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ABSTRACT 

 

Avian assemblages and Red-eyed Vireo nest survival within mineland forest 

Jeremy David Mizel 

 

Since the passage of the Surface Mining Control and Reclamation Act (SMCRA) in 
1977, mined lands have generally been reclaimed to an environment characterized by severely 
compacted minesoils, a growth medium comprised largely of unweathered materials, and a 
predominance of aggressive groundcovers that inhibit native species colonization. Under these 
conditions, succession is arrested. Within landscapes that are fragmented by traditionally 
reclaimed surface mines, forest patches are smaller and forest cover on the landscape scale is 
reduced. As a result, forest songbirds that require large, continuous blocks of forest are 
negatively affected. 

  
Some pre-SMCRA abandoned minelands contain areas of uncompacted minesoils on 

which hardwood forest has developed in the absence of aggressive groundcovers.  Despite 
potential differences in tree species composition, study of the relationship between habitat 
structure and the avian assemblage within pre-SMCRA mineland forest could provide insight 
into the species assemblages that future mineland reforestation efforts might yield. Study of the 
reproductive success of forest songbirds within pre-SMCRA mineland forest may provide some 
indication as to whether this habitat is capable of sustaining breeding songbird populations. In 
chapter two of this thesis, I detail research in which my objectives were to: 1) examine patterns 
in avian assemblage structure within mineland and reference forest and to link the avian 
assemblage response to variables describing habitat structure and composition, and 2) contrast 
nest survival of Red-eyed Vireos (Vireo olivaceus) breeding within mineland and reference 
forest. 

 
I conducted this research in 2011 within New River Gorge National River in southern 

West Virginia. I surveyed avian assemblages and sampled stand structure and composition along 
28 fixed-width line transects (14 mined and 14 reference) established within four pre-SMCRA 
abandoned minelands and adjacent, unmined forest.  Minelands within these study areas were 
were relatively wide (80-100 m wide on average) and contained mature forest (60-65 years old) 
that had developed from areas of loose-dumped spoil mounded atop benches and also within 
outslopes.  

 
Using an information-theoretic approach, I developed a priori models containing habitat 

and temporal covariates that I hypothesized to influence the nest survival of Red-eyed Vireos. 
Within the same study area, I monitored vireo nests within three mineland forest plots and three 
reference forest plots.  

 
 Ordination of avian assemblages using non-metric dimensional scaling (NMDS) showed 

clear discrimination between mineland and reference assemblages. Linear and surface fitting of 
habitat variables showed strong correlations between the ordination and groundcover gradients, 
but generally non-significant relationships for gradients describing forest structure. Mineland 
assemblages were associated with lower levels of litter cover and depth and also had lower 



 
 

abundance of Ovenbirds (Seiurus aurocapillus), a ground-nesting and foraging species. Within 
mineland assemblages, the absence of a consistent pattern of relationships among species 
suggested a wider habitat gradient relative to reference forest.  

 
I monitored 45 Red-eyed Vireo nests, 21 within mineland forest and 24 within reference 

forest. Nest survival for Red-eyed Vireos was similar within mineland and reference forest and 
nest patch characteristics (overstory cover and vertical foliage density) had minimal effect on 
nest survival. Classification tree modeling using forest type as the response variable indicated 
that reference nest sites were characterized by greater vertical heterogeneity. 

 
In chapter three, I report on research initiated with the objective of examining patterns in 

avian assemblage structure in response to the presence of two broad classes of minelands on the 
landscape, compacted bench minelands and loose-dumped bench minelands. This research was 
conducted in 2010 and indicated the approach taken in 2011 (chapter two). I conducted 
fieldwork within five study sites in New River Gorge National River and Plum Orchard Wildlife 
Management Area (WMA). Point count transects were classified as loose-dumped benches, 
unmined plateau, compacted benches, and unmined steep slope. NMDS ordination indicated that 
minelands with loose-dumped benches had minimal effect on assemblage structure. The 
assemblage associated with compacted bench minelands was not discrete, but was largely 
discriminated from the other assemblage types. Species that use the subcanopy and midcanopy 
for nesting and foraging were discriminating components of compacted bench assemblages. 
Relative abundance of the closed-canopy guild was lower within mined forest than within 
unmined forest. 

 
In total, this research has shown that failure to establish mineland stands in which heavy-

seeded species are a component has important implications for avian assemblage structure. 
Within minelands, heterogeneity in edaphic conditions and the corresponding variation in forest 
structure likely contributed to an inconsistent pattern in avian assemblage structure.  
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INTRODUCTION 

 Surface mining first attained widespread use in Appalachia in the 1940s (Potter et al. 

1951). In general, surface mining in the steep slopes of this region has taken the form of contour 

mining and larger-scale mountaintop mines where mountaintop removal, contour, and 

auger/highwall mining are being employed.  

Post-mining land use has varied greatly since the 1940s (Potter et al. 1951). Prior to the 

enacting of the Surface Mining Control and Reclamation Act (SMCRA) in 1977, mines used a 

“shoot and shove” method for extraction resulting in an exposed highwall, bench-land along its 

face, and an outslope comprised of loose spoil that had been pushed below. Mines were left in 

these “shoot and shove” configurations and reclamation practices varied from state to state 

(Brown 1962). In states such as Ohio, early reclamation efforts typically involved planting 

hardwoods and pine on mined lands (Paton el al. 1970, Rodrigue 2001). In West Virginia, 

surface mines were generally abandoned without planting (Brown 1962, Rodrigue 2001).  

SMCRA requires that mine operators “backfill, compact, and grade in order to restore the 

approximate original contour (AOC) of the land with all highwalls, spoil piles, and depressions 

eliminated" (Office of Surface Mining Reclamation and Enforcement 2008). Mine companies, 

dozer operators, and regulatory agencies responded with expectations of a uniformily smooth 

reclamation landscape. The traditional post-SMCRA reclamation environment is one in which 

unweathered materials contribute heavily to the growth medium, minesoils have been severely 

compacted from immoderate grading, and aggressive groundcovers have been sown to prevent 

erosion (Burger et al. 2002).  

During the two decades that followed the passage of SMCRA (1977), surface mines were 

generally reclaimed to grassland or woodland that was planted or seeded to black locust (Robinia 

pseudo-acacia), Virginia pine (Pinus virginiana), eastern white pine (P. strobes), autumn olive 

(Elaeagnus umbellate), and highly tolerant, aggressive ground covers including Kentucky-31 tall 

fescue (Festuca arundinacea) and sericea lespedeza (Lespedeza cuneata) (Burger et al. 2002, 

Burger et al. 2005, Showalter and Burger 2006). Most native hardwood species have poor 

survival and growth in this environment (Burger et al. 2002).  

The Appalachian Regional Reforestation Initiative (ARRI) was established by the Office 

of Surface Mining in 2004 with the primary objective of encouraging surface mine reforestation 

through a method termed the Forestry Reclamation Approach (FRA). The Forestry Reclamation 
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Approach is a series of field-tested guidelines directed at advancing forest succession on 

minelands (Burger and Fannon 2009, Skousen et al. 2009).  Components of this approach 

include creating an uncompacted growth medium in which hardwoods are capable of exhibiting 

normal survival and growth and seeding non-aggressive groundcovers which do not completely 

inhibit forest plant invasion (Burger et al. 2005).  

 

MINED LAND SUCCESSION 

During the initial stages of mined land succession, reduced plant species diversity is often 

the result of the loss of seed and bud banks (dormant meristems from which vegetation may 

resprout) (Groninger et al. 2007). Although the original topsoil was typically buried during pre-

SMCRA mining, some of the disproportionately large diameter trees that exist on these sites 

today are evidence of individuals that sprouted from stump and root remnants that survived the 

mining disturbance (Croxton 1928, Riley 1975, Rodrigue 2001). Wind and bird-disseminated 

species capable of withstanding varied and often harsh site conditions are the first to colonize 

minesoils (Burger and Zipper 2009). Colonization by less stress-tolerant species occurs as soils 

become conditioned and nitrogen and organic material accumulate (Burger and Zipper 2009). 

Colonization by heavy-seeded species, primarily via animal dispersal, can be extremely limited 

within the interior of mine sites (Showalter and Burger 2006).  

On pre-SMCRA mines which have reverted to forest, stand composition tends to be 

dominated by pioneer species including: red maple (Acer rubum), yellow poplar (Liriodendron 

tulipifera), bigtooth aspen (Populus grandidentata), sourwood (Oxydendrum arboretum), eastern 

cottonwood (Populus deltoides), American elm (Ulmus americana), American sycamore 

(Platanus occidentalis), birch (Betula spp.), and boxelder (Acer negundo) (Skousen et al. 1994, 

Zeleznik and Skousen 1996, Rodrigue 2001). On a 45-year-old, unreclaimed surface mine in 

western Pennsylvania, Brenner et al. (1984) found that oak and hickory importance was only 5% 

whereas red maple importance was 60%. Ashby (1984) described two potential trajectories for 

minelands in the Midwest: a xeric forest type, likely to develop from acidic minesoils with shales 

as a major constituent, and a mesophytic forest type, developing from more fertile minesoils in 

areas of moisture collecting topography.  

Studies of pre-SMCRA mines that were planted with trees have found productive forests 

in which the hardwood and pine species that were planted dominate the overstory (Zeleznik and 
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Skousen 1996, Rodrigue 2001, Rodrigue and Burger 2002). Rodrigue and Burger (2002) found 

that site indices for pre-SMCRA reforested sites (pine and hardwood plantings) in the Midwest 

were similar to site indices of reference forest. However, they found more variability in the site 

indices of their Eastern sites in comparison to reference forest. Red maple, black cherry, green 

ash, and sycamore were frequent subcanopy invaders. On 46-year-old mine sites in Ohio that 

were planted to trees, maple and elm were the most abundant volunteer tree species (Zeleznik 

and Skousen 1996). 

Vegetation development on pre-SMCRA minelands is influenced by a combination of 

factors including: the edaphic properties of minesoils (Game et al. 1982, Ashby 1984, Skousen et 

al. 1994, Rodrigue 2001), the composition and structure of the adjacent, undisturbed plant 

community (Riley 1975, Skousen et al. 2006), the shape and size of the mining disturbance 

(Hardt and Forman 1989), post-mining disturbance processes (i.e. erosion), and stochastic 

variability in the introduction of species and in the distribution of biological legacies (i.e. 

downed woody debris) (Game et al. 1982, Walker and Chapin 1987, Skousen et al. 1994, 

Rodrigue 2001). As a consequence of variability in site conditions, vegetation development is 

often patchy (Game et al. 1982, Skousen et al. 1994, Rodrigue 2001). The irregular composition 

of minesoils and the resulting fine-scale heterogeneity in spoil acidity and rock and shale content 

is often a primary factor in producing spatial and compositional heterogeneity in vegetation 

development (Skousen et al. 1994, Rodrigue 2001). Skousen et al. (1994) investigated natural 

revegetation on abandoned mine land (AML) sites (pre-SMCRA unreclaimed surface mines) in 

West Virginia. Soil pH and acidity were highly influential in the formation of vegetation 

communities. On soils with a high pH and low acidity, herbaceous species were predominant, 

precluding tree establishment. On soils with a low pH and high acidity, tree species and acid-

tolerant grasses were able to establish in favorable microsites created by nurse-logs, brush piles, 

or small ridges and depressions with elevated levels of moisture and seed capture (Skousen et al. 

1994). This type of colonization of dispersed microsites fits with the model of patch succession 

observed by Game et al. (1982) in a study of vegetation dynamics on small (3.7-10.4 hectares), 

unreclaimed surface mines in Missouri (Skousen et al. 1994).  Game et al. (1982) found that 

invading species established within scattered microsites which then expanded and eventually 

coalesced. Colonizing vegetation may also spread inward from the forest-mine edge through the 

amelioration of growing conditions initially in association with the forest edge environment and 
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then subsequently by the progression of pioneer species into the interior of the site (Rodrigue 

2001). 

Skousen et al. (2006) studied differences in vegetation and soils between outslope and 

flat top locations and adjacent reference forest at 20-year-old, reclaimed mountaintop mines in 

West Virginia.  Flat top locations had been seeded with aggressive grasses and legumes whereas 

outslopes had received fairly little seeding. Consequently, tree coverage was significantly higher 

on outslopes than flat top locations. Red maple, black locust (Robinia pseudo-acacia), sourwood, 

autumn olive, black birch (Betula lenta), and yellow poplar were common on outslopes and red 

maple and black locust were the primary tree species on flat top locations. Outslope soils 

generally consisted of native soils and weathered spoil materials, whereas flat top soils were 

composed of a larger proportion of unweathered materials. Flat top soils had a higher pH and 

were thinner and more compacted than outslope soils. In some places along flat top locations, 

soil depth extended only 5-10 cm before the underlying rock was reached. The thick and loose 

condition of outslope soils in combination with the absence of an herbaceous component 

produced stands that structurally and compositionally resembled forest on undisturbed sites. On 

46-year-old mine sites in Ohio, Zeleznik and Skousen (1996) did not find differences in the bulk 

density of leveled minesoils, unleveled minesoils, and undisturbed soils, possibly indicating that 

compaction from leveling was never particularly severe and/or that bulk density had been 

reduced over time.  

On many post-SMCRA mines where minesoils are severely compacted and competition 

from reclamation groundcovers inhibit native species colonization, revegetation towards mid- 

and late-successional hardwood forest would be possible only after a period of several hundred 

years (Johnson and Skousen 1995, Wade 1989, Burger and Zipper 2009). Compaction impedes 

germination, water infiltration, and the rooting of colonizing plants (Holl 2002, Bosworth 2003, 

Groninger et al. 2007, Emerson et al. 2009, Skousen et al. 2009). Minesoils with poor physical 

and chemical properties are characterized by higher mineral content, lower organic matter and 

nutrient content, higher rock fragment content, reduced water retention capacity, and lower 

porosity (Thurman and Sencindiver 1986, Johnson and Skousen 1995, Williams 2003, Burger 

and Zipper 2009).  Minesoils may be more acidic than native soils or they may contain more 

alkaline, unweathered sandstone or shale materials (Emerson et al. 2009). On sites with alkaline 

soils, tree growth may be relatively slow and colonization by trees may also be prolonged 
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(Johnson and Skousen 1995, Emerson et al. 2009). With the loss of native soils during 

excavation, the resulting minesoils are to varying degrees unweathered, a condition dependent on 

proportions of unweathered gray sandstone, shales, and weathered brown sandstone (Emerson et 

al. 2009, Skousen et al. 2009). Unweathered gray materials are buried deeper in the geologic 

profile and consequently develop as soil horizons over a longer period of time (Skousen et al. 

2009). Even with a “substitute” soil layer of unweathered materials, soil horizons with properties 

suitable for tree growth may develop within three years (Sencindiver and Ammons 2000, 

Emerson et al. 2009). On pre-SMCRA mines, hydric minesoils may develop in association with 

areas that are poorly drained such as sloughs that follow the base of the highwall (Atkinson et al. 

1998). Often along mine benches, poor drainage is the result of underlying bedrock or compacted 

minesoils (Atkinson et al. 1998).  

 

AVIAN ASSEMBLAGES ON SURFACE MINES 

Surface mined lands may support diverse avian communities (Karr 1968, Brenner and 

Kelly 1981, Wood et al. 2001, Lacki et al. 2004, Bulluck and Buehler 2006, Patton 2007, 

Carrozzino 2009). Studies of nest success on reclaimed surface mines have focused on grassland 

songbirds and evidence has been mixed as to whether these represent source or sink populations 

(Wray et al. 1982, Ammer 2003, Monroe and Ritchison 2005). Little information exists on the 

reproductive success of early successional and mature forest songbirds nesting on surface mines.  

Recent research has illustrated the significant effect surface mining has on mature forest 

songbirds, Cerulean Warblers (Dendroica cerulea) in particular. Cerulean Warblers 

preferentially select ridgetop habitat for breeding and, intuitively, mountaintop mining represents 

significant habitat loss for this species (Bosworth 2003, Weakland and Wood 2005, Wood et al. 

2006). Additionally, Wood et al. (2006) found that Cerulean Warbler abundance decreased 

significantly in proximity to mine edge. This pattern of avoidance is particularly strong within 

340 meters of mine edge, but also holds to distances of 900 meters (Bosworth 2003, Weakland 

and Wood 2005, Wood et al. 2006). Additionally, Weakland and Wood (2005) found that 

Cerulean Warbler territory density was much reduced in mining fragmented forests (0.7 

territories/10 ha) versus intact forest (4.6 territories/10 ha). Lacki et al. (2004) surveyed riparian 

forest before and after surface mining activity and subsequent reclamation. In adjoining, 

unmined forest, they observed post-mining declines in Ovenbird and Hooded Warbler (Wilsonia 
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citrina) abundance and the absence of Worm-eating and Cerulean Warblers from all post-mining 

surveys.  

Some research indicates that interior-edge species such as Cerulean Warbler may 

increase in abundance in association with narrow-cut contour mining. In the Cumberland 

Mountains of Tennessee, Yahner and Howell (1975) surveyed breeding avian assemblages 

associated with a 20-year-old pre-SMCRA contour mine and within adjacent, undisturbed forest.  

Within the forest margin extending 15 m outward from the mine, Cerulean Warbler density was 

20.1 detections/ha in comparison to 10.6 detections/ha within adjacent, undisturbed forest. In 

eastern Kentucky, Crawford et al. (1978) investigated the short-term effects of contour mining 

on breeding bird assemblages in adjacent forest. His survey route was 50 m downslope of the 

ridgeline, on the backside of which lay the mining operation. Cerulean Warblers were absent 

during pre-mining surveys (1975), but were detected at densities of 12.7 males/ha during the first 

year of mining (1976) and 18.9 males/ha by the completion of mining (1978). Additionally, 

Buehler et al. (2006) observed territorial Cerulean Warbler males within young forest (<30 years 

old) that had developed on unreclaimed contour mines in Tennessee. 

The seeding of exotic grasses and legumes and the level of compaction associated with 

post-SMCRA reclamation likely produces poor-quality early successional habitat (Rosenberg 

and Dettmers 2004). Woody plant invasion on mountaintop mines is generally sparse and 

relegated to forest edges (Handel 2003). On mountaintop mines and in adjacent forest in 

southern West Virginia, Wood et al. (2001) found higher species richness and total abundance 

for bird communities in shrub-pole mine habitat than for grassland mine habitat, intact forest, 

and fragmented forest.  

Bulluck and Buehler (2008) studied Golden-winged Warblers breeding on reclaimed 

contour mines (14-26 years old) in the Cumberland Mountains of Tennessee. Over three seasons, 

the daily survival rate for Golden-winged Warbler nests ranged from 0.9641-0.9834. Chapman et 

al. (1978) surveyed bird communities on contour mines in southern West Virginia. Bird diversity 

was highest on mines that were 8-10 years post-reclamation, and several shrubland bird species 

were absent from mines more than 12 years post-reclamation. Absent species included: Golden-

winged Warbler, Yellow-breasted Chat (Icteria virens), Prairie Warbler (Dendroica discolor), 

and Common Yellowthroat (Geothlypis trichas). They found higher species diversity in adjacent 

unmined forest than within any of their mined sites. 
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Few studies have investigated avian assemblages on forested minelands. In southwest 

Virginia, Carrozzino (2009) surveyed bird communities on 5-12 year old reclaimed mines, 13-25 

year old reclaimed mines, 2-18 year old clearcuts, managed pastureland, 30-60 year old pre-

SMCRA mines, and reference forest. She found the highest species richness on pre-SMCRA 

mines because these sites were primarily edge-dominated shrub-pole habitats. Karr (1968) 

studied avian assemblages along a chronosequence of strip-mined lands in Illinois. Included 

among his study sites was a 6.2 ha section of bottomland forest on land that had been strip-mined 

approximately 60 years prior to the study. Several species, including Kentucky Warbler 

(Oporornis formosus), Cerulean Warbler, Northern Parula (Parula americana), American 

Redstart (Setophaga ruticilla), Acadian Flycatcher (Empidomax virescens), Blue-gray 

Gnatcatcher (Polioptila caerulea), and Prothonotary Warbler (Protonotaria citrea), established 

territories on the mineland forest plot but were absent from a nearby tract of undisturbed forest. 

 

STAND STRUCTURE AND COMPOSITION WITHIN SECONDARY FORESTS 

Mature eastern forests are primarily second-growth stands initiated during extensive 

clearcutting during the late 1800s and early 1900s (Lorimer 1989). Canopy gap dynamics within 

secondary forests differ from those functioning within stands of old-growth forest (Clebsch and 

Busing 1989, Lorimer 1989, Weishampel et al. 2007). In secondary forests, rapid lateral crown 

expansion often limits the duration in which the canopy remains open (Lorimer 1989). In 

uneven-aged forests, older trees are generally limited in their ability to initiate rapid growth in 

response to increased growing space (Hart and Grissino-Mayer 2008). Additionally, the larger 

gap sizes that are characteristic of uneven-aged forests may preclude canopy closure via lateral 

crown expansion (Hart and Grissino-Mayer 2008). Consequently, subcanopy individuals may 

capture this growing space via height growth (Hart and Grissino-Mayer 2008). Dominants within 

secondary forests are also younger than those within old-growth forests and therefore less 

frequent gap makers (Lorimer 1989).  

