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Abstract

Robustness of Topological Superconductivity in

Solid State Hybrid Structures

Piyapong Sitthison

The non-Abelian statistics of Majorana fermions (MFs) makes them an ideal
platform for implementing topological quantum computation. In addition to the
fascinating fundamental physics underlying the emergence of MFs, this potential
for applications makes the study of these quasiparticles an extremely popular sub-
ject in condensed matter physics. The commonly called ‘Majorana fermions’ are
zero-energy bound states that emerge near boundaries and defects in topological su-
perconducting phases, which can be engineered, for example, by proximity coupling
strong spin-orbit coupling semiconductor nanowires and ordinary s-wave supercon-
ductors. The stability of these bound states is determined by the stability of the
underlying topological superconducting phase. Hence, understanding their stability
(which is critical for quantum computation), involves studying the robustness of the
engineered topological superconductors. This work addresses this important problem
in the context of two types of hybrid structures that have been proposed for realizing
topological superconductivity: topological insulator - superconductor (TI-SC) and
semiconductor - superconductor (SM-SC) nanostructures. In both structures, elec-
trostatic effects due to applied external potentials and interface-induced potentials
are significant. This work focuses on developing a theoretical framework for under-
standing these effects, to facilitate the optimization of the nanostructures studied in
the laboratory.

The approach presented in this thesis is based on describing the low-energy
physics of the hybrid structure using effective tight-binding models that explicitly in-
corporate the proximity effects emerging at interfaces. Generically, as a result of the
proximity coupling to the superconductor, an induced gap emerges in the semicon-
ductor (topological insulator) sub-system. The strength of the proximity-induced gap
is determined by the transparency of the interface and by the amplitude of the low-
energy SM (TI) states at the interface. In turn, this amplitude is strongly impacted
by electrostatic effects. In addition, these effects control the value of the chemical
potential in the nanowire (nanoribbon), as well as the strength of the Rashba-type
spin-orbit coupling – two key parameters that determine the stability of the topo-
logical superconducting phase. To account for these critical effects, a numerically
efficient Poisson-Schrödinger scheme is developed.
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Chapter 1

Introduction

Water has three phases, solid, liquid and gas. A phase change can be induced,

for example, by tuning temperature, while pressure and all other thermodynamic

variables are kept constant. The phenomenon is very intuitive because we often

witness it in nature and, as a result, take it for granted. However, the formalism

describing this elementary process is based on rather sophisticated and carefully

defined concepts, such as heat and energy. The phase transitions of water (e.g., from

liquid to gas) are standard examples of phase transitions. The physical quantities

involved in the description of this type of process can be defined classically and the

relations among them are well understood within classical thermodynamics. This

knowledge has a significant practical side: understanding the relation between the

phase transitions of water and temperature have led to technological advances, such

as, for example, the steam engine. Nonetheless, in addition to the science, the

development of the steam engine involved hundreds of years of engineering, from

the aeolipile of the ancient Greeks to the first practical steam engine constructed by

Thomas Savery (1698).

For crystalline solids, the electrical conductivity can be used to categorize different
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materials into two classes: insulators and conductors. From a quantum mechanical

perspective, one can use the energy gap of the material to classify it: a nonzero

gap corresponds to an insulating phase, while a vanishing gap makes the material a

conductor. Note that in this case the use of quantum mechanics is critical. Unlike the

classification of the phases of water, which can be completely understood classically,

the classification of materials according to their electric transport properties can

only be explained (properly) by quantum mechanics. Although temperature affects

conductivity, the physics that describes this transport phenomenon is qualitatively

different from that involved in the process of turning ice into vapor. But different

physics requires different conceptual tools; not having the appropriate tools makes

certain phenomena look strange or even incomprehensible.

The quantum Hall effect is a great example of a ‘thing that cannot happen’.

Indeed, at the time of its discovery the paradigm for understanding the existence

of distinct phases of matter was based on Landau’s symmetry breaking theory: two

phases are distinct if they have different symmetries. Going from one phase to

the other requires a change in the symmetry of the system and involves passing

through a phase transition. Quantum Hall states, on the other hand, have all the

same symmetry, yet they are separated by phase transitions. If symmetry is out of

question, what makes these phases distinct? The answer that eventually emerged

is topology. The quantum Hall liquids do not have long-range order and cannot be

distinguished based on their local properties, i.e. using a local order parameter.

It is some global, topological property that makes them distinct. To use a simple

analogy, a sphere and a torus are locally indistinguishable: locally they both look

like R2, as we may know from living on Earth. Nonetheless, their global (topological)

properties are clearly distinct and there is no way to smoothly transform one into
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the other without ‘cutting’ the object (i.e. going through a phase transition).

Once the new paradigm that recognizes the role of topology was born, many new

predictions were made and new scenarios were proposed. One of the most beloved

children of the new paradigm is the Majorana fermion, a type particle predicted in

the late 1930s by the homonym Italian physicist but not discovered for more than

70 years, which reemerged as a quasiparticle in topological superconductors. Below,

I will summarize the main ideas behind the classification of phases of matter based

on the concept of topology. I will start my story with a bief history of the field.

1.1 Brief History of Topological Matter

The beginning of the topological era in condensed matter physics is marked by the

discovery of the Integer Quantum Hall Effect (IQHE) in 1980 by von Klitzing, Dorda

and Pepper [37]. A two-dimensional electron gas hosted by a semiconductor quantum

well is placed under a strong (perpendicular) magnetic field at low temperature. In

these conditions, the system is characterized by a vanishing longitudinal conductivity,

σxx, and by the emergence of a quantized Hall conductivity, σxy, which comes in

integer multiples of e2/h. The discrete and extremely well defined nature of the

Hall conductivity in IQHE cannot be explained by the Landau theory of symmetry

breaking. It was not until the work of Thouless, Kohmoto, Nightingale and den

Nijs (TKNN) in 1982 that a successful explanation for the quantization of σxy was

provided using Kubo’s formula [65]. Although the word “topology” was not used

in that work, it basically showed that the Hall conductance of an IQH liquid is

proportional to a topological invariant (the so-called first Chern number). In 1983,

Avron published a paper discussing the work of Thouless et al. and pointed out that

the integer that quantizes the Hall conductance is, in fact, a topological invariant [7].
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The word “topology” was entering the world of condensed matter physics. By the end

of 1983, Simon was emphasizing the relation of the topological invariant to Berry’s

phase [57]. Note that Berry’s original paper was not published until 1984. Simon’s

work provided an appealing mathematical framework which greatly facilitated the

understanding the IQHE in terms of topological properties of the ground state.

The strong magnetic field and low temperature were limiting factors that led to

the idea that topological quantum states, such as the quantum Hall fluids, are ex-

otic states that can occur only in extreme conditions. In 1988, Haldane proposed a

mathematical model to realize IQHE without a net magnetic flux [25]. More specif-

ically, Haldane realized that the key ingredient necessary for realizing the quantum

Hall effect is not the magnetic field itself, but the absence of time-reversal symmetry.

The key role of the magnetic field is to break the time-reversal symmetry. Haldane

proposed a model of spinless fermions on a honeycomb lattice in the presence of

a periodic magnetic field. The magnetic field has the property that the total flux

through each unit cell is zero.

Although Haldane’s model realizes the IQHE with zero net magnetic flux, its

practical realization would be very challenging. Nonetheless, the conceptual sim-

plicity of the model, which makes the role of topology extremely transparent, places

the Haldane model as the ‘first stop’ in the theoretical effort of understanding the

role of topology in condensed matter physics. In 2005, Kane and Mele generalized

Haldane’s model by applying the idea to graphene and replacing the periodic (exter-

nal) magnetic field by a spin orbit coupling field. Instead of spin-polarized electrons,

the system has now spin-full particles and a spin-orbit interaction that preserves

time-reversal symmetry. This marked the birth of the time-reversal-invariant (or

T -invariant) Quantum Spin Hall Effect (QSHE) [33], the first example of a so-called
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Z2 topological insulator (TI). A more realistic model of QSHE was proposed by

Bernevig et al., in 2006 in the context of HgTe quantum wells [9]. The authors

pointed out that the actual spin orbit coupling in graphene is too small to realize

the topological state proposed by Kane and Mele. In their proposal, Bernevig et

al., predicted that in a mercury telluride–cadmium telluride semiconductor quantum

wells the electronic state changes from a normal to an “inverted” type when the

thickness of the quantum well is varied. It did not take long for someone to pick up

the idea and verify it experimentally. In 2007, König et al., confirmed the QSHE in

HgTe quantum wells [38].

The progress in understanding the topological nature of these new phases of

matter led to the refinement of the theory and to an explosion of new predictions.

In 2007 Fu and Kane pointed out that the presence of inversion symmetry greatly

reduce the difficulty of evaluating the Z2-invariant and predicted that time-reversal

invariant topological insulators can also exist in three dimensions, more specifically

in Bi1−xSbx [23]. Again, within a year, the prediction was verified experimentally

by Hsieh et al. in 2008 [29]. Soon after, Bi2Te3 and Bi2Se3 were also predicted

and confirmed to be topological insulators. Due to the simplicity of its surface

state and the presence of a large bulk gap, Bi2Se3 is currently the most studied TI

material. The rather remarkable accuracy of the theoretical predictions leading to

these discoveries indicates that the theory has captured the fundamental properties

of this class of materials, which are essentially topological in nature.

This brief story is limited to the discovery of the so-called topological insulators.

In essence, these are insulating phases of noninteracting fermions that are topologi-

cally distinct from the trivial insulator, i.e. the atomic insulator. In addition, driven

by the potential applications in quantum computation, topological superconducting

5



1.1. BRIEF HISTORY OF TOPOLOGICAL MATTER

phase were also investigated theoretically and are currently studied experimentally.

In particular, the realization of zero-energy Majorana bound states in topological su-

perconductors could be an important step toward topological quantum computation.

It was the work of Kitaev in 2001 that first proposed a mathematical model for such

a topological superconducting phase [36]. Later, various schemes were proposed for

the practical realization of the Kitaev model in solid state heterostructures.

A complete topological classification of fully gapped free fermion systems – the

so-called topological insulators and superconductors – has been developed for non-

interacting systems described by Hamiltonians belonging to generic symmetry classes

determined by time-reversal symmetry (TRS), particle-hole symmetry (PHS), and

chiral symmetry [35, 55]. Note that in this context superconductors are treated at

the mean-field level (e.i. within the Bogoliubov - de Gennes formalism) and can

be viewed as gapped phase of noninteracting fermion systems having particle-hole

symmetry. However, superconductivity is a fundamentally interacting phenomenon

that occurs in systems of charged fermions interacting electromagnetically. If we

take into consideration the dynamics of the electromagnetic field, superconductivity

should be regarded as a phase of charged fermions interacting with a dynamical gauge

field. This was shown to be phase that possesses so-called intrinsic topological order.

Hence, the first topological phase was discovered in 1911 by Heike Kamerlingh Onnes.

Of course, for almost a hundred years nobody understood the intrinsic topological

structure of superconductivity.

The concept of topological order was introduced by X.-G Wen in 1990 [69] in the

context of spin liquids. Later, it was applied to the best known topologically or-

dered states: the fractional quantum Hall (FQH) fluids [67, 41]. Note that quantum

phases with intrinsic topological order emerge in strongly interacting systems, are ro-
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bust agains any type of perturbation, and are characterized by exotic properties, such

as bulk excitations with fractional statistics and fractional quantum numbers (i.e.

the so-called anyons). What we call topological insulators are states with no intrin-

sic topological order: they do not have anyonic bulk excitations and are not robust

against arbitrary perturbations, but only against perturbations that preserve certain

symmetries (e.g. time-reversal). Topological insulators are, in fact, examples of so-

called symmetry protected topological (SPT) states. These phases are distinct (i.e.

a gapped quantum state belonging to one phase cannot be continuously connected

with a gapped state belonging to a different phase without crossing a topological

quantum phase transition characterized by the vanishing of the quasi-particle energy

gap) as long as certain symmetry constraints are imposed (e.g., time-reversal sym-

metry is preserved). Once the symmetry constraints are removed, different phases

become indistinguishable. By contrast, topological phases that have (intrinsic) topo-

logical order (e.g., fractional quantum Hall fluids) are distinct even in the absence of

symmetry constraints. Besides the topological states of noninteracting fermions (i.e.

topological insulators and, at the mean field level, topological superconductors), SPT

phases include interacting states of fermions and bosons that do not have intrinsic

topological order (but are topological distinct in the presence of certain symmetries).

The interacting SPT phases, as well as the interacting quantum states with topolog-

ical order are presently the objects of intense theoretical and experimental research.

This thesis does not address these general problems, but focuses on the small subclass

of noninteracting SPT phases (i.e. on topological insulators and superconductors).

A summary of some major publications representing key steps in our understanding

of topological quantum matter is provided in Table 1.1.
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Onnes 1911 First topological phase (superconductivity), see [68]

. . . . . . . . .

Klitzing et al. 1980 Discovery of IQHE [37]

Tsui et al. 1982 Discovery of FQHE [67]

TKNN 1982 Hall conductance as a topological invariant [65]

Laughlin 1983 Wave function for the FQH fluid [41]

Avron 1983 Explicit use of the term “topological invariant” [7]

Simon 1983 Connection with Berry’s phase [57]

Berry 1984 Geometric phase [10]

Haldane 1988 First model of a Chern insulator [25]

Wen 1990 The concept of ‘topological order’ [69]

Kitaev 2001 Model of 1D p-wave topological superconductor [36]

Kane & Mele 2005 First model of Z2 TI [33, 32]

Bernevig et al. 2006 Proposal of QSHE in HgTe [9]

Koniget al. 2007 Discovery of QSHE in HgTe [38]

Fu & Kane & Mele 2007 Prediction of 3D TI [24]

Schnyder et al. 2008 Classification of TIs and TSCs [55]

Hsieh et al. 2008 Confirmation of 3D TI in Bi1−xSbx [29]

Fu & Kane 2008 Prediction of MF in TI-SC structures [22]

Zhang et al. 2009 Prediction of 3D TI in Bi2Te3 and Bi2Se3 [75]

Xia et al. 2009 ARPES detection of surface states in Bi2Se3[73]

Chen et al. 2009 ARPES detection of surface states in Bi2Te3[13]

Sau et al. 2010 Prediction of MF in SM-SC structures [53]

Cook & Franz 2011 Prediction of MF TI nanowire - SC [15]

Table 1.1: Some relevant publications leading to proposals for the realization of

topological superconducting phases and Majorana bound states in hybrid solid state

structures. 8
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1.2 Geometry & Topology

In the early 1980’s, the concept of topology entered condensed matter physics

in the context of understanding the integer and fractional quantum Hall effects.

This marked the beginning of the ‘topological era’ in condensed matter physics.

Before we discuss in more detail the physics of topological insulators and topological

superconductors, we briefly introduce the concept of topology, then we discuss its

relevance in the context of condensed matter physics.

Topology is a field of mathematics that studies those properties of certain abstract

spaces that are preserved under continuous deformations. Given a set, one defines a

collection of subsets, called open sets, that satisfy certain properties. The collection

of all open subsets is called a topology. A set endowed with a topology is called a

topological space. All our considerations involving the term ‘topology’ will concern

properties of topological spaces that depend only on the choice of topology (i.e. on

the collection of open subsets). Note that in the definition of the topological space the

set itself can be anything, for example a geometric figure or a collection of functions

defined on an abstract space [45]. To better grab the idea of topology, we will focus

on the topological properties of geometric figures. This will provide an intuitive and

quick way to absorb the main ideas.

In geometry, the concepts of length, angle and curvature are well defined and

are fundamental in describing and understanding the properties of various geometric

objects. For example, these quantities can be used to distinguish a sphere from a

cube. On the other hand, topology is only concerned with those properties that are

invariant under continuous deformations. The sphere, for example, can be contin-

uously deformed into a cube, or any other shape that does not require cutting or

tearing the surface. On the other hand, it is obvious that the sphere cannot be con-
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tinuously deformed into a donut shape (e.g., a torus) without destroying the surface.

A sphere and a donut are said to be topologically distinct, while the sphere and the

cube are topologically equivalent. In other words, a sphere and a cube share some

global property that is not affected by continuous deformations. To quantitatively

Figure 1.1: A sphere and a cube can be continuously deformed into each other (i.e.
they are topologically equivalent), but they cannot be continuously deformed into
a torus. The Euler characteristic χM (and the genus g) of topologically equivalent
objects has the same value, i.e. it is a topological invariant.

capture this ‘global property’, we introduce the concept of topological invariant. As

the name suggest, a topological invariant is a quantity that remains invariant under

any continuous deformation. For geometric figures, a useful topological invariant is

the Euler characteristic, which can be expressed using the Gauss - Bonnet theorem

as

χM =
1

2π

∫∫
©

M

KdS (1.1)

where K is the Gaussian curvature. The Gaussian curvature of a surface at a given

point P is the product of the principal curvatures (κ1 and κ2) at that point, K = κ1κ2.

In turn, the principal curvatures can be obtained by considering the vector normal

to the surface at P and the collection of normal planes containing the normal vector

and intersecting the surface along a certain curve. This curve will, in general, have

different curvatures at P for different normal planes; the principal curvatures κ1 and
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κ2 are the maximum and minimum of these curvatures. Returning to the Euler

characteristic, note that χM = 0 for the torus and χM = 2 for the sphere. Note that

for orientable compact surfaces without boundary (such as the sphere and the torus),

the Euler characteristic equals 2 − 2g, where g – the so-called genus of the surface

– counts the number of holes. Note that locally the curvature of the sphere may be

the same as the curvature of the torus, but their total curvatures are different and

this global property makes them topologically distinct objects.

From this simple example we can extract the following key ideas. Topology is

concerned with the properties of certain mathematical objects (called topological

spaces) that are invariant under continuous deformations. Two topological spaces

are equivalent if they can be continuously deformed into one another. This continuous

mapping defines an equivalence relation on the set of topological spaces and allows us

to classify the topological spaces into different equivalence classes. Different classes

are labeled by different values of certain topological invariants, e.g. the genus g. For

example, a sphere and a cube belong to the same equivalence class characterized

by g = 0, while a torus, a donut, and a coffee cup belong to an equivalence class

characterized by g = 1. Note that there are many topological invariants associated

with any given topological space. However, all members of an equivalence class will

be characterized by the same value for each of these topological invariants.

1.3 Topology in Condensed Matter Physics

The failure to be able to identify the fundamental difference between two distinct

IQHE phases does not ‘prove’ the incorrectness of the Landau’s theory of symme-

try breaking. However, it raises an awareness that the tools for the classification of

quantum phases of matter should not be based on symmetry alone. In fact, there
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certain topological properties of the underlying quantum states that successfully ex-

plain the ‘mystery’ of distinct IQHE phases sharing the same symmetry. Thus, the

concept of topology can (and has to) be used to classify the phases of matter. We

note that there are quantum phenomena discovered before the IQHE that cannot be

properly explained without using the concept of topology, e.g., the Ahronov-Bohm

effect [3] and solitons in polyactylene [27]. The work of Berry on geometric phases

unveils the link between topology and quantum physics providing a solid and elegant

explanation to quantum phenomena such as the Ahronov-Bohm effect. Also, it turns

out that topology is a more common occurrence in condensed matter physics than

one might have thought. Since condensed matter physics is essentially many-body

quantum mechanics, Berry’s work opened a new paradigm in the condensed matter

world, which lead to a new classification of phases of matter based on their topolog-

ical properties (in addition to their symmetry). To better understand the basis of

this classification, it is worthwhile to make an effort to walk through a few relevant

historical landmarks, including the topological interpretation of the Ahronov-Bohm

effect [57] and the expression of the Hall conductance of the IQHE states in the terms

of Berry’s curvature [10].

1.3.1 Berry’s phase

The phase of the wavefunction is typically believed to carry no physical mean-

ing [11]. Phase differences, on the other hand, play a key role in quantum mechanics,

e.g., in the context of quantum superpositions and interference processes. The role

of geometric phases has been overlooked for decades, until Berry emphasized their

non-trivial properties in 1984 [10]. It is perhaps surprising that a geometric phase

naturally appears from an adiabatic evolution of the Schrödinger equation. To define

12
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the basic concepts, consider a system whose Hamiltonian depends on a parameter

that changes over time adiabatically, R = R(t). Note that, more generally, R can

be though of as a set of time-dependent parameters, R = {R1, R2, . . . }. The time-

dependent Schrödinger equation can be written as

H (R (t)) |ψ (t)〉 = i
d

dt
|ψ (t)〉 , (1.2)

where H(R) is the parameter-dependent Hamiltonian of the system. For a given

value of the parameter R, the eigenstates |n,R〉 of H(R) form an orthonormal basis,

H(R)|n,R〉 = En(R)|n,R〉. (1.3)

We postulate that the Hilbert space (of physical states) spanned by the basis vectors

|n,R〉 is independent of R. Assuming that we are looking for a solution of the

Schrödinger equation (1.2) corresponding to the initial condition |ψ(0)〉 = |n,R0〉,

the system will remain in the instantaneous eigenstate corresponding to En(R(t)),

according to the adiabatic theorem. Consequently, the general solution of the time-

dependent Schrödinger equation has the form

|ψ (t)〉 = eiγn(t)e−i
∫ t
0 dt
′ En(R(t′)) |n,R (t)〉 . (1.4)

where the second exponential represents the familiar dynamical phase and the first

exponential is an additional phase that we discuss below. For a generic initial con-

dition, the solution of Eq. (1.2) is given by the linear combination

|Ψ (t)〉 =
∑
n

cn (t) |n,R(t)〉 eiθn(t), (1.5)
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where

θn (t) = −1

~

∫ t

0

En (t′) dt′. (1.6)

are dynamical phases. For simplicity, we will sometimes denote the state |n,R (t)〉

as |n〉 (i.e. the dependence of the parameter R is implicitly assumed). Solving for

cn(t) yields

ċn (t) = −cn
〈
n

∣∣∣∣ ddt
∣∣∣∣n〉−∑

n6=m

cm

〈
n
∣∣ d
dt
H
∣∣m〉

Em − En
e−i(θn(t)−θm(t)), (1.7)

Since the change of the Hamiltonian is dictated by the ’speed’ of the adiabatic

evolution, i.e. by dR/dt, the second term can be made arbitrary small. Consequently,

in the adiabatic approximation we have

cn (t) = cn (0) eiγn(t) (1.8)

where

γn(t) = i

∫ t

0

dt′
〈
n,R(t′)

∣∣∣∣ ∂∂t′
∣∣∣∣n,R(t′)

〉
(1.9)

are additional phases.

Before we further discuss these phases, it is worth emphasizing that the parameter

R in the above expressions can represent different physical quantities, e.g., some

external field, a geometric property of the system, or the wave vector k associated

with electron states in a lattice system. In the latter case, the electronic properties

of a crystal are described (within a non-interacting approximation) by the single-

particle Hamiltonian

H =
−~2

2m
∇2 + V (r), (1.10)

where m is the electron mass and V (r) = V (r+ai) is a periodic potential, ai being
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the primitive lattice vectors. The eigenvectors of (1.10) satisfy the Bloch condition

ψnk(r + ai) = eik·aiψnk(r), which can be regarded as a k-dependent boundary con-

dition that generates a multitude of k-dependent Hilbert spaces. However, we can

perform a unitary transformation by introducing the cell-periodic function

unk(r) = e−ik·rψnk(r). (1.11)

The Hilbert space spanned by this basis is unique (i.e. k-independent), but the

Hamiltonian becomes k-dependent

H(k) =
−~2

2m
(∇ + ik)2 + V (r). (1.12)

It is the Bloch Hamiltonian (1.12) that we can treat within the general Berry’s phase

formalism. More specifically, we have the following correspondence

R −→ k,

H(R) −→ H(k), (1.13)

|n,R〉 −→ |un(k)〉.

Let us now return to the additional phase (1.9). One may think that this is some

arbitrary phase that can always be eliminated, e.g., be re-defining the zero of the

energy (which will generate an extra dynamical phase). However, this is not the case

if we consider cyclic evolutions of the system. More specifically, Berry considered

adiabatic cyclic evolutions defined by the condition R(0) ≡ R0 = R(T ), where T

is the total evolution time. Such an evolution can be viewed as transporting the

Hamiltonian, H(R(t)), around a closed path C in the parameter space M . In this
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case, the general solution of the time-dependent Schrödinger equation with initial

condition |ψ(0)〉 = |n,R0〉 can be expressed as

|ψ (T )〉 = eiγn(C)e−
i
~
∫ T
0 dt′ En(R(t′)) |ψ (0)〉 (1.14)

where

γn = i

∮
C

〈n,R|∇R|n,R〉 · dR. (1.15)

We note that Eq. (1.15) can be obtained from Eq. (1.9) by changing the integration

variable, t′ → R, ∂/∂t′ = Ṙ∇R, etc., and imposing the cyclic condition R(0) = R(T ).

The quantity γn defined by this equation is the Berry phase angle or the geometric

phase angle and the phase eiγn is called the Berry (or the geometric) phase. We

note that the quantity γn is defined modulo 2π and represents a physical observable.

