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ABSTRACT 

Streptococcal collagen-like protein 1, Scl1, modulates group A Streptococcus 
adhesion, biofilm formation and virulence 

Beth A. Bachert 

Background: The collagens comprise a large family of versatile proteins found in all three 

domains of life. The streptococcal collagen-like protein 1, Scl1, of group A Streptococcus 

(GAS) binds extracellular matrix components (ECM), cellular fibronectin and laminin, via 

the surface-exposed globular domain. GAS strains express Scl1 and form biofilm in vitro, 

except for M3-type strains that are particularly invasive to humans. Hypothesis: Lack of 

Scl1 adhesin in M3 GAS results in decreased adherence and biofilm formation, and 

increased virulence. Results and Discussion: First crystal structure of the globular domain 

revealed a unique six-helical bundle fold, consisting of three pairs of alpha helices 

connected by variable loops. ECM binding by Scl1 promotes the formation of stable tissue 

microcolonies, which was demonstrated in vitro during infection of wounded human skin 

equivalents. A conserved nonsense mutation was identified in the scl1 allele of the M3-type 

strains (scl1.3) that truncates the coding sequence, presumably resulting in a secreted Scl1 

variant. Absence of Scl1 on the surface of M3-type GAS was demonstrated experimentally, 

as well as diminished expression of the scl1 transcript in M3 strains relative to other M-

types. Therefore, M3-type strains have reduced biofilm capacity on ECM coatings relative 

to other M-types. Constructed full-length recombinant Scl1.3 protein displayed binding 

capacity to cellular fibronectin and laminin, and M3 strains complemented with functional 

Scl1.3 adhesin displayed increased biofilm formation. The isoallelic M3 strain, carrying a 

rare “carrier” allele encoding cell-associated Scl1.3 variant, showed decreased pathology 

in mice, compared to the invasive M3 strain. Similarly, scl1 inactivation in biofilm-capable 

M28- and M41-type GAS led to increased lesion size during subcutaneous infection. 

Conclusions: The studies presented here demonstrate the importance of surface Scl1 in 

modulating biofilm formation and virulence of GAS, and provide insight into the structure 

and function of Scl proteins. 
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Preface  

The Ph.D. Thesis presented here represents a subset of research performed by Beth 

Bachert that is thematically focused on the importance of the major surface adhesin, the 

streptococcal collagen-like protein 1 (Scl1), in the pathogenesis of group A 

Streptococcus. The chapters herein correspond to published peer-reviewed research 

papers and are grouped into two parts that address: Part I) the role of Scl1 in adherence, 

biofilm formation, and virulence, and Part II) structural analysis of the Scl proteins. 

Additional published data are presented in Part III that resulted from Author’s projects, 

focused on utilization of collagen-like genes as epidemiological and detection markers, 

which were carried out under a two-year Graduate Fellowship in Nanotechnology Sensing 

Advances in Field and Environment (NanoSAFE).  

Research included in Part I demonstrates that Scl1 significantly contributes to 

biofilm formation in multiple M-types, except for invasive M3-type strains that were 

naturally diminished in the capacity to form biofilm (Chapter 1). Non-invasive M28- and 

M41-type strains produced significant biomass and biofilm structure associated with 

extracellular glycocalyx. Biofilm phenotype was significantly reduced in scl1 isogenic 

mutants but was gained following heterologous complementation of Lactococcus lactis 

with Scl1. A unique scl1.3 allele is reported that is conserved in M3 strains, which contains 

a null mutation in the collagen-like region, resulting in a truncated secreted protein. 

Research in Chapter 2 assesses the effect of this null mutation on adherence and biofilm 

formation. The absence of Scl1 on the surface of M3-type GAS was demonstrated, as 

well as diminished scl1-transcript level in comparison to other M-types. Complementation 

of Scl1-deficient M3 GAS with full-length Scl1.3 surface protein conferred biofilm 

formation by these strains. The M3 wild-type strain lacking surface Scl1 did not form tissue 

microcolonies in an in vitro pseudo-organ skin equivalents, whereas Scl1-expressing M41 

strain formed glycocalyx-embedded microcolonies. Inactivation of scl1 in M28 and M41 

GAS resulted in increased virulence in mice. Research in Chapter 3 focuses on M3 

strains harboring a rare carrier allele of scl1.3, which restored the open reading frame 

and the expression of full-length Scl1.3 protein. These strains were attenuated for 

virulence and had increased host cell adherence compared to the wild-type strain.  
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Part II focuses on crystallization and structural characterization of Scl proteins. 

