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ABSTRACT 
 

Sediment Provenance Study of the Lower Hamilton Group:  
An Analysis of the Organic-rich Facies and Their Depositional Histories 

 
Luke P. Fritz 

 

Currently, insufficient geological models exist to explain the variability and distribution 
of TOC in the Marcellus Shale, within the Hamilton Group. TOC is one of the several limiting 
factors for natural gas production within the Marcellus Shale basin. One possible explanation for 
the low TOC regions is that detrital dilution was variable across the basin, with different 
sediment sources contributing detritus to low TOC areas, compared to surrounding regions with 
higher TOC. This hypothesis is tested by analyzing the source composition of inorganic detritus, 
using elemental and mineralogical proxies, with two cores in the Hamilton Group. The 
Armstrong #1 core is located in Taylor County, West Virginia and the Coldstream Affiliates 
1MH (CSA) core is located in Clearfield County, Pennsylvania. Both these wells are located 
outside of the higher productivity regions with a nearby horizontal Armstrong well totaling 0.45 
BCF/1000ft lateral and a nearby horizontal CSA well totaling 0.41 BCF/1000ft lateral. Variation 
in production may also result from over maturation of the kerogen-hosted pores. To evaluate the 
influence of thermal history, the thermal maturity of the Marcellus Shale in the lower 
productivity Armstrong #1 and CSA wells and the higher productivity MSEEL well was 
assessed using Raman spectroscopy.  

Major element, trace element, and REE geochemistry indicate the sediment source area 
was composed of intermediate and felsic granitic and recycled sedimentary lithologies. 
Samarium-neodymium isotopic analysis reveals a range of 𝛕𝛕DM ages and εNd values. The 
Armstrong #1 well 𝛕𝛕DM / εNd ranged from 1.64 to 1.91 Ga / -11.93 to -9.56 and the CSA from 
1.62 to 1.88 Ga / -12.07 to -11.12. The εNd values became more negative upsection, however the 
𝛕𝛕DM did not display a consistent trend relative to depth. Provenance analysis indicates the most 
likely source of clastic sediment was the Acadian Fold-Thrust Belt to the east with minor inputs 
from Superior Craton and southern Canadian Grenville Province. Ultimately, results conclude 
that elevated TOC was associated with only older 𝛕𝛕DM ages and recycled sedimentary signatures.  
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INTRODUCTION 

1.1 Controls on Marcellus Shale TOC 

The Marcellus Shale is an organic-rich black shale and unconventional reservoir that 

extends throughout much of the Appalachian Basin. The complete breadth of the Marcellus 

Shale is not an economic hydrocarbon resource. There are two regions within the basin that have 

proven to be economic, one in northeastern Pennsylvania and another in southwestern 

Pennsylvania/north-central West Virginia (Fig. 1). In these areas, the thick accumulations of 

organic matter result in Marcellus Shale reservoirs that are highly productive for natural gas, 

ranging from 1.0 to over 4.0 BCF/1000 lateral feet of gas (Zagorski et al., 2017).  

Figure 1. Sediment provenance possibilities of the Marcellus Shale. Data combined from 
Patchett et al. (1999), Percival et al. (2006), McLelland et al. (2010), Brett et al. (2011), and 
Zagorski et al. (2017). 
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 Current models for the deposition of the Marcellus Shale do not sufficiently explain the 

variability of the organic-rich facies. One explanation for the thinner accumulations of organic 

facies is that detrital dilution (input of extra-basinal sediment) was greater than the surrounding 

productive regions. The elements such as Ti, Al, Si, Fe, Mg, and K, have been used to assess the 

amount of detrital dilution that occurred during deposition (Werne et al., 2002; Sageman et al., 

2003; Ver Straeten, et al., 2011). Other factors such as syn-depositional conditions that control 

biological productivity, post-depositional degradation related to substrate oxygenation, or 

thermal over-maturity can limit organic-rich facies preservation. Bathymetric changes can 

control organic preservation. Paleo-topographic highs are areas of high organic preservation 

(Harper and Piotrowski, 1978; Lash and Engelder, 2011). Nutrient fluxes in the Middle 

Devonian enhanced by land plant evolution and efficient nutrient recycling by plankton, may 

have preferentially enriched certain areas of the basin with organic carbon (Murphy et al., 2000). 

Thermal maturity values greater than 3.5% Ro or less than 1.0% Ro can hinder production of 

natural gas (Zagorski et al., 2017). 

 The goal of this study is to evaluate the relationship between sediment provenance and 

the distribution of organic-rich facies of the Marcellus Shale between north-central West 

Virginia, southwest Pennsylvania, and central Pennsylvania. Sediment provenance and sediment 

transport pathways may be responsible for the lack of organic-rich facies in some areas of the 

Acadian foreland basin as a consequence of detrital dilution.  To test this idea, provenance 

analysis was conducted on Hamilton Group samples from two cored locations with variable 

organic matter content. One core was taken from the Armstrong #1 well in Taylor County, West 

Virginia (Fig. 1), which contains four 5-foot thick organic-rich layers averaging around 6% 

TOC. The second core was taken from the Coldstream Affiliates 1MH well in Clearfield County, 



 
3 
 

Pennsylvania (Fig. 1), which contains two ten-foot thick beds averaging around 7% TOC. Both 

these wells are located outside of the higher productivity region, which is located in 

southwestern Pennsylvania and northern West Virginia. A horizontal Armstrong well has 

produced 0.45 BCF/1000ft lateral (WVDEP, 2019) so far and a nearby horizontal CSA well 

totaling 0.41 BCF/1000ft lateral (PADEP, 2019). Results from provenance analysis of these 

cores are compared to five other locations in the region to constrain regional detrital sediment 

input and its relationship to spatial and temporal patterns of organic matter deposition (Caesar et 

al., 2010; Hupp, 2017; Phan et al., 2018). Furthermore, this study assesses the impact of thermal 

maturity on the organic-rich facies as part of the comparison (Fig. 1). Previous work indicates 

the CSA well is situated in a more thermally mature part of the basin than the Armstrong #1 well 

due to its proximity to the Appalachian structural front (Zagorski et al., 2017). 

1.2 Geologic Background 

 The Middle Devonian (late Eifelian-Givetian ages) Marcellus Shale forms the lower part 

of the Hamilton Group (Ettensohn, 1985). The Marcellus Shale is made up of three main 

members: the Oatka Creek, the Cherry Valley/Purcell Limestone, and the Union Springs. The 

Union Springs is typically more organic-rich than the Oatka Creek (Kohl et al., 2012). The 

Marcellus Shale lies conformably above the Middle Devonian (Eifelian) Onondaga Limestone 

and gradationally below the Mahantango Formation which is mainly composed of dark siltstone 

with minor sandstones and limestone beds (Fig. 2; Harper, 1989, Kohl et al., 2012). During 

Marcellus Shale deposition, oblique convergence of the peri-Gondwanan Avalon terrane with the 

North American craton escalated, forming the Acadian Mountains (Ettensohn, 1985). Erosion of 

convergent highlands created the Catskill Delta of eastern New York/northeast Pennsylvania, 

which is thought to be the primary source of detrital sediments to the Acadian foreland basin 
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(Ettensohn, 1985; Woodrow, 1985). During deposition of the Marcellus Shale, however, the 

central Acadian Basin has been postulated as overall sediment-starved due to sea-level 

transgression (basin accommodation outpacing sedimentation rate) in conjunction with an 

orographic rain shadow caused by the Acadian Mountains to the east (Ettensohn, 1985; Murphy 

et al., 2000).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Stratigraphic column depicting Middle Devonian strata of the Appalachian basin.  
Adapted from Harper (1989). 

 

 Deposition of organic-rich facies of the Marcellus Shale was influenced by basin setting, 

eustacy and paleoclimate. Acadian reactivation of strike-parallel and strike-perpendicular 

basement faults, related to the middle Cambrian Rome Trough, affected the thickness and the 

lithology of Marcellus Shale deposits, particularly along the axis of the Acadian retroarc foreland 

(Fig. 1; Zagorski et al., 2017). Deposition occurred during a period of the highest intracratonic 

sea level, which resulted in deposition of the organic-rich Union Springs Member (Murphy et al., 
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2000); TOC of this unit reaches 17% in some areas of the basin due to a persistent pycnocline 

that created anoxia on the bottom of the water column (Zagorski et al., 2017). Furthermore, 

organic matter production was enhanced by location of the basin roughly 30॰-35॰ south of the 

equator, where stagnant water columns form as a function of an arid, subtropical climate as is 

observed in similar modern environments (Fig. 3; Sageman et al., 2003). This aridity is believed 

to be enhanced by the orographic rainshadow caused by Acadian Mountains highlands to the east 

(modern coordinates) of the Acadian basin (Ettensohn, 1985). 

1.3 Previous Studies Related to Provenance of the Hamilton Group 

Previous work has explored the provenance of detrital sediment in the Hamilton Group, 

but existing data is not sufficient to definitively determine the sediment transport pathways. This 

study’s goal was to understand the provenance of the Hamilton Group using Sm-Nd radiogenic 

isotopic ratios. Sm-Nd radiogenic isotopic ratios provide a method for assessing provenance of 

Hamilton Group detrital clays, given that Sm-Nd radiogenic isotopic ratios do not fractionate 

during secondary mineral formation nor are they mobilized by anoxic/organic-rich waters during 

sedimentary transport and deposition (Depaolo and Wasserburg, 1976; Ohr et al., 1994; Ilina et 

al., 2013). The potential sources of the Hamilton Group exist to the north and east of the current 

coordinates in the basin. There are no sources to the west due to the Cincinnati/Findlay Arch. 

Four potential sources contributed sediment to the Hamilton Group: the Acadian Fold-Thrust 

Belt that developed along the eastern basin margin (𝛕𝛕DM = 1.6-1.4 Ga; εNd = -5 to -13), the 

Acadian Arc that developed in the hinterland of the Acadian Fold-Thrust Belt (𝛕𝛕DM = 450 Ma; 

εNd = 4 to 2), the Superior Craton to the north (𝛕𝛕DM > 2.7 Ga; εNd > -17), and the southern 

Canadian Grenville Province (𝛕𝛕DM = 1.9-1.3 Ga; εNd = -12 to -17) to the northeast (Table 1).  
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Figure 3. Map showing paleo-wind directions during the deposition of the Marcellus Shale. Red 
star represents approximate locations of the study wells (Modified from Drewry et al., 1974 and 
Blakey, 2009). 

 

Table 1. Descriptions of the different source terranes that could have contributed to the Acadian 
basin. Data from Patchett et al. (1999), Percival et al. (2006), McLelland et al. (2010)  

Terrane Name Type of Terrane Composition εNd 𝛕𝛕DM 

Acadian Fold-
Thrust Belt 

upper continental crust felsic igneous -5 to    
-13 

1.4 to 1.6 
Ga 

recycled sedimentary  recycled sedimentary  -9 to  
-20 

1.6 to 2.2 
Ga 

Superior Craton upper continental crust felsic igneous ≥ -17 > 2.7 Ga 
Southern Canadian 
Grenville Province 

upper continental crust 
and accreted arcs 

felsic igneous and minor 
mafic components 

-12 to  
-17 

1.3 to 1.9 
Ga 

Acadian Arc young differentiated arc intermediate igneous to 
felsic igneous 4 to 2 450 Ma 
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Results from several studies infer variable sediment sources for the Marcellus Shale. 

Recently Phan et al. (2018) found depleted mantle model age (𝛕𝛕DM) values of 1.38-1.61 Ga and 

εNd -10 to -12 from core chips of the Oatka Creek member and the lower Mahantango Formation 

from both Greene County, Pennsylvania and Tioga County, New York, and interpreted the 

Acadian Fold-Thrust Belt as the source. Hupp and Weislogel (2018) tested Sm-Nd of core from 

the Hamilton Group from the MSEEL and WV-6 core recovered near Morgantown, West 

Virginia. The Sm-Nd isotopic 𝛕𝛕DM ages ranged from 1.64-1.85 Ga and εNd values ranged from -

7.06 to -11.65, becoming increasingly negative upsection and indicating an upper crustal source 

rock. The study suggested that the older 𝛕𝛕DM ages, which are found in the Union Springs and 

Oatka Creek Members of the Marcellus Shale and the Lower Mahantango Formation, resulted 

from a mixing of minor contribution of Superior Craton derived sediments (>2.7 Ga) with 

Acadian Fold-Thrust Belt sediment. Caesar et al. (2010) found Sm-Nd isotopic ages of the 

Hamilton Group ranged between 1.68-1.66 Ga and εNd values ranged from -7.63 to -7.70. It 

argued for direct erosion of the southern Canadian Grenville Province and from the Acadian 

Fold-Thrust belt as source material for the Marcellus Shale.  