Indeed, one can show that arbitrary choices of phases for the basis functions |n,R〉

can only change γn by integer multiples of 2π. The fraction γn (mod 2π) – and,

consequently, the Berry phase eiγn – is uniquely determined by the geometry of the

closed path C (hence the name geometric phase).

Using the Stokes’ theorem the Berry phase angle can be rewritten in a form,

γn =

∮
C

~An · d~R =

∫∫
©

S

~∇× ~An · d~S =

∫∫
©

S

~Fn · d~S, (1.16)

where S is a surface in the parameter space having the curve C as its boundary, ~An

is the so-called Berry connection (associated with energy band n),

~An = 〈n,R|~∇R|n,R〉, (1.17)
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and ~Fn is the so-called Berry curvature vector (for band n),

~Fn = ~∇× ~An. (1.18)

Here, we have assumed that R = {R1, R2, R3} is a three-component parameter.

More generally, we can define the component µ of the Berry connection as [An]µ =

〈n,R| ∂
∂Rµ
|n,R〉 and introduce the Berry curvature tensor Ωµν = ∇µAν − ∇νAµ,

where ∇µ = ∂
∂Rµ

and we omitted the band index n (to simplify the notation).

It is interesting to note that ~An can be viewed as a ’magnetic’ vector potential,

while ~Fn would correspond to a ’magnetic’ field in the parameter space. From this

perspective, the reason why the Berry phase cannot be eliminated by some choice

of phases for the basis functions |n,R〉 is the gauge-independence of the integral of

the vector potential along a closed loop, which is given by the flux of the magnetic

field passing through the loop [12]. Indeed, consider the local phase shift |n,R〉 →

eiϕn |n,R〉. The Berry connection will changed according to

~An → ~A′n = ~An +∇ϕn. (1.19)

Eq. (1.19) expresses the fact that the Berry connection is a gauge-dependent quan-

tity, similar to the vector potential. By contrast, the curl of each of these quanti-

ties (i.e. the Berry curvature vector and the magnetic field, respectively) is gauge-

independent and represents a physically observable quantity. Similarly, the integral

of the Berry connection along a closed path (i.e. the Berry phase angle) representing

the analog of the magnetic flux through the loop is also gauge-invariant (hence, ob-

servable). Finally, it is worthwhile to emphasize the analogy between the expression

(1.16) corresponding to S being the full parameter space (e.g., the Brillouin zone

17



1.3. TOPOLOGY IN CONDENSED MATTER PHYSICS

in the case of a crystalline system characterized by R = k) and the Gauss-Bonnet

theorem (1.1). This suggests that the integral of the Berry curvature over the entire

parameter space (the so-called first Chern number) represents a topological invariant

that uniquely characterizes the topological nature of corresponding quantum state.

The relation between the expression of the Berry phase and the Gauss-Bonnet

theorem can be further formalized within the framework of differential geometry.

This was carried out in 1983 by Simon, who pointed out that the Berry phase can

be essentially understood as the holonomy of a fiber bundle [57]. This recasting of

the Berry phase formalism allows one to study a quantum system using the tools of

differential geometry and topology. Such an analysis can provide powerful insight into

the nature of different quantum phases and recipes for determining the topologically

invariant quantities associated with them [79].

To sketch the basic concepts of this powerful formalism, let us consider a quantum

system described by a Hamiltonian that depends on a parameter R = {R1, R2, . . . }

belonging to a certain parameter space represented by the manifold,M. Note that a

manifold is space that locally resembles the (N-dimensional) Euclidean space, e.g., a

sphere, torus, Möbius band, etc. The Hamiltonian is assumed to evolve adiabatically

as a function of R along a closed cycle C ∈ M . For each value of R the quantum

states |n,R〉 form an orthonormal basis for the Hilbert of physical states. Note that

the states |n,R〉 are defined up to an arbitrary phase factor. However, we assume

that the phase factors are chosen so that |n,R〉 is a single-valued function of R, i.e.

|n,R(T )〉 = |n,R(0)〉. For simplicity, we also assume that the eigenvalues En(R) are

non-degenerate. Let the initial state of the system be |n,R(0)〉. According to the

adiabatic theorem, at an arbitrary time 0 ≤ t ≤ T the system will be in a quantum

state eiϕ|n,R(t)〉. If we regard eiϕ|n,R〉 with 0 ≤ ϕ ≤ 2π as a one-dimensional
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mathematical object (equivalent to a circle), we can attach such an object to each

point R ∈M corresponding to the cyclic evolution C. In the language of differential

geometry, eiϕ|n,R〉 with 0 ≤ ϕ ≤ 2π defines a fiber G and the collection of all

fibers associated with the points R of the parameter manifold M define a fiber

bundle. Since eiϕ|n,R〉 can be viewed as an element of a one-dimensional vector

space, the corresponding fiber bundle is a vector bundle, i.e. a family of vector

spaces parameterized by the parameter R with values in the manifoldM. If E is the

total space of the fiber bundle, each fiber G is associated with a specific parameter

value through the projector

π : E →M (1.20)

satisfying π(G) = R. For example, if the base manifold M is a circle, S1, and the

fiber G is a one-dimensional vector space (i.e. a line, for example the real line R),

the fiber bundle defined by the direct product E = S1×G is topologically equivalent

to a cylinder (i.e. it is a cylinder up to arbitrary continuous transformations). A

fiber bundle, such as the cylinder, that can be expressed as a direct product is called

a trivial bundle. However, using the same base manifold and one-dimensional fibers

one can construct a nontrivial fiber bundle by ’gluing’ together the fibers in a different

way. The Möbious strip is an example of such construction. Locally, it is identical

to the cylinder, but their global properties are completely different.

To summarize, we have seen that the eigenstates eiϕ|n,R〉, which are defined

up to a phase factor, correspond to a one dimensional vector space (i.e. a fiber)

associated with each value of the parameter R ∈ M. We can view this collection

of vector space as a fiber bundle (more specifically, a vector bundle). Schematically,

this mathematical object can be represented as in Fig. 1.2. Each line represents a

fiber corresponding to a certain eigenvector eiϕ|n,R〉; one moves along the fiber by
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Figure 1.2: Schematic representation of the fiber bundle representing the collection
of vector spaces eiϕ|n,R〉 with 0 ≤ ϕ ≤ 2π associated with each value of a parameter
R ∈ M. The adiabatic cyclic evolution of the system corresponds to R evolving
along a closed path C in the parameter space. The corresponding evolution of the
quantum state is represented by a curve (generally not closed) on the fiber bundle.
The Berry phase is obtained as the holonomy γ(C) corresponding to the parallel
transport of the initial state vector on the bundle.

changing the phase angle ϕ. Only a few fibers are explicitly represented. Note that,

strictly speaking, the fibers are topologically equivalent to a circle (because they are

periodic in ϕ with period 2π), but we represented them as open lines for simplicity.

Each fiber is projected onto a specific point R from the base manifold M (i. e. the

parameter space).

Consider now the adiabatic cyclic evolution of the system as a result of slowly

changing the parameter R along a certain closed path C in the parameter space. The

initial state eiϕ0 |n,R(0)〉 is represented by the point ϕ = ϕ0 on the fiber attached to

R = R(0). As one moves along C, the state at time 0 ≤ t ≤ T will be represented by

a point on the fiber R = R(t) and, after completing the cycle, it will return to the

initial fiber (since R(T ) = R(0)) but, in general, will correspond to a different point

ϕT 6= ϕ0. The difference ϕT −ϕ0 represents the phase acquired by the quantum state

during its adiabatic evolution. This phase difference contains a (standard) dynamical
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component and the Berry phase, ei(ϕT−ϕ0) = eiγne−iαdyn , where

αdyn =
i

~

∫ T

0

dt′En(R(t′)). (1.21)

Intuitively, one can view the dynamical component as an evolution along the fibers,

while the Berry component results from moving from one fiber to the next, which

corresponds to parallel transport on the fiber bundle. Movement along the fibers

(hence αdyn) depends on how fast we complete the cycle, while parallel transport

(hence γn) is uniquely determined by the geometric properties of the fiber bundle

and does not depend on T (assuming that we remain within the limits of the adiabatic

approximation). If the fibers are parallel to each other (which means that the fiber

bundle is ‘flat’), a state corresponding to R with ϕ = ϕR will be parallel transported

into a state corresponding to R + δR that has the same phase angle, ϕR+δR = ϕR.

The resulting Berry phase after completing the cycle will be zero. If, on the other

hand, there is some curvature, there will be a non-vanishing Berry phase. The key

point is that the Berry phase eiγn is given by the holonomy (i.e. phase difference) that

corresponds to parallel transport on the fiber bundle and that differential geometry

provides powerful tools for characterizing it.

To formally describe parallel transport on the fiber bundle we consider the state

|ψ(t)〉 = eiϕ(t)|n,R(t)〉 and transport it to |ψ(t+dt)〉 = eiϕ(t+dt)|n,R(t+d)〉. Parallel

transport is defined by the condition that the change |ψ(t+ dt)〉− |ψ(t)〉 of the state

vector be orthogonal on |ψ(t)〉. Note that this condition will generate a state at

t + dt that is, generally, different from the state produced by the unitary evolution

generated by the Hamiltonian H(R). Explicitly, we have

|ψ(t+ dt)〉 − |ψ(t)〉 =

(
i
dϕ

dt
eiϕ|n,R〉+

dR

dt
eiϕ∇R|n,R〉

)
dt, (1.22)
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where ∇R = ∂/∂R. The scalar product of this difference with 〈ψ(t)| = e−iϕ〈n,R| is

zero, which gives the relation

dϕ

dt
= i〈n,R|∇R|n,R〉

dR

dt
. (1.23)

Integrating Eq. (1.23) from t = 0 to t = T , which corresponds to the parameter R

cycling along the loop C, gives the Berry phase angle

γn ≡ γ(C) = ϕ(T )− ϕ(0) =

∮
C

dR · A (mod 2π), (1.24)

where

A = i〈n,R|∇R|n,R〉 (1.25)

is the so-called adiabatic connection. We conclude that the Berry phase acquired

by a quantum system during a cyclic adiabatic evolution is given by the holonomy

(i.e. phase difference) corresponding to parallel transport on a fiber bundle defined

by the collection of vector spaces corresponding to the eigenstates of H(R) associ-

ated with each value of the parameter R. This holonomy is a geometric property

of the fiber bundle and does not depend on the speed of the evolution. Differential

geometry provides a powerful framework for describing the properties of fiber bun-

dles, including the characterization of parallel transport in terms of the connection

A. Note that this framework can be applied beyond the adiabatic evolution of non-

degenerate states. Generalizations include the Aharonov-Anandan (non-adiabatic)

phase [2] and the non-Abelian phase associated with degenerate energy levels (first

discussed by Wilczek and Zee [71]).
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1.3.2 Aharonov-Bohm effect

A phenomena that, at the time of its discovery, could suggest the incomplete-

ness of quantum mechanics was elegantly explained nearly 25 years later based on

the concept of geometric phase developed by Berry [10]. But there is more. The

Aharonov-Bohm phase is not a simple geometric phase (i.e. a quantity that depends

on geometric properties, such as the Berry curvature and the shape of the evolution

path), but an example of topological phase (i.e. a quantity that only depends on

the topology of the evolution path). To use a classical analogy, parallel transport

of a vector on a sphere along a closed path C results in the direction of the vector

being modified by a certain angle γC that depends on the shape of the path (more

specifically on the solid angle subtended by C). The angle γC is an example of

a classical geometric holonomy. By contrast, parallel transport on a Möbius band

along a closed path Γ generates an angle γΓ = 0 or γΓ = π that only depends on

whether Γ loops around the Möbius band an even or an odd number of times. This

is a topological property independent of the details of Γ and γΓ is an example of a

classical topological holonomy. The Aharonov-Bohm phase is a quantum analogue of

this quantity.

In classical electrodynamics the scalar and vector potentials are not observable

quantities and can be viewed as a convenient mathematical tool. In quantum me-

chanics the potentials, rather than the fields, enter the canonical formalism. The

work of Aharonov and Bohm [3] further emphasizes the importance of the vector

potential in quantum mechanics. Consider a particle with mass m and charge q that

is confined in a ‘box’ by a potential VR(r centered at R and is placed in an external

magnetic field. The Hamiltonian that describes the dynamics of the quantum system
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Figure 1.3: Charged particle moving around an finitely long, impenetrable solenoid
with radius ra carrying magnetic flux Φ = πr2

aB. The magnetic field B is only
non-zero inside the solenoid.

has the form

H =
1

2m

(
~
i
∇− q ~A

)2

+ VR(r), (1.26)

where ~A are the vector potential associated with the magnetic field. In the absence

of the magnetic field, the confined particle is in a state ψ0
n(r−R) of energy En. Next,

we assume that the magnetic field corresponds to a thin (impenetrable) flux tube

carrying total magnetic flux Φ, as shown in Fig. 1.3. In the presence of a magnetic

flux, the eigenvector corresponding to En will be

ψn(r,R) = exp

(
iq

~

∫ r

R

~A(x) · dx
)
ψ0
n(r −R). (1.27)

Taking the box that contains the particle along a closed loop C that does not intersect

the impenetrable flux tube, results in the quantum state acquiring a geometric phase

given by

γAB(C) =
q

~

∮
C

~A · dR = νC
qΦ

~
, (1.28)
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where νC is the number of times C cycles around the flux line. Note that the

Aharonov-Bohm phase γAB(C) is a gauge-invariant (hence, observable) quantity that

only depends on the topology of the path C (i.e. on how many times is goes around

the flux tube). Moreover, the system acquires a nontrivial phase although the box is

moving in a region with no magnetic field and the charged particle is confined inside

the box. The information about the presence of the flux tube is extracted directly

from the vector potential ~A.

The Aharonov-Bohm phase can be naturally understood within the general Barry

phase formalism. The Hamiltonian (1.26) depends parametrically on the position R

of the box. The eigenfunction corresponding to a given value of the parameter is given

by Eq. (1.27), |n,R〉 → ψn(r,R). As the box containing the particle is adiabatically

transported along a closed loop C, the state vector acquires a geometric phase γ(C)

that can be expressed in terms of a Berry connection using Eqns. (1.24) and (1.25).

Explicit calculations give A = q
~
~A, i.e. the Berry connection is proportional to the

external vector potential. Of course, in this case the Berry phase (1.24) takes the

specific form given by Eq. (1.28).

A proposed experimental setup for realizing the Aharonov-Bohm effect through

interference is illustrated in Fig. 1.4. When ~A 6= 0, the wavefunction of the Hamil-

tonian in Eq.(1.26) with VR = 0 (i.e. no box) will carry an extra phase factor,

ψAI,II (r) ≡ eiq
∫ r
O A(r′)dr′ψI,II (r) (1.29)

where the ψI,II (r) are wave functions corresponding to two different beams in the

case ~A = 0 and O is a reference point. The interference pattern can be studied by

considering the superposition of the two beams, ψAI (r) + ψAII (r). Setting ψAI (P ) =
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Figure 1.4: From Ref. [49]. An electron beam is split into two beams at point P.
Each of the beams travels around an infinitely long solenoid. The beams meet again
at point Q where the interference pattern is observed on the screen C. This reveals
the information about the phase difference between the beams.

ψAII (P ), the amplitude of the wavefunction at point Q can be expressed as

ψAI (Q) + ψAII (Q) = e
iq
∫
γ
I
A(r′)dr′

ψI (Q) + e
iq
∫
γ
II
A(r′)dr′

ψII (Q) (1.30)

= e
iq
∫
γ
II
A(r′)dr′

(
eiq

∮
γ Adr

′
ψI (Q) + ψII (Q)

)
(1.31)

The factor e
iq
∫
γ
II
A(r′)dr′

will be canceled out when computing |Ψ|2, but the phase fac-

tor eiq
∮
γ Adr

′
containing the Aharonov-Bohm phase will contribute to the constructive

and destructive interference. Consequently, the interference pattern will independent

of the shape of the closed loop γ but will contain information about the magnetic

flux carried by the solenoid.

1.3.3 Integer Quantum Hall Effect

The quantization of the Hall conductance of an integer quantum Hall (IQH)

in terms of a topological invariant was first demonstrated by Thouless, Kohmoto,
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Nightingale, and den Nijs (TKNN) in 1982 [65] using the linear response theory. It

was Simon [57] who interpreted the result within the general Berry phase formalism.

Generally, the Hall conductance is given by

σxy =
〈jx〉
EH

, (1.32)

where EH is the electric field in the y direction and 〈jx〉 is the current density in

the x direction. The current density can be obtained as the expectation value of the

current density operator x ∝ vx in the presence of a perturbing potential φ = −Ey

[56, 8]. Here, we follow a different path based on the investigation by Haldane of the

Berry curvature of the Fermi surface [26]. An explicit calculation can be found in

the lecture notes by Kai Sun [62].

Within a semiclassical model, the equations of motion for a free electron in an

electromagnetic field are [6]

~̇x =
1

~

∂E0,n

(
~k
)

∂~k
, ~~̇k = −e ~E − e~̇x× ~B. (1.33)

To calculate the Hall conductance, we have to incorporate the fact that the sys-

tem is not continuous, but defined on a lattice. Hence, we have to consider Bloch

wave functions ψnk(r), which account for the periodicity of the lattice system. The

equations of motion derived using Bloch wave functions contain an extra anomalous

velocity term [63]. Explicitly, we have

~̇x =
1

~

∂E0,n

(
~k
)

∂~k
+
d~k

dt
×
[
~∇k ×A

(
~k
)] , (1.34)

where A = i〈un(k)|∇k|un(k)〉 is the Berry’s connection defined in terms of the cell-
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periodic functions unk(r) = e−ik·rψnk(r). The equation of motion for the crystal

momentum is not changed. On the other hand, Eq. (1.34) allows us to express the

current density j = e~̇x/A, where A is the area of the two-dimensional electron gas,

as

j =
e

A

∑
n,k

1

~

[
~∇kεn

(
~k
)

+
(
e ~E × ~ez + e~v × ~B × ~ez

)
Fn
(
~k
)]
, (1.35)

where we have introduced the z component of the Berry curvature vector, Fn(~k) =

[∇×A]z. The (non-vanishing) component along the x direction has the form

jH =
e

A

∑
n,k

1

~
(e ~E × ~ez)Fn(~k). (1.36)

Hence, changing the summation over k into an integral, the Hall conductance (1.32)

becomes

σxy =
e2

~
∑
n

∫
BZ

d2k

2π
Fn(~k), (1.37)

where the summation over n includes all occupied bands and the integral of the Berry

curvature is over the entire Brillouin zone.

It is worth comparing the integral in Eq. (1.37) with the Gauss-Bonnet formula

(1.1). Both represent the integral of a curvature over a certain manifold and we know

that the quantity in Eq. (1.1) is a topological invariant that is uniquely determined

by the topological properties of the surface. The integral in Eq. (1.37) is a quantum

analogue of the Gauss-Bonnet formula that defines an integer topological invariant

called the first Chern number,

Cn
1 =

∫
BZ

d2k

2π
Fn(~k). (1.38)

As we will see below, the first Chern number plays an important role in the classifica-
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tion of topological phases of noninteracting fermion systems. The Hall conductance

can be expressed in terms of this topological invariant as

σxy =
e2

~
ν, (1.39)

where the integer ν =
∑

nC
n
1 is the sum of the first Chern numbers characterizing the

occupied bands. For an integer quantum Hall system ν coincides with the (integer)

filling factor that characterizes the system and, consequently, takes distinct values

for each quantum Hall plateau.

We have shown that the concept of Berry phase provides a natural interpretation

to the Aharonov-Bohm effect. In addition, the Berry phase formalism allows us to

connect the Hall conductance of an integer quantum Hall fluid to a topological invari-

ant, thus providing a firm basis for the classification of different quantum Hall states.

This suggests that the concept of topology could be a useful tool for distinguishing

and classifying quantum phases of matter.

1.4 General classification of quantum phases of

matter

Landau’s theory of symmetry breaking has proven to be a great tool for classifying

different phases of matter. In essence, given a many-body system described by a

Hamiltonian characterized by certain symmetries (e.g., spin-rotation symmetry), the

physical states of the system can have the same symmetry as the Hamiltonian (e.g.,

a spin system in a paramagnetic state), or a lower symmetry (e.g., a ferromagnet).

According to Landau’s theory, states characterized by different symmetry properties

belong to different phases and the transition from one phase to another is a so-
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called spontaneous symmetry breaking phase transition. The concept of topology

adds a new paradigm to the classification of quantum phases. Following the original

example involving quantum Hall states, it was realized that distinct phases may

share the same symmetry (i.e, the system can evolve from one phase to another

without spontaneously breaking the symmetry), but the topological properties of the

two phases have to be different. Within the new paradigm, one can identify two

basic types of topological phases involving somehow different types of ‘topological

properties’. A useful criterion to distinguish them is based on the concept of quantum

entanglement. This concept, which is at the heart of quantum mechanics, completes

the tool set currently used for classifying quantum phases of matter. We note that

below we only consider gapped quantum phases at zero temperature, i.e. quantum

systems that are characterized by (bulk) ground states that are separated from higher

energy state by a finite energy gap.

Concerning the concept of entanglement, let us consider two quantum states of

a system of identical particles occupying certain orbitals (α and β) on two different

sites (1 and 2). The first state, Eq. (1.40), is a direct product state (orbital α on

site 1 and orbital β on site 2), while the second, Eq. (1.5), is an entangled state

|Ψαβ〉 = |α〉 ⊗ |β〉 (1.40)

|Φαβ〉 =
1√
2

(|α〉 ⊗ |β〉+ |β〉 ⊗ |α〉) (1.41)

In the case of the direct product state, ‘cutting’ the system in two will result in two

sub-systems characterized by pure quantum states (|α〉 and |β〉, respectively). By

contrast, ‘cutting’ the entangled state will result in sub-systems in mixed quantum

states. In a large quantum system, this type of entanglement can be local (sites

within a certain finite range are entangled) or long range. One can show that the

30



1.4. GENERAL CLASSIFICATION OF QUANTUM PHASES OF MATTER

Figure 1.5: Gapped quantum phases of matter in the absence of symmetry con-
straints.

first type of entanglement, called short-range entanglement, can be essentially elimi-

nated by performing some local unitary transformations. Consequently, short-range

entangled states are, basically, similar to direct product states. By contrast, long-

range entanglement cannot be removed by performing local unitary transformations.

We note that, to characterize quantum entanglement in many-body systems, one can

introduce various quantitative measures, such as the so-called entanglement entropy.

Long-range entanglement typically occurs in the presence of strong interactions.

Gapped quantum states with long-range entanglement possess so-called intrinsic

topological order and can be topologically distinct in the absence of any symme-

try constraint. Two ground states corresponding to different sets of Hamiltonian

parameters (e.g., coupling constant values and external fields) belong to the same

phase if the two states can be connected continuously by varying these parameters

(i.e. continuously deforming the Hamiltonian) without closing the energy gap. By
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contrast, the states belong to distinct phases if connecting them continuously neces-

sarily involves passing through a gapless state. The closing of the energy gap signals

a topological quantum phase transition. Gapped quantum states with topological

order are robust against any type of perturbation, in the sense that ground state

will remain gapped for arbitrary (but, of course, small enough) perturbations of the

Hamiltonian. The ‘standard’ example of long-range entangled quantum states with

topological order are the fractional quantum Hall states. Other examples include

superconductors (viewed as systems of charge particles interacting with dynamical

gauge fields) and spin liquids. We note that in the absence of symmetry constraints

(i.e. if we allow arbitrary deformations of the Hamiltonian), all short-range entan-

gled states are topologically equivalent (i.e. can be continuously connected to each

other without closing the energy gap) and, consequently, belong to the same phase:

the trivial (atomic) insulator. The classification of gapped quantum states in the

absence of symmetry constraints is illustrated schematically in Fig. (1.5).

In the presence of symmetries, an even more interesting picture emerges. If we

only allow perturbations to the Hamiltonian that do not break certain symmetries

(e.g., time reversal), even short-range entangled states become distinct. First, there

are the standard (Landau-type) broken symmetry phases (i.e. phases having a lower

symmetry that the Hamiltonian). In addition, phases that have the same symmetry

as the Hamiltonian can be topologically distinct: two states belonging to different

phases cannot be continuously connected without going through a topological quan-

tum phase transition characterized by the vanishing of the energy gap. These phases,

called symmetry-protected topological phases, include the now-famous (noninteract-

ing) topological insulators and superconductor, as well as interacting quantum states,

such as the Haldane phase of the spin-1 chain. The structure of strongly-interacting
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Figure 1.6: The ‘big picture’ of the of the topological classification of gapped quantum
states in the presence of symmetry constraints.

long-range entangled phases also becomes more complex in the presence of sym-

metries. The classification of gapped quantum states in the presence of symmetry

constraints is illustrated schematically in Fig. (1.6).