Yellow poplar is a shade-intolerant, rapidly growing species capable of forming 

monospecific canopies on sites that have experienced significant anthropogenic disturbance 

(Lafon 2004). More extensively, it is distributed sporadically within mesophytic forests where it 

captures large canopy gaps primarily on moist sites (i.e. coves and north-facing slopes) (Mudrick 

et al. 1994, Lafon 2004). Clebsch and Busing (1989) studied gap dynamics within a stand of 
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mixed-mesophytic old growth forest and within an adjacent, 67-year-old, yellow poplar 

dominated stand that had established upon an abandoned agricultural field. Gaps within the 

yellow poplar stand were narrowly distributed within <100 m2 size classes, whereas the old 

growth stand contained gaps in a range of size classes including some exceeding 280 m2. Within 

the yellow poplar stand, tree crowns were generally non-overlapping, but restricted in their 

breadth by the uniform distribution of adjacent crowns. As a result, individual tree mortality 

produced small openings that were evenly distributed across the stand.  

 In western Virginia, Lafon (2004) investigated stand dynamics within forest that had 

established on former agricultural land abandoned in the late 1940s. On both mesic and relatively 

xeric sites within this stand, the canopy was dominated by a single cohort of yellow poplar. Pole-

sized white ash (Fraxinus americana) and red maple were abundant and, according to the author, 

may eventually form the dominant canopy species on the relatively xeric sites within this stand. 

However, Lafon (2004) suggests that yellow poplar forest may persist on the majority of the site 

through capture of multiple-treefall gaps created by ice storms. He suggests that, at this particular 

stage of development, large treefall gaps are necessary for the initiation of additional cohorts. 

 In pine-hemlock-northern hardwood forest, Weishampel et al. (2007) studied the canopy 

structure of stands initiated under varied disturbance intensities from a 1938 hurricane and 

subsequent salvage logging operations. They used Light Detection and Ranging (LiDAR) remote 

sensing data to calculate canopy top height (CH), an index of canopy height diversity (CD), and 

an index of canopy evenness (CE). The latter two are indices of vertical stratification of canopy 

layers from the forest floor. The more severely disturbed stands had significantly lower CD 

indices, shorter canopies by less than one meter, and higher levels of spatial autocorrelation for 

CH. According to the authors, these findings indicate that the canopies of the more severely 

disturbed stands have reduced horizontal and vertical structural heterogeneity relative to 

undisturbed and moderately disturbed stands.  

Pronounced vertical stratification is often found within stands in which species 

composition is characterized by significant differences in interspecific growth rates and shade 

tolerance (Guldin and Lorimer 1985). Additionally, species with lower shade tolerance tend to 

have less densely foliated canopies. Consequently, their presence in the canopy may allow 

greater persistence of tolerant species (i.e. red maple) within the subcanopy (Lorimer and Krug 

1983). 
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Disturbance regimes in eastern deciduous forests have seen significant alteration since 

European settlement. Within pre-settlement, mixed hardwood forests, anthropogenic and natural 

fire contributed to the establishment and maintenance of oak-dominated forests (Nowacki and 

Abrams 2008). Within post-settlement mixed hardwood forests, timber cutting for fuelwood and 

lumber and the slash fires that accompanied harvests formed the primary disturbance regime 

until the advent of fire suppression in the 1920s and 1930s (Nowacki and Abrams 2008). The 

frequency of fires and the extent of logging was such that oaks came to further dominate mixed 

hardwood forests (Nowacki and Abrams 2008). In the absence of fire and with the abatement of 

land clearing, oak dominance has waned as shade tolerant species are capable of overtopping oak 

regeneration at all but the more xeric sites (Nowacki and Abrams 2008). Consequently, species 

composition is shifting towards mesophytic species (Nowacki and Abrams 2008). 

Relative to oak-dominated forests, the canopy closure and high leaf area associated with 

stands dominated by mesophytic hardwoods, typically results in higher relative humidity and 

reduced air movement and radiation within the subcanopy (Nauertz et al. 2004, Nowacki and 

Abrams 2008). Decomposition of leaf litter and downed woody debris is also more rapid within 

the cool, moist microclimate existing within forests dominated by mesophytic species (Nowacki 

and Abrams 2008). In addition to this microclimatic influence, the structural properties and 

decay rates of the leaves and wood of oaks and hickories differ from those of mesophytic species 

and therefore contribute to differences in decomposition dynamics within these two forest types 

(Nowacki and Abrams 2008).  As a result of high tannin and lignin concentrations and low 

nitrogen and calcium concentrations, oak leaves are less palatable to detritivores and 

consequently decompose slower than leaves of many mesophytic species (Fox et al. 2010). 

Mudrick et al. (1994) found that yellow poplar and red maple leaf litter decomposed significantly 

faster than chestnut oak litter.  

In Ohio and Indiana, Fox et al. (2010) compared ground and shrub-nesting bird 

assemblages within oak dominated forests and forests dominated by sugar maple and 

successional species (i.e. yellow poplar, black cherry (Prunus serotina), and slippery elm (Ulmus 

fulva). They found that leaf litter depth was significantly reduced in the maple dominated forests 

relative to oak dominated forests. Ground nesting species including Ovenbird, Black-and-white 

Warbler, and Worm-eating Warbler were absent in maple dominated forests whereas they were 

abundant in oak dominated forests. Eastern Towhee (Pipilo erythrophthalmus), Indigo Bunting, 
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and Northern Cardinal (Cardinalis cardinalis) were more abundant in maple dominated forests. 

In a series of leaf litter decomposition experiments, they found that oak leaves decomposed 

significantly slower than successional species including yellow poplar. Fox et al. (2010) suggest 

that decreased litter depth and, consequently, a scarcity of high quality nest sites and foraging 

habitat contributed to the absence of ground-nesting songbirds within maple dominated forests.  

In part by virtue of their specialized foraging strategies and nest architecture, forest 

songbirds may show preferences for particular tree species as foraging and nest substrates on the 

basis of characteristic foliage and branch structure (Holmes and Robinson 1981, Holmes and 

Robinson 1988). Several studies indicate that these preferences are generally for oak and hickory 

species and not mesophytic species, such as red maple and yellow poplar (Gabbe et al. 2002, 

George 2009, Newell 2010). In bottomland forest in Illinois, insectivorous forest birds showed 

strong foraging preferences for kingnut (Carya laciniosa) and bitternut hickories (Carya 

cordiformis) (Gabbe et al. 2002). Cerulean Warblers selectively foraged in kingnut hickory and 

avoided red maple. Some forest songbirds may not be adapted for capturing arthropods on red 

maple foliage due to the length of its petioles and the size of its leaves (Franzreb 1978, Holmes 

and Robinson 1981, Holmes and Schultz 1988, Rodewald and Abrams 2002). Relative to other 

hardwood species, some research has illustrated that oaks host a greater diversity of lepidopteran 

species (Summerville et al. 2003). In a study within oak-dominated forests and maple-dominated 

forests in Ohio, lepidopteran assemblages were strongly organized by the dominant canopy 

species (Summerville and Crist 2008). In a comparison of bird communities within maple and 

oak dominated stands, Rodewald and Abrams (2002) found reduced abundance for the bark 

gleaning guild in maple dominated stands across spring, fall, and winter. They attribute this 

pattern to the availability of acorns in oak-dominated forests. In Ohio, Cerulean Warblers, 

Scarlet Tanagers (Piranga olivacea), Blue-gray Gnatcatchers, and Eastern Wood-Pewees 

(Contopus virens) placed nests in white oak (Quercus alba) in disproportion to its availability 

and avoided placing nests in red maple (Newell 2010).  

 

AVIAN ASSEMBLAGES AND CANOPY GAPS 

Lertzman et al. (1996) separate canopy openings into two categories: “developmental 

gaps” and “edaphic gaps”. Edaphic gaps are the product of soil, topographic, or geomorphic 

features including streams, boulders, cliffs, and standing water. They represent “persistent open 
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space” owing to the absence or arrested state of successional dynamics. Developmental gaps 

result from the mortality of one or several trees and are closed through lateral crown expansion 

or vertical height growth of interior gap vegetation.  

The natural mortality of one or several trees is a primary component of disturbance 

regimes functioning within eastern deciduous forests and consequently contributes much of the 

habitat hetereogeneity within these forests (Runkle 1982). Greenberg and Lanham (2001) found 

that total breeding bird abundance was higher within hurricane-created gaps compared to 

adjacent, closed-canopy forest. Species richness was also significantly higher in gaps. Among 

Neotropical migrants, Indigo Bunting (Passerina cyanea), Hooded Warbler, Blue-headed Vireo, 

and Worm-eating Warbler were significantly more abundant in gaps. Only Ovenbird was 

significantly more abundant in closed-canopy forest. Red-eyed Vireo and Scarlet Tanager were 

detected in similar densities within gaps and closed-canopy forest.  

Research conducted during spring and fall migration has found a positive correlation 

between migrant abundance within treefall gaps and elevated levels of both fruit and arthropod 

abundance (Blake and Hoppes 1986, Martin and Karr 1986). During the post-breeding period, 

adults and juveniles of a number of forest-interior species including Wood Thrush, Worm-eating 

Warblers, Ovenbirds, and Scarlet Tanagers demonstrate selective use of dense, shrub layer 

vegetation occurring within a variety of harvest treatments and edge habitats (Anders et al. 1998, 

Vega Rivera et al. 1998, Pagen et al. 2000, Dellinger 2007, McDermott and Wood 2010, Vitz 

and Rodewald 2010). During the breeding season, the nature of interior-edge species‟ association 

with openings in the canopy is not thoroughly understood. Openings in the forest canopy result 

in increased light reaching the understory and residual canopy, which in turn results in elevated 

primary productivity within gaps (Blake and Hoppes 1986, Martin and Karr 1986, Smith and 

Dallman 1996, Gorham et al. 2002). Canopy gaps may provide some forest songbirds with dense 

foliage in the understory and peripheral canopy in which to conceal nests (Greenberg and 

Lanham 2001). Increased foliage density and vertical complexity within gaps may also increase 

foraging efficiency among leaf-gleaning species (Blake and Hoppes 1986, Martin and Karr 1986, 

Smith and Dallman 1996, Gorham et al. 2002). The opening of the canopy may result in 

conditions (a warmer understory microenvironment and elevated primary productivity) that favor 

the growth of flying insect populations (Blake and Hoppes 1986, Smith and Dallman 1996, 

Gorham et al. 2002, George 2009). In studies of partial harvesting, Eastern Wood Pewees, a 
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flycatching species, generally respond positively to the opening of the canopy (Annand and 

Thompson 1997, Newell 2010). In addition, Smith and Dallman (1996) suggest that Black-

throated Green Warblers (Dendroica virens) may use canopy gaps as nodes of territory 

advertisement and delineation due to the acoustic qualities of gaps and their structural contrast 

relative to the surrounding forest. 

Several studies have investigated bird use of harvested gaps in relation to fruit and 

arthropod abundance. In general, the relationship between bird use and resource availability 

within harvested gaps is unclear, possibly as an outcome of seasonal variation in resources and 

high arthropod diversity (Moorman and Guynn 2001, Kilgo 2005, Bowen et al. 2007).  In 

research conducted in bottomland forest in South Carolina, arthropod abundance and Hooded 

Warbler attack rates, an indication of foraging efficiency, were both higher >100 m from group 

selection gaps than along gap edges and at intermediate distances (Kilgo 2005). Kilgo (2005) 

suggests that arthropod abundance during the breeding season may not have been limiting across 

the extent of the study area. 

While a number of bird community studies have focused on the effects of induced edges, 

relatively few have investigated the effects of inherent or persistent edges resulting from soil, 

topographic, or geomorphic features (Matheson and Larson 1998). Along the Niagara 

Escarpment in Ontario, Matheson and Larson (1998) investigated differences in forest bird 

assemblages within four cliff associated habitats (plateau, cliff edge, cliff face, and talus slope). 

Patterns of species richness differed between their sites; however, they consistently observed the 

lowest species richness in plateau woodlands and higher species richness along cliff edges and 

talus slopes.  

 

MOISTURE GRADIENT INFLUENCES ON AVIAN ASSEMBLAGES 

Appalachian oak forest varies structurally and compositionally along a soil moisture and 

fertility gradient, characteristics which are primarily determined by topographic and geologic 

factors (McEvoy et al. 1980). Previous studies have shown patterns in bird density and 

occurrence along moisture gradients (Bertin 1977, Swift et al. 1984, Petit et al. 1985, McShea et 

al. 1995, Murray and Stauffer 1995). 

 Petit et al. (1985) quantified variation in breeding bird assemblages along a relative 

humidity gradient. Bird species richness and understory foliage density were positively 
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correlated with relative humidity; overall abundance was not. Several species, including Red-

bellied Woodpecker (Melanerpes carolinus), Hairy Woodpecker (Picoides villosus), Wood 

Thrush, and Ovenbird, were more abundant within plots with higher relative humidity. In 

forested wetlands in Massachusetts, overall bird density was positively correlated with the small 

shrub density, coverage of standing water, and depth of soil muck. Species richness was 

positively correlated with small shrub density and depth of soil muck (Swift et al. 1984). From 

surveys conducted along a stream to upland forest gradient, Murray and Stauffer (1995) placed 

Scarlet Tanager, Red-eyed Vireo, Ovenbird, and Blue-headed Vireo within a xeric upland forest 

assemblage and Wood Thrush and Black-throated Green Warbler within a mesic forest 

assemblage. 

 Dettmers and Bart (1999) developed and evaluated spatial, microhabitat-based models for 

eastern forest songbirds. Models for Acadian Flycatcher and Worm-eating Warbler identified 

these species as having relatively restrictive microhabitat preferences for concave, moisture 

collecting topography (e.g. ravines and stream bottoms). Hooded Warbler, Eastern-Wood Pewee, 

Cerulean Warbler, and Scarlet Tanager were associated with convex terrain (e.g. adjacent to or 

on hilltops and ridges) and drier moisture conditions. Within this group, species‟ microhabitat 

preferences varied according to slope position and steepness and moisture conditions. Ovenbird, 

Red-eyed Vireo, and Wood Thrush were associated with a range of microhabitat conditions and 

were therefore dispersed relatively evenly across the study area.  

 In a habitat selection study of sympatric populations of Wood Thrush and Veery 

(Catharus fuscescens), Bertin (1977) found that moisture regime, as measured by visible soil 

characteristics, accounted for 76.0% and 78.4%, respectively, of the variation in territory 

characteristics between occupied and unoccupied habitat. Both species frequently established 

territories along streams, seeps, and springs. Bertin (1977) suggests that thrushes as well as other 

ground-nesting and foraging species may use relative humidity and temperature as proximate 

cues to habitat suitability.  

In research conducted in northwestern Virginia, McShea et al. (1995) found that 

Kentucky Warblers were significantly associated with red maple dominated forest and rarely 

established territories in oak-hickory forest. McShea et al. (1995) suggest that the preference for 

the red maple forest type may reflect the increased moisture associated with these sites. The 
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density of Kentucky Warbler prey, invertebrates taken from leaf litter and gleaned from foliage, 

may be greater in these moist environments (McShea et al. 1995).  

 

RED-EYED VIREO BREEDING ECOLOGY 

Breeding habitat in which Red-eyed Vireos are generally most abundant is characterized 

by high levels of canopy closure, basal area, and vertical stratification (James 1971, Williamson 

1971, Stauffer and Best 1980, Yahner 1986, Marshall and Cooper 2004). However, use extends 

to habitats with low levels of canopy cover and complexity: city parks, residential areas, and 

citrus groves (Graber et al. 1985, Mills 1989, Cimprich et al. 2000). Conclusions from research 

aimed at quantifying Red-eyed Vireo area-sensitivity and edge avoidance have been inconsistent 

among varied forest landscapes (Freemark and Collins 1992, Villard 1998, Burke and Nol 2000, 

Dunford et al. 2002). 

In a study of Blue-headed (Vireo solitaries) and Red-eyed Vireo (Vireo olivaceus) habitat 

use in the southern Appalachians, Hudman and Chandler (2002) found that white oaks, conifers, 

and ericaceous shrubs were more abundant in Blue-headed Vireo territories whereas red oak and 

red maple were more abundant in Red-eyed Vireo territories.  

Marshall and Cooper (2004) found that Red-eyed Vireo territory size was inversely 

correlated to the volume of foliage within a territory. Foliage volume was positively associated 

with caterpillar density during the nestling stage. Additionally, the timing of the nestling stage 

corresponded to the lowest levels of caterpillar and arthropod abundance over the course of the 

breeding season. The authors suggest that Red-eyed Vireos use foliage density as a structural cue 

in determining the size of a three-dimensional territory that will contain sufficient resources for 

successful brood rearing. Consequently, foliage density has implications for all aspects of vireo 

breeding ecology, including nest survival (Marshall and Cooper 2004). 

Red-eyed Vireos show a high degree of plasticity in terms of the heights at which nests 

are placed (Martin 1988). Several studies (Lawrence 1953, Southern 1958, Rice 1974, Graber et 

al. 1985) observed mean nest heights within a range of 2.5-4.3 m. Other studies have reported 

mean nest heights that reflect greater variability; 10.7 ± 5.8 m (mean ± SD) for a study in New 

Hampshire (Robinson 1981) and 7.0 ± 5.7 m (mean ± SD) for a study in the central 

Appalachians (DeCecco et al. 2000). Differences in reported nest heights may also reflect the 

difficulty in locating nests placed higher in the canopy (Rodewald 2004). Rodewald (2004) 
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found that Red-eyed Vireo nests located by luck had a mean height of 3.5 ± 0.6 m (mean ± SE), 

whereas nests located via parental behavior had a mean height of 10.1 ± 1.1 m. Martin (1988) 

suggests that differences in reported nest heights for Red-eyed Vireos may be adaptive in the 

sense that they are ultimately related to minimizing vertical overlap with conspecifics.  

In a study of the breeding ecology of Red-eyed Vireos in Pennsylvania, characteristics of 

nest patch vegetation were not indicative of nest fate (Siepielski et al. 2001). The authors suggest 

that forest cover on the landscape scale may be more influential in terms of structuring predator 

assemblages and affecting reproductive success (Donovan et al. 1997, Siepielski et al. 2001, 

Rodewald 2002). They also hypothesize that vireo nest site selection may not be adaptive in the 

presence of predator assemblages unique to landscapes with significant anthropogenic 

disturbance. Rodewald (2002) found 2-2.6 times lower daily nest survival rates for ground and 

mid-canopy nesting species in forested landscapes fragmented by agriculture relative to 

landscapes fragmented by silviculture. She found lower densities of corvids and squirrels within 

silviculture-fragmented landscapes, indicating that a higher density and diversity of predators are 

associated with the enduring non-forest habitat within agriculture-fragmented landscapes 

(Rodewald and Yahner 2001, Rodewald 2002). Within contiguous forest fragmented only by 

narrow forest roads and low density housing, Gale et al. (1997) found no difference in the 

number of Worm-eating Warbler pairs fledging host and Brown-headed Cowbird young between 

study plots located in small and large patches.  
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ABSTRACT 

Given that avian use of mineland forest has gone largely unstudied, I initiated research to 

examine patterns of bird species composition within pre-SMCRA mineland forest and reference 

(unmined) forest in relation to habitat structure and composition. I also contrasted nest survival 

of Red-eyed Vireos (Vireo olivaceus) breeding within mineland and reference forest. Line 

transect surveys and nest monitoring were done in New River Gorge National River in 2011. 

Ordination of avian assemblages using non-metric dimensional scaling (NMDS) showed clear 

discrimination between mineland and reference assemblages. Linear and surface fitting of habitat 

variables showed strong correlations between the ordination and groundcover gradients, but 

generally non-significant relationships for gradients describing forest structure. Mineland 

assemblages were associated with lower levels of litter cover and depth and also had lower 

abundance of Ovenbirds (Seiurus aurocapillus). Compared to reference assemblages, mineland 

assemblage structure was more variable suggesting a wider gradient in forest structure on 

minelands. Within mineland forest, edaphic conditions/disturbances were likely influential in 

creating spatial heterogeneity in forest structure. However, nest survival for Red-eyed Vireos 

was similar within mineland and reference forest and overstory cover and vertical foliage density 

had minimal effect on nest survival. Classification tree modeling using forest type as the 

response variable indicated that reference nest sites were characterized by greater subcanopy 

cover and higher densities of trees in the 8-23 cm size class than mineland nest sites. Results 

from this study indicate that forest bird assemblages may be structured differently in the absence 

of heavy-seeded tree species on minelands. 