The globular non-collagenous domain of Scl2 from M3-type GAS was crystallized 

(Chapter 4), and revealed a six-helical bundle fold that is rare in bacterial proteins 

(Chapter 5).  

Overall, studies presented in Parts I and II demonstrate the importance of Scl1 in 

adherence and biofilm formation, while revealing an inverse correlation with invasiveness. 

Importantly, our studies provide new insights into the structure-function relationship of Scl 

proteins. 

Additional data presented in Part III, describe interdisciplinary projects aimed at 

development of bacterial models for the microfluidic assessment of epidemiology of group 

A streptococcal strains (Chapter 6) and the detection of the select agents, Burkholderia 

pseudomallei and B. mallei, by targeting collagen-like genes (Chapter 7).  
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GENERAL INTRODUCTION 

COLLAGEN-LIKE PROTEINS OF PATHOGENIC STREPTOCOCCI: BIOLOGY, 

STRUCTURE AND FUNCTION 

 

Summary 

The collagen domain, which is defined by the presence of the Gly-X-Y triplet repeats, is 

amongst the most versatile and widespread known structures found in proteins from 

organisms representing all three domains of life. The streptococcal collagen-like (Scl) 

proteins are widely present in pathogenic streptococci, including Streptococcus 

pyogenes, S. agalactiae, S. pneumoniae, and S. equi. Experiments and bioinformatic 

analyses support that all Scl proteins are homotrimeric and cell wall-anchored. These 

proteins contain the rod-shaped collagenous domain proximal to cell surface, as well as 

a variety of outermost non-collagenous domains that generally lack predicted functions 

but can be grouped into one of six clusters based on sequence similarity. The well-

characterized Scl1 proteins of S. pyogenes show a dichotomous switch in ligand binding 

modalities between human tissue and blood environments. Scl1 adhesin specifically 

recognizes the wound microenvironment, resists killing by neutrophil extracellular traps, 

promotes adhesion and biofilm formation, and modulates S. pyogenes virulence. In blood, 

binding modalities include components of the complement and coagulation-fibrinolytic 

systems, as well as plasma lipoproteins. In all, the Scl proteins signify a large family of 

structurally related surface proteins, which contribute to the ability of streptococci to 

colonize and cause diseases in humans and animals. 

 

Overview of collagens and collagen-like proteins 

A common structure among diverse proteins 

Collagens are ubiquitous in nature. The common feature of the collagen module is a triple-

helical structure consisting of three polyproline-II-like helices supercoiled in a right-

handed direction around a central axis (1). The tight packing of the polypeptide chains 

requires a glycine every third residue, defining the Gly-X-Y repeat motif, where proline 

and hydroxyproline often occupy the X and Y positions of human collagen, respectively. 

Current knowledge on collagen structure is a culmination of fiber diffraction studies, 
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modeling, and crystallographic studies on collagen mimetic peptides. Since a history of 

the structural dissection of collagen is out of the scope of this review, we direct the reader 

to several excellent reviews (2-5). The collagens emerged as essential group of modular 

proteins of metazoans (6). It is a versatile structure, appearing in human extracellular 

matrix proteins, host defense proteins, and anchoring fibrils (5). The collagen domain is 

also present in important proteins in invertebrates, such as the exoskeleton collagens of 

sponges (7), holdfast structure of the mussel byssus (8), and basement membrane and 

cuticle collagens of the nematode Caenorhabditis elegans (9). There has been a large 

number of 18,874 collagen-like proteins (CLPs) annotated in bacteria, 695 in viruses, and 

157 in archaea (search conducted on 9/24/16 in Uniprot database). The name 

streptococcal collagen-like proteins, Scl, in S. pyogenes was coined (10), which was 

followed by Bacillus proteins Bcl (11,12), pneumococcal protein Pcl (13), Lcl of Legionella 

pneumophila (14), and Bucl proteins of Burkholderia spp. (15). However, only a small 

proportion of predicted bacterial CLPs have been investigated thus far.  