The classification of gapped quantum ground states was successfully described

by Landau’s theory of symmetry breaking until the discovery of the integer quantum

Hall effect. Then, it was realized that states sharing the same symmetry can be

qualitatively different, i.e. they can belong to distinct quantum phases. The prop-

erties that make these quantum states distinct are topological in nature. To fully

classify the gapped quantum states, symmetry has to be supplemented by topology.

In addition, quantum entanglement plays a key role in determining the topological

properties of a quantum system. The ‘topological quantum world’ in the presence

of symmetry constraints is schematically represented in Fig. (1.6). In the remainder

of this thesis our attention will focus on the the small sub-class of non-interacting
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topological phases, the so-called topological insulators and superconductors.

1.5 Generic symmetries

In the realm of topological quantum matter, topological insulators and supercon-

ductors represent the small subclass of noninteracting symmetry-protected topolog-

ical (SPT) phases. These SPT phases correspond to gapped quantum ground states

having non-trivial topological properties only in the presence of certain symmetry

constraints imposed on the Hamiltonian that describes the system. Among various

types of symmetries, there are three ‘generic’ symmetries that can be well defied

even in the presence of disorder. These are the time-reversal, particle-hole, and chi-

ral symmetries. To identify and classify the noninteracting SPT phases one has to i)

classify all non-interacting Hamiltonians according to their generic symmetry prop-

erties and ii) classify the topologically distinct ground states corresponding to each

symmetry class of Hamiltonians (for each given spatial dimension).

1.5.1 Time reversal symmetry

Time-reversal symmetry (TRS) is a symmetry of physical quantities and laws un-

der a time-reversal (TR) transformation t→ −t. In classical mechanics, position and

momentum change under a TR transformation as ~r → ~r and ~p → −~p, respectively.

Consequently, if {~x (t) , ~p (t)} is a solution of the equations of motion for a particle,

the time reversal symmetry of Newton’s second law implies that {~x (−t) ,−~p (−t)}

is also a solution. Consider, for example, a situation in which a ball is moving from

A to B. If time is reversed ~x(t)→ ~x(−t) and ~p(t)→ −~p(−t), and the ball, starting

at B, would get back to the point A along the same the same trajectory [20]. Note
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that this requires the Hamiltonian to be an even function of p,

H (~x, ~p) = H (~x,−~p) (1.42)

In quantum mechanics, the TR transformation is represented by an operator,

T , called time reversal operator. Consider the evolution of a quantum states |φ〉

described by the time-dependent Schrödinger’s equation

i~
∂

∂t
|φ〉 = H|φ〉. (1.43)

Under TR, |φ〉 → T |φ〉 and H → T HT −1 and the system is time-reversal symmetric

if T HT −1 = H. Applying a TR transformation to Eq. (1.43) for a TR invariant

Hamiltonian (i.e. changing t into −t and applying the operator T ), leads to the

following condition

(−iH) T |φ〉 = T (iH) T −1T |φ〉 (1.44)

which means that the TR operator is proportional to the complex conjugation op-

erator, i.e. transforms i into −i. In the position representation, the time reversal

operator acting on Schrödinger’s equation yields

i~
∂

∂t
φ∗ (x,−t) = Hφ∗ (x,−t) . (1.45)

Consequently, if φ(x, t) is a solution of the Schrödinger equation with a TR symmetric

Hamiltonian, ψ∗ (x,−t) is also a solution. Note that, under TR, the inner product

of two states has the property

〈T ψ | T φ〉 = 〈φ | ψ〉 = 〈ψ | φ〉∗, (1.46)
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which means that the time reversal operator is an anti-unitary operator. This type

of operators can be written in the form

T = UTK (1.47)

where UT is a unitary operator and K is a complex conjugation operator.

Time-reversal changes the sign of the angular momentum. Consequently, when

acting with T on a spin state we have

T |↑〉 = eiθ |↓〉 , (1.48)

where θ is a phase to be determined. Intuitively, reversing the spin corresponds to a

π rotation, hence

T = eiθe−iŜyπ/~K (1.49)

where Ŝi is the spin angular momentum operator. For any spin state |s,ms〉, acting

with T twice yields

T 2 |s,ms〉 = e−2πiŜy/~ |s,ms〉 = (−1)2s |s,ms〉 . (1.50)

It can be concluded that

T 2 =

 1

−1

integer spin

half − integer spin
. (1.51)

The phase θ can be determined by considering the action of T on the spherical

harmonics,

T |l,m〉 = (−1)m |l,−m〉 , (1.52)
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and generalizing this expression to spin states |s,ms〉 with half-integer spin by. This

can be done by selecting θ = π
2
. Hence the time reversal operator for half-integer

spin can be expressed as

T = ie−iŜyπ/~K. (1.53)

Alternatively, it can written as

T = −iσyK (1.54)

where σi is the Pauli matrix. The presence of TRS in a half-integer spin system leads

to the so-called Kramer’s degeneracy [39]. If ψn,k,σ is an eigenstate of the system,

then

T ψn,k,σ = ψ∗n,−k,−σ (1.55)

is also an eigenstate with the same energy and ψn,k,σ 6= ψn,−k,−σ. For a translation-

invariant system, the Bloch Hamiltonian possesses TR symmetry if it satisfies the

condition,

H (−k) = T H (k) T −1. (1.56)

In presence of spin-orbit coupling (SOC), the spin degeneracy will be lifted. However,

as a consequence of Kramer’s theorem, there will be a degeneracy at TR invariant

momenta, e.g., k = 0 and k = π/a in one dimension. Note that −π/a and π/a

represent the same momentum, as they differ by a reciprocal lattice vector. The

characteristic signature of the energy bands of a Hamiltonian possessing TRS is

En(k) = En(−k).
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1.5.2 Particle-Hole symmetry

Particle-hole symmetry (PHS) has its origin its high energy physics, particularly

in relation to the Dirac equation, which describes the behavior of both particles and

antiparticles. The particle-hole transformation is also called charge conjugation, due

to the fact that the corresponding operator turns a particle with charge q into its

antiparticle with charge −q. Consider the Dirac equation

[γµ (i∂µ − eAµ)−m]ψ = 0, (1.57)

where ψ is a spinor that describes the behavior of a particle of mass m with charge

e in the presence of a potential Aµ. The charge conjugation operator, C, acting on

ψ yields

Cψ = ψc. (1.58)

Applying C to the Dirac equation, we have

[γµ (i∂µ + eAµ)−m]ψc = 0. (1.59)

where ψc is the spinor describing the behavior of a particle with the same mass m

but with opposite charge, −e.

In a Hamiltonian describing a (non-interacting) condensed matter system, the

particle-hole (PH) operator switches the places of particles and antiparticles (holes).

Superconductors provide the ‘standard’ example. Within the BCS theory of super-

conductivity, the mean-field (second quantized) Hamiltonian can be written using
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the Bogoliubov de-Gennes (BdG) formalism as [5],

Ĥ =
1

2

(
c† c

) h ∆

−∆∗ −hT


 c

c†

+ const., (1.60)

where c and c† are the fermion annihilation and creation operators, respectively, h

is the single-particle Hamiltonian describing the normal (i.e. non-superconducting)

state, and ∆ is the superconducting pair potential. Note that for spin-1/2 fermions

we have c = (c↑, c↓)
T and h, ∆ become 2×2 matrices. The single-particle Hamiltonian

H =

 h ∆

−∆∗ −hT


called the Bogoliubov-de Gennes (BdG) Hamiltonian, describes the dynamics of the

quasiparticles that emerge above the superconducting ground state.

For a system with spin-orbit coupling placed in an external electromagnetic field

we have

h =
(
~p− e ~A

)2

/2m+ V + ~USO · ~σ ×
(
~p− e ~A

)
− µ (1.61)

where

~A = vector potential, breaks time-reversal symmetry

V = a scalar potential

~USO = spin orbit field, breaks electron spin rotational symmetry

µ = chemical potential.

In the presence of translation invariance, the action of the PH operator on the c-
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operator spinor results in the transformation

(
c†k↑ c†k↓ c−k↑ c−k↓

)T
→
(
c−k↑ c−k↓ c†k↑ c†k↓

)T
. (1.62)

This result can be obtained by acting with the Pauli matrix τx on the particle-hole

blocks. Hence, in this case (which corresponds to having triplet pairing), the PH

operator is is proportional to τx and the condition for having particle-hole symmetry

takes the form

H = −τxH∗τx. (1.63)

This suggests that C can be represented as

C = τxK (1.64)

where K is a complex conjugation operator. Note that C2 = 1.

If the Hamiltonian contains spin rotational symmetry in the z-direction, the BdG

Hamiltonian will commute with the z component of the spin operator,

[H, Jz] = 0 (1.65)

where

Jz =

 Sz 0

0 −STz

 . (1.66)

In this case, the BdG Hamiltonian can be written as [55]

Ĥ =
1

2

(
c†↑ c↓

) h↑ ∆

∆∗ −hT↓


 c↑

c†↓

+ const. (1.67)
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where h↑ (h↓) is the single particle Hamiltonian for spin-up (spin-down) electrons

in the normal state. Following the argument outlined above, we conclude that in

this case (corresponding to singlet pairing) the charge conjugation operator can be

represented as

C = −iτyK, (1.68)

which squares to −1. To summarize, the particle-hole transformation is obtained by

acting with an operator C that can be represented as in Eqns. (1.64) and (1.68) and

has the property

C2 =

 −1 singlet

1 triplet
(1.69)

In the presence of particle-hole symmetry, the energy dispersion satisfies the condition

E−(−k) = −E+(k), where E− and E+ represent the negative and positive energy

bands of the BdG spectrum.

1.5.3 Chiral symmetry

The last generic symmetry that will be taken into this consideration can be viewed

as a product of the TRS and PHS, S = T · C. Note that S does not represent an

’ordinary’ symmetry, since it does not commute but rather anti-commutes with the

Hamiltonian SHS−1 = −H. This symmetry, called chiral symmetry, is typically

realized in solid state systems as a sub-lattice symmetry (SLS) in bipartite lattice

systems.

A Hamiltonian possessing chiral (or sublattice) symmetry can always be arranged

to have the form

H =

 0 T

T † 0

 , (1.70)
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Figure 1.7: Bipartite lattice representing the honeycomb lattice structure of
graphene.

where T is a hopping matrix that contains hoppings tAB between sites on the two

sublattices. Note that the tight-binding Hamiltonian in Eq. (1.70) is written in

a sublattice basis of the form

{
ψA ψB

}
. Note that the square of the chiral

symmetry always equals to 1, S2 = 1. The consequence of a Hamiltonian possessing

chiral symmetry is reflected in the energy spectrum as the property E+(k) = −E−(k).

1.6 Symmetry Classification of Noninteracting

Hamiltonians

To complete the topological classification of non-interacting gapped phases, the

first task is to classify the non-interacting Hamiltonians according to their properties

under generic (i.e. time-reversal, particle-hole, and chiral) symmetries. Why do we

focus on this type of Hamiltonians? Because they are quite easy to work with and

because they are relevant to understanding the physics of topological insulators (TIs)
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and topological superconductors (TSCs). Typically, a non-interacting Hamiltonian

describes a system where the interaction energy scale is much smaller than other

relevant energy scales, for example the band gap. A gapped phase, on the other

hand, refers to quantum ground states characterized by a bulk energy gap between

an occupied (valence) band and an empty (conduction) band. Note that the energy

gap characterizes the bulk of the system and not its boundaries (which may sup-

port gapless modes). For a superconductor treated at the mean field level, the gap

represents the superconducting gap characterizing the quasiparticle spectrum.

Trivial insulators (such as the atomic insulators) are topologically equivalent,

since the corresponding Hamiltonians can be continuously deformed among different

systems without closing the bulk gap. Hence, in the absence of broken symmetries,

all these insulators belong to the same phase. Can we conclude that all insulators

are topological equivalent? The answer is no. A very good example is the IQHE,

which has distinct states with the same symmetry and different values of the Hall

conductance. The Hamiltonian of the system cannot be smoothly deformed (e.g.,

by varying the magnetic field) between quantum Hall states with different values of

the Hall conductance without closing the gap (i.e. passing through a quantum phase

transition). Hence, the distinct gapped phases are separated by gapless quantum

states. Consequently, IQHE fluids are not equivalent to a typical insulator (e.g., a

solid noble gas) and are not equivalent to each other. Note that the quantum Hall

states require the presence of a perpendicular magnetic field, which breaks TRS. This

suggests that symmetry properties play an important role in the emergence of topo-

logically distinct phases. Let us briefly discuss the classification of non-interacting

Hamiltonians according to their symmetry properties.
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TRS PHS SLS d=1 d=2 d=3
Standard A 0 0 0 Z

AI +1 0 0
AII -1 0 0 Z2 Z2

Chiral AIII 0 0 1 Z Z
BDI +1 +1 1 Z
CII -1 -1 1 Z Z2

BdG D 0 +1 0 Z2 Z
C 0 -1 0 Z
DIII -1 +1 1 Z2 Z2 Z
CI +1 -1 1 Z

Table 1.2: Symmetry classification of non-interacting Hamiltonians and topological
classification of topological insulators and superconductors in one-, two-, and three-
dimensions.

Generic symmetry operators can be classified into two types [55],

P : H = −PHP−1, PP † = 1, P 2 = 1,

C : H = εcCH
TC−1, CC† = 1, CT = ηcC,

(1.71)

where εc and ηc can take values ±1. The pair (εc, ηc) represents different realizations

of the time-reversal or particle-hole symmetry, which can be summarized as follows:

(1, 1) = TRS for spinless or integer spin

(1,−1) = TRS for spinful, half (or odd) integer spin

(−1, 1) = PHS for triplet pairing

(−1,−1) = PHS for singlet pairing

The P-type symmetry refers to the sublattice (chiral) symmetry. Note that, although

superconductivity ensures the presence of PHS, particle-hole symmetry does not

necessary imply superconductivity. An example is 1D polyacetylene, which can be

described by a Hamiltonian in symmetry class class BDI, i.e. a hamiltonian that
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has TRS with T 2 = +1 and PHS with C2 = +1. Note that the presence of both

TRS and PHS implies the presence of chiral symmetry with S = T · C. In general, a

Hamiltonian can have TRS with T 2 = +1, TRS with T 2 = −1, or no TRS. Similarly,

it can have PHS with C2 = +1, PHS with C2 = −1, or no PHS. Combining these

possibilities results in nine different symmetry classes. In addition, if a Hamiltonian

has no TRS and no PHS it may have chiral symmetry or not. This leads to a total of

ten symmetry classes – the so-called ‘10-fold way’ – summarized in Table (1.2) (left

side of the table).

The symmetry classification shown in Table(1.2), was realized by Altland and

Zirnbauer [5] and represents an extension of previous work by Wigner and Dyson

on random matrix theory [70, 19]. A “0” in columns 3-5 means the absence of the

corresponding symmetry, while +1,−1 in the TRS column refer to the presence of

time-reversal symmetry for integer-spin and half integer-spin, respectively. Similarly,

+1,−1 for PHS refers to the presence of particle-hole symmetry in systems with

triplet and singlet pairing, respectively.

1.7 Topological Classification of Gapped Quantum

Ground States

In the absence of spontaneous symmetry breaking, all physical systems described

by Hamiltonians from a given symmetry class have the same symmetry. However,

this does not mean that they belong to the same phase. Focusing on gapped phases,

the next task is to classify all topologically distinct (gapped) ground states that

correspond to Hamiltonians from a given symmetry class and have a specified spatial

dimension. However, we note that the quantum ground state may have a different
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symmetry that the Hamiltonian. This case falls into the standard framework of

Landau’s symmetry breaking theory and does not represent our main concern. The

fundamental question here is the following: how many distinct phases are there that

have the same symmetry as the Hamiltonian?

To answer this question one has to take into account that the (gapped) quan-

tum states of matter are characterized by the topological properties of the ground

state [69, 55]. In the case of non-interacting systems (and, more generally, for SPT

phases), these topological properties are protected by the symmetries of the system.

In the other words, the constraint imposed by the presence of certain symmetries

(that correspond to the specific symmetry class of the Hamiltonian) ensures the ex-

istence of distinct topological properties. Any disorder or other type of perturbation

that does not destroy these symmetries will not affect the topological properties of

the system.

Having two different (gapped) ground states Ψ1 and Ψ2 corresponding to two

Hamiltonians H1 and H2 from a given symmetry class, when do they belong to the

same phase and when to different phases? Basically, the two ground state belong

to the same phase if one can continuously connect them (by smoothly changing the

Hamiltonian from H1 to H2) without closing the energy gap. Since a continuous

evolution in the presence of a finite gap does not change the topological properties

of the ground state, the states Ψ1 and Ψ2 are topologically equivalent. Hence all

topologically equivalent ground states belong to the same phase and can be uniquely

characterized by a certain topological invariant. By contrast, if Ψ1 and Ψ2 are not

topologically equivalent, they belong to distinct phases. Connecting them requires

passing through (at least) one state characterized by a vanishing energy gap.

Generically, one can imagine three different scenarios, as shown schematically
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Figure 1.8: The three possible scenarios for the existence of topologically distinct
phases within a given symmetry class. The Hamiltonian can be changed (without
breaking the symmetries) by varying certain parameters {x, x1, x2, . . . }. The shaded
areas correspond to gapless ground states, while the white areas are gapped phases.
(a) One distinct phase. All gapped ground states can be smoothly transformed into
each other by varying the parameters of the Hamiltonian. (b) Two distinct gapped
phases classified by a Z2 topological invariant. The transition from one phase to the
other must go through a quantum phase transition in which the bulk gap vanishes.
(c) Many distinct gap phases classified by a Z (integer) invariant. A transition
between any two distinct phases will involve crossing the gapless shaded area.

in Fig. 1.8. The first scenario, panel (a), corresponds to all gapped phases being

topologically equivalent, hence belonging to the same phase. In the second, panel

(b), the gapped states can be divided into two equivalence classes corresponding to

the topological trivial and non-trivial phases, respectively. A topological invariant

taking two possible values (called a Z2 topological invariant) allows us to distinguish

the two phases. In the third scenario, there are many distinct topological phases

classified by an integer topological invariant (a so-called Z invariant). Determining

which of these three scenarios is realized within each symmetry class and spatial

dimension was first carried out independently by Kitaev [35] and by Schnyder , et

al. [55] using different methods. The results are shown in the right-half of Table 1.2.

As shown in Table 1.2, the realization of a specific scenario depends on i) the sym-

metry class of the Hamiltonian and ii) the spatial dimension. A blank in columns

6-8 signifies the realization of the first scenario: all gapped ground states belong
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to a single phase (the trivial insulator). Z2 and Z correspond to the realization of

the the other two scenarios. For example, if we consider symmetry class A, there is

no topologically nontrivial insulators in one-dimension (1D) and in three-dimensions

(3D). By contrast, in 2D there are (infinitely) many topologically distinct ground

states characterized by the different values of a Z (i.e. integer) topological index.

Specifically, this topological invariant is the sum of the first Chern numbers corre-

sponding to the occupied bands. The integer quantum Hall states are the best known

representatives of these equivalence classes.
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Chapter 2

Majorana fermions in topological

insulator nanoribbons coupled to

superconductors

The classification of different phases of matter based on the entanglement - sym-

metry - topology paradigm provides us with a the “big picture” represented schemat-

ically in fig.(1.6). Most of this territory is still unexplored experimentally. If we focus

our attention on non-interacting systems, we can classify the distinct, gapped phases

of a matter by considering the topological properties of the filled bands correspond-

ing to Hamiltonians with generic symmetries. Based on this scheme, we have ten

symmetry classes of noninteracting Hamiltonians, each class containing one, two, or

more topologically-distinct phases, as shown in the classification table of topological

insulators and superconductors (1.2). This chapter and the next are devoted to the

realization of a particular symmetry class and spatial dimension, more specifically

class D in one-dimensional systems. Hamiltonians from this symmetry class support

two topologically-distinct phases (a trivial and a topological superconductor), which
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are characterized by distinct values of the Z2 topological invariant.

The interest in studying the one-dimensional (1D) topological superconductors

(TSCs) from classD is to realize Majorana fermions in a solid state system. Majorana

fermions, which are particles that are identical to their antiparticles, are predicted

to emerge naturally in a TSC phase as zero-energy modes localized at the ends of

the 1D system. These Majorana zero modes could be used as a platform for topolog-

ical quantum computation. Unfortunately, there are no (known) intrinsic 1D TSCs.

However, there are several types of heterostructures proposed for the realization of

topological superconductivity and Majorana bound states, in particular, topological

insulator (TI) nanowires proximity-coupled to a (conventional) superconductor and

semiconductor-superconductor (SM-SC) hybrid structures. A characteristic signa-

ture of the Majorana bound state – the emergence at a finite magnetic field of a

zero-bias peak in the differential conductance for tunneling into the end of the wire

– was recently reported in semiconductor-based structures [48]. However, many ex-

perimental features observed in this type of system are not completely understood.

Furthermore, no clear signature of Majorana modes was reported so far in TI-based

structures. Our goal is to provide a better theoretical understanding of these het-

erostructures, which could help optimize them. This condition is essential to ensure

the unambiguous demonstration of Majorana bound states and to facilitate their

robust manipulation, which is a requirement for quantum computation. The inves-

tigation starts with the topological insulator-superconductor (TI-SC) system, which

is the main topic of this chapter; the SM-SC structure will be discussed in the next

chapter.

One key aspect that impacts the stability of a topological superconducting phase

is the magnitude of a proximity-induced superconducting gap. In both TI-SC and
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SM-SC structures the induced superconducting phase at zero magnetic field is topo-

logically trivial. Applying a magnetic field parallel to the wire/nanoribbon reduces

the quasiparticle gap, which vanished at a certain critical field. The vanishing of

the quasiparticle gap signals a topological quantum phase transition. At even larger

values of the magnetic field the gap reopens and the wire becomes a topologically-

nontrivial superconductor. In SM-SC structures, realizing the topological condition

at relatively low fields (so that the magnetic field does not destroy the conventional

superconducting phase that provides the proximity-induced pairing in the wire) re-

quires fine tunning of the chemical potential. Cook and Franz [15] argued that the

TI-based system does not have this (potentially restrictive) disadvantage. The TI-

based system was further investigated by Sitthison and Stanescu [58] to better clarify

the argument of Cook and Franz. Before going deeper into details related to specific

realizations TSC, we briefly summarize the mathematical model that inspired these

proposals – the so-called Kitaev chain model. Besides being the first model of a 1D

TSC, this is also a good framework for introducing the concept of Majorana fermion.

2.1 Kitaev’s toy model

Kitaev’s chain model is a theoretical model of major importance in the fields

of topological quantum computation, topological superconductivity, and Majorana

bound states. It was proposed on a purely mathematical basis as a 1D model for a p-

wave superconductor [36]. The model is characterized by the emergence of Majorana

modes localized at the ends of the chain. These modes are predicted to obey non-

Abelian statistics and were proposed as a possible platform for topological quantum

computation. Discussing quantum computation, even at an introductory level, is

rather technical and is beyond the purpose of this thesis. However, understanding
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the concept of “Majorana fermion” is essential for our subsequent discussion. Hence,

we ask, “what is a Majorana fermion?”.

2.1.1 Getting to know the Majorana fermion

In 1937, Ettore Majorana obtained a real solution to the Dirac’s equation for

spin−1/2 [72]. The consequence of being a real solution is that γ† = γ, where

γ† and γ represent particle creation and annihilation operators, respectively. Note

that γ† and γ can be viewed as creation operators for particles and antiparticles,

respectively. Hence, the Majorana fermion (MF) is identical to its own antiparticle.

Originally, the Majorana fermion was believed to be realized as one of the neutral

fundamental particles. One possible candidate suggested by the standard model is

the neutrino. However, the experimental evidence concerning the Majorana nature

of the neutrino is still incomplete. For example, the detection of neutrino-less double

beta decay would provide evidence that neutrino is its own anti-particle [1], but no

such detection was reported so far.

Let us recall the key properties of a regular (Dirac) fermion, for example, an

electron. In the second quantization descriptions, for a system defined on a lattice,

c†j represents a creation operator in the Fock space. The operator will create an elec-

tron at a lattice site j. On the other hand, cj represents an annihilation operator.

Note that annihilating a (charge −e) particle at site j can be viewed as creating a

(charge +e) hole at that location. Fermi statistics requires the operators to obey

the anti-commutation relation {c†j, c
†
j} = {cj, cj} = 0 and {ci, c†j} = δij, where the

curly bracket denotes the anticommutator, {A,B} = AB + BA. Note that c†j 6= cj,

which is equivalent to saying that an ordinary fermion is not its own antiparticle.

Hence, the electron is an example of complex fermion represented by non-Hermitian
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creation/annihilation operators. Their wave function corresponds to a complex so-

lution of the Dirac equation.

Majorana operators can be expressed mathematically as linear combinations of

complex fermion operators, γj1 = (c†j + cj)/2 and γj2 = (c†j − cj)/2i. The two

Majorana operators γj1 and γj2 obey the fermionic commutation relations. One may

think that the mathematical trick of expressing the Majorana operators in terms

of complex fermion operators does not yield any new physics. However, the idea

of mixing the creation and annihilation operators of the complex fermions suggests

that superconductors, which have quasiparticles that are spuerpositions of particles

and holes, may be a good place to look for Majorana fermions in condensed matter

systems [47]. Thus, the Majorana fermion could be realized as an emergent excitation

in a condensed matter system, rather than a fundamental particle.

