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West 
Virginia University School of Medicine, Morgantown, West Virginia 26506 

 
 
 
 
 

  



Michael J. Ryan              Chapter 6     124 
 
 
Abstract 
 
Oxidative stress is a putative factor responsible for reducing function and increasing 

apoptotic signaling in skeletal muscle with aging. This study examined the contribution and 
functional significance of the xanthine oxidase enzyme as a potential source of oxidant 
production in aged skeletal muscle during repetitive isometric exercise. Xanthine oxidase 
activity was inhibited in young adult and aged mice via a subcutaneously placed time release 
(2.5 mg/day) allopurinol pellet, 7 days prior to the start of exercise. Mice were anesthetized, 
then the left posterior tibial nerve was subjected to 20,  five second square wave pulses (10v, 
100 Hz, 200 μs pulses), with 25 seconds between stimulus trains to produce maximal isometric 
contractions of the plantar flexor muscle group. The exercise was repeated for three 
consecutive days; the contralateral limb served as an intra-animal control. A force x time curve 
was obtained for each isometric contraction. Compared to young mice, xanthine oxidase activity 
was greater in the gastrocnemius muscle of aged mice (65%) and it increased after isometric 
exercise in muscles from both young (33%) and aged (28%) mice. Allopurinol treatment 
attenuated the exercise-induced increase in oxidative stress, but it did not affect elevated basal 
levels of oxidative stress associated with aging. Furthermore, inhibition of xanthine oxidase 
activity decreased caspase-3 activity, but had no effect on other markers of mitochondrial 
associated apoptosis. Additionally, the inhibition of xanthine oxidase increased maximal 
isometric force in the plantar flexor muscles from aged mice (35%). Our results suggest that 
repetitive isometric contractions increased xanthine oxidase activity, which contributes to 
exercise-induced oxidative stress in muscles of aged mice. 
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Introduction 
The fundamental mechanisms contributing to aging are poorly understood,  but a large 

body of evidence supports the hypothesis that oxidative stress (21) contributes to aging in many 
tissues. Oxidative stress occurs when the cellular production of oxidants exceeds the 
physiological buffering capacity of the tissue. Increases in oxidative stress have been proposed 
as a principal component leading to skeletal muscle loss with aging (sarcopenia).  Loss of 
myonuclei via apoptosis is another likely contributor to sarcopenia.  However, oxidative stress 
and apoptosis may not be mutually exclusive events with aging. Rather, the elevation in 
oxidative stress that occurs with aging can regulate redox-sensitive signaling pathways (31, 33, 
38),  increase  catabolic gene expression (11, 40, 42, 64), and activate apoptotic pathways (35, 
41, 60),  thereby contributing to the progression of sarcopenia.   

 
Mitochondria are a major source of oxidant production in skeletal muscle (5, 46).  The 

consequence of prolonged exposure to relatively high levels of oxidants reduces mitochondrial 
membrane integrity and antioxidant enzyme activity (46). In addition, oxidants can lead to 
increased mitochondria permeability and the release of mitochondria specific proteins including, 
apoptosis inducing factor (AIF) and cytochrome c into the cytosol through the mitochondrial 
transition pore.  AIF release initiates a caspase independent pathway, while cytosolic 
cytochrome c initiates the caspase cascade resulting in DNA fragmentation and myonuclear 
apoptosis. Thus, mitochondria may be important for regulation of both oxidative stress and 
apoptotic signaling in aging skeletal muscle. 

 
The functional implications of elevated oxidative stress in skeletal muscle include reduced 

muscle specific force (7), altered myofilament function (2, 37), and elevated muscle fatigue (54). 
Although exercise is used as a strategy to attempt to reduce sarcopenia and improve muscle 
function, acute exercise will also increase free radical generation in skeletal muscle (9). This 
has important implications  in a highly metabolic tissue such as  skeletal muscle,  where basal 
oxidant production is already increased with aging and exercise has the potential to further 
increase oxidant production by as much as 80% (5).  

 
There are three major sources of oxidant production with exercise. These include infiltrating 

immune cells, mitochondrial respiration and xanthine oxidase activity (39).  The magnitude and 
the sources of oxidant production are dependent on the mode, duration and intensity of 
exercise. Increased xanthine oxidase activity within the vascular endothelium (28), is a  
contributing factor associated with oxidative stress and damage during exhaustive exercise (4, 
14, 22, 58, 63). Allopurinol, which is a structural isomer of hypoxanthine, acts as a competitive 
inhibitor to xanthine oxidase protecting cells from oxidative damage associated with exhaustive 
exercise (63). It has been hypothesized that the activation of the enzyme, xanthine oxidase, 
during exhaustive exercise is similar to the process observed during ischemia–reperfusion injury 
(44, 51, 63). During repetitive muscle contractions, the combination of increased ATP utilization 
and intermittent localized periods of ischemia due to muscle contractions will facilitate adenine 
nucleotide degradation and accumulation of hypoxanthine (See Figure 6.1). 

 
Subsequent to the elevation in hypoxanthine, xanthine dehydrogenase is converted to 

xanthine oxidase either reversibly by oxidation, or irreversibly via proteolysis (8, 48).  
Conversion of xanthine dehydrogenase to xanthine oxidase has been shown to be  dependent 
on both calcium and oxidant concentrations (45). During muscle contractions, intracellular 
calcium concentrations are elevated, which in turn, may activate proteases that cause the 
irreversible conversion of xanthine dehydrogenase to xanthine oxidase.  Furthermore, increased 
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oxidant production may lead to the oxidation of cysteine residues on xanthine dehydrogenase 
forming disulfide bonds resulting in the reversible conversion to xanthine oxidase (48).  

 
During muscle relaxation the influx of oxygen rich blood catalyzes the reaction of xanthine 

oxidase with hypoxanthine and oxygen to from xanthine and superoxide. Within the muscle 
environment, H2O2 concentrations are expected to increase via the accumulation of superoxide 
formed by xanthine oxidase activity, mitochondrial sources and NADPH oxidase activity, since 
the superoxide anion is quickly dismutated to H2O2 by SOD. Decreases in antioxidant capacity 
with aging and exercise may lead to an increase in contractile protein and mitochondrial 
damage caused by an augmented duration and exposure to oxidants thus potentially 
accelerating muscle loss (30, 47, 66). 

 
 Xanthine oxidase has been reported to make important contributions to oxidative stress 

in the heart (59) and gastrocnemius muscles (3, 18, 57) from aged rodents; however, this age-
dependent elevation in xanthine oxidase activity is not observed universally (15).  Xanthine 
oxidase activity contributes, at least in part, to an increase in oxidant production during 
exhaustive exercise, but it is not known if xanthine oxidase is an important source of oxidant 
production with moderate exercise aged animals. Therefore, the purpose of this investigation 
was to determine the contribution of the xanthine oxidase enzyme as a source of oxidant 
production during repetitive isometric exercise and to determine if it further contributes to 
oxidative stress in aged skeletal muscle.  A second aim of this study was to determine if 
increased xanthine oxidase levels plays a role in regulating the decreased functional capacity 
and increased apoptotic signaling in aged muscles. We tested the hypothesis that the inhibition 
of xanthine oxidase will improve the redox environment within muscle by reducing oxidative 
stress and thus preserving functional capacity in aged animals after isometric exercise.  The 
second hypothesis tested was that xanthine oxidase-associated oxidative stress will exacerbate 
the release of pro-apoptotic mitochondrial proteins into the cytosol resulting in increased 
apoptotic signaling in aged skeletal muscle after exercise but decreasing xanthine oxidase 
activity by allopurinol will prevent these negative changes in aging muscles. 

 
Methods 
All experimental procedures were carried out with approval from the Institutional Animal 

Use and Care Committee from West Virginia University School of Medicine. The animal care 
standards were followed by adhering to the recommendations for the care of laboratory animals 
as advocated by the American Association for Accreditation of Laboratory Animal Care 
(AAALAC) and fully conformed to the American Physiological Society's "Guiding Principles for 
Research Involving Animals and Human Beings." 

 
A subcutaneous 2.5 mg  21 day release allopurinol pellet (Innovative Research of America 

Inc., Sarasota, Fl) was implanted  subcutaneously over the dorsal cervical column in 
anesthetized mice (Isotec 5, Ohmeda; 3% isoflurane/97% O2), seven days prior to the start of 
the exercise protocol. The incision was closed with a 9mm wound clip. A sham surgery was 
performed on control animals. A total of 32 young adult (3-5 months) and 32 aged (26-28 
months) C57BL/6 mice were randomly separated into groups receiving the allopurinol pellet, or 
only the sham surgery (n= 16 per treatment group). Each treatment group was randomly divided 
into groups of eight animals, where the gastrocnemius muscles from one group of eight were 
individually processed for whole muscle homogenate and RNA isolation while the 
gastrocnemius muscles from the other eight animals of the treatment group were individually 
homogenized and separated into a mitochondrial fraction and a mitochondrial free cytosolic 
fraction.  
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Isometric exercises were conducted on a custom-built mouse dynamometer that has been 

previously described (57).  Briefly, mice were anesthetized with a mixture of oxygen (97%) and 
isoflurane gas (3%) and placed on their right side on a heated plate. The left ankle was 
positioned at 90° of flexion and was aligned with the axis of rotation of the servomotor 
(Cambridge Technology Inc. Model 6350*350, Cambridge, MA). The foot was secured to the 
foot plate connected to the servomotor.  Dynamic Muscle Control software (Aurora Scientific 
Inc., Aurora, Ontario, Canada) controlled a servomotor providing for the angular position of the 
foot.  Muscle contractions of the plantar flexor muscles were stimulated via subcutaneously 
placing platinum electrodes (Grass Medical Instruments) on either side of the tibial nerve. 
Electrode placement was tested via a short stimulation of the nerve to cause plantar flexion. 
Electrode placement was assumed to be correct when the foot would plantar flex without any 
visible appearance of eversion, or inversion, of the foot. Twenty electrically evoked (10v, 100 
Hz, 200 μs pulses) isometric contractions of the plantar flexor muscle group were obtained in 
one limb. Each contraction train lasted for five seconds, and a 25 second recovery period 
occurred between subsequent contractions. Isometric contractions were conducted over three 
consecutive days in the left limb, while the contralateral limb served as the intra-animal control.  
Muscle functional data was collected as a force x time curve during isometric contractions for 
each session and values were normalized to each animal’s body weight.  The contractile data 
were analyzed by Dynamic Muscle Analysis software (Aurora Scientific Inc., Aurora, Ontario, 
Canada).   

 
Mitochondrial isolation. The gastrocnemius muscle was dissected with the mice under 

deep anesthesia (5% isoflurane / 95% oxygen). Careful precautions were made to keep the 
blood supply to the gastrocnemius intact until it was removed.  Mitochondria and mitochondria 
free cytosolic muscle fractions were obtained by protease digestion from the myofibrils, followed 
by centrifugation, using modifications of the manufacture’s recommendations (MITOISO1-1KT, 
Sigma-Aldrich Co., St Louis, MO). Briefly, the gastrocnemius muscle was placed on ice and 
minced in a 1.5ml Eppendorf tube. Samples were washed and re-suspended in an extraction 
buffer containing 0.25 mg/ml trypsin. After a 20 minute incubation period, albumin was added to 
a final concentration of 10 mg/ml to quench the proteolytic reaction. Samples were washed and 
re-suspended in the extraction buffer, then homogenized with a Teflon pestle for two strokes of 
five seconds each. The homogenate was then centrifuged at 1100g for 5 minutes. The 
supernatant was transferred to a new tube and centrifuged at 11,000 g for 10 minutes. The 
supernatant was collected as mitochondrial free, cytosolic fraction. The mitochondrial pellet was 
suspended in a storage buffer containing sucrose.  