Overall, these results depict differences in the origin of clastic material associated with 

organic-rich facies deposition of the Marcellus Shale. The provenance data from previous studies and 

this current study show that there is more variability in the εNd and 𝛕𝛕DM signatures within the 

Union Springs member than within the Oatka Creek member and Mahantango Formation (Caesar 

et al., 2010; Hupp, 2017; Phan et al., 2018). The uniformity of εNd and 𝛕𝛕DM signatures in the Oatka 

Creek member and Mahantango Formation may show the dominance of the progradation of the 

Catskill Delta (or other deltaic sequence), with its source ultimately being the Acadian Fold-

Thrust Belt. Recent correlations suggest that the Union Springs Member may not have a genetic 
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depositional link to the prograding Mahantango Formation coarser grained clastics, whereas the 

upper Oatka Creek member does (Boswell and Pool 2018; see report fig. 4d). If so, then organic-rich 

facies of these two members may differ in terms of controls on organic deposition and reservoir 

quality. 

METHODOLOGY 

 In order to analyze the provenance and assess detrital dilution, core chips from the study 

wells were acquired from 2 cores. Coldstream Affiliates 1MH well, located in Clearfield County, 

Pennsylvania, was targeted for sampling because its understudied basin location and lack of 

published data relating to Sm-Nd radiogenic isotopes. The Armstrong #1 well, located in Taylor 

County, West Virginia, was targeted for sampling to compare and contrast previous results from 

the MSEEL well located close by in Monongalia County. Core chip samples were used to create 

thin sections, analyze elemental data, and run laser Raman spectral analysis. Previously collected 

mineralogical, elemental, and geophysical log analysis augment the data collected in this study. 

Core Laboratories collected XRD mineralogy and vitrinite reflectance measurements on the CSA 

and Armstrong #1 wells before donation to West Virginia University. Wonnell (2015) collected 

XRD data on the CSA well to define lithofacies based on mineralogy. Hupp (2017) collected 

XRF, XRD, and Sm-Nd radiogenic isotope data on the MSEEL well to assess the provenance of 

the sediment. Lastly, Paronish (2018) collected handheld XRF data on the MSEEL well to assess 

lithofacies. Due to the sampling by Core Laboratories and Wonnell (2015), the highest TOC core 

locations in the CSA and Armstrong #1 cores were not available for sampling; therefore 

representative sampling of the exceptionally high TOC could not be done. Alternatively, a 

regular interval sampling was conducted.   
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2.1 Sampling 

2.1.1 Coldstream Affiliates 1MH Core (37-033-26848) 

 Ten core chips (approximately 4 inches in diameter and 1 inch thick) acquired from the 

CSA well, housed at the National Energy and Technology Laboratory in Morganton, West 

Virginia, include two samples from the Union Springs Member of the Marcellus Shale, two 

samples from the Oatka Member of the Marcellus Shale, and one sample from the twenty feet of 

the lowest Mahantango Formation. (Fig. 4). Five of these sampled intervals were split and used 

for ICP-MS, Sm-Nd isotopic analysis, and thin section creation. Five samples were collected for 

laser Raman spectroscopic analysis at different depths to match the depths that vitrinite 

reflectance was previously measured by Core Laboratories (Fig. 4).  

2.1.2 Armstrong #1 Core (47-091-01116) 

Ten core chips (approximately 4 inches in diameter and 1 inch thick) acquired from the 

Armstrong #1 well, at the West Virginia Geological and Economic Survey in Morganton West 

Virginia, include one sample from the Union Springs Member of the Marcellus Shale, two 

samples from the Oatka Member of the Marcellus Shale, and two samples from the thirty feet of 

the lowest Mahantango Formation. (Fig. 5). Five of these sampled intervals were split and used 

for ICP-MS, Sm-Nd isotopic analysis, and thin section creation. Five samples were collected for 

laser Raman spectroscopic analysis at different depths to match the depths that vitrinite 

reflectance was previously measured by Core Laboratories (Fig. 4).  

2.1.3 MIP-3H Core (47-061-01705)  

In addition, five core cuttings samples (approximately 1 inch by 1 inch) were collected 

from the MSEEL well to assess thermal maturity using laser Raman spectroscopic analysis, 
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which would allow for evaluation of thermal influence on TOC and provenance signatures of the 

CSA, Armstrong #1, and MSEEL wells (Fig. 4).  

2.2 Analytical Methods 

2.2.1 Samarium-Neodymium (Sm-Nd) Isotopic Analysis 

 Five samples from both the CSA and Armstrong #1 wells were analyzed for Sm and Nd 

isotopes by the University of Alabama. A VG Sector 54 Thermal Ionization Mass Spectrometer 

(TIMS) was used to measure the Sm and Nd isotopic concentrations. To prepare the samples, 

rock chips were powdered and spiked with a UNC (University of North Carolina) mixed spike 

for basalts UNC ‘B’. The ratio is 400 ul / [50 mg] of rock. The samples were then mixed with 

hydrofluoric acid to dissolve the silicate minerals. To get complete separation of the elements 

and to concentrate the Nd and Sm, three ion chromatographic column steps are conducted. After 

the third step, the Nd and Sm isotope quantities can be analyzed on the TIMS.  

The Sm and Nd isotopic concentrations are used to calculate the depleted mantle model 

age (𝛕𝛕DM; Eq. 1) and its epsilon neodymium (εNd; Eq. 2) values (DePaolo and Wasserburg, 1976; 

Eq. 2). The λ represents the decay of 147Sm into 143Nd, which is 6.54 x 10-12 per year (DePaolo, 

1981). The ratio of 143Nd/144Nd for the current day depleted mantle is about 0.51315 (DePaolo, 

1981). The ratio of 147Sm/144Nd is about 0.2137 for the current day depleted mantle.143Nd/144Nd 

in a chondritic uniform reservoir (CHUR) is 0.512638.   
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Figure 4. Sampling density of the Armstrong #1, MSEEL, and CSA wells for the various analytical methods. ICP-MS, Sm-Nd 
radiogenic isotopes, laser Raman spectroscopic analysis, and thin section creation are from this study. XRF data is from Paronish 
(2018) and XRD is from Core Laboratories. A gamma ray (GR) geophysical log is plotted to the right and corresponds to the depths of 
sampling. Wells are plotted from south (left side) to north (right side). 
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The εNd values mainly reflect type origin of the crust; the more negative values indicate a 

more felsic or chemically evolved crust, and the more positive values indicate a more mafic or 

chemically juvenile crust. Due to the immobile nature of Sm and Nd, isotopic concentrations are 

not significantly affected by fluids during sedimentary transport and diagenesis (Nelson and 

DePaolo, 1988; Lipin et al., 1989); however εNd values are even more robust as they reflect 

variation in Nd isotopic ratios, which would not be influenced by mass-dependent fractionation 

during sediment alteration processes (Feng et al., 2009).  

 

Eq. 1 

𝝉𝝉𝑫𝑫𝑫𝑫 = 𝒍𝒍𝒍𝒍 ��
𝑵𝑵𝑵𝑵/ 𝑵𝑵𝑵𝑵 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 −  𝑵𝑵𝑵𝑵/ 𝑵𝑵𝑵𝑵 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

𝑺𝑺𝑺𝑺/ 𝑵𝑵𝑵𝑵 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 −  𝑺𝑺𝑺𝑺/ 𝑵𝑵𝑵𝑵 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 � + 𝟏𝟏�𝝀𝝀
𝟏𝟏  

Eq. 2 

𝜺𝜺𝑵𝑵𝑵𝑵 = �
𝑵𝑵𝑵𝑵/ 𝑵𝑵𝑵𝑵𝟏𝟏𝟏𝟏𝟏𝟏  𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 − 𝑵𝑵𝑵𝑵/ 𝑵𝑵𝑵𝑵 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

𝑵𝑵𝑵𝑵/ 𝑵𝑵𝑵𝑵 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 �𝑿𝑿 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

2.2.2 Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) 

 Five whole-rock samples from each the CSA and Armstrong #1 wells were analyzed for 

their major, trace, and rare earth element (REE) geochemistry using an ICP-MS (inductively 

coupled plasma mass spectrometer) at Activation Laboratories in Ancaster, Ontario. The ICP-

MS measured fifty-seven elemental concentrations. Each sample was at least 5 g (to ensure 

homogeneity) and was crushed to 200 mesh using an A Spex Shatterbox with steel containers. 

The samples were then sent to Actlabs where a lithium metaborate/tetraborate fusion was 

performed on each sample prior to ICP-MS analysis. 
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2.2.3 Laser Raman Spectroscopic Analysis 

 Thermal maturity of core chips was assessed using a Laser Raman spectrometer, a 

method that is currently being developed (Lupoi et al., 2017; Lupoi et al., 2018). The thermal 

maturity was measured by using Raman spectrographic signatures of the relationship between 

peaks of the carbon-carbon double/single bonds. Five intervals from the CSA and the Armstrong 

#1 well, with vitrinite reflectance already measured by Core Laboratories, were analyzed using a 

Horiba LabRAM Raman spectrometer at RJ Lee Group in Monroeville, Pennsylvania. Five 

additional intervals from the MSEEL well that did not have vitrinite reflectance determined were 

analyzed as well. Raman spectral acquisition used a 473 nm blue laser, an ND filter of 1%, 

grating of 600 grooves/mm, with a pinhole size of 200 μm. Two accumulations were acquired 

over an acquisition time of five seconds. Ten different locations were analyzed per core chip and 

averaged together into one spectrum. Averaging Raman spectra for thermal maturity evaluation 

has been done in the past (Rahl et al., 2005; Bonoldi et al., 2016; Lupoi et al., 2017; Lupoi et al., 

2018). This is a technique that is currently being developed (Lupoi et al., 2017; Lupoi et al., 

2018) and is similar to the ASTM method 7708-14 used for vitrinite reflectance, where the 

average value of vitrinite reflectance is taken from 20-30 individual measurements at a specific 

well depth.    

Many studies have used laser Raman spectroscopy to look at the relationship between the 

carbon-carbon single/double bonds and thermal maturity (Ferrari and Robertson, 2000; Liu et al., 

2013; Lünsdorf, 2016; Lupoi et al., 2017; and Schito et al., 2017). Results from these studies 

have showed that, with an increase in thermal maturity, the two main peaks representing the 

carbon-carbon bonds changed. Namely, the locations of the G-band (right peak, ~1600 cm-1) and 

D-band (left peak, ~1350 cm-1) shift further away from each other, with increase in thermal 
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maturity (Liu et al., 2013). This relationship was used to detect thermal maturity differences 

among the Armstrong #1, Coldstream, and MSEEL wells. To identify the G- and D-bands, peak 

fitting must be performed on the Raman spectra. The software suite LabSpec 6 by Horiba was 

used to peak fit the spectra. A six-peak fit with a mixed Gaussian–Lorentzian band profile was 

used on the spectra to identify the G- and D-bands (Appendix VII). The lower wavenumber 

Raman peak, which usually occurs around 1350 cm-1, is assigned as the D-band.  The higher 

wavenumber Raman peak, which usually occurs around 1600 cm-1, is assigned the G-band. 

 

2.2.4 Thin-Section Petrography 

 Five samples each from the CSA and Armstrong #1wells were sent to National 

Petrographic Service, Inc. for standard polished thin-section preparation using clear epoxy. The 

thin sections were not oriented with respect to “stratigraphic up”. The ten total thin sections were 

analyzed using a Nikon Eclipse LV100PDL microscope. Photomicrographs of the thin sections 

were taken using a Nikon DS-Fi1 and analyzed using NIS Elements Imaging Software developed 

by Nikon. Observations such as grain size, grain shape, mineralogy, sedimentary structures, and 

fossil content were recorded. The different depths were then classified according to the 

classification scheme from Milliken (2014). This scheme separates fine-grained sedimentary 

rocks according to the origin of the sediment. There are three grain assemblage classifications: 

tarls, sarls, and carls. The presence of over 75% predominantly terrigenous components are tarls. 

Rocks with the presence of >25% intrabasinal bio-siliceous grains are sarls. Rocks with the 

presence of >25% biogenic carbonate particles, such as calcareous mudstones, are carls. 
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Results 

3.1 Geochemical Results 

3.1.1 Samarium-Neodymium (Sm-Nd) Isotopic Analysis 

 The 𝛕𝛕DM
 and εNd are calculated from 147Sm, 144Nd, and 143Nd using Equations 1 and 2. 

The results Sm-Nd analysis for samples from Armstrong #1 and CSA wells are shown in Table 2.  

The εNd values from the Armstrong #1 core samples range from -9.56 to -11.83 and the 𝛕𝛕DM 

values range from 1.64 to 1.91 Ga. In the CSA core, εNd values are more negative, and range 

from -11.12 to -12.07. The 𝛕𝛕DM values from the CSA are similar, and range from 1.62 to 1.88 Ga. 

In the CSA well the oldest 𝛕𝛕DM ages are within the Mahantango Formation whereas the oldest 

𝛕𝛕DM ages of the Armstrong #1 well are in the Oatka Creek Member of the Marcellus Shale. The 

εNd trends within the CSA well stayed relatively constant (-11.12 to -12.07) throughout the 

Marcellus Shale and Lower Mahantango while the Armstrong #1 εNd trended more negative 

with decrease in depth (-9.56 to -11.83). 