According to the BCS theory, the ground state of an s-wave superconductor

(s-SC) is characterized by the formation of a condensate of singlet pairs. The quasi-

particle excitations have finite energy and are represented by quasiparticle operators

that can be expressed as d = uc†↑ + vc↓ and d† = v∗c†↓ + u∗c↑, i.e., superpositions of

particles and holes. Note that the operators d and d† are distinct and, consequently,

a quasiparticle in an s-SC system is not its own antiparticle, i.e., it is not a MF [4].

Consider now, following Kitaev’s proposal, a spinless system. The pairing mechanism

cannot involve spin singlets, hence it cannot have s-wave symmetry. However, one

can have non-local spinless pairing, which yields p-wave superconductivity (p-SC).

One can show that this “exotic” type of superconductivity can realize a topologically

nontrivial superconducting phase characterized by the emergence of zero-modes at

the boundary. The first experimental evidence consistent with the existence of such

Majorana zero-modes was reported in 2012 [48]. The details of this discovery will be
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discussed in Chapter 3. But first, let us look at the mathematical model that cap-

tures the key physics of a 1D p-wave superconductor, the most promising hunting

ground for MF in condensed matter physics.

2.1.2 The toy model

A realization of a one-dimensional p-wave superconductor can be obtained by

considering a fully spin-polarized (i.e., effectively spinless) fermion system defined

on an N-site atomic chain described by a simple tight binding model. With the

superconductivity treated at mean-field level, the Hamiltonian has the form

H1 = −µ
N∑
n=1

c†ncn −
N−1∑
n=1

(
tc†ncn+1 + ∆eiφcncn+1 + h.c.

)
(2.1)

where

µ = chemical potential,

cn = electron annihilation operator at site n,

t = hopping parameter,

∆ = superconducting pairing potential (assumed to be real),

φ = superconducting phase.

Note that for simplicity the superconducting phase, φ, can be assumed to be zero

without loss of generality. Expressing complex fermion operators in terms of Majo-

rana operators provides an insight into the low-energy physics of the chain. Using
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the notations in Ref [42], we have

cn =
1

2
(γn,1 + iγn,2) , (2.2)

c†n =
1

2
(γn,1 − iγn,2) , (2.3)

where γn,m represents the Majorana operators of the index site n, and m = {1, 2}.

This expression allows us to keep track of the complex fermion site index easily.

Moreover, the “inverse” of Eqs. (2.2) - (2.3) allows us to express the Majorana

operators in terms of complex fermion operators,

γn,1 = c†n + cn (2.4)

γn,2 = i
(
c†n − cn

)
. (2.5)

Next, let us focus on the the special case characterized by ∆ = t = 0 and µ < 0.

The 1D atomic chain Hamiltonian in Eq. (2.1) reduces to

H1 = −µ
N∑
n=1

c†ncn (2.6)

This Hamiltonian describes a topologically trivial state with the total energy of

H = |µ|N corresponding to a collection of N particles localized at the sites of

the chain, i.e., an atomic insulator, as illustrated in Fig. (2.1)-a. To realize a

topological superconducting state (with the emergent Majorana physics), consider

the limit ∆ = t and µ = 0. The Hamiltonian in Eq. (2.1), written in terms of

Majorana operators, can be simplified to

H = −it
N−1∑
n=1

γn,2γn+1,1. (2.7)
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Figure 2.1: From Ref. [42]. A one-dimensional atomic chain realized in, (a) the
topological trivial state by setting ∆ = t = 0, µ < 0 and (b) the topological non-
trivial state by setting ∆ = t 6= 0, µ = 0. The blue boxes represent the physical
realization of electrons. The red circles represent the physical realization of MFs
following the relation cn = 1

2
(γn,1 + iγn,2). In (b), note the unpaired Majoranas

localized at the ends of the chain.

The atomic chain is now in a non-trivial topological state, as illustrated schematically

in Fig. (2.1)-b. To emphasize the non-triviality of the state and extraordinary nature

of MF, let us introduce the new fermion operator,

c̃n =
(γn+1,1 + iγn,2)

2
. (2.8)

The Hamiltonian in Eq. (2.7) can be expressed as

H = 2t
N−1∑
i=1

c̃†i c̃i. (2.9)

The Hamiltonian in Eq. (2.9) resembles the form of a regular atomic chain. The

fascinating fact is that the number of atoms in the chain is N−1. This is because the

Majorana operators γ1,1 and γN,2 are missing from the expression in Eq. (2.9). The

Majorana operators γ1,1 and γN,2 correspond to a “regular” fermionic quasiparticle

that is spatially localized at both ends of the quantum wire. This can be easily seen
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by combining the two Majorana operators into a complex fermion operator

c̃M =
(γN,2 + iγ1,1)

2
. (2.10)

A fermion associated with the expression in Eq. (2.10) is highly non-local, i.e., an

electron occupying the Majorana modes exists at both ends of the wire at the same

time. This mode emerges with no energy cost (since the corresponding operators are

not present in the Hamiltonian and, therefore, commute with H). This fact can be

shown explicitly by assuming that the system ground state is |G〉 with energy EG.

Since γ1,1 and γN,2 are missing from Eq. (2.6), [H, γ1,1] = [H, γN,2] = 0. In other

words,

Hγ1,1 |G〉 = EGγ1,1 |G〉 (2.11)

HγN,2 |G〉 = EGγN,2 |G〉 . (2.12)

The Majorana zero-mode bounds to the boundaries of the 1D atomic chain. In a

larger context, these Majorana zero modes can be viewed as a particular realization

of gapless boundary modes characterizing a topologically nontrivial phase, similar to

the gapless surface states in topological insulators.

In the standard BCS theory of superconductivity, the ground state consists of

an even particle-number state. By contrast, the 1D p-wave superconductor model

presented above allows an odd number ground state (for systems with boundaries).

The simplest way to characterize the parity of the ground state is by defining the

occupation number nM = c̃†M c̃M : nM = 0 corresponds to an even-parity state (i.e.,

the Majorana modes are not occupied), while nM = 1 corresponds to odd parity (the

Majorana zero modes are occupied by one electron).
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The model parameters discussed above represent two particular cases. In general,

an arbitrary set of parameters could correspond to one of the two possible phases: the

trivial and the topological superconductor. The topological invariant that uniquely

describes these phases is the so-called Majorana number,

M = (−1)v, (2.13)

where v is 1 in the topological phase and 0 in the trivial phase. The Kitaev model is a

simple and elegant model containing rich physics. The p-wave superconductor seems

to be exceedingly rare in nature, yet it can be “engineered” using standard materials,

such as semiconductors and conventional superconductors. The real challenge is to

physically realize the conditions corresponding to the topological phase predicted by

the model.

2.2 The Cook-Franz proposal

One of the proposals for a physical realization of Kitaev’s model, made by Cook

and Franz [15], is based on a topological insulator nanowire – superconductor hybrid

structure. The main discussion of the model follows Ref. [15]. The original theory

describing the proposed structure is based on using a generic 3D massive Dirac equa-

tion to capture the behavior of the surface states of topological insulators. Guided

by the Kitaev’s toy model, which shows that breaking time-reversal symmetry is a

critical requirement, the Dirac equation was modified to handle an external magnetic

perturbation. Explicitly, we have [51],

H =
1

2
v
[
~~∇ · n̂+ n̂ · (~p× ~σ) + (~p× ~σ) · n̂

]
(2.14)
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Figure 2.2: The TI-nanowire – superconductor setup proposed by Cook and Franz
[15]. The TI (e.g., Bi2Se3) nanowire with the circular cross section is placed on top
of an ordinary superconductor. A magnetic field is applied parallel to th wire to
ensure the removal of spin degeneracy at k = 0.

where

~p = tcanonical momentum,−i~~∇,

v = Dirac velocity,

n̂ = unit vector normal to the surface, (cosϕ, sinϕ, 0) ,

~s = Pauli matrices in spin space.

In the presence of an external magnetic field, the canonical momentum changes into

~p→ ~p−
(
e
c

)
~A, where ~A is the vector potential. For this particular study, the vector

potential corresponding to a magnetic field parallel to the cylindrical wire will be

expressed as ~A = ηΦ0(ẑ×~r)
2πr2 , where η is a dimensionless factor and Φ0 is the magnetic

flux quantum. The total magnetic flux through the wire is Φ = ηΦ0.

The model takes advantage of the strong spin-orbit interaction in the TI wire,

where the surface-like states can be considered as a fully spin-polarized system. The

external magnetic field is applied longitudinally to lift the double degeneracy of the

wire spectrum, as shown in Fig. 2.3. The wire is put into contact with an s-SC, so

that it becomes a superconductor by proximity effect. The heterostructure is shown

schematically in Fig. 2.2

Ideally, the TI nanowire can be consider a perfect 1D system. According to Ta-
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Figure 2.3: Energy spectrum of the TI surface-like states with varying amount of
magnetic flux applied longitudinally to the wire. The solid blue lines show the spin
degenerate band while the blue dashed lines represent the bands with spin degeneracy
lifted. (a) At η = 0.0, external magnetic field is zero. Every energy band is doubly
degenerate. (b) At η = 0.2, the presence of an external magnetic field induces a
lifting of the degeneracy. (c) At η = 0.5, half-flux quantum, an odd number of pairs
of Fermi points is realized for arbitrary values of the chemical potential. (From Ref
[15])

ble (1.2), there is no topological distinction among the ground state wave functions

of 1D structure in class AII. In other words, a wire made of TI material is in a

topologically trivial phase, which is signaled by the fact that its spectrum is always

gapped. However, in the presence of induced superconducting correlations the sys-

tem has particle-hole symmetry and, therefore, belongs to symmetry class D. Note

that symmetry class D requires breaking of TRS, which can be achieved by apply-

ing an external magnetic field. More physically, the role of the magnetic field is to

remove spin degeneracy, thus providing the possibility of having an odd number of

pairs of Fermi points (see Fig. 2.3). Note that one pair corresponds to an effec-

tively spinless system, the requirement for realizing a p-wave superconducting state.

One can show that for multi-band systems this condition generalizes to having an

odd number of bands (partially) occupied. Tuning of the magnetic field strength is

critical. According to the calculation, the critical value of the magnetic flux passed

through the wire is Φ = 0.5Φ0 where Φ0 is the flux quantum.
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Figure 2.4: Topological phase diagram. The number within each box represents the
number ν of bands crossed by the chemical potential. The odd numbers correspond
to a topologically non-trivial phase, also indicated by a shaded area. (From Ref.
[15].)

An interesting result is the topological phase diagram. Although the main in-

gredients to realize the topological superconducting phase are present (i.e., strong

spin-orbit coupling and magnetic field to engineer effectively spinless fermions, plus

proximity-induced superconductivity), there is another parameter that needs special

attention: the chemical potential, µTI . Note that, theoretically, the realization of

the non-trivial phase is signaled by topological invariant, i.e., the Majorana number

M = (−1)v. In the limit of weak TI-superconductor coupling, v coincides with the

number of Fermi points for k > 0, which can be determined directly by counting

the number of bands crossing the chemical potential. The M = −1(1) refers to the

non-trivial(trivial) topological phase. In the non-trivial phase, a pair of Majorana

bound states will naturally emerge at the ends of the nanowire, as illustrated in Fig.

2.1-b. The topological phase diagram is shown in Fig. 2.4.

The non-trivial phase exhibits periodicity in both chemical potential and external

magnetic field. The behavior illustrated in Fig. 2.4 leads to a very important claim:

fixing the strength of external magnetic field to half flux quantum (i.e., η = 0.5), the

non-trivial topological superconducting phase can always be realized regardless of the

value of the chemical potential. Eq. (2.14), which captures only the behavior of the
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surface-like states, describes a possible large range to realize the TSC, a range com-

parable with the bulk gap of Bi2Se3. If this claim were true, the TI-based structure

would have a significant advantage over the semiconductor-based alternative, which

require fine-tuning of the chemical potential.

The formal derivation of this result starts with Eq. (2.14) expressed as the

Bogoliubov-de Gennes Hamiltonian,

H1 (k) = (kσy − µTI +mσz) τz −∆τyσy (2.15)

where τα and σα are the Pauli matrix in particle-hole space and in spin space, re-

spectively. Note that v and ~ are set to be unity. When the magnetic field takes a

value corresponding to half flux quantum, we have m = 0 and the energy spectrum

becomes

Ek = ±
√

(k ± µ)2 + ∆2
0 (2.16)

Note that, regardless of µ, the quasiparticle gap is finite, signaling the fact that the

system does not cross any phase transition. In other words, the non-zero value of

the gap indicates the robustness of the topological phase.

To confirm the results based on the idealized Dirac equation approach, one can

carry out a lattice model calculation to better capture the robustness of the topo-

logical phase. The effective Hamiltonian is [75],

hk = Mkr1 + λr3 (σ2 sin kx − σ1) + λzr2 sin kz (2.17)

where Mk = ε − 2t
∑

α cos kα and rα is the Pauli matrix in the orbital space. The

Hamiltonian incorporates the external magnetic field through the orbital effect de-

62



2.3. TOPOLOGICAL SUPERCONDUCTIVITY IN TOPOLOGICAL
INSULATOR-BASED HYBRID STRUCTURES

scribed by the Peierls’ substitution,

tij → tije
−
(

2πi
Φ0

) ∫ i
i
~A·d~l
. (2.18)

The contribution from the Zeeman effect is expected to be small and is neglected.

Note that the lattice model includes contributions coming from bulk-like state. Using

this model it was found that the special value of the magnetic flux that guarantees

the realization on the topological phase for a large range of chemical potentials is not

exactly at the half flux quantum but vary slightly. This is due to the finite “thickness”

of the surface-like states, “feel” a smaller effective magnetic flux. Nonetheless, the

main conclusion concerning the robustness of the topological phases was confirmed.

This motivates an even deeper critical analysis of the main assumptions behind this

result, which is discussed in the next section.

2.3 Topological Superconductivity in Topological

Insulator-Based Hybrid Structures

One of the attempts to realize Majorana bound states in solid states system

focuses on the proximity-induced superconductivity obtained by coupling topological

insulator materials and ordinary superconductors. Such a structure is predicted to

host p-wave superconductivity. Moreover, in such system one expects the emergence

of Majorana quasiparticles localized at the boundaries of the system or bounded to

topological defects (such as 1D domain walls or vortices in two-dimensional systems).

Of special interest are the zero-energy Majorana modes bound to the ends of a 1D

wire or to the vortex cores of a 2D superconductor. We will call them Majorana

bound states (MBS) or Majorana zero modes (MZM). Note that a topological defect
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carrying a Majorana zero mode obeys non-Abelian statistics, hence its significance in

the context of quantum computation. Therefore, a MZM is not exactly a “fermion”,

in the sense that it does not obey fermionic statistics. However, in the literature it is

sometimes referred to as a Majorana fermion (MF). Below, we always assume that

MF actually designates a MZM/MBS.

Several theoretical studies [15, 16, 22] have explored the possibility of realizing

MBSs in TI-based systems. The superconducting proximity effect has been explicitly

addressed by Sitthison and Stanescu [58]. The robustness of the topological phase

is critically reconsidered using the tight binding formalism from Ref. [30], which

is based on the k · p calculation of Zhang et al., [75], and explicitly taking into

account the superconducting proximity effect, as well as electrostatic effects due to

the presence of substrates and gate voltages.

2.3.1 Model Hamiltonian for a Topological Superconductor

The Hamiltonian of a topological superconductor consists of several parts. The

first ingredient is the model Hamiltonian for TI, e.g., Bi2Se3, which can be defined

on a lattice. This Hamiltonian also includes the contribution of an electrostatic field,

which includes the external perturbation due to gate potentials and the interfaced-

induced potential. The second ingredient is an external magnetic field that is in-

corporated through the Peierls substitution to capture the orbital effect. The last

component is the superconducting proximity effect, which is introduced as an inter-

face self-energy contribution to the Green function of the wire.
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Figure 2.5: Rhombohedral unit cell of Bi2Se3 with three primitive lattice vectors:
~t1 =

(
−a

2
,−
√

3a
6
, c

3

)
, ~t2 =

(
a
2
,−
√

3a
6
, c

3

)
, ~t3 =

(
0,
√

3a
3
, c

3

)
where (a, c) are the lattice

parameter with the values (4.138Å, 28.64Å) respectively. In the box there is a quintu-
ple layer consisting with five-atomic layers denoted as Se1−Bi1−Se2−Bi1′−Se1′.
(From Ref. [77])

Low-energy effective Hamiltonian of the TI nanoribbon

The topological insulator Bi2Se3 has a well-defined bulk gap and robust surface

states. Its possible gapped phases are characterized by Z2 topological index. The

bulk gap is about 0.3 eV, larger than the gap of another Bi-based TI, the Bi2Te3,

which has bulk gap of about 0.21 eV. The relatively large bulk gap makes Bi2Se3 an

ideal material for engineering a robust topological superconducting state. Moreover,

the energy band structure of Bi2Se3 is very simple, providing a low computational

cost for accurate predictions. By comparison, the first 3D TI material discovered,

the Bi1−xSbx, has a more complicated energy band structure [76].

The Bi2Se3 has a layered structure with an alternation of covalent and van der

Waals-type bonding. The five atomic layers strongly bounded together form a so-
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called quintuple layer (QL) [77]. The QL consisting of ...−Se−Bi−Se−Bi−Se−...,

as shown in Fig. 2.5, can be viewed as ...−A−B−C−A−B−... staking. The bonding

between the QLs is governed by van der Waals interactions. Since the QL can be

used as a unit cell, connecting the Se at the center of each QL reveals a rhombohedral

structure with a space group D5
3d(R3̄m). The Se2 in the middle acts as a center of

inversion. The inversion operator switches Se1 ↔ Se1′ and Bi1 ↔ Bi1′ and the

presence of inversion symmetry allows the system to have definite parity eigenstates.

The low-energy band structure of Bi2Se3 can be constructed by considering the p-

orbitals of Bi and Se. The total orbital degree of freedom produces a 15-band model,

with 3 p-orbitals from each of the five atomic layers within the QL. By including

the hybridization among the Bi and Se orbitals, the inversion symmetry of the QL,

the crystal field splitting, and the spin-orbit coupling, the valence electron states of

Bi and Se become mixed together. Thus, the effective low energy Hamiltonian can

be obtained by taking into account only the states that are closest to the chemical

potential. In the vicinity of k = 0 the low-lying states can be constructed as [43]

|λ, ↑〉 = uλ |λ, pz, ↑〉+ vf |λ, p+, ↓〉 ,

|λ, ↓〉 = u∗λ |λ, pz, ↓〉+ v∗λ |λ, p−, ↑〉 ,
(2.19)

where λ = ±1 represents the parity, p± = px ± py, and uλ, vλ, with |uλ|2 + |vλ|2 = 1,

are coefficients that depend on the spin-orbit coupling strength and will be treated

as model parameters.

The resulting states, |λ, σ〉, have parity λ, while σ labels the total angular

momentum along z-direction with eigenvalues σ~
2

. Note that the states |λ, σ〉 ex-

tend across a QL and can be viewed as molecular orbitals. The resulting states,

{|+, ↑〉 , |−, ↑〉 , |+, ↓〉 , |−, ↓〉}, form the basis for a four-band tight-binding model.
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The corresponding effective low-energy tight binding Hamiltonian is given by [30]

HTI =
∑
λ,i,j

(
ε

(α)
0 δij + t

(α)
ij

)
c†iλcjλ + iαijc

†
iλ

(
~δ · ~σ

)
cjλ̄ (2.20)

where

α, ᾱ = band index, with α 6= ᾱ,

i, j = the lattice site index,

c†iλ =
(
c†iλ↑, c

†
iλ↓

)
, the creation operator,

~σ = (σx, σy, σz) , the Pauli matrix in spin space,

~δij = (~rj − ~ri) /a, the next nearest neighbor vector scaled by the lattice constant, a,

t
(λ)
ij = (t1λ, t2λ) , the next nearest neighbor hopping for in-plane and out-of-plane respectively,

αij = (α1, α2) , the spin- and direction-dependent interband hopping

for in-plane and out-of-plane respectively.

The effective parameters can be determined by matching the long-wavelength spec-

trum of the tight-binding model and the the continuum model of Zhang et al., [75],

which has the same basis set and is obtained within the k · p theory in the k → 0

limit. An explicit expression of the continuum model Hamiltonian is given by,

H (k) = ε0 (k) I4×4 +



M (k) A1kz 0 A2k−

A1kz −M (k) A2k− 0

0 A2k+ M (k) −A1kz

A2k+ 0 −A1kz −M (k)


+ o

(
k2
)
, (2.21)
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where

k± = kx ± iky,

ε0 (k) = C +D1k
2
z +D2k

2
⊥,

M (k) = M −B1k
2
z −B2k

2
⊥.

In turn, the parameters of the continuum model were obtained by fitting the en-

ergy bands obtained using an ab initio calculation. We have [75] M = 0.28eV,A1 =

2.2eV Å, A2 = 4.1eV Å, B1 = 10eV Å
2
, B2 = 56.6eV Å

2
, C = −0.0068eV,D1 = 1.3eV Å

2
, D2 =

19.6eV Å
2
. The parameters of the tight binding Hamiltonian in Eq. (2.20) are related

to those of the k · p Hamiltonian in Eq. (2.21) as follows

ε± = C0 ±M0 +
12

c2
(C1 ±M1) +

4

a2
(C2 ±M2) , (2.22)

t1± = − 3

c2
(C1 ±M1) , (2.23)

t2± =
1

c2
(C1 ±M1)− 2

3a2
(C2 ±M2) , (2.24)

α1 =
3

2

aA1

c2
, (2.25)

α2 =
A2

3a
− aA1

2c2
. (2.26)

For convenience, the electrostatic effect is combined with the chemical potential

term, both representing local contributions. The Hamiltonian that describes the

electrostatic effect and the chemical potential can be expressed as

Hv =
∑
i,λ

[V (i)− µTI ] c†iλciλ, (2.27)

where V (i) is a position-dependent effective electrostatic potential. This electrostatic
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potential accounts for the contribution of an external gate potential and that of the

interface-induced potential.

Magnetic field

The magnetic field is necessary to ensure the odd number of pairs of Fermi points,

i.e. the condition for having an effectively spinless system. In the presence of the

TRS, Kramer theorem protects the degeneracy at Γ, (k = 0). Generally, an external

magnetic field breaks the TRS and lifts the degeneracy. The Hamiltonian for an

electron in magnetic field is [14]

H ~B = −µB
~

(
gLL̂+ gSŜ

)
· ~B, (2.28)

where µB is the Bohr magneton and gL, gS are the g-factors for total orbital momen-

tum and spin, respectively. The first term is the orbital contribution of an external

magnetic field, while the interaction with the spin is described by the Zeeman split-

ting (the second term). Note that the relative strengths of the two terms in TI-

and SM-based heterostructures are completely different. Since the g-factor in TIs is

relatively small, the Zeeman term is negligible in the TI-based system, as compared

with the orbital effect. By contrast, in semiconductor wires g can be very large

(e.g., g ≈ 50 in InSb wires) and the Zeeman term is dominant. To incorporate the

orbital effect one can use the Peierls substitution [28], which can be expressed in the

tight-binding formalism as [21, 46]

tmn ⇒ tmne
−i e~ ~A·~δ ⇒ tmne

−i e~
∫ rm
rn

d~r· ~A(~r,t), (2.29)
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where tmn represents the matrix element t
(λ)
ij or αij in the tight binding Hamiltonian

(2.20) and ~A is the magnetic vector potential.

Proximity effect

Despite being a key ingredient, proximity-induced superconductivity was not in-

vestigated in any detail in the original proposal. Instead, it was simply assumed that

the TI Hamiltonian acquires a pairing term. The proximity effect induces supercon-

ductivity in the TI-nanowire by coupling it to an s-wave superconductor. Whether

the induced superconductivity is topologically trivial or nontrivial depends on the

value of the magnetic field. It is rather remarkable that an exotic pairing mechanism

can be engineered using an “ordinary” superconductor. In this approach, the s-wave

superconductor will be treated at a mean-field level and modeled by the tight binding

Hamiltonian

HSC =
∑
i,j,σ

(
tSCij − µSCδij

)
a†iσajσ + ∆0

∑
i

(
a†i↑a

†
i↓ + ai↓ai↑

)
(2.30)

where

a†iσ = the creation operator for a state localized at lattice site i with spin σ,

µSC = the chemical potential of the superconductor,

tSCij = the next nearest neighbor hopping parameter,

∆0 = the local pairing amplitude (set to 1.5 meV throughout this study).