 

Origin of the collagenous domain in bacteria  

The origin of the collagenous domain in prokaryotes is still unknown. However, the 

composition of the collagen domain in human and bacterial collagens differs considerably. 

In human collagens, proline and hydroxyproline residues are found preferentially in the X 

and Y positions, respectively, with frequencies of 27% and 38% (3). The abundance of 

hydroxyprolines in mammalian collagens is a major contributor to structural stability of the 

triple helix (16,17) but prokaryotes lack the prolyl hydroxylase enzyme to perform this 

post-translational modification. Therefore, in bacteria more than 30% of proline residues 

are found in the X position but only 5% in the Y position (18). Despite the lack of 

hydroxyproline residues, bacterial CLPs have been shown to form stable triple helices, 

with thermal stabilities similar to human collagens, in the range of 35°-39°C, (19-23). 

These CLPs rely on other mechanisms of helix stabilization, including hydration-mediated 

hydrogen bonding networks, electrostatic interactions between side chains, and the 

presence of specific stabilizing tripeptide repeats (19,24). Proper folding of the triple helix 

is necessary for collagen functionality.  
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Horizontal transfer of collagenous sequences from eukaryotes to prokaryotes has 

been proposed (25). However, recent studies have shown that collagen-like repeats 

arose independently via separate repeat amplification (26). Low-complexity repeats of the 

collagen triple helix could emerge by spontaneous mutations and amplify via simple 

repeat expansion, supporting the hypothesis that eukaryotic and prokaryotic collagens 

may have emerged by convergent evolution. Here, we present clustering analysis, which 

identified common domains in Scl proteins from different streptococcal species and 

subspecies, suggesting that horizontal scl-gene transfer is possible between bacteria that 

share the same human and animal hosts.  

 

Classification of Scl proteins  

CLuster ANalysis of Sequences (CLANS) 

CLANS analysis was performed to obtain a sequence-based classification of Scl proteins. 

This analysis groups protein sequences based on all-against-all pairwise sequence 

similarities without phylogenetic reconstruction (27). CLANS identified six distinct clusters 

(1-6) of Scl proteins across pathogenic streptococci and two clusters (7-8) with phage 

proteins that will not be discussed here (Figure 1A). All Scl proteins share a distinct set 

of conserved features and a similar domain organization (Fig. 1B). They contain a signal 

peptide (not shown), an N-terminal non-collagenous sequence-variable (V) domain, a 

central collagen-like (CL) domain, and a cell-wall associated domain containing the 

LPXTG anchor motif (Gram-positive anchor). The CL domains of different Scl proteins 

are comprised of varying types of Gly-X-Y triplet repeats, and exhibit significant length 

variation due to the expansion and contraction of these repeats. 
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Figure 1. Sequence similarity and structure of Scl proteins in streptococci.  
A. Clustering of Scl proteins using CLuster Analysis of Sequences (CLANS). CLANS clusters and 
visualizes groups of protein sequences based on all-against-all pairwise sequence similarities (e-value 
cutoff for analysis was 10-13) without phylogenetic reconstruction. Each point on the plot represents a Scl 
amino acid sequence, while the connecting lines represent BLAST high-scoring segment pairs. High 
confidence clusters are indicated by circles, while a single low confidence cluster is indicated by a dashed 
circle. A list of Scl proteins identified in each cluster is provided in Table 1. clusters 7 and 8a/8b consist of 
phage-associated proteins and are not discussed in this review.  
B. Cartoon representation of domain organization shared by mature Scl proteins. The Scl proteins consist 
of an N-terminal noncollagenous variable domain (V), a collagen-like domain (CL) containing repeats of 
the classical Gly-X-Y motif, and a C-terminally located cell wall-associated Gram-positive anchor with 
LPXTG motif.  
C. Ribbon and surface models of the homotrimeric Scl2-protein globular domain. Left. Side view of the six-
helix bundle, containing three pairs of antiparallel helices, colored green, orange and magenta, and the 
point of CL-region attachment. Right. Top view, showing the location of exposed hypervariable loop 
regions between each alpha helix pair and the arrangement of the three external helices wrapped around 
three internal helices. 
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Scl proteins of S. pyogenes (clusters 1,2) 