 

Table 2. Sm-Nd isotopic data of the Armstrong #1 and CSA wells.  

Armstrong #1 CSA 
Depth εNd 𝛕𝛕DM Ga Depth εNd 𝛕𝛕DM Ga 

Mahantango 
7660 -11.83 1.65 Mahantango 

7032 -11.61 1.88 

Mahantango 
7670 -11.45 1.64 Oatka Creek 

7060 -11.12 1.84 

Oatka Creek  
7705 -11.20 1.80 Oatka Creek 

7075 -12.07 1.62 

Oatka Creek  
7730 -10.05 1.91 Union Springs 

7110 -11.43 1.68 

Union Springs 
7760 -9.56 1.76 Union Springs 

7144 -11.39 1.76 

Notes: 143Nd/144Nd 2σ = 9 x 10-6; 147Sm/144Nd 2σ = 9 x 10-4; 𝛕𝛕DM calculated from Eq. 1; εNd 
calculated from Eq. 2; Total error in 𝛕𝛕DM +/- 1 Ma; Total error in εNd +/- 0.18.  
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3.1.2 Trace element and REE Geochemistry 

 A few noticeable trends can be seen from the major and trace element concentrations in 

the ICP-MS data (Appendix I). The deepest Armstrong #1 sample (A-7760) is anomalous in its 

major and trace element concentrations. Within this sample, there are higher amounts of CaO, Sr, 

and Y while lower SiO2, Al2O3, and Zr relative to all other Armstrong #1 and CSA samples. 

Generally, concentrations of MgO and MnO decrease while Ni, Cu, and Zn increase with greater 

depth within both the Armstrong #1 and CSA samples. 

 Major element abundances were used to evaluate the composition of the rocks in the 

source area using discrimination equations from Roser and Korsch (1988) (Eq. 3 and 4; Fig. 5). 

Discrimination diagrams of major element geochemistry show that the major element 

geochemical composition of most samples is consistent with a quartzose sedimentary or 

intermediate igneous source rock, with 2 samples reflecting a felsic igneous source (Figure 5). 

Major element ternary plots indicate moderate modification to major elemental composition 

from chemical weathering (Fig. 7-9).  

Eq. 3  DF1 = -1.773 TiO2 + 0.607 Al2O3 + 0.76 Fe2O3 (t) -1.5 MgO + 0.616 CaO + 
0.509 Na2O - 1. 22 K2O - 9.09 

Eq. 4  DF2 = 0.445 TiO2 + 0.07 Al2O3 - 0.25 Fe2O3 (t) - 1.142 MgO + 0.438 CaO + 
1.426 K2O - 6.861      

 

Ternary plots of selected major elements (Fig. 6 and 7; Nesbitt and Young, 1982), along 

with trace element and REE abundances (Fig. 8 and 9; McLennan et al., 1993) were used to 

determine sediment source rock compositions. Figures 6-9 show that the source of the sediments 

has an upper continental crustal signature, specifically a felsic granitic source.  
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Figure 5. Sediment source discrimination diagram, which determines the source of the sediment. 
Equation 3 is DF1 and Equation 4 is DF2 (Roser and Korsch, 1988).       

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Aluminum (A), calcium and sodium (CN), and potassium (K) elemental concentrations 
are used to plot source compositions according to Nesbitt and Young (1982). Results indicate 
weathering from an upper continental crust. 
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Figure 7. Aluminum (A), calcium, sodium, and potassium (CNK), and iron and magnesium (FM) 
elemental concentrations are used to plot source compositions according to Nesbitt and Young 
(1982). Results indicate weathering from an upper continental crust. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Concentrations of thorium, zirconium, and scandium determined if the sediment source 
was from recycled sediment or not, according to McLennan et al. (1993). 
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Figure 9. εNd vs. Th/Sc ratio indicates the provenance source type of the sediments that make up 
core samples from the CSA and Armstrong #1 wells. Adapted from McLennan et al. (1993). 

 

 Abundances of REEs normalized to chondrite (McDonough and Sun, 1995; Fig. 10) 

reveal overall similar distribution patterns for Armstrong and CSA samples. All samples show 

light REE enrichment compared to heavy REE and all samples have a negative Eu-anomaly 

ranging from 0.21 to 0.24. The deepest Armstrong #1 well sample (7760 ft.) showed greatest 

enrichment in REE with ΣREE = 324 ppm compared to the average ΣREE of 179 ppm for all 

other Armstrong #1 samples. The shallowest Armstrong #1 well sample (7660 ft.) was the least 

enriched in REE with the ΣREE = 174 ppm. Overall the REE abundances are consistent with a 

felsic, chemically evolved upper continental crust source rock lithology for the Armstrong #1 

well (McLennan, 2001). 
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 Similar to the Armstrong well, the deepest CSA well sample (7144 ft.) was most enriched 

REE with ΣREE = 195 ppm; this is greater than other CSA samples which yield an average 

ΣREE of 181 ppm. The lowest value for the ΣREE did not occur in the shallowest depth of the 

CSA well, rather it occurred within the top of the Union Springs member (7110 ft.). The 

disparity between the largest and smallest ΣREE in the CSA well is not as great as in the 

Armstrong #1 well, however. Overall, similar to the Armstrong #1 well, the REE abundances are 

consistent with a felsic, chemically evolved source rock lithology for the CSA well. Both wells 

suggest a decrease in ΣREE upsection from the basal samples, potentially due to early influx 

from a highly felsic source followed by mixing of a less chemically evolved source. 

Figure 10. REEs in the Armstrong #1 and CSA wells. The deepest Armstrong #1 sample (7760 
ft.) is isolated from other samples. 
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3.1.3 Thermal Maturity from Laser Raman Spectroscopic Analysis 

 All samples analyzed by laser Raman spectroscopy resulted in Raman spectra with at 

least two distinct, but broad peaks. One wide, low peak was observed around 1350 cm-1. A 

slightly sharper and taller peak was observed around 1600 cm-1. Each well depth’s ten spectra 

acquired can be seen in Appendix VI. The ten spectra are averaged to one spectrum, a technique 

developed in Lupoi et al. (2017) and is still currently being developed (Lupoi et al., 2018; Lupoi 

et al., in review). The results for each well are shown in Figure 11. The averaged spectra are peak 

fit to a 6-peak fit and the G- and D-band locations are found. The G- and D-band separations are 

listed in Table 3 below.  

Table 3. G-D band separation from various depths within the MSEEL, Coldstream, and 
Armstrong #1 wells. 

MSEEL Coldstream Armstrong #1 
Depth G - D Depth G - D Depth G - D 

Oatka Creek 
7475 252.19 Lower Mahantango 

7019 252.27 Lower Mahantango 
7605 247.95 

Oatka Creek 
7477 252.48 Oatka Creek 

7070 254.50 Lower Mahantango 
7655 248.91 

Oatka Creek 
7494 251.25 Oatka Creek 

7099 254.50 Oatka Creek 
7714 251.05 

Oatka Creek 
7534 247.39 Union Springs 

7128 249.96 Union Springs 
7752 249.54 

Union Springs 
7556 250.00 Onondaga Limestone 

7155 249.25 Union Springs 
7765 249.39 

Average 250.66 Average 252.10 Average 249.37 
St. Dev. 1.85 St. Dev. 2.20 St. Dev. 1.40 

 

 The largest band separation (between the G- and D-bands) occurs in the CSA well while 

the smallest separation occurs in the Armstrong #1 well. The larger the band separation, the 

higher the thermal maturity value (Liu et al., 2013), therefore the CSA well records the highest 

thermal maturity and the Armstrong #1 well records the lowest thermal maturity, respectively. 
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The VRo% estimates for the Armstrong and MSEEL are around 2% and the estimates for the 

CSA well are around 2.4% (Liu et al., 2013; Sauerer et al., 2017). Although a more robust 

quantitative assessment was not performed on the spectra for these samples, this semi-

quantitative approach shows that the CSA well reflects a slightly higher thermal maturity of the 

study wells due to the largest band separation. It is worth mentioning that the lowest band 

separation value in the CSA well occurs in the Onondaga Limestone, an organic-poor formation, 

which may affect the Raman spectrum. With the Onondaga Limestone sample removed, the 

average band separation in the CSA well is 252.81 with a standard deviation of 1.88. The band 

separations determined from Raman spectra appear to be positively correlated with VRo%. An 

empirical relationship can be defined with further statistical modeling, that is beyond the scope 

of this thesis.  

3.2 Thin-Section Petrography 

 Full results of the thin-section petrography are located in Appendix II. Textural maturity 

of detrital quartz grains decreases upsection, with more larger and more angular quartz silt grains 

present upsection in both the Armstrong #1 and CSA wells (Fig. 12). Sorting of the grains is 

moderately well sorted throughout all samples. Clays are most abundant in the shallowest 

intervals of the Mahantango Formation compared to the underlying Marcellus Shale. Within the 

Marcellus Shale, the prevalence of pyrite and biogenic silica (based on the increase in siliceous 

fossils and irregular silica masses) becomes more frequent than the Mahantango Formation, 

especially within the Union Springs Member. Notably, there were more laminations upsection in 

both the Armstrong #1 and CSA wells. Most of the mudstone samples are tarls according to the 

Milliken (2014) classification (Table 4); however, the deepest samples from both the Armstrong 

#1 and CSA wells were argillaceous sarls. 
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Figure 11. Armstrong #1, CSA, and MSEEL well laser Raman spectra. Spectra are baseline 
corrected and averaged at each depth from ten individual spectra. 
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Table 4. Classifications of the thin sections in both the Armstrong #1 and CSA wells according 
to Milliken (2014).   

 
 

Figure 12. Thin sections from the Lower Mahantango (A & C) and Union Springs Member (B & 
D). A and B are from the Armstrong #1 well and C and D are from the CSA well. 

 

Sample ID Milliken (2014) Classification 
A-7660 calcareous tarl 
A-7670 siliceous tarl 
A-7705 siliceous tarl 
A-7730 siliceous tarl 
A-7760 argillaceous carl 
C-7032 siliceous tarl 
C-7060 calcareous tarl 
C-7075 argillaceous sarl 
C-7110 argillaceous sarl 
C-7144 argillaceous sarl 
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Discussion 

 Four potential sources of the sediments make up the Hamilton group: the Acadian Fold-

Thrust Belt, the Acadian Arc, the Superior Craton, and the southern Canadian Grenville 

Province, and (Fig. 1; Table 5).  

 

4.1 Geochemistry of Potential Sediment Sources 

  
 Acadian Fold-Thrust Belt: The Acadian Fold-Thrust Belt formed to the east (modern 

coordinates) of the Acadian Basin and uplifted during the Acadian orogeny (Ettensohn, 1985). It 

contained late Proterozoic Grenvillian felsic orogenic rocks (Tollo et al., 2004), Early Paleozoic 

passive margin strata, and Ordovician to Early Devonian Taconic foreland basin strata (Ryder et 

al., 2012). Within the Grenville felsic orogenic rocks 𝛕𝛕DM
  ranges from 1.6 to 1.4 Ga and εNd

 

ranges from -5 to -13 (Patchett et al., 1999).  It is enriched in REE, especially the light REE. 

Trace and REE ratios are seen in Table 5. The Taconic foreland strata, which was folded and 

eroded during the Acadian Orogeny, consisted of clastic sedimentary sequences, mostly 

limestones/dolostones and shales, some sandstones (Ryder et al., 2012). The 𝛕𝛕DM ranged from 

1.6 to 2.2 Ga and εNd
 ranged from -9 to -20 (Bock et al., 1996; Eriksson et al., 2004). 

  

 Acadian Arc: The Acadian magmatic arc formed to the east (modern coordinates) of the 

Acadian Basin during the Middle Devonian Acadian Orogeny and contains felsic and 

intermediate granitic igneous rocks (Parrish 2013). The 𝛕𝛕DM
  ranges from 403-417 Ma and εNd

 

ranges from 4-2 (Schoonmaker et al., 2011). High Cr/Ni ratios are measured from the somewhat 

chemically primitive crustal rocks that comprised the arc, and ΣREE are lower compared to the 

other potential sources (Table 5; D’Hulst et al., 2008).  
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 Superior Craton: The Superior Craton is an amalgamation of igneous and metamorphic 

rocks that form the core of the North American continent and is exposed to the northwest 

(modern coordinates) of the Devonian Acadian Basin. It has been tectonically stable since the 

Precambrian (Canil, 2008). The craton contains upper crustal igneous rocks (Taylor et al., 1986) 

with 𝛕𝛕DM ranging from 2.7 to 3.1 Ga and εNd
 less than -17 (Percival et al., 2006). La/Yb ratios are 

higher than other source rocks, indicating an enrichment of LREE, and its Ti/Zr ratios are lower 

than other source rocks (Table 5).  