Intuitively, the superconducting proximity effect can be understood in terms of

states from the wire liking into the bulk SC across the TI-SC interface. Consequently,

electrons from TI-nanowire spend part of their time into superconductor and acquire
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pairing correlations. To capture this physics, the TI and SC Hamiltonians have to

be coupled. The term that describes the coupling between the two materials has the

form

HTI−SC =
∑
i0,j0

∑
λσ

(
t̃λσc

†
i0λσ

aj0σ + H.c.
)

(2.31)

where

i0 = site at the interface in the TI region,

j0 = site at the interface in the SC region,

t̃λσ = coupling constants that depend on spin and orbital labels.

The basis set used in the TI Hamiltonian explicitly contains a pz component. This

component will couple strongly with SC states across the interface. By contrast, the

p± components will couple weakly because of the alternating sign of the different

lobes. To obtain the coupling matrix between TI and SC, three majors assumptions

are introduced, which will greatly simplifies the calculation:

• perfect lattice matching across the interface,

• |λ, pz, σ〉 is the only state having nonzero coupling matrix element with the SC,

• the hopping across the interface is independent of the spin orientation.

These assumptions lead to a coupling matrix of the form

t̃λσ = δσ,σ′



t̃+ 0

t̃− 0

0 t̃+

0 t̃−


λσ,σ′

. (2.32)
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Instead of treating t̃+ and t̃− as unknown parameters, it is more convenient to have

the relative strength ξ = t̃−
t̃+

and the “total” strength
√
t̃2+ + t̃2−as independent model

parameters.

The superconductor can be considered as a charge reservoir. Also, within a Green

function formalism we can integrate out the superconducting degrees of freedom. As

a result, the bulk SC will enter to the effective low-energy theory of the TI subsystem

as a surface self-energy term [58, 42, 61]. Since the relevant physics happens at the

low-energy and long wavelengths, a further approximation can be made: the Green’s

function of the superconductor can be approximated as a purely local contribution.

Thus, the surface superconductor self-energy term can be expressed as

Σλσ,λ′σ′ (ω; i0) = t̃λσG
SC
σ,σ′ (ω; j0) t̃λ′σ′, (2.33)

where (i0, j0) is a pair of a nearest neighboring site across the TI-SC interface. For

a planar interface the local contribution is independent of position. Thus, the SC

Green’s function can be expressed as

GSC (ω) = −νF

[
ω + ∆0σyτy√

∆2
0 − ω2

+ ςτz

]
, (2.34)

where

σα = Pauli matrices in the spin space,

τα = Pauli matrices in the particle-hole space,

νF = surface density of states for the bulk SC in the normal phase at the Fermi energy,

=
1

|tSC |

√
1−

(
1− µSC

2tSC

)2

,
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ςτz = a proximity-induced bias potential at the interface,

which is included in Hv.

If we focus on the low-energy physics characterized by |ω| � ∆0, the superconducting

proximity effect can be treated within the static approximation,
√

∆2
0 − ω2 ≈ ∆0.

This approximation provides an accurate description of the low-energy spectrum up

to about 0.4∆0 [60].

The low-energy eigenvalues of the proximity-coupled TI subsystem can be ob-

tained by solving the Bogoliubov-de Genned(BdG) equation,

det
[
G−1
TI (ω)

]
= 0 (2.35)

with the TI Green’s function expressed as

GTI (ω) =
[
ω − H̄TI − H̄v − H̄z − Σ (ω)

]−1
, (2.36)

where

H̄TI = Hamiltonian of the TI nanoribbon,

H̄v = Hamiltonian describing the electrostatic effect,

H̄z = Hamiltonian describing the magnetic orbital effect.

The structure of BdG Hamiltonians in Eq. (2.36) is

H̄X =

 HX 0

0 −HT
X

 (2.37)
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where X = TI, v, z. Focusing on the self energy term, within the approximations

discussed above we have

Σ = − γ

∆o

[
ω
(
I ⊗M0 (ξ)⊗ K̂

)
+ i∆o

(
τy ⊗M1 (ξ)⊗ K̂

)]
(2.38)

where

γ =
(
t̃2+ + t̃2−

)
νF , the effective coupling strength at the TI-SC interface,

K̂ = interface matrix with elements 1 for sites at the interface and 0 otherwise,

M0(ξ) = proximity-induced normal self-energy corrections,

M1(ξ) = proximity-induced anomalous self-energy corrections.

Note that M0 (ξ) and M1 (ξ) have the following explicit forms

M0 (ξ) =
1

1 + ξ2



1 ξ 0 0

ξ ξ2 0 0

0 0 1 ξ

0 0 ξ ξ2


, (2.39)

M1 (ξ) =
1

1 + ξ2



0 0 −1 −ξ

0 0 −ξ −ξ2

1 ξ 0 0

ξ ξ2 0 0


. (2.40)

Putting together all these ingredients, the Green’s function of the TI subsystem

becomes

GTI (ω) = ω

(
1 +

γ

∆o

I ⊗M0 (ξ)⊗ K̂
)
− H̄X + i∆o

(
τy ⊗M1 (ξ)⊗ K̂

)
. (2.41)
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Next, we introduce the “renormalization matrix”

Z̃ = 1− K̂ +
1√

1 + ξ2



β βξ 0 0

−ξ 1 0 0

0 0 β βξ

0 0 −ξ 1


(2.42)

where β = 1√
1+ γ

∆0

. Z̃ maps the first term of the TI Green’s function in Eq. (2.41),

i.e., the matrix multiplying ω, to the unit matrix:

Z̃

[
1 +

γ

∆0

I ⊗M0 (ξ)⊗ K̂
]
Z̃T = 1. (2.43)

Consequently, the BdG equation can be rewritten as an eigenvalue problem corre-

sponding to an effective low-energy Hamiltonian,

det [ω −Heff ] = 0 (2.44)

where

Heff = Z̃
[
H̄TI + H̄V + H̄Z

]
Z̃T + iτy

 ∆ind 0

0 0

 K̂ (2.45)

with

∆ind =
γ∆0

(γ + ∆0)

Solving Eq. (2.44) is equivalent to finding the eigenvalues of the effective Hamiltonian

(2.45). The solution captures the low-energy physics of a TI nanoribbon proximity

coupled to ordinary s-wave superconductors. This effective Hamiltonian will be used

throughout the remainder of this chapter.
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Figure 2.6: Cross section view of the setups that will be discussed in this study. The
TI-nanoribbons, the s-wave superconductors, and the potential gates are shown in
yellow, red, and gray respectively. (From Ref. [58])

2.3.2 Numerical study of superconducting TI nanoribbons

Equipped with the mathematical model that was introduced above, let us discuss

the results of the numerical diagonalization of Heff corresponding to several different

situations. The main ingredients to realize a TSC are the TI-nanoribbon, the gate

potential, the magnetic field, and the conventinal s-SC. There are numerous ways

to put them together. The discussion below concerns the specific setups shown in

Fig. 2.6. The TI-nanoribbons assumed to be infinitely long in the y-direction (i.e.,

perpendicular to the page in Fig. 2.6). The ribbon cross section has dimensions

described by (Lz, Lx) =
(
Nz c

3
, Nxa

)
, where Nz is an integer representing the number

of the QLs, while Nx indicates the width of the ribbon; a and c are the lattice

constant. In this study, the dimensions are chosen to be 60×9.5nm, unless otherwise

stated. We will map out the phase diagram of the system, studying the dependence of

the phase boundaries on the control parameters. This pave the way to identifying the

optimization condition that maximizes a stability of the topological superconducting

phase. Maximizing the proximity-induced gap is the key element that determines

the stability of the TSC and the robustness of the Majorana zero mode.
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Spectrum and low-energy state

The basic properties of the model Hamiltonian will be discussed in following

sections. The energy spectrum of a bare TI-nanoribbon will be presented first. The

energy dispersion in the presence of an electrostatic field is also discussed. Next, we

will include the SC proximity-coupling. At the time of writing this thesis, there are

no experimental results that could test the validity of the effective low-energy theory.

Normal state of TI-nanoribbons. Since the parameters of tight binding

model were obtained using a fitting procedure, they are not unique. There are differ-

ent sets of parameters that can generate similar low-energy dispersion. Experimental

results using angle-resolved photoemission spectroscopy (ARPES) measurements on

Bi2Se3 thin films can be used as a benchmark in the 2D case. The parameters em-

ployed in the study are obtained by initially assigning values corresponding to those

used by H. Zhang et al. [75] and later optimizing them by comparison with first-

principle calculations by W. Zhang et al. [77]. Note that the initial parameters are

for a 3D TI, which may not guarantee that they are optimal for the low-dimensional

cases. The final parameters show good agreement with the band structure of Bi2Se3

revealed by the ARPES measurement, as shown in Fig. 2.7.

The main physics, which the model is able to capture, is the appearance of the

gapless surface state at the thickness of 6 QL, as shown in Fig. 2.7-a. More im-

portantly, when an electrostatic field is turned on (see the 3 QL case), the band

structure shows a Rashba-type splitting. As pointed out in Ref.[78], this effect can

be caused by a substrate-induced asymmetric potential profile. The appearance of

this effective spin-orbit coupling (SOC) cannot be easily obtained from first-principle

calculations, due to the symmetry of the structure implicitly assumed in the formal-
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Figure 2.7: (a) Comparison of the band structure dependence on the TI-film
thickness obtained by (a-top) ARPES measurements [78] and by (a-bottom)
tight binding calculations using the Hamiltonian in Eq. (2.20) with parameters
{t1a, t1b, t2a, t2b, λ1, λ2, ε0a, ε0b}={ 0.15, −0.47, 0.62, −0.08, 0.08, 0.16, −1.02, 2.99 }.
Note that the result of the calculation includes the electrostatic effect in the case of
a 3 QL. (b) Band structure of TI-nanoribbons without any external perturbation.

ism. However, a good agreement of the model calculations with the experimental

results validates the effective low-energy model and demonstrates the important role

of the electrostatic term.

The optimized parameters are employed in the 1D case to construct a Hamiltonian

for the TI-nanoribbon. To obtain an odd number of Fermi points, a longitudinal

magnetic field is required. A magnetic flux with a value around half flux quantum

is expected to induce a Dirac cone-like (gapless) band dispersion. The evolution of

the 1D energy spectrum with the applied magnetic field is illustrated in Fig. 2.8.

Panel (c) shows that the energy spectrum of the TI-nanoribbon becomes gapless for

an external magnetic flux Φ = 0.583Φ0. This critical value of the magnetic flux is

remarkable, since for an arbitrary value of the chemical potential (inside the bulk

gap) the number of pairs of Fermi points
{
−k(n)

F , k
(n)
F

}
is always odd. This confirms
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Figure 2.8: Energy band dispersion for different values of the magnetic flux, Φ =
α× 0.583Φ0. (a) No external magnetic field. (b) External magnetic field with a flux
Φ = 0.5× 0.583Φ0. (c) Φ = 0.583Φ0.

the original claim that for special values of the magnetic field the topological phase

can be realized without fine-tuning the chemical potential.

To explore the effect of an electrostatic field on the TI-nanoribbon, consider a

linear position-dependent potential of the form

V (i) =
Vmax

2

(
iz −

Nz + 1

2

)
(2.46)

where

i = (ix, iy, iz), the position of a lattice site,

Nz = the number of quintuple layers,

Vmax = the potential difference between the top and bottom surfaces.

Note again that the potential in Eq. (2.46) represents the overall effect due to ex-

ternal gate potentials and interface-induced biases. In the absence of the external

magnetic field, the contribution of the electrostatic potential is illustrated in Fig.

2.9)-b. It is reasonable to argue that the profile of V (i) is only marginally signifi-
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Figure 2.9: (a) Energy spectrum under an influence of the external magnetic field
applied longitudinally with total flux through the ribbon Φ = 0.583Φ0. (b) Energy
spectrum under an influence of an electrostatic field described by the profile in Eq.
(2.46) with Vmax = 0.05 eV. The states marked A-E are shown in Fig. 2.10. (From
ref.[58].)

cant, because the relevant physics happens near the interface. The key results are

determined by the potential difference across the ribbon, Vmax. The electric field

does not break the TRS, hence the degeneracy at Γ is still protected. Due to the

degeneracy, an even number of pairs of a Fermi points characterizes the system, see

Fig. 2.9-b.

As a final topic for the normal state of TI-nanoribbon, we discussed is the am-

plitude of the low-energy wave functions, |ψn (i0)|2 =
∑

λ,σ |ψnλσ (i0)|2. More specifi-

cally, we are interested in transverse profile of |ψn (ix, iz)|2. Our interest is motivated

by the fact that the strength of the superconducting proximity effect is determined

by amplitudes of the wave functions at the TI-SC interface. Note that these wave

function are normalized,
∑

ix,iz
|ψn (ix, iz)|2 = 1. Because the amplitude profiles de-

pend weakly on k (for non-degenerate bands), the spatial profile for a given sub-band
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Figure 2.10: Transverse profiles |ψn (ix, iz)|2 for the low-energy states marked in Fig.
2.9. The yellow regions represent the maxima of the wave functions. Panels A and
E show bulk-type states whose energies correspond to the bottom of the conduction
band and the top of the valence band, respectively. Panels B, C and D illustrate
surface-type states with energies within the bulk gap. (a) Profiles corresponding to
Fig. 2.9-a (no electrostatic field). (b) Profiles corresponding to Fig. 2.9-b. (From
Ref. [58])

can be determined by looking at the k = 0 state.

A few typical profiles are shown in Fig. 2.10. Surface-type states, like the that in

Fig. 2.10-a panel B, have maxima localized in the vicinity of the boundaries. How-

ever, applying an electrostatic potential modifies the spatial distribution of the wave

function, as shown in Fig. 2.10-b. While the bulk-type state profiles (panels A and

E) are only slightly distorted, the profiles of the surface-type states are significantly

affected. More specifically, the amplitude of the wave function is non-zero near one

of the surfaces and vanishes at the opposite surface, as shown in panels B, C, and

D. If the proximity coupling with SC is away from the region where the amplitude

is large, the proximity-induced gap will be suppressed. Considering the interface-
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induced potential alone, we can already conclude that the structure in Fig. 2.6-a is

not favorable for stabilizing topological superconductivity, because the induced gap

will by vanishingly small for some sub-bands. This conclusion is based on the fact

that |ψn (ix, iz)|2 in Fig.2.10-b panel C and D localizes near the opposite side of the

ribbon. Instead, the structure in Fig. 2.6-b, where the superconductors are sand-

wiching the TI, is immune to the asymmetric potential profile due to the symmetric

nature of the setup. The following discussion about the superconducting state of the

nanoribbon will be carried out by considering the structure in Fig. 2.6-b.

The superconducting state Let us consider the structure (b) in Fig. 2.6 and

focus on the emergence of proximity-induced quasiparticle gap. Due to the symmetry

of the structure, the asymmetric interface-induced potential vanishes. Thus, the

electrostatic potential can be excluded from this calculation. The nanoribbon cross

section is still fixed at Lz = 9.5 nm and Lx = 60 nm. The geometry of the setup

raises two important issues. First, we have to consider a possible phase differences

between the two superconductors. This phase difference impacts the proximity-

induced pair potential. To capture this phenomenon, we introduce a new parameter

φSC and assign the order parameter ∆ind to the lower SC and ∆inde
iφSC to the top

SC. Second, we have to carefully incorporate the Peierls substitution that captures

the physics of the magnetic orbital effect. A curl of vector potential is associated

with the presence of a magnetic flux passing through the TI-nanoribbon. Ideally,

there should be no magnetic field within the SCs. The absence of the magnetic field

is described by a constant vector potential. This corresponds to ~A = 0 for z < 0

and ~A = (BLz, 0, 0) for z > Lz. For the SC on the bottom, the value of the vector

potential is set to be zero and there is no need for additional modifications. However,

the constant vector potential for the SC on the top requires some extra attention.
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Figure 2.11: Spectrum of the superconducting ribbon with no external magnetic
field, ~B = 0 and µTI = 0.046 eV (indicated by the blue line in Fig. 2.7). The
parameters are ∆0 = 1.5meV , φSC = 0, γ = 4∆0 and ξ = 0.5. (From Ref. [58])

This constant potential will generate an x-dependent phase factor. The additional

phase factor for a lattice site with iz = Nz will lead to an induced pair potential of

the form ∆inde
i[φSC−2BLz(ix−1)a].

After including all these ingredients, the effective Hamiltonian (2.44) is diago-

nalized numerically. First we consider the case with no external magnetic field and

a chemical potential fixed at the bottom of the second positive-energy band, which

corresponds to the blue line in Fig. 2.7. As shown in Fig. 2.11, the gap with a min-

imum at k
(1)
F ≈ 0.017/a represents a contribution from the first band, while the gap

with a minimum at k = 0 is from the second band. For the parameters used in this

calculation, a superconductor with a pairing potential of ∆0 = 1.5meV induces a

quasiparticle gap, ∆qp, of magnitude≈ 1meV at the Fermi points. For a generic band

n one should expect the size of the induced gap to be about ∆
(n)
qp ≈ ∆ind|ψn (i0)|2,

where i0 denotes interface sites. For this particular case, ∆
(n)
qp ≈ 0.8∆ind and we can

conclude that the surface-type states of the two relevant bands are similar to the

state in Fig. 2.6-b panel C and have about 80 % of their weight localized on the top

and bottom surfaces.

Next, we consider a nonzero magnetic field and a chemical potential that crosses

multiple bands. The quasiparticle gaps opening at various Fermi points have different
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Figure 2.12: BdG spectrum in the presence of an external magnetic field corre-
sponding to Φ = 0.8Φ0; the chemical potential is µTI = −0.086 eV . Note that
E± (−k) 6= E± (k) because the magnetic field breaks time-reversal symmetry. How-
ever, E+ (−k) = −E− (k), as required by particle-hole symmetry. (From Ref. [58])

values due to the difference in the transverse profiles. The Hamiltonian in Eq. (2.44),

which is constructed within the BdG formalism, ensures the presence of particle-hole

symmetry (PHS). The consequence of this symmetry is manifest in the spectrum

shown in Fig. 2.12: E+ (−k) = −E− (k), where E+ and E− represent positive-

and negative-energy bands, respectively. The presence of the magnetic field breaks

time-reversal symmetry (TRS), which is signaled by the property E± (−k) 6= E± (k).

For this particular set of parameters (i.e., Φ = 0.8Φ0 and µTI = −0.086 eV ), the

spectrum becomes gapless. The TI-SC hybrid structure could still host Majorana

quasiparticles (which are associated with the band characterized by the lowest values

of kF ), but these MBSs will not be robust against disorder, as they can mix with

other low-energy states that are present in a gapless system.

The topological phase diagram

The effective Hamiltonian (2.44) depends on several model and control parame-

ters. Our strategy is to systematically determine the influence of each variable on
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Figure 2.13: Topological phase diagram of the TI nanoribon-SC structure form Fig.
2.6 (b). The green areas represent the non-trivial phase, while the white ones indicate
the trivial phase. The parameters used in the calculation are Lx×Lz = 60×9.5 nm,
γ = 8∆0, ξ = 0.5 and φSC = 0. The evolution of the quasiparticle gap along the cuts
corresponding to the black lines are discussed below. ∆µTI is the chemical potential
difference between two adjacent maximum width region, ΛΦ is the minimum width
of a magnetic flux separation of the non-trivial topological phase. (From Ref.[58])

the stability of the topological superconducting phase, i.e. on the size of the induced

quasiparticle gap. We note that in the absence of an interface-induced potential,

the structures shown in Fig. (2.6) (a) and (b) (with φSC = 0) have similar phase

diagrams. Here, we focus on the topological phase diagram of structure (b) with

φSC = 0, γ = 8∆0 and ξ = 0.5. Below, we discuss in detail the effect of each relevant

parameter, more specifically γ, ξ, φSC , and the size of the nanoribbon. Note that the

possible superconducting phases are characterized by a Z2 topological index, which

can be determine, for example, by calculating the Majorana number(M = (−1)v. A

change M = 1↔M = −1 indicates a phase boundaries and reflects the fact of the

quasiparticle gap closes at k = 0. In practice, it is more convenient to determine the

phase boundaries from the gap closing condition than to calculate the topological in-
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Figure 2.14: Dependence of the phase boundaries on the width of the nanoribbon.
Lx = 40, 60, and 80 nm correspond to black, blue dotted, and orange lines, respec-
tively. (From Ref. [58])

variant. Finally, we define two quantities that are useful in characterizing the phase

diagram: ∆µTI – the chemical potential difference separating adjacent maximum

width regions and ΛΦ – the minimum width of the topological nontrivial phase (see

Fig. 2.13).

First, we study the dependence of the phase diagram on the dimensions of the

nanoribbon cross section. More specifically, we vary the width, Lx, while the thick-

ness is fixed at Lz = 9.5nm. Three sizes of Lx are selected, 40, 60, and 80nm.

The corresponding phase diagrams are compared in Fig. 2.14. Note that increasing

the width of the wire reduces ∆µTI , which is a consequence of reducing the energy

separation between two consecutive confinement-induced bands. In addition, a wider

ribbon results in the increasing ΛΦ, i.e. the minimum width of the topological region.

Finally, we note that the “center” of the “checkerboard” pattern in Fig. 2.14 shifts

to the left (more precisely, toward Φ/Φ0 = 0.5) as the ribbon becomes wider. In

other words, the center of the nontrivial topological phase moves closer to the value

of the magnetic flux equal to half flux quantum. As explained above, the deviation

from Φ/Φ0 = 0.5 is a finite size effect, which becomes less important as the area
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Figure 2.15: (a) The effect of the coupling strength γ on ΛΦ; black γ = 4∆0 and
orange γ = 8∆0. (b) The dependence of ΛΦ on the effective coupling γ. (From Ref.
[58])

of the cross section increases.We conclude that using wider ribbons enhances the

robustness of the topological superconductor.

Next, we consider the effective TI-SC coupling strength γ =
(
t̃2+ + t̃2−

)
νF , which

was introduced in Eq. (2.38). We note that measuring γ or calculating it from

a microscopic model are extremely difficult tasks. Instead, we will treat it as a

model parameter. Assuming a perfect interface, we then study the effect of γ on the

topological phase diagram. As shown in Fig. 2.15, ΛΦ increases with increasing the

strength of the TI-SC coupling. We conclude that a strong TI-SC coupling enhances

the stability of the topological phase.

While the effect of γ is very intuitive, less so is the effect of varying the relative

amplitudes of the t̃− and t̃+ couplings, i.e., the parameter ξ = t̃−/t̃+. We note that

this parameter provides information about the relative strengths of the couplings of

different parity TI bands to the SC. The result, shown in Fig. 2.16, demonstrates

that the phase boundaries depend weakly on ξ. This behavior can be interpreted in

terms of surface-type states containing approximately equal contributions from the

λ = +1 and −1 molecular orbitals from Eq. (2.19).

The last parameter that requires attention is the superconducting phase differ-

ence, φSC . Note that this parameter is relevant in the case of hybrid structures
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Figure 2.16: The effect of ξ = t̃−/t̃+ on the minimum width ΛΦ of the topological
phase. (From Ref. [58])

involving multiple superconductors, for example structures (b) and (d) in Fig. 2.6.

Again, we focus on the effect on the minimum width, ΛΦ. As illustrated in Fig.

2.17, there is a very strong dependence of ΛΦ on φSC . More specifically, ΛΦ exhibits

an oscillatory dependence on the phase difference, with nearly zero values of ΛΦ for

φSC ≈ (0.8 + 2n)π. This behavior is observable for an arbitrary TI-SC coupling

strength, but the amplitude of the oscillations increases with γ, as shown in Fig.

2.17. With other parameters being fixed, adjusting φSC could cause a topological

phase transition, which represents a rather interesting possibility. The strong depen-

dence of the minimum width on the superconducting phase suggests an additional

knob to experimentally control the topological phase.

Figure 2.17: The relation of ΛΦ to the bulk superconducting phase difference, φSC ,
for γ = 8∆0 (blue) and γ = 4∆0 (orange). (From Ref. [58])
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The proximity induced gap

In the previous section we discussed the dependence of the topological phase dia-

gram on various parameters. Having a large topological region would, in general, be

favorable for the stability of the topological phase. However, this stability depends,

ultimately, on the size of the quasiparticle gap. In other words, the existence of a

large topological region is (practically) useless if the induced gap that protects the

topological phase is small throughout this region.

In this section, the discussion will focus on the magnitude of the proximity-

induced superconducting gap in the topologically-nontrivial phase, i.e., on the so-

called topological gap. However, we begin with a comment on the induced gap

in an absence of an external magnetic field, i.e., in the topologically trivial phase.

We note that this gap depends strongly on the wave function amplitude at the

TI-SC interface, |ψn (i0)|2. This fact raises a concern about electrostatic fields (e.g.,

caused by interface-induced type potentials), which can significantly modify the wave

function amplitude at the interface. By contrast, the structure (b) in Fig. 2.6 is

an ideal case, because of its symmetry and because of the double contacts with

superconductors, which maximizes the effective TI-SC coupling, γ. We begin with

an analysis of this tructure.

The dependence of the induced gap on the chemical potential is shown in Fig.