 
Whole gastrocnemius muscle homogenates concentration of H2O2. Hydrogen peroxide 

(H2O2) levels in the muscle tissue were determined by utilizing a fluorescent H2O2 detection kit 
(Cell Technology, Mountain View, CA). Whole muscles were homogenized in phosphate-
buffered saline (PBS) (ph=7.4). Reagents and standards were prepared as recommended by 
the manufacturer with slight modifications and have been previously described (57).  Samples 
were normalized to the muscle protein concentration of each sample as determined by a DC 
protein concentration assay (Bio-Rad, Hercules, CA). All analyses were done in duplicate. 

 
Total concentration of Glutathione, oxidized glutathione and the reduced 

glutathione/oxidized glutathione (GSH/GSSG) ratio of aged & exercised gastrocnemius 
muscles. The concentration of total glutathione (tGSH) and oxidized (GSSG) glutathione was 
ascertained by the use of a Bioxytech GSH/GSSG-412 assay kit (Oxis International, CA). 
Furthermore the data were expressed as the ratio of reduced to oxidized glutathione 
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(GSH/GSSG).  The assay was preformed according to the manufacturer’s directions and have 
been previously described (57).  Briefly, gastrocnemius muscle tissue (~40 mg) was 
homogenized immediately after dissection in 530 µl of cold buffer (5% metaphosphoric acid for 
the tGSH or 5% metaphosphoric acid and M2VO scavenger for the GSSG sample). The 
appropriate amounts of sample chromogen and enzyme were mixed and incubated at room 
temperature.  NADPH was added and the absorbance (412 nm) of each sample was read for 
three consecutive minutes.  The concentration for each sample was determined via a DC 
protein concentration assay (Bio-Rad, Hercules, CA). Signals from each sample were 
normalized to the corresponding protein content of that sample.  

 
 Xanthine Oxidase activity & hypoxanthine concentration in the gastrocnemius whole 

muscle homogenate.  A commercially available Amplex Red® XO Assay Kit (#A22182, 
Invitrogen, Eugene, OR) was used to measure Hypoxanthine concentrations as well as xanthine 
oxidase activity in muscle homogenates.  The methods have been described previously in our 
laboratory (57). Fluorescence was measured in a microplate reader using an excitation of 530 
nm and emission detection at 590 nm. Each sample was corrected for background fluorescence 
by subtracting the values derived from the non-xanthine containing wells. Values were 
normalized to protein concentrations for the original samples.  Xanthine oxidase was substituted 
for hypoxanthine and added to the Amplex Red® reagent to obtain measurements for 
hypoxanthine concentrations. Hypoxanthine concentrations were determined by comparing 
sample values to values obtained from a standard curve. 

 
Lipid peroxidation in the whole gastrocnemius muscle homogenate. Malondialdehyde 

(MDA) and 4-hydroxyalkenals (HAE) were measured using the method and reagents from Oxis 
International, CA (BIOXYTECH LPO-586) and have been previously described (57).  Briefly, 75-
100 mg of each gastrocnemius muscle was homogenized in ice-cold PBS and 5 µL 0.5 M 
butylated hydroxytoluene (BHT) in acetonitrile.  Absorbance of the supernatant was obtained at 
586nm.  The samples were normalized for differences in the amount of protein in each sample 
as determined by a DC protein concentration assay (Bio-Rad, Hercules, CA).  

 
Glutathione Peroxidase (GPx) in the whole gastrocnemius muscle homogenate. A 

commercially available cellular GPx Assay Kit (#35319, EMD/Calbiochem, San Diego, CA) was 
used to measure GPx activity in gastrocnemius muscle homogenates (57).  Briefly, a portion of 
each muscle was homogenized in PBS (pH 7.5) containing 5mM EDTA and 1mM DTT. The 
homogenate was centrifuged at 10,000g and the supernatant was used for the assay.  All 
reagents and samples were equilibrated to 25°C and the assay was preformed according to the 
manufacturer’s directions.  The absorbance was measured at 340 nm using a 96-well plate 
reader (DYNEX technologies, Chantilly Va., USA).  Each sample and standard was performed 
in duplicate. 

 
Catalase Activity in whole gastrocnemius muscle homogenate. A commercially 

available Amplex Red® Catalase Assay Kit (#A22180, Invitrogen, Eugene, OR) was used to 
measure the activity of the catalase enzyme in whole muscle homogenates.  Briefly, 25µl of 
homogenates were mixed with 25µl of 40 μM H2O2 solution and allowed to incubate in the dark 
for 30mins at room temperature. After 30 mins the sample containing solution was mixed with 
50 μM Amplex® Red, 0.4 U/mL horseradish peroxidase and incubated at 37°C in the dark. 
Fluorescence was measured in a microplate reader using an excitation of 530 nm and emission 
detection at 590 nm. The change in fluorescence was determined by subtracting the sample 
value from that of the no-catalase control. The concentration of catalase was determined by 
comparing the sample to a standard curve. All analyses were measured in duplicate and the 
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samples were normalized to the protein concentration in each sample as assessed using a DC 
protein concentration assay (Bio-Rad, Hercules, CA).  

 
Manganese Superoxide Dismutase (MnSOD) activity in the mitochondrial fraction of 

the gastrocnemius muscle. A commercially available SOD Assay Kit II (#706002, Cayman 
Chemical Company, Ann Arbor, MI) was used to measure MnSOD activity in the mitochondrial 
fraction. The assay was performed with slight modifications to the manufacturer’s directions and 
all samples and standards were measured in duplicate.  The assay was performed in a 96-well 
plate with each sample being treated with 10µL of 12 mM potassium cyanide to inhibit any 
residual CuZn and extracellular SOD activities. The absorbance was measured at 450 nm using 
a 96-well plate reader (Dynex Tech., Chantilly VA., USA).  The samples were normalized to the 
protein concentration in each sample as assessed using a DC protein concentration assay (Bio-
Rad, Hercules, CA).  

 
Copper-Zinc Superoxide Dismutase (CuZnSOD) activity in the cytosolic fraction of 

the gastrocnemius muscle. CuZnSOD activity was determined in the mitochondrial free 
fraction with slight modifications to the manufacturer’s directions as described (57) and all 
samples and standards were measured in duplicate (#706002, Cayman Chemical Company, 
Ann Arbor, MI). The assay was performed in a 96-well plate and the absorbance was measured 
at 450 nm using a 96-well plate reader (Dynex Tech., Chantilly VA., USA). The samples were 
normalized to the protein concentration in each sample as assessed using a DC protein 
concentration assay (Bio-Rad, Hercules, CA).  

 
Measuring mRNA concentrations of antioxidant enzymes in the gastrocnemius 

muscle. CuZnSOD, MnSOD, catalase and GPX-1 mRNA were determined by means of reverse 
transcription-polymerase chain reaction (RT-PCR) according previously published procedures 
from our laboratory (56, 60).  Briefly, RNA was isolated from sixty micrograms of the 
gastrocnemius muscle homogenized in 1ml of Tri-Reagent (Molecular Research Center, 
Cincinnati, OH). RNA purity was accessed using a minimum 260:280 ratio of 1.7.  RNA was 
reversed transcribed using random primers, dNTP, and SuperScript II reverse transcriptase 
(Invitrogen/Life Technologies, Bethesda MD).   The primers for CuZnSOD, MnSOD, GPx-1, and 
catalase have been previously published (56). The signal from the gene was expressed as a 
ratio to the 18S signal from the same PCR product.  The PCR product from each reaction was 
separated on a 1.5% agarose gel containing ethidium bromide via electrophoresis. The resulting 
signals were digitally captured (Kodak DC290) and quantified using 1D Kodak image analysis 
software (Eastman Kodak Company, Rochester, NY). 

 
Fluorometric Caspase-Activity Assay.  The proteolytic activities of caspase-9 and 

caspase-3 were determined by using commercially available substrates (caspase-3 AC-DEVD-
AFC & caspase-9Ac-LEHD, Alexis Biochemical, San Diego, CA).  Briefly, 50μl of caspase 
activity buffer (50mM PIPES, 0.1 mM EDTA, 10% glycerol & 1mM DTT), 50μl of the cytosolic 
fraction of the gastrocnemius muscle homogenate without protease inhibitor, and 10μl of 
substrate (1mM) were combined in a 96-well fluorescent microplate. Caspase activity was 
accessed using a fluorescent microplate reader set at a wavelength of 400nm for excitation and 
505nm for emission.  The microplate was incubated for 2-hours at 37°C with caspase activity 
being determined by subtracting the time 2-hour reading from the initial reading.  Caspase 
activity is expressed as the relative fluorescent units normalized to the protein concentration of 
each muscle sample (RFU / mg protein).   
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Western Immunoblots.  The protein content of CuZnSOD, apoptosis inducing factor (AIF) 

and cytochrome C were measured in the cytosolic (mitochondrial free) fractions and MnSOD 
was measured in the mitochondrial fractions of the gastrocnemius muscle.  Thirty μg of protein 
was loaded into each well of a 4-12% gradient polyacrylamide gel (Novex, Invitrogen, Eugene, 
OR) and separated by routine SDS-polyacrylamide gel electrophoresis (PAGE) for 1.5 hours at 
20°C followed by transfer to a nitrocellulose membrane.  All membranes were blocked in 5% 
non-fat milk protein (NFM) for 1-hour at room temperature.  Membranes were incubated in the 
appropriate dilutions of primary antibodies (diluted in tris-buffered saline with 0.05% Tween-20 
(TBS-T) and .002% sodium Azide overnight at 4°C).  Membranes were washed in TBS-T 
followed by incubation in the appropriate dilutions of secondary antibodies (diluted in 5% NFM in 
TBS-T) conjugated to horseradish peroxidase.  Signals were developed using a chemi-
luminescent substrate (ECL Advanced, Amersham Bioscience, Fairfield, CT) and visualized by 
exposing the membranes to X-ray films (BioMax MS-1; Eastman Kodak, Rochester, NY).  
Digital records were captured by a Kodak 290 camera and protein bands were quantified using 
1-D analysis software (Eastman Kodak, Rochester, NY).  Bands were quantified as optical 
density (OD) x band area and expressed in arbitrary units.     

Statistical analysis. Statistical analyses carried out using the SPSS version 13 statistical 
software package (Chicago, IL). Analyses of variance (ANOVA) were implemented to observe 
the main effect of exercise, aging and allopurinol administration. Where the F value reached 
significance, least significant difference (LSD) post hoc analysis was performed to assess where 
the significant differences occurred. Statistical significance was recognized at p < 0.05. Data are 
reported as the mean ± standard error of the mean (SEM). 
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Results 
Xanthine Oxidase activity. Xanthine oxidase activity was 65% and 59% greater in control 

non-exercised and isometrically exercised (2.08 ± .192 mU/mg young vs. 3.23 ± .416 mU/mg 
aged) gastrocnemius muscles compared to mice that received the sham surgeries (Figure 
6.2A). Isometric exercise increased xanthine oxidase activity in muscle by 33% in young adult 
and 28% in aged animals compared to the contralateral control muscles.  Allopurinol 
administration blunted the exercise-induced increase in xanthine oxidase activity on all 
treatment and control gastrocnemius muscles. Furthermore, allopurinol reduced xanthine 
oxidase levels of aged muscles so that there were no differences between any of the allopurinol 
treated muscles (Figure 6.2A).  

 
Hypoxanthine.  Hypoxanthine which is a product of purine degradation and a substrate for 

xanthine oxidase was measured in young adult and aged gastrocnemius muscle. The 
hypoxanthine concentration was 62% greater in muscles of aged animals (0.41 ± 0.07 µmol/mg 
in young vs. 0.667 ± 0.09 µmol/mg in aged) (Figure 6.2B). While isometric exercise increased 
hypoxanthine concentrations in both the young adult (31%) and aged (54%) muscles, allopurinol 
did not change hypoxanthine concentrations in either control or exercised muscles in young or 
aged animals (Figure 6.2B).  

