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Abstract 

 

Peripheral challenge with a viral mimic elicits seizure hypersusceptibility 
 

Lindsay Tanis Michalovicz 

 

Seizure syndromes are common neuropathologies associated with epilepsy, metabolic disturbances, 
stroke, traumatic brain injury, heat stroke, fatigue, drug overdose and several other conditions. 
Peripheral inflammatory conditions have emerged as important comorbid factors in seizures. We 
found that peripherally restricted acute phase response (APR) elicited by intraperitoneal (i.p.) injection 
of a viral mimic, polyinosinic-polycytidylic acid (PIC), renders the brain hyperexcitable as seen from 
profoundly exacerbated kainic acid (KA)-induced seizures. This hypersusceptibility was protracted for 
up to 72 h. Neither blood plasma transfer from PIC challenged mice nor injection of two highly 

expressed blood cytokines, IL-6 and IFN, were able to recapitulate the effects of PIC. We also found 
the hypersusceptible phenotype to be cyclooxygenase (COX)-independent. These results indicate 
that peripheral APR-induced seizure hypersusceptibility is reliant on the diffusion of a number of 
blood-borne inflammatory factors in a concentration-dependent manner.  
 
To understand how peripheral challenge with PIC can alter neural excitability and lead to 
hyperexcitability, we profiled hippocampal gene expression. qRT-PCR revealed rapid upregulation of 
23 genes encoding cytokines, chemokine and chemokine receptors and 12 genes encoding proteins 
related to glutamatergic and GABAergic neurotransmission generally within 6 h after PIC challenge. 
Moreover, the expression of ten microRNAs (miRs) was rapidly affected by PIC challenge, but their 
levels generally exhibited oscillating profiles over the time course of seizure hypersusceptibility. 
Further exploration into this robust polygenic response by microarray analysis identified 625 
differentially expressed genes (DEGs) across 6, 24, and 48 h post-PIC challenge. The complement 
pathway was found to be the most robustly activated. qRT-PCR quantification verified temporal 
upregulation of the mRNA encoding eight complement components, i.e., C1qa, C1qb, C1qc, CfB, C2, 
C3, C4, and C6. Collectively, these results indicate that peripheral PIC challenge triggers an 
extensive genetic reprograming in the hippocampus that may play a causative role in the remodeling 
of neural circuits resulting in the hyperexcitable phenotype. 
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Chapter 1:  Introduction 

 

Epilepsy 

Epilepsy is a severe neuropathology characterized by recurrent seizure that affects 

approximately 1% of the world population (WHO Fact sheet No999). Furthermore, approximately 8% 

of the population experience seizures within their lifetime (Hauser 1997). Seizures result from 

abnormally excessive and/or synchronous neuronal activity (hyperexcitability) in the brain (Fisher et 

al. 2005) and can range in severity from mild cognitive impairment to complete loss of consciousness 

and convulsions. In addition to serious personal safety hazards, seizures also facilitate excitotoxicity-

driven neuronal cell death and, consequently, the development of diverse mental disorders (Tellez-

Zenteno et al., 2007). 

 

Hyperexcitability 

The brain can become hyperexcitable in many ways which involve changes in either neuronal 

or network excitability. For a single neuron, hyperexcitability refers to the increased likelihood of the 

cell firing an action potential, which can result from different alterations in the cell’s normal physiology. 

One way in which neurons can become more excitable is by changes in in neurotransmitter receptor 

expression and activity (Casillas-Espinosa et al., 2012;Gonzalez 2013; Werner and Covenas, 2011). 

For example, if the cell expresses more receptors for the excitatory neurotransmitter glutamate, then 

the cell would require less glutamate to depolarize and lower the threshold for the firing of an action 

potential. Similarly, if there was a reduction in the number of inhibitory neurotransmitter receptors, 

then the cell would become less responsive to inhibitory inputs and facilitate the summation of 

excitatory inputs required for an action potential. Separate from their receptors, alterations in the 

synthesis and release of excitatory neurotransmitter, e.g. glutamate, and inhibitory neurotransmitters, 

e.g. GABA, can affect neuronal excitability. Thus, reductions in GABA levels and the activity of L-
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glutamic acid decarboxylase (GAD), the critical enzyme involved in GABA synthesis, have been 

observed in epileptic tissue (Badwy et al., 2009a).   

In addition to neurotransmitter receptors, neurons express a veritable plethora of ion channels 

along the cell membrane that are crucial to normal function. The flow of ions into or out of a neuron 

through ion channels is involved in the membrane depolarization necessary for action potential 

generation and the release of neurotransmitters at the synapse, as well as the recovery of the resting 

state of the neuron after an action potential is fired. Therefore, it is not surprising that dysfunction in 

these channels, also referred to as channelopathies, is implicated in epileptic disorders (Badawy et 

al., 2009a;Heron et al., 2007). During membrane depolarization, the rapid influx of sodium through ion 

channels is crucial to the generation of an action potential; however, these sodium channels need to 

inactivate in order for the neuron to stop firing. Several mutations in the sodium channel have been 

identified in epilepsy (Badawy et al., 2009a; Caterwall 2014;Heron et al., 2007). Some mutation result 

in increased activity of the excitatory neurons due to slow inactivation of the channel. Other mutations 

result in a total loss of function of the channel in inhibitory neurons that also lead to hyperexcitability. 

Changes in potassium channels are also associated with epilepsy (Badawy et al., 2009a;Heron et al., 

2007;Maljevic and Lerche 2013). In these cases, the efflux of potassium that is necessary for 

recovery after membrane depolarization is reduced. This results in an accumulation of positive ions 

inside the cell, maintaining depolarization and making the neuron hyperexcitable. Also, changes in 

the properties of calcium channels can greatly affect the excitability of a neuron (Badawy et al., 

2009a;Heron et al., 2007;Siwek et al., 2012). At the synapse, transient calcium influx is involved in 

the release of neurotransmitter; mutations altering the inactivation of these channels can result in 

excessive or sustained release of neurotransmitter. 

Hyperexcitability can also occur within neuronal networks, which include neurons and glia. The 

organization of these networks is crucial to the proper functioning of the brain. Many developmental 

disorders that result in improper migration of neurons result in epilepsy (Badawy et al., 2009b;Guerrini 
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and Dobyns, 2014). This is due to either the neurons not making the required connections or making 

aberrant connections with other neurons. For example, if an inhibitory neuron does not make a proper 

connection with its target excitatory neuron, the activity of the excitatory neuron cannot be properly 

regulated. This is also true in the adult brain in situations that result in neuron loss, such as stroke or 

trauma. In these instances, the properly formed connections are lost and the network can lose the 

proper balance of excitation and inhibition. This can be further exacerbated by changes in 

morphology of surviving neurons. For example, a loss of neurons in the hilus of the hippocampus 

triggers axonal sprouting in the granule cells of the dentate gyrus which results in increased excitatory 

signaling to downstream neurons (Badawy et al., 2009b). Cell morphology also plays a role in the 

proper function of neuronal networks as evidenced by the increased excitability in networks of cells 

displaying hypertrophy and/or changes in dendritic structure (Badawy et al., 2009b). In addition to 

aberrant connections between neurons, dysfunctional associations between neurons and glia can 

result in hyperexcitability (reviewed in Seifert and Steinhauser, 2013). Excessive extracellular 

glutamate leads to neurotoxicity by increasing intracellular calcium concentrations. Glia, namely 

astrocytes, express glutamate transporters on the cell membrane to actively remove neurotransmitter 

from the synaptic cleft. Decreases in the function of these transporters facilitate hyperexcitability and, 

thusly, are associated with seizures and epilepsy (Seifert and Steinhauser, 2013). Finally, impaired 

removal of extracellular potassium by astrocytes via potassium channels results in hyperexcitability 

(Seifert and Steinhauser, 2013). 

 

Inflammation and seizures 

There are many factors that can affect the risk for developing epilepsy. Peripheral inflammation 

has been demonstrated to significantly lower seizure threshold (Tellez-Zenteno et al., 2005). This is a 

significant finding due to its implications for the enhancement of seizure frequency and severity in 
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susceptible populations by concurrent peripheral inflammation resulting from infections, arthritis flare-

ups, peptic ulcers, etc. The susceptible populations include not only epileptic patients and stroke or 

traumatic brain injury victims, but also individuals in situations constituting already high seizure risk, 

e.g., heat-stroke, dehydration or exhaustion. Such potentiation of seizure propensity poses serious 

health and safety risks. However, the underlying mechanisms have not been defined. 

Inflammation is the body’s response to a damaging insult such as infection, injury, or trauma 

and is defined by several symptoms: redness, swelling, heat, pain, and loss of function. The 

inflammatory response is carried out by the innate immune system comprised of cells that recognize 

pathogen-associated molecular patterns (PAMPs), e.g., viral and bacterial proteins, lipids, and nucleic 

acids. The binding of PAMPs to pattern recognition receptors (PRRs) on these cells instigates the 

release of inflammatory factors, such as cytokines, chemokines, reactive oxygen species, 

complement and other inflammatory mediators. This surge of inflammatory mediators is referred to as 

the acute phase response (APR). Due to its non-specific nature, the innate immune system responds 

very quickly to infection. In contrast, the adaptive immune system takes longer to activate, but mounts 

a pathogen-specific, antibody-based response.  Although the primary role of inflammation is to 

combat infections, the cytokines released from the site of inflammation into the circulation have 

significant effects on the brain. 

 

Immune-to-brain communication 

It is well established that signals of peripheral inflammation are relayed to the brain via 

humoral and/or neural pathways and elicit behavioral changes, collectively referred to as “sickness 

behavior”. These behaviors include malaise, cognitive dysfunction, anxiety, depression, anhedonia, 

anorexia, adipsia, lethargy and fatigue. Evolutionarily, these symptoms are believed to be protective 

by promoting conservation of energy. Cytokines produced in response to peripheral inflammagens 

can circulate in the blood and act on or through brain endothelium, initiating a signaling cascade in 
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the brain that ultimately results in the up-regulation of cytokines in neurons and glial cells (Dantzer 

2006). There are multiple pathways by which peripheral inflammatory signals can be communicated 

to the brain (Dantzer 2006;Quan and Banks, 2007). One path involves the diffusion of blood-borne 

inflammatory mediators across the blood brain barrier (BBB) or circumventricular organs (CVO) into 

the brain parenchyma. Another mechanism involves the transduction of the inflammatory signal 

across the BBB or CVO by the generation of secondary mediators. For example, blood-borne 

inflammatory mediators, like IL-1, activate endothelial cyclooxygenase (COX) 2, stimulating the 

synthesis of prostaglandins. COX2 is known to have a role in neural function and “sickness behavior;” 

most notably in fever where COX inhibitors, or non-steroidal anti-inflammatory drugs (NSAIDs), 

prevent inflammation-induced changes in body temperature (reviewed in DuBois et al., 1998). 

 

Experimental model 

While increased seizure susceptibility produced by peripheral inflammation has been 

demonstrated in animal models of sepsis (Balter-Seri et al., 1999;Sayyah et al., 2003), colitis (Riazi et 

al., 2008;Riazi et al., 2004), arthritis and subcutaneous granuloma (Rao et al., 2008), the limitations of 

these models have prevented dissection of the mechanisms. Not only do these models require 

several days to develop, but also they involve the amalgamation of several different pathological 

processes to acquire the ultimate phenotype. Although the LPS model of sepsis (Sayyah et al., 2003) 

is the most commonly studied, it involves direct insult to the brain due to rapid entrance of the 

inflammagen into circulation (Lenczowski et al., 1997;Romanovsky et al., 2000). Our lab has 

developed a mouse model system that avoids these complications. In our model, APR is induced by 

intraperitoneal (i.p.) injection of double stranded (ds) RNA. The vast majority of viruses (of both the 

RNA and DNA types) generate dsRNA species during their replication (Jacobs and Langland, 

1996;Weber et al., 2006). Mammalian cells have several receptors that detect the presence of extra- 
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and intracellular dsRNA, i.e., Toll-like receptor 3 (TLR3), retinoic acid-inducible gene 1 (RIG-1), 

melanoma differentiation-associated protein 5 (MDA-5) and protein kinase R (PKR) (Berke et al., 

2013). The ligation of these receptors leads to the production of type I interferons and other 

inflammatory cytokines with antiviral activity (Muller et al., 1994). In our model, we use synthetic 

dsRNA, polyinosinic:polycytidylic acid (PIC). Using this model, our lab has shown that the 

peripherally-generated inflammatory mediators are conveyed to the brain via circulation and induce a 

robust inflammatory response in the brain (Konat et al., 2009; Konat and Borysiewicz, 2009; Fil et al., 

2011). Furthermore, i.p. injected PIC does not reach the blood (Fil et al., 2011). Therefore, in our 

system, the brain is exposed only to the inflammatory mediators and not to the inflammagen itself. 

Moreover, PIC is a short-lived molecule (Krasowska-Zoladek et al., 2007) allowing hour-by-hour 

kinetic analysis of APR and the brain responses. 

  

Objectives and hypothesis  

The objective of the body of work presented in this dissertation was to characterize the 

mechanisms by which peripheral inflammation increases seizure susceptibility using our model of 

peripherally-restricted inflammation. In the first set of studies, we evaluated the mechanisms by which 

blood-borne inflammatory mediators elicit seizure hypersusceptibility. In the second set of studies, we 

investigated the genetic mechanisms underlying PIC-induced seizure hypersusceptibility. Our central 

hypothesis was that peripheral inflammation instigates a surge of blood-borne cytokines that reach 

the brain and alter the expression of hippocampal genes leading to the increased seizure 

susceptibility.  
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Chapter 2:  Peripheral challenge with PIC elicits seizure hypersusceptibility 

2.1. Acute phase response to viral infection and sickness behavior 

Sickness behavior is thought to promote optimal recovery and survival by altering the priorities 

of the affected individual to conserve resources and to prevent the spread of infection within the 

population (Dantzer, 2006; Dantzer and Kelley, 2007; Quan and Banks, 2007). Thus, intraperitoneal 

injection of a synthetic dsRNA, PIC, in mice induces symptoms of “sickness behavior” (Muller et al., 

1994;Guha-Thakurta and Majde, 1997;Cunningham et al., 2007) that are congruent with behavioral 

effects of peripheral viral infections in humans (Loftis et al., 2008;Huckans et al., 2009;Nelligan et al., 

2008). The PIC-induced symptoms peak at 6 h after the injection and subside by 48 h (Cunningham 

et al., 2007). For example, PIC challenge strongly suppresses burrowing activity, a species-typical 

behavior (Cunningham et al., 2007; Konat et al, 2009), exemplifying the loss of motivation that is a 

typical component of sickness behavior. Although at nadir (6 h post-injection), the burrowing activity 

of PIC-challenged animals drops below 10% of the respective controls, the test is rather cumbersome 

and lengthy (2 h). Locomotor assessment is another behavioral test typically used to assess the 

hypoactivity associated with sickness behavior. Cunningham et al. (2007) also found suppression of 

locomotor activity using the open field test, albeit to a much lesser extent than the burrowing activity. 

In concordance with this study, we observed the locomotion of mice to be reduced by approximately 

30% and 60% at 3 h and 6 h after PIC injection, respectively (Fig. 1). However, we found that the 

rearing activity, which assesses the number of times the animal stands on two legs, was suppressed 

equally to the burrowing activity, as it dropped by 70% and 96% at 3 h and 6 h, respectively (Fig. 1.). 

Consequently, the rearing test, which lasts only 15 min, provides a convenient, highly sensitive 

method to verify successful induction of sickness behavior. 
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Figure 1. The suppression of locomotor and rearing 

behavior by PIC challenge. Mice were i.p. injected 

with 12 mg/kg of PIC and after 3 h (blue) or 6 h (red) 

the locomotor and rearing activities were evaluated 

(for details see Materials and Methods). Saline 

injected mice served as controls (green, 0 h). Bars 

represent means ± S.D. from 6-10 animals. Values 

significantly different from controls are indicated by 

asterisks. *p ≤ 0.05; **p ≤ 0.01. 

 

 

 

2.2. Peripheral APR enhances seizure susceptibility 

 
 Considering the clinical and experimental research indicating peripheral inflammation as a 

comorbidity for seizures (Tellez-Zenteno et al. 2005), we investigated whether PIC challenge would 

enhance the ability for kainic acid (KA) to induce seizure. The most common form of epilepsy in 

humans, temporal lobe epilepsy (TLE), is modeled by systemic KA administration (Ben-Ari and 

Cossart, 2000). KA is a glutamate analog binding to the kainate receptor subclass of ionotropic 

glutamate receptors. In the KA model, seizures originate from the hippocampus (Ben-Ari and Cossart, 

2000), but the increased activity quickly spreads through the brain. The hyperactivity of hippocampal 

neurons often leads to their death and, ultimately, to hippocampal sclerosis that can be revealed by 

postmortem examination or MRI (Das et al., 2010). The KA model closely mimics hippocampal 

neuron loss and neuroinflammation in TLE (Ben-Ari and Cossart, 2000;Das et al., 2010). 