2.18. There are three important aspects that we want to address. First, we note

the suppression of the quasiparticle gap in the region µ > 0.24 eV . The reason for

this collapse is that the chemical potential reaches the bulk-like bands. A bulk-like

state has most of its weight, |ψn (i0)|2, away from the interfaces, which results in a

severe reduction of the effective TI-SC coupling. The second aspect is the decay-like

profile of the quasiparticle gap at negative chemical potentials. The smaller gap
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Figure 2.18: Proximity induced gap as a function of the chemical potential. The
magnetic flux is fixed at Φ = 0.583Φ0 corresponding to the vertical line displayed
in Fig. 2.13. This plot is for structure (b) in Fig. 2.6; the model parameters are
Lx × Lz = 60× 9.5nm, γ = 4∆0, ξ = 0.5, φSC = 0. (From Ref. [58])

in this region is associated with the top-most negative-energy band. This band is

almost doubly degenerate away from k = 0, as can be seen is Fig. 2.9-a. However,

in the actual system, the Dirac point is located near the top of the valence band,

which suggests that this region is of little practical importance. The third aspect

concerns the sharp drops of the induced gap at certain values of µTI . These drops are

driven by the chemical potential crossing the bottom of different bands (at k = 0).

The bands come in pairs, but they are not exactly degenerate at k = 0. The small

separation between the bands at k = 0 results in a suppressed induced gap.This

phenomenon is a finite-size effect. As a result, the degeneracy condition at k = 0

cannot be realized for all bands at the same value of the magnetic flux. In the limit of

large cross sections, the degeneracy condition at Φ = 0.5Φ0 is band-independent and

the sharp drops disappear. Fig. 2.19 suggests that, indeed, a wider ribbon produces

weaker drops and the overall quasiparticle gap profile is smoother.

Next, we study the dependence of the induced gap on the Zeeman field at fixed

chemical potential. Specifically, we determine the quasiparticle gap along the cuts in

Fig. 2.13. Although the region µTI < 0 has little practical importance, it is included
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Figure 2.19: Comparison of the gap dependence along the vertical cut in three TI
nanoribbons of different sizes. Red, blue, and orange for correspond to  Lx = 40, 60,
and 80 nm, respectively.

for comparison and to point out some interesting physics.

The dependence of the quasiparticle (qp) gap on the magnetic field is shown in

Fig. 2.20. The vanishing of the gap signals either a topological quantum phase

transition (TQPT), or a gapless superconducting phase. The TQPTs can be easily

identified by the characteristic V-shape dependence of the qp gap in the vicinity of

the phase transition. Note that around the transition point, the (minimum) gap is

determined by the energy at k = 0 of the top occupied band. We would like to

emphasize three points. The first point is the existence of finite regions with zero

induced gap (for µTI < 0), for example in Fig. 2.20 (d) and (e). This vanishing

of the induced gap is not related to a topological phase transition but to a gapless

superconducting state, as discussed in relation to Fig. 2.12. The second aspect

concerns the “pointy” shape of the non-trivial topological phase in Fig. 2.20-b,

where µTI = 0.062 eV . This represents a cut through a minimum width region of

the topological phase. Any slight deviation of the external magnetic field results in

a severe change of the magnitude of the proximity-induced gap. The peak position

can be determined by the k = 0 degeneracy condition. Since the flux that yields
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Figure 2.20: Proximity-induced gap as a function of the magnetic flux at different
values of µTI . The green regions represent the topological superconducting phase.
The parameters are the same as in Fig. 2.18. (From Ref. [58])

the k = 0 degeneracy is not exactly the same for all bands (due to finite size effects,

as discussed above), the peak will not line up in the vertical cut in Fig. 2.13. This

misalignment causes the characteristic sharp drops illustrated in Figs. 2.18 and 2.19.

The third point is a comment about the plateau of the non-trivial phase in Fig.

2.20-c where µTI = 0.046 eV . While the (minimum) gap in the vicinity of a TQPT

is controlled by the state at k = 0, away from the phase boundaries the magnitude

of the gap is determined by states with k 6= 0. These states depend weakly on the

magnetic field, hence the flat-top shape in Fig. 2.20-c.

Next, we focus on structure (a) from Fig. 2.6, i.e., on the single interface TI-SC

structure. Due to the asymmetric nature of the setup, an intrinsic electrostatic field

will be present. The electrostatic field includes the contribution from the proximity-
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Figure 2.21: Magnitude of the proximity induced gap as a function of chemical
potential for a single interface TI-SC structure [structure (a) in Fig. 2.6]. The bias
parameters are Vmax = 0.0, 0.03, 0.06 eV (blue dots, orange and black respectively).
The yellow region represents a reference value of 0.25meV . (From Ref. [58])

induced bias potential, which is described by Hv in Eq. (2.27). Since the surface-

type states have their amplitude |ψn (i0)|2 localized mostly on the top and bottom

boundaries, the details of the dependence of the potential profile on each quintuple

layer, iz, are not important. The effect of the electrostatic potential is, basically,

controlled by the potential difference between the top and bottom surfaces, i.e., the

parameter Vmax = VNz − V1. We consider three different bias parameters: Vmax =

0, 0.03, and 0.06 eV .

A common feature is the drastic drop in the magnitude of the induced gap at

negative and large positive values of the chemical potential, as shown in Fig. 2.21,

in contrast with the results for the “double interface” setup shown in Fig. 2.19.

Note that the reference value (yellow region in Fig. 2.21) represents the magnitude

of the induced gap already observed in SM-based systems [48]. The physics of the

phenomenon can be explained by examining the spatial profiles of the states (see Fig.

2.10-b). The effect of the interface-induced potential is to modify the spatial profile

so that for some bands the states are localized away from the TI-SC interface and,
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consequently, the proximity-induced gap is very weak. For example, the top negative

energy bands, represented in panel D of Fig. 2.10-b, have their spatial weight mostly

away from the interface, which explains the decay-like drop for µTI < 0. The drop

in the µTI > 0 region can be explained using the same argument, as illustrated by

the behavior of the wave function in panel B of Fig. 2.10-b. The drop for the case

Vmax = 0 needs additional explanations. In the absence of the bias potential, the

state spatial profile is expected to be symmetric, as shown in Fig. 2.10-a. However,

away from µTI = 0, the bands are almost doubly degenerated for both µTI > 0

and µTI < 0. When coupled to the SC, these nearly degenerate states combine into

linear superpositions that are localized either on the top or the bottom boundaries.

Although the top mode couples strongly to the superconductor, the bottom one is

weakly coupled and, consequently, acquires only a small induced gap.

Usually, Bi2Se3 is not a topological insulator, but rather an n-type semiconduc-

tor. The chemical potential, µTI , is typically placed at the bottom of the (bulk)

conduction band. To control µTI , one can apply a gate potential in an attempt to

drain the excess charge away from the sample. When the µTI lies close to the bulk

states or inside the bulk band, there will be bulk-like states with low amplitudes at

the interface, which results in a weak superconducting proximity effect. These bulk

states will severely suppress the proximity coupling producing a small induced gap.

The desired situation is that the chemical potential be close to the middle of the

Bi2Se3 bulk gap. We investigate the possible manipulation of the chemical potential

using two setups: structures (c) and (d) in Fig. 2.6.

The potential profiles are obtained as solutions of a classical Laplace-type electro-

static problem. We note that, more rigorously, these potentials should be determined

as self-consistent solutions of the Poisson-Schrödinger equation. This aspect will be
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Figure 2.22: Panels A and C show the potential profiles for structures (c) and (d)
in Fig. 2.6, respectively. Panels B and D represent the transverse profiles of some
particular states in the presence of the potential in A and C, respectively. The dark
regions represents the minima. (From Ref. [58])

discussed in more detail in the next chapter. The calculated potential profiles are

shown in Fig. 2.22 panels A and C, which correspond to the structures (c) and (d) in

Fig. 2.6, respectively. For structure (c), most of the surface-type states form strongly

coupled-modes, except the state shown in Fig. 2.22-B (which is localized on the sur-

face opposite to the superconductor). By contrast, due to the more symmetric nature

of structure (d), all occupied bands are characterized by strongly coupled-modes.

To examine the effect of the gate potential, consider a system with a chemical

potential µTI = 0.22 eV , which is just under the bulk conduction band. This value

is chosen to mimic the situation of a very lightly doped Bi2Se3 nanowire. We apply

a gate potential with a profile as shown in Fig. 2.22 and calculate the proximity-

induced gap. The results are shown in Fig. 2.23. Without a gate potential, the

(minimum) induced gap is expected to be small due to contributions from bulk-type

states. Applying a gate potential the induced gap becomes larger. However, the

single contact structure always yields a relatively small gap, below the reference level
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Figure 2.23: Magnitude of the proximity induced gap as a function of the applied
gate potential. The double thin line corresponds to strucutre (c) and the solid blue
line corresponds to structure (d) (see Fig. 2.6). The yellow region represents the
“reference” induced gap. (From Ref. [58])

of 0.25 eV . This result is due to the fact that there is always at least one occupied

band that corresponds to a weakly coupled mode (see the spatial profile shown in

panel B of Fig. 2.22). By contrast, the double contact structure could provide a

large induced gap, as shown in Fig. 2.23. This result stems from the symmetry of

the setup, which favors the emergence of strongly-coupled modes.

The key ideas presented throughout this chapter can be summarized as follows.

An effective Hamiltonian for studying the low-energy physics of TI-SC hybrid struc-

tures is constructed using the Bogoliubov–de Gennes formalism. The effective low-

energy theory incorporates explicitly the SC proximity effect through a self-energy

term. The numerical study of the low-energy effective model reveals that the ampli-

tude of the low-energy wave functions at the TI-SC interface(s) controls the effective

TI-SC coupling and, consequently, the strength of the SC proximity effect. The low-

energy surface-like states can be localized on both surfaces, or just on the top or the

bottom surface of the TI nanoribbon. Consequently, the effective TI-SC coupling

is strongly band-dependent. A single-interface TI-SC heterostructure has limited

potential to realize a robust topological superconducting phase and host Majorana

96



2.3. TOPOLOGICAL SUPERCONDUCTIVITY IN TOPOLOGICAL
INSULATOR-BASED HYBRID STRUCTURES

bound states. In contrast with the original prediction of Cook and Franz based on

an idealized model, tunning the chemical potential may be required in a real system.

A symmetric double contact structure seems to be better suited for the realization

of robust topological superconductivity and Majorana bound states and provides

flexibility in manipulating the chemical potential.
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Chapter 3

Electrostatic effects in

semiconductor-superconductor

hybrid structures

In this chapter we present the proposal for realizing Kitaev’s model that has

received most attention so far: the semiconductor-superconductor hybrid structure.

The basic idea is to realize the condition for effectively spinless fermions by exploiting

the strong spin-orbit coupling and large g-factor that characterize narrow-gap semi-

conductors such as InAs and InSb. Replacing the still-problematic topological insu-

lators with the most technologically-friendly materials (semiconductors) represents a

potentially huge practical advantage. The experimental observations consistent with

the presence of Majorana zero modes reported in recent years fueled the excitement

regarding these hybrid structures. However, important open questions still remain.

The answers to many of these questions depend critically on the transverse profiles of

i) the single particle wave functions and ii) the effective electrostatic potential. These

quantities control the strength of the superconducting proximity effect, the value of
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the chemical potential, and the strength of the Rashba spin-orbit coupling, which

are key elements of the low-energy physics of the hybrid system. Calculating these

transverse profiles involves solving self-consistently a system of Poisson-Schrödinger

equations. Typically, this task is extremely costly in a purely numerical approach.

In this chapter we propose a new semi-analytical method for solving these equations.

This method provides an efficient solution of the Poisson-Schrödinger equations,

which, in turn, allows one to efficiently explore the large parameter space required

to accurately characterize the low-energy physics of the hybrid system.

3.1 Topological superconductivity in semiconductor-

superconductor hetrostructures

The semiconductor-superconductor (SM-SC) hybrid structure involves a setup

that is very similar to the one discussed in the previous chapter. Basically, the

TI nanoribbon is replaced by a semiconductor (SM) nanowire, which is proximity-

coupled to a conventional superconductor. Note that the SM-based heterostructure

was proposed in 2010 [54], before the TI nanoribbon proposal [15]. We will focus our

attention on the 1D case. However, the original proposal involves a 2D heterostruc-

ture [53].

3.1.1 Model Hamiltonian for realizing TSC

The ingredients for realizing the topological superconducting phase in the SM-

based hybrid structure are exactly the same as in the case of the TI-based setup: an

effectively spinless electronic system proximity-coupled to s-wave superconductors.

The spinless fermion system can be obtained by exploiting the strong spin-orbit
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coupling of the semiconductor plus an additional Zeeman field, which removes the

time-reversal-protected degeneracy at k = 0. Despite having the same requirement

concerning the presence of an external magnetic field, the underlying physics is dif-

ferent, in the sense that the Zeeman splitting (rather than the orbital effect) is the

driving force that ensures the realization of the “effectively splinless” condition. Each

component the contributes to the realization of topological superconductivity (TSC)

will be discussed in the subsequent sections. The procedure for constructing the

effective Hamiltonian will be presented by focusing on three main steps: obtaining

an effective Hamiltonian of the SM nanowire, including an external magnetic field,

and introducing the superconducting proximity effect.

Low-energy effective Hamiltonian of the SM nanowire

To realize effectively spinless fermions, one can fully spin-polarize the system by

applying a strong magnetic field. However, inducing superconducting correlations in

a spin-polarized system by proximity-coupling it with a conventional s-wave super-

conductor is virtually impossible. Two electrons can be paired by proximity-effect

(with s-SC) only if their spins are not exactly parallel. This can be realized by com-

bining the polarizing effect of the magnetic field with a strong spin-orbit coupling,

which favors opposite spin orientations for electrons with wave vectors k and −k.

The spin-orbit coupling in semiconductors can be studied within an 8-band Kane

model [34]. The model parameters can be specified for InSb or InAs, which are

the materials currently used to realize MBSs [18, 48]. We note however, that, due

to the significant number of degrees of freedom, using an 8-band model may not

be convenient for addressing certain problems, such as, for example, studying the

proximity effect in finite wires. In these cases it is more economical to consider
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Figure 3.1: Comparison between the energy band structures for a SM thin film with
thickness of 50nm obtained using the 8-band Kane-type model (in blue) and the
2-band model (in yellow). (From Ref. [59])

a two-band effective low-energy Hamiltonian, which corresponds to the conduction

bands of the 8-band model. Let us consider the following 2-band tight binding

Hamiltonian for electron-doped semiconductors [59],

HSM = −t0
∑
i,δ,σ

c†i+δσcjσ − µ
∑
i,σ

c†iσciσ, (3.1)

where i, δ, σ denote the lattice site, the next-nearest-neighbor, and the spin, respec-

tively. Note that in the long-wavelength limit, ~k → 0, the hopping parameter can be

approximated by t0 = ~2/2m∗a where m∗ is the effective mass and a is the lattice

constant. Using the 2-band Hamiltonian captures (only) qualitatively the low-energy

physics of the semiconductor, as shown in Fig. 3.1. Also, due to the simplicity of

the 2-band model, the Rashba spin-orbit coupling (SOC) is not a direct consequence

of applying a transverse electric field, but has to be considered as an independent

parameter. The effective Rashba-type SOC can be incorporated as

HSOC =
iα

2

∑
i,δ

[
c†i+δxσyci − c

†
i+δy

σxci + h.c.
]
, (3.2)
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where α is the Rashba coefficient. Physically, the Rashba-type SOC is generated by

the presence of a transverse field that destroys the structural inversion symmetry of

the semiconductor. Introducing the Rashba SOC “manually” is one of the disad-

vantages of the 2-band model. On the other hand, if the SM were described by the

8-band model, the Rashba-type SOC would naturally emerge when the asymmetric

transverse field is applied. The coefficient α can be determined by fitting the spin-

split energy bands of the 8-band model in the presence of an asymmetric electrostatic

potential.

Incorporating an electrostatic field can be done using the same approach as in

the TI case. The corresponding Hamiltonian is

Hv =
∑
i,σ

[V (i)− µTI ] c†iσciσ, (3.3)

where V (i) is a position dependent function. Note that V (i) represents the “effective”

electrostatic field due to gate potentials, interface bias potentials, and the charge of

the conduction electrons. Determining this last contribution requires solving the

Poisson-Schrödinger equations.

Magnetic field

In the presence of SOC, the SM bands are non-degenerate, except at k = 0 where

the degeneracy is protected by Kramers theorem. Lifting the degeneracy of the bands

at k = 0 requires applying an external magnetic field. A gap is opened due to the

strong Zeeman effect that characterizes the SM (note that the g-factor can be 50 or
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larger in InSb). The corresponding Hamiltonian has the form

HZ = λ
∑
i,σ,σ′

c†iσ(σ̂x)σσ′ciσ′ (3.4)

where λ is the Zeeman splitting, λ = gµBB
2

, with g and µB denoting the Lande

g-factor and the Bohr magneton, respectively. As mentined before, the role of the

magnetic field in both TI and SM structures is to lift the degeneracy at k = 0. Note,

however, that in the TI case this is done through the orbital effect, while in the SM

system the Zeeman splitting is the dominant effect. The Zeeman splitting and the

Rashba-type SOC combine into realizing an effectively spinless system, which is a key

condition in Kitaev’s chain model. In addition, in the case of the SM-based system

it is required that the chemical potential be within the gap generated by the Zeeman

field, so that only one band is occupied. For a multi-band system this condition

can be generalized to an odd occupancy requirement. The rather narrow chemical

potential window that is favorable for realizing topological superconductivity is a

potential drawback of an SM-based structure.

Proximity effect

The last ingredient necessary for realizing Kitaev’s model is superconducting

paring. The procedure for introducing the superconducting proximity effect follows

the same steps as in the case of the TI-based system. The effective low-energy Green

function for the SM wire has the form

[
G−1

]
nn′

(ω) = ω −Hnn′ − Σnn′ (ω) (3.5)
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Figure 3.2: Schematic semiconductor band structures under various conditions: (a)
SM without SOC and Zeeman splitting (the double degenerate band is described by
HSM). (b) SM with Zeeman splitting (HSM +HZ); the spin degeneracy is lifted. (c)
SM with Rashba-type SOC (HSM + HSOC). (d) (from [17]) SM with both Rashba-
type SOC and Zeeman field (HSM +HZ +HSOC).

where Hnn′ is the effective low-energy Hamiltonian for the SM nanowire expressed

in Nambu space and Σnn′ (ω) is the self-energy term capturing the effect of the bulk

superconductor. The coupling between SM nanowire and s-wave superconductor is

described by

HSM−SC =
∑
i0,j0

∑
m,σ

[
t̃mσi0j0c

†
i0m
aj0σ + h.c.

]
, (3.6)

where t̃mσi0j0 is an element of a coupling matrix between the orbital m on site i0 of

SM and the state σ on site j0 of the SC. Note that in the case of the 8-band model

couplings between the SC and both s-type and p-type SM orbitals have to be consider,

which may result in a large number of parameters.

The low-energy states can be obtained by finding the poles of the Green function,
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th]

Figure 3.3: Opening of a proximity-induced superconducting gap at the chemical
potential. (a) No Zeeman field. (b) Strong Zeeman field. (From [17])

i.e., solving the equation

det [ω −Heff ] = 0 (3.7)

where

Heff
nn′ = Z̃nmHmm′Z̃m′n′ −∆nn′σyτy − δµnn′τz.

The first term describes the Hamiltonian of semiconductor, which already includes

the Rashba SOC and the Zeeman field, while Z̃ is a renormalization matrix. The

second term captures the contribution of the proximity-induced pairing potential.

The last term describes a proximity-induced inter-band coupling and energy shift.

At zero magnetic field the proximity coupled nanowire is a topologically-trivial

superconductor characterized by a finite quasiparticle gap. Applying a Zeeman field

reduces the gap at k = 0, i.e., the value of Eg,0 in Fig. 3.3. Eventually, the gap

vanishes (Eg,0 = 0) at a certain critical field λc signaling a topological quantum

phase transition. For λ > λc the gap reopens (see Fig. 3.3-b) and the wire is in a
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topological superconducting state that supports Majorana zero modes localized at

the ends of the system. For a single-band system (i.e., in the one-dimensional limit)

the critical field is

λc =
√

∆2
ind + µ2, (3.8)

where ∆ind is the induced superconducting gap and µ is the chemical potential (de-

fined relative to the state k = 0 in the absence of a magnetic field).

3.1.2 The topological phase diagram

Realizing the topological superconducting phase at relatively low magnetic fields

requires that the chemical potential be in a window of Zeeman splitting with a

magnitude of 2λ, as expressed by Eq. (3.8) and depicted in Fig. 3.2. This condition

realizes the single band (or, more generally, odd band) requirement necessary for

having effectively spinless fermions. For a given value of the chemical potential, the

odd band occupancy condition is realized in certain intervals of magnetic fields. The

resulting topological phase diagram is shown in Fig. 3.4.

While the odd occupancy condition looks simple, strictly speaking it is relevant

only in the weak coupling regime. Indeed, the shape of the phase boundaries depends

strongly on the SM-SC coupling, as illustrated in Fig. 3.4. Note that the equivalent

study of the dependence on the coupling strength for the topological phase diagram

in TI-based systems was shown in Fig. 2.15-a. While theoretically the coupling pa-

rameter t̃ can be simply viewed as another unknown variable in the model, physically

it characterizes the quality of the SM-SC interface. A larger value of the parame-

ter corresponds to a better interface quality. The consequences of having a larger

effective hopping parameter are deep. In essence, this leads to a stronger proxim-

ity effect, hence a larger induced gap. In addition, the effective coupling enters the
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Figure 3.4: Topological phase diagram as a function of chemical potential Zeeman
field.The characteristic spin coupling energy is Eα ≈ 0.6K and the SM-SC effective
coupling is γ̄ = 0.25∆0 in (a) and γ̄ = ∆0 in (b). N indicates numbers of low-energy
modes localized at each end of the wire. The colored areas denote a nontrivial phase
while white indicates the trivial phase. (From [60])

renormalization matrix Z̃. As a consequence, the low-energy physics of the hybrid

system is renormalized by, roughly speaking, a factor (1 + γ/∆0)−1, where γ is the

effective SM-SC coupling and ∆0 the bulk SC gap. Note, however, that the effective

coupling γ depends not only on the hopping parameter t̃ (i.e., on the quality of the

interface), but also on the amplitude of the wave function at the interface (hence,

on the profile of the effective electrostatic potential). This is one of the reasons for

a systematic study of electrostatic effects in SM-based hybrid structures.

Fixing the chemical potential at µ = 0 eV and varying the magnetic field provides

some insight into the physics of the system near a phase transition. The dependence

of the quasiparticle gap on the Zeeman field is shown in Fig. 3.5. The gap is finite

everywhere, except at the phase transition. Note the V-shape dependence on the

Zeeman field near the transition. This is a characteristic feature also seen in TI-based

systems, as shown in Fig. 2.20. The critical Zeeman field at which the transition

occurs depends on the induced gap – see Eq. (3.8) – hence, on the effective coupling
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Figure 3.5: Minimum proximity-induced gap at µ = 0 as a function of Zeeman field.
The closing of the gap indicates a topological quantum phase transition (TQPT).
Before the gap closing the system is in trivial phase, while after the TQPT the system
is a topological superconductor. The effective SM-SC coupling modifies the position
of the phase transition. All the plots have a Rashba coefficient αr = 0.1 eV Å except
the green dots, which correspond to αr = 0.15 eV Å. (From [60])

γ. In addition, the size on the gap in the topologically nontrivial region (λ > λc)

– which protects the Majorana bound states – depends on the Rashba coefficient,

as shown in Fig. 3.5. In turn, the Rashba coefficient is controlled by the effective

electrostatic potential in the wire – another important reason the motivates a careful

study of the electrostatic effect.

3.1.3 Experimental results

Despite potential difficulties, such as, for example, fine-tuning the chemical po-

tential, progress in the realization of SM-based structures is significant compared

to TI-based systems. This is mostly due a better knowledge of the materials in-

volved in fabrication of the nanostructures. The growth of high-quality semiconduc-

tor nanowires is a well-established field. More recently, advances in the epitaxial

growth of aluminum (as bulk SC) on InAs nanowires were reported .

Observing Majorana bouns states involves finite systems, i.e., the presence of
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Figure 3.6: Predicted emergence of a zero-bias peak in the differential conductance.
The dI/dV lines correspond to different values of the Zeeman field and are shifted
for clarity (bottom line: Γ = 11Eα; top line: Γ = 36Eα). The peak at zero bias
potential emerging at Zeeman fields larger that Γc = 21Eα represents the signature
of the Majorana zero mode. (From [60])

boundaries. Detecting the Majorana bound state can be done by performing a dif-

ferential conductance measurement. The Majorana zero mode is signaled by the

emergence of a peak in dI/dV at zero-bias potential when the Zeeman field is larger

than a certain critical value. A theoretical calculation of dI/dV is showed in Fig.