  
 Insert Figure 6.2 
 
Hydrogen peroxide (H2O2).   H2O2 was measured as an indicator of oxidant production. 

Whole muscle homogenate levels of H2O2 were elevated with isometric exercise in young adult 
(24%) and in aged (44%) animals receiving the sham surgeries as compared to the age-
matched control limb (p<0.05).  H2O2 was higher in both control (21%) and isometrically 
exercised (39%) muscles (p<0.05) of aged animals as compared to young adult animals.  
Allopurinol attenuated the increase in H2O2 associated with isometric exercise in both age 
groups (Figure 6.3A). 

 
Lipid Peroxidation. The levels of malondialdehyde (MDA) and 4-hydroxyalkenals (HAE), 

both products of lipid peroxidation, were 56% greater in non-exercised gastrocnemius muscles 
of aged vs. young adult mice (3.06 ± 0.64 µM/mg young vs. 4.8 ± 0.64 µM/mg aged).  Isometric 
exercise elevated lipid peroxidation within the young adult muscles by 29% (3.06 ± 0.64 µM/mg 
vs. 3.95 ± 0.74 µM/mg) and by 92% in the aged muscles (4.8 ± 0.64 µM/mg vs. 9.2 ± 1.76 
µM/mg). Allopurinol blunted the increase in MDA + HNE levels associated with exercise in the 
young adult (3.22 ± 0.61 µM/mg controls vs. 3.27 ± 0.78 µM/mg exercised) and aged muscles 
(5.17 ± 1.09 µM/mg vs. 5.68 ± 1.2 µM/mg). Allopurinol did not depress lipid peroxidation in 
control muscles of aged mice (4.80 ± 0.64 µM/mg sham surgery vs. 5.17 ± 1.09 µM/mg 
allopurinol) (Figure 6.3B). 

 
Insert Figure 6.3 
 
Glutathione.  Glutathione (GSH) is a major tissue antioxidant that provides reducing 

equivalents for the reduction of hydrogen peroxide to water. In a reaction catalyzed by 
glutathione peroxidase, two GSH molecules form a disulfide bond resulting in the oxidized form 
of glutathione (GSSG).  The ratio of reduced to oxidized glutathione (GSH/GSSG) is used an 
indicator of oxidative stress. As shown in Figure 6.4A, the concentration of GSH was ~21% 
lower in muscles of aged as compared with young mice. Although it approached significance 
(p=0.066), the GSSG concentration was not different in muscles obtained from young or aged 
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mice (Figure 6.4B). The ratio of reduced to oxidized glutathione (GSH/GSSG) was 35% lower 
(p<0.05) in muscles of aged vs. young adult animals (Figure 6.4C).  The GSH/GSSG ratio was 
reduced in exercised gastrocnemius muscles of both young (15.02 ± 2.2 control vs. 9 ± 1.4 
exercised) and aged animals (9.7 ± 0.98 control vs. 3.2 ± 0.54 exercised) (Figure 4C). 
Allopurinol treatment prevented the exercise-induced decrease in the GSH/GSSG ratio in 
muscles from the young mice and partially attenuated the decrease in muscles from aged mice. 
These data suggest that aging reduced the concentration of glutathione and consequently 
lowered the GSH/GSSG ratio in these muscles, thus reducing the ability of the gastrocnemius 
muscle to tolerate increased oxidative production resulting from exercise.  

 
Insert Figure 6.4  
 
Glutathione Peroxidase (GPx).  Neither aging, isometric exercise, nor xanthine oxidase 

inhibition produced any significant changes in glutathione peroxidase enzyme activity or GPx-1 
mRNA levels within gastrocnemius muscles (Figure 6.5A and Figure 6.5B). 

 
Manganese Superoxide Dismutase (MnSOD).  MnSOD activity was 37% greater in the 

gastrocnemius muscles from aged animals compared to young adults (Figure 6.5C). Neither 
isometric exercise nor allopurinol had any significantly affect on MnSOD activity in either age 
group.  Aging, isometric exercise and xanthine oxidase inhibition failed to affect muscle levels of 
MnSOD mRNA (Figure 6.5D). 

  
Insert Figure 6.5 
 
Catalase. The enzymatic activity of catalase was 66% greater in the gastrocnemius 

muscles from aged animals compared to young adult animals (Figure 6.6A) whereas catalase 
mRNA was ~180% greater in muscles from old (3.87 ± 0.51 Relative Optical Density) vs. young 
adult (2.06 ± 0.49 Relative Optical Density) mice (Figure 6.6C). Neither catalase protein levels, 
nor mRNA content, were affected by allopurinol.  Isometric exercise increase catalase activity 
by ~20% in the muscles from aged animal,  but it had no affect on catalase activity in the young 
adult animals (0.366 ± 0.05 nM/min/mg non-exercised vs. 0.414 ± 0.08 nM/min/mg exercised). 
However, exercise in aged gastrocnemius muscles did not elicit a significant increase in 
catalase protein abundance or mRNA content. The increase in catalase activity associated with 
exercise in the aged gastrocnemius muscles was completely attenuated with allopurinol 
administration (0.612 ± 0.11 nM/min/mg non-exercised vs. 0.606 ± 0.1 nM/min/mg exercised). 
Isometric exercise did not alter catalase protein abundance, or mRNA content in the 
gastrocnemius muscle from young adult or aged animals (Figure 6.6B and Figure 6.6C). 

 
Copper-Zinc Superoxide Dismutase (CuZnSOD).   CuZnSOD activity was 11% greater in 

control gastrocnemius muscles of aged animals as compared with young animals (1.06 ± 0.08 
U/mg young vs. 1.23 ± 0.08 U/mg aged, P<0.05)) (Figure 6.6D). Allopurinol treatment did not 
affect CuZnSOD activity in control muscles. Isometric exercise increased CuZnSOD activity by 
16% in muscles from the young adult animals and by 11% in the aged animals (1.23 ± 0.08 
U/mg aged non-exercised vs. 1.37 ± 0.07 aged exercised). Exercise also increased CuZnSOD 
protein abundance by 73% in muscles from young adult mice (15.67 ± 2.9 Relative Optical 
Density non-exercised vs. 27.17 ± 2.7 Relative Optical Density exercised) and 62% in the 
muscles from aged mice (14.14 ± 3.2 Relative Optical Density non-exercised vs. 23 ± 4.7 
Relative Optical Density exercised) (Figure 6.6E).  Allopurinol suppressed the exercise-induced 
increase in CuZnSOD activity and protein content in muscles from both young and aged mice. 
CuZnSOD mRNA levels were not altered by age, exercise or allopurinol (Figure 6.6F). 
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Insert Figure 6.6 
 
Pro-apoptotic mitochondrial signaling proteins. Caspase-9 and -3 activities were 

measured in the cytosolic fraction of the gastrocnemius muscle. Caspase-9 activity and 
caspase-3 were 122% and 85% greater in muscles from aged compared to young adult mice. 
Although exercise did not increase caspase-9 activity, caspase-3 activity was 30% greater in 
exercised as compared to non-exercised muscles of aged mice. Neither caspase-9 nor 
caspase-3 was increased by exercise in young animals. Allopurinol did not alter either control or 
exercised muscles of young or aged animals (Figure 6.7A&B).  

  
Mitochondrial proteins, cytochrome c and apoptosis inducing factor (AIF) are released from 

the mitochondria in response to pro-apoptotic stimuli. When cytochrome c and AIF are present 
in the cytosol this suggests that mitochondrial permeability has increased via opening of 
mitochondria permeability pores/channels. Both cytochrome c (~237%) (Figure 6.7C) and AIF 
(~725%) (Figure 6.7D) were higher in the cytosolic fractions of gastrocnemius muscles from 
aged animals compared to muscles from young adult mice. Neither exercise nor allopurinol 
altered cytochrome c or AIF accumulation in the cytosol of muscles of young or aged mice.  

 
Insert Figure 6.7 
 
Muscle Functional Measurements. Plantar flexor maximal isometric muscle force was 

measured as an indicator of muscle function. The gastrocnemius muscle provides the greatest 
contribution to plantar flexion.  A representation of the raw data for the first and 20th contraction 
from the last exercise session in the young adult and aged mice is shown in Figure 8C-F. The 
maximal isometric force recorded for the third day (which was the first contraction of that day) 
was normalized to the animal’s body weight (BW) in grams (g).  Maximal isometric force per 
gram of body weight was 36.6% lower in the muscles of aged animals compared to the young 
adult animals. Maximal isometric force in the plantar flexors from aged mice was 35% greater 
(p<0.05)  in animals provided allopurinol as compared to animals given the sham surgery, but 
allopurinol had no effect on force production in the young adult animals. Maximal isometric force 
was similar in the first and third exercise session in control and allopurinol groups for either 
young adult or aged mice (Figure 6.8A). 

 
 The rate of fatigue for the plantar flexors was assessed by calculating the net loss of force 

throughout the exercise session relative to the first contraction. Fatigue resistance was greater 
in muscles from the aged animals, but allopurinol had no effect on isometric muscle fatigue in 
either young adult or aged animals (Figure 6.8B). 

 
Insert Figure 6.8 
 
Discussion 
The main findings from this study are: 1) Acute isometric exercise and aging increased 

xanthine oxidase, hypoxanthine and markers of oxidative stress and damage. 2) Reducing 
xanthine oxidase via allopurinol suppressed the isometric exercise-associated elevations in 
H2O2, and lipid peroxidation, prevented the exercise-induced loss of GSH, and prevented the 
increase of catalase and CuZnSOD activities, but had no effect on GPx and MnSOD activity or 
mRNA in exercised muscles of aged animals. 3) Allopurinol suppressed the isometric exercise-
induced increase in caspase-3 activities in exercised muscles of aged animals, but did not 
reduce other markers of apoptotic signaling associated with aging or exercise.  
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Increased oxidant production and damage have been shown to be associated with exercise 

(1, 9, 14, 17, 29, 39, 48, 56, 63) and aging (5, 13, 16, 21, 34, 43, 49, 56, 65).  Our data are 
consistent with these findings, because we found that isometric exercise and aging both lead to 
increases in H2O2 concentrations, lipid peroxidation, xanthine oxidase activity and a decrease in 
the GSH/GSSG ratio in skeletal muscle. Furthermore, our data suggest that there is an additive 
effect of exercise and aging in gastrocnemius muscles of mice. Non-damaging isometric muscle 
contractions have been shown to elevate superoxide production in the extracellular space of the 
gastrocnemius muscle in mice (18).  We would anticipate that the additional superoxide from the 
isometric contractions in the current study would be quickly converted to H2O2 by SOD, and this 
conversion could account for most of the observed increase H2O2 content. H2O2, has the 
potential to induce widespread oxidant damage simply because it easily crosses cellular 
membranes.  

 
Xanthine oxidase is a source of oxidative stress in isometric exercise. 
 Xanthine oxidase has been shown to be present in endothelial cells from human skeletal 

muscle (23) and despite its location,  it is relevant to muscle function because it affects the 
responses of human muscle to exercise (10, 19, 20).  The present data suggest that xanthine 
oxidase activity increased with aging and also is elevated with isometric exercise in muscles of 
both aged and young adult mice. The inhibition of xanthine oxidase via allopurinol reduced the 
indices of oxidative stress associated with exercise (H2O2 concentration, lipid peroxidation and 
the GSH/GSSG ratio). These data are consistent with the idea that xanthine oxidase makes an 
important contribution to oxidant production during exhaustive exercise (17, 18, 22, 53, 57, 63). 
Furthermore, increases in post-exercise concentrations of hypoxanthine are accurate predictors 
of muscle energy exhaustion (6) during exercise. It is likely that the additional hypoxanthine was 
converted to xanthine and superoxide via xanthine oxidase. Although superoxide formation was 
not measured, recent data that show increased superoxide is produced and released into the 
extracellular space via after isometric muscle (18). 