Previous studies have shown that peripheral APR induced by PIC challenge results in a robust 

inflammatory response in the brain that substantially subsides by 24 h (Cunningham et al., 2007; 

Konat and Borysiewicz, 2009;Konat et al., 2009;Fil et al., 2011). Since it is well-established that 

seizures are enhanced concurrently with brain inflammation (Choi and Koh, 2008;Vezzani and 
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Granata, 2005), we initially evaluated seizure activity after the behavioral and brain inflammatory 

responses to PIC had subsided (48 h post-injection).  

Peripheral PIC challenge profoundly increased the intensity of seizures in comparison to saline 

treated animals (Fig 2). PIC challenge also altered the kinetics of status epilepticus (Fig. 2). Thus, 

seizure intensity peaked at approximately 35 min in the saline group, and at approximately 80 min in 

the PIC group. Whereas the seizures ceased in the saline group at approximately 110 min after KA 

injection, the PIC pretreated animals were still in a full-blown status epilepticus at that time point. 

Cumulative seizure scores (CSS) calculated by summation of the incremental scores over the 2-h 

observation period revealed a 5.2-fold enhancement by PIC over the saline group (Fig. 3a).  

 

Figure 2. Kinetics of KA-induced status epilepticus. 

Mice were pretreated daily with PIC (red) or saline 

(blue) for three consecutive days. After 48 h, seizures 

were induced by the administration of 15 mg/kg of KA, 

and their intensity was scored over a period of 2 h. For 

details see “Chapter 5: Materials and methods”. Points 

represent averages ± S.D. from 3–4 animals. Values 

significantly different from controls are indicated by 

asterisks (p ≤ 0.05). 

 

 

 

 

 

We also found that seizure intensity was directly related to doses of the excitotoxin (Fig. 3a). In 

saline treated mice, CSS were 11, 25 and 46 at 10, 15 and 20 mg/kg of KA, respectively. PIC 

challenge increased seizure intensities by approximately 6.9, 3.8 and 2.7-fold over the saline groups 

at KA doses of 10, 15, and 20 mg/kg, respectively. Although no mortality was observed at 10 or 15 

mg/kg doses, intense seizures induced by 20 mg/kg of KA in triply injected mice occasionally resulted 

in death. Finally, as shown in Fig. 3b, even a single peripheral challenge with PIC profoundly 
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enhanced seizure intensity. CSS of this group did not differ significantly from CSS of the 

corresponding triple injection group (Fig. 3a) indicating that a single dose of PIC provides a saturating 

effect. 

 

 

Figure 3. Effect of KA and PIC doses on seizure 

intensity. A) mice were pretreated daily with PIC 

(red) or saline (blue) for three consecutive days. 

After 48 h, seizures were induced by the 

administration of different doses of KA. B) mice were 

pretreated with a single dose of PIC, and after 48 h, 

seizures were induced by the administration of 15 

mg/kg of KA. The results are expressed as CSS. 

Bars represent averages ± S.D. from 3–4 animals. 

Values significantly different from controls are 

indicated by asterisks (p ≤ 0.05). 

 

 

 

Having demonstrated that PIC challenge strongly enhances the susceptibility of mice to KA-

induced seizures at 48 h after PIC injection (Fig. 2 & 3), we determined the duration of this 

hypersusceptible phenotype. As seen from Fig. 4, the seizure response was highest one day post-

PIC, reaching nearly 3-fold over saline injected controls. Although the hypersusceptibility gradually 

decreased, it was still significant at 2 and 3 days post-PIC. By days 4 and 7, the response of the PIC 

challenged animals was indistinguishable from that of controls.  
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Figure 4. Time course of seizure susceptibility following 

PIC challenge. Mice were i.p. injected with 12 mg/kg of 

PIC or saline (day 0). At different time points after PIC 

challenge, the animals were s.c. injected with 20 mg/kg 

of KA to induce seizures. The results are expressed as 

CSS. Bars represent means ± S.D. from 3-7 animals. 

Values significantly different from controls are indicated 

by asterisks (p ≤ 0.05).  

  

 

 

Discussion 

 These data indicate an enhancing effect of prior peripheral challenge with PIC on cerebral 

vulnerability to KA-induced status epilepticus. Thus, our results complement previous reports showing 

enhanced seizure susceptibility following bacterially-induced peripheral inflammation (Riazi et al. 

2010), and support a causative link between peripheral infections and seizures (Tellez-Zenteno et al. 

2005). Moreover, because PIC effects are restricted to the peritoneal cavity (Fil et al. 2011), our 

results prove that the cerebral effects are mediated by immune-to-brain signaling. In contrast, the 

bacterial models featured a highly possible direct interaction of the inflammagen with the brain. 

Consequently, the PIC paradigm provides a unique model to study mechanisms by which blood-

borne inflammatory mediators generated in the periphery alter neural function within the brain 

rendering it more vulnerable to excitotoxic insult.  

 Our lab has previously shown that the cerebral inflammatory response to PIC challenge 

features a robust but transient upregulation of a plethora of cytokine and chemokine genes (Konat et 

al. 2009; Fil et al. 2011). Interestingly, we found that the response to KA is enhanced from one to 

three days following PIC-induced peripheral APR, when the cerebral inflammatory response has 
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largely subsided. Therefore, the cerebral inflammatory response must have induced protracted 

alterations of brain function that manifested as KA hypersusceptibility.  

 

2.3. The role of blood borne cytokines in PIC-induced seizure susceptibility 

 
As mentioned previously, peripheral inflammatory signals are relayed to the brain through the 

blood and/or neural pathways to produce “sickness behavior” (Dantzer 2006;McCusker and Kelley 

2013). However, transection of the vagus nerve, a component of the neural pathway, does not 

prevent the upregulation of IL-1 in the brain following peripheral inflammation (Van Dam et al., 

2000). Furthermore, a past study from our lab demonstrated that i.p. injection of blood plasma from a 

PIC-treated mouse to a naïve mouse mimics PIC’s upregulation of chemokines in the brain (Fil et al., 

2011). These studies suggest the involvement of blood-borne cytokines in the immune-to-brain 

communication of inflammatory signals. To test the involvement of these blood-borne factors in 

seizure hypersusceptibility, we investigated whether blood plasma transfer could mimic the effects of 

PIC on KA-induced seizures.  

Although plasma transfer was able to recapitulate the brain inflammatory response (Fil et al., 

2011), we did not find increased seizure susceptibility in these mice (Fig. 5). This result is most likely 

due to the limitation on the amount of plasma that can be i.p. injected into the mouse, 300 L. This 

represents a fraction of the total blood volume of our mice (approximately 1/5th), effectively cutting the 

concentration of blood-borne inflammatory factors by 80%, not accounting for potential proteolysis in 

the peritoneal cavity. This notion is further supported by previous data from our lab that demonstrated 

a 10-fold lesser upregulation of chemokines by plasma transfer in comparison to PIC treatment (Fil et 

al., 2011).  
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Figure 5. Seizure susceptibility following blood plasma 

transfer. Naïve mice were i.p. injected with 300 L of 

citrated blood plasma collected from PIC- (red) or saline-

treated (blue) 2 h post-injection. After 24 h, seizures were 

induced by the administration of 15 mg/kg of KA. The 

results are expressed as CSS. Bars represent means ± 

S.D. from 3 animals. 

 

 

 

 

 

 

 To overcome the volumetric limitations posed by the plasma transfer experiment, we tested 

whether i.p. injection of inflammatory cytokines could enhance KA-induced seizures. Intraperitoneal 

PIC injection induces the synthesis of IFNβ, IL-6, IL-1β and TNFα that rapidly reach the circulation as 

seen from the surge of these inflammatory cytokines in the blood (Cunningham et al., 2007). Their 

levels peak sharply at 3 h post-injection and then quickly decline. We confirmed these results for IFNβ 

and IL-6 as shown in Fig. 6. Thus, both cytokines reached the highest levels 3 h after PIC challenge, 

and decreased rapidly thereafter, reaching baseline levels at 12 h post-injection. The maximal blood 

concentrations of IFNβ and IL-6 were 33.5 and 21.5 ng/ml, respectively, which is in concordance with 

the values observed by Cunningham et al (2007). 

 

Figure 6. Blood cytokine surge induced by PIC challenge. 

Mice were i.p. injected with 12 mg/kg of PIC and the levels 

of IFN and IL-6 in the blood plasma were determined at 

various time points as indicated. Data represent averages 

from 2 animals. 
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After determining the peak blood concentrations of IL-6 and IFN(Fig. 6), we tested whether 

i.p. injection of the cytokines at these concentrations could recapitulate the hypersusceptible 

phenotype induced by PIC treatment (Fig. 7). Similarly to plasma transfer, the injection of IL-6 (26.1 

ng) and IFN (39.7 ng) was insufficient to recapitulate PIC-induced seizure hypersusceptibility. To 

account for potential breakdown of the cytokines in the peritoneal cavity, a second set of mice were 

i.p. injected with a mixture of 1 g each of IL-6 and IFN. However, even these higher concentrations 

were insufficient to recapitulate the phenotype seen with PIC treatment. Furthermore, we found that 

IL-6 and IFN were insufficient to upregulate Cxcl10 mRNA (data not shown), one of the chemokines 

most profoundly affected by peripheral PIC challenge (Fil et al., 2011). These data suggest that the 

most highly upregulated blood cytokines, i.e. IFN and IL-6, are not responsible for the development 

of seizure hypersusceptibility or the upregulation of CXCL10 following PIC-induced peripheral 

inflammation. 

 

Figure 7. Seizure susceptibility following cytokine treatment. 

Mice were i.p. injected with: a mixture of 30 ng of IL6 and 40 

ng of IFN(purple), a mixture of 1 g each of IL-6 and IFN 

(teal), 200 pg of LPS (green; to account for trace levels of 

endotoxin potentially present with the recombinant 

proteins),or saline (blue). After 24 h, seizures were induced 

by the administration of 15 mg/kg of KA. The results are 

expressed as CSS. Bars represent means ± S.D. from 2-3 

animals. 

 

 

Discussion 

It is possible that other inflammatory mediators are responsible for transmitting this signal to 

the brain. For example, the cytokines IL-1 and TNFwhich exhibit much lower levels in the blood 

following PIC challenge than IL-6 or IFN (Cunningham et al., 2007), have been demonstrated to 
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mimic “sickness behavior” (McCusker and Kelley, 2013). However, many studies use either 

intracerebroventricular (i.c.v.) injection of the cytokines into the brain or very large doses. For 

example, using 2500x the plasma concentration measured for TNFAnisman et al., 2008) or over 

10,000x for IL-1(Bluthé et al., 1994;Bluthé et al., 2006) found by Cunningham et al (2007), making 

the results difficult to interpret. Furthermore, studies using IL-1 receptor knockout mice showed that 

treatment with LPS or i.c.v. TNF could circumvent the knockout-induced reduction in “sickness 

behavior” (reviewed in McCusker and Kelley, 2013). In contrast, IL-6 and type-I IFNs are believed to 

enhance the effects of TNF and IL-1 in sickness behavior while being insufficient to induce 

sickness behavior on their own (McCusker and Kelley, 2013). Taken together, these studies support 

the hypothesis that a number of inflammatory mediators, not individual cytokines, are required for the 

induction of sickness behavior. The same seems to be true for PIC-induced seizure 

hypersusceptibility. 

 

2.4. The role of COX in PIC-induced seizure susceptibility 

  

Our lab has found that peripheral PIC challenge results in the transient upregulation of Cox2 

mRNA in the forebrain (Borysiewicz and Konat, unpublished data). This is in agreement with a similar 

study that identified the upregulation of COX2 protein in hippocampal endothelium (Cunningham et 

al., 2007); indicating that COX2 may be involved in the transduction of inflammatory signals from the 

periphery to the brain.  Since the necessary components of the humoral signal for the induction of 

seizure hypersusceptibility remain unclear, we investigated whether COX signaling is required for the 

enhancement of KA-induced seizures by PIC. Pretreatment with two non-specific COX inhibitors, 

ibuprofen (IBU) and piroxicam (PIROX) at concentrations demonstrated to inhibit COX activity 

(Teeling et al., 2010) had no effect on PIC-induced seizure hypersusceptibility (Fig. 8). Furthermore, 

the NSAIDs failed to attenuate the cerebral inflammatory response, even resulting in an increase in 
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the gene expression of the inflammatory chemokine, CXCL11 (Fig. 9). The administration of COX 

inhibitors alone had no effect on KA-induced seizures or on the cerebral inflammatory gene 

expression (data not shown).  

 

Figure 8. Seizure following COX inhibition. Mice were 

i.p. injected with 30 mg/kg of IBU (IBU + PIC) or 10 

mg/kg of PIROX (PIROX + PIC) 1 h prior to receiving 

an i.p. injection of 12 mg/kg of PIC. Controls were 

injected only with saline (blue). After 24 h, mice 

received a s.c. injection of 15 mg/kg of KA to induce 

seizures.The results are expressed as CSS. Bars 

represent means ± S.D. from 3-5 animals. Values 

significantly different from controls are indicated by 

asterisks (p ≤ 0.05). 

 

 

Figure 9. Cerebral inflammatory 

response following COX inhibition. 

Mice were i.p. injected with 30 mg/kg of 

IBU (green) 1 h prior to receiving an i.p. 

injection of 12 mg/kg of PIC (PIC alone; 

red). Controls were injected only with 

saline (blue). After 24 h, mice were 

sacrificed and the hippocampal RNA 

was isolated. Expression of several 

inflammatory genes was evaluated by 

qRT-PCR. Bars represent means ± 

S.D. from 2-3 animals. Values 

significantly different from controls are 

indicated by asterisks (p ≤ 0.05). 

Discussion 

The inability of non-selective COX inhibitors to block or significantly reduce PIC-induced 

seizure susceptibility suggests that cyclooxygenases (COX1 and COX2) are not necessary for the 
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transduction of the inflammatory signals responsible for the development of seizure 

hypersusceptibility. In support of this notion, Teeling et. al. (2010) found that i.p. injection of ibuprofen 

and piroxicam did not reduce the levels of circulating or brain expressed IL-6, IL-1, or TNF 

following LPS treatment, emphasizing the potential role for blood-borne inflammatory cytokines in 

immune-to-brain communication. Interestingly, both ibuprofen and piroxicam were able to reverse 

LPS-induced suppression of locomotion and burrowing behaviors (Teeling et. al., 2010), suggesting 

that the pathways involved in these behaviors and seizure susceptibility may diverge. 

 

2.5. Conclusions 

 
 The preceding studies add further evidence to the developing link between peripheral 

inflammation and seizures by illustrating that PIC challenge increases the susceptibility to KA-induced 

seizures (Fig. 2). Interestingly, a single dose of PIC is sufficient to cause a dramatic increase in the 

seizure severity (Fig. 3). This observation further supports the validity of the PIC model to study viral 

APR and “sickness behavior” due to its rapid and potent effects on the brain. Furthermore, we have 

demonstrated that the window of increased susceptibility lasts up to three days after PIC challenge 

(Fig. 4). This is in contrast to a previous report on hypersusceptibility induced by i.p. injection of LPS 

(Sayyah et al., 2003). In that model of bacterial infection/sepsis, seizure hypersusceptibility was 

limited to the initial 24 h. Several factors may contribute to the observed differences in the duration of 

the hypersusceptible phenotype induced by PIC vs. LPS. For example, LPS rapidly enters the 

circulation (Lenczowski et al., 1997;Romanovsky et al., 2000) and thus, the brain is exposed 

simultaneously to peripherally-generated inflammatory factors and the LPS itself. On the contrary, 

PIC does not reach the circulation (Fil et al., 2011) and therefore, elicits the cerebral response solely 

through blood-borne inflammatory mediators. Moreover, the composition of the blood-borne 

mediators induced by PIC vs. LPS challenge may differ. For example, IFNγ is produced in response 

to LPS (Gibb et al., 2008;Finney et al., 2012) but not in response to PIC (Gandhi et al., 2007).  
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The mechanisms by which blood-borne inflammatory mediators induce seizure 

hypersusceptibility remain unclear. The inability for i.p. IL-6 and IFN to replicate PIC-induced seizure 

susceptibility (Fig. 7) corroborates previous data that has suggested these cytokines are insufficient 

to mimic sickness behavior (McCusker and Kelley, 2013). Thus, a multitude of blood-borne factors 

may be required to instigate seizure susceptibility. The blood plasma isolated from a PIC challenged 

mouse should contain the majority of these factors; however, the limitations of the plasma transfer 

study (Fig. 5) illustrate that the concentration of those factors is crucially important. Furthermore, our 

results demonstrate that the peripheral inflammatory signals produced by viral APR are not 

transduced across endothelium by COX (Fig. 8 & 9). This is not to say that there is no involvement of 

COX signaling in sickness behavior; on the contrary, NSAIDs are highly efficient at reducing fever in 

response to infection (Taniguchi et al., 1997). However, COX signaling is not required for PIC-

induced seizure hypersusceptibility nor does it seem to be involved in propagating the cerebral 

inflammatory response. 

Regardless of the mechanisms, our findings have important clinical implications because they 

indicates that viral infections may increase the risk of ictal attacks even several days after the active 

phase of infection has subsided. This should be particularly relevant to populations of vulnerable 

individuals, e.g., epileptics and post-stroke victims, or individuals exposed to seizure-inducing 

conditions such as heat stroke or exhaustion.  