The Scl1 and Scl2 proteins (also known as SclA and SclB) of S. pyogenes are the first 

bacterial CLPs to be reported and studied (10,28-31). Both proteins are homotrimeric and 

contain the globular V domain projected away from the cell surface by the rod-shaped CL 

domain. The V region sequences differ significantly both between and within Scl1 and 

Scl2 variants; for each Scl protein, variants are conserved in strains of the same M-type 

but vary between M-types. The scl1 and scl2 genes have been found in all S. pyogenes 

strains tested and are co-expressed in the exponential phase of growth, although their 

expression is regulated differently. Transcription of the scl1 gene is positively regulated 

by the multiple gene regulator of S. pyogenes, Mga (28,30,32,33). Scl2 expression 

depends on phase variation associated with CAAAA repeats located downstream of the 

start codon (28,29,31).  

 

Scl proteins in streptococci pathogenic to animals (clusters 3, 4 and 6) 

The Scl3, 4 and 6 proteins are found in S. zooepidemicus, a commensal organism found 

in domesticated animals rarely transmitting to humans, and S. equi, a causative agent of 

the serious disease strangles in horses (34). CLANS classified several Scl3 proteins, 

originally denoted SclC for group C 

Streptococcus (35), as well as the 

related proteins SclD-I and SclZ.1-5, 

7 and 12 (36), as belonging to the 

same cluster 3, whereas SclF (37) 

formed an independent cluster 4. 

SclC was shown to be expressed 

during strangles infection, and 

immunization with the recombinant 

SclC protein partially protects against 

infection in both mouse and horse 

models (38-40). An effective multi-

component vaccine for strangles was 

developed that include recombinant 

Table 1. Scl classification by CLANS analysis 
 
Cluster 
No. 

Proteins 
identified 

Organisms* 

1 Scl1 (SclA) S. pyogenes (GAS) 
2 Scl2 (SclB) S. pyogenes (GAS) 
3 SclC, D, E, G, 

H, I 
SclZ.1-5, 7, 12 

S. equi,  
S. zooepidemicus (GCS) 

4 SclF S. equi,  
S. zooepidemicus (GCS) 

5 PclA S. pneumoniae,  
S. agalactiae (GBS)  

6 SclZ.6, 9, 10 
FneC, E, F 

S. equi,  
S. zooepidemicus (GCS) 

7 Phage minor 
structural 
protein 

S. pneumoniae,  
S. agalactiae (GBS) 

8a/b Phage-
associated 
hyaluronidase 

S. pyogenes (GAS),  
S. equi and  
S. dysgalactiae (GCS) 

*Abbreviations in parentheses refer to group A, B,  
and C Streptococcus 
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SclC (40). Several cluster 3 proteins share signature sequences with cluster 2 proteins 

(35), suggesting some Scl3 variants are related to Scl2 and could emerge via inter-

species horizontal gene transfer. A second group of proteins found in both S. equi and S. 

zooepidemicus, classified in cluster 6, included the SclZ.6, 9, and 10 proteins (36), as 

well as FneC, E, and F that were annotated as fibronectin-binding proteins (41).  

 

Scl proteins in S. pneumoniae and S. agalactiae (cluster 5)  

The pneumococcal CLP, PclA (13), is a large surface protein (265 kDa) that contains 

predicted G5 and FIVAR domains, though FIVAR was predicted with low confidence. The 

G5 domain is associated with binding to N-acetylglucosamine and biofilm formation for a 

variety of proteins found in streptococcal and staphylococcal species (42), as well as the 

mycobacterial protein, RpfB, which also contains a triple helix motif (43,44). The FIVAR 

domain is found in surface-associated proteins SasC of Staphylococcus aureus and 

Embp of S. epidermidis that promote fibronectin binding and biofilm formation (45,46). 

The S. agalactiae CLPs also contain the G5 domain, but lack the FIVAR domain. The 

presence of pclA gene was correlated with pneumococcal adherence (13) and also with 

resistance to penicillin and trimethoprim-sulfamethoxazole (47).  