 
 The impact of allopurinol on endogenous antioxidant enzymes in aging and exercised 

muscles 
In general, mRNA content for antioxidant enzymes was not altered by allopurinol or aging. 

These data suggest that the observed differences in protein content and activity for antioxidant 
enzymes arise from post-transcriptional and/or post-translational modifications (25, 56, 57). In 
contrast with other antioxidant enzymes, catalase mRNA was greater in muscles of old vs. 
young animals (Figure 6C).  The increased catalase mRNA,  activity and protein content may be 
an attempt to counterbalance the depletion of glutathione levels observed within aging (46).   

 
The affects of exercise and xanthine oxidase inhibition on the endogenous antioxidant 

enzymes  
Oxidant sensitive transcription factors such as nuclear factor kappaB (NF-кB) have been 

shown to up-regulate antioxidant gene expression in response to exercise (17, 26, 32). However 
the attenuation of oxidant production via inhibition of xanthine oxidase has been shown to 
prevent NF-кB activation and the subsequent upregulation of MnSOD transcriptional activity 
after exhaustive aerobic treadmill running (17). In contrast, we did not find evidence for 
transcriptional regulation of GPx, catalase, CuZnSOD or MnSOD after acute exercise.  
Nevertheless, the activities of the cytosolic localized antioxidants CuZnSOD and catalase were 
greater in both young adult and aged gastrocnemius muscles in response to isometric exercise. 
This might be in part a result of the need to buffer cytosolic oxidants arising from anaerobic 
metabolic pathways, as compared aerobic types of exhaustive exercise (17, 26, 32) which,  
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would be expected to have greater need to buffer mitochondria associated antioxidants arising 
from oxidative metabolism. 

 
It has been postulated that  low levels of oxidative stress can promote beneficial adaptive 

response including an improved antioxidant defense capacity, because preventing oxidative 
stress associated with exercise prevents these positive adaptations (17, 55). For example, in 
the current study, inhibition of xanthine oxidase-induced oxidative stress by allopurinol blunted 
the increase in cytosolic protein content and activity of CuZnSOD in response to isometric. 
Xanthine oxidase inhibition also attenuated the increase in catalase activity associated with 
exercise in the aged animals. Together, inhibition of xanthine oxidase reduced the need for an 
increase in antioxidant enzymes in response to exercise. 

 
Allopurinol reduces apoptotic signaling in aged muscles 
 The current data are consistent with previous findings from our lab and others,  that aging 

is associated with increases in apoptotic signaling in skeletal muscle (12, 52, 60). Mitochondrial 
proteins, cytochrome c and AIF were both elevated in the cytosolic fraction of the muscle 
homogenates. Downstream from mitochondrial-release of cytochrome c, the activity of the 
initiator caspase-9 was elevated in conjunction with the executioner caspase-3.  

 
Aging has been associated with a depolarization of the mitochondrial membrane, 

decreased mitochondrial respiratory activity and decreased antioxidant enzyme activity (46). 
This decrease leads to a detrimental release and accumulation of oxidants within the cells (46). 
While most antioxidants likely originate from  the mitochondria in aging muscles (5, 62) our data 
show that xanthine oxidase also contributes to oxidant production in aging and exercised 
muscles.  

 
Increased cellular stress can activate redox sensitive pathways that initiate mitochondria 

apoptotic signaling  (12, 24, 60, 61). Aged skeletal muscle has elevated basal oxidant 
production, and exhaustive aerobic exercise further increases oxidant production (5) and 
apoptotic signaling (36). In this investigation we show increased caspase-3 activity without 
significant increases in caspase-9 activity or cytosolic cytochrome c in the exercised 
gastrocnemius muscle of aged mice. These findings are consistent with other observations in 
gastrocnemius muscle in aged rats, where exhaustive exercise increased caspase-3 activity 
without changes in caspase-9 activity (36). These data suggest that exercise-associated 
elevations in caspase-3 activity in the aged gastrocnemius muscle may be triggered via the 
extrinsic apoptotic pathway rather than through the mitochondria. 

  
Allopurinol blunted the increase in caspase-3 activity in the exercised gastrocnemius 

muscle from aged animals. Although this suggests that xanthine oxidase activity has a role in 
regulating apoptotic signaling, this is likely not through mitochondria signaling pathways, 
because allopurinol had no effect on suppressing the elevated levels of cytochrome c, AIF, 
caspase-9 and caspase-3 associated with aging.  Further research is needed to determine the 
upstream mechanisms resulting from the increase in caspase-3 activity with exercise and if 
allopurinol blunts extrinsic apoptotic signaling in response to aging and exercise. 

   
Allopurinol affects maximal isometric force in aged animal 
 An important novel finding in this study is that allopurinol administration increased plantar 

flexor maximal isometric force by 35%, without having an effect on the young adult animals. Our 
data in young adult animals differs from recent data from Gomez-Cabrera and colleagues (18) 
who reported a loss of in vitro maximal force production in extensor digitorum longus and soleus 
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muscles from young (3 months of age) mice that were incubated with oxypurinol (the active 
metabolite of allopurinol).  These differences may have been the result of different experimental 
approaches (in vitro vs. in vivo and/or the muscle being study. Nevertheless, the data in the 
current study suggest that suppressing xanthine oxidase has the potential to improve in vivo 
maximal force production in aged muscles. 

 
Muscle fatigue during repetitive isometric contractions   
Similar to previous observations from our lab (57), in this study we found that relative 

muscle fatigue was less in muscles of aged as compared to young adult animals. This may be 
due, at least in part to, shifting towards a greater percentage of type I fibers (27, 50). Although 
allopurinol administration did increase maximal isometric force in the aged animals it did not 
significantly influence the rate at which force declined in either age group. This is consistent with 
a recent in vivo study that found no improvement in fatigability of hind limb muscles of young 
mice in response to an in vitro protocol of repeated electrical stimulation (18).  

 
Conclusion 
The data in this study indicate that xanthine oxidase derived oxidant production has a wide 

range of effects on skeletal muscle physiology and function in aged mice.  In this study we 
sought to determine if xanthine oxidase played an important role in oxidant stress-induced 
regulation of aging after isometric contractions. We did not anticipate that the relatively short 
duration of xanthine oxidase inhibition used in the current experimental protocol would be 
adequate to relieve the chronic basal elevations in oxidative stress that is associated with 
advanced aging. Our findings suggest that aging and repetitive in vivo isometric contractions 
increase xanthine oxidase activity in the gastrocnemius muscles from both young adult and 
aged mice. We recognize that additional studies are needed to determine if long-term inhibition 
of xanthine oxidase will provide positive improvements in skeletal muscle redox status, oxidative 
stress or function of aged animals. 

 
The suppression of exercise-induced antioxidant enzymes by allopurinol in aged muscles 

might be viewed as a negative adaptation. However, another perspective is that antioxidant 
inhibition of xanthine oxidase activity reduced oxidative stress in aged muscles and removed the 
need for short-term adaptation of the endogenous antioxidant enzymes catalase and CuZnSOD 
to repetitive isometric contractions. Acute reduction of xanthine oxidase levels in aging muscles 
by allopurinol reduced caspase-3 but not other indicators of mitochondria associated apoptosis.  
Additional studies are required to determine if long-term inhibition of xanthine oxidase will have 
an important role in reducing apoptotic signaling in mitochondria or extrinsic pathways. Finally, 
xanthine oxidase inhibition improved maximal isometric force in the plantar flexor muscles from 
the aged mice. From a clinical perspective, it is important to determine if allopurinol will provide 
an effective strategy for reducing oxidant stress and improving loss of muscle function with 
aging in exercising humans. 
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Figure Legends 
 
Figure 6.1 Mechanism of oxidant production via xanthine oxidase pathway. GPx 

(Glutathione Peroxidase), GSH (Reduced Glutathione), GS-SG (Oxidized Glutathione), GR 
(Glutathione Reductase), H2O2 (Hydrogen Peroxide) 

 
Figure 6.2 Allopurinol attenuated the increase in xanthine oxidase activity, 

hypoxanthine associated with exercise.  (A) Activity of xanthine oxidase was determined 
fluorometrically.  Data are expressed as mU of activity per mg of total protein in gastrocnemius 
muscle homogenate. One unit of xanthine activity is defined as the amount of enzyme that will 
form 1mg purpurogallin from pyrogallol in 20 seconds at pH 6.0 at 20°C. (B) Hypoxanthine data 
are expressed as µmol concentration per mg of total protein in the gastrocnemius muscle 
homogenate.  The normalized data are presented as mean ± SEM. * significant difference 
(p<0.05) between isometrically exercised muscles from contra-lateral control muscles; § 
signifies a significant effect of aging within the sham surgery or allopurinol treatment groups 
(p<0.05). † signifies a significant effect (p<0.05) of allopurinol treatment.  

 
Figure 6.3 Inhibition of xanthine oxidase activity attenuated the increase in hydrogen 

peroxide (H2O2) concentration and lipid peroxidation associated with exercise.  (A) The 
H2O2 concentrations were determined a fluorometrically.  Data are expressed as µmol per mg of 
total protein in gastrocnemius muscle homogenate. (B) Data are combined malondialdehyde 
(MDA) and 4-hydroxyalkenals (HAE) and are normalized to the total protein concentration in the 
gastrocnemius muscle homogenate. The normalized data are presented as the mean ± SEM. * 
significant difference (p<0.05) of isometric exercised muscle from contra-lateral control muscle; 
§ signifies a significant difference (p<0.05) due to aging. † signifies a significant difference 
(p<0.05) of the allopurinol treatment.  

 
Figure 6.4 Concentration of total glutathione, oxidized glutathione (GSSG) and the 

ratio of reduced glutathione (GSH) / GSSG.  (A)  The concentration of total glutathione is 
expressed as µM GSH normalized to total protein concentration (mg) in the gastrocnemius 
homogenate.  (B)  The concentration of oxidized glutathione is expressed as µM GSSG 
normalized to the total protein concentration (mg) of the gastrocnemius homogenate.  (C) Data 
are depicted as the ratio of GSH to GSSG normalized to total protein content.  Lower ratios are 
an indication of increased oxidative stress. The normalized data are presented as mean ± SEM. 
* significant difference (p<0.05) of isometric exercised muscle from contra-lateral control 
muscle; § signifies a significant difference (p<0.05) within either the sham surgery or allopurinol 
treatment groups due to aging. † signifies a significant difference (p<0.05) due to the allopurinol 
treatment.  

 
 Figure 6.5 Glutathione peroxidase (GPx) and Manganese superoxide dismutase 

(MnSOD) activity & mRNA regulation with isometric exercise and allopurinol treatment. 
For all graphs the normalized data are presented as mean ± SEM. § signifies a significant 
difference (p<0.05) within the sham surgery or allopurinol treatment groups due to aging. (A) 
Total GPx activity is expressed as nmol decrease in NADPH per minute normalized to mg of to 
total protein concentration in the gastrocnemius homogenate.  (B) GPx-1 mRNA expression was 
determined from the total muscle homogenate by RT-PCR. The data are expressed as optical 
density (OD) x band area normalized to 18s rRNA, and expressed in relative optical density. 
The inserts show representative gels for GPx-1 mRNA and 18s rRNA in young and aged 
(control and isometrically exercised) gastrocnemius muscle. (C) MnSOD activity was 
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determined in the mitochondrial fraction of the gastrocnemius muscle homogenate. MnSOD 
activity is expressed as U of MnSOD per ml of homogenate normalized to mg of protein in 
homogenate. One unit was defined as the amount of enzyme needed to exhibit 50% 
dismutation of the superoxide radical.  (D) MnSOD mRNA expression was determined from the 
total muscle homogenate by RT-PCR. The data are expressed as optical density (OD) x band 
area, normalized to 18s rRNA and expressed in relative optical density.  The inserts show 
representative gels for MnSOD mRNA and 18s rRNA in young and aged (control and isometric 
exercised) gastrocnemius muscle.  