  

 Southern Canadian Grenville Province: The southern Canadian Grenville Province 

includes a series of accreted terranes northwest (modern coordinates) of the Devonian Acadian 

Basin. Lithologies consist of upper crustal igneous rocks and orthogneisses (Currie and Breemen, 

1996; Prevec, 2004). The 𝛕𝛕DM
  ranges from 1.3-1.9 Ga and the εNd

 ranges from -13 to -17 

(Percival et al., 2006; McLelland et al., 2010). ΣREE and Zr/Sc are lowest and Ti/Zr are highest 

among all possible sources evaluated (Table 5). 

 

4.2 Hamilton Group Sediment Source Area Characterization: Lithology, and Geochemistry 

4.2.1 Major, Trace, and REE Concentrations 

Results from this study indicate that the sediment source became more intermediate and 

less mature upsection (Table 6). The stratigraphic trends of Si and Al were used as proxies for 

quartz (Si) versus clay (Al) input in the lower Hamilton Group for the CSA, Armstrong #1, and 

MSEEL wells (Fig. 13). Si/Al <5 indicates detrital dilution of sediments by clay-rich sediments 

instead of quartz grains (Ver Straeten et al., 2011). Results show that Si/Al slightly decreases 

upsection for all wells. The ratios of Si/Al are highest in the Union Springs Member and in the 
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bottom of the Oatka Creek Member for the Armstrong #1, CSA, and MSEEL wells, reflecting 

the lowest detrital dilution during most productive TOC (Fig. 14). This trend has been observed 

previously in Ver Straeten et al. (2011). Cross-plot of Si/Al vs. Zr/Al shows strong correlation, 

indicating no significant Si increases are due to biogenic silica (Fig. 15). To test for eolian influx, 

elemental trends of Ti and Al were used as proxies for eolian silt input. High values of Ti/Al 

indicate eolian silt due to rutilated quartz being present in eolian deposits (Sageman et al., 2003). 

Results show that Ti/Al slightly decreases upsection (Fig. 13). Spikes of high Ti/Al are also seen 

in the Armstrong #1 and CSA wells, which may also be instrumental collection errors.  

 REE abundances are consistent with a felsic, chemically evolved source rock lithology 

for the CSA and Armstrong #1 wells. ΣREE are around 200 ppm for the Armstrong #1 and CSA 

wells. La/Lu, which indicates the slope of REE from light REE to heavy REE, averages around 

79, consistent with light REE enrichment. Furthermore, the Eu/Eu* (europium anomaly) 

averages around 0.23, which is typical for feldspathic felsic crustal rocks (McLennan et al., 

1993).  
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Table 5. Elemental and lithological descriptions of the Armstrong #1, CSA, and source possibilities.  

  Armstrong #1 CSA 

Southern 
Canadian 
Grenville 

Province (a) 

Grenville 
Inliers (b) 

Taconic 
Foreland 
Strata (c) 

Superior 
Craton (d) Acadian Arc(e) 

𝛕𝛕DM 1.65 to 1.91 
Ga 1.62 to 1.88 Ga 1.3 to 1.9 Ga 1.4 to 1.6 Ga 1.6 to 2.2 Ga > 2.7 Ga 450 Ma 

εNd -9.56 to -11.83 -11.12 to -
12.07 -12 to -17 -5 to -13 -9 to -20 > -17 4 to 2 

Discrimination 
Plot 

quartzose to 
intermediate  

quartzose to 
intermediate  

felsic to 
intermediate felsic quartzose felsic felsic to 

intermediate 

Ternary Plots 
moderate 
chemical 
alteration 

moderate 
chemical 
alteration 

low chemical 
alteration 

low chemical 
alteration 

high chemical 
alteration 

low chemical 
alteration 

low chemical 
alteration 

Th/Sc vs. Zr/Sc upper crustal upper crustal upper crustal upper crustal sediment 
recycling upper crustal mid to upper 

crustal 

εNd vs. Th/Sc upper crustal upper crustal upper crustal upper crustal sediment 
recycling older crust arc andesite 

ΣREE 208 189 40 268 164 132 48 
La/Lu 74 84 68 103 9.65 20 25 

Eu/Eu* 0.23 0.23 0.19 0.34 0.2 0.49 0.3 
Cr/Ni 0.74 1.05 0.84 2.5 1.78 1.84 2.51 
Ti/Zr 0.0058 0.0061 0.075 0.0015 0.0041 0.0013 0.011 
La/Yb 11.4 12.8 10.2 19.8 9.65 20 3.8 
Zr/Sc 5.64 6.11 1.21 30 24.8 33.86 4.03 

Notes: (a) Prevec (2004); (b) Volkert et al. (2000) & Tollo et al. (2004); (c) Bock et al. (1998) and Eriksson et al. (2004); (d) Taylor et 
al. (1986) & McLennan (2001); (e) D’hulst et al. (2008) 
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Figure 13a. Elemental ratios of Si/Al and Ti/Al from the handheld XRF on the Armstrong #1 
well.  
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Figure 13b. Elemental ratios of Si/Al and Ti/Al from the handheld XRF on the CSA well. 
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Figure 13c. Elemental ratios of Si/Al and Ti/Al from the handheld XRF on the MSEEL well 
from Hupp (2017). 
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Figure 14. Cross plot between Wt. % TOC and Si/Al for the CSA, Armstrong #1, and 
MSEEL wells. TOC is high when Si/Al is also high.  

 

Figure 15. Zr and Si in the Armstrong #1 and CSA wells are normalized to Al to show if 
biogenic Si is present. Due to the correlation, Zr and Si are influenced by the same sink 
mechanism. 
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Table 6. Source classification interpretation for the sediments that make up the Armstrong #1 
and CSA wells using the cumulative data from Figures 5-9.  

Samples Source Classification 
A-7660 intermediate igneous 
A-7670 recycled sedimentary 
A-7705 felsic igneous 
A-7730 recycled sedimentary 
A-7760 intermediate igneous 
C-7032 intermediate igneous 
C-7060 intermediate igneous 
C-7075 felsic igneous 
C-7110 recycled sedimentary 
C-7144 recycled sedimentary 

 

4.2.2 Sm-Nd Isotopic Composition: τDM  and εNd  

 Within the Armstrong #1 and CSA wells, τDM ranges from 1.62 to 1.91 Ga and does not 

trend with depth. These τDM ages are older than τDM determined for Acadian Arc and younger 

than τDM determined for the Superior Craton, but overlap with the other possible sources. The εNd 

values range from -9.56 to -12.07 within the study wells, and becomes more negative upsection. 

These negative εNd values are typical for chemically evolved upper crustal rocks (McLennan et 

al., 1993). The εNd values for the Armstrong #1 and CSA wells overlap with all potential source 

areas except the Acadian Arc and Superior Craton.  

4.2.3 XRD Mineralogy   

 XRD mineralogy within the Armstrong #1, CSA, and MSEEL wells reveals that no major 

concentrations mafic minerals are present in XRD mineralogy results for the Armstrong #1, 

CSA, or MSEEL wells. Quartz is the dominant mineral phase at base of the Marcellus Shale in 

all three wells. Clay mineral concentrations increase in relative abundance upsection compared 

to other phases (Fig. 16). Chlorite concentrations become more abundant in the Mahantango 

Formation in all wells. The base of the Union Springs Member does not contain any chlorite in 
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Armstrong #1 samples, whereas the CSA well Union Springs Member does contain a small 

percentage (<10%). The lower Oatka Creek Member in both the Armstrong #1 and MSEEL 

wells contains no chlorite but increases to ~5-10% in the upper Oatka Creek Member, signifying 

a change in extrabasinal detritus.  

 
4.3 Comparison to Various Source Compositions 

4.3.1 Major, Trace, & REE Geochemistry Abundances 

 Trace (Fig. 17-21) and REEs (Fig. 22-25) were used to compare the results of this study 

with the possible provenances of the sediment (McLennan et al., 1993).  

 Acadian Fold-Thrust Belt: Within the Grenville felsic orogenic rocks, such as the Blue 

Ridge and New Jersey Highlands (Volkert et al., 1999; Tollo et al., 2004), concentrations of Ti, 

Co, and Pb (Fig. 17), as well as ΣREE and La/Lu (Table 5) are similar to that of the Armstrong 

#1 and CSA wells. Other comparisons in Table 5 do not form as strong of a relationship. 

 Within Taconic foreland strata (Bock et al., 1998), concentrations such as Sc and Cr (Fig. 

18), as well as ΣREE, Eu/Eu*, Ti/Zr, and La/Yb (Table 5) are similar to that of the Armstrong #1 

and CSA wells. Other comparisons in Table 5 do not form as strong of a relationship. 

 Acadian Arc: Within the Acadian Arc (D’Hulst et al., 2008), concentrations of Cr, Zr, 

and Hf (Fig. 19), as well as Zr/Sc (Table 5) are similar that of the Armstrong #1 and CSA wells. 

However, all other comparisons in Table 5 do not form as strong of a relationship. This source 

was the least similar of all possibilities. 

 Superior Craton: Within the Superior Craton (Taylor et al., 1986; McLennan, 2001), 

concentrations such as Sc, Co, Pb, and Th (Fig. 20), as well as ΣREE (Table 5) are similar to that 

of the Armstrong #1 and CSA wells. Other comparisons in Table 5 do not form as strong of a 

relationship.  
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Figure 16a. XRD mineralogy of the Armstrong #1, MSEEL, and CSA wells. Data from the 
Armstrong #1 well collected by Core Laboratories. Chlorite is included in total clay. Carbonate 
includes calcite and dolomite.  
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Figure 16b. XRD mineralogy of the CSA well. Data from the CSA well collected by Core 
Laboratories. Chlorite is included in total clay. Carbonate includes calcite and dolomite.  
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Figure 16c. XRD mineralogy of the MSEEL well. Data from the MSEEL well collected by Hupp 
(2017). Chlorite is included in total clay. Carbonate includes calcite and dolomite.  
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 Southern Canadian Grenville Province: Within the southern Canadian Grenville 

Province, specifically the accreted terranes of Algonquia and Barillia (Currie and Breemen, 

1996; Prevec, 2004), concentrations such as Ti and Co (Fig. 21), as well as La/Lu, Eu/Eu*, 

Cr/Ni, La/Yb, and Zr/Sc (Table 5) are similar to that of the Armstrong #1 and CSA wells. Other 

comparisons in Table 5 do not form as strong of a relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Major and trace element concentrations of the Armstrong #1 (A) and CSA (C) wells 
normalized to average trace element concentrations of the grantitic Acadian Fold-Thrust Belt 
Inliers (Tollo et al., 2004). 
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Figure 18. Major and trace element concentrations of the Armstrong #1 (A) and CSA (C) wells 
normalized to average trace element concentrations of the Taconic Sedimentary Sequence 
(sedimentary fraction of Acadian Fold-Thrust Belt; Bock et al., 1998) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Major and trace element concentrations of the Armstrong #1 (A) and CSA (C) wells 
normalized to average trace element concentrations of the Acadian Arc (D’Hulst et al., 2008). 
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Figure 20. Major and trace element concentrations of the Armstrong #1 (A) and CSA (C) wells 
normalized to average trace element concentrations of the Superior Craton (McLennan, 2001). 

 

 

 

  

 
  

  

 

 

 

 

 

Figure 21. Major and trace element concentrations of the Armstrong #1 (A) and CSA (C) wells 
normalized to average trace element concentrations of Barillia (Prevec, 2004).  
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Figure 22. REE concentrations normalized to chondrite. Comparison is made between the 
Armstrong #1 and CSA wells and the New Jersey Highlands (NJH) compositions (Volkert et al., 
2000). La/Lu average from the Armstrong #1 and CSA wells is 79 and the NJH La/Lu is 80. 
Eu/Eu* average from the Armstrong #1 and CSA wells is 0.23 and the NJH Eu/Eu* is 0.47. 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. REE concentrations normalized to chondrite. Comparison is made between the 
Armstrong #1 and CSA wells and the Blue Ridge Massif (BRM) compositions (Tollo et al., 
2004). La/Lu average from the Armstrong #1 and CSA wells is 79 and the BRM La/Lu is 139. 
Eu/Eu* average from the Armstrong #1 and CSA wells is 0.23 and the BRM Eu/Eu* is 0.33. 
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Figure 24. REE concentrations normalized to chondrite. Comparison is made between the 
Armstrong #1 and CSA wells and Algonquia, specifically the Kipawa Syenite Complex (KSC), 
compositions (Currie and Breemen, 1996). La/Lu average from the Armstrong #1 and CSA wells 
is 79 and the KSC La/Lu is 82. Eu/Eu* average from the Armstrong #1 and CSA wells is 0.23 
and the KSC Eu/Eu* is 0.19.  

 

 

 

 

 

 

 

 

 

 

 

Figure 25. REE concentrations normalized to chondrite. Comparison is made between the 
Armstrong #1 and Coldstream wells and Superior Craton, specifically the Kapuskasing 
Structural Zone (KSZ) compositions (Taylor et al., 1986). La/Lu average from the Armstrong #1 
and CSA wells is 79 and the KSZ La/Lu is 23. Eu/Eu* average from the Armstrong #1 and CSA 
wells is 0.23 and the Kapuskasing Structural Zone Eu/Eu* is 0.37. 
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4.3.2 Signatures from Sm-Nd Radiogenic Isotopes 

 The τDM of any of the potential sources do not overlap the Armstrong #1 and CSA wells’ 

τDM (1.62 to 1.91 Ga) results seen (Table 5). This necessitates a mixing of two or more of the 

potential sources to get the τDM results observed in the Armstrong #1 and CSA wells. At least 

one source with older τDM, such as the southern Canadian Grenville Province (up to 1.9 Ga), 

Superior Craton (>2.7 Ga), or Taconic foreland strata (up to 2.2 Ga), is essential to mix to create 

the results seen in the Armstrong #1 and CSA wells.  