 

 INTRODUCTION   

Post-mining land use has varied greatly since surface mining was first introduced. Prior 

to the Surface Mining Control and Reclamation Act (SMCRA) in 1977, coal surface mining in 

Appalachia generally followed the “shoot and shove” method for extraction resulting in an 

exposed highwall, bench-land along its face, and an outslope comprised of loose spoil that had 

been pushed below. SMCRA required that mine operators “backfill, compact, and grade in order 

to restore the approximate original contour (AOC) of the land with all highwalls, spoil piles, and 

depressions eliminated" (Office of Surface Mining Reclamation and Enforcement 2008). Mine 

companies, dozer operators, and regulatory agencies responded with expectations of a uniformly 
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smooth post-mining landscape. In the decades that followed, surface mines were generally 

reclaimed to pastureland dominated by exotics and stress-tolerant species (Burger et al. 2002, 

Burger et al. 2005, Showalter and Burger 2006). The traditional post-SMCRA post-mining 

environment is one in which minesoils are severely compacted from immoderate grading, 

unweathered materials contribute heavily to the growth medium, and aggressive groundcovers 

inhibit native species colonization (Burger et al. 2002). Under these conditions, forest 

development is arrested and, through their persistence as degraded, seral communities, surface 

mines contribute to forest fragmentation (Wade 1989, Johnson and Skousen 1995, Burger and 

Zipper 2009). Within landscapes that are fragmented by traditionally reclaimed surface mines, 

forest patches are smaller and forest cover on the landscape scale is reduced (Wickham et al. 

2007). As a result, forest songbirds that require large, continuous blocks of forest are negatively 

affected (Wood et al. 2006).  

The Appalachian Regional Reforestation Initiative (ARRI) was established by the Office 

of Surface Mining in 2004 with the primary objective of encouraging surface mine reforestation 

through a method termed the Forestry Reclamation Approach (FRA). The Forestry Reclamation 

Approach is a series of field-tested guidelines directed at advancing forest succession on 

minelands (Burger and Fannon 2009, Skousen et al. 2009).  Components of this approach 

include creating an uncompacted growth medium in which hardwoods are capable of exhibiting 

normal survival and growth and seeding non-aggressive groundcovers which do not completely 

inhibit forest plant invasion (Burger et al. 2005).  

Pre-SMCRA abandoned minelands contain areas of uncompacted minesoils on which 

hardwood forest has developed in the absence of aggressive groundcovers.  The pre-SMCRA 

minelands used in this study were not planted and consequently are dominated by pioneer 

species. Despite potential differences in tree species composition, study of the relationship 

between habitat structure and avian assemblage composition within pre-SMCRA mineland forest 

could provide insight into the species assemblages that future reforestation efforts might yield. 

Study of the reproductive success of forest songbirds within pre-SMCRA mineland forest may 

provide some indication as to whether this habitat is capable of sustaining breeding populations 

of canopy-nesting songbirds.  

The objectives of this study were to 1) examine patterns in avian assemblage structure 

within mined and reference forest and to link the avian assemblage response to variables 
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describing habitat structure and composition, and 2) contrast nest survival of Red-eyed Vireos 

(Vireo olivaceus) breeding within mineland forest and unmined oak-hickory forest. 

 

METHODS 

Study area 

The study area, located atop the New River Plateau within New River Gorge National 

River in southern West Virginia, included pre-SMCRA abandoned minelands and adjacent 

unmined sites (hereafter reference forest) (Appendix A). Forest cover is largely unfragmented 

and of the oak-hickory type. White (Quercus alba), chestnut (Quercus prinus), scarlet (Quercus 

coccinea), and black oak (Quercus velutina) comprised the predominant canopy species. Yellow 

poplar (Liriodendron tulipifera), red maple (Acer rubrum), and black birch (Betula lenta) were 

predominant within minelands. Elevations within the study area are 550-670 m. Soils primarily 

consist of silt loams and are stony, shallow, and moderately well-drained (USDA 1975).  

I selected pre-SMCRA minelands using the following criteria: loose-dumped spoil was 

placed in ridges and mounds atop benches and also within outslopes, the mineland stand was 

continuous, mature hardwood forest, the mineland canopy obscured the edge once created by the 

highwall, and recent off-road vehicle use was not evident. I also chose minelands that were 

relatively wide (80-100 m wide on average) in order for avian use to bear stronger relation to 

habitat structure within the mineland patch. The relative expansiveness of pre-SMCRA 

minelands atop the New River Plateau is an outcome of the moderate terrain that allowed for 

deeper coal extraction.  

Based on aerial photos taken in 1945 (Appendix B), mineland stands were 60-65 years 

old. Reference stands primarily originated during extensive clearcutting at the turn of the century 

(Brooks 1910), but also included stands that were closer in age to mineland stands. The latter 

were abandoned homesteads and a former mining company town that existed as early 

successional vegetation at the time the 1945 photos were taken.  

 

Avian assemblage structure and habitat relationships 

Across the three study sites, I established 28 fixed-width line transects (14 mined and 14 

reference) within four pre-SMCRA abandoned minelands and adjacent, reference forest (Fig. 1 

and 2). I used fixed-width line transects because mines were configured linearly with dimensions 
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that were generally consistent with a transect width of 50 m on each side of the line. Line 

transects also were preferable because in some situations they may yield more detections per unit 

of time (Bollinger et al. 1988, Buckland et al. 2001). Additionally, the greater survey coverage 

associated with line transects relative to point transects is thought to limit potential bias from 

evasive bird movement (Buckland et al. 2001). All transects were 250 m in length and sampled 

the available habitat (mineland or reference forest) within 50 m strips on each side of the line.  

Transect layout was accomplished in ArcGIS using a 1-meter Digital Elevation Map 

(DEM) in which mineland boundaries were clearly evident. I placed the first transect within each 

discontinuous mineland using a random start point (0-50 m) measured from the widest point 

along the northern or eastern edge of each mine (Gates 1979, Buckland et al. 2004). The starting 

points of subsequent transects were then located 200 m from the closest point of the previous 

transect (Bibby et al. 1992). Mineland transects were generally located along the center of the 

long axis orientation of mines and bent according to mine configuration. In some instances 

where mine width exceeded 100 m, I oriented transects to maximize their number within the 

mine.  

I placed reference transects to maximize their number within stands of mature, oak-

hickory forest. In order to follow the general orientation of mineland transects, I attempted to 

orient reference transects to parallel the dominant contour of the land. I placed each transect 200 

m from adjacent transects at their closest point. I also located reference transects ≥150 m from 

mines and ≥50 m from the rim of the New River Gorge. I established reference transects as 

straight lines to facilitate line navigation and accuracy in distance estimation. This contrasted 

with the bent line orientation of mineland transects. However, mined transects had the benefit of 

highwall and outslope features in orienting the observer and defining the survey strip.  

Bird surveys. In 2011, I conducted transect surveys between May 16 and June 2 from a 

half hour after sunset to 1030, coinciding with peak singing. I surveyed each transect over a 25 

minute period (Ralph et al. 1993). I flagged transects every 50 m to facilitate navigation and to 

ensure that equal survey effort was allotted to each section of a transect. Birds detected within 50 

m of the line were recorded. On mineland transects, I recorded only individuals detected within 

the boundaries of the mine (e.g. from the base of the highwall to the bottom of the outslope). 

Sections of minelands that were <100 m wide resulted in small differences in the area of habitat 

surveyed relative to reference transects. Reference transects surveyed 2.5 ha, whereas the mean 
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survey area for mineland transects was 2.21 ± 0.16 ha (mean ± SD). All analyses accounted for 

variation in survey area (see below).  

I used a laser rangefinder to estimate the perpendicular distance to each bird detected 

within 50 m of the center line. Flyovers were not recorded. I plotted detections within 25 and 50 

m distance bands on a map of each transect. Maps of mineland transects delineated the 

boundaries of outslope, bench, and highwall features. I surveyed each transect twice and used a 

species‟ maximum count between the two visits for analyses. 

Habitat sampling. I sampled habitat structure and composition within four, 0.04 ha 

circular plots per transect using methods similar to Wood et al. (2001) that were modified from 

James and Shugart (1970) and the Breeding Bird Research Database Program (BBIRD; Martin et 

al. 1997). I located plots at a random distance (0-30 m) perpendicular to 50, 100, 150, and 200 m 

intervals along transects. Plots were established on alternating sides of the line with the initial 

side chosen at random. I identified all trees >8 cm diameter at breast height (dbh) to species and 

measured dbh. I tallied all vines that reached the canopy on measured trees and counted all snags 

>8 cm dbh and >8 m tall. Within each plot, I established two, 22.6 m perpendicular transects. 

Using an ocular tube and sighting along the tube‟s crosshairs, I estimated vertical foliage density 

at a total of 20 points, located 2 m apart along the perpendicular transects. I recorded the 

presence or absence of live foliage in the crosshairs at heights of 0.5-3 m, >3-6 m, >6-12 m, >12-

18 m, >18-24 m, and >24 m. From these data, I calculated vertical foliage density as the sum of 

all foliage hits divided by the total number of sighting intervals (120) and then multiplied by 100. 

Foliage density also were collapsed into understory (0-6 m), midstory (>6-18 m), and overstory 

(>18 m) layers.  

Additionally at each of the 20 points, I measured leaf litter depth and recorded 

groundcover type (<0.5 m) as bareground, forb, litter (leaf litter and downed woody debris), or 

woody. Within 3 m-radius subplots at the center of each 0.04 ha plot, I estimated shrub, sapling, 

leaf litter, and downed woody debris cover (logs and stumps >8 cm dbh and >1 m in length). 

Within each subplot, I also identified and counted woody vegetation 0.5-1.5 m tall and tallied 

saplings (>1.5 m tall and <8 cm dbh) and downed logs. In ArcGIS, I derived mean slope and 

solar radiation (insolation) values for each transect from a 1 meter DEM.  I used solar radiation 

(expressed as watt hours/m2 over the course of a year) as a site-productivity metric in place of 

aspect because it takes into account slope position in addition to aspect.  
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Nest survival of Red-eyed Vireos 

Red-eyed Vireo was chosen as the focal species because they were by far the most 

abundant species within mineland sites and were found in similar densities within reference 

forest. This was important in terms of finding enough nests to reliably estimate nest survival. 

Additionally, Red-eyed Vireo territories are relatively compact; territory size for Red-eyed 

Vireos breeding on the Monongahela National Forest, West Virginia, was 0.39 ± 0.16 ha (mean 

± SD) (Marshall and Cooper 2004). Thus, territory sizes and vireo density reflected use of 

mineland forest and placed vireos and their nests subject to structural conditions and food 

resources within this relatively narrow habitat.  

I monitored Red-eyed Vireo nests within three reference and three mineland plots (Fig. 

3). Reference plots were located >100 m from mines and were 5.4-36.4 ha in size (Fig. 5). 

Mineland plots were 8.8-20.8 ha. I monitored nests every 3-5 days initially and every 1-2 days as 

fledging approached (Martin and Geupel 1993). To determine nest fate among nests in which 

inactivity was consistent with reaching or approaching (within 2 days of) predicted fledge dates, 

I attempted to aurally or visually observe fledglings or adults feeding fledglings. A nest was 

considered successful if it fledged at least one nestling.  

I sampled vegetation within 0.04 ha plots centered at vireo nests following methods 

described earlier. Additional data collection included measurements of nest height, height of the 

nest tree, height of  the nearest tree in the dominant crown class (tree with a crown that projects 

above the general canopy layer), and the distance from the nest to both the bottom and top of the 

canopy, all of which were taken using a clinometer. I also recorded the distance to the nearest 

canopy gap and the type of gap (edaphic, snag, or treefall). Gaps were defined as having a long 

axis diameter greater than 5 m (Pickett and White 1985) with an interior maximum canopy 

height less than half that of the peripheral canopy. Following Lertzman et al. (1996), edaphic 

gaps were the product of soil, topographic, or geomorphic features. 

 

ANALYSES 

Avian assemblage structure and habitat relationships 

I used non-metric multidimensional scaling (NMDS) to visualize patterns in avian 

assemblage structure between mineland and reference forest and to link habitat gradients to 
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assemblage pattern. In NMDS, ordination is based upon preservation of the original rank order of 

between sample distances derived from a dissimilarity matrix (Clarke and Green 1988, Clarke 

1993). In using rank order distances, NMDS avoids the linear distribution assumption (Clarke 

and Green 1988). In addition, NMDS is an unconstrained ordination technique and therefore 

designed for the purpose of linking patterns in assemblage structure to observed habitat gradients 

(Oksanen et al. 2009). Locations of assemblages in the multidimensional space are determined 

through multiple iterations such that stress is minimized (Clarke and Green 1988). Stress is a 

measure of goodness of fit between plotted and true rank order distances from the original 

distance matrix (Clarke and Green 1988).  

NMDS was conducted using the „vegan‟ package (Oksanen et al. 2009) within Program 

R 2.12.1 (R Development Core Team 2010). Within the species matrix, observations were 

entered as detections ha-1 rather than raw counts and species detected on ≤2 transects were 

excluded (Preston and Harestad 2007, Chizinski et al. 2011). Ordination was performed using the 

metaMDS function and a Bray-Curtis dissimilarity matrix. Data were standardized using the 

Wisconsin double standardization method and square-root transformed to increase the relative 

importance of less abundant species. Multiple random starts (20/ordination) were performed to 

avoid becoming trapped in local minima (the iterative process stalling at a stress value that 

actually can be further reduced) (McCune and Grace 2002). NMDS was conducted in 

dimensions 2-6. The stress of NMDS ordinations was evaluated against their dimensionality via 

a screeplot to determine the appropriate dimensionality for display and statistical testing. The 

location of the sample as within mined (M) or reference (R) forest was overlaid and species were 

ordinated by their averaged weighted scores. Habitat variables were correlated to ordinations 

using vector and surface fitting. For each habitat variable, I used the mean value of the four 

replicate plots sampled along each transect. Vector fitting allowed for visual interpretation of the 

strength and direction of the variable-ordination relationship. The strength of the variable-

ordination relationship was statistically assessed using r2 and p-values derived from 999 

permutations. Vector fitting assumes a linear relationship between the variable and the 

ordination. Because this is often not the case, general additive models (GAM) were used to 

produce surface fitting contours within the NMDS plot for visual and statistical interpretation of 

environmental gradients (Oksanen et al. 2009).  
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I used the adonis function („vegan‟ package; Oksanen et al. 2009) to test for statistical 

differences between mined and reference assemblages. This function performs a multivariate 

analysis of variance through partitioning of the sums of squares in a distance matrix in relation to 

a factor and using F-tests from permutations of the data to determine the level of statistical 

significance (Oksanen et al. 2009).  I used the adonis method rather than analysis of similarities 

(ANOSIM) because the adonis method is generally considered more robust than ANOSIM 

(Oksanen et al. 2009).  I used a Bray-Curtis dissimilarity matrix and specified that permutations 

(999) occurred within sites but not across sites (Oksanen et al. 2009).   

A mean dissimilarity dendrogram was then used to graphically display mean between-

group and within-group dissimilarity. To determine the appropriate linkage method, I calculated 

cophenetic correlations between the original Euclidian distance matrix and a Bray-Curtis 

distance matrix using both “average” and “single” linkage methods (Oksanen et al. 2009). I used 

the average linkage method because this linkage in combination with a Bray-Curtis metric 

produced a higher cophenetic correlation (0.43) than did the single linkage method (0.39).  

Within the mean dissimilarity dendrogram, vertical lines indicate mean within-cluster 

dissimilarity; longer lines equate to lower mean dissimilarity (Oksanen et al. 2009). The 

horizontal line indicates mean between-group dissimilarity (Oksanen et al. 2009).  

Using generalized linear modeling (GLM), I tested for differences between reference and 

mineland assemblages for species richness, overall abundance, and abundance within foraging, 

nesting, and habitat guilds. All analyses included site as a fixed effect and the area of the transect 

as an offset. The offset is a term in Poisson and negative binomial regression that allows one to 

account for differences in exposure or intensity without transforming a raw count into a rate or a 

density (Zuur et al. 2009). I evaluated models for overdispersion using a Poisson GLM and an 

associated dispersion parameter. Based on the absence of overdispersion in all models, I 

determined a Poisson distribution was appropriate for these analyses (Zuur et al. 2009). 

Statistical significance was assessed via an analysis of deviance test in which the difference in 

deviance approximately follows a chi-square distribution with 1 degree of freedom (Zuur et al. 

2009). Foraging and nesting guilds were adapted from Ehrlich et al. (1988) and Canterbury et al. 

(2000) (Appendix C). I placed species into habitat guilds (closed canopy species, broken canopy 

species, and forest generalists) in the context of the canopy disturbance gradient that exists 

within the study area (contiguous forest with relatively small areas of broken canopy habitat). 
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Due to insufficient sample size, I did not conduct analyses for the shrub-nesting guild. One 

transect was an outlier (Cook‟s distance>1.0) for broken canopy and foliage gleaning species and 

was removed for those analyses. In addition, I tested for differences in Shannon (H’) diversity 

between mineland and reference forest using a Gaussian distribution, again including site as a 

fixed effect. I evaluated all Poisson GLMs graphically to ensure that model residuals were not 

patterned or indicative of a lack of fit. For Gaussian linear regression modeling, I verified that 

model residuals met assumptions of normality and homogeneity using residual plots and 

Bartlett‟s test for homogeneity. Statistical significance was set at p<0.05 for all analyses. 

 

Nest survival of Red-eyed Vireos 

To determine support for the influence of forest type on Red-eyed Vireo nest survival, I 

used an information-theoretic approach and developed a set of a priori candidate models 

containing habitat and temporal covariates that I hypothesized to influence the nest survival of 

vireos (Table 4). I used Akaike‟s Information Criterion for small sample sizes (AICc) to evaluate 

support for candidate models. For computation of AICc, I used the effective sample size as 

defined in Rotella et al. (2004): n = the total number of days in which all nests were known to 

have survived + the number of intervals that ended in failure. 

Temporal covariates. Temporal covariates included nest stage, linear julian date, and the 

quadratic effect of date (date + date2).  I recorded Julian date as the midpoint of the monitoring 

interval. Linear and quadratic effects of date were included because daily nest survival may vary 

in concert with patterns in predator activity and abundance across the breeding season and this 

trend may be non-linear (Grant et al. 2005, Peak 2007, Reidy et al. 2009). Due to insufficient 

monitoring intervals for which laying was recorded, nest stages were restricted to egg (laying 

and incubation) and brooding stages. Support for temporal covariates was evaluated prior to 

modeling habitat effects. Covariates from the most supported temporal model were included in 

all habitat models (Grant et al. 2005, Reidy et al. 2009). 

Habitat covariates. Habitat covariates included forest type (mineland or reference), 

overstory cover (foliage density above 18 m), and vertical foliage density (foliage cover 

estimated across all canopy layers). Mineland and reference forest may represent a gradient of 

structural conditions. Consequently, patch level influences on nest survival could come from 

factors that vary across forest types. Higher vertical foliage density within the nest patch could 
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function in reducing the risk of predation through concealment (total-foliage hypothesis) and/or 

by decreasing the search efficiency of a predator (potential-prey-site hypothesis) (Martin 1994). 

Research by Marshall and Cooper (2004) suggested that Red-eyed Vireos use foliage density as a 

structural cue in determining the size of a three-dimensional territory with sufficient resources 

for successful brood rearing. Consequently, foliage density has implications for all aspects of 

vireo breeding ecology, including nest survival (Marshall and Cooper 2004). Reduced levels of 

overstory cover could similarly influence nest survival. However, I included both covariates (in 

separate models) because a high degree of overstory cover does not necessarily indicate a multi-

layered forest and their influence on nest survival may not be equivalent. 

I modeled nest survival as a function of the aforementioned covariates using the logistic-

exposure method (Shaffer 2004). The basis for this approach is a generalized linear model with a 

binomial distribution and a logit link function modified to account for the dependence of survival 

probability on interval length (Shaffer 2004). Because no model received overwhelming support 

(wi≥90%), I calculated model-averaged parameter estimates and their unconditional standard 

errors from a model set comprised of only those models for which there was the most support, 

models with ΔAICc<2 (Burnham and Anderson 2002). From these estimates, odds ratios and 

their 95% confidence intervals were calculated as a means of interpreting the strength of an 

effect on the daily survival rate (Shaffer and Thompson 2007). The percentage change in the 

odds of nest survival for a one-unit change in a continuous covariate is calculated by subtracting 

1 from the odds ratio and multiplying this value by 100 (Allison 1999).  

Daily survival rates for the covariate of interest were derived from model-averaged 

parameter estimates and their unconditional standard errors by holding values for other 

covariates at their sample means (continuous covariates), target population proportions (nest 

stage), or proportions giving equal weight for each level of a categorical covariate (forest type)  

(Shaffer and Thompson 2007). Proportions used to weigh individual levels of nest stage were 

based on a 26.5 day nesting period, a 15.5 day laying and incubation stage, and an 11 day 

nestling stage. I used 26.5 days as the average length of the nesting cycle within the study area 

because the mean nesting period for all nests monitored from first egg laid through fledging was 

26.3 days (n=7). For continuous covariates, I estimated daily survival rates for values spanning 

the observed range of the covariate. Logistic exposure models were fit using PROC GENMOD 

(SAS Institute 2004). The global model was evaluated for goodness-of-fit using the Hosmer and 
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Lemeshow method (Hosmer and Lemeshow 2000) and for multicollinearity using tolerance 

values (Allison 1999). 