 
YCC= Young, Control surgery, Control non-exercise; YCE= Young, Control surgery, 

Exercised; YAC=Young, Allopurinol, Control non-exercise; YAE= Young, Allopurinol, Exercised; 
ACC= Aged, Control surgery, Control non-exercise; ACE= Aged, Control surgery, Exercised; 
AAC= Aged, Allopurinol, Control non-exercised; AAE Aged, Allopurinol, Exercised 

 
Figure 6.6 Catalase and Copper zinc superoxide dismutase (CuZnSOD) activity, 

protein expression & mRNA regulation with isometric exercise and allopurinol treatment. 
For all graphs the normalized data are presented as mean ± SEM. * significant difference 
(p<0.05) of isometrically exercised muscles from contra-lateral control muscles; § signifies a 
significant difference (p<0.05) within the sham surgery or allopurinol treatment groups due to 
aging. † signifies a significant difference (p<0.05) due to the allopurinol treatment. (A) Total 
catalase activity is expressed as nmol of activity per min normalized to mg of total protein in the 
gastrocnemius homogenate. (B) Catalase protein expression was determined in the 
mitochondrial free cytosolic fraction by western immunoblot. The data are expressed as optical 
density (OD) x band area, normalized to GAPDH and expressed in relative optical density. The 
inserts show representative blots for catalase and GAPDH content young and aged 
gastrocnemius muscle.  (C) Catalase mRNA expression was determined by RT-PCR from the 
total muscle homogenate. The data are expressed as optical density (OD) x band area, 
normalized to 18s rRNA and expressed in relative optical density. The inserts show 
representative gels for catalase mRNA and 18s rRNA in young and aged (control and isometric 
exercised) gastrocnemius muscles. (D) CuZnSOD activity was determined in the mitochondrial 
free cytosolic fraction of gastrocnemius muscle homogenate. CuZnSOD activity is expressed as 
U of CuZnSOD per ml of homogenate normalized to mg of protein in homogenate. One unit was 
defined as the amount of enzyme needed to exhibit 50% dismutation of the superoxide radical.  
(E) CuZnSOD protein expression was determined in the mitochondrial free cytosolic fraction by 
western immunoblot. The data are expressed as optical density (OD) x band area, normalized 
to GAPDH and expressed in relative optical density. The inserts show representative blots for 
CuZnSOD and GAPDH content in gastrocnemius muscles.   (F) CuZnSOD mRNA expression 
was determined by RT-PCR from total muscle homogenate. The data are expressed as optical 
density (OD) x band area, normalized to 18s rRNA and expressed in relative optical density. 
The inserts show representative gels for CuZnSOD mRNA and 18s rRNA in young and aged 
(control and isometric exercised) gastrocnemius muscle. 

  
YCC= Young, Control surgery, Control non-exercise; YCE= Young, Control surgery, 

Exercised; YAC=Young, Allopurinol, Control non-exercise; YAE= Young, Allopurinol, Exercised; 
ACC= Aged, Control surgery, Control non-exercise; ACE= Aged, Control surgery, Exercised; 
AAC= Aged, Allopurinol, Control non-exercised; AAE Aged, Allopurinol, Exercised 

 
Figure 6.7  Aging increases apoptotic signaling.  For all graphs the normalized data are 

presented as mean ± SEM. * significant difference (p<0.05) of isometric exercised muscle from 
contra-lateral control muscle; § signifies a significant difference (p<0.05) within the sham 
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surgery or allopurinol treatment groups due to aging. † signifies a significant difference (p<0.05) 
due to the allopurinol treatment. Caspase-9 (A) and caspase-3 (B) levels were determined in 
the mitochondrial free cytosolic fraction of the gastrocnemius muscle homogenate by a 
fluorometric assay.  Data are expressed as Relative Fluorescent Unit (RFU) per mg of protein in 
the homogenate. (C) Cytosolic Cytochrome C protein expression was determined in the 
mitochondrial free fraction of the gastrocnemius homogenate by western immunoblot. The data 
are expressed as optical density (OD) x band area, normalized to GAPDH and expressed in 
relative optical density. The inserts show representative blots for cytochrome c and GAPDH in 
young and aged (control and repetitive loading) gastrocnemius muscle.  (D) Cytosolic AIF 
protein expression was determined in the mitochondrial free fraction of the gastrocnemius 
homogenate by western immunoblot. The data are expressed as optical density (OD) x band 
area, normalized to GAPDH and expressed in relative optical density. The inserts show 
representative blots for AIF and GAPDH in young and aged (control and repetitive loading) 
gastrocnemius muscle.   

 
YCC= Young, Control surgery, Control non-exercise; YCE= Young, Control surgery, 

Exercised; YAC=Young, Allopurinol, Control non-exercise; YAE= Young, Allopurinol, Exercised; 
ACC= Aged, Control surgery, Control non-exercise; ACE= Aged, Control surgery, Exercised; 
AAC= Aged, Allopurinol, Control non-exercised; AAE Aged, Allopurinol, Exercised 

 
Figure 6.8 Maximal isometric forces from the plantar flexor muscles.  (A) Data are 

expressed as the mean ± SEM of the maximal isometric force (N) recorded on the third day of 
exercise by the left plantar flexor muscle group normalized to the body weight in grams (g BW) 
of the animal.  § signifies a difference (p<0.05) due to aging. (B) Data are expressed as the 
mean ± SEM of the relative difference between the maximal isometric forces produced on the 
each contraction to the maximal isometric force on the first contraction. All force measurements 
were normalized to body weight (g). * indicates a significant difference (p<0.05) in both the aged 
sham surgery and allopurinol treatment animals versus the young adult sham surgery and 
allopurinol treatment animals. (C-F) Representative force x time curves from the 3rd exercise 
session in the allopurinol treated young adult and aged animals. (C) First contraction of the 3rd 
day in a young adult animal. (D) Twentieth contraction of the 3rd day in a young adult animal. (E) 
First contraction of the 3rd day in an aged animal. (F) Twentieth contraction of the 3rd day in an 
aged animal. 
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Figure 6.2 
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Figure 6.3 
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Figure 6.4 
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Figure 6.5 
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Figure 6.6 
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Figure 6.7 
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Figure 6.8 
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Summary of research findings 
 
The data presented in this project are consistent with  previous studies that have shown 

an increase in oxidative stress within the skeletal muscle environment in response to exercise 
(1, 18, 21, 29, 65, 97) and advanced aging (7, 20, 25, 38, 53, 72, 77, 101).   Specifically, in this 
study exercise and aging elevated lipid peroxidation, xanthine oxidase activity, the concentration 
of H2O2, and decreased the GSH/GSSG ratio in skeletal muscle. In addition, there was an age-
related exacerbation of exercise-induced oxidative stress in the aged muscle. Together, these 
data provide support for a new hypothesis: increases in xanthine oxidase activity are 
responsible for the majority of the oxidative stress associated with resistance training models of 
anaerobic exercise. 

 
 The inhibition of xanthine oxidase by allopurinol attenuated the increase in oxidative 

stress associated with isometric exercise, but reduction of xanthine oxidase did not reduce 
oxidative stress that was associated with aging. These conclusions support the central 
hypothesis of this project that “skeletal muscles from aged animals will show increased 
evidence of oxidative stress during resistance exercise (repetitive loading) and 
antioxidant supplementation will increase the aged muscles’ oxidative buffering 
capacity, thus attenuating the increase in oxidative stress associated with aging. 
Increased xanthine oxidase activity will be a contributing factor to the increase in 
oxidative stress in response to resistance exercise (i.e. repetitive loading) and aging”. 
One difference from the original hypothesis that was not supported by the data were that the 
age related increase in xanthine oxidase activity did not appear to be a contributing factor to the 
oxidative stress associated with aging. 

  
Another objective of this investigation was to evaluate the efficacy of reducing oxidative 

stress on the adaptive response of skeletal muscle to repetitive loading exercise in aging 
rodents. To achieve this objective, three methods of reducing oxidative stress were utilized; the 
antioxidants vitamins E&C were used to buffer oxidants (specific aim 1), the nutraceutical 
resveratrol was used to inhibit oxidant production (specific aim 2) and the pharmacological 
agent allopurinol was used to attenuate  oxidant production specifically through the inhibition of 
xanthine oxidase activity (specific aim 3).  While all three approaches effectively lowered 
oxidative stress (H2O2, the GSH/GSSG ratio, lipid peroxidation) associated with exercise, there 
was not a consistent pattern of response in endogenous antioxidant enzymes to the 
experimental interventions used in this study.  

 
The affects of reducing oxidative stress on muscle function 
Oxidative stress has been shown to depress muscular force (12), alter myofilament 

function (2, 58), mediate muscle fatigue (88) and/or modify contraction-induced calcium release 
(3, 19, 22, 82). Therefore, it was hypothesized in all three of the specific aims of this 
investigation that reducing aging related oxidative stress would improve muscle function in the 
aged animals.  The animal models of in vivo repetitive loading that were implemented in these 
studies proved useful because the input parameters on the muscle were tightly controlled, thus 
any changes in performance parameters can be attributed to alterations within the muscle 
environment. Although methods using resistance training in conscious animals have been 
developed (98, 99), there are several problems with these approaches: a) it is difficult to 
motivate animals to exercise with resistance loads, b) using food rewards for exercise in aged 
animals is problematic and will result in loss of body weight,  c) rests interval between 
repetitions in voluntary exercise are variable, and d) animal compliance to repeated voluntary 
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exercise is poor. Therefore, conscious animals models cannot rule out the possibility that 
changes in input parameters affect the results. Within the scope of the current studies the 
biomechanical loading signature (input parameters, i.e. frequency, intensity, duration along of 
the contraction along with the direction of movement and the speed of movement) for each 
contraction was identical. Because all motor units within the muscles were contracted 
simultaneously, the current models eliminated preferential fiber type recruit patterns. Although in 
the current models of repetitive loading the physiological recruitment patterns were altered, the 
force produced was within the physiological capabilities of the muscle. Within endurance 
training models of exercise; the ramp principle of fiber type recruitment would imply that at low 
to moderate intensities the slow oxidative and/or fast glycolytic-oxidative fibers would contract a 
greater number of times than the fast glycolytic fibers, which may result in “pockets” of greater 
oxidative stress based on input parameters.  

 
In general, the current data supports the notion that muscle function declines with 

advanced aging, yet muscle is still able to adapt to exercise (10, 24, 37, 60, 92, 93). 
Nevertheless, these adaptations are generally less than that reported in muscles from young 
adults.  While some elements of muscle function were improved, other aspects of function did 
not improve when oxidative stress was reduced.  For example, vitamin E&C supplementation in 
the aged rats showed a ~ 38% improvement in positive work, but failed to improve either 
maximal force or negative work. Resveratrol supplementation did not improve maximal isometric 
force; however, somewhat surprisingly it did improve the young muscles ability to resist fatigue 
without affecting the fatigue in the aged muscle. Furthermore, allopurinol administration 
improved maximal isometric force in the aged animals, but failed to show any significant 
improvements in the fatigue resistance.  