3.6. The signal at zero bias potential can be divided into two regions: a flat region

(no signal) at low magnetic fields and a region characterized by a conductance peak

(above the critical field). The flat region corresponds to a trivial phase characterized

by a finite proximity-induced gap. With increasing the Zeeman field, the gap be-

comes smaller and eventually vanishes at the phase transition. After the gap reopens,

the system is in a topological superconducting phase that supports zero-energy Ma-

jorana modes localized at the ends of the wire. Tunneling into these modes results

in the zero-bias conductance peak shown in Fig. 3.6.
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Figure 3.7: Experimentally measured differential conductance versus gate bias for
different values of the magnetic field ranging from 0mT to 490mT with a 10mT step
increment. The temperature T = 70mK. The green arrow indicates the induced gap
(0.25meV ). (From Ref. [48])

The first experiment results showing signatures consistent with the presence of

Majorana bound states were reported by Mourik et al. in 2012 [48]. A characteristic

zero-bias peak emerges at finite magnetic field, as illustrated in Fig. 3.7. The

measurements were done on InSb nanowires proximity coupled to niobium titanium

nitride, NbTiN . The magnitude of a proximity-induced gap was 0.25meV . Although

the peak at zero bias is obvious, the signature associated with the closing of the

proximity-induced gap is missing. In addition, the induced gap is “soft”, i.e., the

spectral weight inside the gap is nonzero signaling the presence of (unwanted) low-

energy sub-gap states. This feature is associated with the presence of disorder, in

particular with a low-quality SM-SC interface. Finally, the height of the zero-bias

peak is significantly lower than the theoretical expectation.

Improved growing techniques allow the realization of better quality InSb/NbT iN

and InAs/Al structures, as reported recently in the literature. One such exam-

ple is the dI/dV measurement on an InSb/NbT iN heterostructure shown in Fig.
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Figure 3.8: Differential conductance, dI/dV , as a function of the bias voltage and
Zeeman field. The critical Zeeman field Γc = 0.46T marks the topological quantum
phase transition and the emergence of a zero-bias peak. (From Ref. [74])

3.8. Although the gap closing feature is not completely clear, the reduction of the

proximity-induced gap is obvious. In addition, the induced gap much harder and the

zero-bias peak stronger.

Despite the successful observation of zero-bias peaks by several different groups

in many different SM-SC structures, important question regarding the realization of

Majorana zero modes and their stability still remain. For example, one of the “smok-

ing gun“ signatures of Majorana modes are the energy splitting oscillations that occur

in short wires as a result of the Majorana modes localized at the two ends having

an exponentially small overlap. These energy splittings should be seen as splittings

of the zero-bias peak. Tunneling into the wire should generate the same splitting

when measured from the right or the left ends. This type of correlated splitting, the

most basic consequence of the fact that the states responsible for the zero-bias peak

are localized at the ends of the wire, has not been observed so far. A critical task

is to better understand the dependence of the energy splitting on the Zeeman field.

Most of the calculations are done at constant chemical potential. However, this is

probably not a very realistic condition for the actual nanostructures. To understand
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how the chemical potential depends on the Zeeman field one has to actually solve

the full Poisson-Schrödinger problem for each value of the magnetic field. Having an

efficient method to solve this problem is, therefore, of critical importance.

3.2 Electrostatic Effect

In both TI-based and SM-based heterostructures, the contribution from the elec-

trostatic effect is formally captured by the term Hv in Eqs.(2.27) and (3.3), re-

spectively. This term of the Hamiltonian represents the total contributions from

interface-, gate- and disorder-induced potentials, as well as the electrostatic contri-

bution from the charge associated with conduction electrons. The disorder-induced

potential will be excluded from the present considerations. The contribution of the

gate potential could be treated as a Laplace-type electrostatic problem. However,

the potential generated by the charge in the wire has to be calculated using Poisson

equation. Moreover, the charge distribution itself is determined by the spatial pro-

files of the occupied states, i.e., by the solution of the Schrödinger equation (which

depends on the effective electrostatic potential). Hence, the two equations have to

be solved self-consistently. Our goal is to obtain a realistic solution for the effective

electrostatic potential in the presence of electric charge transfered to the wire due to

an interface-induced-type potential. Note that incorporating a gate potential is, in

principle, straightforward, but we will not address this aspect of the problem.

3.2.1 The Interface-Induced Potential.

When two materials are electrically connected, a charge transfer is driven by the

work function difference. The charge migrates from the material with lower work
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Figure 3.9: Two materials with work functions ϕ1 and ϕ2, respectively, are used to
construct a heterostructure. (a) Isolated components; the vacuum is used as the
energy reference and the work functions are related to the chemical potential. (b)
Direct contact; charge transfer is allowed, so that the chemical potential is the same
throughout the structure. The transfered charge accumulates in the vicinity of the
junction creates an electric field. (From Ref. [50])

function to the material with higher work function, as illustrated schematically in

Fig. 3.9 The transfer takes place until the chemical potential has the same value

throughout the system, when equilibrium is reached. The charge piles up near the

interface creating a build-in electric field in that region, which is a signature of the

interface-induced potential.

Engineering p-wave superconductivity in an SM-based system involves the con-

tact between a semiconductor and a metal. This results in a well-known problem in

the field of semiconductor devices: the physics of metal-semiconductor (M-S) junc-

tions. The strength of the electric field at the interface is determined not only by the

work function difference but also by the quality of the interface. In addition, what

we really care about is the electric field (or, equivalently, the electrostatic potential)

away from the interface, i.e. inside the semiconductor. We assume that the charac-

teristic length scale of the semiconductor (i.e., the thickness) is small and the charge

density in the semiconductor is low (a few occupied sub-bands).
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Figure 3.10: (a) TEM image of InAs/Al 1D heterostructure where the aluminum
(with thickness∼ 8nm) covers two facet of the InAs hexagonal wire. The inset shows
the cross section of the structure. (b) High-resolution TEM image at the Al/InAs
interface. Note the perfect lattice matching across interface. (From Ref. [40])

3.2.2 The metal-semiconductor junction.

Measuring the work function difference, ∆φw, is a difficult task; characterizing

the interface quality is even more daunting. Consider, for example, InAs-Al het-

erostructures, which represent a recent advance in engineering Majorana devices

[40]. The aluminum is grown epitaxially on the semiconductor nanowire, so that the

quality of the interface is remarkable, as illustrated in Fig. 3.10-b. Note that the

heterostructure can be grown in a various configurations [40], but we will focus on

the geometry shown in Fig. 3.10. Even though the materials are specified, deter-

mining the ∆φw is not straightforward. Al has a well-defined work function value of

4.08 eV . On the other hand, the work function of InAs (or, more generally, any finite

gap semiconductor) is not well-defined because the doping level is not unique and,

in low-dimensional systems, there is a significant size dependence of this quantity.

Hence, ∆φw for the hybrid system is not known. We will treat it as a model param-

eter assuming that the work function of Al is lower than that of InAs. The electrons
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will flow from Al into InAs. The total amount of charge that flows into the wire

is determined by the equilibrium condition, which requires the chemical potential to

be the same throughout the system. We will characterize the amount of charge that

flows into the system by introducing the filling factor νt, which is defined as the ratio

between the number of occupies states in k-space and the total number of states in

the Brillouin zone. The typical range of interest for the filling factor is of the order

of 0.02, or 2% of the whole Brillouin Zone.

The general process for obtaining the potential profile involves the following

steps. A certain amount of charge migrates from Al into InAs. The chemical

potential matching across the interface signals the equilibrium condition. The trans-

fered charge distributes itself according to the Poisson equation. On the other hand,

the charge distribution is determined by the spatial profile of the occupied states,

which are determined by the Schrödinger equation. In turn, the Hamiltonian in the

Schrödinger equation depends on the effective potential that is calculated based on

the charge distribution given by the Poisson equation. To reduce the computational

cost, the solution of the Poisson’s equation is determined analytically for a simplified

geometry and the Schrödinger equation is solved within a tight binding approach.

3.2.3 Schrödinger-Poisson equation

The amount and spatial distribution of the charge transfered across the inter-

face has to be determined by solving the Schrödinger and Poisson equations self-

consistently. The single particle Schrödinger’s equation can be expressed in terms of

simple tight binding Hamiltonian of the form

HSM = −t0
∑
i,δ,σ

c†i+δ,σcj,σ − (µ− Vi)
∑
i,σ

c†i,σci,σ, (3.9)
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Figure 3.11: Cross section of the 2D system in the slab geometry. The system can
be viewed as N uniformly charged layers. Each layer has charge density σi, where i
denotes the layer index. The interface region between Al/InAs is indicated by the
shaded area. The (N+1)-th layer represents the metal, where the positive charge
accumulates.

which is the same as the effective low energy Hamiltonian in Eq. (3.1). Note that Eq.

(3.9) incorporates the electrostatic effect through the position-dependent local term

proportional to Vi. The study will be carried out in both 2D and 1D systems. Due

to the simplicity of the solution to Poisson’s equation, the 2D case will be presented

first.

The Schrödinger-Poisson equation in 2D

The Poisson part: The potential profile in the slab geometry can be consider

as generated by a stack of infinite charged layers, each layer having a uniformly

distributed charge density σi. The cross section of the structure can be depicted as

shown in Fig. 3.11. The reference point, i.e., the zero of the electrostatic potential,

can be chosen arbitrarily. For convenience, the reference point is chosen to be away

from the first layer by half of the lattice constant, a/2. We assume charge neutrality,

j=N+1∑
j=1

σj = 0, (3.10)
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where i is the layer index. The layers i = 1 to i = N are inside the semiconductor,

while the layer i = N + 1 is the surface layer of the metal. The charge neutrality

condition in Eq. (3.10) and the fact the total number of carriers in the metal is

much larger than the number of carries in the SM imply that the positive charge will

be localized on the surface of the metal. This positively charged layer will exactly

neutralize the negative charge transfered into the semiconductor.

According to Gauss’ law, an electric field at a distance x away from an infinity

large charged layer with charge density σ is

~E =
σ

2ε0

. (3.11)

With the reference point defined as in Fig. 3.11, the potential at the position of layer

i due to the charged layer j can be expressed as

Vi,j =
σja

2ε

[
(j − 1) +

1

2

](
1− |j − i|

(j − 1) + 1
2

)
. (3.12)

To account for the fact that the charge is not actually confined to strictly 2D planes,

we express the potential as the average Vi = 1
2

(
Vi+ 1

2
+ Vi− 1

2

)
, where the contribu-

tions Vi± 1
2

are calculated using Eq. (3.12) by summing over the j index. The final

solution can be written in the form

Vi = −V0σi
4
− V0

i−1∑
j=1

σj (i− j), (3.13)

where

V0 = a constant with value determined by
e

aε
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σj =
∑
n,α

γn|ψnα (j)|2 where
∑
n

γn = νt

The quantity Vi given by Eq. (3.13) is the analytic solution of the Poisson equation

for the slab geometry and represents the effective potential Vi in in Eq. (3.9). The

charge densities σi are determined by the wave functions of the occupied states and

have to be determined by solving the Schrödinger equation.

The Schrödinger part: Since the range of relevant filling factors is of the order of

2%, we focus on the bottom of the conduction band. In the long wavelength limit,

the system can be described using a simple cubic lattice, regardless of the actual

underlying crystal lattice. The energy dispersion can be expressed as

E (kx, ky) = E0 + 2t0

(
cos (kxa) + cos (kya) + cos

(
izπ

(Nz + 1)

))
, (3.14)

where iz = 1, ..., Nz denotes the index layer. We assume that the system is finite in

the ‘z-direction’ and that the thickness of the SM film is Nz×a, where a denotes the

lattice constant. The energy dispersion in Eq. (3.14) with kx = ky = 0 can be viewed

as corresponding to a particle in a box. The hopping parameter, t0, determines the

curvature of the bands and dictates the inter-band spacing. In the low energy limit,

t could be estimated in the effective mass approximation as

t0 '
~2

2meffa2
(3.15)

where meff is the effective mass of the conduction electrons. Finally, the Schrödinger

equation

HSM(kx, ky)ψkxky(z) = E(kx, ky)ψkxky(z), (3.16)

where HSM(kx, ky) is the Fourier transform of Eq. (3.9), is solved numerically and
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Figure 3.12: Cross section of the 1D heterostructure. (a) The “actual” cross section
mimicking the geometry of Ref. [40]. (b) The cross section of the problem that is
solved analytically. The two geometries are connected by a conformal transformation
(see below). The shaded areas represent an infinitely large metal. The white area is
the semiconductor with permittivity ε. The whole system is in vacuum.

the wave functions ψkxky(z)→ ψnα (j) are used to calculate the charge densities.

The Schrödinger-Poisson equation in 1D

The Poisson part: The original problem concerns the realization of topological

superconductivity and Majorana zero modes in SM wires proximity coupled to s-

wave superconductors. A possible geometry is suggested by the InAs/Al structures

grown by Krogstrup et al, . [40]. The schematic cross section of such a heterostructure

is shown in Fig. 3.12-a. This is a rather complex geometry. Instead of solving the

Poisson problem directly for this geometry, it is more convenient to solve it for the

cylindrical geometry shown in shown in Fig. 3.12-b. Then, we map the potential

and the charge density profile from the disk onto the hexagon using a conformal

mapping. Hence, the problem reduces to finding the potential for the setup shown

in Fig. 3.13, which can be done analytically. The geometry of the problem suggests

the use of cylindrical coordinates. First, consider two line charges with densities λ

placed at {ρ, φ} = {r,±α} in a neutral semiconductor of radius ρ = R. The metal

contact defines the boundary ρ = R and |φ| > θ, where −π ≤ φ ≤ π. The goal is
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Figure 3.13: Shows the circular cross section nanowire with the radius ρ = R is in
contact with an infinitely large metal indicated by the shaded area. θ denotes an
angle of a metal contact. α indicates a position of a line charge embedded in the
SM. The setup has inversion symmetry respected to θ = 0.

to determine the potential profile inside the wire. Note that the choice of two line

charges (rather than one) is suggested by the symmetry of the problem, φ↔ −φ.

The potential for a line charge in free space is

v (ρ) = − λ

2πε
ln ρ

where ρ is the distance from the wire. The potential generated by two wires with

charge densities λ at (ρ = r, φ = ±α) is

vλ (ρ, φ) =
λ

4πε

[
ln

1

ρ2 + r2 − 2rρ cos (φ− α)
+ ln

1

ρ2 + r2 − 2rρ cos (φ+ α)

]
=

λ

πε
ln

1

ρ>
+

λ

πε

∞∑
m=1

1

m

(
ρ<
ρ>

)
cos (mα) cos (mφ)

Adding a general solution of the Laplace equation, we obtain the following general
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solution of the Poisson equation

Vin =
λ

πεi
ln

1

ρ>
+ A0 +

∞∑
m=1

[
Am

( ρ
R

)m
+

λ

πεi

cos (mα)

m

(
ρ<
ρ>

)m]
cosmφ,

Vout =
∞∑
m=1

Bm

(
R

ρ

)(m− 1
2)πθ

cos

(
m− 1

2

)
πφ

θ
,

where the constants can be determined from the boundary conditions. Imposing the

continuity of the parallel component of the electric field, E‖, and discontinuity of E⊥

at the boundary between the semiconductor and vacuum, we have

i) Vin (R, φ) = Vout (R, φ) ; |φ| < θ

ii) ε
∂Vin
∂ρ

∣∣∣∣
ρ=R

= ε0
∂Vout
∂ρ

∣∣∣∣
ρ=R

; |φ| < θ.

In addition, the potential at infinity is chosen to be zero, V∞ = 0, and the potential

at the surface of the metal is fixed, V (R, φ) = V0 = 0 for |φ| > θ (i.e., we assume

that the metal is grounded). The solution takes the form

V (ρ, φ) =



A0 + λ
πεi

ln
(
R
ρ

)
+
∞∑
n=1

[
An
(
ρ
R

)n
+ λ

πεi

cos(nα)
n

(
r
ρ

)n]
cos (nφ) r ≤ ρ ∪ ρ ≤ R

A0 + λ
πεi

ln
(
R
r

)
+
∞∑
n=1

[
An
(
ρ
R

)n
+ λ

πεi

cos(nα)
n

(
ρ
r

)n]
cos (nφ) r > ρ ∪ ρ ≤ R

∞∑
n=1

Bn

(
R
ρ

)(n− 1
2

)π
θ

cos
[(
n− 1

2

)
πφ
θ

]
×Θ (θ − |φ|) ρ > R

(3.17)

where

A0 =
1

2π

∞∑
n

Bnγn,0
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An =
λ

πεo
Γn0 −

λ

πεi

cos (nα)

n

( r
R

)n
+

λ

πεo

∞∑
m=1

cos (mα)
( r
R

)m
Γmn −

εi
εo

∞∑
m=1

mAmΓmn

Bn =
λ

π2ε0

(
n− 1

2

)γn,0 − εi

πε0

(
n− 1

2

) ∞∑
m

(
mAm −

λ

πεi
cos (mα)

( r
R

)m)
γn,m

with

γg,n =

∫ θ

−θ
cos

((
g − 1

2

)
πφ

θ

)
cos (nφ) dφ

Γmn = Γnm =
∞∑
g=1

γgmγgn

π2
(
g − 1

2

) .
Eq. (3.17) gives the potential at (ρ, φ) due the presence of the line charges λ at

(r,±α). The actual potential is created by the whole charge distribution inside

the wire, which can be viewed as a collection of line charges. Instead of directly

computing the potential at a given point (ρ, φ), we determine the values at some

surrounding points (to incorporate the fact that the charge is actually distributed

over the entire cross section). The final value of the potential at (ρ, φ) is obtained

by averaging those values from the vicinity of the point.

Let us focus on the lattice shown in in Fig. 3.14-b. The blue points contain

input information about the coordinates and the charge density. The output, i.e.,

the electrostatic potential, is calculated for the red points. Averaging six red points

yields the potential at the central blue point. After completing this step of the

calculation, the potential of the circular wire is determined. To obtain the potential

of the wire with the hexagonal cross section requires a special relation between the

coordinates of the circle and the hexagon – a so-called conformal mapping. Note

that the positions of the points in Fig. 3.14-b are actually determined using this

relation from the positions of the corresponding points in Fig. 3.14-a. The conformal
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Figure 3.14: (a) Hexagonal nanowire cross section representing a model of the actual
system. The small black circles indicate the physical boundary. (b) Circular nanowire
cross section with the coordinates of the dots obtained by an inverse conformal
transformation w(z) → z. The blue dots represents a physical lattice site. The red
dots are intermediate points where the potential is evaluated.

transformation that relates the two sets of points is given by

w = w (z) = wc + C

z∫
0

1

(1− ςn)2/n
dς, (3.18)

where z is the (complex) coordinate of a point in the Z-plane and w is the corre-

sponding coordinate in the W-plane (see Fig. 3.14). The integer n represents the

number of sides of a regular polygon, with n = 6 for the case of the hexagon. Using

the mapping in Eq. (3.18) and its inverse, the charge density is mapped onto the

cylindrical wire, then the Poisson equation is solved analytically using Eq. (3.17) (af-

ter truncating the sums and retaining enough terms to ensure the desired numerical

precision), and, finally, the electrostatic potential is mapped back ontu the hexagonal

wire. Note that the inverse conformal mapping is implemented numerically using the

procedure described in Ref. [66].

The Schrödinger part: In this study we focus on solving the Schrödinger-Poisson
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problem at zero magnetic field. Consequently, we ignore the spin degree of freedom.

The effective Hamiltonian describing the SM is a single orbital tight-binding Hamil-

tonian. Although InAs has a zinc blende crystal structure, the model Hamiltonian

is defined on a hexagonal lattice. The hopping in a z-direction (i.e., along the wire)

is tout. The in-plane hopping parameter is tin, in general different from tout. The

triangular lattice corresponding to a cross section of the wire is shown in Fig. 3.14-a.

The effective hopping parameters tin and tout are correlated with the corresponding

lattice constants – see Eq. (3.15) – which have to be adjusted to fit the available

computational resources. The renormalization of the hopping parameters must be

done carefully because this will modify the inter-band spacing. The coarse-graining

of the InAs nanowire may also affect the potential profile, which is an issue to be

further investigated. The model Hamiltonian describing the InAs nanowire can be

expressed as

H = −tin
∑
i,j

c†i+δcj − (µ+ tout)
∑
i

c†ici, (3.19)

where i and j denote neatest neighbor lattice sites. Note that the spin degree of

freedom is excluded from our consideration. Hence, the Rashba-type SOC and the

Zeeman field will not enter the calculation.

3.2.4 The Schrödinger-Poisson equation: Numerical results

The self-consistent calculation assumes a fixed density, i.e. a given filling factor.

We assume an initial potential profile and solve the corresponding Schrödinger equa-

tion. Using the wave functions provided by this solution, we calculate the density

profile. Note that the number of occupied states contributing to the charge density

is determined by the (fixed) filling factor. The charge density is then introduced

into the Poisson equation, which, in turn, will generate a new potential profile. The
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Figure 3.15: Typical 2D potential profile obtained by solving the Schrödinger-Poisson
equation. The potential at the left boundary is zero, while the potential at the SM-
metal interface is W0 6= 0.

cycle is repeated until the potential profile convergences. The converged potential

represents the effective potential due to the interface-induced electrostatic effect.

The slab geometry

The simplicity of the analytic solution of the Poisson equation in the 2D case

allows for a quick solution of the self-consistent problem. This grants easy access to

investigating various aspects of the physics. Also, the interpretation of the results is

very intuitive and provides a clear picture that shows the significance of the interface-

induced potential.

The charge transfered from the metal is mostly distributed in the vicinity of the

interface, where the effective potential has its minimum. The left of the semiconduc-

tor is exposed to the vacuum, as shown in Fig. 3.11. The charge neutrality condition

dictates that the potential at this end of the structure be zero. The values W0 in Fig.

3.15 representing a potential difference across the SM-metal interface, is related to

the work function difference. The key elements of the potential profile are the value

of W0 and its overall shape.

Next, we investigate the dependence of the effective potential on the thickness of
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Figure 3.16: Potential profile for two different values of the film thickness: (a) The
SM thickness is ∼ 200nm and W0 ∼ 400meV . (b) The thickness is ∼ 40nm and
W0 ∼ 350meV . All other parameters (including the filling factor) are the same.

the semiconductor slab. Since the transfered charge accumulates near the interface,

in thick slabs the potential away from the interface is, basically, flat. This behavior

is in agreement with the intuition that the far-side of the SM (i.e., the region away

from the metal) should not “know” about the presence of an interface. Fig. 3.16-a

illustrates this behavior.

The second aspect that we want to address is the dependence on the filling factor.

This parameter is an indicator of the amount of the charge trasnfered to the semi-

conductor and determines the value of the chemical potential (relative to the bottom

of the conduction band). Note that the solution of the electrostatics problem is inde-

pendent of the details of the coupling across the interface, e.g., the effective hopping

parameters or the shape of a possible potential barrier that characterizes the inter-

face. In other words, we do not care how “easy” or “difficult” is to transfer charge

into the SM; the only relevant quantity is the amount of charge that is transfered.

The filling factor is a convenient parameter that characterizes this charge transfer.

As shown in Fig. 3.17, higher filling factors result in a sharper drop of the effective

potential as one approaches the interface. Note that fixing the filling factor is a con-
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Figure 3.17: Comparison of the potential profiles for two hybrid structure systems
with different filling factors: (a) filling factor = 0.02; (b) filling factor = 0.01.

venient way to solve the self-consistent problem, but the actual control parameter is

the work function difference.

A useful piece of information concerns the relation between W0 and the filling

factor. For a 40nm-thick film, the dependence of W0 on the filling factor is shown in

Fig. 3.18. As expected, large filling factors generate deep potential wells, i.e., large

values |W0|. Note that for filing factors larger than 1% the dependence is almost

linear.

Figure 3.18: Potential difference across the interface, W0, as a function of filling
factor, νt. The dependence is almost linear for νt > 0.01.
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Figure 3.19: (a) A contour plot of the potential profile in the nanowire with a cross
section width 50nm. (b) A horizontal cut showing the potential profile according to
the red line in (a).

The wire geometry

The solution of the 1D problem based on the analytical result for the Poisson

equation, which is expressed as a series, requires significantly more computing time

than the 2D case. However, despite involving different geometries and having differ-

ent levels of mathematical complexity, the overall features of the solutions for the 1D

and 2D problems are qualitatively similar. Indeed the shape of the effective poten-

tial that dictates the charge distribution across the wire is characterized by a sharp

minimum near the interface with the metal and a nearly flat region on the opposite

side. A typical profile is shown in Fig. 3.19. Note the similarities between the profile

of the potential along a horizontal cut shown in panel (b) and the 2D result for the

SM slab, Fig. 3.15.