2.6. Contributions 

 Portions of this chapter were taken from previously published manuscripts (Kirschman et al., 

2011; Michalovicz and Konat, 2014); see Appendix I.  
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Chapter 3:  Peripheral challenge with PIC alters hippocampal gene expression 

  

3.1. Inflammatory genes 

 
The induction of sickness behavior is concomitant with transient upregulation of genes 

encoding IL-1, IL-6, TNF and IFN in the hippocampus and hypothalamus (Cunningham et al., 

2007). Our lab has confirmed the expression of these genes in the brain and shown that their 

upregulation is global rather than regional, as it is featured in all parts of the brain, i.e., the forebrain, 

cerebellum and brain stem (Konat et al., 2009). Furthermore, the brain also features upregulation of a 

plethora of chemokines and their receptors (Fil et al., 2011). Generally, the upregulation of respective 

mRNAs peaks between 3-6 h following the PIC challenge and reaches from several- to several 

thousand-fold over control. After 24 h, the expression of most of the genes returns to the baseline 

levels. We have found that this robust, albeit generally transient, genomic response to PIC-induced 

APR renders the brain hypersusceptible to excitotoxic insult (Chapter 2). The PIC pretreatment 

profoundly increased both the intensity and duration of KA-induced seizures as compared to naïve 

animals challenged with KA alone. Since KA administration models hippocampal-generated seizures 

(Ben-Ari and Cossart, 2000), we focused on this structure throughout our molecular studies.  

Based on previous studies from our lab (Konat et al 2009; Fil et al, 2011), we selected 23 

inflammation-related genes comprising cytokines, chemokines and chemokine receptors, and profiled 

their expression in the hippocampus following PIC challenge. The blood cytokine surge (Chapter 2, 

Fig. 6) was associated with a rapid upregulation of cytokine (Fig. 10) and chemokine (Fig. 11) genes, 

buttressing the cause-effect relationship between the circulating cytokines and the gene expression 

response of the hippocampal cells. However, differences in the expression pattern of the genes were 

evident. The expression of the Il6, Ifnb, Cxcl17, Ccl4, Cxcl1, Cxcl2, Cxcl9, Cxcl10 and Cxcl11 genes 

peaked between 3 and 6 h after PIC injection and dwindled rapidly thereafter. The Tnfa, Il1b, Ccl7, 
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Ccl12 and Ccl2 genes featured an extended time frame of upregulation with high levels of their 

mRNA remaining at 24 h. The expression of the Ccl19, Cxcl13 and Ccl5 genes actually peaked at 24 

h. Most of the genes, except the Ifnb, Il1b, Cxcl17, Cxcl1, and Cxcl2 genes, were significantly 

upregulated even at 72 h. The Ccl9 gene exhibited a unique expression profile, peaking early at 3 h 

and then peaking again from 48 to 72 h. Also, the extent of upregulation varied greatly among the 

genes. The cytokine genes were upregulated by approximately 2- to 32-fold over control with the Il6 

gene being the most and the Il1b gene being the least upregulated. These results corroborate a 

previous study of the response of hippocampal cytokine genes to PIC challenge (Cunningham et al 

2007). Among the chemokine genes, Cxcl11, Cxcl10, Cxcl9 and Cxcl1 featured the highest 

upregulation by more than a thousand-fold over control. The Cxcl2, Ccl12 and Ccl2 genes were 

upregulated up to several hundred-fold, whereas several ten-fold upregulations were observed for the 

Ccl7, Ccl4 and Ccl5 genes. The Cxcl13, Ccl19, Cxcl17 and Ccl9 genes were upregulated by less than 

ten-fold. 

 

 

Figure 10.  The expression of cytokine genes 

in the hippocampus following PIC challenge. 

Mice were i.p. injected with 12 mg/kg of PIC 

and the levels of selected cytokine mRNAs 

were determined in the hippocampi by qRT-

PCR at different time points as indicated. 

Data represent means ± S.D. from 3-8 

animals. Values significantly different from 

baseline levels (0 h) are indicated by 

asterisks (p ≤ 0.05). 
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Figure 11. The expression of chemokine 

genes in the hippocampus following PIC 

challenge. Mice were i.p. injected with 

12 mg/kg of PIC and the levels of 

selected chemokine mRNAs were 

determined in the hippocampi by qRT-

PCR at different time points as 

indicated. Data represent means ± S.D. 

from 3-8 animals. Values significantly 

different from baseline levels (0 h) are 

indicated by asterisks (p ≤ 0.05). 

 

 

 
 
 

 

 

Also, five genes encoding chemokine receptors were significantly upregulated several fold 

over the baseline by PIC challenge (Fig. 12). The Ccr1, Ccr6 and Ccr7 gene expression peaked at 3 

h, whereas the expression of the Cxcr2 and Cxcr5 genes was delayed and peaked at 9 h. By 72 h 

after PIC challenge, the Ccr1 and Ccr7 genes featured approximately 2-fold upregulation, while 

expression of the Cxcr2 and Cxcr5 genes dwindled to the baseline levels. In contrast, the Ccr6 gene 

featured downregulation beginning at 48 h and dipped to over 2-fold below control level at 72 h.  
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Figure 12. The expression of chemokine 

receptor genes following PIC challenge. 

Mice were i.p. injected with 12 mg/kg of 

PIC and the levels of selected chemokine 

receptor mRNAs were determined in the 

hippocampi by qRT-PCR at different time 

points as indicated. Data represent 

means ± S.D. from 3-8 animals. Values 

significantly different from baseline levels 

(0 h) are indicated by asterisks (p ≤ 

0.05). 

 

Discussion 

We have demonstrated that the cytokine surge (Fig. 6; Cunningham et al 2007) is coincident 

with the upregulation of genes encoding the same cytokines in the hippocampus (Fig. 10). The brain 

cells including neurons, microglia and astrocytes express receptors for these cytokines (McCusker 

and Kelley, 2013). Ligation of these receptors with either peripherally-generated or brain-generated 

cytokines can lead to upregulated expression of the same or different cytokines. These, in turn, can 

further amplify the response through positive feedback loops. Such loops can also upregulate the 

expression of a slew of other inflammatory mediators as exemplified by chemokines (Fig. 11) and 

chemokine receptors (Fig. 12). Altogether, this neuroinflammatory response creates an intricate 

network of autocrine/paracrine and intracellular signaling pathways that may affect neuronal 

networks. For example, IL-1β and TNFα have an excitatory effect on hippocampal neurons by 

increasing ceramide synthesis within neurons and by the ensuing NMDA-mediated calcium influx 

(Viviani et al., 2007;Wheeler et al., 2009). IL-1β also inhibits glutamate reuptake via the 

downregulation of GLT-1 expression in astrocytes (Prow and Irani, 2008), which may further enhance 

excitability of neuronal circuits. Also, the injection of IL-1β into the hippocampus has been shown to 

increase the severity of limbic seizures (Vezzani et al., 2002). The protracted upregulation of the Tnfa 

and Il1b genes following PIC challenge (Fig. 10) further strengthens their putative role in the induction 
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and sustenance of seizure hypersusceptibility. Although IL-6 and IFNβ seem not to directly affect 

neuronal networks, they amplify the effects of IL-1β and TNFα (McCusker & Kelley 2013). Consistent 

with this amplifying role, overexpression of IL-6 results in severe neurologic impairment including 

seizures (Campbell et al., 1993).  

A body of evidence also implicates several chemokines upregulated in the hippocampus by 

PIC challenge (Fig. 11) in the induction of neuronal hyperexcitability. Thus, genes encoding ligands of 

the CXCR3 chemokine receptor, i.e., CXCL9, CXCL10 and CXCL11, featured the highest 

upregulation. Neurons are the primary cell types that express CXCR3, and its ligation potently 

enhances electrical activity of hippocampal neurons (Nelson and Gruol, 2004). In addition, CXCR3 

ligation alters the expression of several GABA and glutamate receptors (Cho et al., 2009). The genes 

encoding CXCL1 and CXCL2 chemokines also featured robustly upregulated expression following 

PIC challenge (Fig. 11). Moreover, the gene encoding their receptor, CXCR2, was also highly 

upregulated (Fig. 12). Signaling through CXCR2 has been shown to increase neuronal excitability, 

potentially through the association of CXCR2 with GluR1 AMPA receptors (Lax et al., 2002;Wang et 

al., 2008). CCL2, CCL4 and CCR7 are elevated in brain tissue from epilepsy patients, as well as in 

animal models (Fabene et al., 2010;Lehtimaki et al., 2003;Liimatainen et al., 2013;Vezzani et al., 

2008;Vezzani et al., 2002;Hung et al., 2013). In concordance with this, we found the Ccl2 and Ccr7 

genes to feature a prolonged upregulation following PIC challenge (Figs. 11 and 12). Furthermore, 

CCL2 and CCL4 seem to be crucial for epileptogenesis (Fabene et al., 2010;Kan et al., 2012). 

Altogether, the above data strongly implicate the role of cytokine and chemokine gene upregulation in 

PIC-induced seizure hypersusceptibility. 

Although some of the genes discussed above displayed sharply transient upregulation, one 

has to be cognizant that transient expression of the mRNA does not necessarily translate to transient 

expression of the cognate protein. For example, the Cxcl1 and Cxcl2 mRNA peaked at 6 h but 

returned to the baseline at 9 h after PIC challenge (Fig. 11). However, the protein synthesized within 
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this 9-h period may persist much longer. This argument also applies to the genes featuring protracted 

elevation of their mRNA. For example, the Ccl5 mRNA peaked at 24 h (Fig. 11), and albeit its levels 

gradually dropped, the cognate protein, CCL5, may have peaked later and been present at high 

concentrations during the whole period of hypersusceptibility, i.e., up to 72 h. Finally, it should also be 

considered that even a short-term upregulation of an inflammatory gene may contribute to the 

hypersusceptible phenotype through the activation of downstream pathways. 

Our lab has previously shown a quantitative variability in the response of inflammatory genes 

to PIC challenge among the major subdivisions of the brain: the forebrain (minus hippocampus), brain 

stem and cerebellum (Konat et al., 2009; Fil et al., 2011). In general, the cerebellum featured the 

highest upregulation of these genes. For example, the maximal upregulation of the Il1b, Il6 and 

Cxcl11 genes in the cerebellum was approximately four-fold higher than the respective values for the 

forebrain. The comparison of the present results from the isolated hippocampus (Figs. 10 and 11) to 

the whole forebrain (Konat et al., 2009; Fil et al., 2011) reveals further regional heterogeneity. Thus, 

among the 23 hippocampal genes studied three were significantly less upregulated and four were 

significantly more upregulated in comparison to the whole forebrain (Table 1). In the most extreme 

case, the peak upregulation of the Ifnb gene was 50 times lower in the hippocampus than in the 

whole forebrain. On the other hand, the Cxcl11 gene was nine-fold more robustly upregulated in the 

hippocampus in comparison with the whole forebrain. Clearly, the hippocampal cells feature a highly 

specific pattern of genetic response to PIC challenge vs. the average forebrain cell.  

Table 1. Maximal upregulation of selected cytokine and chemokine genes in the forebrain vs. hippocampus in 

response to PIC challenge. 

Gene Hippocampus (H) Forebrain (F)# H/F 

Ifnb   4.05 ± 1.14 201.55 ± 37.00* 0.02 

Ccl5 20.03 ± 3.88 132.60 ± 30.01* 0.15 

Ccl2 107.94 ± 28.26 215.05 ± 51.11* 0.50 

Cxcl11  6547.68 ± 692.19   720.88 ± 101.16* 9.1 

Ccl12 154.19 ± 13.80 20.50 ± 7.01* 7.5 

Cxcl10  3213.78 ± 458.29     1112.07 ± 93.22* 2.9 

Cxcl1 1192.98 ± 285.75   718.50 ± 111.02* 1.7 
#data from Konat et al (2009) and Fil et al (2011); * p ≤ 0.05 
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3.2. Neurotransmission-related genes 

 
The previous experiments illustrated that peripheral APR results in a robust inflammatory 

response in the hippocampus (Fig. 10, 11, & 12). Furthermore, a number of the inflammatory genes 

upregulated by PIC challenge have been linked to changes in neural excitability and the expression of 

several genes related to neurotransmission. Thusly, inflammation-induced changes in the expression 

of neurotransmitter receptors (Guo et al., 2002;Harre et al., 2008;Galic et al., 2012) may provide a 

mechanism by which peripheral APR enhances seizure susceptibility.  

While the complexities of the system continue to impede consensus on an overall mechanism 

for seizure, prevailing theories hinge on neurotransmitter receptors; specifically their relationship to 

increased glutamatergic neurotransmission and/or decreased GABAergic signaling (Casillas-

Espinosa et al., 2012;Gonzalez 2013;Werner and Covenas, 2011). There is also strong support for 

the involvement of metabolic breakdown of the neuron-astrocyte network in seizure development 

which ultimately results in the persistence of excitatory molecules in the synapse (Seifert and 

Steinhauser, 2013). 

Previously, LPS has been shown to alter the expression of glutamatergic kainate receptor 

genes in the spinal cord (Guo et al., 2002), as well as genes encoding NMDA receptors in the 

hippocampus (Harre et al., 2008).  Furthermore, a recent study of prenatal PIC exposure found 

changes in the GluR1 NMDA receptor subunit at post-natal day 21 in mice (Forrest et al., 2012). 

These studies support our notion that inflammation can instigate changes in neurotransmission-

related proteins. 

 To evaluate this theory, we screened the expression of genes encoding all glutamatergic and 

GABAergic neurotransmitter receptors by qRT-PCR and found nine genes to be significantly altered 

by PIC challenge (Fig. 13). These genes were: the kainate receptor gene Grik3, the AMPA receptor 

gene Gria4, the metabotropic glutamate receptor genes Grm1, Grm6, and Grm7, and the GABAA 

receptor subunit genes Gabrq, Gabre, Gabrr2, and Gabrr3. The Grik3, Gria4, Grm6, Gabrq, Gabrr2 
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and Gabrr3 genes showed initial several-fold upregulation coincident with the blood cytokine surge 

that peaked 3-6 h after PIC injection. While the expression of five of these genes gradually returned 

to the baseline level, the upregulation of the Gabrr3 gene was protracted and its mRNA level at 72 h 

was approximately 2-fold over control. The Grm6 gene featured moderate upregulation after 48 h, 

reaching approximately 1.5- fold over the control level at 72 h. In contrast, the Grm7, Grm1 and 

Gabre displayed initial downregulation by approximately 2-fold, followed by normalization.   

 

  

 

Figure 13. The expression of neurotransmission-

related genes following PIC challenge. Mice were 

i.p. injected with 12 mg/kg of PIC. At different 

time points, mRNA levels of selected 

neurotransmitter receptors and proteins involved 

in synaptic buffering of glutamate and potassium 

were determined in the hippocampi by qRT-PCR. 

Data represent means ± S.D. from 3-6 animals. 

Values significantly different from baseline levels 

(0 h) are indicated by asterisks (p ≤ 0.05). 

 

 

 

 

 

 In addition, we found the expression of three genes whose products are involved in synaptic 

buffering of glutamate and potassium to be significantly altered by PIC challenge. As shown in Fig. 

13, the lactate dehydrogenase A gene (Ldha) was rapidly upregulated at 3 h post-PIC injection and 

gradually returned to the baseline level. The expression of the glutamate dehydrogenase gene (Gldh) 

also peaked at 3 h but featured subsequent downregulation below control level at 24 h. Its expression 
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gradually returned to the baseline by 72 h. The expression of the Kcnj10 gene encoding the inward 

rectifying potassium channel Kir4.1 was not affected during the blood cytokine surge, but featured a 

gradual downregulation thereafter, reaching a nadir at 48 h and returning to the baseline level at 72 h 

(Fig. 13).  

 

Discussion 

 Prevailing theories behind seizure development and epileptogenesis converge upon changes 

in neuronal excitation and inhibition. In support of this notion, we found altered expression of a 

number of hippocampal genes encoding neurotransmitter receptors (Fig. 13) in the same time frame 

as the blood cytokine surge (Fig. 6) and the rapid upregulation of inflammatory genes (Fig. 10, 11, & 

12). Although the significance of these changes must be verified at the protein level and through 

functional analysis, tentative correlations can be inferred from the changes in the mRNA levels. For 

example, the upregulation of the Grik3 gene (Fig. 13) may contribute to the hypersusceptible 

phenotype, as long-lasting kainate receptor-mediated events have been associated with sustained, 

rhythmic firing in a rodent model of temporal lobe epilepsy (Artinian et al., 2011). This increase in the 

expression of Grik3 could explain the increased response to kainic acid in our model. However, a 

preliminary study using extracellular electrophysiological recordings in mouse hippocampal slices 

found that PIC enhanced both the amplitude and frequency of 4-aminopyridine-evoked interictal 

activity (data not shown). Further studies are necessary to determine whether the brain is generally 

hyperexcitable or more responsive to kainic acid. The GABAA- subunit, encoded by the Gabre gene, 

is associated with increased spontaneous channel activity (Bollan et al., 2008), and therefore, the 

prolonged downregulation of the Gabre gene following PIC challenge (Fig. 13) may increase 

hyperexcitability by impeding spontaneous inhibitory currents. Also, the GRM7 receptor negatively 

regulates GABAergic inhibition (Casillas-Espinosa et al., 2012), and knockout of the Grm7 gene 

results in increased susceptibility to seizures (Sansig et al., 2001). Thus, the downregulation of the 
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Grm7 gene induced by PIC challenge (Fig. 13) is consistent with the gene’s contribution to the 

hypersusceptible phenotype. However, two metabotropic glutamate receptor genes revealed 

unpredicted changes. Thus, while the GRM1 receptor tends to be pro-epileptic (Ure et al., 2006), the 

Grm1 gene was downregulated following PIC challenge (Fig. 13). Likewise, the upregulation of the 

Grm6 gene (Fig. 13) is incongruent with the function of GRM6 receptor that negatively regulates 

glutamate release, and therefore is protective against seizures (Ure et al., 2006).  