 
The improvements in positive work with vitamin E&C supplementation and the increase 

in maximal isometric force produced in the animals administered allopurinol can be directly 
related to the reduction in oxidative stress. However, with resveratrol supplementation it is 
unknown if the improved resistance to fatigue was a result of an increase in ATP availability or a 
diminished exercise-induced oxidant formation. Previous studies have reported that resveratrol 
supplementation reduced fatigue associated with  aerobic exercise (6, 62).  The increased 
resistance to fatigue has been attributed to increases in the density and efficiency of the 
proteins associated with the mitochondrial electron transport chain, by increasing β-oxidation 
and/or by increasing ATPase content (6, 62, 80, 95).  These novel data represent the first 
evidence that resveratrol can reduce muscle fatigue in response to repetitive anaerobic 
(isometric) contractions.  

 
Responses of endogenous antioxidant enzymes to exercise 
  Proper control of expression and activity of the endogenous antioxidant enzymes is the 

key component to the maintenance of redox homeostasis. Many of the endogenous antioxidant 
enzymes have been shown to be controlled via both transcriptional regulators and post-
transcriptional and/or post-translational mechanisms. The antioxidant enzymes may be rapidly 
activated to manage acute oxidative stress due to a single bout of exercise or gradually up-
regulated in response to chronic oxidative stress associated with aging or exercise training. 
However the overall response to either acute or chronic exercise may vary depending on the 
mode of exercise and the fiber type make up of the muscle (5, 39, 41, 46, 55, 64, 78, 79, 83, 
84). 

 
The majority of the research on the response of the antioxidant enzyme to exercise 

training has utilized moderate to exhaustive endurance activity as the mode of exercise. Some 
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of the general conclusions have shown that; (I) MnSOD activity has consistently been shown to 
increase with exercise training in an intensity-dependent manner(39, 46, 63, 64, 83), whereas 
CuZnSOD activity shows little change to chronic training(33, 39, 46, 55, 63). (II) GPx activity 
increases after endurance training (64, 84), and (III) exercise training effects on catalase activity 
has produced conflicting results (33, 39, 55, 63, 64, 83). 

 
Mitogen-activated protein kinases (MAPKs) and nuclear factor kappaB (NF-κB) are two 

major redox-sensitive signal transduction pathways that have been shown to activate the gene 
expression of a number of enzymes and proteins that have an important role in the 
management of oxidative stress (52). Elevated oxidant production associated with exercise has 
been shown to activate MAPK , which in turn activates NF-κB in skeletal  muscle resulting in 
increased gene expression of MnSOD and catalase (30, 50, 59).  When antioxidants are used 
to diminish exercised induced oxidative stress it has been shown to attenuate the activation of 
the MAPK/ NF-κB signaling pathway resulting in a failure of exercise to elevate gene expression 
of endogenous antioxidant enzymes MnSOD and catalase. 

 
MnSOD Regulation 

The response of MnSOD to acute and chronic aerobic exercise has been widely studied. 
An acute bout of aerobic exercise has been shown to up-regulate NF-κB expression and 
activation leading to elevated MnSOD expression (30, 34, 44, 76).  Tumor necrosis factor-alpha 
(TNFα), Interleukin-1(IL-1) and early growth-responsive-1 (Egr-1) have all been shown to up-
regulate MnSOD gene expression through interactions with NF-κB  binding to the promoter 
region of the MnSOD gene (17, 40, 56, 69).  

 
Chronic endurance training has been shown to increase mRNA expression and increase 

both the protein content and activity of MnSOD (76). This suggests that in response to chronic 
endurance training MnSOD activity increased by transcriptional control. However, this is not a 
universal finding; Gore et al. (34) showed that endurance training in rats increased protein 
concentration of MnSOD by 66%, but had no affect on MnSOD mRNA abundance or enzyme 
activity.  One difference between these two studies was the muscle in which MnSOD activity 
was measured from; the first being the soleus and the second the deep vastus lateralis. The 
soleus consists of primarily slow oxidative fibers while the deep vastus lateralis is composed of 
a large percentage of fast oxidative-glycolytic fibers. However, chronic exercise has been shown 
to change the enzymatic profile of the deep vastus lateralis to become similar to a slow 
oxidative fiber (35). Based on that evidence, it would be expected that the MnSOD expression 
and activity would increased as the fibers became more oxidative. There is a paucity of data on 
the regulation of MnSOD in response to either acute or chronic resistance training.  Parise et al. 
(79) showed that neither acute or chronic resistance training in elderly men altered MnSOD 
activity and recently it has been shown that acute electrical stimulation did not affect MnSOD 
activity but did increase mRNA expression (81). 

 
MnSOD also requires post-translational modification to become an active enzyme (68). 

MnSOD protein is produced as a large precursor enzyme (apoMnSOD) with several steps of 
modification required to become active. The superoxide radical is the most common activator of 
MnSOD, when apoMnSOD is produced it contains an Fe2+ in the active site, as the 
concentration of superoxide increases, Mn2+ is oxidized to Mn3+, which replaces Fe2+ thereby 
activating the enzyme (85). Furthermore, there are several mechanisms that inactivate MnSOD, 
they include; metal mis-incorporation, glycation, S-glutathionylation, phosphorylation, nitration 
and high concentrations of H2O2 (68). 
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CuZnSOD Regulation 

It is generally thought that acute aerobic exercise will activate the CuZnSOD enzyme 
and increase its activity without changes in its mRNA and protein levels (47, 54), however not all 
studies have shown changes in CuZnSOD activity in response to acute exercise (44, 81, 86). 
Increases in CuZnSOD activity associated with acute exercise have been suggested to be 
regulated via post-translational modifications to the protein (47). The most likely signal for 
increasing CuZnSOD activity is superoxide itself (9) and since CuZnSOD has a very short half-
life,  research suggests a transit regulation of the enzyme activity in response to superoxide 
concentrations (47). This suggestion is supported by training studies that have shown that 
chronic endurance exercise in rats can elevate CuZnSOD activity by 29%, without changes in 
enzyme protein content or mRNA expression (76).   As with endurance training, progressive 
resistance training has resulted in a significant increase in CuZnSOD activity (79) however this 
may be due to increased mRNA expression and protein content (26). 

 
Few studies have shown insight into the effect of exercise on the redox sensitive gene 

regulation of CuZnSOD expression in skeletal muscle. In contrast to the promoter region in 
MnSOD, the promoter region of the CuZnSOD gene (SOD1) is not known to contain as many 
regulatory sequences (47). Interestingly, the product of the dismutation of superoxide, H2O2, has 
been shown to increase activation of CuZnSOD gene expression, due to a H2O2-responsive 
element (HRE) on the promoter region of the SOD1 gene (100). 

 
GPX Regulation 

Like MnSOD, the promoter region on the GPx contains both NFκB and AP-1 binding 
sites (47). The gene for GPx-1 has also been shown to have two oxygen-responsive elements 
(15) that in response to depleted concentrations of oxygen, increase GPx activity proportional to 
the elevation of mRNA expression (14, 47). Exercise has commonly been shown to increase 
GPx activity (47, 48, 64) and similar to MnSOD the response of GPx activity to exercise training 
was muscle specific (63, 64, 83). Furthermore, it has been shown that the extent of the increase 
in GPx activity is associated with the duration of exercise however it is relatively independent of 
intensity. Even though the literature consistently shows that its GPx activity is increases after an 
acute bout of exercise and endurance training little is known in regards to GPx’s response to 
resistance training and what data is available does not show increases in GPx activity with 
progressive resistance training (26, 79).   
 
Catalase Regulation 

Catalase is a heme containing antioxidant enzyme whose expression is largely 
transcriptionally regulated (67).  Catalase is regulated by transcription factors binding one of two 
CCAAT boxes in the promoter region (67, 75). Nuclear factor-Y (NF-Y)  a redox sensitive 
transcription factor (71) has been shown to increase catalase gene expression in mouse muscle 
cells in response to increases in H2O2 concentrations (67). 

 
The response of catalase activity to either acute or chronic exercise has produced 

inconsistent and sometimes conflicting results (26, 33, 39, 55, 63, 64, 79, 81, 83).  Catalase 
catalyses the conversion of H2O2 into water and oxygen and is found in high concentrations in 
the peroxisomes. The catalytic efficiency of the catalase is very high, which might explain the 
inconsistency in the response to exercise. Because of the high efficiency of the enzyme, 
increases in activity may not be needed to handle the increase in H2O2 associated with 
exercise. Catalase activity could also be linked to GPx activity, Powers et al (84), suggested 



Michael J. Ryan                               Chapter 7     158  

 
that, when cellular levels of H2O2 are low, GPx is more active and catalase activity might not 
increase until higher H2O2 concentrations are achieved. 

 
Within the scope of the current set of experiments the regulation of antioxidant enzyme 

levels in aged and exercised muscles occur by translational or post- translational mechanisms. 
A summary of the changes in activity (Figure 7.1A), protein content (Figure 7.1B) and mRNA 
expression (Figure 7.1C) are presented in Figure 7.1. The results from the current studies do 
not support transcriptional control as a mechanism leading to increases in activity of the 
endogenous antioxidant enzymes in response to exercise and only in the mice (specific aims 2 
& 3) did age result in an increase in catalase mRNA resulting in increased catalase activity. 
Across all three investigations exercise and antioxidant treatment did not result in consistent 
changes in the activity of the endogenous antioxidant enzymes.  A possibility for this could be 
the different species, but also could be attributed to the different exercise protocols and different 
muscles that were investigated. 

 
In sharp contrast to the observed increase in MnSOD with endurance training, both 

chronic and short term repetitive loading failed to alter MnSOD activity. Furthermore, consistent 
throughout all of the studies was an age-dependent increase in catalase activity. In the mice the 
elevation in catalase activity was accompanied by an increase mRNA expression, however the 
rats showed no increase in mRNA and/or protein levels in the rat vitamin E&C study. The 
regulation of GPx appeared to be dependent on the species of rodent used in the investigation. 
In the rats (specific aim 1), GPx activity was significantly elevated with exercise, independent of 
changes in transcriptional or translational activity and was unaffected by aging. However, GPx 
activity was unaltered by exercise or aging within the mouse studies (specific aim 2 & 3).  
Activity of the catalase enzyme showed a response opposite to GPx activity in the non-
antioxidant treated animals.  The short term exercise program in the mice studies increased 
catalase activity, but chronic exercise training in the rats did not alter catalase activity.  

  
Even though these data support the suggestion by Powers et al (84) of a differential 

response in catalase and GPx activity, this is not a consistent response observed by all (64). A 
major limitation in comparing the responses of endogenous antioxidant enzymes between the 
rats in the vitamin E&C study and the mice in the resveratrol and the allopurinol investigations 
was the differences in the duration of the exercise protocols. The vitamin E&C study (specific 
aim 1) characterized the response of antioxidant enzymes to chronic exercise, whereas the 
resveratrol (specific aim 2) and the allopurinol (specific aim 3) studies examined the antioxidant 
and short-term adaptations to isometric exercise.  It is unknown if the muscles from mice would 
have adapted in a similar manner as the rats, if their exercise protocol was the extended for the 
same duration in both species of rodents.  

 
In general these data are consistent with the notion that the activities of the endogenous 

antioxidant enzymes are regulated via various levels of post-transcriptional and/or post-
translational controls (42).  Furthermore, the response of MnSOD to anaerobic forms of 
resistance exercise may differ from more commonly examined aerobic (28, 43, 49) types of 
exercise.  It is speculated that this may be due in part to the utilization of ATP-phoshocreatine 
and glycolytic metabolic pathways in resistance exercise, versus a strong dependency on 
oxidative phosphorylation in aerobic exercise. The current data and that of others (26, 79, 81) 
support the formation of a new hypothesis stating that resistance types of exercise do not 
increase MnSOD activity in the same manner that has been observed with endurance exercise. 