 The current εNd of the Grenville Inliers and Taconic foreland strata mix overlap well with 

results seen in the Armstrong #1 and CSA wells. Input from other sources such as the southern 

Canadian Grenville Province and Superior Craton are still possible, however the input needs to 

be lesser than that of the Grenville Inliers or Taconic foreland strata to keep the εNd around -11.  

4.4 Provenance Model 

4.4.1 Sediment Source Area 

 There is evidence to support that during deposition of the Hamilton Group, there was 

erosion from the Taconic foreland strata from the Acadian Fold-Thrust Belt with minor inputs 

from Superior and southern Canadian Grenville Province due to the older τDM signatures and 

trace/REE compositions present in the Armstrong #1 and CSA wells. However, during 

deposition of young τDM rocks, the source of the sediments can be constrained to the Grenville 

Inliers within the Acadian Fold-Thrust Belt, with less input of the Taconic foreland strata. The 

younger τDM is also seen by the shift to more intermediate igneous sources upsection in the 

Armstrong #1 and CSA wells which may be the Acadian Arc contributing sediment.  
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4.4.2 Sediment Transport Pathway 

Erosion from older source material such as the southern Canadian Grenville Province and 

Superior Craton has been proposed for sediment supply for the Ordovician-aged Utica and 

Normanskill Formations, due to older 𝛕𝛕DM signatures and more negative εNd values (Bock et al., 

1998; Hurowitz and McLennan, 2005; Chakrabarti et al., 2007; Caesar et al., 2010). In order for 

the sediments to be eroded from the Canadian sources, there had to be uplift in this region. The 

Algonquin Arch was actively uplifted during the middle Paleozoic (Sanford et al., 1985). The 

uplift would allow for the Superior Craton and/or southern Canadian Grenville Province to be 

eroded. The Superior Craton has been exposed since 1.1 Ga (Queen et al., 1996; Canil, 2008) 

and the southern Canadian Grenville Province was exhumed around 1.0 Ga and has been 

exposed since then (Martignole and Reynolds, 1997). The sediments may have then traveled 

along river channels that are on basement structural lineaments that are preferentially oriented 

towards the Appalachian Basin (Fig. 26; Eyles et al., 1993) or along flanks of the Algonquin arch 

(Birchard et al., 2004). Erosional surfaces and sandy conglomeratic accumulations observed 

above the Onondaga equivalent in southern Ontario, Buffalo, New York, and north-central Ohio 

support this hypothesis (Hatfield et al., 1968; Armstrong, 2006; Brett et al., 2011). In Buffalo, 

New York the Union Springs and half of the Oatka Creek missing due to non-deposition (Brett et 

al., 2011 and Lash and Engelder, 2011). An argument can be made that the sediment was moving 

from the Superior Craton and/or southern Canadian Grenville Province into the Acadian Basin 

across this region. 

Pinet (2016) posits a “fairway” developed due to extension in Silurian and Early 

Devonian in the northern Appalachian Basin. This “fairway” matches the Rome Trough 

orientation (Harper, 1989; Fig. 1). Sediment transport through “fairway” mixed sediment from 
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various sources, causing the observed 𝛕𝛕DM and εNd signatures of the Marcellus Shale (Fig. 27 and 

28; Bock et al., 1998, Chakrabarti et al., 2007, Caesar et al., 2010, Phan et al., 2018, and Hupp 

and Weislogel, 2018).  A study of Marcellus Sm-Nd by Caesar et al. (2010) was carried out near 

the Catskill Delta outside of this fairway, which could explain why its signatures were dominated 

by younger 𝛕𝛕DM ages and more immature εNd signatures consistent with influx from mainly 

eroded Grenville rocks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Map of the Middle Devonian Acadian Basin and generalized sediment sources. Blue 
and purple arrows display possible directions of sediment influx from the various sediment 
sources. Data combined from Patchett et al. (1999), Percival et al. (2006), and McLelland et al. 
(2010). 
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4.4.3 Temporal Provenance Evolution 

 Overall, geochemical and petrographic evidence indicate that sources become more 

immature upsection (Table 4). No major concentrations mafic minerals are present in XRD 

mineralogy results for the Armstrong #1, CSA, or MSEEL wells. Quartz is the dominant mineral 

phase at base of the Marcellus in all three wells. Clay mineral concentrations increase in relative 

abundance upsection compared to other phases (Fig. 16). Chlorite concentrations become more 

abundant in the Mahantango Formation, while the base of the Union Springs Member does not 

contain any chlorite. The petrographic results indicated that detrital quartz grains were sub-

rounded in the Union Springs Member to sub-angular within the Mahantango Formation. Sub-

rounded to rounded quartz grains are also noticed in detrital quartz grains of both the Onondaga 

Limestone equivalent and Union Springs Member in southern Ontario, western New York, and 

northern Ohio (Armstrong, 2006 and Brett et al., 2011). This may be evidence for sediment 

traveling from Superior Craton/Southern Canadian Grenville Province. Also, the change from 

sub-rounded to sub-angular grains and the increase in laminations with decreasing depth 

indicates that the source of the sediments became closer over time. This could be due to a change 

in sediment source or progradation of deltas, such as the Catskill, into the basin. 
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Figure 27. Collective provenance studies of 𝛕𝛕DM of the Hamilton Group using Sm-Nd isotopes. 
Monongalia County data from Hupp (2017), Albany and Ostego County from Caesar et al. 
(2010), Greene and Tioga County from Phan et al. (2018), and Taylor and Clearfield County data 
from this study. All data above the Oatka Creek is from the Mahantango Formation. (A) 
Lithostratigraphic horizons showing how 𝛕𝛕DM can vary in different areas of the basin. (B) Map 
showing the cross-section from A-A’. (C) Cross section using a Gamma Ray (GR) log from A-
A’ showing the different horizons picked. 
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Figure 28. Collective provenance studies of εNd of the of the Hamilton Group using Nd isotopes. 
Monongalia County data from Hupp (2017), Albany and Ostego County from Caesar et al. (2010), 
Greene and Tioga County from Phan et al. (2018), and Taylor and Clearfield County data from this 
study. All data above the Oatka Creek is from the Mahantango Formation. (A) Lithostratigraphic 
horizons showing how εNd can vary in different areas of the basin. (B) Map showing the cross-
section from A-A’. (C) Cross section using a Gamma Ray (GR) log from A-A’ showing the 
different horizons picked. 
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4.5 Thermal Maturity from Laser Raman Spectroscopic Analysis  

 Raman spectroscopic results confirmed the previous understanding about the thermal 

maturity differences amongst the three wells set by vitrinite reflectance data and thermal 

maturity mapping done by Repetski et al. (2008). This study mapped thermal maturity using 

vitrinite reflectance from approximately 425 well cuttings samples across the Appalachian basin, 

from the Cincinnati Arch to the Allegheny Structural Front. Repetski et al. (2008) has the CSA 

well as the most thermally mature in the basin with a VRo at approximately 2% while the 

MSEEL and Armstrong #1 wells are at approximately 1.6%. The G- and D-band separations of 

the CSA well samples were greatest, converting to around 2.4% VRo. The MSEEL well and the 

Armstrong #1 well G- and D-band separations were less, converting to around 2% VRo. Both 

previously measured by Core Laboratories, the CSA well had an averaged measured VRo of 

2.72% and the Armstrong #1 well had an averaged measured VRo of 1.40%. Although the 

conversion of G- and D-band separations to vitrinite reflectance was not exact, it still exemplifies 

thermal maturity and shows that the CSA well was the most mature, matching the outcomes seen 

in Repetski et al. (2008). 
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4.6 Relationship between Provenance and Controls on Organic-Matter Preservation  

 A stratified water column allows for organic preservation because the bottom of the 

column will be anoxic (Sageman et al., 2003). The high molybdenum and uranium 

concentrations are evidence for anoxic to euxinic water (Appendix 1; Lash and Blood, 2014). 

The deeper water in fairway would have allowed for organic preservation. A warm, sunny 

climate enhances plankton productivity. Both of these conditions are existent today at the 30° 

latitudes and are inferred in the past as well (Sageman et al., 2003). There is general positive 

correlation between TOC and 𝛕𝛕DM/εNd (Fig. 29 and 30). This indicates that TOC > 6% is 

developed when sediment with 𝛕𝛕DM over 1.75 Ga is being delivered to the basin; however, even 

when sediment with 𝛕𝛕DM ≥ 1.75 Ga is being delivered to the basin TOC may be <6%. This 

suggests that one condition for TOC > 6% was influx of 𝛕𝛕DM ≥ 1.75 Ga sediment, but that other 

conditions, such as perhaps water stratification, were also required for high TOC deposits to 

form and be preserved. 
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Figure 29. Wt. % TOC versus 𝛕𝛕DM. Monongalia County data from Hupp (2017), Greene and 
Tioga County from Phan et al. (2018), and Taylor and Clearfield County data from this study. 

 

 

Figure 30. Wt. % TOC versus εNd. Monongalia County data from Hupp (2017), Greene and 
Tioga County from Phan et al. (2018), and Taylor and Clearfield County data from this study. 
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CONCLUSIONS 

 The geochemical data support the idea that the southern Canadian Grenville Province 

and/or Superior Craton was/were most likely the original source of some of the sediments for the 

Hamilton Group. The sediments that make up the Hamilton Group are mostly likely a mix from 

the Acadian Fold-Thrust Belt and an older source. Whether the older sediments are recycled or 

straight from the source is still not determined. Sediments that made up the sedimentary rocks in 

the Acadian Fold-Thrust Belt can contain a similar 𝛕𝛕DM signature to the southern Canadian 

Grenville Province and/or Superior Craton because the source of the sediments that made up the 

older sedimentary units is most likely an older source. The younger 𝛕𝛕DM ages can be explained 

by either erosion from the Grenville Inliers or erosion of the younger terranes in the southern 

Canadian Grenville Province such as the Central Metasedimentary Belt, Quebecia, Morin, 

Mekinac, or the Adirondacks.  

 Some future work includes more well locations tested for 𝛕𝛕DM ages across the basin. 

Wells in northeastern or northwestern Pennsylvania, central West Virginia, eastern Ohio, or 

southern Ontario would be helpful in developing a basin-wide model. More ICP-MS analysis 

could be done on the Coldstream and Armstrong #1 wells. This would allow more analysis on 

the sediment recycling problem. It would also give a more in-depth look at the REE 

concentrations and changes at different intervals of the Marcellus Shale. Lastly, XRD could be 

done on the intervals sampled in this study to compare mineralogy to the elemental trends. 

 

 

 



53 
 

REFERENCES 

Armstrong, D.K., 2006, An updated guide to the subsurface Paleozoic stratigraphy of southern 
Ontario: Toronto, Ontario Geological Survey, Open File Report 6191. 

Birchard, M.C., Rutka, M.A., and Brunton, F.R., 2004, Lithofacies and geochemistry of the 
Lucas Formation in the subsurface of southwestern Ontario: a high-purity limestone and 
potential high-purity dolostone resource: Sudbury, Ont., Ontario Geological Survey. 

Blakey, R., 2009, Middle Devonian North American paleogeographic map, accessed Dec. 2018.  

Bock, B., McLennan, S.M., and Hanson, G.N., 1996, The Taconian orogeny in southern New 
England: Nd-isotope evidence against addition of juvenile components: Canadian Journal 
of Earth Sciences, v. 33, p. 1612–1627, doi: 10.1139/e96-122. 

Bock, B., McLennan, S.M., and Hanson, G.N., 1998, Geochemistry and provenance of the 
Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian 
Orogeny in New England: Sedimentology, v. 45, p. 635–655, doi: 10.1046/j.1365-
3091.1998.00168.x. 

Bonoldi, L., Paolo, L.D., and Flego, C., 2016, Vibrational spectroscopy assessment of kerogen 
maturity in organic-rich source rocks: Vibrational Spectroscopy, v. 87, p. 14–19, doi: 
10.1016/j.vibspec.2016.08.014. 

Boswell, R., and Pool, S., 2018, Lithostratigraphy of Middle and Upper Devonian Organic-rich 
Shales in West Virginia: West Virginia Geological and Economic Survey Reports of 
Investigation no. 35. 

Brett, C.E., Baird, G.C., Bartholomew, A.J., Desantis, M.K., and Straeten, C.A.V., 2011, 
Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern 
North America: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 304, p. 21–53, 
doi: 10.1016/j.palaeo.2010.10.009. 