 As noted, LPS challenge has been shown to alter expression of the Grik1 and Grik2 genes in 

the spinal cord (Guo et al., 2002), as well as the genes encoding NMDA receptors in the 

hippocampus (Harre et al., 2008). We did not observe changes in these genes following PIC 

challenge suggesting a divergence in the cerebral effects of APR induced by bacterial vs. viral 

inflammagens. This is consistent with the differences in seizure response and cytokine production 

between LPS and PIC discussed previously (see Chapter 2: Conclusions, p. 14).  

 In addition to neurotransmitter imbalances, dysfunction in the metabolic coupling between 

neurons and astrocytes may be causative of hyperexcitation, seizure spread and neurotoxicity 

(Seifert and Steinhauser, 2013). PIC challenge upregulated the Ldha and downregulated the Gldh 

genes (Fig. 13) that encode two key metabolic enzymes involved in glutamate recycling. Such 

enzymatic changes are expected to enhance the accumulation of extracellular glutamate resulting in 

hyperexcitation. Our results are concordant with previous studies that found the same changes in 

epilepsy patients and animal kindling models (Erakovic et al., 2001;Malthankar-Phatak et al., 2006). 

Moreover, another astrocytic gene, the Kcnj10 gene that encodes potassium channel Kir4.1 featured 

a transient downregulation (Fig. 13). Reduced expression of Kir4.1 has been found in patients with 

congenital epilepsy (Bockenhauer et al., 2009), and conditional knockout of Kcnj10 in mice results in 

the development of stress-induced seizures through increased synaptic potentiation (Djukic et al., 

2007).  
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3.3. microRNAs 

microRNAs (miRs) are short (~22 nucleotides), endogenously expressed, non-coding RNAs 

that have emerged as important regulators of gene expression. Typically, miRs exact their control at 

the post-transcriptional level by binding to target mRNAs and causing the message to be degraded or 

translation of the message to be repressed (Petersen et al., 2006). However, miRs can also suppress 

gene transcription (Younger and Corey, 2011). Each miR can bind to hundreds of target genes 

including regulatory and transcription factors and through their complex interaction with each other 

and their target genes can execute system wide regulation of the genome. Most interestingly, several 

miRs that are highly expressed in the brain are also involved in immune function, identifying them as 

potential targets of immune-to-brain communication (Soreq and Wolf, 2010). 

The regulation of cerebral miRs is associated with several physiological and pathological 

processes. Recent research has implicated a few of these miRs in the pathology of seizures 

(Jimenez-Mateos et al., 2011;Hu et al., 2011;Aronica et al., 2010;Liu et al., 2010). Furthermore, these 

miRs can influence neurotransmitter receptor signaling and synaptic activity (Edbauer et al., 2010; 

Siegel et al., 2011;Soreq and Wolf, 2010). Taken together, these observations suggest that miR 

signaling, specifically of those shown to modulate both neural and immune functions (Soreq & Wolfe, 

2011) and miRs associated with seizure pathology (Jimenez-Mateos et al., 2011;Hu et al., 2011;Liu et 

al., 2010;Aronica et al., 2010), represent a potential mechanism for the immune-to-brain 

communication responsible for “sickness behavior” and PIC-induced seizure hypersusceptibility. 

We screened expression of these miRs in the hippocampus following PIC challenge and 

identified ten species whose expression underwent significant changes (Fig. 14). Generally, the levels 

of these miRs changed in an oscillating manner. During the first 9 h after PIC challenge, the levels of 

miR-128-3p, miR-509-5p, miR-28a-5p, miR-138-5p and miR-466i-5p were initially increased and then 

decreased below control, whereas the levels of miR-188-5p, miR-302a-5p and miR-221-3p were 

initially downregulated. At 24 h, the levels either returned to baseline (miR-28a-5p, miR-138-5p, miR-
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128-3p, miR-509-5p, miR-188-5p and miR-302a-5p) or underwent secondary upregulation (miR-466i-

5p and miR-221-3p). Two species, miR-132-3p and miR-181a-5p, were not changed during the blood 

cytokine surge but were upregulated at 24 h. At 72 h, the expression of miR-302a-5p was 

downregulated by approximately 2-fold below the baseline. miR-28a-5p and miR-138-5p were slightly 

downregulated, while miR-466i-5p, miR-221-3p and miR-128-3p were slightly upregulated. 

 

 

 

 

Figure 14. The expression of hippocampal 

miRs following PIC challenge. Mice were 

i.p. injected with 12 mg/kg PIC and the 

levels of selected miRs were determined in 

the hippocampi by qRT-PCR at different 

time points as indicated. Data represent 

means ± S.D. from 3-8 animals. Values 

significantly different from baseline levels 

(0 h) are indicated by asterisks (p ≤ 0.05). 

 

 

 

 

 
 

 

Discussion 

Current knowledge regarding miR expression in seizures is exclusive to post-epileptic tissue, 

while we are investigating a “pre”-seizure event. Therefore, the putative involvement of miRs in 

peripheral APR-induced seizure hypersusceptibility is a novel concept. Although it is hard to interpret 
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the role of these miRs in the development of hyperexcitability, other studies provide some clues. For 

example, miR-132 and miR-138 are associated with changes in synaptic spine morphology and 

excitability. Specifically, the upregulation of miR-132-3p and downregulation of miR-138-5p observed 

in our study has been shown to result in larger, stubby spines and an increase in mEPSC frequency 

(Edbauer et al., 2010;Siegel et al., 2009). Alterations in other miRs have been associated with 

changes in cell migration, proliferation and differentiation, the features involved in the development of 

hippocampal hyperexcitability (Parent et al., 1997). Thus, the upregulation of miR-128 has been 

associated with increased cell number and neurite length (Guidi et al., 2010), as well as with 

enhanced mobility through the downregulation of reelin and doublecortin (Evangelisti et al., 2009). 

Doublecortin seems to be critical for normal hippocampal excitability, as doublecortin knockout mice 

exhibit spontaneous seizures that originate in the hippocampus (Nosten-Bertrand et al., 2008). In the 

adult brain, doublecortin expression is associated with seizure-induced neurogenesis in the 

hippocampus (Couillard-Despres et al., 2005), which is believed to facilitate aberrant neural 

connections (reviewed in Kokaia 2011). Furthermore, miR-302a-5p negatively regulates the CXCR4 

pathway (Fareh et al., 2012) that is important in cell migration in the developing and adult 

hippocampus (Bagri et al., 2002; Stumm and Höllt, 2007). Therefore, the downregulation of miR-302a 

in response to PIC challenge might result in the upregulation of CXCR4 leading to hyperexcitability. 

Finally, a recent microarray study identified several miRs, including miR-132-3p, miR-138-5p, miR-

181a and miR-221-3p analyzed in this study, that are differentially expressed following pilocarpine-

induced status epilepticus (Risbud and Porter, 2013). 

 

3.4. Genome-wide microarray 

 
The polygenic response observed in the previous experiments indicating a widespread genetic 

reprograming of hippocampal cells warranted further, more comprehensive genetic studies to 

delineate molecular/cellular pathways that govern the development of hippocampal hyperexcitability. 
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To gather a more global perspective of the genomic alterations induced in the hippocampus by 

peripheral inflammation, we performed a genome-wide array study of the hippocampus of PIC 

challenged mice. A total of 625 differentially expressed genes (DEGs) were identified across all time 

points (6, 24, and 48 h) when compared to control (0 h), with 98 DEGs common amongst the three 

comparison groups (Fig. 15). Bioinformatics analysis revealed the complement and coagulation 

pathway to be the most significantly affected pathway in the hippocampus by the peripheral 

inflammation (Table 1, P = 9.27x10-5). Furthermore, four other pathways were significantly affected by 

PIC challenge (Table 1). In agreement with the robust inflammatory response seen in the brain 

following peripheral inflammation (Fil et al., 2011; Konat et al., 2009; Fig. 10, 11, & 12), the majority of 

these pathways are related to immune function or pathology.  

Figure 15. Peripheral inflammation triggered by PIC challenge alters 

hippocampal gene expression. Mice were i.p. injected with 12 mg/kg of 

PIC. After 0, 6, 24 and 48 h, hippocampal gene expression was profiled by 

microarray analysis as described in Materials and Methods (Chapter 5). 

The Venn diagram shows differentially expressed genes (DEGs) identified 

by the average difference from three animals (n=3). Red circle, difference 

between 0 and 6 h; blue circle, difference between 0 and 24 h; yellow 

circle, difference between 0 and 48 h after PIC injection. The numbers 

denote the number of genes. 

 

Table 2. Hippocampal pathways significantly affected by i.p. injection of PIC. 

 

 

 

 

3.5. Conclusions 

The experiments presented in this chapter illustrate that peripheral APR induced by PIC 

challenge results in extensive genomic reprogramming of the hippocampus. This is exemplified by the 

gene expression changes observed for inflammatory (Fig. 10, 11, & 12) and neurotransmission-

Rank Pathway name No. of DEGs p-value 

1 Complement and coagulation 9 9.27x10-5 

2 Toll-like receptor signaling 10 4.40x10-4 

3 Systemic lupus erythematous 9 3.26x10-3 

4 Proteosome 4 2.79x10-2 

5 Epithelial cell signaling in H. pylori infection 5 3.43x10-2 
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related genes (Fig. 13), miRs (Fig. 14), and the 625 DEGs identified by the microarray (Fig. 15). 

Consistent with the robust cerebral inflammatory response presented in previous studies 

(Cunningham et al., 2007;Konat et al., 2009;Fil et al., 2011), the five significantly altered pathways 

identified from the microarray data comprise mostly immune-related pathways (i.e. complement and 

coagulation, toll-like receptor signaling, systemic lupus erythematous, and cell signaling in H. pylori 

infection) (Table 2). The association of a number of the altered hippocampal genes identified in these 

studies with seizure and/or neuronal hyperexcitability exemplifies their potential involvement in the 

development of seizure hypersusceptibility following peripheral challenge with PIC. 

3.6. Contributions 

Portions of this chapter were taken from a previously published manuscript (Michalovicz and 

Konat 2014); see Appendix I. The microarray experiment was performed at the University of 

Pittsburgh Genomics and Proteomics Core Laboratories.  
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Chapter 4: Peripheral challenge with PIC upregulates complement and activates microglia 

 

4.1. Complement genes 

Classically, the complement system functions as part of innate immunity where its component 

proteins aid in the opsonization and clearance of pathogens. However, complement has more 

recently been identified to serve a role in brain development and neuropathology. By opsonizing 

extraneous synapses, complement aids in the pruning of these synapses by microglia, a necessary 

process for the proper development of neural circuits (Schafer et al., 2012;Stephan et al., 

2012;Stevens et al., 2007). Complement is also found to be highly upregulated in the brain in multiple 

sclerosis, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease (Stephan et al., 2012). 

In this instance, the system targets degenerating neurons for phagocytosis and may also perpetuate 

neurodegeneration through the weakening of complement-tagged synapses. Furthermore, increases 

in cerebral complement have been associated with epilepsy and epileptogenesis, both clinically and 

experimentally (Jamali et al., 2010;Kharatishvili et al., 2013;Libbey et al., 2010). 

Expanding upon the results of the microarray study, we evaluated the temporal hippocampal 

expression of the genes encoding the complement proteins by qRT-PCR (Fig. 16). Bioinformatics 

analysis identified 9 DEGs from our data set that are involved in complement and coagulation (Table 

2). qRT-PCR confirmed 8 of the 15 complement genes screened to be dysregulated in the 

hippocampus by PIC challenge. Of these genes, all were significantly up-regulated (C1qa, C1qb, 

C1qc, C2, C3, C4, C6, and Cfb) and peaked at 24 h post-PIC challenge.  Furthermore, all but C1qc 

demonstrated protracted upregulation over the time frame of hyperexcitability (24-72 h; Fig. 4). The 

genes encoding complement factor B (Cfb), C6, and C3 showed the highest levels of up-regulation of 

53-, 40-, and 12-fold, respectively. The genes encoding C5, C7, C8 complex and C9 displayed very 

low and highly variable expression in all regions of the brain resulting in no significant dysregulation of 

these genes following PIC challenge. The upregulation of the Cfb, C3 and C1q mRNA also resulted in 
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the upregulation of the protein levels as revealed by immunohistofluorescence (Fig. 17). All three 

proteins featured neuronal expression in control (saline injected) mouse hippocampi. This basal 

expression was profoundly elevated by PIC challenge. The increased staining was evident within the 

neuronal perikarya and in the extracellular milieu. No expression of these proteins was detectable in 

microglia or astrocytes (not shown). 

 

 

Figure 16. PIC challenge alters the 

expression of complement genes in the 

hippocampus. Mice were i.p. injected 

with 12 mg/kg of PIC and the levels of 

complement mRNAs were determined 

in the hippocampi by qRT-PCR at 

different time points as indicated. Data 

represent means ± S.D. from 3-8 

animals. Values significantly different 

from baseline levels (0 h) are indicated 

by asterisks (p ≤ 0.05). 

 

 

 

Figure 17. Expression of complement 

proteins in the hippocampus instigated by 

PIC challenge. Following PIC challenge, the 

brains were prepared and analyzed by 

immunofluorescence as described in 

Materials and Methods (Chapter 5). The 

expression of complement proteins was 

analyzed by confocal microscopy at 0 and 24 

h. 
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Previous studies from our lab have shown that the robust upregulation of chemokine and 

cytokine genes by peripheral PIC challenge is not restricted to particular brain regions, but occurs 

globally across all areas of the brain (Fil et al., 2011; Konat et al., 2009). In the current study, we 

found that the complement encoding genes showed similar temporal expression patterns across all 

brain regions (data not shown). However, there were differences in the magnitude of upregulation in 

the forebrain, cerebellum, and brain stem in comparison to the hippocampus for several genes (Fig. 

18). At 24 h post-challenge, C1qb and C4 were more strongly upregulated in forebrain, cerebellum, 

and brain stem when compared to hippocampal expression. We also found C1qa to have a more 

robust upregulation in the forebrain and brainstem. In contrast, C6 was not as highly upregulated in 

forebrain and cerebellum and was nearly undetectable in the brain stem by qRT-PCR. We found the 

overexpression of C3 to be less pronounced in the forebrain and brain stem when compared to the 

hippocampus. The upregulation of C2 and Cfb mRNAs was relatively consistent across all brain 

regions except in the cerebellum and forebrain, respectively.  

Figure 18. Regional expression differences 

of complement genes following i.p. PIC 

challenge.  Mice were i.p. injected with 12 

mg/kg of PIC and the levels of complement 

mRNAs were determined in the 

hippocampus (H), forebrain (F), cerebellum 

(C), and brain stem (B).  All data points 

represent the 24 h post-PIC challenge time 

point. Data represent means ± S.D. from 3-

8 animals. Values significantly different 

from hippocampus levels (H) are indicated 

by asterisks (p ≤ 0.05). 

 

4.2. Activation of microglia 

Complement has been demonstrated to promote synaptic stripping by microglia (Schafer et al., 

2012; Stevens et al., 2007). Resting microglia establish frequent but transient contacts with synapses 
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(Wake et al., 2009). Because microglia express complement receptor 3 that recognizes C3 and/or 

C5, synapses tagged with complement complexes activate microglia (Ilschner et al., 1996; Schafer et 

al., 2012; Zhang et al., 2014). Activated microglia migrate to and engulf neuronal perikarya and 

proximal dendrites. Their processes extend to and modify complement-tagged synapses (Ji et al., 

2013; Kettenmann et al., 2013). In a preliminary investigation, we found that PIC challenge induces 

activation of hippocampal microglia as evident from their hypertrophied “bushy” morphology (Fig. 19, 

top panel). We also observed microglia in close apposition to neuronal perikarya and proximal 

dendrites in the hippocampi of PIC challenged mice (Fig. 19, bottom panel). 

 

 

Figure 19. Morphological changes and migration of microglial cells 

instigated by PIC challenge. Following PIC challenge, the brains were 

prepared and analyzed by immunofluorescence. Microglia were stained 

with Iba1 (green) while neurons were stained with NeuN (red), and the 

cells were visualized by confocal microscopy. Top panel; Hypertrophy of 

microglia. Bottom panel; Close apposition of a microglial cell to a neuron 

24 h post-PIC challenge. 