I used a classification tree to describe variation in forest structure between mineland and 

reference nest patches. To explore variation in a response variable, classification trees use 

explanatory variables to recursively partition the data into subsets in which homogeneity in the 

response variable is maximized and the total sums of squares minimized at each split (De‟ath and 

Fabricius 2000, De‟ath 2002). Classification trees are a nonparametic technique; they use the 

rank order of explanatory variables (De‟ath and Fabricius 2000). I modeled the classification tree 

from data collected within 0.04 ha plots centered on each nest and restricted explanatory 

variables to those describing forest structure within the nest patch. I used the „mvpart‟ package 

within Program R 2.12.1 (R Development Core Team 2010). I used 45 (the nest sample size), 10-

fold cross-validations, to select the smallest tree with an estimated error within 1-SE of the 

minimum cross-validation error (Breiman et al. 1984, De‟ath and Fabricius 2000). Cross 

validation error is the best measure of the predictive accuracy of the tree (De‟ath 2002). Values 

near one indicate a tree with poor predictive ability and a value of zero is representative of a 

perfect predictor (De‟ath 2002).  

 

RESULTS 

Avian assemblage structure and habitat relationships 

Forest structure and avian community summary. White, chestnut, scarlet, and black oak 

were the predominant canopy species in reference stands (Fig. 4, Appendix D). Mineland stands 

were dominated by yellow poplar, red maple, and black birch. Diameter distributions for 

mineland and reference stands indicated significantly greater numbers of trees in the 8-18 cm 

size class within reference forest and a consistent pattern of slightly greater tree density in all 

size classes >18 cm within mineland forest (Fig. 5). Mean basal area for mineland transects was 

34.1 m2 ha-1 (95% CI = 31.0, 37.1) compared to 29.1 m2 ha-1 (95% CI = 27.6.04, 30.5) for 

reference transects (Table 1). There was greater variation in mineland basal area indicating a 

wider gradient in canopy openness (Fig. 6). 

I detected a total of 34 species, 32 on mineland transects and 27 on reference transects 

(Table 2). The most abundant species along both mineland and reference transects was Red-eyed 

Vireo, accounting for 36% and 31% of the total count within each forest type, respectively.  
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Avian assemblage structure. Within the screeplot of ordination stress versus 

dimensionality, no clear “elbow” was evident in the decline in stress. Stress for the 3-

dimensional NMDS solution was 15.3 (two convergent solutions after 6 runs). Because stress 

values less than 20 usually indicate reliability for interpretation (Clarke 1993), samples were 

plotted within the first two dimensions of the 3-dimensional NMDS solution (Figure 7).  

NMDS ordination showed clear discrimination between mineland and reference 

assemblages (Fig. 7). Ovenbird (Seiurus aurocapillus), Eastern Wood-Pewee (Contopus virens), 

Blue-headed Vireo (Vireo solitarius), Wood Thrush (Hylocichla mustelina), Acadian Flycatcher 

(Empidonax virescens), Great Crested Flycatcher (Myiarchus crinitus), and White-breasted 

Nuthatch (Sitta carolinensis) separated reference from mineland assemblages.  Mineland 

assemblages were spread widely along NMDS axis 1 with a band of species positioned in a 

stretched pattern along their periphery indicating that these species were not strongly interrelated 

within mineland assemblages. The inconsistent pattern of relationships among species within 

mineland assemblages is likely a reflection of variation in habitat structure, low sample sizes, the 

discontinuous nature of the habitat, and the association of several of these species with isolated 

patches of disturbed forest.  

Species which contributed little to the overall dissimilarity between forest types were 

Red-eyed Vireo, Scarlet Tanager, and several bark-foraging species. Bark-foraging species were 

located in a band across the center of the ordination and included (Fig. 7) Black-and-white 

Warbler (Mniotilta varia), Hairy Woodpecker (Picoides villosus), Pileated Woodpecker 

(Dryocopus pileatus), Red-bellied Woodpecker (Melanerpes carolinus), and Yellow-throated 

Vireo (Vireo flavifrons), the latter species also relying on foliage-gleaning. 

Several groundcover variables were strongly correlated with the ordination (Table 2). In 

general, surface fitting strengthened groundcover-ordination relationships (Table 2) suggesting 

non-linear correlations (Oksanen et al. 2009). Litter cover and litter depth increased in the 

direction of reference assemblages in which two ground-foraging species, Ovenbird and Wood 

Thrush, were discriminating components (Fig. 7 and 8). Forb cover, bareground cover, snag 

density, and canopy vine density increased in the direction of mineland assemblages (Fig. 7). 

Tree diversity (H’) increased in the direction of reference assemblages. Canopy cover and 

structural variables had weaker correlations with the ordination and tended to be non-significant 

(Table 2).  
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The strength of the surface fit for the shrub density gradient (Table 2) was the result of 

fitting one mineland transect located on the far right side of the plot (Figure 7). The understory 

within the forest surveyed by this transect was dominated by dense multiflora rose (Rosa 

multiflora). Canopy closure was reduced relative to other mineland transects likely as a result of 

edaphic conditions and the presence of lightly foliated tree species in the canopy, i.e. river birch 

(Betula nigra) and bigtooth aspen (Populus grandidentata). Consequently, broken canopy 

species, such as Hooded Warbler (Wilsonia citrina) and American Redstart (Setophaga ruticilla), 

were characteristic of this assemblage.  

The mean dissimilarity analysis indicated higher within-group dissimilarity for mineland 

forest assemblages echoing the pattern evident in the NMDS ordination (Fig. 9). 

The adonis analysis indicated that assemblage structure differed between mineland and reference 

forest (F1,26 = 4.38, p = 0.001); between group distances were statistically greater than within 

group distances. Forest type accounted for only 14% of the variation in assemblage structure 

(partial R2 =0.14), an outcome, in part, of high within-group dissimilarity. 

Overall relative abundance was similar for reference and mineland forest (Table 3). 

Species richness and Shannon (H’) diversity also were similar between forest types, but were 

more variable across mineland transects (Fig 10). Mineland and reference forest had similar 

abundance of broken canopy and forest generalist species (Fig. 10), but closed-canopy species 

had greater abundance within reference forest (p = 0.002). Mineland and reference forest had 

similar abundance of bark foraging and foliage gleaning species (Fig. 10), while hawking (p = 

0.03) and ground gleaning species (p = 0.02) had greater abundance within reference forest. 

Abundance within nesting guilds was similar between forest types (Fig. 10).  

 

Nest survival of Red-eyed Vireos 

I monitored 45 Red-eyed Vireo nests in 2011, 21 within mineland forest and 24 within 

reference forest.  Using the formula from Rotella et al. (2004), the effective sample size for 

computing AICc was 597. The Hosmer and Lemeshow (2000) goodness-of-fit test indicated that 

the global model fit the data adequately (χ2  = 5.78, df = 8, p = 0.67). Tolerance values for 

variables within the global model were all ≥0.65, indicating that multicollinearity was not a 

concern (Allison 1999).   
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Model selection for temporal effects found the most support for a model that included 

solely the effects of nest stage (wi =0.38) (Table 4). Therefore, I included nest stage in all habitat 

models.  

No habitat model received overwhelming support and all models, with the exception of 

the global model, had values for ΔAICc≤4 indicating some level of empirical support for each 

(Burnham and Anderson 2002) (Table 4). This is in part due to the inclusion of nest stage in all 

habitat models; the best-fitting habitat model contained only the effect of nest stage. Other 

supported models with ΔAICc≤2 included forest type, overstory cover, and vertical foliage 

density models. Models with greater complexity (k≥4) tended to have less support.  

Model-averaged parameter estimates and unconditional standard errors were derived 

from a model set (habitat models with ΔAICc≤2) that excluded the three least supported models. 

Daily survival was higher during laying and incubation stage (0.961, CI = 0.935, 0.977) than 

during the nestling stage (0.923, CI = 0.882, 0.951) (Fig. 11). The odds ratio for nest stage 

indicated that the odds of nest survival were 51% lower during the nestling stage than during the 

laying and incubation stage, but the 95% CI for the odds ratio narrowly overlapped 1.0 (Table 5).  

Overall nesting period survival was 0.246 (CI = 0.132, 0.379). Period survival for 

mineland and reference nests, respectively, were 0.257 (CI = 0.126, 0.411) and 0.234 (CI = 

0.114, 0.381) (Fig. 11). Relative to reference nests, the odds of daily nest survival were 7% 

greater for mineland nests, but the 95% CI widely overlapped 1.0 indicating that strength of this 

effect was low (Table 5). Similarly, odds ratios for overstory cover and vertical foliage density 

overlapped one indicating minimal influences on nest survival.  

Nest patch characteristics. In both mineland and reference forest, vireos placed nests in 

red maple more than any other tree species (Table 6). Otherwise, nest tree use reflected 

mesophytic species composition within mineland forest and oak-hickory predominance within 

reference forest.  

The predominant origin of canopy gaps occurring nearest to Red-eyed Vireo nests 

differed between mineland and reference forest (Table 6). Gaps adjacent to mineland nests 

(n=21) were primarily classified as edaphic (57%), whereas 75% of gaps adjacent to reference 

nests (n=24) had treefall origins. Gaps categorized as edaphic were compacted areas such as old 

haul roads, depressions in which water was ponded, boulder piles at the base of both outslopes 

and highwalls, and areas where the absence of mature trees indicated poor physical and chemical 
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properties of minesoils. Vireo nests were located closer to canopy gaps in mineland forest (16.2 

± 2.7 m; mean ± SE) than within reference forest (26.0 ± 4.1 m) (Table 7). 

In modeling structural characteristics of nest patches, ten-fold cross-validation using the 

1-SE rule resulted in the selection of a four-leaved tree (Fig. 12). This tree explained 85.7% of 

the variance and had a misclassification rate of 6.7% and a cross validation error of 0.569, the 

latter indicating that the tree was an intermediate predictor. With the exception of the split based 

on canopy vine density, partitioning is through variables that separate reference nest patches 

from mineland nest patches on the basis of greater vertical heterogeneity. The first split is based 

on higher small tree (8-23 cm dbh) density within reference nest patches. Individuals within this 

size class are typically contributing foliage to mid- and subcanopy layers. This split explains the 

largest proportion of the variance and results in a nearly homogenous subset in its right terminal 

node in which 75% of reference nest patches are contained. The second split indicates higher 

canopy vine density within mineland nest patches. This characteristic represents a potential 

resource for mineland-breeding vireos in terms of providing nest material and foliage in which to 

conceal nests. The right node extending from the canopy vine split is in turn partitioned by 

subcanopy (0-6 m) foliage cover. This split results in a terminal node with a small, homogenous 

subset of mineland nest patches that had lower (<12.5%) subcanopy cover.  

  

DISCUSSION 

Avian assemblage structure and habitat relationships  

The avian mineland assemblage was distinct from the reference assemblage despite the 

habitat being a narrow continuation of the closed-canopy forest in which it is imbedded. 

Groundcover gradients were strongly correlated with the NMDS ordination and indicated that 

mineland assemblages were associated with lower litter cover and depth. Decreased litter cover 

and depth likely contributed to the lower abundance of Ovenbirds within mineland forest. 

Breeding ecology studies of Ovenbirds, a ground-nesting and foraging species, have shown 

positive associations between leaf litter depth and pairing success (Burke and Nol 1998, 

Rodewald and Yahner 2000) and the selection of nest sites characterized by deeper leaf litter and 

lower levels of bareground cover relative to randomly selected sites (Burke and Nol 1998). 

Tree species composition and mineland topography were likely influential in the lower 

abundance of Ovenbirds within mineland forest. Within forest dominated by mesophytic species, 
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leaf litter and downed woody debris decomposition is typically more rapid (Nowacki and 

Abrams 2008). Decay is accelerated as a result of the structural characteristics of the leaves and 

wood belonging to mesophytic species and the cool, moist microclimate existing within the 

deeply shaded understory of these forests (Mudrick et al. 1994, Nowacki and Abrams 2008, Fox 

et al. 2010). Consequently, within mineland forest, a near complete dominance by mesophytic 

tree species was likely an important influence on understory light penetration, temperature, soil 

moisture, and soil fertility, characteristics which cumulatively were manifested in decreased litter 

depth and greater forb cover. 

Fox et al. (2010) found that Ovenbird, Black-and-white Warbler (Mniotilta varia), and 

Worm-eating Warbler (Helmitheros vermivorus), all ground-nesting species, were absent from 

maple dominated stands in which leaf litter depth was lower relative to the oak-dominated stands 

in which they were present. I did not find ground-nesting species, as a group, to have lower 

abundance in mineland forest.  

In addition to litter characteristics, features of mineland topography, e.g. outslopes and 

highwalls, may simply displace Ovenbirds. Characteristics of the forest floor along outslopes, 

including their steepness (typically >40% slope) and a high proportion of boulder and eroded, 

bareground cover, likely produce poor quality foraging and nesting habitat for Ovenbirds. 

Ovenbirds generally select territories and nest sites with low to moderate slope steepness 

(Wenny et al. 1993, Burke and Nol 1998).  

I did not find differences in the abundance of bark gleaning or cavity nesting species 

between mineland and reference forest. Among these species, only White-breasted Nuthatch 

appeared to separate reference from mineland assemblages in the NMDS ordination. The 

majority of bark-foraging species were located centrally within the ordination space indicating 

they contributed little to dissimilarity between forest types.  Minelands may receive some use 

from bark gleaning and cavity nesting species due to an abundance of snags and downed logs. 

However, these species have relatively large home ranges and the mineland habitat that I 

surveyed is not isolated from oak-dominated forest. In a comparison of bird communities within 

maple and oak dominated stands, Rodewald and Abrams (2002) found lower abundance of the 

bark gleaning guild in maple dominated stands during the three seasons they surveyed: spring, 

fall, and winter. They attributed this finding to the availability of acorns in oak-dominated 

forests. 
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Relative to reference assemblages, mineland assemblages had higher within-group 

dissimilarity suggesting a wider gradient in habitat conditions. Basal area was higher, but more 

variable for mineland transects. Within mineland forest, edaphic conditions/disturbances were 

likely influential in creating spatial heterogeneity in forest structure. Studies of mineland 

succession have indicated that the irregular composition of minesoils and the resulting fine-scale 

variation in spoil acidity, rock fragment composition, and shale content combine to produce 

spatial and compositional heterogeneity in vegetation development (Game et al. 1982, Skousen 

et al. 1994).  

Correlations between the overall assemblage response and variables that reflect canopy 

structure were generally non-significant. In part, this is a consequence of a finer scale gradient in 

forest structure (comparing one even-aged, closed-canopy forest to another), whereas differences 

in groundcover were comparatively abrupt. Low sample size mineland habitat variation, and the 

discontinuous nature of the mineland habitat also contributed to difficulty in assessing the 

relationship between the assemblage response and forest structure. 

Forests dominated by yellow poplar and red maple may represent poor-quality foraging 

and nesting habitat for a number of species. Previous studies have indicated foraging preferences 

among insectivorous songbirds for oaks and hickories and avoidance of red maple (Gabbe et al. 

2002, Rodewald and Abrams 2002, George 2009, Newell 2010). Some forest songbirds may not 

be adapted for capturing arthropods on red maple foliage due to the length of its petioles and the 

size of its leaves (Franzreb 1978, Holmes and Robinson 1981, Holmes and Schultz 1988, 

Rodewald and Abrams 2002). In addition, lepidopteran assemblages may be strongly organized 

by the dominant canopy species (Summerville and Crist 2008) and, relative to other hardwood 

species, oaks may host a greater diversity of lepidopteran species (Summerville et al. 2003). 

Additionally, stands dominated by mesophytic hardwoods typically have higher basal area and, 

consequently, greater canopy closure compared to oak-dominated stands (Nowacki and Abrams 

2008). The higher abundance of hawking species in reference forest, specifically, Great Crested 

Flycatcher and Eastern Wood-Pewee, was likely in response to lower basal area and greater 

canopy openness. Opening of the canopy may result in conditions (a warmer understory 

microenvironment and elevated primary productivity) that favor the growth of flying insect 

populations (Blake and Hoppes 1986, Smith and Dallman 1996, Gorham et al. 2002, George 

2009). In studies of partial harvesting, Eastern Wood Pewees and Great-Crested Flycatchers 
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generally responded positively to basal area reductions (Annand and Thompson 1997, Moorman 

and Guynn 2001, Holmes et al. 2004, Newell 2010).  

In mixed-mesophytic forest in Ohio, Eastern Wood-Pewees placed nests in white oak in 

disproportion to its availability and avoided placing nests in red maple and yellow poplar 

(Newell 2010). Within mineland stands, reduced inter-crown spacing, predominantly vertical 

branching, and the tall, clean boles of yellow poplar generally concentrated foliage in the upper 

canopy (personal observation). Eastern Wood-Pewees as well as other species may not be 

adapted for nest placement in this type of canopy structure. For Blue-headed Vireos, a species 

which discriminated reference assemblages, mineland forest may have represented poor quality 

nesting habitat due to insufficient subcanopy development. Blue-headed Vireos often forage and 

nest within the lower canopy (Hamel 1992, Meehan 1996, James 1998) and, within central 

Appalachian forests, may reach greater densities within xeric forest associations relative to more 

mesic associations (Weakland 2000). Mineland forest had lower sapling density and cover and 

lower small tree (8-23 cm dbh) density compared to the relatively xeric, reference forest. In oak-

hickory forest in southwestern Virginia, McEvoy et al. (1980) found greater foliage density in 

the 1-5 m layer within xeric sites relative to mesic sites. In the Great Smoky Mountains, 

Whitaker (1956) found increasing shrub cover along a moisture gradient from mesic coves to 

xeric spur ridges. Within xeric sites, greater light penetration through sparser canopies 

contributed to the increase in shrub cover (Whitaker 1952, 1956). 

In general, mineland canopies follow the relatively simple structure that is characteristic 

of secondary forests (Lorimer 1989, Hart and Grissino-Mayer 2008).  Crowns are typically non-

overlapping, but restricted in their breadth by the uniform distribution of adjacent crowns. 

Dominants are young and, consequently, less frequent gap makers (Lorimer 1989). In response 

to individual tree mortality, rapid lateral crown expansion limits the duration in which the 

canopy remains open (Lorimer 1989). However, canopy structure and gap dynamics in mineland 

forests may differ slightly. Within mineland forest, canopy gaps occurring nearest to Red-eyed 

Vireo nests were primarily edaphic in origin. Depending on the size of the edaphic disturbance, 

these gaps may come to represent persistent open space (Lertzman et al. 1996).  

Species composition strongly influences stand development through differences in the 

growth rates and shade tolerance of component species (Gingrich 1967).  Reference stands were 

generally older than mineland stands. However, the comparison of mineland and reference forest 
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is one of starkly contrasting tree species composition and distinct developmental pathways. Thus, 

given the range of mineland and reference stand ages (~60-110 years old), the influence of stand 

age on forest structure and the avian assemblage response was likely secondary to differences in 

tree species composition and in the forest floor environment. 

 

Red-eyed Vireo nest survival  

Red-eyed Vireo nest survival was similar within mineland and reference forest. 

Classification tree modeling indicated that reference nest patches were characterized by greater 

vertical heterogeneity than mineland nest patches. Despite these differences, I did not find a 

strong effect of nest patch characteristics on nest survival. In a study of Red-eyed Vireo nest site 

selection in Pennsylvania, habitat characteristics of nest patches were not indicative of nest fate 

(Siepielski et al. 2001). Given the nested nature of mineland stands, predator assemblage 

structure was not likely drastically changed from adjacent reference forest. Across both forest 

types, the canopy disturbance gradient was relatively narrow and may have been insufficient to 

produce differences in predator activity or search-efficiency. Forest cover and structure on larger 

scales may be more influential in terms of structuring predator assemblages and affecting 

reproductive success (Donovan et al. 1997, Siepielski et al. 2001, Rodewald 2002). 

However, I did not expect nest survival to be poor overall given that the study area lies 

within largely unfragmented forest. Nest survival on my sites (0.246, CI = 0.132, 0.379) was 

much lower in comparison to the Mayfield nest success (0.430 ± 0.04 SE; n=126) observed by 

DeCecco et al. (2000) for Red-eyed Vireos breeding on the Monongahela National Forest in 

southeastern West Virginia. In south-central Ontario, Burke and Nol (2000) found Mayfield nest 

success to be 0.420 ± 0.122 SD (n=18) for Red-eyed Vireos breeding within continuous forest 

and 0.251 ± 0.067 SD (n=46) for vireos breeding within small forest fragments. For these 

habitats to function as population sources, they determined that 1.9 nesting attempts were 

necessary for continuous forest stands and 3.9 nesting attempts for small forest fragments.  