 

The non-collagenous domain in streptococcal CLPs 

The best structurally characterized streptococcal collagens are the two CLPs, Scl1 and 

Scl2, of S. pyogenes. The proteins form stable triple-helical structures when expressed 

as recombinant (rScl) polypeptides (20,24). The non-collagenous V region constitutes 

trimerization domain that augments proper collagen assembly to avoid the misfolding of 

the triple helix due to its repeating structure. However, the V domain of Scls is not 

necessary for triple helix formation in vivo, since the CL region of Scl1 can be expressed 

without the V region as recombinant protein in a folded triple helical state; still, this rScl-

CL construct could not re-fold after thermal denaturation in vitro (20,48). These results 

suggest that V domains of Scls present both structural and ligand-binding functions 

reviewed below.  

Recently, the crystal structure of the V domain of Scl2 from M3-type S. pyogenes 

was reported (49,50). The V domain folds into a six-helical bundle, with three pairs of 
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antiparallel alpha helices each connected by a variable loop region. Three of the helices 

are wound in a left-handed super-helix forming the inner core, which is further wrapped 

by three external alpha helices antiparallel to the internal helices (Fig. 1C). The six-helix 

bundle forms an elongated cylinder measuring about 30 Å in diameter and 60 Å in height. 

This fold is consistent with previous secondary structure predictions that deduced a helix-

loop-helix motif in the primary amino acid sequence (30,51) and is predicted to be 

conserved among Scl1 and Scl2 proteins. Indeed, hydrophobic residues located at 

regular positions of Scl sequences were shown to play a central role in the stabilization 

of the inner core of the 6-helix bundle fold. In addition, the variable loops adopt a well-

defined polyproline II conformation (50).  

 

Scl proteins in pathogenesis: dichotomy of Scl1-ligand binding in human tissue 

and blood 

The Scl1 variants of S. pyogenes bind a wide range of host ligands. The nature of Scl1-

binding modalities between tissue and blood environments is highly significant, as 

described below (Fig. 2). In contrast, the Scl2 proteins failed to bind the majority of ligands 

and their role in pathogenesis is less understood.  

 

Binding modalities in tissue to extracellular matrix and cell receptors 

Scl1 selectively binds cellular fibronectin (cFn), but not plasma fibronectin (pFn), and 

laminin (Lm) (Caswell et al., 2010). Cellular fibronectin is deposited by a variety of cells 

as an insoluble crosslinked protein in tissues and humans express over 20 cFn isoforms 

(52,53). Both pFn and cFn are encoded by a single fibronectin gene and contain a 

conserved structure, consisting of three regions of repeats, type I, II, and III. cFn differs 

from pFn via the inclusion by alternative splicing of extra domains A (EDA) and B (EDB), 

as well as varying numbers of the variable V domain (53). Scl1 proteins specifically bind 

cFn via recognition of the type III repeat, EDA (54). EDA/cFn isoforms are found in low 

levels in normal adult tissue but are upregulated in wounded tissue (55,56), where the 

EDA domain interacts with keratinocyte integrin receptors (57) and is important in the 

wound healing processes (58). S. pyogenes strains may express multiple fibronectin-

binding proteins, including SfbI/PrtF1, PrtF2, SOF, FbaB, SfbX, and Shr, reviewed in (59) 
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that bind the type I and type II repeats; thus, Scl1 binds cFn via unique mechanism 

different from other Fn-binding proteins of S. pyogenes  

Laminin binding was observed for the same Scl1 variants that bind EDA/cFn 

isoforms (60). The molecular basis for recognizing both ligands is undetermined due to a 

lack of sequence similarity between EDA and Lm chains α, β, or γ. At least 15 laminin 

heterotrimers have been identified in human tissues and binding studies with individual 

laminins represent a technical challenge. Two Lm-binding proteins, Lbp and Shr, in S. 

pyogenes have been reported in addition to Scl1 (61-63). Given the localization of some 

laminins to basement membranes, Lm binding by S. pyogenes likely represents a relevant 

pathogenesis trait.  