 
 



Michael J. Ryan                               Chapter 7     159  

 
Responses of endogenous antioxidant enzymes to reducing oxidative stress 
Analogous to the responses of endogenous antioxidant enzymes to exercise and aging, 

overall the activities of the endogenous antioxidant enzymes in response to the different 
methods of reducing oxidative stress appear to be regulated via various mechanisms of post-
transcriptional and/or post-translational control.  Furthermore, control via transcription, 
translation and activity of the individual enzymes appeared to vary depending on the method 
that was used to reduce oxidative stress, the age of the animal and if the muscle underwent 
exercise training. These data did not support the view that vitamins E&C supplementation 
inhibited the positive adaptations to exercise within all of the endogenous antioxidant enzymes 
(32, 89) and in the case of catalase and CuZnSOD, vitamin E&C supplementation enhanced the 
adaptive response to exercise. However, the data collected from the allopurinol treated mice 
would suggest that inhibiting oxidant production via the xanthine oxidase pathway removed the 
stimulus required to initiate an adaptive response in the endogenous antioxidant system.  These 
differences may suggest that distinct mechanisms of reducing oxidative stress may lead to 
slightly diverse responses in the adaptation of the endogenous antioxidant enzymes.  

  
It is likely that in the vitamin E&C study, oxidants were still being produced at a high rate 

during exercise, even after 4.5 weeks of repetitive exercise. If we assumed that the majority of 
those oxidants are coming from an increase in endothelial derived xanthine oxidase activity, 
then large concentrations of vitamin E&C within the muscle cells might only affect regulation of 
the endogenous antioxidant enzymes within those muscle cells. However, within the endothelial 
cells and/or the extracellular space, increased oxidant production may be activating redox 
sensitive pathways that in turn increase the activity of endogenous antioxidant enzyme specific 
to that sub-cellular location.  

 
The assumptions of the allopurinol study were that there was never a large increase in 

oxidant production because the xanthine oxidase activity was inhibited by the drug. It is difficult 
to compare the resveratrol supplemented animals with the vitamin E&C and allopurinol studies 
in this regard because resveratrol has been shown to have direct control over gene regulation 
that is upstream of a wide variety of cellular pathways involved in energy homeostasis, 
longevity, cell survival, and apoptosis. For example, within the current investigation, it is 
unknown if resveratrol increased mitochondrial number which could have resulted in an 
increase MnSOD activity.  Measuring mitochondrial morphology (16) and enzyme levels in 
resveratrol fed animals would have answered this question.  It was assumed that Vitamin E&C 
supplementation along with allopurinol would regulate the endogenous antioxidant enzymes 
solely via reducing oxidative stress and activation of redox sensitive pathways.  

 
Limitations and future directions  
Increased cellular levels of H2O2 can result in oxidative stress and cause cellular 

damage. Oxidative damage to cells has been associated with the progression of the aging 
process and may lead to increased pathological damage associated with advanced aging. 
Nevertheless, low concentrations of H2O2 have been shown to be an important signaling 
molecule that regulates many cellular processes (96). A comprehensive review of the literature 
by Giorgio et al. (27) lead them propose that in vivo  changes in H2O2 concentrations in the 10-8 
molar range lead to proliferation and increased cellular signaling, whereas changes in the 10-6 
molar range caused growth arrest and cellular damage whereas 10-4 molar changes induced 
apoptosis.  
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The original intent of this project was to determine if effectiveness of antioxidants in 

reducing oxidative stress associated with exercise and aging in skeletal muscles. Throughout 
the scope of this project H2O2 levels were determined to measure changes in the abundance of 
oxidants within the skeletal muscle environment. Determining changes in H2O2 by reporting the 
data as relative florescent units (RFU) /mg protein was effective in showing changes in H2O2 
between groups within each individual study, however because actual concentrations of H2O2 

were not calculated the interpretation of these data and the direct comparison, between studies 
within this project and that of others, is limited.  In the rat vitamin E&C study (specific aim 1), 
going back and determining a standard curve for the H2O2 data proved to be difficult because 
the exact gain of the plate reader was not properly recorded. By comparing the readings from 
the blank wells an estimation of the gain setting was determined and a standard curve was 
ascertained (Figure 7.2a).  This allowed for some interpretation of whether the changes in H2O2 
were involved in cellular signaling or pathological in nature.  Within the chronic exercise study in 
rats (specific aim 1) exercise and aging both increased H2O2 concentrations (1.5-2.9 x 10-7 
mol/mg protein) in a range in-between promoting cellular growth and causing damage. 
Furthermore, because the muscle samples were ascertained 24 hours after the last bout of 
exercise and the relatively short half life of H2O2, it is postulated that the current elevations are 
the result of a signaling response. To further support this notion, the increase in lipid 
peroxidation associated with exercise in the aged animals was attenuated after 4.5 weeks of 
exercise training. Vitamin E&C supplementation attenuated the increases in the H2O2 
concentrations associated with aging and exercise.  

 
 Within the resveratrol study (specific aim 2) the standard curve was not ascertained at 
the same time as the RFU data was collected, however the exact settings of the plate reader 
(i.e. gain) was duplicated to determine a standard curve for H2O2 concentrations (Figure 7.2b). 
Interpretation of the H2O2 concentration data suggests that immediately after exercise H2O2 
concentrations were elevated by 1.7 x 10-6 mol/mg protein and was sufficient to increase 
oxidative damage (lipid peroxidation). In the aged animals exercise increased H2O2 
concentrations by 7 x 10-7 mol/mg protein and elevated lipid peroxidation. This would suggest 
that the increase in H2O2 associated with aging was sufficient to increase localized oxidative 
damage within the muscle environment. 
 

Within the allopurinol study (specific aim 3) a standard curve was established at the 
same time the RFU data was collected (Figure 6.3A). This allowed for more accurate 
determination of H2O2 concentrations.  The elevation in H2O2 concentrations in the aged 
animals was not as great as in the resveratrol study (allopurinol = 3 x 10-7 mol/mg protein vs. 
resveratrol = 17 x 10-7 mol/mg protein); however, as in the resveratrol study there was increase 
in lipid peroxidation suggesting the increase in H2O2 was sufficient to cause oxidative damage. 
Similar results were found in the resveratrol and allopurinol studies in regard to the magnitude of 
the increase in the H2O2 concentrations (allopurinol = 6 x 10-7 mol/mg protein vs. resveratrol = 7 
x 10-7 mol/mg protein) associated with exercise in the gastrocnemius muscle from aged mice.  A 
brief interpretation of these data suggest that acute or short-term resistance exercise produced 
concentrations of H2O2  that resulted in cellular damage, however elevations in H2O2 
concentrations associated with chronic resistance exercise may have acted as inter- and/or 
intra-cellular signals that resulted in the attenuation of oxidative damage associated with 
exercise in the muscles of the aged animals. 

 
Other limitations of in the vitamin E&C study (Aim 1) were; (a) xanthine oxidase and 

NADPH oxidase activity were not measured, so the source of oxidant production (e.g., 
mitochondria, NADPH oxidase or xanthine oxidase) could not be determined, (b) the specific 
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concentration of vitamins E&C within the blood, the muscle and/or the various cell types within 
the muscle environment were not measured. Further studies to determine the tissue specific 
concentrations of vitamins E&C and the sub-cellular location of oxidant production are needed 
to obtain a clearer picture of how they affect the regulation of the endogenous antioxidant 
enzymes in response to anaerobic resistance types of exercise.  

 
The second specific aim was to determine the efficacy of resveratrol supplementation as 

a possible countermeasure for oxidative stress associated with aging and acute exercise in 
skeletal muscle. The major limitations in the resveratrol study (specific aim 2) were that the 
duration of treatment might have been too short to identify all of the potential responses to 
resveratrol supplementation. It is possible that if the aged animals were given the resveratrol 
fortified diet for a longer time period they would have shown significant improvements in muscle 
fatigue as did the young animals. Since it is speculated that resveratrol is acting to reduce 
oxidant formation by means of Sirt1 activation and improved ATP availability, a longer pre-
exercise time on the resveratrol diet might allow greater activation of the transcriptional 
mechanisms need to improve adaptation. However, this investigation does not provide any 
direct evidence of Sirt1 activation, increases in mitochondrial density and/or efficiency, nor did it 
measure skeletal muscle ATP content. Further research is needed to determine the significance 
of resveratrol to manipulate metabolic pathways that would increase ATP content and decrease 
the rate of fatigue. 

 
Future directions that directly extend from the data in the second study include 

examining the capacity of resveratrol to increase the availability of ATP and decreased 
superoxide formation in skeletal muscle by reducing uncoupling of the mitochondrial electron 
transport chain. Possible targets for improving ATP availability should include the mitochondrial 
electron transport chain, β-oxidation, and gluconeogenesis.  A future study could be designed to 
test if resveratrol  increases ATP availability by increasing β-oxidation in skeletal muscle via 
decreasing lipogenesis and increasing lipolysis in adipocytes (95), thus allowing for greater 
substrate availability for ATP production within the contracting muscle. Moreover, Sirt1 
activation via resveratrol has been shown to facilitate the nuclear translocation of forkhead 
transcription factor-1 (FoxO1) thus activating gluconeogenesis in hepatocytes (23).  A future 
study could evaluate the role of Sirt1 in regulating gluconeogenesis within the liver, and leading 
to higher blood glucose levels. The ability to maintain blood glucose levels during exercise 
would lead to an increased glucose availability that the working muscle could use for ATP 
production via glycolysis. 

 
Another  important question that is extended from data in Aims 1 and 2   is whether long 

term resveratrol supplementation would lower the hypertrophic  adaptation to high-intensity, 
short-duration resistance training. There exists the possibility that resveratrol would inhibit 
muscle growth in favor of improving aerobic function and endurance. It has been shown that 
concurrent training (combining diverse contractile activity i.e. high-intensity, short-duration and 
prolonged, low-intensity) may not be optimal for promoting specific adaptations that would 
simultaneously promote both anabolic and aerobic responses (13). Similar to resveratrol 
supplementation, the Sirt1 activated AMPK-PGC-1  pathway is up-regulated in response to 
endurance exercise. Additionally, endurance exercise has been shown to repress the 
Akt/protein kinase B-mammalian target of rapamycin-p70 S6 kinase (Akt-mTOR-S6K) pathway 
to which would normally increase protein synthesis and muscle growth in response to resistance 
exercise (4). It is unknown, if a similar response would occur in both animals and humans 
undergoing long–term resveratrol supplementation simultaneous with resistance training. 
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The third specific aim of this project examined how xanthine oxidase inhibition (via 

allopurinol) affected the increased apoptotic signaling in skeletal muscle from aged animals. It 
was hypothesized that increased xanthine oxidase activity due to exercise would contribute to 
decreasing the mitochondrial membrane integrity thus leading to increased apoptotic signaling 
in aged muscles after exercise.  However, it was found that xanthine oxidase does not have a 
significant role in increasing mitochondrial derived apoptotic signaling. Nevertheless, the 
inhibition of xanthine oxidase diminished an increase in caspase 3 activity in the aged muscle 
after isometric contractions. Recent findings imply that increased caspase 3 activity after 
exhaustive exercise in aged rats is dependent on caspase 8 activation and the extrinsic 
apoptotic pathway. 

 
The primary limitation of the allopurinol experiments were that direct measures of 

apoptosis were not examined nor were specific signaling pathways that initiate apoptosis.  
Future research stemming from these findings in the third aim should focus on determining if the 
increase in caspase 3 activity initiates an increase in apoptosis and which upstream 
mechanisms result in the increase of caspase 3 activity are activated by increase in xanthine 
oxidase activity.  These investigations should focus on the extrinsic apoptotic pathway. Fifty 
minutes of strenuous treadmill running has been shown to increase plasma levels of TNF-α and 
interleukin-6 (IL-6) which was associated with an increase in apoptosis (57).  However, TNF-α 
and IL-6 are pro-inflammatory cytokines that increase in response to cellular damage and the 
isometric contractions used in the current study are assumed to be a form of non-damaging 
contractile activity. It would be essential to determine if the isometric protocol used in the current 
study, induced increases in TNF-α and IL-6 and if so, did TNF-α and IL-6  increase because 
contractile damage or if perhaps if exercise-induced oxidative damage leads to inflammation. 