The heights at which vireos placed nests in both mineland and reference forest were 

much greater than nest heights reported by other studies and may provide some explanation for 

the poor overall nest survival that I observed. Mean heights for vireo nests were 18.9 m ± 7.0 SD 

and 20.7 m ± 5.8 SD within reference and mineland forest, respectively. Studies conducted in the 

Midwest and in northern hardwoods forest (Lawrence 1953, Southern 1958, Rice 1974, Graber et 
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al. 1985) observed mean nest heights within a range of 2.5-4.3 m. Other studies have reported 

mean nest heights that reflect greater variability; 10.7 m ± 5.8 SD for a study in New Hampshire 

(Robinson 1981) and 7.0 m ± 5.7 SD for a study in the southeastern West Virginia (DeCecco et 

al. 2000). The upper-canopy focused nest placement within my study may indicate that neither 

mineland nor reference forest had sufficient foliage density in the mid- and subcanopy to induce 

nest placement within these layers. This may have in turn resulted in greater predator search-

efficiency and reduced nest concealment. 

This study is the first to describe avian assemblages in relation to habitat structure and 

composition within mineland forest. It is also the first to quantify songbird reproductive success 

within mineland forest. Sample sizes were low as a consequence of the limited scale of mineland 

stands and the uncommonness of minelands with relatively wide, uncompacted benches on 

which mature forests have established naturally. However, this research lends support for the 

emphasis of the Forest Reclamation Approach in establishing heavy-seeded species on 

minelands. Within mineland stands, the near complete dominance of mesophytic tree species was 

likely influential in the lower abundance of Ovenbirds as well as other ground-gleaning, 

hawking, and closed-canopy species. 

 
 

 

 

 

 

 



48 
 

Literature Cited 

 

Allison, P.D. 1999. Logistic regression using the SAS system: theory and application. SAS 
 Institute, Inc., Cary, NC 

Annand, E.M., and F.R. Thompson, III. 1997. Forest bird response to regeneration practices in 
central hardwood forests. Journal of Wildlife Management 61:159-171. 

 
Bibby, C. J., Burgess, N.D.  and D. A. Hill. 1992. Bird census techniques. Academic Press, 

London. 
 
Blake, J. G. and W. G. Hoppes. 1986. Influence of resource abundance on use of tree-fall gaps 

by birds in an isolated woodlot. Auk 103:328–340. 
 

Bollinger, E. K., Gavin, T. A., and D. C. McIntyre. 1988. Comparison of transects  
and circular plots for estimating Bobolink densities. Journal of Wildlife Management 52: 
777-786. 
 

Breiman, L., Friedman, J. H., Olshen, R. A., and C. G. Stone. 1984. Classification and 
Regression Trees. Wadsworth International Group, Belmont, California, USA. 
 

Brooks, A.B. 1910. West Virginia Geological Survey, Volume Five: Forestry and Wood 
Industries. The Acme Publishing Company, Morgantown, WV 

 
Buckland, S. T., D. R. Anderson, K. P, Burnham, J. L. Laake, D. L. Borchers, and L.Thomas.  

2001. Introduction to distance sampling: estimating abundance of biological populations. 
Oxford University Press, New York, NY, USA. 

 
Buckland, S. T., D. R. Anderson, K. P, Burnham, J. L. Laake, D. L. Borchers, and L. Thomas.  
 2004. Advanced distance sampling. Oxford University Press, New York, NY, USA. 
 
Burger, J.A., Mitchem, D.O., and D.A. Scott. 2002. Field assessment of mine site quality for 

establishing hardwoods in the Appalachians . Pages 226-240 in Proceedings, 2002 
National Meeting of the American Society for Mining and Reclamation. Lexington, KY. 

 
Burger, J., Graves, D., Angel, P., Davis, V., and C. Zipper. 2005. The Forestry Reclamation 

Approach. Forest Reclamation Advisory No. 2. U.S. Office of Surface Mining, ARRI, 
Washington, DC 

Burger, J.A. and A.G. Fannon. 2009. Capability of reclaimed mined land for supporting 
reforestation with seven Appalachian hardwood species. Pages 176-191 in 26th: National 
Meeting of the American Society of Mining and Reclamation. 

Burger, J. A., and C. E. Zipper. 2009. How to restore forests on surface-mined land. Reclamation  
 guidelines for surface mined land in southwest Virginia series. Powell River Project, 

Virginia Cooperative Extension. Pub. 460-123.  

http://www.cses.vt.edu/PRP/Research_Results/ASMR_2002/Burger_ASMR_2002.pdf
http://www.cses.vt.edu/PRP/Research_Results/ASMR_2002/Burger_ASMR_2002.pdf


49 
 

 
Burnham, K.P., and D.R. Anderson. 2002. Model Selection and Multimodel Inference: An 

Information-Theoretic Approach. Springer-Verlag, New York, New York, USA 
 
Burke, D. M., and E. Nol. 1998. Influence of food abundance, nest-site habitat, and forest  
 fragmentation on breeding Ovenbirds. Auk 115:96–104. 
 
Burke, D. M., and E. Nol. 2000. Landscape and fragment size effects reproductive success of 
 forest-breeding birds in Ontario. Ecological Application 10(6):1749-1761. 

 
Canterbury, G. E., Martin, T. E., Petit, D. R., Petit, L. J. and Bradford, D. F.: 2000. Bird  
 communities and habitat as ecological indicators of forest condition in regional  
 monitoring. Conserv. Biol. 14:544–558. 
 
Chizinski, C.J., Peterson, A., Hanowski, J., Blinn, C.R., Vondracek, B., and Niemi, G. 2011. 
 Breeding bird response to partially harvested riparian management zones. Forest Ecology 
 and Management 261:1892-1900. 
 
Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure.  
 Australian Journal of Ecology 18:117–143. 
 
Clarke, K. R., and R. H. Green. 1988. Statistical design and analysis for a „biological  
 effects‟ study. Marine Ecology Progress Series 46: 213–226. 
 
De‟ath, G., and K. E. Fabricius. 2000. Classification and regression trees: a powerful yet simple  
 technique for the analysis of complex ecological data. Ecology 81:3178–3192. 
 
De‟ath, G. 2002. Multivariate regression trees: a new technique for modeling species- 
 environment relationships. Ecology 83(4):1105–1117. 
 
DeCecco, J.A., Marshall, M.A., Williams, A.B., Gale, G.A., and R.J. Cooper. 2000. Comparative 
 seasonal fecundity of four Neotropical migrants in middle Appalachia. Condor 102: 
 653-663. 
 
Donovan, T. M., Jones, P. W., Annand, E. M., and F.R. Thompson, III. 1997. Variation in local- 
 scale edge effects: mechanisms and landscape context. Ecology 78:2064-2075. 
 
Ehrlich, P. R., Dobkin, D. S., and D. Wheye. 1988. The Birder‟s Handbook, Simon and Schuster, 

New York. 
 
Fox, V.L., Buehler, C.P., Byers, C.M., and S.E. Drake. 2010. Forest composition, leaf litter, and  
 songbird communities in oak- vs. maple-dominated forests in the eastern United States. 
 Forest Ecology and Management 259:2426-2432. 
 
Franzreb, K.E. 1978. Tree species used by birds in logged and unlogged mixed-coniferous  
 forests. Wilson Bulletin 90:221-238. 



50 
 

 
Gabbe, A. P., Robinson, S.K., and J. D. Brawn. 2002. Tree-species preferences of foraging 

 insectivorous birds: implications for floodplain forest restoration. Conservation Biology  
16:462–470. 

 
Game, M., J. E. Carrel, and T. Hotrabhavadra. 1982. Patch dynamics on abandoned surface 

mines. Journal of Ecology 70(3):707-720. 

Gates, C. E. 1979. Line transect and related issues in sampling biological populations. Pages 71- 
154 in Sampling Biological Populations, R. M. Cormack, G. P. Patil, and D. S. Robson 
(eds), Burtonsville, Maryland: International Cooperative Publishing House. 

 
George, G.A. 2009. Foraging ecology of male Cerulean Warblers and other Neotropical 

migrants. Ph.D. Thesis, West Virginia University, Morgantown, WV. 
 
Gingrich, S. F. 1967. Measuring and evaluating stocking and stand density in upland hardwood  
 forests of the central states. Forest Science 13:38-53 

Gorham, L. E., S. L. King, B. D. Keeland, and S. Mopper. 2002. Effects of canopy gaps and 
flooding on homopterans in a bottomland hardwood forest. Wetlands 22:541-549. 

 
Graber, J.W., Graber, R.R., and E.L. Kirk. 1985. Illinois birds: vireos. Biol. Notes no. 68. Illinois 
 Nat. Hist. Surv., Urbana. 

 
Grant, T.A., Shaffer, T.L., Madden, E.M., Pietze, P.J., 2005. Time-specific variation in passerine  
 nest survival: new insights into old questions. Auk 122:661–672. 
 
Hart, J.L., and H.D. Grissino-Mayer. 2008.Vegetation patterns and dendroecology of a mixed  
 hardwood forest on the Cumberland Plateau: implications for stand development. Forest 

Ecol. Management 255:1960–1975. 
 
Holmes, R.T., and S.K. Robinson. 1981. Tree species preferences of foraging insectivorous birds  
 in a northern hardwoods forest. Oecologia 48:31-35. 
 
Holmes, R. T., and J. C. Schultz. 1988. Food availability for forest birds: effects of prey 

distribution and abundance on bird foraging. Canadian Journal of Zoology 66: 720–728. 
 
Holmes, S.B., Burke, D.M., Elliott, K.A., Cadman, M.D., Friesen, L. 2004. Partial cutting of  
 woodlots in an agriculture-dominated landscape: effects on forest bird communities.  
 Canadian Journal of Forest Research 34(12):2467-2476. 
 
Hosmer, D. W., and S. Lemeshow. 2000. Applied logistic regression. John Wiley and  
 Sons, New York.  
 
James, F. C. and H. H. Shugart. 1970. A quantitative method of habitat description. Audubon. 

Field Notes 24:727-736. 



51 
 

 
James, Ross D. 1998. Blue-headed Vireo (Vireo solitarius), The Birds of North America Online 

 (A. Poole, ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North  
America Online: http://bna.birds.cornell.edu.bnaproxy.birds.cornell.edu/bna/species/379 

 
Johnson, C.D., and J.G. Skousen. 1995. Minesoil properties of 15 abandoned mine land sites in 

West Virginia. Journal of Environmental Equality 24:635-643.  
 
Lawrence, L. K. 1953. Nesting life and behavior of the Red-eyed Vireo. Canadian Field 

Naturalist 67:47-76.  
 
Lertzman, K. P., G. D. Sutherland, A. Inselberg, and S. C. Saunders. 1996. Canopy gaps and the 

landscape mosaic in a coastal temperate rain forest. Ecology 77:1254–1270. 

Lorimer, C.G. 1989. Relative effects of small and large disturbances on temperate hardwood 
 forest structure. Ecology 70(3):565-567. 

McCune, B. and J. B. Grace. 2002. Analysis of ecological communities. MjM Software Design, 
 Gleneden Beach, Oregon. 

McEvoy, T.J., T.L. Sharik, and D.W. Smith. 1980. Vegetative structure of an Appalachian oak 
forest in southwestern Virginia. Amer. Midi. Naturalist 103:96-105. 
 

Marshall, M.R., and R.J. Cooper. 2004. Territory size of a migratory songbird in response to 
 caterpillar density and foliage structure. Ecology 85(2):432-445. 

Martin, T. E. 1988. Processes organizing open-nesting bird assemblages: competition or nest   
predation? Evolutionary Ecology 2:37-50. 

 
Martin, T. E. 1994. Nest predation and nest sites: new perspectives on old patterns. BioScience 
  43(8):523-532. 

Martin, T. E., and G. R. Geupel. 1993. Nest-monitoring plots: Methods for locating nests and 
monitoring success. Journal of Field Ornithology 64:507-519. 

 
Martin, T.E., C. Paine, C.J. Conway, W. M. Hockachka, P. Allen, and W. Jenkins. 1997. BBIRD 

Field Protocol. USGS, Biological Resources Division, Montana Cooperative Fish and 
Wildlife Research Unit, Missoula, Montana. 

 
Moorman, C. E., and D. C. Guynn. 2001. Effects of group-selection opening size on breeding 

bird habitat use in a bottomland forest. Ecological Applications 11:1680–1691. 
 
Mudrick, D.A., Hoosein, M., Hicks, Jr., R.R., and E.C. Townsend. 1994. Decomposition of leaf 
 litter in an Appalachian forest: effects of leaf species, aspect, slope position and time. 
 Forest Ecology and Management 68(2-3):231-250. 
. 



52 
 

 
Newell, F. L. 2010. A bird‟s eye view of the forest: how does canopy openness affect canopy 
 songbirds. Master‟s Thesis, The Ohio State University, Columbus, Ohio, 219 pp. 
 
Nowacki, G.J., and Abrams, M.D. 2008. The demise of fire and „mesophication‟ of forests in the 

eastern United States. BioScience 58:123–138. 
 
Office of Surface Mining Reclamation and Enforcement. 2008. Surface Mining Control and 

Reclamation Act of 1977 (Public Law 95-87). U.S. Department of Interior, Washington, 
D.C., USA. 

 
Oksanen, J., Kindt, R., Legendre, P., O‟Hara, B., Simpson, G.L., Solymos, P., Stevens, M. H. H.,  
 and H. Wagner. 2009. vegan: community ecology package. R package version 1.15-2. R  
 Foundation for Statistical Computing, Vienna, Austria. (Available from:  
 http://cran.rproject.org/, http://vegan.r-forge.r-project.org) 
 
Peak, R. G. 2007. Forest edges negatively affect golden-cheeked warbler nest survival. Condor  
 109:628–637. 
 
Petit, D. R., Petit, K. E., and T. C. Grubb, Jr. 1985. On atmospheric moisture as a factor  
 influencing distribution of breeding birds in temperate deciduous forest. Wilson Bulletin  
 97:88-96. 
 
Pickett, S.T.A., and P.S. White (eds.). 1985. The Ecology of Natural Disturbance and Patch 
 Dynamics. Academic Press, New York, NY. 
 
Preston, M.I., and A.S. Harestad. 2007. Community and species response by birds to group 
 retention in a coastal temperate forest on Vancouver Island, British Columbia. Forest 
 Ecology and Management 243:156-167. 
 
Reidy, J. L., Thompson III, F. R., and R. G. Peak. 2009. Factors affecting Golden-cheeked 

Warbler nest survival in urban and rural landscapes. Journal of Wildlife Management 
73:407-413. 

 
R Development Core Team. 2010. R: A language and environment for statistical computing. R  

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL 
http://www.R-project.org. 
 

Ralph, C.J., Geupel, G.R., Pyle, P., Martin, T.E., and D.F. DeSante. 1993. Handbook of field  
 methods for monitoring landbirds. U.S. Dept. Agric. For. Serv. Gen. Tech. Rep. PSW-
 GTR-144. 
 
Reidy, J.L., Thompson III, F.R., and R.G. Peak. 2009. Factors affecting golden-cheeked warbler 

nest survival in urban and rural landscapes. Journal of Wildlife Management 73:407-413. 
 
Rice, J.C. 1974. Competitive and social interaction between two interspecifically territorial  

http://cran.rproject.org/
http://vegan.r-forge.r-project.org/
http://www.r-project.org/


53 
 

 vireos (Aves: Vireonidae). Ph.D. diss., Univ. of Toronto, Toronto, ON. 
 
Robinson, S. K. 1981. Social interactions and ecological relations of Philadelphia and Red-eyed  
 Vireos in a New England forest. Condor 83:16-26. 
 
Rodewald, A. D. 2002. Nest predation in forested regions: landscape and edge effects. The 

Journal of Wildlife Management, 66(3):634-640. 
 
Rodewald, A. D. and M. D. Abrams. 2002. Floristics and avian community structure: 

implications for regional changes in eastern forest composition. Forest Science 
48: 267–272. 

 
Rodewald, A. D. and R.H. Yahner. 2000. Influence of landscape and habitat characteristics on 

Ovenbird pairing success. Wilson Bulletin 112(2): 238-242. 
 
Rotella, J.J., Dinsmore, S.J., and J.A. Shaffer. 2004. Modeling nest-survival data: a comparison 

of recently developed methods that can be implemented in MARK and SAS. Animal 
Biodiversity and Conservation 27:187–205. 

 
SAS Institute, Inc., 2004. The SAS System for Windows, Version 9.1. SAS Institute Inc., North  
 Carolina, USA.  
 
Siepielski, A.M., Rodewald, A.D., and R.H. Yahner. 2001. Nest site selection and nesting 

success of the Red-eyed Vireo in central Pennsylvania. Wilson Bull. 113(3):302-307. 
 
Shaffer, T.L., 2004. A unified approach to analyzing nest success. Auk 121:526–540. 
 
Shaffer, T.L., and F.R. Thompson III. 2007. Making meaningful estimates of nest survival 

with model-based methods. Studies in Avian Biology 34:84–95. 
 

Showalter, J. M., J. A. Burger. 2006.  Growth of three Appalachian hardwood species in 
different mine spoil types with and without topsoil inoculation. Pages 1976-2000 in R. I. 
Barnhiesel (ed.). Proc., 23th Annual Meeting, American Society of Mining and 
Reclamation. Lexington, KY. 

 
Skousen, J.G., C.D. Johnson, and K. Garbutt. 1994. Natural revegetation of 15 abandoned mine 

land sites in West Virginia. J. Environ. Qual. 23:1224-1230. 
 
Skousen, J.G., J. Gorman, E. Pena-Yewtukhiw, J. King, J. Stewart, P. Emerson, and C. Delong. 

2009. Hardwood tree survival in heavy ground cover on reclaimed land in West Virginia: 
mowing and ripping effects. Journal of Environmental Quality 38:1400-1409. 

 
Smith, R. and M. Dallman. 1996. Forest gap use by breeding Black-throated Green Warblers.  
 Wilson Bulletin 108:588-591. 
 
Southern, W.E. 1958. Nesting of the Red-eyed Vireo in the Douglas Lake region, Michigan.  

http://www.cses.vt.edu/PRP/Research_Results/ASMR_2006/1976-Showalter-VA.pdf
http://www.cses.vt.edu/PRP/Research_Results/ASMR_2006/1976-Showalter-VA.pdf


54 
 

 Jack-Pine Warbler 36:105-130 and 185-207. 
 
Summerville, K. S., T. O. Crist, J. K. Kahn, and J. C. Gering. 2003. Community structure 

of arboreal caterpillars within and among four tree species of the eastern 
deciduous forest. Ecological Entomology 28:747–757. 

 
Summerville, K.S., and T.O. Crist. 2008. Structure and conservation of lepidopteran  

communities in managed forests of northeastern North America: a review. The Canadian 
Entomologist 140:475–494. 

 
USDA Soil Conservation Service. 1975. Soil survey of Fayette and Raleigh counties, West  
 Virginia. 76 p. 
 
Wade, G. L. 1989. Grass competition and establishment of native species from forest soil seed 

banks. Landscape and Urban Planning 17:135-149. 
 

Weakland, C. A. 2000. Effects of diameter-limit and two-aged timber harvesting on songbird  
 populations on an industrial forest in central West Virginia. Dissertation, West Virginia  
 University, Morgantown. 
 
Wenny, D. G., Clawson, R. L., Faaborg, J., and S. L. Sheriff. 1993. Population density, habitat  
 selection and minimum area requirements of three forest-interior warblers in central  
 Missouri. Condor 95:968-979. 
 
Whittaker, R. H., 1952. A study of summer foliage insect communities in the Great Smoky  
 Mountains. Ecol. Monogr. 22: 1-44.  
 
Whittaker, R. H. 1956. Vegetation of the Great Smoky Mountains. Ecological Monographs 26:1- 
 80.  
 
Wickham, J.D., Ritters, K.H., Wade, T.G., Coan, M., and C. Homer. 2007. The effect of  
 Appalachian mountaintop mining on interior forest. Landscape Ecology 22:179-187. 
 
Wood, P.B., Bosworth, S.B., Dettmers, R., 2006. Cerulean warbler abundance and occurrence 

relative to large-scale edge and habitat characteristics. Condor 108(1):154–165. 
 
Wood, P.B., J.W. Edwards, and C.A. Weakland. 2001. Terrestrial vertebrate (breeding songbird, 

raptor, small mammal, herpetofaunal) of forested and reclaimed sites. Final report 
submitted to EIS steering committee. Morgantown, West Virginia. 149 pp. 

 
Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects  
 models and extensions in ecology with R. Springer, New York, New York, USA. 
 
 

 



55 
 

Table 1. Variables used in environmental fitting with the avian assemblage ordination. Values 
are the means from mineland (n=14) and reference (n=14) transects, each of which is the average 
of four plots. Data was collected in 2011 from New River Gorge National River, West Virginia. 
 