 

 

 

4.3. Conclusions 

We chose to do more in-depth investigation into the complement pathway due to its recent 

emergence as a regulator of neuronal excitability through synaptic pruning (Chen et al., 2014;Schafer 

et al., 2012;Stephan et al., 2012;Stevens et al., 2007). In contrast to the expression of inflammatory 

cytokines, chemokines, and chemokine receptors (Fig. 10, 11, & 12) which peaked around 3-6 h, the 

complement genes universally reached maximal upregulation at 24 h (Fig. 16). Furthermore, while 

the majority of cytokines and chemokines were only transiently upregulated (Fig. 10 & 11), most 
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complement genes remained significantly elevated over the full time frame of seizure 

hypersusceptibility (24-72 h; Fig. 4). This upregulation of complement was also seen at the protein 

level (Fig. 17). The expression pattern observed in the hippocampus was generally consistent across 

all areas of the brain, with discrete regions exhibiting differences in the magnitude of upregulation 

(Fig. 18).  

The complement system consists of three overlapping pathways: classical, alternative, and 

lectin. The classical pathway is activated by C1q, while the alternative pathway is activated by the 

spontaneous cleavage of C3 and it’s binding to Cfb (outlined in Fig. 20). The lectin pathway is less 

likely to be involved in our PIC model, as it is generally activated by bacterial, not viral, infection. Our 

gene expression data for the complement components suggests that the classical and alternative 

pathways are highly likely to be affected by PIC challenge due to the upregulation of the genes 

encoding C1q, C3 and Cfb (Fig. 16). The robust expression of C3 combined with the overexpression 

of the components of the C3 convertases (C2, C4 and Cfb) (Fig. 16) increase the potential for high 

levels of the C3b fragment in the hippocampus. This is an important observation, because C3b is the 

main complement component responsible for opsonization of synapses resulting in their pruning by 

microglia (Schafer et al., 2012). Activation of the complement pathways leads to the downstream 

formation of the membrane attack complex (MAC), which forms pores in the membranes of target 

cells. While C6, a component of the MAC, is highly upregulated following PIC (Fig. 16), none of the 

other components (C5, C7, C8, or C9) are altered. However, as evidenced from the detectable basal 

expression of C1q, C3 and Cfb (Fig. 17, 0h), these other complement proteins may have a significant 

basal level of expression in the brain that would allow for the activation of the complement pathway 

leading to the formation of the MAC. 

In accordance with this, we also have preliminary observations of the activation of microglia 

and their close association with neuronal cell bodies (Fig. 19), suggesting that PIC-induced 

complement expression may promote synaptic stripping (Fig. 21). Furthermore, microglia have been 
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shown to selectively displace presynaptic terminals of inhibitory neurons resulting in neuronal 

hyperexcitability (Chen et al., 2014). Figure 21 depicts a putative mechanism of this process. 

 

Figure 20. Complement pathways. In the classical pathway, 

the initiating protein, C1q, binds to antigen-antibody 

complexes or membrane domains of apoptotic cells, and 

becomes activated (*C1q). Subsequent steps include 

proteolytic cleavage of C2-5 components into “a” and “b” 

fragments. For simplicity only the “b” fragments are shown. 

*C1q catalyzes formation of the classical pathway C3 

convertase (blue) that cleaves C3. The C3b fragment binds 

to the C3 convertase generating the classical pathway C5 

convertase (green). The production of C5b fragment leads to 

formation of the membrane attack complex (MAC; yellow). 

The alternative pathway is activated by spontaneous 

hydrolysis of C3 leading to the production of C3b that 

combines with the “b” fragment of CfB (Bb) resulting in the 

alternative pathway C3 convertase (blue). Subsequent C3b 

production generates the alternative pathway C5 convertase 

(green) that, in turn, leads to the formation of MAC (yellow). 

By generating C3b, the classical pathway activates the 

alternative pathway, and thus, amplifies the complement 

cascades. 

 

Figure 21. Mechanism of PIC-induced complement-mediated synaptic stripping. Upstream signaling leads to 

the expression of complement in the neuron, which is targeted to inhibitory synapses. Microglia appose 

themselves between the pre- and post-synaptic membranes and displace the inhibitory presynaptic terminal. 
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Chapter 5:  Conclusions and Future Directions 

 

 In this body of work, we have established that peripheral challenge with a viral mimic elicits 

seizure hypersusceptibility over a three day period following exposure (Fig. 2 & 4). While the 

mechanism by which peripheral APR signals the brain remains somewhat elusive, we have shown 

that peripheral APR-induced seizure susceptibility is concurrent with extensive genomic changes in 

the hippocampus. These changes were observed in cytokine (Fig. 10), chemokine (Fig. 11), 

neurotransmission-related (Fig. 13), and miR (Fig. 14) genes. 

This study has demonstrated that peripheral PIC challenge upregulates the expression of the 

complement components (Fig. 16, 17, & 18). Moreover, we have shown that the complement 

upregulation is preceded by a robust upregulation of several genes encoding cytokines and 

chemokines (Fig. 10 & 11). The cytokine and chemokine receptors (Fig. 12) are expressed by 

neurons and modulate neuronal activity (reviewed in Rostène et al., 2011 and Vitkovic et al., 2000). It 

is well established that cytokine receptor signaling results in the transcription of complement genes 

through the activation of NF-B, p38 and JAK/STAT (Barnum 1995;Volanakis 1995;Kaczorowski et 

al., 2010;Chen et al., 2011). Chemokine signaling may also be able to promote complement synthesis 

through the activation of the same transcription factors (Rodriguez-Frede et al., 2001;Wang and 

Richmond, 2001;Ye 2001;Mehla et al., 2012). Specifically, a recent report from Trapp’s group 

identified CXCL10 as a factor essential for synaptic stripping (Hu et al., 2014). Because synaptic 

stripping is mediated by complement (Schafer et al., 2012), it is highly probable that the CXCL10 

effect is coupled to the activation of the complement. Therefore, we hypothesize that inflammatory 

signaling mediates the upregulation of complement expression following PIC challenge and creates a 

pro-seizure brain environment (proposed mechanism diagramed in Fig. 21 & 22). Thusly, this 

pathway might represent mechanisms by which peripheral inflammation increases the likelihood of 
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seizures in populations that are already at high-risk, e.g. epileptics, neural injury, dehydration, and 

exhaustion. 

 

 

Figure 22. Proposed mechanism of peripheral APR-induced 

seizure hypersusceptibility. Antiviral APR in the peritoneal 

cavity generates cytokines which enter blood circulation. These 

cytokines diffuse into the brain where they stimulate the 

production of cytokine and chemokines. These factors then 

stimulate the production of complement components. The 

complement facilitates the pruning of inhibitory synapses, 

leading to decreased inhibitory inputs. This decreased inhibition 

causes hyperexcitability and, subsequently, leads to the 

development of seizure hypersusceptibility. A proposed time 

frame, with 0 h being the time of injection, is outlined on the left. 

 

 

  

 

 

 

 The discovery that complement is upregulated in response to peripheral APR is a novel 

finding. Most current literature on complement expression in the brain focuses on roles in 

development and neurodegenerative disease (Schafer et al. 2012;Stephan et al. 2012). In these 

pathways, complement signals a seemingly irreversible pruning of synapses or clearance of dying 

cells by microglia. Clearly, these responses are extreme when applied to “sickness behavior,” a 

benign and evolutionarily protective behavioral response to infection/inflammation. Timing is likely a 

key issue when it comes to complement’s role in peripheral inflammation-induced seizure 

hypersusceptibility. Activated microglia have been shown to transiently displace inhibitory synapses 

and increase neural excitability in LPS-injected mice (Chen et al. 2014). Therefore, the three day 
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period of enhanced complement expression in the hippocampus could facilitate a reversible 

displacement of inhibitory synapses that results in the transient hypersusceptible phenotype we 

observe in our model.  

The results presented in this dissertation represent the first step in a line of translational 

research aimed at developing novel therapeutic strategies to prevent seizures associated with 

peripheral inflammations. The genes identified in this study, e.g. chemokine and complement 

component encoding genes, will serve as potential therapeutic targets for preventing the 

enhancement of seizure susceptibility associated with peripheral infection. Furthermore, we have 

established that the period of seizure risk extends well beyond the time frame of active inflammation, 

illustrating the need for increased vigilance even in seemingly healthy patients. In addition, our results 

can be extended to understand the mechanisms in other neurological conditions that feature 

inflammatory insult as a putative causal factor, e.g., depression, autism and schizophrenia (Miller et 

al. 2009;Meyer et al. 2011). 

Further studies stemming from this dissertation will test the model proposed in Figure 22. To 

evaluate the role of hippocampal chemokine signaling in complement expression and seizure 

hypersusceptibility, animals i.c.v. injected with CXCL10 can be tested for increases in hippocampal 

complement gene and protein expression (as shown in Fig.16 & 17) and evaluated for sensitivity to 

kainic acid-induced seizures (as shown in Fig. 2). The role of CXCL10 in these processes can be 

further verified by challenging CXCR3 knockout mice with PIC and determining if knockout of this 

CXCL10 receptor is capable of blocking the upregulation of the complement proteins and the 

development of the hypersusceptible phenotype. In the event that manipulation of the CXCL10 

pathway is insufficient to either mimic or repress complement expression and seizure 

hypersusceptibility, other cytokines and chemokines, e.g. TNFa, CXCL1, CXCL2, etc (Fig. 10 & 11), 

can be tested in a similar fashion. 
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Another line of future studies would evaluate the potential for inhibitory synaptic pruning in the 

PIC model. The first step in these experiments would be to expand upon the preliminary 

immunohistochemical studies presented in Chapter 4.2 by verifying and quantifying the extent of PIC-

induced microglial activation and neuronal cell body apposition over the time course of seizure 

hypersusceptibility. These studies would also be expanded to determine whether PIC challenge 

results in a preferential loss of inhibitory synapses as observed in Chen et al. (2014) by 

immunohistochemistry of the inhibitory neuronal marker, GAD. Furthermore, the effect on inhibitory 

currents can be evaluated in slice cultures by patch-clamp electrophysiology. By blocking excitatory 

signaling either pharmacologically or by voltage-clamp, spontaneous and evoked inhibitory (outward) 

currents can be measure in hippocampal pyramidal neurons. If inhibitory synapses are pruned in 

response to PIC challenge, treated mice should exhibit changes in the characteristics of the inhibitory 

currents (e.g. frequency, amplitude, etc.). Similar studies can be performed to evaluate the role of 

complement in inhibitory synaptic pruning by either i.c.v. injecting complement components to mimic 

their upregulation by PIC, or knocking down the expression of complement components in the brain 

following PIC treatment. Mice with complete knockout of complement genes exhibit immunological 

defects, therefore, it would be best to use either siRNA to knockdown gene expression locally in the 

brain or a conditional knockout paradigm that would only eliminate the complement in the 

hippocampus. It would also be prudent to determine the mechanism by which complement mediates 

the disruption of synapses. For example, does opsonization result in morphological changes of 

synapses? This could be determined by evaluating the shape of the synapses as well as the size of 

the post-synaptic densities by electron microscopy. Alternatively, if complement does not instigate 

synaptic pruning, other mechanisms of hyperexcitability can be evaluated (as described in Chapter 

1). For example, it is possible that complement interacts with ion channels in the neuronal membrane 

to alter their function and increase the probability of action potential firing or increase calcium-

mediated neurotransmitter release. While our preliminary data suggest that complement is produced 
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by neurons, the complement proteins are secreted into the extracellular space and, therefore, are 

capable of interacting with other cells. For example, the complement proteins could disrupt potassium 

and glutamate buffering by astrocytes by affecting the function or expression of the potassium 

channels and glutamate transporters, leading to hyperexcitability. 

It is also necessary to evaluate the role of complement in seizure hypersusceptibility. In these 

experiments, animals would be treated with kainic acid after either i.c.v injection of the complement 

proteins or after the complement gene knockdown to determine if complement is sufficient or 

necessary, respectively, for seizure hypersusceptibility. If complement is not a key component in PIC-

induced seizure hypersusceptibility, the data set from the microarray study can be further evaluated 

to uncover other potential mediators of seizure hypersusceptibility that could affect the function of 

neurons or glia. Taken together, these studies would greatly expand upon the data presented in this 

dissertation and help to tease out the mechanism by which peripheral inflammation enhances seizure 

susceptibility. 
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Chapter 6:  Materials and Methods 

 

6.1. Animals 

Eight-week old C57BL/6J mice were obtained from Charles River Laboratories (Wilmington, MA) or 

Hilltop Lab Animals, Inc. (Scottdale, PA), and housed under 12-h light/dark conditions (lights on at 6 

am) with unrestricted access to food and water. All procedures were approved by the West Virginia 

University Animal Care and Use Committee and conducted in compliance with the guidelines 

published in the NIH Guide for the Care and Use of Laboratory Animals. 

 

6.2. PIC treatment and blood plasma transfer 

Animals were i.p. injected with 12 mg/kg of PIC (Invivogen, San Diego, CA) in 100 μl of saline. Mice 

received either three daily injections or a single injection of PIC. Control mice were injected with 

saline only. After 3 h, the development of sickness behavior was assessed by the rearing test 

(Michalovicz & Konat, 2014) to confirm successful i.p. injection. 

 

For blood plasma transfer, blood samples were collected 3 h after PIC treatment by cardiac puncture 

and citrated.  The blood was immediately centrifuged and 300 L of plasma was i.p. injected into 

naïve mice. Control mice were injected with blood plasma collected from saline injected mice. 

 

6.3. Cytokine treatment 

Animals were i.p. injected with one of two mixtures of recombinant IL-6 and IFN: 1) 30 ng of IL-6 and 

40 ng of IFN, or 2) 1 g of IL-6 and 1 g of IFN. Control mice were injected with saline only. As the 

recombinant mouse cytokine proteins were isolated from bacteria, a second set of controls were 

injected with 200 pg of LPS to account for trace levels of endotoxin potentially present with the 

recombinant proteins. 
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6.4. COX inhibitor treatment 

Animals were i.p. injected with 30 mg/kg of ibuprofen or 10 mg/kg of piroxicam, non-selective COX 

inhibitors, or saline 1 h prior to receiving an i.p. injection of 12 mg/kg of PIC. Control mice were 

injected with saline only. 

 

6.5. Open-field test 

Locomotor activity was assessed using the automated activity monitoring system PAS-Open field (41 

cm x 41 cm x 38 cm; San Diego Instruments, San Diego, CA). The chambers were equipped with a 

16 x 16 array of infrared photo-beams to measure horizontal (XY) movement and an additional frame 

of 16 beams to monitor rearing. Locomotor activity was recorded for 15 min. 

 

6.6 Evaluation of seizure susceptibility 

At different time points (1-7 days) following PIC challenge, mice received subcutaneous injections of 

15 mg/kg or 20 mg/kg of KA (Sigma Chemical Co., St. Louis, MO) in saline, depending on the animal 

supplier (Hilltop Lab Animals, Inc. or Charles River Laboratories, respectively). Saline injected mice 

served as controls. Seizure severity was scored by blinded observers in 5 min intervals. The 

behavioral scores were as follows: 0, no response; 1, immobility; 2, rigid posture; 3, 

scratching/circling/head bobbing; 4, forelimb clonus/rearing/falling; 5, repetitious pattern 4; 6, severe 

tonic-clonic seizures (Morrison et al. 1996). Cumulative seizure scores were assessed as the 

summation of all scores over the 2 h observation period. 

 

6.7. Blood cytokine measurement 

Mice were deeply anesthetized with 65 mg/ml of pentobarbital (Fatal Plus, Vortech Pharmaceutical, 

Dearborn, MI) administered i.p. and sacrificed by pneumothorax. Blood was quickly collected by heart 

puncture and citrated. IFN was measured using the VeriKine Mouse Interferon Beta ELISA kit (PBL 
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Interferon Source, Piscataway, NJ) per manufacturer’s instructions. IL-6 levels were measured using 

the Milliplex MAP Mouse Cytokine/Chemokine panel (Millipore, Billerica, MA) per manufacturer’s 

instructions and analyzed using a Luminex 200 System (Luminex, Austin, TX). 

 

6.8. qRT-PCR 

Mice were anesthetized and sacrificed as described above, and transaortically perfused with saline. 

Brains were removed from the skull and hippocampi were dissected out. The brainstem, cerebellum 

and forebrain (minus the hippocampus) were also isolated. The tissue was immediately homogenized 

in TRI Reagent (Molecular Research Center, Inc., Cincinnati, OH), and RNA was isolated per 

manufacturer’s protocol. For quantitation of mRNA, cDNA was synthesized using SuperScript III First-

strand Synthesis kit (Invitrogen, Carlsbad, CA) and quantified using RT2 SYBRGreen (Qiagen, 

Valencia, CA). For miR quantitation, cDNA was synthesized using NCode VILO miRNA cDNA 

Synthesis kit (Invitrogen, Carlsbad, CA) and quantified using EXPRESS SYBR GreenER miRNA 

qRT-PCR kit (Invitrogen, Carlsbad, CA).  qRT-PCR was performed in an ABI7500 Real-Time PCR 

system (Applied Biosystems, Foster City, CA). Glyceraldehyde phosphate dehydrogenase (GAPDH) 

mRNA or snRNA U6 were used as internal controls for mRNAs and miRs, respectively. The ΔΔCt 

method was used for quantitation. Primer sequences are listed in Tables X and Y. 