The Scl1.41 variant, expressed by M41-type strains, directly binds human collagen 

receptors α2β1 and α11β1 integrins through the GLPGER motif in the Scl1-collagenous 

domain (64,65). A similar binding motif GF/LOGER (O represents hydroxyproline), as well 

as derived sequence motifs GR/AOGER and GASGER, were identified in human 

collagens as integrin-binding sites (66). Other Scl-integrin binding motifs are found in 

Scl2-CL regions, such as RGD and KGD sequences. In addition, the GAPGER and 

GKPGER motifs are found in SclZ/Scl3 proteins (36).  

 

Significance of ligand-binding modalities in tissue 

S. pyogenes forms biofilms, or microcolonies, in infected tissue (67,68). In vitro assays 

showed enhanced biofilms formed by strains of multiple M-types on ECM coatings, 

including Fn and collagens type I and IV (69,70). Scl1 plays an important role in biofilm 

formation, as isogenic scl1-inactivated mutants had significantly reduced overall biofilm 

biomass and decreased biofilm thickness (71). In addition, enhanced Scl1-mediated 

biofilms were observed on simple cFn and Lm coatings, as well as on complex 

extracellular matrix deposited by human dermal fibroblasts (54). Furthermore, inhibition 

experiments employing EDA-derived peptide and anti-EDA mAb showed significantly 

reduced adherence of S. pyogenes cells to fibroblast-derived matrix, indicating the Scl1-

EDA/cFn interaction supports bacterial adherence  

The M3-type S. pyogenes strains, which are particularly invasive to humans, lack 

Scl1 protein due to a null mutation within the CL-region coding sequence (10), and form 
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insignificant biofilms (71). Restoration of full-length Scl1 on the surface of M3-type S. 

pyogenes restored biofilm formation on cFn and Lm coatings (72). Also, biofilm-capable 

Scl1-expressing M41-type strain produced glycocalyx-embedded tissue microcolonies in 

an in vitro skin equivalent infection model, while biofilm-poor Scl1-lacking M3 strain did 

not. Rare M3 strains containing the “scl1.3 carrier allele”, with restored open reading 

frame, were less invasive in a mouse model of necrotizing fasciitis than typical M3 strains 

lacking Scl1 (73). Scl1-deficient mutants of M28- and M41-type S. pyogenes as well as 

M3-type S. pyogenes naturally lacking Scl1, displayed increased invasiveness in mice 

(72). Altogether, these results support the concept that S. pyogenes adherence to ECM 

and stable biofilm formation that are conferred by surface-attached Scl1, promote 

localized infection over invasive spread.  

Scl1 binding to the α2β1 integrin promoted fibroblast adhesion and spreading, and 

induced intracellular signaling typical of integrin pathway, thus, mimicking the functional 

role of human collagen. Direct binding of Scl1 to the α2β1 integrins promotes S. pyogenes 

internalization by epithelial cells, resulting in increased intracellular pools as well as 

increased re-emergence of bacteria (74). The α2β1 and α11β1 integrins are expressed by 

fibroblasts, endothelial, and epithelial cells (75,76), indicating Scl1 has the potential to 

adhere to and invade a variety of cell types in the human host. Additionally, the RGD and 

KGD sequences that are cryptic within the collagen triple helix, become available for 

binding during tissue remodeling (77).  

A recent study reported a novel role for Scl1 of M1 S. pyogenes in resistance to 

neutrophil extracellular traps (NETs). The Scl1-deficient mutant produced smaller skin 

lesions in mice in vivo, compared to the parental strain, which was associated with 

increased killing by NETs in vitro. Neutrophils incubated with Scl1-deficient mutant in vitro 

displayed increased NET formation than with wild-type strain, indicating Scl1 inhibited 

NET production by neutrophils. Moreover, Scl1-deficient S. pyogenes had increased 

sensitivity to cathelicidin killing in vitro (78). Additional studies would confirm if Scl1 

variants from divergent M-types also harbor this function. 
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Figure 2. Dichotomous nature of ligand binding by Scl1 in human tissue and blood.  
A. Binding modalities in tissue. S. pyogenes accesses human tissue via portal of entry (skin, pharyngeal mucosa) 

represented here as a breach of skin epidermis extending into the underlying dermis. The globular domain of Scl1 
surface adhesin selectively recognizes the EDA-containing isoforms of cellular fibronectin (EDA/cFn) and laminin (Lm). 
Scl1-mediated tissue microcolonies, embedded in glycocalyx, are formed and stabilized by interactions between Scl1 
and the surrounding wound microenvironment. The collagenous domain of Scl1 directly binds human collagen 
receptors, integrins α2β1 and α11β1 on the host cell surface, promoting pathogen internalization, survival and 
reemergence. Scl1 decreases the formation of extracellular traps (NETs) produced by infiltrating neutrophils and killing 
by NET-associated cathelicidin. B. Binding modalities in blood. During dissemination to the blood and deeper tissue, 