 
Mineland (n=14)   Reference (n=14) 

 
Mean SE   Mean SE 

Groundcover  
          downed log cover (%) 5.3 0.9 

 
3.4 0.7 

     leaf litter cover (subplot %) 75.4 3.3 
 

87.8 1.3 
     litter depth (cm) 1.7 0.1 

 
2.5 0.1 

     litter cover (whole plot %) 50.2 3.0 
 

76.9 2.2 
     bareground cover (%) 11.4 1.3 

 
5.3 0.9 

     forb cover (%) 29.9 2.9 
 

5.2 1.2 
     woody cover (%) 8.5 1.7 

 
12.7 1.5 

Subcanopy  
          saplings ha-1 80.4 16.2 

 
121.9 7.8 

     sapling cover (%) 15.4 2.8 
 

21.6 1.5 
     shrub stems ha-1 404.9 145.8 

 
343.3 57.2 

     shrub cover (%) 6.3 1.3 
 

5.1 0.8 
Stocking 

          small trees ha-1 (8-23 cm dbh)  233.5 25.7 
 

330.8 22.1 
     med. trees ha-1 (23-38 cm dbh)  145.5 8.6 

 
138.8 10.4 

     large trees ha-1 (>38 cm dbh)  100.4 8.4 
 

75.9 6.0 
     total trees ha-1 (>8 cm dbh) 479.5 25.3 

 
545.5 18.6 

     basal area (m2 ha-1) 34.1 1.5 
 

29.1 0.7 
     snags ha-1 58.9 5.1 

 
27.7 6.5 

Foliage density (%) 
          understory  foliage (0-6m) 15.7 1.9 

 
17.5 1.3 

     midstory foliage (6-18m) 36.9 3.1 
 

43.1 1.8 
     overstory foliage (>18m) 39.5 3.5 

 
34.9 2.0 

     vertical foliage diversity  30.8 1.0 
 

32.0 0.7 
Topographic and misc. 

          slope (%) 12.8 0.9 
 

10.2 0.6 
     solar radiation  (1,000 WH/m2) 1317.7 13.7 

 
1326.6 10.2 

     tree diversity (H’) 1.25 0.07 
 

1.67 0.04 
     canopy vines ha-1 64.3 13.0 

 
6.7 3.3 
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Table 2.  Correlations between vector (linear) and surface (general additive modeling) fitting 
between habitat and topographical variables and the 3-dimensional non-metric dimensional 
scaling solution for avian assemblages within mineland and reference forest. P-values from 
vector fitting are derived from 999 permutations of the data. Statistical significance was p<0.05. 

 

Variable Vector r
2
 (p-value) 

 

Surface r
2
 (p-value) 

Groundcover 
        bareground  cover 0.28 (0.048)  

 
0.22 (0.02)  

     litter cover 0.50 (0.005)  
 

0.66 (<0.001)  
     litter depth  0.46 (0.003)  

 
0.63 (<0.001)  

     forb cover 0.55 (0.001)  
 

0.64 (<0.001)  
     woody groundcover 0.12 (0.39) 

 
0.10 (0.38) 

     downed log cover 0.19 (0.18) 
 

0.11 (0.49) 
Subcanopy 

        saplings ha-1 0.09 (0.53) 
 

0.01 (0.32) 
     shrubs ha-1 0.18 (0.17) 

 
0.62 (<0.001)  

Stocking 
        small trees ha-1 (8-22.9 cm dbh) 0.08 (0.57) 

 
0.11 (0.43) 

     med. trees ha-1 (23-37.9 cm dbh) 0.14 (0.31) 
 

0.13 (0.30) 
     large trees ha-1 (>38 cm dbh) 0.18 (0.20) 

 
0.31 (0.11) 

     basal area 0.20 (0.17) 
 

0.38 (0.055) 
     snags ha-1 0.39 (0.006)  

 
0.34 (0.002)  

Canopy cover 
        understory cover (0-6 m) 0.07 (0.64) 

 
0.00 (0.43) 

     midstory cover (>6-18 m) 0.10 (0.43) 
 

0.00 (0.41) 
     overstory (>18 m cover) 0.03 (0.85) 

 
0.00 (0.43) 

     vertical complexity  0.14 (0.33) 
 

0.25 (0.19) 
Topographic and misc. 

        slope 0.09 (0.49) 
 

0.11 (0.51) 
     solar radiation (WH/m2) 0.03 (0.86) 

 
0.05 (0.67) 

     tree diversity (H’) 0.39 (0.007)  
 

0.33 (0.003)  
     vines ha-1 0.44 (0.003)  

 
0.43 (0.004)  
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Table 3. Mean (±SE) detections ha-1 for all species and habitat, foraging, and nesting guilds. 
Richness is the mean (±SE) number of species ha-1.  P-values are from Poisson GLMs using an 
analysis of deviance test in which the difference in deviance approximately follows a Chi-square 
distribution with 1 degree of freedom. Statistical testing for Shannon diversity (H’) was through 
analysis of variance (* indicates the value of the F-statistic). All tests included site as a fixed 
effect. Statistical significance was p<0.05.  

 
Mineland forest Reference forest  

 

 
mean SE mean SE χ2

1 p 

Diversity (H') 1.84 0.10 1.97 0.07 0.90* 0.35 
Richness 3.97 0.42 3.85 0.24 2.28 0.13 
Relative abundance 

    
 

   All species  6.82 0.69 7.45 0.56 0.45 0.50 
  Habitat guilds 

    
 

      closed canopy  1.01 0.15 2.08 0.23 9.53 0.002  
     broken canopy  0.37 0.15 0.31 0.06 0.45 0.50 
     forest generalists 5.39 0.57 5.34 0.39 2.61 0.11 
  Foraging guilds 

    
 

      hawking   0.17 0.08 0.54 0.09 4.94 0.03  
     bark foragers 0.75 0.16 1.06 0.18 0.65 0.42 
     foliage gleaners 4.50 0.30 4.25 0.36 2.46 0.12 
     ground gleaners 0.84 0.14 1.6 0.15 5.50 0.02  
  Nesting guilds 

    
 

      canopy   3.95 0.41 3.99 0.33 1.49 0.22 
     subcanopy   0.40 0.13 0.60 0.17 1.00 0.32 
     ground   1.27 0.18 1.91 0.15 1.71 0.19 
     cavity   0.95 0.18 0.88 0.15 0.57 0.45 
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Table 4. Temporal and habitat model selection results for nest survival of Red-eyed Vireos 
breeding within mineland and reference forest in New River Gorge National River, 2011.  
Loge(L) is the value of the maximize log-likelihood function, K is the number of parameters 
estimated by the model, ΔAICc is the scaled value of Akaike‟s Information Criterion for small 
sample sizes, and wi reflects the relative support attributed to a given model.  
 

 
Loge(L) k ΔAICc wi 

Temporal Models     
     Nest stage -113.34 2 0 0.38 

     Nest stage + date -113.22 3 1.77 0.16 

     Nest stage + date2 -112.26 4 1.88 0.15 

     Constant survivalc -115.34 1 1.99 0.14 

     Date2b -113.79 3 2.92 0.09 

     Date -114.88 2 3.08 0.08 

Habitat Models 
    

     Nest stage -113.34  2 0 0.34 

     Nest stage + forest type -112.98  3 1.30 0.18 

     Nest stage + overstory cover -113.04  3 1.42 0.17 

     Nest stage + vertical foliage density -113.32 3 1.97 0.13 

     Nest stage + forest type + overstory cover -112.78  4 2.93 0.08 

     Nest stage + forest type + vertical foliage density -112.95 4 3.26 0.07 

     Globala -112.52 5 4.44 0.04 
 
a Includes all variables used in habitat models.  
b Date2 is the quadratic effect of date (date + date2). 
c The null model. 
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Table 5. Model-averaged parameter estimates, their unconditional standard errors (SE), and odds 
ratios (OR) with unconditional 95% confidence intervals (CI) for habitat and temporal variables 
used in modeling nest survival of Red-eyed Vireos breeding within mineland and reference 
forest in New River Gorge National River, 2011.  Odds ratios for vertical foliage density and 
overstory cover are for a 1% increase in the variable. 
 

Parameter Estimate SE OR 95% CI 

Vertical foliage density -0.0011 0.0061 1.000 0.987, 1.011 
Overstory cover 0.0023 0.0053 1.002 0.992, 1.013 
Mineland versus reference forest 0.0672 0.1478 1.070 0.796, 1.437 
Nestling versus laying/incubation -0.7225 0.3631 0.486 0.235, 1.004 

 
 
 
 
 
Table 6. Distribution of tree species used by Red-eyed Vireos for nest sites and the distribution 
of canopy gap types from those identified as being closest to vireo nests. 
 

Mineland nests (n=21) 
 

Reference nests (n=24) 
Nest tree species %  

 
Nest tree species %  

Red maple 38.1 
 

Red maple 29.2 
Yellow poplar 28.6 

 
Scarlet oak 20.8 

Slippery elm 14.3 
 

Black oak 16.7 
Black birch 14.3 

 
Chestnut oak 12.5 

White oak 4.8 
 

White oak 8.3 

   
Mockernut hickory 4.2 

   
American beech 4.2 

   
Black gum 4.2 

     Nearest gap type %    Nearest gap type %  
Edaphic gap 57.1   Edaphic gap 0.0 
Snag-created gap 9.5 

 
Snag-created gap 25.0 

Treefall gap 33.3 
 

Treefall gap 75.0 
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Table 7. Means (±SE) from nest measurements and habitat sampling for Red-eyed Vireo nest 
patches within mineland and reference forest in New River Gorge National River, West Virginia 
(2011). Variables used in classification tree modeling are listed under the “structural” heading 
(shrub and sapling cover were used instead of shrub and sapling density). 
 

 
Mined (n=21) 

 
Reference (n=24) 

 
Mean SE 

 
Mean SE 

Groundcover  
          bareground cover (%) 11.0 3.1 

 
1.9 0.7 

     forb cover (%) 33.1 3.7 
 

2.5 1.5 
     litter cover (%) 49.5 4.2 

 
70.8 2.3 

     woody cover (%) 6.4 2.0 
 

24.8 2.3 
Subcanopy 

          shrub stems ha-1 384.5 124.8 
 

666.7 89.5 
     shrub cover (%) 4.6 0.9 

 
7.1 0.7 

     saplings ha-1 41.7 9.0 
 

139.6 23.2 
     sapling cover (%) 11.7 2.5 

 
21.1 4.2 

Stocking 
          small trees ha-1 (8-22.9 cm dbh)  211.9 33.5 

 
370.8 21.8 

     med. trees ha-1 (23-37.9 cm dbh)  136.9 15.8 
 

139.6 13.9 
     large trees ha-1 (>38 cm dbh)  76.2 11.4 

 
93.8 7.7 

     total trees/ha (>8 cm dbh) 425.0 36.6 
 

604.2 21.1 
     basal area (m2 ha-1) 27.9 1.9 

 
32.8 1.5 

     snags ha-1 63.1 12.3 
 

25.0 5.2 
Canopy cover (%) 

          subcanopy foliage (0-6 m) 14.4 2.0 
 

22.7 2.0 
     midstory foliage (>6-18 m) 38.8 2.7 

 
39.8 2.4 

     overstory foliage (>18 m) 44.9 3.7 
 

40.5 1.5 
     vertical foliage density 32.7 1.4 

 
34.3 0.9 

Nest measurements and misc. 
          nest height (m) 20.7 1.3 

 
18.9 1.4 

     nest tree height (m) 26.7 1.3 
 

24.3 1.8 
     nest tree canopy depth (m) 12.2 1.3 

 
10.3 1.0 

     nest tree dbh (cm) 37.8 3.2 
 

34.9 3.4 
     nest to canopy top (m) 6.0 0.9 

 
5.4 0.8 

     nest to canopy bottom (m) 6.2 1.0 
 

4.8 0.7 
     canopy vines ha-1 92.9 23.0 

 
3.1 2.3 

     gap distance (m) 16.2 2.7 
 

26.0 4.1 
     nearest dominant height (m) 29.9 1.1 

 
28.4 0.7 
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Fig. 1. Location of line transects surveyed in 2011 at the Sewell Knob site in New River Gorge 
National River, West Virginia. The area surveyed corresponds to 50 m strips on each side of the 
250 m transect line or to the full extent of the habitat when mineland width is <100 m. 
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Fig. 2. Location of line transects surveyed in 2011 at the Molly‟s Creek site (west) and Fire 
Creek site (east) in New River Gorge National River, West Virginia. The area surveyed 
corresponds to 50 m strips on each side of the 250 m transect or to the full extent of the habitat 
when mineland width is <100 m. 
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Fig. 3. Location of Red-eyed Vireo nest plots and nests that were monitored within those plots in 
2011 in New River Gorge National River, West Virginia. Area and nests monitored for each plot 
were: Sewell Knob reference (36.4 ha, n=14), Sewell Knob mine (8.8 ha, n=9), Little Stoney 
mine (20.8 ha, n=7), Molly‟s Creek reference (17.4 ha, n=5), Molly‟s Creek mine (10.1 ha, n=5), 
and Stonecliff reference (5.4 ha, n=5). 
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Fig. 4. Distribution of tree species groups by size class from reference (n=56) and mineland 
forest plots (n=56) sampled along bird survey transects in New River Gorge National River, 
West Virginia (2011). This is expressed as the proportion of tree density within a size class. 
White oaks include chestnut and white oak. Red oaks include black, scarlet, and northern red 
oak.  
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Fig. 5. Diameter distribution from reference (n=56) and mineland forest plots (n=56) sampled 
along bird survey transects in New River Gorge National River, West Virginia (2011). 
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Figure 6. Boxplot of basal area (m2 ha-1) for transects within mineland and reference forest. 
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Figure 7. Dimensions 1 and 2 from a 3-dimensional non-metric dimensional scaling ordination 
for avian assemblages within mineland (M) and reference (R) forest. Stress was 15.3 for the 3-
dimensional solution (2 convergent solutions after 6 runs). The vectors plotted are for those 
variables that had linear p<0.05 (axes 1-3). The length of the arrow corresponds to the correlative 
strength of the gradient-ordination relationship. Weighted mean positions for all bird species are 
shown. Species codes are listed in Appendix C. 
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Fig. 8. Non-metric dimensional scaling ordinations fit with surface contours using GAM for A) 
leaf litter depth, (contours are in cm) and B) litter cover. Mean weighted locations for species in 
the ground gleaning guild (Ovenbird and Wood Thrush). Linear and surface fit r2 values for the 
ordination-gradient relationship are shown above their corresponding frames. Surface fits are 
significant (p<0.001). Assemblage type is overlaid; mineland (M) and reference (R) forest.  
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Figure 9. Mean dissimilarity dendrogram for mineland (M) and reference (R) forest assemblages. 
Mean between-group dissimilarity (Bbar) = 0.460. Mean within-group dissimilarity (Wbar) = 
0.410.  
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Figure 10. Mean detections ha-1 (± SE) for habitat, nesting, and foraging guilds within mineland 
(gray) and reference forest (white). The boxplot for Shannon diversity (H’) is also shown. 
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Figure 11. Model-averaged estimates and 95% CIs for period survival of Red-eyed Vireo nests 
within mineland and reference forest and for daily survival for laying/incubation and nestling 
stages. 
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Fig. 12. Classification tree for structural characteristics within Red-eyed Vireo nest patches 
within mineland (M; n=21) and reference (R; n=24) forest in New River Gorge NR, West 
Virginia (2011). Nodes are classified according to the dominant forest type. 
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THE EFFECT OF FORESTED, ABANDONED MINE LANDS ON AVIAN 
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ABSTRACT 

Despite the extent to which they bisect Appalachian forest landscapes, the influence of 

forested pre-SMCRA minelands on the avian assemblage has received little study. In 2010, I 

initiated research with an objective of examining patterns in avian assemblage structure in mined 

and unmined forest and also across two broad classes of minelands, compacted bench minelands 

and loose-dumped bench minelands. In New River Gorge National River and Plum Orchard 

Wildlife Management Area, I conducted avian point counts and sampled forest structure and 

composition within four habitat types: loose-dumped bench minelands, compacted bench 

minelands, unmined plateau, and unmined steep slope. Non-metric dimensional scaling (NMDS) 

ordination indicated that minelands with loose-dumped benches had minimal effect on 

assemblage structure. Only compacted bench minelands had a relatively distinct avian 

assemblage due in part to restricted forest development along benches and edge influence along 

highwalls. Dense midcanopy cover, relatively low levels of overstory cover, and substantially 

higher canopy vine density characterized compacted bench minelands. Species which use the 

subcanopy and midcanopy for nesting and foraging, American Redstart, Rose-breasted 

Grosbeak, and Worm-eating Warbler, differentiated the avian assemblage associated with 

compacted bench minelands. Relative abundance of the closed-canopy guild was lower within 

mined forest than within unmined forest. For some mature forest restricted species, i.e. Blue-

headed Vireo and Ovenbird, mineland habitats may have low suitability due to relatively low 

subcanopy cover within loose-dumped bench sites and relatively low overstory cover and canopy 

height along compacted benches. 

 
INTRODUCTION 

In much of Appalachia, mineland forest is now a component of a landscape that was 

extensively contour stripped prior to the passage of the Surface Mining Control and Reclamation 

Act (SMCRA) in 1977. Prior to SMCRA, mines used a “shoot and shove” method for extraction 

resulting in an exposed highwall, bench-land along its face, and an outslope comprised of loose 

spoil that had been pushed below. Mines were left in this “shoot and shove” configuration and 

reclamation practices varied from state to state (Brown 1962). Mature forest has since developed 

on many of these sites. However, forest development varies according to the extent of loose-

dumped spoil atop benches, and on many of these sites mature forest is not contiguous.  
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Despite the extent to which they bisect Appalachian forest landscapes, the influence of 

forested pre-SMCRA minelands on the avian assemblage has received little study. Pre-SMCRA 

minelands may represent significant structural and compositional contrast to adjacent forest on 

unmined soils. As such, the presence of forested pre-SMCRA minelands on the landscape may 

result in an avian assemblage distinct from the one found within forest lacking pre-SMCRA 

minelands (hereafter, unmined forest). In addition, forest development and, consequently, the 

degree of edge influence along highwalls may differ between minelands with compacted benches 

and those with loose-dumped spoil distributed atop benches. Therefore, avian assemblage 

composition could also vary in response to differences in habitat structure between compacted 

bench minelands and loose-dumped bench minelands. The objective of this study was to examine 

patterns in avian assemblage structure in mined and unmined forest and also across two broad 

classes of minelands, compacted bench minelands and loose-dumped bench minelands.  

 

SITE DESCRIPTIONS AND METHODS 

Study area and sampling design. The study area is located atop the New River Plateau 

and along the steep, upper slopes within New River Gorge National River and Plum Orchard 

Wildlife Management Area (WMA) in southern West Virginia (Appendix F). The oak-hickory 

and mixed-mesophytic forest within these public landholdings is largely unfragmented and 

varies compositionally along a soil moisture and fertility gradient (Vanderhorst et al. 2007).  

Oak-hickory forest occupies much of the relatively xeric plateau with white (Quercus alba), 

chestnut (Quercus prinus), scarlet (Quercus coccinea), and black oak (Quercus velutina) 

comprising the predominant canopy species.  Along the steep, upper slopes within Plum Orchard 

WMA and the New River Gorge, the forest is of the mixed-mesophytic type and northern red 

oak (Quercus rubra), chestnut oak, hickory spp. (Carya spp.), red maple (Acer rubrum), sugar 

maple (Acer saccharum), yellow poplar (Liriodendron tulipifera), basswood (Tilia americana), 

and American beech (Fagus grandifolia) are dominants. Elevations within the study area are 

550-730 m.  

I selected pre-SMCRA abandoned minelands based on the following criteria: the 

presence of mature hardwood forest that had established naturally, the absence of roads along 

benches, and the presence of adjacent, unmined mature hardwood forest. I established one set of 

paired point count transects (mined and unmined) at each of five sites. Because variation in slope 
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steepness contributed strongly to differences in tree species composition and mineland habitat 

structure, mined and unmined transects were classified on the basis of slope steepness. During 

early contour mining, slope steepness was a primary factor in determining the extent to which 

successive cuts could be made along a contour and, consequently, in how loose-dumped spoil 

was distributed. In areas of greater slope steepness, mine operators encountered a rapidly 

increasing overburden to coal ratio with each progressive cut into the mountainside. 

Consequently, along steeper slopes, benches tend to be narrow and relatively compacted with all 

loose-dumped spoil pushed into outslopes. 

Three study sites were located within oak-hickory forest atop the New River Plateau 

(Molly‟s Creek, Fire Creek, and Sewell Knob) (Fig. 1). Within these sites, minelands were 

relatively wide with spoil ridges distributed atop benches (Figures 2-3) and thus, were classified 

as loose-dumped benches. Mature forest cover was generally contiguous within these minelands. 

Unmined transects within these sites were classified as unmined plateau forest. Two study sites 

were located within mixed-mesophytic forest along the steep, upper slopes of the New River 

Gorge (Turkey Spur) and Plum Orchard WMA (Fig. 1). Mined transects within these sites were 

classified as compacted benches because they were narrow and had level benches upon which 

mature forest had often not developed (Figures 4-5). Unmined transects within these sites were 

classified as unmined, steep slope forest.  

Within minelands, forest structure along highwalls also varied according to slope 

steepness. Within loose-dumped bench sites, the mineland canopy largely obscured the edge 

once created by the highwall. Within compacted bench sites, the mineland canopy rarely 

exceeded the height of the highwall and highwalls were occasionally collapsed with vine-

choked, young forest vegetation extending from the top of the highwall to the bench below.  