 

6.9. Microarray analysis 

Mice were deeply anesthetized with 65 mg/kg of pentobarbital (Fatal Plus, Vortech Pharmaceutical, 

Dearborn, MI) administered i.p., sacrificed by pneumothorax, and transaortically perfused with saline. 

The hippocampi were dissected out, homogenized in TRI Reagent (Molecular Research Center, Inc., 

Cincinnati, OH), and total RNA was isolated per manufacturer’s protocol. RNA integrity was verified 

by the Agilent Bioanalyzer 2100. The microarray analysis was performed using the Illumina BeadChip 

mouse WG-6 format. The BeadChips were scanned using the Illumina iSCAN system and analyzed 
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by Illumina’s GenomeStudio 2011.1 Gene Expression Analysis Module 1.9.0 (Illumina). Data were 

normalized using the caGEDA web application (Patel and Lyons-Weiler, 2004), and differentially 

expressed genes (DEGs) were identified using the J5 test. Pathways analysis was performed using 

the Pathway Express application (Draghici et al., 2007). 

 

6.10. Immunohistochemistry 

Mice were deeply anesthetized with 65 mg/kg of pentobarbital (Fatal Plus, Vortech Pharmaceutical, 

Dearborn, MI) administered i.p., sacrificed by pneumothorax, and transaortically perfused with saline 

and then 4% paraformaldehyde. Brains were removed from the skull and infused in 4% 

paraformaldehyde for a minimum of 24 h at 4°C. The brains were cryoprotected in 30% sucrose for 

24 h at 4°C before sectioning. 35 m slices were cut on a freezing microtome and stored in 4% 

paraformaldehyde. 

 

For immunofluorescent staining, free-floating sections were blocked in PBS with 5% FBS (Atlanta 

Biologicals, Lawrenceville, GA) and 0.5% Triton-X 100 (Fisher Scientific, Waltham, MA) for 1 h at 

room temperature and then incubated in primary antibody overnight at 4°C. After washing in PBS, 

sections were incubated in secondary antibody for 1 h at room temperature. Sections were then 

washed and mounted on slides using Vectashield hard set (Vector Laboratories, Burlingame, CA). 

Confocal imaging was performed at the WVU Microscope Imaging Facility with a Zeiss LSM 510 laser 

scanning confocal on a LSM AxioImager upright microscope. Primary antibodies were: rat-anti-C3 

(11H9; Abcam, Cambridge, MA), goat-anti-Cfb (N-14; Santa Cruz Biotechnology, Dallas, TX), rat-anti-

C1q (7H8; Abcam, Cambridge, MA), mouse-anti-NeuN (A60; Millipore, Billerica, MA), and rabbit-anti-

Iba1 (Wako, Richmond, VA). Secondary antibodies were anti-rat, anti-goat, anti-mouse or anti-rabbit 

conjugated to either Alexa Fluor 488 or Alexa Fluor 555 (Invitrogen, Carlsbad, CA).  All antibodies 

were diluted in PBS with 1% FBS and 0.1% Triton-X 100. 
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6.11. Statistical Analysis 

Data were analyzed by ANOVA and expressed as means ± SD. Statistical comparisons between 

groups were performed using Student’s t test. Differences between groups were considered 

significant at P ≤ 0.05. 
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mRNA Forward primer Reverse primer

C1qa CTGGCATCCGGACTGGTATC CTTTCACGCCCTTCAGTCCT

C1qb ACGAGAACTATGAGCCACGC TTTCTGCATGCTGTCCCGAT

C1qc GGCCTGAAGTCCCTTACACC CTGAGTGGTAGGGCCAGAAG

C2 ACCTGTAAAGATCATGAGACAGAAC GGAGACAGCCTGGATACACC

C3 TGCTGGCCTCTGGAGTAGAT AGGCAGTCTTCTTCGGTGTG

C4 CACCATGGGTTGGACGTCTT GCCTTCTGCCCCAAGAATGA

C6 CGCCAGGAGCTACAGAACTC TTTGGTGCACGTGTCTTCCT

Ccl12 TTGGCTGGACCAGATGCGGTGA GGGGACACTGGCTGCTTGTGAT

Ccl19 CTGGACCCTTCCCAGCCCCAACT CAGGCACCCTGCAGCCATCTTC

Ccl2 CCTCCACCACTATGCAGGTCTC GCACGTGGATGCTACAGGC

Ccl4 AGCACCAATGGGCTCTGACCCT ACCACAGCTGGCTTGGAGCA

Ccl5 GCCTCTGCCGCGGGTACCAT CCGAGCCATATGGTGAGGCAGG

Ccl7 CAACCAGATGGGCCCAATGCATCC AGCTTCCCAGGGACACCGACT

Ccl9 GGGCCAGGAACAGCAAGCAGTC TCTGTTGCATTGTGTGATCTGGGC

Ccr1 GGCAGCTGTTTCAAAGGCATGTGGC AGCCAGCAGAGAGCTCATGTTCTCC

Ccr6 ACACGGTGCTAGTAACCTGCAGTTCG TGTCGGGAGAGCAGAGGTGAAGCAA

Ccr7 GCACCATGGACCCAGGGAAACCCA GCACACCGACTCGTACAGGGTGT

Cfb GGGGCCCTCTCATTGTTCAC GGAAGTCCCGGGCATAAGAG

Cxcl1 TGAAGCTCCCTTGGTTCAGAAA GTTGTCAGAAGCCAGCGTTCAC

Cxcl10 AAGTGCTGCCGTCATTTTCTG CCTATGGCCCTCATTCTCACTG

Cxcl11 AGCTGCTCAAGGCTTCCTTATG AACTTTGTCGCAGCCGTTACTC

Cxcl13 GCCTCTCTCCAGGCCACGGTAT TTTTGGGGCAGCCATTCCCAGG

Cxcl17 AACCCAGGGGTCGCCAGAAGCC TCCTTGGTGGCCCCAGCACT

Cxcl2 CGCTGTCAATGCCTGAAG GGCGTCACACTCAAGCTCT

Cxcl9 GGACTCGGCAAATGTGAAGAAG GGGGTGTTTTGGGTTTTCTGTT

Cxcr2 ACCGGGCCATGCGGGTCATCTT TCATCGCGGCGCTCACAGGTCT

Cxcr5 ACCCTGGACATGGGCTCCATCACA AGGCCACAGGCATGAATACCGCC

Gabre CTGGCATTGGAGAGAAGCCTA CGTTGCCATGCAGAATAAGGG

Gabrq CCAGATGGGACAGTGCGATA GTAGCCATAGCTCTCCACCTC

Gabrr2 GGAGTCACGGGTCAAGTTGT TTGTACTCGCCGACCTTCAC

Gabrr3 TTCATCCACGACACAACCGT AAAGCGGCTGAAGTCCATGA

Gldh CTGCAACCATGTGTTGAGCC TGCTGTAACGGATACCTCCC

Gria4 AAGGCTATGGTGTAGCGACG GTCTTGTCCTTGCTTCCCGA

Grik3 GTTCCTAGTGTGCGCCTTCT ATCGAAAGGCGTGCTCTTCA

Grm1 GTAGTGCGCATGCACGTCGG GTTAGAATTGGCGTTCCCTGCCC

Grm6 GACATCAGGAGGGTCTTGGAG AATCATCTGACTGGCCACCTG

Grm7 TTTTTGGCACAGCGCAATCA GCAGGGCTGTTTGGGTCTAC

Ifnb GTGGTCCGAGCAGAGATCTTCAGG ACTACCAGTCCCAGAGTCCGCC

Il1b GAAGATGGAAAAACGGTTTG GTACCAGTTGGGGAACTCTGC

Il6 ACACATGTTCTCTGGGAAATC AGTGCATCATCGTTGTTCATA

Kcnj10 ACCTTCGAGCCAAGATGACG CATTCTCACATTGCTCCGGC

Ldha AGCTTCCATTTAAGGCCCCG TCTTTTGAGACCGCTAGTGC

Serping1 TGAAGCTGCCTAGTGACCAAG CTGGTAGCTTCGGGATCTGAG

Tnfa GCGATGGGTTGTACCTTGTCT GTGGGTGAGGAGCACGTAGT

Gapdh TGCACCACCAACTGCTTAGC GGATGCAGGGATGATGTTCT

Table 3.  Primer sequences for mRNA targets. 
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miRNA Primer

128-3p GTCACAGTGAACCGGTCTCTTTA

132-3p CAGTCTACAGCCATGGTCGAAA

138-3p TGTTGTGAATCAGGCCGAAA

181a-5p ATTCAACGCTGTCGGTGAGTA

188-5p TTGCATGGTGGAGGGAAA

221-3p AGCTACATTGTCTGCTGGGTTTC

28a-5p GAAGGAGCTCACAGTCTATTGAGAA

302a-5p GACTTAAACGTGGTTGTACTTGC

466i-5p TTCTGTGTGTGTGTGTGTGTGTG

509-5p TACTCCAGAATGTGGCAATCATA

snRNA U6 AAATTCGTGAAGCGTTCCATA

Table 4. Primer sequences for mature miRNA targets. 
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Abstract Clinical evidence implicates peripheral inflam-
matory diseases as comorbid factors in epilepsy. The
present study was designed to determine the effect of the
acute phase of antiviral response on seizure susceptibility.
Young adult mice were intraperitoneally injected with
12 mg/kg of a viral mimic, polyinosinic:polycytidylic acid
(PIC). After 48 h, seizures were induced by subcutaneous
injection of kainic acid (KA). PIC-pretreatment profoundly
enhances vulnerability to excitotoxic insult as evidenced by
increased seizure intensity and extended duration of status
epilepticus. These results support the notion that peripheral
viral infections may alter brain function resulting in
enhanced predilection to seizures.

Keywords Polyinosinic:polycytidylic acid . Acute antiviral
response . Seizures . Excitotoxic insult . Inflammation .

Immune-to-brain communication

Introduction

Epilepsy is one of the most common neuropathologies
characterized by recurrent seizures that result from exces-
sive neuronal activity due to increased excitability, de-
creased inhibition, or both (Fisher et al. 2005). Brain
inflammation associated with a number of conditions, e.g.,
metabolic, infectious, ischemic and traumatic insults to the
brain, is a major factor contributing to seizure propensity
(Vezzani and Granata 2005). Moreover, epidemiological

evidence indicates that also peripheral inflammatory
diseases increase seizure propensity (Tellez-Zenteno et
al. 2005). The putative mechanism entails immune-to-
brain communication, whereby blood-borne inflammatory
mediators generated in the periphery elicit an inflamma-
tory response in the brain (Quan and Banks 2007; Dantzer
2006) that lowers seizure threshold. Experimental systems
to study this pathological link have utilized bacteria,
bacterial components or chemicals as inflammagens
(reviewed by Riazi et al. 2010). Although these systems
model clinical sepsis, their intricate pathological pattern
makes it difficult to discern the underlying mechanisms.
For example, intraperitoneally administered lipopolysac-
charide (LPS), a commonly used inflammagen, rapidly
reaches circulation (Lenczowski et al. 1997), and thus, the
brain. Therefore, it is not certain whether the increased
seizure susceptibility results from brain inflammation
induced directly by LPS, or from brain response to
peripherally generated inflammatory mediators.

Double-stranded RNA (dsRNA) is a common inter-
mediate during replication of most viruses (Weber et al.
2006). The administration of dsRNA or its synthetic
analog, PIC, mimics the acute phase response to viral
infection (Traynor et al. 2004). Recently, we have
demonstrated that intraperitoneal injection of PIC elicits
a robust inflammatory response in the brain (Konat et al.
2009; Fil et al. 2011), yet the inflammagen does not pass
into the circulation, and the brain response is mediated by
blood-borne factors (Fil et al. 2011). Therefore, this model
may circumvent the inherent complications of the sepsis
models and facilitate the elucidation of mechanisms by
which peripherally generated inflammatory factors affect
brain function. The present study was undertaken to
evaluate applicability of this model by determining
whether peripheral challenge of mice with dsRNA will
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increase vulnerability of the animals to kainic acid (KA)-
induced status epilepticus.

Materials and methods

Eight-week-old C57BL/6 female mice obtained from
Hilltop Lab Animals, Inc. (Scottdale, PA) were housed
under 12-h light/dark conditions and fed ad libitum. All
procedures were approved by the West Virginia University
Animal Care and Use Committee and conducted in
compliance with the guidelines published in the NIH Guide
for the Care and Use of Laboratory Animals. Peripheral
inflammation was induced by intraperitoneal injection of
12 mg/kg of PIC (Invivogene, San Diego, CA) in saline.
Mice received either three daily injections or a single
injection of PIC. Respective control groups received
equivolume (100 μl) saline injections. Seizures were
induced 48 hr after the last PIC injection by subcutaneous
injection of 10, 15, or 20 mg/kg of KA (Sigma Chemical
Co., St Louis, MO) or saline (50 μl). Seizure severity was
graded by blinded observers in 5 min increments for 2 h.
The behavioral scores were as follows: 0, no response; 1,
immobility; 2, rigid posture; 3, scratching/circling/head
bobbing; 4, forelimb clonus/rearing/falling; 5, repetitious
pattern 4; 6, severe tonic-clonic seizures (Morrison et al.
1996). Statistical analysis was performed by ANOVA
followed by the Student t-test and differences with p<
0.05 were considered to be statistically significant.

Results

A time course of KA-induced status epilepticus in mice
pretreated three times with PIC is shown in Fig. 1.
Peripheral PIC challenge profoundly increased the intensity
of seizures in comparison to saline pretreated animals.
Cumulative seizure scores (CSS) calculated by summation
of the incremental scores over the 2-h observation period
revealed a 5.2-fold enhancement by PIC over the saline
group (Fig. 2a). PIC challenge also altered the kinetics of
status epilepticus (Fig. 1). Thus, seizure intensity peaked at
approximately 35 min in the saline group, and at approx-
imately 80 min in the PIC group. Whereas the seizures
ceased in the saline group at approximately 110 min after
KA injection, the PIC pretreated animals were still in a full-
blown status epilepticus at that time point. Seizure intensity
was directly related to doses of the excitotoxin (Fig. 2a). In
saline pretreated mice CSS were 11, 25 and 46 at 10, 15
and 20 mg/kg of KA, respectively. PIC challenge increased
seizure intensities by approximately 6.9, 5.2 and 2.7-fold
over the saline groups at KA doses of 10, 15, and 20 mg/kg,
respectively. Although no mortality was observed at 10 or
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Fig. 1 Time course of KA-induced status epilepticus. Mice were
pretreated daily with PIC (filled circles) or saline (open circles) for
three consecutive days. After 48 h, seizures were induced by the
administration of 15 mg/kg of KA, and their intensity was scored over
a period of 2 h. For details see “Materials and methods”. Points
represent averages ± S.D. from 3–4 animals. Asterisks indicate values
significantly different from the corresponding control values (saline)
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Fig. 2 Effect of KA and PIC doses on seizure intensity. In panel a,
mice were pretreated daily with PIC (gray bars) or saline (black bars)
for three consecutive days. After 48 h, seizures were induced by the
administration of different doses of KA. In panel b, mice were
pretreated with a single dose of PIC, and after 48 h, seizures were
induced by the administration of 15 mg/kg of KA. The intensity of
seizures was scored over a period of 2 h. For details see “Materials
and methods”. The results are expressed as cumulative seizure scores
(CSS). Bars represent averages ± S.D. from 3–4 animals. Asterisks
indicate values significantly different from the corresponding control
values (saline)

92 Metab Brain Dis (2011) 26:91–93

63



15 mg/kg doses, intense seizures induced by 20 mg/kg of KA
in triply injected mice occasionally resulted in death. Finally,
as shown in Fig. 2b, even a single peripheral challenge with
PIC profoundly enhanced seizure intensity. CSS of this
group did not differ significantly from CSS of the
corresponding triple injection group (Fig. 2a) indicating that
a single dose provides a saturating effect.

Discussion

The present study showed an enhancing effect of prior
peripheral challenge with PIC, a common tool for the
induction of the acute antiviral response (Traynor et al.
2004), on cerebral vulnerability to KA-induced status
epilepticus. Thus, our results complement previous reports
showing enhanced seizure susceptibility following
bacterially-induced peripheral inflammation (Riazi et al.
2010), and support a causative link between peripheral
infections and seizures (Tellez-Zenteno et al. 2005).
Moreover, because PIC is a strictly peripheral inflammagen
(Fil et al. 2011), our results prove that the cerebral effects
are mediated by the immune-to-brain signaling. In contrast,
the bacterial models featured a highly possible direct
interaction of the inflammagen with the brain. Consequent-
ly, the PIC paradigm provides a unique model to study
mechanisms by which blood-borne inflammatory mediators
generated in the periphery alter neural function within the
brain rendering it more vulnerable to excitotoxic insult.

We have previously showed that the cerebral inflamma-
tory response to PIC challenge features a robust but
transient upregulation of a plethora of cytokine and
chemokine genes (Konat et al. 2009; Fil et al. 2011).
However, 48 h after the last PIC injection, i.e., at the time
of KA challenge, expression of these genes returned to the
baseline (not shown). Therefore, the cerebral inflammatory
response must have induced protracted alterations of brain
function that manifested as KA hypersusceptibility. A
plausible mechanism may involve changes in the neuro-
transmitter signaling induced by inflammatory mediators.
This notion is buttressed by previous observations that
cerebral expression of glutamate receptors can be altered by
peripheral inflammation (Guo et al. 2002; Harre et al.
2008). We are currently pursuing studies to verify these
mechanisms.