    
TNF-α along with other ligands in the TNF superfamily such as FAS or TRAIL can 

activate the extrinsic apoptotic pathway when they bind to their receptors (sometimes referred to 
as death receptors) on the cytoplasmic side of the cellular membrane. This activation of the 
death receptors stimulates recruitment of Fas-associated death domain protein (FADD) leading 
to caspase 8 activation subsequent cleaving pro-caspase 3 to its active form.  Future directions 
should characterize the response in death receptor ligands to non-phagocytic xanthine oxidase 
production and determine if increased extracellular oxidant production via xanthine oxidase 
increases the death receptor ligands and/or may modify the death receptors themselves. It has 
recently been shown that increases in intercellular H2O2 up-regulates the expression of death 
receptors (94). It is possible that the elevation in intercellular oxidative stress associated with 
increased mitochondrial dysfunction associated with aging leads to an increase in the death 
receptors enhancing the cells sensitivity to death receptor ligands.  

 
Recommendations in human populations  
Vitamin E&C 
The current investigation shows evidence supporting the use of vitamin E&C as an 

antioxidant supplement, however the limited scale of these studies make it difficult to produce 
any practical recommendations in humans. Vitamin E&C supplementation will decrease 
evidence of oxidative damage caused by exercise and aging, which traditional has been thought 
to be a healthy benefit leading to the suggestion that antioxidant consumption needs increased 
in both athletes and the elderly. However, there is growing evidence that low concentrations of 
oxidants are needed to induce the expression of antioxidant enzymes in response to exercise. 
Indeed, recent evidence in humans (90) and rats (31) has suggested that antioxidant 
supplements like vitamin C and/or E can interfere with the benefits of exercise to increase 
muscle levels of antioxidant enzymes. This phenomenon is best characterized in the concept of 
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hormesis, which is a dose–response relationship in which low concentrations of a substance 
stimulate a response and a high concentrations inhibit a response (8). Hormesis has been 
applied to the oxidant generating effects of exercise as a means to explain why antioxidant 
supplementation inhibits muscular force production and blocks many of the beneficial effects of 
exercise on metabolism and the endogenous antioxidant (51, 87, 90). In this context oxidants 
are viewed as beneficial, rather than as deleterious. 

  
It is important to note that the investigations that suggests antioxidant supplementation 

prevents the health-promoting effects of exercise have been done in young adult humans (90) 
or rats (31) performing mostly aerobic exercise.  In the elderly, the elevation in basal 
concentrations of oxidants may offset the redox balance, thereby exposing cells to higher levels 
of oxidants that have the potential to result in oxidative damage to protein, DNA and lipids. In 
addition to aged-dependent oxidative stress, elderly people often have low plasma 
concentrations of the antioxidant vitamins, as a result of  their nutritional deficiencies (36, 66).  
In contrast, dietary supplementation of vitamin E has been shown to significantly reduce systolic 
blood pressure in sedentary elderly individuals (45). A combination of aerobic exercise and 
antioxidant supplementation in the elderly doubled the drop in their systolic blood pressure and 
decreased their diastolic blood pressure, as well as enhanced weight loss and significantly 
improved maximal oxygen uptake (VO2max) (45). Recent data have suggested that antioxidant 
supplementation can stimulate muscle protein synthesis in aged rats, possibly through the 
protection of leucine metabolism (70).  In addition, Vitamin E&C supplementation combined with 
resistance training has been shown to  increase fat free mass and the muscle mass index more 
than resistance training alone in older adults (61).  

 
Based on the current knowledge of antioxidant supplementation, it should be suggested 

that a dietary analysis of vitamin intake be performed in elderly persons, as this would highlight 
possible nutritional deficiencies in their diet. The typical American diet for all age groups tends 
to be inadequate in supplying the recommended allowance of fresh fruits and vegetables.   
Europeans consume more fruits and vegetables in their diet than Americans, which has been 
associated with an overall higher dietary vitamin E&C intake in Europe countries compared with 
in the United States (11). The dietary analysis could be used to determine the proper dosages 
of supplements to be prescribed based on fulfilling the USDA recommended daily allowances 
(RDA). However, in the elderly, the RDA values may be inadequate to combat the increased 
oxidant production and the decreased buffering capacity associated with aging (25). Currently, 
no specific guidelines for vitamins E or C intake exist for elderly Americans. The data collected 
in this investigation and some of the research highlighted above suggests vitamin E&C 
supplementation may be beneficial for the elderly participating in vigorous physical activity. 
Further research is needed to determine if and to what extent the RDA values need to be 
adjusted for elderly individuals.  

 
It has been suggested that antioxidant supplementation may be a beneficial 

countermeasure to the increased oxidant production associated with exercise in young adult 
athletes. In a study of professional soccer players, dietary supplementation of vitamin E & C 
was shown to reduce lipid peroxidation and muscle damage after high intensity workouts, 
however supplementation failed to enhance athletic performance (102).  Additionally, it has 
been shown that oral consumption of vitamin E&C in marathon runners prior to competition 
reduced post-competition creatine kinase levels compared to a placebo group (91), which would 
be indicative of reduced muscle damage .  However, for each study providing evidence for a 
positive effect there are other studies providing equally convincing evidence for either no effect 
or, occasionally, a negative effect of antioxidant supplementation (73). 
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Resveratrol 
Resveratrol is naturally occurring in the skins and seeds of dark grapes, peanuts, and 

Japanese knotweed (which is an ingredient in many eastern herbal medicines), among other 
plants, resveratrol is produced by plants as a defense against molds, UV radiation and other 
pathogens. Oral resveratrol supplementation has been associated with longer lifespan, improve 
metabolism, decreased oxidative stress and increased aerobic performance (6). Recent 
research has suggested that dietary intake of resveratrol, together with habitual exercise, is 
beneficial for suppressing the decline in physical performance associated with aging (74).    
Theoretically, resveratrol supplementation sounds beneficial to ones overall health and well 
being.  However, there is a paucity of convincing data from human clinical trials that supports 
resveratrol supplementation. To the best of my knowledge there are no controlled investigations 
that have examined resveratrol’s effect on athletic performance and therefore it is difficult to 
make any conclusions regarding the efficacy of resveratrol use by athletes. 

  
Within a quick search of the internet an individual will easily indentify many supplement 

companies that sell resveratrol, but the potency and purity of many of these supplements are 
not confirmed and/or regulated and in my opinion simply be a waste of time and money. Further 
research that establishes dose response and kinetic characteristics of the effects of long term 
resveratrol supplementation on both animals and humans is needed before any professional, 
scientifically based recommendation could be given. The existing data on the benefits of 
resveratrol supplementation surely warrant such investigations; however, caution should be 
advised to any notions of resveratrol being a “fountain of youth”.  

 
Allopurinol 
Allopurinol is a commonly prescribed drug for the treatment of hyperuricemia (high levels 

of uric acid). Common complications of hyperuricemia include kidney stones and chronic gout. 
Allopurinol is in a class of medications called xanthine oxidase inhibitors. The distribution of 
allopurinol is regulated by the government and should only be given to humans when prescribed 
by a doctor for the treatment and/or prevention of hyperuricemia or as an inhibitor of xanthine 
oxidase activity in controlled scientific research projects that are monitored by a medical doctor. 
Therefore, it is premature to consider regular use by allopurinol as a therapeutic aid to reduce 
oxidative stress in muscles of the elderly who exercise. Nevertheless, other less toxic 
substances that reduce xanthine oxidase might eventually prove to be of some benefit for 
reducing oxidative stress in elderly humans. 

 
Conclusion 
The results of this set of investigations show evidence that advanced aging is associated 

with elevated levels of oxidative stress including oxidative stress from xanthine oxidase. 
Furthermore, an increase in xanthine oxidase activity provides an important contribution to the 
oxidative stress associated with resistance exercise (i.e. repetitive loading). Muscles from aged 
animals have high basal levels of xanthine oxidase, and this is further exacerbated by 
resistance exercise. Modulation of exercise-induced oxidative stress will effect adaptation of the 
endogenous antioxidant system and different therapeutic methods of reducing oxidative stress 
in aged muscle produce slightly different results in muscle function. These studies do not 
conclusively address the capacity that oxidative stress has on the regulating myonuclear 
apoptosis, decreasing protein synthesis and/or activating proteolysis pathways, which in turn 
may contribute to the functional decline in skeletal muscle associated with advanced aging. 
Further investigations are warranted to find a direct link between oxidative stress and muscle 
atrophy.  
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Further work is required to determine if reducing oxidative stress will improve muscle 

function, fatigue, or apoptotic signaling in muscles of elderly subjects.   A greater awareness of 
the sub-cellular location of oxidant production related to resistance training may allow 
researchers to identify potential signaling targets that might be manipulated by supplements 
and/nutritional therapy in muscles of aging humans.  Such treatment strategies may potentially 
have a great economical value to society, given the expanding costs associated with caring for 
the increasing elderly population. 
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Figure 7.1 

 

Across study comparison of regulation of the endogenous antioxidant enzymes  
Comparison of the effect of aging, exercise and antioxidant treatment on activity of the 
endogenous antioxidant enzymes (A), enzyme protein content (B) and enzyme mRNA 
expression (C).      Indicates a significant (p<0.05) increase in activity.          Indicates no 
significant (p<0.05) change in enzymatic activity.       Indicates a significant (p<0.05) decrease in 
enzymatic activity. N/A (not applicable) Indicates data was not collected for that variable. 
 
YCC= Young, Control (non-antioxidant treatment), Control non-exercise; ACC= Aged, Control 

(non-antioxidant treatment), Control non-exercise; ACE= Aged, Control (non-antioxidant 

treatment), Exercised; ATC= Aged, Treatment (antioxidant), Control non-exercised; ATE = 

Aged, Treatment (antioxidant), Exercised 
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Figure 7.2 

 

 Corrected concentrations for hydrogen peroxide (H2O2) The H2O2 concentration 

was determined fluorometrically.  The data are expressed as mean ± SEM of µ moles per mg of 

total protein homogenate.  (A) H2O2 concentrations from the vitamin E&C study (specific aim 1) 

*, significant difference (p<0.05) between age-matched repetitively loaded muscle and contra-

lateral control muscle; †, a significant difference (p<0.05) between young exercise and diet-

matched control muscles; §, significant difference (p<0.05) between age-matched muscles from 

animals on the non-supplemented (NS) diet. (B)  H2O2 concentrations from the resveratrol study 

(specific aim 2) * significant difference (p<0.05) of isometrically exercised muscle from contra-

lateral control muscle; † a significant difference (p<0.05) from young exercise and diet-matched 

control muscles; § significant difference (p<0.05) from age-matched animals on the non-

supplemented diet. 
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Table 7.1  
(Reprint of Table 4.1) 

 

 
 

Body Mass of Young and Aged Rats Pre and Post 14 sessions of repetitive loading   
Data are mean ± SEM and presented as the mass of the rats before the first exercise 

session and after the 14th training session in grams.  †, indicates a significant difference 
(p<0.05) from young exercise and diet-matched control muscles. NS, non-supplemented diet. 
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Table 7.2  

 
 
Body mass of young and aged mice in the resveratrol and allopurinol studies   Data are 
mean ± SEM and presented as the mass of the mice in grams.  *, indicates a significant 
difference (p<0.05) in the aged mice from the young treatment matched control mice.  
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