Caesar, W., Mosher, D., Regan, S., Cousens, B., Aspler, L. Chiarenzelli, J., Chiarenzelli, J.R., 
2010, Nd model ages and geochemistry of Devonian and Ordovician shales of western 
and central New York: Geological Society of America- Abstracts with Programs, v. 42, 
no. 1, p. 72. 

Canil, D., 2008, Canada’s craton: a bottoms-up view: GSA Today, v. 18, p. 4–10. 

Chakrabarti, R., Abanda, P.A., Hannigan, R.E., and Basu, A.R., 2007, Effects of diagenesis on 
the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Magnafacies: 
Chemical Geology, v. 244, p. 221–231, doi: 10.1016/j.chemgeo.2007.06.017. 

Chen, R., 2016, Dominant controls on organic-rich shale deposition: Geochemical evidences 
from the Marcellus Shale in the Appalachian basin [Ph.D. Dissertation]: West Virginia 
University, 119 p. 

Currie, K.L., and Breemen, O.V., 1996, Data on the origin of the Kipawa Syenite Complex, 
northwestern Quebec: The Canadian Mineralogist, v. 34, p. 435–451, doi: 
10.4095/209524. 



 
54 

 

DePaolo, D.J., 1981, Neodymium isotopes in the Colorado Front Range and crust–mantle 
evolution in the Proterozoic: Nature, v. 291, p. 193–196, doi: 10.1038/291193a0. 

DePaolo, D.J., and Wasserburg, G.J., 1976, Nd isotopic variations and petrogenetic models: 
Geophysical Research Letters, v. 3, p. 249–252, doi: 10.1029/gl003i005p00249. 

Drewry, G.E., Ramsay, A.T.S., and Smith, A.G., 1976, Climatically controlled sediments, the 
geomagnetic field, and trade wind belts in Phanerozoic time: A Reply: The Journal of 
Geology, v. 84, p. 374–375, doi: 10.1086/628203. 

D’Hulst, A., Beaudoin, G., Malo, M., Constantin, M., and Pilote, P., 2008, Geochemistry of 
Sainte-Marguerite volcanic rocks: implications for the evolution of Silurian–Devonian 
volcanism in the Gaspé Peninsula: Canadian Journal of Earth Sciences, v. 45, p. 15–29, 
doi: 10.1139/e07-012. 

Eriksson, K.A., Campbell, I.H., Palin, J.M., Allen, C.M., and Bock, B., 2004, Evidence for 
Multiple Recycling in Neoproterozoic through Pennsylvanian Sedimentary Rocks of the 
Central Appalachian Basin: The Journal of Geology, v. 112, p. 261–276, doi: 
10.1086/382758. 

Ettensohn, F.R., 1985, Controls on development of Catskill Delta complex basin-facies: 
Geological Society of America Special Papers, p. 65–78, doi: 10.1130/spe201-p65. 

Eyles, N., Boyce, J., and Mohajer, A.A., 1993, The bedrock surface of the western Lake Ontario 
region: Evidence of reactivated basement structures?: Géographie physique et 
Quaternaire, v. 47, p. 269, doi: 10.7202/032957ar. 

Faill, R.T., 1985, The Acadian orogeny and the Catskill Delta: Geological Society of America 
Special Papers, p. 15–38, doi: 10.1130/spe201-p15. 

Feng, J.L., Zhu, L.P., Zhen, X.L., and Hu, Z.G., 2009, Grain size effect on Sr and Nd isotopic 
compositions in eolian dust: Implications for tracing dust provenance and Nd model age: 
Geochemical Journal, v. 43, p. 123–131, doi: 10.2343/geochemj.1.0007. 

Ferrari, A.C., and Robertson, J., 2000, Interpretation of Raman spectra of disordered and 
amorphous carbon: Physical Review B, v. 61, p. 14095–14107, doi: 
10.1103/physrevb.61.14095.  

Harper, J.A., and Piotrowski, R.G., 1978, Stratigraphy, extent, gas production, and future gas 
potential of the Devonian organic-rich shales in Pennsylvania: Second Eastern Gas 
Shales Symposium, p. 310–329. 

Harper, J.A., 1989, Effects of recurrent tectonic patterns on the occurrence and development of 
oil and gas resources in western Pennsylvania: Northeastern Geology, v. 11, p. 225–245. 

Hatfield, C.B., Rohrbacher, T.J., and Floyd, J.C., 1968, Directional properties, paleoslope, and 
source of the Sylvania Sandstone (Middle Devonian) of southeastern Michigan and 
northwestern Ohio: Journal of Sedimentary Petrology, v. 38, p. 224–228. 

Horowitz, A.S., and Potter, P.E., 1971, Introductory petrography of fossils: Berlin, Springer. 



 
55 

 

Hurowitz, J.A., and McLennan, S.M., 2005, Geochemistry of Cambro‐Ordovician sedimentary 
rocks of the northeastern United States: Changes in sediment sources at the onset of 
Taconian orogenesis: The Journal of Geology, v. 113, p. 571–587, doi: 10.1086/431910. 

Hupp, B.N., 2017, Provenance of the Hamilton Group: A study of source-to-sink relationships 
within the Middle Devonian central Appalachian Basin [Masters thesis]: West Virginia 
University, 128 p. 

Hupp, B.N., and Weislogel, A.L., 2018, Geochemical insights into provenance of the Middle 
Devonian Hamilton Group of the central Appalachian Basin, U.S.A.: Journal of 
Sedimentary Research, v. 88, p. 1153–1165, doi: 10.2110/jsr.2018.62. 

Kohl, D., Slingerland, R., Arthur, M., Bracht, R., and Engelder, T., 2014, Sequence stratigraphy 
and depositional environments of the Shamokin (Union Springs) Member, Marcellus 
Formation, and associated strata in the middle Appalachian Basin: AAPG Bulletin, v. 98, 
p. 483–513, doi: 10.1306/08231312124. 

Lash, G.G., and Engelder, T., 2011, Thickness trends and sequence stratigraphy of the Middle 
Devonian Marcellus Formation, Appalachian Basin: Implications for Acadian foreland 
basin evolution: AAPG Bulletin, v. 95, p. 61–103, doi: 10.1306/06301009150. 

Lash, G.G., and Blood, D.R., 2014, Organic matter accumulation, redox, and diagenetic history 
of the Marcellus Formation, southwestern Pennsylvania, Appalachian basin: Marine and 
Petroleum Geology, v. 57, p. 244–263, doi: 10.1016/j.marpetgeo.2014.06.001. 

Laughrey, C., and Harper, J., 1986, Comparisons of Upper Devonian and Lower Silurian tight 
formations in Pennsylvania—Geological and Engineering Characteristics: Geology of 
Tight Gas Reservoirs, v. 24, p. 9–43. 

Lipin, B.R., McKay, G.A., and Boynton, W.V., 1989, Geochemistry and mineralogy of rare earth 
elements: Washington, D.C., Mineralogical Society of America.  

Liu, D., Xiao, X., Tian, H., Min, Y., Zhou, Q., Cheng, P., and Shen, J., 2012, Sample maturation 
calculated using Raman spectroscopic parameters for solid organics: Methodology and 
geological applications: Chinese Science Bulletin, v. 58, p. 1285–1298, doi: 
10.1007/s11434-012-5535-y. 

Lupoi, J.S., Fritz, L.P., Parris, T.M., Hackley, P.C., Solotky, L., Eble, C.F., and Schlaegle, S., 
2017, Assessment of thermal maturity trends in Devonian–Mississippian source rocks 
using Raman spectroscopy: Limitations of peak-fitting method: Frontiers in Energy 
Research, v. 5, doi: 10.3389/fenrg.2017.00024. 

Lupoi, J.S., Fritz, L.P., Hackley, P.C., Solotky, L., Weislogel, A., and Schlaegle, S., 2018, 
Quantitative evaluation of vitrinite reflectance and atomic O/C in coal using Raman 
spectroscopy and multivariate analysis: Fuel, v. 230, p. 1–8, doi: 
10.1016/j.fuel.2018.04.172. 

Martignole, J., and Reynolds, P., 1997, 40Ar/39Ar thermochronology along a western Québec 
transect of the Grenville Province, Canada: Journal of Metamorphic Geology, v. 15, p. 
283–296, doi: 10.1111/j.1525-1314.1997.00018.x. 



 
56 

 

McDonough, W.F., and Sun, S.S., 1995, The Composition of the Earth: Chemical Geology, v. 
120, p. 223–253, doi: 10.1016/0009-2541(94)00140-4. 

McLelland, J.M., Selleck, B.W., and Bickford, M., 2010, Review of the Proterozoic evolution of 
the Grenville Province, its Adirondack outlier, and the Mesoproterozoic inliers of the 
Appalachians: Geological Society of America Memoirs From Rodinia to Pangea: The 
Lithotectonic Record of the Appalachian Region, p. 21–49, doi: 10.1130/2010.1206(02). 

McLennan, S.M., 2001, Relationships between the trace element composition of sedimentary 
rocks and upper continental crust: Geochemistry, Geophysics, Geosystems, v. 2, doi: 
10.1029/2000gc000109. 

McLennan, S.M., Taylor, M.T., McCulloch, M.T., and Maynard, J.B., 1990, Geochemical and 
Nd-Sm isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic 
associations: Geochimica et Cosmochimica Acta, v. 54, p. 2015-2050 

McLennan, S.M., Hemming, S., McDaniel, D.K., and Hanson, G.N., 1993, Geochemical 
approaches to sedimentation, provenance, and tectonics: processes controlling the 
composition of clastic sediments: Geological Society of America Special Papers, p. 21–
40, doi: 10.1130/spe284-p21. 

Milliken, K.L., 2014, A compositional classification for grain assemblages in fine-grained 
sediments and sedimentary rocks—Reply: Journal of Sedimentary Research, v. 84, p. 
1185–1199, doi: 10.2110/jsr.2016.2.  

Mintz, J.S., Driese, S.G., and White, J.D., 2010, Environmental and ecological variability of 
Middle Devonian (Givetian) forests in Appalachian Basin paleosols, New York, United 
States: Palaios, v. 25, p. 85–96, doi: 10.2110/palo.2009.p09-086r. 

MSEEL Gas Production for MIP-3H, Marcellus Shale Energy and Environment Laboratory, 
http://mseel.org/ (accessed March 2019). 

Murphy, A.E., Sageman, B.B., Straeten, C.A.V., and Hollander, D.J., 2000, Organic carbon 
burial and faunal dynamics in the Appalachian Basin during the Devonian (Givetian–
Famennian) greenhouse: an integrated paleoecological and biogeochemical approach: 
warm climates in Earth History, p. 351–385, doi: 10.1017/cbo9780511564512.013 

Murphy, J.B., Staal, C.R.V., and Keppie, J.D., 1999, Middle to late Paleozoic Acadian orogeny 
in the northern Appalachians: A Laramide-style plume-modified orogeny?: Geology, v. 
27, p. 653, doi: 10.1130/0091-7613(1999)027<0653:mtlpao>2.3.co;2. 

Nelson, B.K., and DePaolo, D.J., 1988, Comparison of Isotopic and Petrographic Provenance 
Indicators in Sediments from Tertiary Continental Basins of New Mexico: SEPM Journal 
of Sedimentary Research, v. Vol. 58, doi: 10.1306/212f8d91-2b24-11d7-
8648000102c1865d. 

Nesbitt, H.W., and Young, G.M., 1982, Early Proterozoic climates and plate motions inferred 
from major element chemistry of lutites: Nature, v. 299, p. 715–717, doi: 
10.1038/299715a0. 



 
57 

 

Ohr, M., Halliday, A.N., and Peacor, D.R., 1994, Mobility and fractionation of rare earth 
elements in argillaceous sediments: Implications for dating diagenesis and low-grade 
metamorphism: Geochimica et Cosmochimica Acta, v. 58, p. 289–312, doi: 
10.1016/0016-7037(94)90465-0. 

Oil and Gas Reports, Pennsylvania Department of Environmental Protection, 
https://www.dep.pa.gov/DataandTools/Reports/Oil and Gas reports/Pages/default.aspx 
(accessed March 2019). 

Park, H., Barbeau, D.L.B., Rickenbaker, A., Bachmann‐Krug, D., and Gehrels, G., 2010, 
Application of foreland basin detrital‐zircon geochronology to the reconstruction of the 
southern and central Appalachian Orogen: The Journal of Geology, v. 118, p. 23–44, doi: 
10.1086/648400. 

Paronish, T.J., 2018, Meso- and macro-Scale facies and chemostratigraphic analysis of Middle 
Devonian Marcellus Shale in northern West Virginia, USA [Masters thesis]: West 
Virginia University, 383 p. 

Parrish, C.B., 2013, Insights into the Appalachian Basin Middle Devonian depositional system 
from U-Pb zircon geochronology of volcanic ashes in the Marcellus Shales and 
Onondaga Limestone [Masters Thesis]: West Virginia University, Morgantown, West 
Virginia, 149 p. 