In conclusion, our data support a causative link between
viral infections in the periphery and epileptogenesis.
Moreover, the paradigm based on intraperitoneal challenge

with PIC provides a unique model system to address the
underlying mechanisms.
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Abstract We have previously shown that peripherally re-
stricted acute phase response (APR) elicited by intraperitoneal
(i.p.) injection of a viral mimic, polyinosinic-polycytidylic
acid (PIC), renders the brain hypersusceptible to excitotoxic
insult as seen from profoundly exacerbated kainic acid (KA)-
induced seizures. In the present study, we found that this
hypersusceptibility was protracted for up to 72 h. RT-PCR
profiling of hippocampal gene expression revealed rapid up-
regulation of 23 genes encoding cytokines, chemokines and
chemokine receptors generally within 6 h after PIC challenge.
The expression of most of these genes decreased by 24 h.
However, two chemokine genes, i.e.,Ccl19and Cxcl13genes,
as well as two chemokine receptor genes, Ccr1 and Ccr7,
remained upregulated for 72 h suggesting their possible in-
volvement in the induction and sustenance of seizure hyper-
susceptibility. Also, 12 genes encoding proteins related to
glutamatergic and GABAergic neurotransmission featured
initial upregulation or downregulation followed by gradual
normalization. The upregulation of theGabrr3gene remained
upregulated at 72 h, congruent with its plausible role in the
hypersusceptible phenotype. Moreover, the expression of ten
microRNAs (miRs) was rapidly affected by PIC challenge,
but their levels generally exhibited oscillating profiles over the
time course of seizure hypersusceptibility. These results indi-
cate that protracted seizure susceptibility following peripheral
APR is associated with a robust polygenic response in the
hippocampus.

Keywords Polyinosinic-polycytidylic acid . Seizures .

Inflammation . Neurotransmission . Cytokines .MicroRNA

Introduction

The acute phase response (APR) is the first line of defense
against viral infection and is mediated by innate immune cells
that recognize molecular signatures of viral replication.
dsRNA is an intermediate generated by most viruses during
their replication cycle (Jacobs and Langland 1996; Weber
et al. 2006). Mammalian cells have several receptors that
detect the presence of extra- and intracellular dsRNA, i.e.,
Toll-like receptor 3 (TLR3), retinoic acid-inducible gene 1
(RIG-1), melanoma differentiation-associated protein 5
(MDA-5) and protein kinase R (PKR) (Berke et al. 2013).
The ligation of these receptors leads to the production of type I
interferons and other inflammatory cytokines with antiviral
activity (Muller et al. 1994). Although the primary role of
APR is to combat infections, the cytokines released into the
circulation have significant effects on the brain. Thus, intra-
peritoneal injection of a synthetic dsRNA, polyinosinic-
polycytidylic acid (PIC), in mice induces behavioral symp-
toms collectively referred to as “sickness behavior” (Muller
et al. 1994; Guha-Thakurta and Majde 1997; Cunningham
et al. 2007) that are congruent with behavioral effects of
peripheral viral infections in humans (Loftis et al. 2008;
Huckans et al. 2009; Nelligan et al. 2008). The PIC-induced
symptoms peak at 6 h after the injection and subside by 48 h
(Cunningham et al. 2007). The induction of sickness behavior
is concomitant with transient upregulation of genes encoding
IL-1β, IL-6, TNFα and IFNβ in the hippocampus and hypo-
thalamus (Cunningham et al. 2007). We have confirmed the
expression of these cerebral genes and shown that their up-
regulation is global rather than regional, as it is featured in all
parts of the brain, i.e., the forebrain, cerebellum and brain stem
(Konat et al. 2009). We have further shown that the brain also
features upregulation of a plethora of chemokines and their
receptors (Fil et al. 2011). Generally, the upregulation of
respective mRNAs peaks between 3 and 6 h following the
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PIC challenge and reaches from several- to several thousand-
fold over control. After 24 h, the expression of most of the
genes returns to the baseline levels. We also demonstrated that
APR is restricted to the peritoneal cavity as PIC does not enter
the blood circulation. Moreover, the cerebral inflammatory
response can be induced in naïve mice by a passive transfer
of blood from PIC-challenged mice indicating that the re-
sponse is mediated by circulating inflammatory factors.

Furthermore, we have found that this robust, albeit gener-
ally transient, genomic response to PIC-induced APR renders
the brain hypersusceptible to excitotoxic insult (Kirschman
et al. 2011). In this study, mice were i.p. injected with PIC and
after 2 days challenged with kainic acid (KA). The PIC
pretreatment profoundly increased both the intensity and du-
ration of KA-induced seizures as compared to naïve animals
challenged with KA alone. This finding indicates that the
brain inflammatory response instigated by peripheral APR
induces protracted remodeling of neural circuits. This finding
also supports a causative role of peripheral viral infections in
the increased seizure propensity inferred from epidemiologi-
cal studies (Tellez-Zenteno et al. 2005). Possible mechanisms
of APR-induced seizure hypersusceptibility may entail in-
creased neuronal excitability and/or decreased neuronal inhi-
bition instigated by inflammatory mediators. Inflammation-
induced changes in the expression of neurotransmitter recep-
tors (Guo et al. 2002; Harre et al. 2008; Galic et al. 2012)
support such mechanisms. Moreover, several microRNAs
(miRs), important regulators of gene expression at the
neuroimmune interface (Soreq and Wolf 2011), have been
implicated in the pathology of seizures (Jimenez-Mateos
et al. 2011; Hu et al. 2011; Aronica et al. 2010; Liu et al.
2010), suggesting their role as upstream determinants of PIC-
induced seizure hypersusceptibility.

The present study was undertaken to gain insight into the
genetic mechanisms underlying seizure hypersusceptibility
following PIC-inducedAPR.We focused on the hippocampus
because this structure is the primary region of ictal onset
instigated by KA administration (Ben-Ari and Cossart
2000). We profiled the expression of several inflammatory,
neurotransmission-related as well as miR genes during the
period of seizure hypersusceptibility.

Materials and methods

Animals

Eight-week old C57BL/6 J mice obtained from Charles River
Laboratories (Wilmington, MA) were housed under 12-h
light/dark conditions (lights on at 6 am) and fed ad libitum.
Peripheral APR was induced by a single intraperitoneal (i.p.)
injection of 12 mg/kg of PIC (Invivogen, San Diego, CA) in
100 μl of saline. Saline injected mice served as controls. All

procedures were approved by the West Virginia University
Animal Care and Use Committee and conducted in compli-
ance with the guidelines published in the NIH Guide for the
Care and Use of Laboratory Animals.

Open-field test

Locomotor activity was assessed using the automated activity
monitoring system PAS-Open field (41 cm×41 cm×38 cm;
San Diego Instruments, San Diego, CA). The chambers were
equipped with a 16×16 array of infrared photo-beams to
measure horizontal (XY) movement and an additional frame
of 16 beams to monitor rearing. Locomotor activity was
recorded for 15 min.

Evaluation of seizure susceptibility

At different time points (1–7 days) following PIC challenge,
mice received subcutaneous injections of 20 mg/kg of KA
(Sigma Chemical Co., St. Louis, MO) in saline. Saline
injected mice served as controls. Seizure severity was scored
by blinded observers in 5 min intervals as described previous-
ly (Kirschman et al. 2011). Cumulative seizure scores were
assessed as the summation of all scores over the 2 h observa-
tion period.

Blood cytokine measurement

Mice were deeply anesthetized with 65 mg/ml of pentobarbi-
tal (Fatal Plus, Vortech Pharmaceutical, Dearborn, MI) admin-
istered i.p. and sacrificed by pneumothorax. Blood was quick-
ly collected by heart puncture and citrated. IFNβ was mea-
sured using the VeriKine Mouse Interferon Beta ELISA kit
(PBL Interferon Source, Piscataway, NJ) per manufacturer’s
instructions. IL-6 levels were measured using the Milliplex
MAP Mouse Cytokine/Chemokine panel (Millipore,
Billerica, MA) per manufacturer’s instructions and analyzed
using a Luminex 200 System (Luminex, Austin, TX).

qRT-PCR

Mice were anesthetized and sacrificed as described above, and
transaortically perfused with saline. Brains were removed
from the skull and hippocampi were dissected out. The tissue
was immediately homogenized in TRI Reagent (Molecular
Research Center, Inc., Cincinnati, OH), and RNAwas isolated
per manufacturer’s protocol. For quantitation of mRNA,
cDNA was synthesized using SuperScript III First-strand
Synthesis kit (Invitrogen, Carlsbad, CA) and quantified using
RT2 SYBRGreen (Qiagen, Valencia, CA). For miR quantita-
tion, cDNA was synthesized using NCode VILO miRNA
cDNA Synthesis kit (Invitrogen, Carlsbad, CA) and quanti-
fied using EXPRESS SYBR GreenER miRNA qRT-PCR kit
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(Invitrogen, Carlsbad, CA). qRT-PCR was performed in an
ABI7500 Real-Time PCR system (Applied Biosystems,
Foster City, CA). Glyceraldehyde phosphate dehydrogenase
(GAPDH) mRNA or U6 snRNA were used as internal con-
trols for mRNAs and miRs, respectively. The ΔΔCt method
was used for quantitation. Specific primer sequences are
available upon request.

Statistical analysis

Data were analyzed byANOVA and expressed as means±SD.
Statistical comparisons between groups were performed using
Student’s t test. Differences between groups were considered
significant at P≤0.05.

Results

Verification of sickness behavior

PIC-induced sickness behavior strongly suppresses the
burrowing activity of mice (Cunningham et al. 2007; Konat
et al. 2009). Although at nadir (6 h post-injection), the
burrowing activity of PIC-challenged animals drops below
10 % of the respective controls, the test is rather cumbersome
and lengthy (2 h). Cunningham et al. also found suppression
of locomotor activity using the open field test, albeit to a much
lesser extent than the burrowing activity. In concordance with
this study, we observed the locomotion of mice to be reduced
by approximately 30 and 60% at 3 and 6 h after PIC injection,
respectively (Fig. 1). However, we found that the rearing
activity was suppressed equally to the burrowing activity as

it dropped by 70 and 96 % at 3 and 6 h, respectively.
Consequently, the rearing test, which lasts only 15 min, pro-
vides a convenient, highly sensitive method to verify success-
ful induction of sickness behavior.

Duration of seizure hypersusceptibility

We have previously demonstrated that PIC challenge strongly
enhances the susceptibility of mice to KA-induced seizures
(Kirschman et al. 2011). However, this feature was analyzed
only 48 h after PIC injection. Therefore, we determined the
duration of this hypersusceptible phenotype to provide a time
frame for the subsequent genetic analysis. As seen from Fig. 2,
the seizure response measured as cumulative seizure scores
was highest 1 day post-PIC, reaching nearly 3-fold over saline
injected controls. Although the hypersuceptiblity gradually
decreased, it was still significant at 2 and 3 days post-PIC.
By days 4 and 7, the response of the PIC challenged animals
was indistinguishable from that of controls.

Cytokine surge

Intraperitoneal PIC injection induces the synthesis of IFNβ,
IL-6, IL-1β and TNFα that rapidly reach the circulation as
seen from the surge of these inflammatory cytokines in the
blood (Cunningham et al. 2007). Their levels peak sharply at
3 h post-injection and then quickly decline. We confirmed
these kinetics for IFNβ and IL-6 as shown in Fig. 3. Thus,
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both cytokines reached the highest levels 3 h after PIC chal-
lenge, and decreased rapidly thereafter, reaching baseline
levels at 12 h post-injection. The maximal blood concentra-
tions of IFNβ and IL-6 were 33.5 and 21.5 ng/ml, respective-
ly, which is in concordance with the values observed by
Cunningham et al. (2007).

Expression of hippocampal genes

Inflammatory genes

Based on our previous studies (Konat et al. 2009; Fil et al.
2011), we selected 23 inflammation-related genes comprising
cytokines, chemokines and chemokine receptors, and profiled
their expression in the hippocampus following PIC challenge.
The blood cytokine surge was associated with a rapid upreg-
ulation of cytokine (Fig. 4) and chemokine (Fig. 5) genes,
buttressing the cause-effect relationship between the circulat-
ing cytokines and the genetic response of the hippocampal
cells. However, differences in the expression pattern of the
genes were evident. The expression of the Il6, IFNb, Cxcl17,
Ccl4, Cxcl1, Cxcl2, Cxcl9, Cxcl10 and Cxcl11 genes peaked
between 3 and 6 h after PIC injection and dwindled rapidly
thereafter. The Tnfa, Il1b, Ccl7, Ccl12andCcl2genes featured
an extended timeframe of upregulation with high levels of
their mRNA remaining at 24 h. The expression of the Ccl19,
Cxcl13 and Ccl5 genes actually peaked at 24 h. Most of the
genes, except the Ifnb, Il1b, Cxcl17, Cxcl1, and Cxcl2 genes,
were significantly upregulated even at 72 h. The Ccl9 gene
exhibited a unique expression profile, peaking early at 3 h and

then peaking again from 48 to 72 h. Also, the extent of
upregulation varied greatly among the genes. The cytokine
genes were upregulated by approximately 2- to 32-fold over
control with the Il6 gene being the most and the Il1b gene
being the least upregulated. These results corroborate a previ-
ous study of the response of hippocampal cytokine genes to
PIC challenge (Cunningham et al. 2007). Among the chemo-
kine genes, Cxcl11, Cxcl10, Cxcl9 and Cxcl1 featured the
highest upregulation by more than a thousand-fold over con-
trol. The Cxcl2, Ccl12 and Ccl2 genes were upregulated up to
several hundred-fold, whereas several ten-fold upregulations
were observed for the Ccl7, Ccl4 and Ccl5 genes. The Cxcl13,
Ccl19, Cxcl17 and Ccl9 genes were upregulated by less than
ten-fold.

Also, five genes encoding chemokine receptors were sig-
nificantly upregulated several fold over the baseline by PIC
challenge (Fig. 6). The Ccr1, Ccr6 and Ccr7 gene expression
peaked at 3 h, whereas the expression of the Cxcr2 and Cxcr5
genes was delayed and peaked at 9 h. By 72 h after PIC
challenge, the Ccr1 and Ccr7 genes featured approximately
2-fold upregulation, while expression of the Cxcr2 and Cxcr5
genes dwindled to the baseline levels. In contrast, the Ccr6
gene featured downregulation beginning at 48 h and dipped to
over 2-fold below control level at 72 h.

Neurotransmission genes

Seizure hypersusceptibility can result from increased neural
excitability, decreased neural inhibition, or both. The most
direct effectors of these potential changes in excitability are
the neurotransmitter receptors. Therefore, we screened the
expression of genes encoding all glutamatergic and
GABAergic neurotransmitter receptors and found nine genes
to be significantly altered by PIC challenge (Fig. 7). These
genes were: the kainate receptor gene Grik3, the AMPA
receptor gene Gria4, the metabotropic glutamate receptor
genes Grm1, Grm6, and Grm7, and the GABAA receptor
subunit genes Gabrq, Gabre, Gabrr2, and Gabrr3. The
Grik3, Gria4, Grm6, Gabrq, Gabrr2 and Gabrr3 genes
showed initial several-fold upregulation coincident with the
blood cytokine surge that peaked 3–6 h after PIC injection.
While the expression of five of these genes gradually returned
to the baseline level, the upregulation of the Gabrr3 gene was
protracted and its mRNA level at 72 h was approximately 2-
fold over control. The Grm6 gene featured moderate upregu-
lation after 48 h, reaching approximately 1.5- fold over the
control level at 72 h. In contrast, the Grm7, Grm1 and Gabre
displayed initial downregulation by approximately 2-fold,
followed by normalization.

In addition, we found the expression of three genes whose
products are involved in synaptic buffering of glutamate and
potassium to be significantly altered by PIC challenge. As
shown in Fig. 7, the lactate dehydrogenase A gene (Ldha) was

Fig. 3 Blood cytokine surge induced by PIC challenge. Mice were i.p.
injected with 12 mg/kg of PIC and the levels of IFNβ and IL-6 in the
blood plasma were determined at various time points as indicated. Data
represent averages from 2 animals
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rapidly upregulated at 3 h post-PIC injection and gradually
returned to the baseline level. The expression of the glutamate
dehydrogenase gene (Gldh) also peaked at 3 h but featured
subsequent downregulation below control level at 24 h. Its
expression gradually returned to the baseline by 72 h. The
expression of the Kcnj10 gene encoding the inward rectifying
potassium channel Kir4.1 was not affected during the blood
cytokine surge, but featured a gradual downregulation there-
after, reaching a nadir at 48 h and returning to the baseline
level at 72 h (Fig. 7).

miR genes

miRs are important regulators of gene expression. Of a par-
ticular interest here were miRs that modulate both neural and
immune functions (Soreq and Wolf 2011) and miRs associat-
ed with seizure pathology (Jimenez-Mateos et al. 2011; Hu
et al. 2011; Liu et al. 2010; Aronica et al. 2010). We screened
expression of these miRs in the hippocampus following PIC
challenge and identified ten species whose expression
underwent significant changes (Fig. 8). Generally, the levels
of these miRs changed in an oscillating manner. During the
first 9 h after PIC challenge, the levels of miR-128-3p, miR-
509-5p, miR-28a-5p, miR-138-5p and miR-466i-5p were ini-
tially increased and then decreased below control, whereas the
levels of miR-188-5p, miR-302a-5p and miR-221-3p were
initially downregulated. At 24 h, the levels either returned to
baseline (miR-28a-5p, miR-138-5p, miR-128-3p, miR-509-
5p, miR-188-5p and miR-302a-5p) or underwent secondary
upregulation (miR-466i-5p and miR-221-3p). Two species,
miR-132-3p and miR-181a-5p, were not changed during the
blood cytokine surge but were upregulated at 24 h. At 72 h,
the expression of miR-302a-5p was downregulated by ap-
proximately 2-fold below the baseline. miR-28a-5p and
miR-138-5p were slightly downregulated, while miR-466i-
5p, miR-221-3p and miR-128-3p were slightly upregulated.