In conclusion, we have developed a semi-analytical method for efficiently solv-

ing the Poisson-Schrödinger equation for semiconductor nanowires coupled to met-

als/superconductors. The key idea is to use a conformal transformation to map

the physically-relevant Poisson problem into a problem that can be solved analyti-

cally. Using this method enables one to investigate the hybrid structures predicted to
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host topological superconductivity and Majorana zero modes. Standard numerical

methods to solve the Poisson-Schrödinger equation are extremely expensive (nu-

merically), which makes the systematic investigation of the large parameter space

associated with this problem virtually impossible. To enhance the usefulness of this

approach, one has to incorporate the effect of external gate potentials, which can be

done following the main ideas developed in this study.
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Chapter 4

Conclusions

While the discovery of the integer quantum Hall effect marks the beginning of

the “topological era” in condensed matter physics, the possibility of exploiting the

topological properties of condensed matter systems for quantum computation seems

to be “big prize”. However, regardless of whether or not a quantum computer will be

ever be built, exploring the topological world reveals a wealth of fascinating physics.

Conceptually, a significant step forward was the realization that the Hall conduc-

tivity can be expressed in terms of a topological invariant characterizing the so-called

valence Bloch bundle – a vector bundle associated with the occupied states of a (non-

interacting) gapped system. This discovery revealed the importance of topology in

condensed matter physics and opened the horizon toward the possibility of novel

quantum phases of matter. The classification of these quantum phases is based on

a paradigm that combines symmetry, topology, and quantum entanglement, while

the theoretical study of the topological phases uses a variety of field theoretic, tight-

binding, and ab-intio methods, as well as the mathematical tools developed within

the field of topology.

On the experimental front, the most significant recent advances are the discovery
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of 2D and 3D topological insulators and the realization of hybrid structures that

host topological superconductivity and Majorana bound states. Since zero-energy

Majorana bound states are a possible platform for topological quantum computation,

optimizing these hybrid structures and gaining the ability to manipulate the Majo-

rana modes would represent significant advances toward a future quantum computer.

When investigating topological quantum phases, many valuable insights can be

obtained based on model Hamiltonian studies, such as those described in this thesis.

These studies provide valuable guidance for the experimental efforts in this area.

However, the ultimate test for the validity of any effective low-energy approach comes

from comparison with experiment.

4.1 Discussion on the TI-based heterostructure

The topological insulator – based structure was proposed as an alternative to

the semiconductor nanowire-superconductor proposal as an attempt to address the

potentially limiting requirement concerning the fine-tuning of the chemical potential.

The original claim was that, for a certain value of the external magnetic field, the

topological superconducting phase is realized regardless on the value of the chemical

potential (within the bulk gap). The claim is based on a model calculation that

does not include the superconducting proximity effect explicitly and does not con-

sider electrostatic effects (e.g., due to interface-induced potentials and applied gate

potentials). The work described in Chapter 2 of this thesis incorporates explicitly

these effects. The study is carried out within an effective low energy theory based

on a tight binding Hamiltonian. The resulting topological phase is compared with

the “ideal” phase diagram in Fig. 4.1. We note that the “fuzzy” top region of the

diagram in panel (b) is a result of including the bulk bands. Also, note the different
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Figure 4.1: Comparison of the topological phase diagram produced by (a) Franz’s
model and (b) TBH model. The white areas denote the trivial topological phase
while the non-trivial phase characterized by the shaded areas.

topology of the two phase diagrams. The key difference arises from the fact that the

mimimum width ΛΦ of the topological region is zero in panel (a) and finite in panel

(b). In fact, we have shown (see Chapter 2) that this feature of the phase diagram

can be controlled by changing the effective TI-superconductor coupling or the phase

difference between the superconductors in a “symmetric” setup, the most favorable

for stabilizing the topological phase.

Another element that is neglected in the “ideal” treatment is the fact that real

TI materials are doped, e.g., Bi2Se3 is, typically, electron-doped. As a consequence,

the chemical chemical potential is not within the bulk gap, but rather near the
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bottom of the conduction band. Since the ideal place for the chemical potential

(i.e., the range of values that ensure the most robust topological phase) is near

the middle of the bulk gap, having a gate potential to control µTI is, in fact, a

requirement for a TI-based structure, similar to the situation of semiconductor-based

heterostructures. Thus, even in the absence of an interface-induced potential, the

gate potential creates a serious problem: it modifies the spatial profile of the surface-

like states and, consequently, suppresses the superconducting proximity effect for

certain sub-bands. Consequently, the electrostatic effect should be treated with

great care. Note that this type of effect also plays a crucial role in semiconductor-

based structures. In particular, the electrostatic effect determines the value of the

chemical potential of the wire, the strength of the Rashba spin-orbit coupling, and

the transverse profile of the wave functions (hence, the superconducting proximity

effect), which are key parameters of the system.

4.2 Effects of the electrostatic potential

The conclusions of chapter 2 are based on the assumption that the transverse

profile of the effective potential is basically determined by a solution of the Laplace

equation. This approximation does not take into account the electrostatic field gen-

erated by the electric charge transferred to the wire. A more rigorous treatment

can be be obtained by solving self-consistently the Schrödinger-Poisson equations.

Since finding the self-consistent solution is numerically expensive, a semi-analytical

approach could provide a significant advantage. Such an approach was developed in

chapter 3 based on two key ideas: i) solve the Poisson equation (with homogeneous

boundary conditions) analytically within a cylindrical geometry and ii) map the so-

lution onto the “realistic” wire cross section using a conformal transformation. We
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note that incorporating gate potentials is straightforward. Indeed, one can write the

total effective potential as a sum of two terms: one satisfying the Poisson equation

and homogeneous boundary conditions and the other satisfying the Laplace equa-

tion and the boundary condition imposed by the gates. Since the second term is not

modified by the self-consistency condition (because it does not depend on the charge

density), it can be calculated numerically (once, for a given configuration) without

affecting the efficiency of the scheme.

The study of the electrostatic effect presented in this thesis assumes infinitely

long wires, i.e., translation invariance in the direction parallel to the wire. Of course,

incorporating finite size effects, e.g., effects related to the presence of a potential

tunnel barrier at the end of the wire, will require additional work. Also, while we

have not discussed explicitly spin effects, such as sub-band splitting due to spin-orbit

coupling and Zeeman interaction, these effects can be easily incorporated into the

formalism. Below, we discuss in more detail some of the physical consequences of

the electrostatic effect, more specifically: the inter-sub-band spacing, the chemical

potential level, the strength proximity coupling, and the Rashba coefficient.

4.2.1 The inter-subband spacing

We consider a quasi-2D semiconductor in the slab geometry in the presence of an

interface-induced potential generated by a work function difference. How is the band

structure of the semiconductor affected by the electrostatic potential? Is the effect

similar to that produced by a uniform electric field? The answers to theses questions

are illustrated by the results shown in Fig. 4.2. Before discussing the results, we note

that the confinement-induced inter-band spacing depends critically on the effective

mass (i.e., on the hopping parameter) and on the slab thickness (i.e., thicker slabs
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Figure 4.2: Two-dimensional sub-band structures (top) corresponding to different
potential profiles (bottom). (a) Constant potential. (b) Linear potential profile. (c)
Potential obtained by solving the Schrödinger-Poisson equation.

are characterized by smaller inter-band gaps). We assume that these parameters are

fixed.

The band structure corresponding to a uniform potential background, which rep-

resents the reference for our potential-dependence analysis, is shown in Fig. 4.2-a.

Consider now a uniform electric field corresponding to the linear potential profile

shown in Fig. 4.2-b. In this case, all inter-band spacings increase as compared to the

reference spectrum. Physically this corresponds to a reduced effective confinement

for all confinement-induced sub-bands. Finally, Fig. 4.2-c shows the results based

on the self-consistent solution of the Schrödinger-Poisson equations. The spacing be-

tween the first and the second bands increases significantly, while higher energy bands

are less affected by the potential. Physically, this is due to the fact that the wave

function associated with the lowest energy band is strongly confined in the region
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where the potential has a minimum, while higher energy states are more delocalized

and, consequently, acquire comparable energy shifts (of the order of the “average”

potential). In general, we expect the inter-band spacing between low-energy bands

to more strongly affected that the gaps between high energy bands. Note, however,

that the specific values of the energy shifts depend on the chemical potential, i.e.,

on how much charge is transfered to the semiconductor. Consequently, the spec-

trum shown in Fig. 4.2-c will completely change, rather than simply shift rigidly, as

additional charge is introduced into the system.

4.2.2 The chemical potential

To better understand the physics discussed in the previous section, let us consider

a specific example. The spectra corresponding to two different values of the chemical

potential are shown in Fig. 4.3. As discussed in chapter 3, the self-consistency

condition is implemented, for convenience, by fixing the filling factor, σ, rather than

the chemical potential. Hence, we choose σ = 1% [panel (a)] and σ = 2% [panel (b)],

which corresponds to three and four partially occupied bands, respectively. The

corresponding values of the chemical potential are shown in the figure. Note the

significant change in the spectrum, in sharp contrast with the rigid band picture.

To gain some intuition about the impact of the nonuniform potential on the inter-

band spacing, let us consider the transverse profiles of the wave functions associated

with the three lowest bands, which are shown in Fig. 4.4. The wave function of the

lowest energy band is strongly confined near the right boundary of the slab, where

the potential has a minimum. Consequently, its energy will be shifted downwards

(as compared to the flat potential case, Vc = 0). By contrast, the wave function

of the second band has a lower amplitude in the minimum potential region and,
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Figure 4.3: The response of the energy spectrum to a change in the filling factor: (a)
σ = 1%, (b) σ = 2%. The horizontal dashed lines represent the chemical potentials.

consequently, will experience a smaller downward shift. For the third band the

effect is even weaker. Consequently, The negative energy shifts are strongly band-

dependent, which leads to a change of the inter-band spacing.

Another important step in this analysis is to determine the charge density inside

the semiconductor slab. This quantity is given by the solution of the Schrödinger

equation, more specifically by the wave function profiles and the energies of the

states. The contribution of a given state (kx, ky) associated with band “i” to the

total charge density is e|ψi|2, where ψi,kx,ky is the wave function corresponding to that

state. For simplicity we assume that the transverse profile of all the states from band

“i” is the same, i.e., |ψi,kx,ky | ≡ |ψi| independent of (kx, ky). In addition, we need to

determine the chemical potential corresponding to a given filling factor σ. Note that

the chemical potential defines the band filling factors wi = wi(µ), i.e., the fraction

of occupied states corresponding to each band. Obviously, we have σ =
∑

iwi(µ).

By inverting this relation we can determine the chemical potential corresponding to

a given (total) filling factor [52]. Finally, the total charge density can be written as
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Figure 4.4: (a) Spatial profiles of states from the first three bands marked in Fig.
4.3-a. (b) Fictitious charge density σT = e

∑
i

|ψi|2. (c) Actual charge density σT =

e
∑
i

wi|ψi|2.

σT =
∑
i

wie|ψi|2. It is clear from Fig. 4.3 that the largest contribution to the charge

density comes from the lowest energy band, since w1 > w2 > w3. The charge density

corresponding to the energy spectrum in Fig. 4.3-a is shown in Fig. 4.4-c. For

comparison, in panel (b) we show a fictitious charge density that would correspond

to equal contributions from the first three bands.

4.2.3 The proximity-induced gap

So far, the subsystem in contact with the semiconductor that acts as charge

reservoir was assumed to be a normal metal. What happens when this metal turns

into a superconductor. As discussed in chapter 2, the semiconductor will pick up

superconducting correlations via the proximity effect. Physically, this can be under-

stood in terms of a nonzero probability to find the electrons from the semiconductor

inside the superconductor. As a result of this effect, a proximity-induced gap opens

in the semiconductor spectrum at the chemical potential. The question is how is

this proximity-induced gap affected by the interface-induced potential? Here, we
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focus on the magnitude of the proximity-induced gap in a thin film at zero magnetic

field in the presence of an interface-induced potential. Since the magnetic field and

the Rashba spin-orbit coupling are not included, the induced superconducting state

discussed here is topologically trivial.

The superconducting proximity effect can be formally incorporated into the the-

ory as a surface self-energy term. A self-energy term is naturally obtained in the

Green function formalism once we integrate out the degrees of freedom associated

with the superconductor. Our simplifying working assumption is that the nonlocal

contributions to the self-energy are negligible on length scales 1/kF relevant to the

low-energy problem, where kF is the typical Fermi momentum of the semiconductor

system. Consequently, we approximate the self-energy by a purely local contribu-

tion. Note that this assumption was used in all the calculations for both TI-based

and SM-based heterostructures [see, for example, Eq. (2.38)]. The information about

the proximity-induced gap can be extracted from the density of states,

DOS (ω) = − 1

π
Im

[
Tr

(
1

ω + iη −Heff − Σ(ω)

)]
. (4.1)

Note that Heff in Eq. (4.1) denotes the Hamiltonian for the semiconductor and the

interface-induced electrostatic potential.

The dependence of the proximity-induced gap on the filling factor and on the

thickness of the semiconductor slab is shown in Fig. 4.5. First, note the different

scales in panels (a) and (b). As expected, increasing the film thickness results in a

lower amplitude of the wave functions at the interface and, consequently, in a smaller

induced gap. Concerning the dependence on the filling factor (or, equivalently, on the

chemical potential), we note that the induced gap tends to increase with increasing

filling factor. However, the dependence is discontinuous and even non-monotonic in
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Figure 4.5: Proximity-induced gap as a function of the filling factor for two different
values of the film thickness: (a) 40nm and (b) 200nm. The discontinuities in the
dependence of the gap on the filling factor are caused by the chemical potential
crossing the bottom of different sub-bands.

the thick film case. We identify these discontinuities with filling factors corresponding

to values of the chemical potential exactly at the bottom of some confinement-induced

band. We note that for comparison with experiment a similar calculation has to done

for the 1D case. While some details will be different, we expect the behavior in the

1D case to be qualitatively similar to these findings.

As mentioned above, the common feature seen in Fig. 4.5, i.e., the discontinuities

of the proximity-induced gap as function the filling factor, is related to the chemical

potential crossing the the bottom of confinement-induced sub-bands. This behavior

has some similarities with that observed in TI-based systems and shown in Fig.

2.18. Note, however, that the physics is different. In the TI case it was a finite size

effect: the surface-type states have finite “widths” and, consequently, experience an

effective magnetic flux smaller than the nominal value corresponding to the full cross

section of the nanoribbon. Since the characteristic “width” is band dependent, the

degeneracy condition is not realized for all bands at exactly the same value of the

magnetic field, which results in a sharp drop of the induced gap when the chemical
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Figure 4.6: Induced superconducting gap as a function of the effective semiconductor-
superconductor coupling.

potential is the vicinity of a nearly degenerate point. By contrast, the discontinuities

in the semiconductor structure originate in the different “rigidities” of the wave

functions associated with different bands. As pointed out in the context of Fig. 4.4-

a, wave functions from higher energy bands tend to be less localized in the potential

minimum near the interface. Consequently, when the chemical potential crosses into

a new band the (minimum) wave function amplitude at the interface is realized by

states from the top (new) band, hence it undergoes a discontinuous change. This

conclusion has to be carefully verified in the 1D case (i.e., for semiconductor wires),

possibly using a more detailed description of the SM band structure, such as an

8-band Kane-type model. Finally, we note that in Fig. 4.5-a the proximity-induced

gap is nearly fixed at 0.29 eV for filling factors in the range 0.6−1.6%, which suggests

that thin slabs are more favorable for realizing a robust superconducting state.

The superconducting correlations are (formally) introduced by the self-energy

term. We note that the self-energy depends on the Green function of the supercon-

ductor at the interface and on the effective semiconductor-superconductor coupling.
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This coupling is a key parameter that determines many of the low-energy properties

of the structure, including the induced gap. We have already seen that the topo-

logical phase diagram shows a strong dependence on the effective coupling, see Fig.

3.4. The dependence of the induced gap on the the effective coupling parameter for

a fixed potential profile is plotted in Fig. 4.6. The size of the gap increase with

increasing the effective coupling. Note, however, that the dependence is not linear,

which reflects the fact that the induced gap cannot be larger that the bulk SC gap

regardless of the coupling strength.

4.2.4 The Rashba SOC

Consider an electron moving in an electric field ~E. In the reference frame of the

electron, it will experience an effective magnetic field, Beff ∼
~E×~p
mc2

. This effective

magnetic field causes a momentum-dependent Zeeman energy, which is at the origin

of the spin-orbit coupling [44], HSO ∼ ~σ ·
(
~E × ~p

)
. For ~E = E0ẑ, the spin-orbit

Hamiltonian can be written in the standard form

HR = αR (~σ × ~p) · ẑ (4.2)

where αR is the so-called Rashba coefficient. The term (~σ × ~p) · ẑ breaks inversion

symmetry. Hence a nonzero Rashba spin-orbit coupling will appear naturally in a

system that lacks this type of symmetry.

In a two-band model, the Rashba SOC has to be introduced manually by adding

a term like the one in Eq. (3.2). The strength of the interaction, expressed by

the parameter αR, can be determined from experiment or by using a more com-

plicated model, e.g., the 8-band Kane model. However, in the model calculation

one has to specify the profile of the effective electrostatic potential that breaks in-
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version symmetry. Consequently, a theory of Rashba-type spin-orbit coupling in a

semiconductor-based structure has to include i) a suitable multi-orbital model of

the semiconductor (e.g., the 8-band Kane model) and ii) a self-consistent calcula-

tion of the electrostatic potential. The method for calculating the interface-induced

potential described in this thesis is extremely relevant in this context. The interface-

induced potential caused by the charge accumulation in the vicinity of the interface

breaks inversion symmetry and generates a non-zero Rashba spin-orbit coupling. The

coupling strength, αR, is determined by the electric field, ~E = −~∇V , where V is the

interface-induced potential profile.

4.3 Perspective: Majorana bound states and quan-

tum computation

The main goal of this thesis is to provide a theoretical analysis that could facilitate

enhancing the stability of topological superconducting phases and the realization of

robust Majorana bound states in solid state hybrid structures. From the perspective

of future applications, the ultimate goal is to be able to manipulate the topologically-

protected Majorana modes and to exploit their properties for quantum computation.

We conclude this thesis with a few remarks on this fascinating topic.

The first natural question is how can one realize a qubit using Majorana zero

modes (MZMs). Consider a complex (Dirac) fermion. It can be mathematically

expressed as a combination of two Majorana fermions, c = 1
2
(γ1 − iγ2). Conversely,

any pair of Majorana modes can be thought of as a (regular) fermion. For example,

we can say that a pair of MZMs that emerges at the ends of a wire when the system

is in the topological superconducting phase can be occupied by an electron (i.e. a
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Dirac fermion). Remarkably, the state of the electron is highly non-local (“half” of

the state being localized near one end of the wire and “half” near the opposite end).

While the concept of “occupation number” is meaningless for Majorana fermions

(since the creation and annihilation operators are identical and we have γ2 = 1),

one can naturally define the fermion occupation number for a pair of Majoranas,

n = c†c = 1
2
(1− iγ1γ2). Note that the product −iγ1γ2 represents the fermion parity

(−1)n, i.e., it is 1 if the fermionic state is empty and −1 if it is occupied. Hence, a

superconducting system containing two MZMs has two distinct zero-energy states:

one corresponding to n = 0 (i.e., no fermion occupying the Majorana pair) and the

other corresponding to n = 1. These degenerate ground states, let us call them |0〉

and |1〉, can be viewed as the basis states of a qubit.

The idea described above can be generalized to the case of 2N MZMs. Indeed,

consider a system containing MZMs described by the operators γ1, . . . , γ2j−1, γ2j, . . . , γ2N .

One can formally consider pairs of Majoranas, for example (γ2j−1, γ2j), with 1 ≤ j ≤

N , and define the corresponding fermion occupation numbers, n1, . . . , nN . The sys-

tem is characterized by degenerate ground states corresponding to different fermion

occupation numbers, |n1n2 . . . nN〉. Typically, the total fermion parity of the system

is fixed, i.e., it contains an even or an odd number of fermions. With this con-

straint, the dimension of the space of degenerate ground states is 2N−1. In other

words, a system of 2N MZMs can encode N − 1 qubits. Remarkably, these qubits

are encoded in a highly non-local manner (we implicitly assumed that the MZMs

are well separated spatially). Consequently, the quantum information is robust to

any local perturbation affecting the system. In other words, perturbing the system

in the vicinity of any MZM does not affect the occupation numbers, as long as the

perturbation is local. This is stark contrast with the standard (i.e., non-topological)
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schemes for quantum computation, which are highly sensitive to decoherence due

to local perturbations. This example of topologically protected storage of quan-

tum information reveals the huge potential advantage of using topological states for

encoding quantum information.

Consider now a topological superconductor that hosts four MZMs (i.e., N=2).

Since the total fermion parity is conserved, we choose an even parity state (i.e., an

even total number of electrons in the system), which is consistent with two degenerate

ground states |n1n2〉 = |00〉 and |n1n2〉 = |11〉. These states can be viewed as the

basis states of a qubit. A generic state of the logical qubit is represented by the

linear superposition

Ψ = α |00〉+ β |11〉 , α2 + β2 = 1 (4.3)

The question now is how to implement a unitary transformation that acts on the

state Ψ, i.e., how to realize quantum gates. Note that, ideally, these unitary trans-

formations should also be topologically protected, since otherwise the advantage of

having a topologically protected memory would be partially wasted.

The implementation of quantum gates brings to the fore the most remarkable

property of the Majorana zero modes: their non-Abelian statistics. To understand

this property it is convenient to focus on a 2D system containing MZMs. For example,

if a perpendicular magnetic field is applied to a 2D topological superconductor, it

creates vortices that localize MZMs in their cores. Note that these vortices are

topological defects, hence the presence of MZMs. Consider now the exchange of two

MZMs bound to the corresponding vortices. One can show that this operation results

in one of the Majorana operators switching the sign as a result of the MZM crossing a

branch cut associated with the vortex that bounds the other MZM. Mathematically
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this can be described by introducing an elementary braiding operator, Ti [31],

Ti :


γi 7→ γi+1

γi+1 7→ −γi

γj 7→ γj for j 6= i and j 6= i + 1

(4.4)

This operator captures the effect of exchanging the positions of MZMs “i” and “i+1”.

This type of operations, also called braiding operations, define a non-Abelian group.

The result of a series of elementary operations depends on the order in which they

are dome. The exchange can be alternatively described by a unitary matrix acting

on the degenerated ground states,

Ui,i+1 =
1√
2

(1 + γiγi+1) . (4.5)

This matrix form makes transparent the non-Abelian nature of these operations,

since, in general, matrix multiplication does not commute. The result is that applying

a transformation corresponding to braiding the MZMs is a certain way corresponds

to a rotation within the Hilbert space of degenerate ground states [4], i.e., a quantum

gate. For example, the action of T can be expressed as

Uj,j+1γj/j+1U
†
j,j+1 = ∓γj+1/j. (4.6)

Focusing on a system containing four MZMs (and having even fermion parity), we

have

c1 =
1

2
(γ1 + iγ2) (4.7)

c2 =
1

2
(γ3 + iγ4) . (4.8)
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Figure 4.7: Braiding of four MZMs. The vertical axis describes the positions of the
MZMs, while the horizontal axis it time. As a result of non-Abelian nature of the
MZMs, the final quantum state of the system depends on the specific braid, not
simply on the final positions of the MZMs. (From Ref. [64])

Let us assume that we start with the state |00〉. Exchanging γ2 and γ3 results in a

new ground state, which can be determined by acting with the unitary operator U23

on the initial state. The matrix form of U23 in the basis |00〉, |10〉, |01〉, |11〉 is

U23 =
1√
2



1 i

1 −i

i 1

−i 1


, (4.9)

where we have included both the even parity and the odd parity sectors. Note that

U23 does not mix the two sectors. If the initial state is prepared to be |00〉, the

unitary operator U23 will cause the ground state to evolve into

|Ψ〉 =
1√
2

(|00〉+ i |11〉) . (4.10)

An example of a more complex braiding operation is illustrated by Fig. 4.7. In

general, one can rotate the wave function within the sub-space of degenerate ground

states by braiding the MZMs. The goal is the realize a specific unitary transformation

that would map the initial quantum state |n1n2 . . . nN〉 that encodes the (classical)
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input of a certain computational problem into the final state |n′1n′2 . . . n′N〉 that en-

codes the result of the computation. The unitary transformation that realizes this

mapping can be expressed as a product of elementary unitary transformations, this

task being realized by a so-called quantum algorithm. In the end, this corresponds

to a complicated braiding involving the 2N MZMs in the system. The key advantage

of using braiding for implementing quantum gates is that the result of an operation

does not depend on the exact paths followed by the quasiparticles, but only on the

topology of the world lines. In other words, quantum operations using braiding of

non-Abelian anyons are topologically protected. Thus, this is an ideal scheme for

implementing fault-tolerant quantum computation.

At the time of writing, quantum computers are a dream of the future. Even when

realized, quantum computers will not replace classical computers, because they are

not faster on computational tasks that classical computers can handle efficiently.

However, there are intractable problems, such as factorizing large integers, for which

efficient classical algorithms are not known and, as many believe, may not exist. Also

there is the world of quantum simulators, which could revolutionize our approach to

materials science and biology. This is where the quantum computer could be king.
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