Using aerial photos taken in 1945 and 1957, I established that all five mine sites were 

mined between 1945 and 1957 (Appendix B). The unmined stands primarily originated during 

extensive clearcutting at the turn of the century (Brooks 1910), but also included stands that were 

closer in age to mineland stands. The latter were abandoned homesteads and a former mining 

company town that existed as early successional vegetation at the time the 1945 photos were 

taken. 

The seams from which coal was extracted at mine sites included: the Middle War Eagle 

coal in the Kanawha Formation and the Fire Creek coal and Sewell coal in the New River 
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Formation. The Kanawha, New River, and Pocahontas formations constitute the Pottsville Group 

(Pennsylvania Period) and contain a series of interbedded coal-bearing sandstones, siltstones, 

and shales (Barlow 1974). Mine sites were not planted with trees with the exception of a 0.4 ha 

section of pitch pine on the Sewell Knob mine and a row of white pine ~150 meters long on the 

Turkey Spur mine.  

Point count transect layout was accomplished in ArcGIS. I delineated minelands using 

aerial photographs and randomly generated sampling points (Hawth‟s Analysis Tools; Beyer 

2004) within an area that extended from 20 m upslope to 20 m downslope of the mine. At two 

sites, the area above the highwall could not be sampled safely so I excluded these particular areas 

prior to generating points.  

Adjacent to each mined transect, I delineated an area of unmined forest. I attempted to 

match each unmined area to the adjacent mined transect with respect to aspect, slope position, 

and size large enough to encompass a similar number of sampling points. Within each area of 

unmined forest, I randomly generated sampling points using Hawth‟s Analysis Tools (Beyer 

2004).  Both mined and unmined points were separated by at least 250 m and unmined points 

were >100 m from mines. Although the study area contains largely unfragmented forest, a 

variety of small, anthropogenic disturbances occur throughout, including narrow forest roads, 

isolated homes, narrow powerline corridors, and patches of early-successional vegetation on 

abandoned homesites.  All points were placed at least 85 m from these disturbances.  

In 2010, I sampled avian assemblages at 17 points in unmined plateau forest, 17 points 

along loose-dumped benches, 17 points in unmined, steep slope forest, and 14 points along 

compacted benches. In total, I surveyed 31 points at mined sites and 34 points at unmined sites.   

Bird surveys. Between 1/2 hour after sunrise and 1045 AM from 16 May through 2 June, 

I sampled breeding bird communities using variable circular plot point counts. I conducted ten 

minute counts and sampled each point twice (Petit et al. 1995) with approximately one week 

between counts. Observations were categorized into five detection types: singing, calling, 

displaying or drumming, flyovers, and visuals. I used a laser rangefinder to obtain radial 

distances to each bird that was detected with the exception of flyovers. Distances were assigned 

to the following categories: 0-10 m, 11-20 m, 21-30 m…91-100 m, 101-125 m, 126-150 m, and 

>150 m.  Detections were recorded into four time intervals: 0-3 minutes, >3-5 minutes, >5-8 

minutes, and >8-10 minutes.   
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Distance analysis. Heterogeneity in detectability between habitats can introduce bias in 

estimates of density that if unmodeled may lead to erroneous inferences about populations 

(Diefenbach et al. 2003, Kissling and Garton 2006, Simons et al. 2006). Distance sampling is a 

method used in concert with randomized line and point transect surveys for the purpose of 

applying a correction factor (detection function) to raw count data and thereby removing bias 

from estimates of density (Thompson 2002). Assumptions within distance sampling are: 1) 

detection at zero distance has probability 1. 2) animals are detected instantaneously and prior to 

evasive movement or attraction in response to observers, and 3) distances are measured 

accurately. In studies of forest songbirds, these assumptions are often incompletely met at some 

level (Kissling and Garton 2006).  

Mineland topography and variation in habitat structure between mined and unmined 

forest were potential sources of detection heterogeneity. Therefore, I evaluated whether 

detectability differed between mined and unmined forest by modeling detection functions for as 

many species as sample size would allow. For three species with >60 singing detections within 

both mined and unmined stratums,  I fit a separate detection function to data within each stratum 

using conventional distance sampling (CDS) (Buckland et al. 2001). For four species in which 

sample size was inadequate for stratification but for which there were at least 60 total singing 

detections, I modeled the detection function for the pooled data as a function of covariates that I 

assumed to have created heterogeneity in detectability (multiple covariate distance sampling 

(MCDS)) (Marques et al. 2007). I then used post-stratification to obtain separate detection 

functions for mined and unmined forest. Covariates included slope type (plateau or steep slope), 

percent slope, vertical foliage density, subcanopy cover (0-6 m), midcanopy cover (>6-18 m), 

overstory cover (>18 m), small trees (trees <23 cm dbh), large trees (trees ≥23 cm dbh), and 

sapling density. Values for covariates were the sum or mean (as appropriate) of data collected at 

three vegetation plots per point. Prior to analysis, I truncated 5-10% of a species‟ furthest 

observations to remove outliers (Buckland et al. 2001).  

 I modeled detection functions within Program Distance (Thomas et al. 2009) through  

selection from two key functions (half-normal and hazard-rate) with incorporation, given that 

model fit was improved, of cosine or simple polynomial series expansion terms (Buckland et al. 

2001). I used Akaike‟s Information Criterion (AIC), visual inspection of detection function and 
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probability density histograms, and Chi-squared goodness-of-fit tests to select between models 

and to assess model fit (Buckland et al. 2001). 

 Estimates of the effective detection radius (EDR) and their 95% confidence intervals 

indicated that detectability was similar for mined and unmined forest for all seven species that I 

modeled (Fig. 6). Depending on the function used in the detection model, the EDR estimates the 

distance at which the probability of detection declines below 0.5 (Laake et al. 1993, Simons et al. 

2006).  

Due to the aggregated, linear nature of minelands and the limited scale at which I 

sampled them, distances may not have been independent of bird distribution. For a species that is 

displaced by mineland forest, the scale at which I sampled minelands would not be sufficient for 

the distribution of distances to reflect independence from the location of my sampling points 

(Marques 2007). For this reason as well as the absence of strong differences in detectability 

between mined and unmined forest, I did not correct raw counts. For analyses, I used a species‟ 

maximum count between the two visits to each station.  

Habitat sampling. I sampled habitat structure and composition using methods similar to 

Wood et al. (2001) that were modified from James and Shugart (1970) and the Breeding Bird 

Research Database Program (BBIRD; Martin et al. 1997). At a distance of 50 meters from each 

point count station, I established three habitat sampling plots along bearings separated by 120 

degrees, the first of which was generated randomly.  Within plots, I identified all trees >8 cm 

diameter at breast height (dbh) to species and measured dbh. I tallied all vines that reached the 

canopy on measured trees and counted all snags >8 cm dbh and >8 m tall. Within each plot, I 

established two, 22.6 m perpendicular transects. Using an ocular tube and sighting along the 

tube‟s crosshairs, I estimated vertical foliage density at a total of 20 points, located 2 m apart 

along the perpendicular transects. I recorded the presence or absence of live foliage in the 

crosshairs at heights of 0.5-3 m, >3-6 m, >6-12 m, >12-18 m, >18-24 m, and >24 m. From these 

data, I calculated vertical foliage density as the sum of all foliage hits divided by the total 

number of sighting intervals (120) and then multiplied by 100. Foliage density data also were 

collapsed into understory (0-6 m), midstory (.6-18 m), and overstory (>18 m) layers.  

Within 3 m-radius subplots at the center of each 0.04 ha plot, I counted woody vegetation 

0.5-1.5 m tall (shrubs) and tallied saplings (>1.5 m tall and <8 cm dbh) and downed logs. I also 

estimated shrub, sapling, and downed woody debris cover (logs and stumps >8 cm dbh and >1 m 
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in length). Using a 1 m DEM, I calculated mean percent slope within a 50-m radius of each 

point. 

 

ANALYSES 

Non-metric multidimensional scaling (NMDS) was used to visualize patterns in avian 

assemblage structure between mined and unmined habitat types. In NMDS, ordination is based 

upon preservation of the original rank order of between sample distances derived from a 

dissimilarity matrix (Clarke and Green 1988, Clarke 1993). In using rank order distances, NMDS 

avoids the linear distribution assumption (Clarke and Green 1988). Locations of assemblages in 

the multidimensional space are determined through multiple iterations such that stress is 

minimized (Clarke and Green 1988). Stress is a measure of goodness of fit between plotted and 

true rank order distances from the original distance matrix (Clarke and Green 1988).  

NMDS was conducted using the „vegan‟ package (Oksanen et al. 2009) within Program 

R 2.12.1 (R Development Core Team 2010). I excluded species that individually contributed 

<1% to the total count (Preston and Harestad 2007, Chizinski et al. 2011). Ordination was 

performed using the metaMDS function and a Bray-Curtis dissimilarity matrix. Data was 

standardized using the Wisconsin double standardization method and square-root transformed to 

increase the relative importance of less abundant species. Multiple random starts (20/ordination) 

were performed in order to avoid becoming trapped in local minima (the iterative process stalling 

at a stress value that actually can be further reduced) (McCune and Grace 2002). NMDS was 

conducted in dimensions 2-6. The stress of NMDS ordinations was evaluated against their 

dimensionality via a screeplot to determine the appropriate dimensionality for display and 

statistical testing. Habitat type was overlaid and species were ordinated by their averaged 

weighted scores.  

I used the adonis function (vegan package; Oksanen et al. 2009) to statistically assess the 

variation in assemblage structure attributable to forest type (mined and unmined), slope type 

(plateau and steep slope), and the interaction between forest type and slope class. This function 

performs a multivariate analysis of variance through partitioning of the sums of squares in a 

distance matrix in relation to a factor and using F-tests from permutations of the data to 

determine the level of statistical significance (Oksanen et al. 2009).  I used the adonis method 

rather than analysis of similarities (ANOSIM) because the adonis method is generally considered 
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more robust than ANOSIM (Oksanen et al. 2009).  I used a Bray-Curtis dissimilarity matrix and 

specified that permutations (999) occurred within sites but not across sites (Oksanen et al. 2009).   

A mean dissimilarity dendrogram was then used to graphically display mean between-

group and within-group dissimilarity. To determine the appropriate linkage method, cophenetic 

correlations were calculated between the original Euclidian distance matrix and a Bray-Curtis 

distance matrix using both “average” and “single” linkage methods (Oksanen et al. 2009). I used 

the average linkage method because this linkage in combination with a Bray-Curtis metric 

produced a higher cophenetic correlation (0.22) than did the single linkage method (0.18).  

Within the mean dissimilarity dendrogram, vertical lines indicate mean within-group 

dissimilarity; longer lines equate to lower mean dissimilarity (Oksanen et al. 2009). The 

horizontal line indicates mean between-group dissimilarity (Oksanen et al. 2009). 

Using generalized linear modeling (GLM), I tested for differences in species richness, 

overall abundance, and abundance within foraging, nesting, and habitat guilds. Modeling was a 

function of forest type (mined and unmined), slope type (plateau and steep slope), the interaction 

between forest type and slope class, and site, all as fixed effects. I evaluated models for 

overdispersion using a Poisson GLM and an associated dispersion parameter. Based on the 

absence of overdispersion in all models, I determined a Poisson distribution was appropriate for 

these analyses (Zuur et al. 2009). Statistical significance was assessed via an analysis of deviance 

test in which the difference in deviance approximately follows a Chi-square distribution with 1 

degree of freedom (Zuur et al. 2009). Foraging and nesting guilds were adapted from Ehrlich et 

al. (1988) and Canterbury et al. (2000) (Appendix C). I placed species into habitat guilds (closed 

canopy species, broken canopy species, and forest generalists) in the context of the canopy 

disturbance gradient that exists within the study area (contiguous forest with relatively small 

areas of broken canopy habitat). In addition, I tested for differences in Shannon (H’) diversity 

using a Gaussian distribution and the model specification previously described.  

For analysis of habitat variables, vegetation sampling plots were classed as unmined 

plateau, loose-dumped bench, unmined steep slope, and compacted bench. I used a subset of 

plots associated with mined point counts that was comprised of only those plots that were wholly 

on the mine. I included all plots associated with unmined plateau and steep slope point count 

stations. I retained all variables for analysis with the exception of those pertaining to subcanopy 

characteristics (shrubs, saplings, downed logs) for which I had recorded both density and cover; I 
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only included one or the other in all three cases. I graphically evaluated whether data for each 

habitat variable met assumptions of normality and variance homogeneity. Cover variables not 

meeting these assumptions were arcsine-transformed. Count data not meeting these assumptions 

were square root-transformed. I compared variables between the four habitat types using 

univariate analysis of variance with multiple comparisons using Tukey‟s HSD procedure. Using 

0.05 as the global alpha level, the critical p-value was set at 0.0036 using the Bonferroni method.  

 

RESULTS 

Habitat summary. Compacted bench sites had characteristics indicative of disturbed 

forests including significantly greater canopy vine density and midcanopy foliage density 

relative to the three other habitat types (Table 1). Also, overstory foliage density was 

significantly lower than loose-dumped bench sites and unmined, steep slope sites. Within 

compacted bench sites, high midcanopy cover and low overstory cover suggests lower canopy 

height overall (Fig. 7).  

Unmined plateau sites were characterized by comparatively greater subcanopy and 

midcanopy development. Shrub density was significantly higher than the other three habitat 

types and small tree (8-23 cm) density was significantly higher than loose-dumped bench sites 

and unmined, steep slope sites (Table 1).  In contrast, loose-dumped bench sites had significantly 

lower subcanopy foliage density than unmined plateau sites and compacted bench sites (Fig. 7). 

Within compacted bench and loose-dumped bench minelands, yellow poplar and red 

maple were predominant (Appendix G). Unmined plateau sites were dominated by red maple and 

non-mesic oaks: scarlet, white, chestnut, and black oak. Within unmined, steep slope sites, red 

maple, sugar maple, and northern red oak were predominant. 

Avian assemblage structure. In evaluating the stress of NMDS ordinations versus their 

dimensionality, stress was not appreciably reduced for ordinations with greater than three 

dimensions. Thus, samples are plotted within the first two dimensions of the 3-dimensional 

NMDS solution (Fig. 8). Stress for the 3-dimensional NMDS solution was 20.6 (two convergent 

solutions after 6 runs).  

The NMDS ordination showed overlap between assemblages associated with all four 

habitat types. Only compacted bench sites showed some discrimination from other habitat types, 

but there was not clear separation of these assemblages. Compacted bench assemblages were 
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primarily clustered on the left side of the plot and were discriminated by Worm-eating Warbler 

(Helmitheros vermivorus), Rose-breasted Grosbeak (Pheucticus ludovicianus), and American 

Redstart (Setophaga ruticilla). 

The mean dissimilarity dendogram (Fig. 9) indicated greater between-group dissimilarity 

than within-group dissimilarity for all habitat types. However, group structure was not 

particularly strong as evidenced by mean between-group dissimilarity (Bbar = 0.502) relative to 

mean within-group dissimilarity (Wbar = 0.453). Among the four assemblage types, compacted 

bench and unmined steep slope assemblages had the highest within-group dissimilarity.  

The adonis analysis indicated that assemblage structure differed significantly between 

mined and unmined forest and between steep slope and plateau sites (Table 2). However, in 

modeling both of these effects, variation in within-group distances was overwhelming and forest 

and slope type accounted for only 6.0% and 8.8% of the variation in the avian assemblage, 

respectively. The interaction between forest type and slope type was marginally significant and 

accounted for only 2.6% of the variation in the avian assemblage. 

Overall relative abundance, abundance within nesting and foraging guilds, species 

richness, and Shannon (H’) diversity were similar for mined and unmined forest (Table 3). 

Mined and unmined forest had similar abundance of broken canopy and forest generalist species 

(Fig. 10), but closed-canopy species had significantly greater abundance within unmined forest 

(Table 3). The interaction between forest type and slope type was non-significant for all 

analyses. 

 

DISCUSSION 

The presence of pre-SMCRA minelands with loose-dumped benches was not a strong 

influence on avian assemblage structure. Only compacted bench minelands had a relatively 

distinct avian assemblage. However, within the NMDS ordination, this assemblage was not 

discrete, suggesting that these minelands modify the avian assemblage on a relatively narrow 

scale. Dense midcanopy cover and relatively low levels of overstory cover characterized 

compacted bench minelands. These characteristics result in part from poor physical and chemical 

properties of minesoils which have arrested forest development along benches. Canopy vine 

density, primarily grapevine (Vitis spp.), was substantially higher within compacted bench sites 

and suggested that forest development also may be restricted through vine-capture of the habitat. 
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In addition to the structure of this restricted forest and vine community, dense understory 

vegetation and canopy foliage along the highwall edge and the young forest habitat that 

originated through highwall collapse were likely influential in structuring avian assemblages 

along compacted benches. 

Species which use the subcanopy and midcanopy for nesting and foraging, American 

Redstart, Rose-breasted Grosbeak, and Worm-eating Warbler, differentiated the avian 

assemblage associated with compacted bench minelands. American Redstart and Rose-breasted 

Grosbeak are generally most abundant within mesic, second growth forest in which some 

shrubby vegetation is present (Wyatt and Francis 2002, Sherry and Holmes 1997). Worm-eating 

Warblers are associated with dense understory vegetation usually along steep slopes (Hanners 

and Patton 1998).  

Relative abundance of the closed-canopy guild was significantly higher within unmined 

forest. For some mature forest-restricted species, i.e. Blue-headed Vireo and Ovenbird, mineland 

habitats may have low suitability due to relatively low subcanopy cover within loose-dumped 

bench sites and relatively low overstory cover and canopy height along compacted benches. 

Blue-headed Vireos are generally associated with high canopy closure, usually >75%, but also 

use the subcanopy extensively for foraging and nesting (Hamel 1992, Meehan 1996, James 

1998). In addition, mineland forests may represent suboptimal breeding habitat for Ovenbirds, a 

ground-nesting and foraging species, due to relatively low leaf litter depth and cover and high 

forb cover (Mizel, unpublished data).  

Previous research has illustrated the significant effect that large-scale surface mining has 

on mature forest songbirds, Cerulean Warblers (Dendroica cerulea) in particular (Wood et al. 

2006). Few studies have investigated the influence of forested pre-SMCRA surface mines on the 

avian assemblage. This study has shown that compacted bench minelands created significant 

habitat contrast with the surrounding, unmined forest and consequently resulted in a relatively 

distinct avian assemblage.  
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Table 1. Means (±SE) for habitat characteristics associated with point counts conducted in 2010 in southern West Virginia. Plots 
sampled within oak-hickory forest atop the New River Plateau were categorized as loose-dumped benches (n=33) and unmined 
plateau (n=51). Plots sampled within mixed-mesophytic forest at steep slope sites are categorized as compacted benches (n=20) and 
unmined, steep slope (n=51). The critical p-value was set at 0.0036 using the Bonferroni adjustment. Means that do not share an 
uppercase letter are significantly different (p < 0.05; Tukey's multiple comparison procedure). 
 

 
Loose-dumped  Unmined Compacted  Unmined 

  
 

benches (plateau)  (plateau) benches (steep slope) (steep slope) 
  Habitat characteristic mean SE mean SE mean SE mean SE F p 

Subcanopy 
               shrub stems ha-1 488.64 (189.05) AB 590.20 (98.83) B 178.75 (69.00) A 324.51 (55.06) A 4.80 0.0032 

     saplings ha-1 81.06 (15.99) 127.94 (15.09) 105.00 (27.54) 103.92 (15.68) 1.28 0.28 

Stocking 
               small trees ha-1 (8-22.9 cm)  260.61 (30.21) A 370.59 (25.80) B 270.00 (29.05) AB 231.86 (14.85) A 7.94 <0.001 

     med. trees ha-1 (23-37.9 cm)  146.97 (11.86) A 142.16 (7.87) A 135.53 (18.19) AB 90.69 (6.93) B 8.47 <0.001 

     large trees ha-1 (>38 cm)  87.12 (9.49)  87.75 (5.96) 70.00 (8.03) 112.25 (7.19) 4.55 0.004 

     total trees ha-1 (>8 cm) 494.70 (33.28) A 600.49 (25.61) B 468.75 (34.93) A 434.80 (18.71) A 8.86 <0.001 

     basal area m2 ha-1 31.44 (2.10) 32.20 (1.15) 26.71 (2.25) 36.87 (2.03) 4.11 0.008 

     snags ha-1 46.21 (8.29) AB 29.90 (3.84) A 81.25 (14.72) B 27.45 (5.34) A 7.79 <0.001 

Canopy cover 
               subcanopy foliage (%) 18.64 (1.76) B 30.10 (2.09) A 31.25 (3.34) A 22.89 (2.15) AB 6.02 <0.001 

     midstory foliage (%) 39.62 (2.37) A 44.02 (1.89) A 58.63 (4.15) B 43.43 (2.24) A 7.08 <0.001 

     overstory foliage (%) 38.79 (2.79) AC 33.63 (2.49) AB 25.75 (4.05) B 45.78 (2.23) C 8.29 <0.001 

     vertical foliage density (%) 32.35 (1.15) 35.92 (1.40) 38.54 (2.12) 37.37 (1.12) 2.98 0.03 

Miscellaneous 
               canopy vines ha-1 102.27 (22.81) B 3.43 (1.40) C 263.75 (51.79) D 53.43 (10.80) AB 30.81 <0.001 

     downed log cover (%) 8.79 (1.58) A 3.12 (0.52) B 5.10 (1.86) AB 4.64 (0.81) A 5.17 0.002 
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Table 2. Results from adonis analysis of avian assemblage similarity. Partial R2 and p-values are 
based on 999 permutations of the data. 
 