Patchett, P.J., Ross, G.M., and Gleason, J.D., 1999, Continental drainage in North America 
during the Phanerozoic from Nd Isotopes: Science, v. 283, p. 671–673, doi: 
10.1126/science.283.5402.671. 

Percival, J.A., Sanborn-Barrie, M., Skulski, T., Stott, G.M., Helmstaedt, H., and White, D.J., 
2006, Tectonic evolution of the western Superior Province from NATMAP and 
Lithoprobe studies: Canadian Journal of Earth Sciences, v. 43, p. 1085–1117, doi: 
10.1139/e06-062. 

Phan, T.T., Gardiner, J.B., Capo, R.C., and Stewart, B.W., 2018, Geochemical and multi-isotopic 
(87 Sr/ 86 Sr, 143 Nd/ 144 Nd, 238 U/ 235 U) perspectives of sediment sources, 
depositional conditions, and diagenesis of the Marcellus Shale, Appalachian Basin, USA: 
Geochimica et Cosmochimica Acta, v. 222, p. 187–211, doi: 10.1016/j.gca.2017.10.021. 

Pinet, N., 2016, Far-field effects of Appalachian orogenesis: A view from the craton: Geology, v. 
44, p. 83–86, doi: 10.1130/g37356.1. 

Prevec, S.A., 2004, Basement tracing using Mid-Proterozoic anorthosites straddling a 
palaeoterrane boundary, Ontario, Canada: Precambrian Research, v. 129, p. 169–184, 
doi: 10.1016/j.precamres.2003.10.009. 

Queen, M., Hanes, J.A., Archibald, D.A., Farrar, E., and Heaman, L.M., 1996, 40Ar/39Ar 
phlogopite and U – Pb perovskite dating of lamprophyre dykes from the eastern Lake 
Superior region: evidence for a 1.14 Ga magmatic precursor to Midcontinent Rift 
volcanism: Canadian Journal of Earth Sciences, v. 33, p. 958–965, doi: 10.1139/e96-072. 

 



 
58 

 

Rahl, J., Anderson, K., Brandon, M., and Fassoulas, C., 2005, Raman spectroscopic 
carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and 
application to tectonic exhumation in Crete, Greece: Earth and Planetary Science Letters, 
v. 240, p. 339–354, doi: 10.1016/j.epsl.2005.09.055. 

Repetski, J.E., Ryder, R.T., Weazy, D.J., Harris, A.G., and Trippi, M.H., 2008, Thermal maturity 
patterns (CAI and % Ro) in Ordovician and Devonian rocks of the Appalachian Basin: A 
major revision of U.S. Geological Survey Map I-917 using new subsurface collections: 
U.S. Geological Survey Scientific Investigations Map 3006. 

Roser, B.P., and Korsch, R.J., 1988, Provenance signatures of sandstone-mudstone suites 
determined using discriminant function analysis of major-element data: Chemical 
Geology, v. 67, p. 119-139. 

Ryder, R.T., Trippi, M.H., Swezey, C.S., Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, 
E.E., 2012, Geologic cross section C-C’ through the Appalachian Basin from Erie 
County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-
central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 
sheets, 70 p. pamphlet. 

Sageman, B.B., Murphy, A.E., Werne, J.P., Straeten, C.A.V., Hollander, D.J., and Lyons, T.W., 
2003, A tale of shales: the relative roles of production, decomposition, and dilution in the 
accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin: 
Chemical Geology, v. 195, p. 229–273, doi: 10.1016/s0009-2541(02)00397-2. 

Sanford, B.V., Thompson, F.J., and McFall, G.H., 1985, Plate tectonics -- A possible controlling 
mechanism in the development of hydrocarbon traps in Southwestern Ontario: Bulletin of 
Canadian Petroleum Geology, v. 33, p. 52–71. 

Sauerer, B., Craddock, P.R., Aljohani, M.D., Alsamadony, K.L., and Abdallah, W., 2017, Fast 
and accurate shale maturity determination by Raman spectroscopy measurement with 
minimal sample preparation: International Journal of Coal Geology, v. 173, p. 150–157, 
doi: 10.1016/j.coal.2017.02.008. 

Schito, A., Romano, C., Corrado, S., Grigo, D., and Poe, B., 2017, Diagenetic thermal evolution 
of organic matter by Raman spectroscopy: Organic Geochemistry, v. 106, p. 57–67, doi: 
10.1016/j.orggeochem.2016.12.006. 

Schoonmaker, A., Kidd, W.S.F., Reusch, D.N., Dorias, M.J., Gregg, T., and Spencer, C., 2011, 
Stratigraphic context, geochemical, and isotopic properties of magmatism in the Siluro-
Devonian inliers of northern Maine: implications for the Acadian Orogeny: American 
Journal of Science, v. 311, p. 528–572. 

Selleck, B.W., Chiarenzelli, J., Kratzmann, D.J., Christoffersen, P., and Durham, A., 2014, 
Detrital zircon geochronology and provenance of Middle and Upper Devonian strata, 
northern Appalachian Basin of New York State: Geological Society of America- 
Abstracts with Programs, v. 46, no. 2, p. 98. 

 



 
59 

 

Taylor, S.R., Rudnick, R.L., Mclennan, S.M., and Eriksson, K.A., 1986, Rare earth element 
patterns in Archean high-grade metasediments and their tectonic significance: 
Geochimica et Cosmochimica Acta, v. 50, p. 2267–2279, doi: 10.1016/0016-
7037(86)90081-5. 

Tollo, R.P., Aleinikoff, J.N., Borduas, E.A., Hackley, P.C., and Fanning, C.M., 2004, Petrologic 
and geochronologic evolution of the Grenville orogen, northern Blue Ridge Province, 
Virginia: Memoir 197: Proterozoic Tectonic Evolution of the Grenville Orogen in North 
America, p. 647–677, doi: 10.1130/0-8137-1197-5.647. 

Ver Straeten, C.A., Brett, C.E., and Sageman, B.B., 2011, Mudrock sequence stratigraphy: A 
multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian 
Appalachian Basin: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 304, p. 54–
73, doi: 10.1016/j.palaeo.2010.10.010. 

Volkert, R.A., Feigenson, M.D., Patino, L.C., Delaney, J.S., and Drake, A.A., 2000, Sr and Nd 
isotopic compositions, age and petrogenesis of A-type granitoids of the Vernon 
Supersuite, New Jersey Highlands, USA: Lithos, v. 50, p. 325–347, doi: 10.1016/s0024-
4937(99)00065-1. 

Weicht, D., 2015, 3D Seismic, Mechanical Stratigraphy, and Petrophysical Analysis of the  
Marcellus Shale in Taylor County, West Virginia [Masters thesis]: West Virginia 
University, 77 p.. 

Wendell, C., Mosher, D., Regan, S., Cousens, B.L., Aspler L.B., Chiarenzelli, J. and Chiarenzelli 
J.R., 2010, Geochemical and Isotopic Characterization of Potential Gas Bearing Units of 
the Utica and Marcellus Shale, New York: Geological Society of America- Abstracts 
with Programs, v. 42, no. 1, p. 63. 

Werne, J.P., Sageman, B.B., Lyons, T.W., and Hollander, D., 2002, An integrated assessment of 
a "type euxinic" deposit: Evidence for multiple controls on black shale deposition in the 
middle Devonian Oatka Creek Formation: American Journal of Science, v. 302, p. 110–
143, doi: 10.2475/ajs.302.2.110. 

Wonnell, C.S., 2015, Lithofacies and sequence stratigraphy of the Middle Devonian Marcellus 
Formation for a cored well in Clearfield County, Pennsylvania using core analysis 
methods [Masters thesis]: West Virginia University, 114 p. 

Woodrow, D.L., 1985, Paleogeography, paleoclimate, and sedimentary processes of the Late 
Devonian Catskill Delta: Geological Society of America Special Papers, p. 51–64, doi: 
10.1130/spe201-p51. 

WVDEP Office of Oil & Gas Well Information, http://tagis.dep.wv.gov/oog/ (accessed March 
2019). 

Zagorski, William A., Emery, M., and Ventura, J. L., 2017, The Marcellus Shale Play: Its 
discovery and emergence as a major global hydrocarbon accumulation, in R. K. Merrill 
and C. A. Sternbach, eds., Giant fields of the decade 2000–2010: AAPG Memoir 113, p. 
55–90.



60 
 

APPENDICES 
APPENDIX I. ICP-MS elemental concentrations (weight percent and parts per million) of the samples collected from the Armstrong (A) 
and Coldstream (C) wells. Fe2O3 represents total iron.  

Element 
Unit 

Symbol 
Detection 

Limit 
A-

7660 
A-

7670 
A-

7705 
A-

7730 
A-

7760 
C-

7032 
C-

7060 
C-

7075 
C-

7110 
C-

7144 
SiO2 % 0.01 56.93 62.04 56.4 60.39 35.13 54.42 54.65 52.83 57.47 58.31 

Al2O3 % 0.01 15.61 15.74 19.32 11.02 6.32 16.05 17.71 19.29 14.16 15.22 
Fe2O3(T) % 0.01 6.46 5.77 5.62 4.12 4.17 6.25 6.07 5.99 6.06 5.67 

MnO % 0.001 0.071 0.039 0.029 0.021 0.027 0.061 0.043 0.027 0.028 0.028 
MgO % 0.01 1.63 1.33 1.42 0.95 0.83 2.08 1.69 1.49 1.26 1.34 
CaO % 0.01 3.07 1.01 0.7 2.34 22.08 5.03 3.51 0.49 2.69 2.01 
Na2O % 0.01 0.57 0.58 0.62 0.52 0.36 0.59 0.68 0.71 0.66 0.69 
K2O % 0.01 3.8 3.82 4.57 2.76 1.6 3.72 4.09 4.61 3.46 3.8 
TiO2 % 0.001 0.61 0.652 0.708 0.479 0.258 0.677 0.642 0.718 0.657 0.745 
P2O5 % 0.01 0.06 0.06 0.07 0.09 0.07 0.1 0.1 0.07 0.06 0.08 
LOI %  - 9.78 8.92 10.79 17.66 24.23 10.46 9.86 13.43 11.82 11.69 
Total % 0.01 98.59 99.98 100.2 100.3 95.7 99.44 99.05 99.66 98.32 99.58 

Sc ppm 1 17 16 20 17 11 19 20 20 17 17 
Be ppm 1 3 3 4 3 2 3 3 4 3 3 
V ppm 5 197 349 318 720 841 187 167 333 418 317 
Cr ppm 20 90 90 100 80 70 100 100 110 80 90 
Co ppm 1 17 17 18 19 23 14 21 20 21 21 
Ni ppm 20 80 80 140 200 210 60 60 150 160 130 
Cu ppm 10 100 80 110 180 170 50 90 110 90 100 
Zn ppm 30 80 < 30 100 1880 190 80 40 220 120 60 
Ga ppm 1 22 22 25 15 10 23 23 26 20 21 
Ge ppm 1 < 1 < 1 < 1 2 < 1 < 1 < 1 < 1 < 1 < 1 
As ppm 5 16 6 17 29 37 < 5 < 5 16 19 11 
Rb ppm 2 177 181 213 120 64 174 196 227 160 169 
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Element 
Unit 

Symbol 
Detection 

Limit 
A-

7660 
A-

7670 
A-

7705 
A-

7730 
A-

7760 
C-

7032 
C-

7060 
C-

7075 
C-

7110 
C-

7144 

Sr ppm 2 118 108 122 120 392 275 283 218 248 297 
Y ppm 2 26 27 32 42 103 31 30 24 28 35 
Zr ppm 4 96 103 105 101 54 112 106 115 108 123 
Nb ppm 1 9 9 10 7 4 11 10 11 8 10 
Mo ppm 2 30 35 86 193 101 13 7 103 84 73 
Ag ppm 0.5 < 0.5 < 0.5 < 0.5 0.6 0.9 < 0.5 < 0.5 0.5 < 0.5 0.9 
In ppm 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 
Sn ppm 1 2 1 2 2 < 1 2 2 1 < 1 1 
Sb ppm 0.5 2.3 1.4 3.8 9.4 5.3 0.8 < 0.5 2.5 2.6 2.7 
Cs ppm 0.5 9.5 9.7 13.3 9.2 4.2 9.3 11 13.7 9.1 9.7 
Ba ppm 3 786 862 1089 764 550 788 846 1155 820 874 
Bi ppm 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 
La ppm 0.1 35.9 36.9 38.8 35.3 74.7 38.4 39 38.3 35 41 
Ce ppm 0.1 69.1 70.4 74.7 61.2 103 75.1 77.9 72 67 78.4 
Pr ppm 0.05 8.28 8.49 9.52 9.23 15.1 9.2 9.8 8.54 8.19 9.48 
Nd ppm 0.1 31.7 32.9 36.4 37.3 61.3 35 36.8 30.5 31.3 35.2 
Sm ppm 0.1 6.2 6.4 7.5 8.3 13.1 7.2 8.1 5.6 6 7.2 
Eu ppm 0.05 1.27 1.21 1.65 1.83 3.11 1.56 1.71 1.22 1.24 1.37 
Gd ppm 0.1 5 4.8 6.4 8.2 14.8 6.6 6.7 4.4 5.1 6.1 
Tb ppm 0.1 0.8 0.8 1 1.3 2.3 1 1.1 0.7 0.8 1 
Dy ppm 0.1 4.5 4.9 5.8 7.8 14.7 5.9 6.4 4.5 5.1 6.1 
Ho ppm 0.1 0.9 1 1.1 1.5 3.2 1.1 1.2 0.9 1 1.2 
Er ppm 0.1 2.6 2.8 3 4.5 9.5 3.3 3.3 2.7 2.9 3.5 
Tm ppm 0.05 0.4 0.4 0.47 0.62 1.41 0.48 0.49 0.38 0.45 0.5 
Yb ppm 0.1 2.6 2.6 3 3.9 10.5 3.1 3.1 2.5 2.9 3.5 
Lu ppm 0.04 0.39 0.44 0.44 0.57 1.71 0.44 0.49 0.41 0.42 0.53 
Hf ppm 0.2 2.4 2.7 2.7 2.1 1.3 2.9 2.8 2.8 2.6 3.3 
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Element 
Unit 