Discussion

The present study extends our previous finding that peripheral
APR induced by a viral mimic, PIC, increases the susceptibil-
ity to KA-induced excitotoxicity (Kirschman et al. 2011).
Here, we have demonstrated that the window of increased
susceptibility lasts up to 3 days after PIC challenge (Fig. 2).
This is in contrast to a previous report on hypersusceptibility
induced by i.p. injection of LPS (Sayyah et al. 2003). In that
model of bacterial infection/sepsis, seizure hypersusceptibility
was limited to the initial 24 h. Several factors may contribute
to the observed differences in the duration of the hypersus-
ceptible phenotype induced by PIC vs. LPS. For example,
LPS rapidly enters the circulation (Lenczowski et al. 1997;
Romanovsky et al. 2000) and thus, the brain is exposed

simultaneously to peripherally-generated inflammatory fac-
tors and the LPS itself. On the contrary, PIC does not reach
the circulation (Fil et al. 2011) and therefore, elicits the cere-
bral response solely through blood-borne inflammatory medi-
ators. Moreover, the composition of the blood-borne media-
tors induced by PIC vs. LPS challenge may differ. For exam-
ple, IFNγ is produced in response to LPS (Gibb et al. 2008;
Finney et al. 2012) but not in response to PIC (Gandhi et al.
2007). Regardless of the mechanisms, our finding has impor-
tant clinical implications because it indicates that viral infec-
tions may increase the risk of ictal attacks even several days
after the active phase of infection has subsided. This should be
particularly relevant to populations of vulnerable individuals,
e.g., epileptics and post-stroke victims, or individuals exposed
to seizure-inducing conditions such as heat stroke or
exhaustion.

The augmentation of neuronal excitability is likely induced
by inflammatory mediators generated in the peritoneal cavity
that reach the brain via circulation. There are several possible
mechanisms (Quan and Banks 2007). For instance, the blood-
borne inflammatory mediators per se may be transported
through the blood-brain barrier (BBB) or circumventricular
organs (CVO). Alternatively, the mediators may activate BBB
and/or CVO cells, resulting in the secretion of secondary
mediators that are released into the brain parenchyma. Four
major inflammatory cytokines, IFNβ, IL-6, IL-1β and TNFα,
surge in the blood, reaching peak concentrations at 3 h after
PIC injection and then rapidly diminish (Cunningham et al.
2007; Fig. 3). IFNβ and IL-6 reach the highest concentrations
and thus, could be plausible triggers of the hypersusceptible
phenotype. However, we found that systemic injection of
IFNβ and IL-6 at respective concentrations failed to induce
seizure hypersusceptibility (results not shown). This result is
reminiscent of the previous observation that IFNβ injection
does not elicit the fatigue phenotype observed with PIC chal-
lenge (Matsumoto et al. 2008). Therefore, other inflammatory
mediators are likely requisite for the induction of seizure
hypersusceptibility and fatigue response. Finally, it should
also be considered that the peripheral inflammatory signals
can be conveyed by vagal afferents and activate the expression
of cytokine genes within the brain (Marquette et al. 2003).

The cytokine surge is coincident with the upregulation of
genes encoding the same cytokines in the hippocampus
(Cunningham et al. 2007; Fig. 4). The brain cells including
neurons, microglia and astrocytes express receptors for these
cytokines (McCusker and Kelley 2013). Ligation of these
receptors with either peripherally-generated or brain-
generated cytokines can lead to upregulated expression of
the same or different cytokines. These, in turn, can further
amplify the response through positive feedback loops. Such
loops can also upregulate the expression of a slew of other
inflammatory mediators as exemplified by chemokines
(Fig. 5) and chemokine receptors (Fig. 6). Altogether, this
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neuroinflammatory response creates an intricate network of
autocrine/paracrine and intracellular signaling pathways that
may affect neuronal networks. For example, IL-1β and TNFα
have an excitatory effect on hippocampal neurons by increas-
ing ceramide synthesis within neurons and by the ensuing
NMDA-mediated calcium influx (Viviani et al. 2007;
Wheeler et al. 2009). IL-1β also inhibits glutamate reuptake
via the downregulation of GLT-1 expression in astrocytes
(Prow and Irani 2008), which may further enhance excitability
of neuronal circuits. Also, the injection of IL-1β into the
hippocampus has been shown to increase the severity of
limbic seizures (Vezzani et al. 2002). The protracted upregu-
lation of the Tnfa and Il1b genes following PIC challenge
(Fig. 4) further strengthens their putative role in the induction
and sustenance of seizure hypersusceptibility. Although IL-6

and IFNβ seem not to directly affect neuronal networks, they
amplify the effects of IL-1β and TNFα (McCusker and Kelley
2013). Consistent with this amplifying role, overexpression of
IL-6 results in severe neurologic impairment including sei-
zures (Campbell et al. 1993).

A body of evidence also implicates several chemokines
upregulated in the hippocampus by PIC challenge (Fig. 5) in
the induction of neuronal hyperexcitability. Thus, genes
encoding ligands of the CXCR3 chemokine receptor, i.e.,
CXCL9, CXCL10 and CXCL11, featured the highest upreg-
ulation. Neurons are the primary cell types that express
CXCR3, and its ligation potently enhances electrical activity
of hippocampal neurons (Nelson and Gruol 2004). In addi-
tion, CXCR3 ligation alters the expression of several GABA
and glutamate receptors (Cho et al. 2009). The genes encoding
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Fig. 8 The expression of
hippocampal miRs following PIC
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CXCL1 and CXCL2 chemokines also featured robustly up-
regulated expression following PIC challenge (Fig. 5).
Moreover, the gene endcoding their receptor, CXCR2, was
also highly upregulated (Fig. 6). Signaling through CXCR2
has been shown to increase neuronal excitability, potentially
through the association of CXCR2 with GluR1 AMPA recep-
tors (Lax et al. 2002; Wang et al. 2008). CCl2, CCL4 and
CCR7 are elevated in brain tissue from epilepsy patients, as
well as in animal models (Fabene et al. 2010; Lehtimaki et al.
2003; Liimatainen et al. 2013; Vezzani et al. 2008; Vezzani
et al. 2002; Hung et al. 2013). In concordance with this, we
found the Ccl2 and Ccr7 genes to feature a prolonged upreg-
ulation following PIC challenge (Figs. 5 and 6). Furthermore,
CCL2 and CCL4 seem to be crucial for epileptogenesis
(Fabene et al. 2010; Kan et al. 2012). Altogether, the above
data strongly implicate the role of cytokine and chemokine
gene upregulation in PIC-induced seizure hypersusceptibility.

Although some of the genes discussed above displayed
sharply transient upregulation, one has to be cognizant that
transient expression of the mRNA does not necessarily trans-
late to transient expression of the cognate protein. For exam-
ple, the Cxcl1 and Cxcl2mRNA peaked at 6 h but returned to
the baseline at 9 h after PIC challenge (Fig. 5). However, the
protein synthesized within this 9-h period may persist much
longer. This argument also applies to the genes featuring
protracted elevation of their mRNA. For example, the Ccl5
mRNA peaked at 24 h (Fig. 5), and albeit its levels gradually
dropped, the cognate protein, CCL5, may have peaked later
and been present at high concentrations during the whole
period of hypersusceptibility, i.e., up to 72 h. Finally, it should
also be considered that even a short-term upregulation of an
inflammatory gene may contribute to the hypersusceptible
phenotype through the activation of downstream pathways.
These mechanisms will be addressed in future studies.

We have previously shown a quantitative variability in the
response of inflammatory genes to PIC challenge among the
major subdivisions of the brain, the forebrain, brain stem and
cerebellum (Konat et al. 2009; Fil et al. 2011). In general, the
cerebellum featured the highest upregulation of these genes.
For example, the maximal upregulation of the Il1b, Il6 and
Cxcl11 genes in the cerebellum was approximately four-fold
higher than the respective values for the forebrain. The com-
parison of the present results from the isolated hippocampus
(Figs. 4 and 5) to the whole forebrain (Konat et al. 2009; Fil
et al. 2011) reveals further regional heterogeneity. Thus, among
the 23 hippocampal genes studied three were significantly less
upregulated and four were significantly more upregulated in
comparison to the whole forebrain (Table 1). In the most
extreme case, the peak upregulation of the Ifnb gene was 50
times lower in the hippocampus than in thewhole forebrain. On
the other hand, the Cxcl11 gene was nine-fold more robustly
upregulated in the hippocampus in comparison with the whole
forebrain. Clearly, the hippocampal cells feature a highly

specific pattern of genetic response to PIC challenge vs. the
average forebrain cell. This finding warrants further experi-
mental inquiry into the responsiveness of other discrete brain
structures that may provide a basis for various behavioral traits
associated with immune-to-brain communication.

Prevailing theories behind seizure development and
epileptogenesis converge upon changes in neuronal excitation
and inhibition. These mechanisms strongly hinge on neuro-
transmitter receptors, where excitatory, glutamatergic neuro-
transmission is increased and inhibitory, GABAergic trans-
mission is diminished (Casillas-Espinosa et al. 2012;
Gonzalez 2013; Werner and Covenas 2011). Consequently,
in addition to the effects of the cytokines/chemokines
discussed hitherto, peripheral inflammatory signals may alter
the balance between excitatory and inhibitory neurotransmis-
sion by changing the expression of neurotransmitter receptor
genes. In support of this notion, we found altered expression
of a number of hippocampal genes encoding neurotransmitter
receptors (Fig. 7) in the same time frame as the blood cytokine
surge (Fig. 3) and the rapid upregulation of inflammatory
genes (Figs. 4, 5, 6). Although the significance of these
changes must be verified at the protein level and through
functional analysis, tentative correlations can be inferred from
the changes in the mRNA levels. For example, the upregula-
tion of the Grik3 gene (Fig. 7) may contribute to the hyper-
susceptible phenotype, as long-lasting kainate receptor-
mediated events have been associated with sustained, rhyth-
mic firing in a rodent model of temporal lobe epilepsy
(Artinian et al. 2011). The GABAA-ε subunit, encoded by
the Gabre gene, is associated with increased spontaneous
channel activity (Bollan et al. 2008), and therefore, the
prolonged downregulation of the Gabre gene following PIC
challenge (Fig. 7) may increase hyperexcitability by impeding
spontaneous inhibitory currents. Also, the GRM7 receptor
negatively regulates GABAergic inhibition (Casillas-
Espinosa et al. 2012), and knockout of the Grm7 gene results
in increased susceptibility to seizures (Sansig et al. 2001).
Thus, the downregulation of the Grm7 gene induced by PIC
challenge (Fig. 7) is consistent with the gene’s contribution to

Table 1 Maximal upregulation of selected cytokine and chemokine
genes in the forebrain vs. hippocampus in response to PIC challenge

Gene Hippocampus (H) Forebrain (F)# H/F

Ifnb 4.05±1.14 201.55±37.00* 0.02

Ccl5 20.03±3.88 132.60±30.01* 0.15

Ccl2 107.94±28.26 215.05±51.11* 0.50

Cxcl11 6547.68±692.19 720.88±101.16* 9.1

Ccl12 154.19±13.80 20.50±7.01* 7.5

Cxcl10 3213.78±458.29 1112.07±93.22* 2.9

Cxcl1 1192.98±285.75 718.50±111.02* 1.7

# data from Konat et al. (2009) and Fil et al. (2011); * p≤0.05
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the hypersusceptible phenotype. However, two metabotropic
glutamate receptor genes revealed unpredicted changes. Thus,
while the GRM1 receptor tends to be pro-epileptic (Ure et al.
2006), the Grm1 gene was downregulated following PIC
challenge (Fig. 7). Likewise, the upregulation of the Grm6
gene (Fig. 7) is incongruent with the function of GRM6
receptor that negatively regulates glutamate release, and there-
fore is protective against seizures (Ure et al. 2006).

LPS challenge has been shown to alter expression of the
Grik1 and Grik2 genes in the spinal cord (Guo et al. 2002), as
well as the genes encoding NMDA receptors in the hippo-
campus (Harre et al. 2008). We did not observe changes in
these genes following PIC challenge suggesting a divergence
in the cerebral effects of APR induced by bacterial vs. viral
inflammagens. This is consistent with the induction of the
inflammatory genes discussed earlier.

In addition to neurotransmitter imbalances, dysfunction in
the metabolic coupling between neurons and astrocytes may be
causative of hyperexcitation, seizure spread and neurotoxicity
(Seifert and Steinhauser 2013). PIC challenge upregulated the
Ldha and downregulated the Gldh genes (Fig. 7) that encode
two key metabolic enzymes involved in glutamate recycling.
Such enzymatic changes are expected to enhance the accumu-
lation of extracelluar glutamate resulting in hyperexcitation.
Our results are concordant with previous studies that found
the same changes in epilepsy patients and animal kindling
models (Erakovic et al. 2001; Malthankar-Phatak et al. 2006).
Moreover, another astrocytic gene, the Kcnj10 gene that en-
codes potassium channel Kir4.1 featured a transient downreg-
ulation (Fig. 7). Reduced expression of Kir4.1 has been found
in patients with congenital epilepsy (Bockenhauer et al. 2009),
and conditional knockout of Kcnj10 in mice results in the
development of stress-induced seizures through increased syn-
aptic potentiation (Djukic et al. 2007).

As in the case of inflammatory genes (see above), the
expression of mRNAs encoding neurotransmission-related
genes does not necessarily reflect their expression at the protein
level. miRs are important regulators of mRNA translation, and
thus, may further modulate protein production from the upreg-
ulated or downregulated mRNAs. In addition, miRs could alter
protein production even in the absence of measurable changes
in the levels of preexisting cognate mRNAs through transla-
tional regulation (Petersen et al. 2006). Consequently, miRs
may provide another regulatory layer in the development of
hyperexcitability. In support of this notion, we found changes
in the expression of several hippocampal miRs instigated by
PIC challenge (Fig. 8). Although it is hard to interpret the role
of these miRs in the development of hyperexcitability, other
studies provide some clues. For example, miR-132 and miR-
138 are associated with changes in synaptic spine morphology
and excitability. Specifically, the upregulation of miR-132-3p
and downregulation of miR-138-5p observed in our study has
been shown to result in larger, stubby spines and an increase in

mEPSC frequency (Edbauer et al. 2010; Siegel et al. 2009).
Alterations in other miRs have been associated with changes in
cell migration, proliferation and differentiation, the features
involved in the development of hippocampal hyperexcitability
(Parent et al. 1997). Thus, the upregulation of miR-128 has
been associated with increased cell number and neurite length
(Guidi et al. 2010), as well as with enhanced mobility through
the downregulation of reelin and doublecortin (Evangelisti
et al. 2009). Doublecortin seems to be critical for normal
hippocampal excitability, as doublecortin knockout mice ex-
hibit spontaneous seizures that originate in the hippocampus
(Kerjan et al. 2009). Furthermore, miR-302a-5p negatively
regulates the CXCR4 pathway (Fareh et al. 2012) that is
important in cell migration in the hippocampus (Bagri et al.
2002). Therefore, the downregulation of miR-302a in response
to PIC challenge might result in the upregulation of CXCR4
leading to hyperexcitability. Finally, a recent microarray study
identified several miRs, including miR-132-3p, miR-138-5p,
miR-181a and miR-221-3p analyzed in this study, that are
differentially expressed following pilocarpine-induced status
epilepticus (Risbud and Porter 2013).

In conclusion, we have demonstrated that the APR in the
peritoneal cavity alters the expression of a multitude of hip-
pocampal genes encoding inflammatory proteins,
neurotransmission-related proteins and miRs. This robust
polygenic response of hippocampal cells indicates an exten-
sive genetic reprogramming that is likely to underscore the
protracted hypersusceptible phenotype. The differentially
expressed genes identified here are likely only a subset of
genes that are altered by peripheral APR. For instance, we
have previously found that 79 out of 280 genes related to
inflammation, signaling and stress/toxicity pathways featured
differential expression in the cerebellum following PIC chal-
lenge (Konat and Borysiewicz 2009). Altogether, our results
warrant a comprehensive investigation of the extent of geno-
mic reprogramming in the hippocampus induced by peripher-
al APR through whole genome expression analysis.
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