 

 
F1,61 R

2
 p 

Forest type 4.44 0.060 0.001 
Slope  6.46 0.088 0.001 
Forest type x slope 1.91 0.026 0.02 

 
 
 
 
 
Table 3. Mean (±SE) relative abundance for all species and habitat, foraging, and nesting guilds 
at mined and unmined point counts conducted in 2010 in southern West Virginia. Except for 
Shannon diversity (H’), p-values are from Poisson GLMs using an analysis of deviance test in 
which the difference in deviance approximately follows a Chi-square distribution with 1 degree 
of freedom. Shannon diversity (H’) was tested with analysis of variance (* indicates the value of 
the F-statistic). 
 
 

 
Mined Unmined   

 
 mean SE mean SE χ2

1 p 

Diversity (H') 2.26 0.04 2.18 0.05 0.28* 0.60 
Richness 11.06 0.42 10.56 0.53 0.03 0.87 
All species  16.58 0.59 15.91 0.64 0.00 1.00 
Habitat guilds 

    
 

      closed canopy  3.29 0.25 4.76 0.36 6.88 0.009 
     broken canopy  2.81 0.46 1.85 0.32 0.82 0.37 
     generalists 10.19 0.45 9.12 0.39 2.04 0.15 
Foraging guilds 

    
 

      hawking   0.97 0.18 1.12 0.16 0.23 0.63 
     bark foragers 1.74 0.17 2.41 0.20 2.94 0.09 
     foliage gleaners 9.52 0.44 8.41 0.49 2.10 0.15 
     ground gleaners 3.81 0.30 3.59 0.29 0.20 0.66 
Nesting guilds 

    
 

      subcanopy   3.16 0.47 2.03 0.26 1.00 0.32 
     ground   3.90 0.30 4.00 0.22 0.85 0.36 
     shrub 1.13 0.17 0.59 0.15 1.33 0.25 
     cavity   1.32 0.20 2.03 0.20 3.09 0.08 
     canopy  6.29 0.33 6.88 0.35 4.02 0.60 
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Figure 1. Location of point count stations surveyed in 2010 in southern West Virginia. Plateau 
study sites (unmined and loose-dumped bench transects) are shown in the top frame and steep 
slope sites (unmined and compacted bench transects) are shown in the bottom two frames. 
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Figure 2. Spoil ridges atop the Fire Creek study site. 
 

 
Figure 3. Spoil ridge along Sewell Knob study site. 
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Figure 4. Vine-captured gap at the base of a highwall along a compacted bench study site in 
Plum Orchard WMA. 
 

 
Figure 5. Compacted bench in New River Gorge National River (Turkey Spur study site). 
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Figure 6. Effective detection radii (EDR) with 95% confidence intervals for Black-and-white 
Warbler, Blue-headed Vireo, Hooded Warbler, Ovenbird, Red-eyed Vireo, Scarlet Tanager, and 
Wood. Estimates are for mined (gray bars) and umined (white bars) point counts. Depending on 
the function used in the detection model, the EDR estimates the distance at which the probability 
of detection declines below 0.5 (Laake et al. 1993, Simons et al. 2006).  
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Figure 7. Percent vertical foliage density within the subcanopy (0-6 m), midcanopy (6-18 m), 
and overstory (>18 m) for compacted bench sites, unmined steep slope sites, loose-dumped 
bench sites, and unmined plateau sites. 
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Figure 8. Dimensions 1 and 2 from a 3-dimensional NMDS solution for avian assemblages in 
mined (compacted and loose-dumped benches) and unmined forest. Stress was 20.6 for the 3-
dimensional solution (2 convergent solutions after 6 runs). Species codes are listed in Appendix 
C. 
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Figure 9. Mean dissimilarity dendrogram for compacted bench assemblages (C), loose-dumped 
bench assemblages (L), unmined plateau assemblages (P), and unmined steep slope assemblages 
(S). Mean between-group dissimilarity (Bbar) = 0.502. Mean within-group dissimilarity (Wbar) 
= 0.453.  

 
 
 



95 

D
e

te
c
ti
o

n
s

0

2

4

6

8

10

Forest

generalists

Broken canopy

species

Closed canopy

species

h
a

1

Mined

Unmined
D

e
te

c
ti
o

n
s

0

2

4

6

8

10

Foliage

gleaners

Ground

gleaners

Haw king

species

Bark

foragers

h
a

1

D
e

te
c
ti
o

n
s

0

2

4

6

8

Ground

nesters

Shrub

nesters

Subcanopy

nesters

Canopy

nesters

Cavity

nesters

h
a

1

S
h

a
n

n
o

n
 W

e
in

e
r 

d
iv

e
rs

it
y

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Mined Unmined

 
Figure 10. Relative abundance (± SE) for habitat, nesting, and foraging guilds for mined (gray) 
and unmined (white) point counts. The boxplot for Shannon diversity (H’) is also shown. 

 

 

 

 

 

 

 

 
 



96 

Appendix A. Study area location for line transect surveys and Red-eyed Vireo nest monitoring in 
New River Gorge National River, West Virginia in 2011. 
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Appendix B. Aerial photograph (1945) showing early surface mining atop the New River 
Plateau. Initial mining at two study sites (2010-2011) is visible on the photograph. 
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Appendix C. Breeding bird species detected during 2010-2011 surveys.  
 

Common Name Code Scientific Name Foraging Nesting Habitat 

Acadian Flycatcher ACFL Empidonax virescens HK SC CC 
American Redstart AMRE Setophaga ruticilla FG SC BC 
American Robin AMRO Turdus migratorius GG SC Gen 
Bk-throated Green Warbler BTNW Setophaga virens FG CA CC 
Black-and-white Warbler BAWW Mniotilta varia BF GR Gen 
Blackburnian Warbler BLBW Setophaga fusca FG CA Gen 
Blue Jay BLJA Cyanocitta cristata   

 
Gen 

Blue-gray Gnatcatcher BGGN Polioptila caerulea FG CA Gen 
Blue-headed Vireo BHVI Vireo solitarius FG CA CC 
Brown-headed Cowbird BHCO Molothrus ater   

  Carolina Chickadee CACH Poecile carolinensis FG CV Gen 
Carolina Wren CAWR Thryothorus ludovicianus GG CV  BC 
Cerulean Warbler CERW Setophaga cerulea FG CA BC 
Downy Woodpecker DOWO Picoides pubescens BF CV Gen 
Eastern Phoebe EAPH Sayornis phoebe HK 

 
Gen 

Eastern Towhee EATO Pipilo erythrophthalmus GG GR BC 
Eastern Tufted Titmouse ETTI Baelophus bicolor FG CV Gen 
Eastern Wood Pewee EAWP Contopus virens HK CA BC 
Great Crested Flycatcher GCFL Myiarchus crinitus  HK CV Gen 
Hairy Woodpecker HAWO Picoides villosus BF CV Gen 
Hooded Warbler HOWA Wilsonia citrina FG SH BC 
Indigo Bunting INBU Passerina cyanea FG SH BC 
Kentucky Warbler KEWA Oporornis formosus GG GR BC 
Louisiana Waterthrush LOWA Seiurus motacilla   GR Gen 
Northern Cardinal NOCA Cardinalis cardinalis  FG SH BC 
Northern Parula NOPA Parula americana FG CA Gen 
Ovenbird OVEN Seiurus aurocapillus GG   GR CC 
Pileated Woodpecker PIWO Dryocopus pileatus BF CV CC 
Pine Warbler PIWA Setophaga pinus BF CA Gen 
Red-bellied Woodpecker RBWO Melanerpes carolinus BF CV Gen 
Red-eyed Vireo REVI Vireo olivaceus FG CA Gen 
Rose-breasted Grosbeak RBGR Pheucticus ludovicianus FG SC Gen 
Scarlet Tanager SCTA Piranga olivacea FG CA Gen 
White-breasted Nuthatch WBNU Sitta carolinensis BF CV Gen 
Winter Wren WIWR Troglodytes troglodytes GG CV  CC 
Wood Thrush WOTH Hylocichla mustelina GG SC Gen 
Worm-eating Warbler WEWA Helmitheros vermivorus FG GR Gen 
Yellow-billed Cuckoo YBCU Coccyzus americanus FG SC Gen 
Yellow-throated Vireo YTVI Vireo flavifrons FG CA Gen 

 
Foraging guilds: HK (hawking), BF (bark forager), GG (ground gleaner), and FG (foliage 
gleaner). Nesting guilds: GR (ground), SH (shrub), SC (subcanopy), CA (canopy), CV (cavity). 
Habitat guilds: Gen (forest generalist), BC (broken canopy), CC (closed canopy).  
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Appendix D. Relative importance values for tree species from reference (n=56) and mineland 
(n=56) forest plots sampled in New River Gorge NR, West Virginia in 2011. 
 

Mineland forest (n=56) 
 

Reference forest (n=56) 

Species 
Relative 

importance 
 

Species 
Relative 

importance 
Yellow poplar 0.973 

 
White oak 0.529 

Red maple 0.795 
 

Red maple 0.525 
Black birch 0.389 

 
Hickory spp. 0.249 

Black locust 0.126 
 

Chestnut oak 0.245 
Sourwood 0.105 

 
Black oak 0.237 

Black gum 0.092 
 

Scarlet oak 0.234 
Princess tree 0.062 

 
Yellow poplar 0.175 

Slippery elm 0.060 
 

American beech 0.152 
Bigtooth aspen 0.057 

 
Sourwood 0.149 

Black cherry 0.045 
 

N. red oak 0.105 
White ash 0.040 

 
Black gum 0.078 

River birch 0.038 
 

Cucumber magnolia 0.074 
Sugar maple 0.037 

 
Sugar maple 0.070 

Cucumber magnolia 0.020 
 

Black birch 0.046 
Sycamore 0.020 

 
Black cherry 0.031 

Sassafrass 0.020 
 

Eastern hemlock 0.025 
Pitch pine 0.019 

 
Hop hornbeam 0.014 

Virginia pine 0.016 
 

Sassafrass 0.014 
N. red oak 0.016 

 
White ash 0.011 

Box elder 0.013 
 

Basswood 0.008 
American beech 0.011 

 
Fraser magnolia 0.008 

Striped maple 0.009 
 

Musclewood 0.007 
Black walnut 0.007 

 
Flowering dogwood 0.007 

Black oak 0.005 
 

Yellow buckeye 0.006 
Silver maple 0.005 

   Flowering dogwood 0.005 
   Prunus spp. 0.005 
   Musclewood 0.005 
   Wild crabapple 0.005 
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Appendix E. Detections ha-1 and percent occurrence for bird species detected along line transects 
in 2011 in mineland and reference forest in New River Gorge NR, West Virginia. 
  

 
Mined (n=14)  Reference (n=14) 

 Percent Detections ha-1 
 

Percent Detections ha-1 

 occurrence mean SE  occurrence mean SE 
Acadian Flycatcher 7 0.04 0.04  36 0.17 0.07 
American Redstart 21 0.10 0.05  0   
American Crow 0    7 0.03 0.03 
Black-and-white Warbler 57 0.26 0.06  79 0.37 0.07 
Blue-gray Gnatcatcher 7 0.06 0.06  14 0.06 0.04 
Brown-headed Cowbird 0    7 0.03 0.03 
Blue-headed Vireo 7 0.03 0.03  64 0.37 0.11 
Blue Jay 21 0.09 0.05  7 0.03 0.03 
Blackburnian Warbler 14 0.10 0.07  36 0.17 0.07 
Bk-thr. Green Warbler 50 0.23 0.06  7 0.03 0.03 
Carolina Chickadee 43 0.23 0.08  14 0.06 0.04 
Carolina Wren 7 0.03 0.03  0   
Cerulean Warbler 14 0.06 0.04  0   
Downy Woodpecker 14 0.07 0.05  14 0.06 0.04 
Eastern Phoebe 7 0.03 0.03  0   
Eastern Towhee 21 0.10 0.05  0   
Eastern Tufted Titmouse 36 0.16 0.06  7 0.03 0.03 
Eastern Wood-Pewee 14 0.06 0.04  64 0.26 0.05 
Great-crested Flycatcher 7 0.03 0.03  29 0.11 0.05 
Hairy Woodpecker 29 0.13 0.06  50 0.23 0.07 
Hooded Warbler 21 0.13 0.07  14 0.06 0.04 
Indigo Bunting 14 0.06 0.04  0   
Louisiana Waterthrush 14 0.07 0.05  0   
Northern Cardinal 7 0.03 0.03  0   
Ovenbird 93 0.65 0.11  100 1.46 0.12 
Pileated Woodpecker 14 0.07 0.05  14 0.06 0.04 
Red-bellied Woodpecker 29 0.13 0.06  36 0.14 0.05 
Red-eyed Vireo 100 2.48 0.18  100 2.31 0.19 
Scarlet Tanager 93 0.81 0.12  100 0.68 0.08 
White-breasted Nuthatch 21 0.09 0.05  50 0.20 0.06 
Worm-eating Warbler 36 0.20 0.08  14 0.09 0.06 
Wood Thrush 14 0.06 0.04  36 0.14 0.05 
Yellow-billed Cuckoo 36 0.20 0.08  57 0.29 0.09 
Yellow-throated Vireo 21 0.10 0.05  29 0.11 0.05 
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Appendix F. Location of study sites within Plum Orchard Wildlife Management Area (WMA) 
and New River Gorge National River in southern West Virginia (2010-2011). 
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Appendix G. Relative importance values for tree species from plots categorized as loose-dumped benches (n=33), unmined plateau 
forest (n=51), compacted benches (n=20), and unmined, steep slope forest (n=51). Only species with relative importance ≥0.05 are 
shown. Plots were sampled in southern West Virginia in 2010. 
 

Loose-dumped benches (plateau) Unmined (plateau) Compacted benches (steep slope) Unmined (steep slope) 
Species Rel. importance Species Rel. importance Species Rel. importance Species Rel. importance 
Yellow poplar 1.053 Red maple 0.568 Yellow poplar 0.792 Red maple 0.404 
Red maple 0.680 Scarlet oak 0.412 Red maple 0.553 Sugar maple 0.343 
Black birch 0.349 White oak 0.338 Sugar maple 0.427 N. red oak 0.331 
Sourwood 0.171 Chestnut oak 0.310 Black birch 0.227 Chestnut oak 0.288 
Black gum 0.124 Yellow poplar 0.230 Black locust 0.188 Yellow poplar 0.255 
Princess tree 0.092 Sourwood 0.210 N. red oak 0.128 Hickory spp. 0.224 
Bigtooth aspen 0.057 Black oak 0.176 White ash 0.101 Basswood 0.158 
Black cherry 0.050 Hickory spp. 0.141 Princess tree 0.058 Black gum 0.145 

  
American beech 0.128 Chestnut oak 0.057 American beech 0.106 

  
Black gum 0.125 Hickory spp. 0.056 Sourwood 0.105 

  
Cucumber magnolia 0.065 

  
Cucumber magnolia 0.091 

  
Black birch 0.062 

  
Black oak 0.089 

  
Sugar maple 0.056 

  
Black birch 0.065 

      
Scarlet oak 0.064 
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Appendix H. Percent occurrence and relative abundance (±SE) for bird species detected during point count surveys conducted in New 
River Gorge NR and Plum Orchard WMA, southern West Virginia, in 2010. Plateau surveys were conducted atop the New River 
Plateau in unmined, oak-hickory forest (n=20) and adjacent forest bisected by loose-dumped minelands (n=17). Steep slope surveys 
were conducted in unmined, mixed-mesophytic forest (n=14) and in adjacent forest bisected by compacted minelands (n=14).  

 

 
Loose-dumped minelands  Reference Compacted  minelands  Reference  

 
(plateau)  (plateau) (steep slope) (steep slope) 

  % occurrence mean SE % occurrence mean SE % occurrence mean SE % occurrence mean SE 
Acadian Flycatcher 29 0.35 0.15 47 0.53 0.15 36 0.50 0.20 41 0.41 0.12 

American Redstart 0 
  

0 
  

57 1.57 0.50 59 0.88 0.21 

American Robin 0 
  

0 
  

29 0.36 0.17 0   
Bk-thr. Green Warbler 18 0.18 0.10 12 0.12 0.08 29 0.29 0.13 24 0.24 0.11 

Black-and-white Warbler 71 0.76 0.14 82 1.06 0.16 86 1.00 0.15 71 0.82 0.15 

Blackburnian Warbler 35 0.47 0.17 0 
  

7 0.07 0.07 29 0.29 0.11 

Blue Jay 29 0.29 0.11 35 0.35 0.12 29 0.29 0.13 12 0.12 0.08 

Blue-gray Gnatcatcher 6 0.06 0.06 6 0.06 0.06 0 
  

18 0.18 0.10 

Blue-headed Vireo 29 0.53 0.21 82 1.29 0.19 57 0.64 0.17 76 1.24 0.26 

Brown-headed Cowbird 12 0.12 0.08 6 0.06 0.06 43 0.43 0.14 18 0.18 0.10 

Carolina Chickadee 24 0.24 0.11 12 0.12 0.08 7 0.07 0.07 18 0.18 0.10 

Carolina Wren 6 0.06 0.06 12 0.12 0.08 0 
  

0   
Cerulean Warbler 12 0.12 0.08 0 

  
29 0.29 0.13 24 0.24 0.11 

Downy Woodpecker 0 
  

6 0.06 0.06 7 0.07 0.07 12 0.12 0.08 

Eastern Phoebe 35 0.35 0.12 0 
  

7 0.07 0.07 0   
Eastern Towhee 29 0.35 0.15 18 0.18 0.09 50 0.57 0.17 0   
Eastern Tufted Titmouse 12 0.12 0.08 29 0.29 0.11 29 0.29 0.13 29 0.29 0.11 

Eastern Wood Pewee 29 0.29 0.11 53 0.53 0.12 14 0.21 0.15 53 0.59 0.15 

Great Crested Flycatcher 6 0.06 0.06 18 0.18 0.09 7 0.07 0.07 0   
Hairy Woodpecker 12 0.12 0.08 47 0.53 0.15 29 0.36 0.17 35 0.35 0.12 

Hooded Warbler 53 0.65 0.17 24 0.35 0.17 79 1.36 0.27 47 0.76 0.24 

Indigo Bunting 6 0.06 0.06 6 0.06 0.06 0 
  

0   
 



104 

Appendix H. continued 

 
Loose-dumped minelands  Unmined Compacted  minelands  Unmined  

 
(plateau)  (plateau) (steep slope) (steep slope) 

  % occurrence mean SE % occurrence mean SE % occurrence mean SE % occurrence mean SE 
Kentucky Warbler 0 

  
0 

  
14 0.14 0.10 12 0.12 0.08 

Louisiana Waterthrush 0 
  

6 0.06 0.06 0 
  

0   
Northern Cardinal 0 

  
0 

  
29 0.29 0.13 0   

Northern Parula 6 0.06 0.06 0 
  

0 
  

0   
Ovenbird 100 2.18 0.21 100 3.18 0.41 86 1.50 0.25 100 2.24 0.20 

Pileated Woodpecker 24 0.24 0.11 24 0.24 0.11 7 0.07 0.07 6 0.06 0.06 

Pine Warbler 6 0.06 0.06 6 0.06 0.06 0 
  

0   
Red-bellied Woodpecker 35 0.35 0.12 47 0.47 0.12 7 0.07 0.07 41 0.41 0.12 

Red-eyed Vireo 100 3.59 0.23 100 3.24 0.22 100 2.50 0.23 100 2.82 0.30 

Rose-breasted Grosbeak 0 
  

0 
  

71 0.86 0.18 29 0.29 0.11 

Scarlet Tanager 100 1.82 0.15 94 1.35 0.17 93 1.21 0.19 82 1.24 0.18 

White-breasted Nuthatch 29 0.29 0.11 29 0.29 0.11 7 0.07 0.07 35 0.35 0.12 

Winter Wren 0 
  

0 
  

7 0.07 0.07 0   
Wood Thrush 71 1.00 0.19 35 0.41 0.15 93 1.43 0.23 82 0.94 0.13 

Worm-eating Warbler 47 0.59 0.17 12 0.12 0.08 64 0.71 0.16 24 0.29 0.14 

Yellow-billed Cuckoo 29 0.29 0.11 29 0.29 0.11 29 0.29 0.13 29 0.29 0.11 

Yellow-throated Vireo 0 
  

6 0.06 0.06 0 
  

24 0.24 0.11 
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