Symbol 
Detection 

Limit 
A-

7660 
A-

7670 
A-

7705 
A-

7730 
A-

7760 
C-

7032 
C-

7060 
C-

7075 
C-

7110 
C-

7144 
Ta ppm 0.1 0.9 0.9 0.9 0.5 0.2 1 0.9 1.1 0.9 1 
W ppm 1 < 1 < 1 < 1 6 < 1 < 1 < 1 6 < 1 < 1 
Tl ppm 0.1 1.4 2.4 3.2 6.2 3.7 1.3 1.2 2.1 1.6 1.5 
Pb ppm 5 14 6 < 5 27 < 5 8 10 < 5 < 5 6 
Th ppm 0.1 9.7 10.4 10.5 7.1 4.1 10.2 10.3 11.2 9.8 11 
U ppm 0.1 5.8 6.3 17.1 46.6 49.5 5.1 5.7 25.6 15.9 13.9 
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APPENDIX II. Thin section petrography results. Armstrong #1 well samples abbreviated “A” and CSA well samples “C”.  

Sample Picture 
# 

Quartz 
Grain 
Size 

Quartz 
Grain 
Shape 

Sedimentary 
Structures Fossils Other 

Details Objective Light Type 
Milliken 
(2014) 

Classification 

A-7660 
(A) 1 

silt 
(0.012 
mm) 

sub-angular laminations 

compressed 
longitudinal 

benthic 
foraminifera 

(1) 

less 
framboids, 

more 
euhedral 

pyrite 

20x transmitted calcareous tarl 

A-7660 
(B) 2 

silt 
(0.012 
mm)  

sub-angular laminations 

compressed 
longitudinal 

benthic 
foraminifera 

(1) 

  20x reflected calcareous tarl 

A-7670 
(C) 1 

silt 
(0.012 
mm) 

sub-angular faint 
laminations   

some 
euhedral 

pyrite 
20x reflected siliceous tarl 

A-7670 
(D) 2 

silt 
(0.012 
mm) 

sub-angular faint 
laminations   

elongated 
grains in 
bedding 

orientation 

20x transmitted siliceous tarl 

A-7705 
(E) 1 

silt 
(0.009 
mm) 

sub-
rounded -

sub-angular 
  

thin-walled 
brachiopod 

(2) 
  20x reflected siliceous tarl 

A-7705 
(F) 2 

silt 
(0.009 
mm) 

sub-
rounded -

sub-angular 
  

fragmented 
radiolarians 

(2) 

some 
framboids 20x reflected siliceous tarl 

A-7730 
(G) 1 

silt 
(0.009 
mm) 

sub-
rounded -

sub-angular 
  

pyritized 
radiolarian 

(2) 
 framboids 20x reflected siliceous tarl 
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Sample Picture 
# 

Quartz 
Grain 
Size 

Quartz 
Grain 
Shape 

Sedimentary 
Structures Fossils Other 

Details Objective Light Type 
Milliken 
(2014) 

Classification 

A-7730 
(H) 2 

silt 
(0.009 
mm) 

sub-
rounded -

sub-angular 
    

framboids 
and organic 

matter 
20x reflected siliceous tarl 

A-7760 
(I) 1 

silt 
(0.011 
mm) 

sub-
rounded no bedding radiolarian 

(2) framboids 20x reflected argillaceous 
sarl 

A-7760 
(J) 2 

silt 
(0.011 
mm) 

sub-
rounded no bedding  framboids 20x transmitted argillaceous 

sarl 

C-7032 
(K) 1 

silt 
(0.015 
mm) 

sub-angular laminations   
little pyrite, 

zircon 
crystal 

20x reflected siliceous tarl 

C-7032 
(L) 2 

silt 
(0.015 
mm) 

sub-angular laminations     20x reflected siliceous tarl 

C-7060 
(M) 1 

silt 
(0.014 
mm) 

sub-angular few faint 
laminations 

foraminifera 
wall 

fragment (1) 

calcite 
filled veins 20x reflected calcareous tarl 

C-7060 
(N) 2 

silt 
(0.014 
mm) 

sub-angular few faint 
laminations 

euhedral 
pyrite in 

foraminifera 
(1) 

calcite 
filled veins 20x transmitted calcareous tarl 

C-7075 
(O) 1 

silt 
(0.015 
mm) 

sub-angular few faint 
laminations 

   20x reflected argillaceous 
sarl 

C-7075 
(P) 2 

silt 
(0.015 
mm) 

sub-angular few faint 
laminations 

 euhedral 
pyrite 20x reflected argillaceous 

sarl 
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Sample Picture 
# 

Quartz 
Grain 
Size 

Quartz 
Grain 
Shape 

Sedimentary 
Structures Fossils Other 

Details Objective Light Type 
Milliken 
(2014) 

Classification 

C-7110 
(Q) 1 

silt 
(0.011 
mm) 

sub-
rounded 

very few 
laminations   calcite 

filled veins 20x reflected argillaceous 
sarl 

C-7110 
(R) 2 

silt 
(0.011 
mm) 

sub-
rounded 

very few 
laminations   calcite 

filled veins 20x transmitted argillaceous 
sarl 

C-7144 
(S) 1 

silt 
(0.011 
mm) 

sub-
rounded -

sub-angular 

few faint 
laminations 

 calcite 
filled veins 20x reflected argillaceous 

sarl 

C-7144 
(T) 2 

silt 
(0.011 
mm) 

sub-
rounded -

sub-angular 
    calcite 

filled veins 20x transmitted argillaceous 
sarl 

(1) Identified using Horowitz and Potter (1971) and Chen (2016).  
(2) Identified using Horowitz and Potter (1971) and Hupp (2017).  
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APPENDIX III. XRD mineralogy results from the Armstrong #1 well collected by Core 
Laboratories.  

Depth Calcite Dolomite Carbonate Quartz Total Clay Chlorite TOC 
7655 0.0 0.8 0.8 40.1 45.8 12.4 4.5 
7675 75.0 16.0 91.0 3.9 4.4 1.3 1.4 
7685 2.0 6.5 8.5 44.7 36.7 8.4 6.4 
7695 3.3 2.8 6.1 34.0 43.3 6.8 4.1 
7714 5.7 2.1 7.8 33.7 38.1 0.0 4.3 
7734 1.9 1.7 3.6 58.5 26.4 0.0 5.8 
7745 11.7 2.7 14.4 47.1 25.1 0.0 5.3 
7752 20.9 1.1 22.0 46.7 19.9 0.0 4.6 
7765 3.6 1.8 5.4 61.3 19.1 0.0 5.1 
7774 93.5 0.6 94.1 5.5 0.0 0.0 2.4 
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APPENDIX IV. XRD mineralogy results from the CSA well collected by Wonnell (2015). 

Depth Calcite Dolomite Carbonate Quartz 
Total 
Clay Chlorite TOC 

7028.0 1.0 1.0 2.0 37.7 50.6 16.3 2.2 
7038.0 0.0 0.4 0.4 37.3 52.1 15.8 4.1 
7049.0 16.2 5.0 21.2 30.1 40.2 14.1 5.0 
7058.6     5.0 52.0 39.0   2.0 
7059.0 0.0 0.0 0.0 31.8 56.9 13.9   
7064.6     5.0 51.0 41.0   6.5 
7069.3     32.0 36.0 29.0     
7070.0 33.1 3.7 36.8 25.0 30.1 8.8   
7074.5     1.0 45.0 48.0   5.0 
7078.2     13.0 42.0 37.0     
7079.0 5.1 1.7 6.8 26.6 40.3 10.6   
7082.4     0.0 48.0 42.0     
7089.0 0.3 0.0 0.3 44.4 41.9 9.9 6.5 
7095.5     5.0 48.0 41.0   4.0 
7098.0     5.0 51.0 38.0     
7099.5 0.6 0.4 1.0 33.1 47.8 8.9   
7102.1     3.0 49.0 39.0     
7107.0 13.2 3.7 16.9 35.6 38.6 8.8 5.0 
7108.4     9.0 50.0 35.0     
7114.5     5.0 34.0 56.0   4.5 
7119.0 10.4 3.0 13.4 35.3 38.8 7.4   
7124.8     2.0 50.0 42.0   3.5 
7125.9     3.0 52.0 39.0     
7127.0     30.0 39.0 26.0     
7128.0 12.3 1.6 13.9 33.8 34.8 7.3   
7130.0     5.0 5.2 38.0     
7133.8     4.0 51.0 40.0   6.0 
7134.9     3.0 54.0 38.0     
7135.0 7.5 1.4 8.9 39.8 38.3 6.7   
7136.9     13.0 47.0 35.0     
7140.0     9.0 49.0 35.0     
7145.0 2.6 1.0 3.6 38.4 43.1 8.1 8.0 
7145.8     2.0 49.5 39.6     
7148.7     5.0 50.0 39.0     
7150.1     5.0 43.0 40.0     
7154.4     6.0 47.0 35.0     
7154.8     5.0 42.4 36.4     
7155.0 11.3 3.2 14.5 60.3 13.5 1.0   
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APPENDIX V. Raw data of the Sm-Nd isotopic analysis. “A” represents the Armstrong #1 well. “C” represents the Coldstream well. 

Sample 
Name A-7660 A-7670 A-7705 A-7730 A-7760 C-7032 C-7060 C-7075 C-7110 C-7144 

Sample (g) 0.02682 0.02942 0.02641 0.02770 0.02822 0.02679 0.02309 0.02639 0.02241 0.02397 
Spike (g) 0.21891 0.24239 0.21637 0.22640 0.21639 0.21950 0.19008 0.21652 0.18422 0.19719 

Raw Data                     
143Nd / 144Nd 0.512069 0.512077 0.512088 0.512147 0.512158 0.512062 0.512090 0.512046 0.512084 0.512074 

1σ %Std. 
Error 0.000900 0.000800 0.000900 0.000900 0.000800 0.000900 0.000800 0.000800 0.000800 0.001800 

147Sm / 152Sm 1.260868 1.219011 1.091014 1.063994 0.868336 1.128917 1.073056 1.268579 1.264566 1.118199 
1s %Std. 

Error 0.002300 0.002000 0.001200 0.001700 0.002000 0.002200 0.001800 0.001500 0.002000 0.002400 
149Sm / 

152Sm(raw) 0.522127 0.522490 0.522544 0.522105 0.521288 0.522819 0.521511 0.522222 0.522892 0.522363 
Calculated                     

Nd ppm 28.2 30.1 34.3 33.5 53.9 31.6 35.1 28.9 27.5 33.7 
Sm ppm 5.3 5.7 7 7.4 11.4 6.6 7.3 5.3 5.3 6.7 

147Sm / 144Nd 0.1139 0.1144 0.1242 0.1339 0.1280 0.1259 0.1263 0.1103 0.1169 0.1207 
2σ 0.0008 0.0008 0.0009 0.0009 0.0008 0.0008 0.0009 0.0008 0.0008 0.0008 

TDM Ga 1.65E+09 1.64E+09 1.80E+09 1.91E+09 1.76E+09 1.88E+09 1.84E+09 1.62E+09 1.68E+09 1.76E+09 
εNd  -11.10 -10.94 -10.73 -9.58 -9.36 -11.25 -10.69 -11.55 -10.81 -11.00 
2σ 0.18 0.16 0.18 0.18 0.16 0.18 0.16 0.16 0.16 0.36 
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APPENDIX VI. Ten Raman spectra for each depth in the CSA, Armstrong #1, and MSEEL 
wells. Raman shift (cm-1) is on the x-axis and counts is on the y-axis. All spectra have peaks 
around 1350 and 1600 cm-1.  
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APPENDIX VII. Six-peak fit on a spectrum from the CSA well at a depth of 7099 feet.  
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APPENDIX VIII.  REE concentrations of the Armstrong #1 and CSA wells normalized to 
chondrite. 𝛕𝛕DM is displayed next to the depth as a comparison of REE enrichment during older 
𝛕𝛕DM ages.  
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