Scl1 contributes immune evasion and survival of S. pyogenes via several mechanisms. Binding to complement factor 
H (CFH) mediates cleavage of C3b by factor I, thus, preventing S. pyogenes opsonization, while binding to factor H-
related protein 1 (CFHR1) prevents the formation of the C5 convertase and assembly of the membrane attack complex 
(MAC). Scl1-mediated adsorption of plasma lipoproteins LDL/HDL on the S. pyogenes surface may prevent immune 

recognition and/or promote LDL/HDL receptor-mediated endocytosis, intracellular survival and reemergence. Scl1 
binding to and activation of the thrombin-activatable fibrinolysis inhibitor (TAFI) prevents clot breakdown, providing a 
protective niche for streptococci. 
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Binding modalities in blood  

The Scl1 proteins from M6- and M55-type S. pyogenes bind the complement factor H 

(CFH) and complement factor H-related protein 1 (CFHR1) via Scl1’s globular V domain 

(79). The CFH protein is composed of 20 short consensus repeats (SCRs) that facilitate 

ligand binding and co-factor function for complement factor I (CFI)-mediated C3b 

degradation; the C-terminal SCRs 18-20 are involved in binding to cell surfaces, while 

SCRs 1-4 harbors the co-factor function (80). The CFHR1 protein comprises five SCRs, 

of which the C-terminal SCRs 3-5 share 99% sequence identity, and therefore surface-

binding function, with the SCRs 18-20 of CFH. CFHR1 inhibits the C5 convertase and the 

formation of the membrane attack complex (81). Using recombinant fragments of the CFH 

proteins, the Scl1 binding site was mapped in the C-terminal SCRs 19-20 of CFH and 

SCR 4 of CFHR1 (82). Notably, other known CFH-binding proteins of S. pyogenes, such 

as certain M and M-like proteins and Fba, bind to SCR7 of CFH, as well as complement 

factor H-like (CFHL) protein (82). Borrelia burgdorferi also expresses surface proteins 

with similar CFH-binding characteristics via the C-terminus (83,84).  

Recombinant Scl1 proteins derived from diverse M-types bind the apolipoprotein 

ApoB100 of low density lipoprotein (LDL) (51). Binding of rScl1 constructs to LDL was 

facilitated by the Scl1-globular V domain with binding affinities of KD values in the 

nanomolar range. Importantly, LDL from human plasma was absorbed by the wild-type 

cells of S. pyogenes but not by the scl1-inactivated mutant cells (51). A similar binding 

with ApoAI apolipoprotein and high density lipoprotein (HDL) was demonstrated for rScl1 

construct derived from M41-type S. pyogenes (85). HDL binding was inhibited by low 

concentration of the nonionic detergent Tween20, suggesting hydrophobic interaction to 

both rScl1 protein and S. pyogenes cells.   

Some recombinant Scl proteins also bind thrombin-activatable fibrinolysis inhibitor 

(TAFI) with KD values in the nanomolar range (86) and the binding site was mapped to 

residues 205-232 within the TAFI protein (87). TAFI is a zinc-dependent 

procarboxypeptidase, which acts as an important fibrinolysis regulator and inflammatory 

mediator upon activation by thrombin, thrombin-thrombomodulin complex, or plasmin. 
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Significance of ligand-binding modalities in blood 

Diverse pathogens express surface proteins that bind complement regulatory proteins, 

including Neisseria gonorrhoeae, Borrelia burgdorferi, Yersinia enterocolitica, and several 

streptococcal species (88). CFH binding to the cell surface prevents C3b deposition and 

phagocytosis, as well as downstream complement-mediated cell lysis. In vitro, rScl1-

bound CFH retained its co-factor function, mediating the proteolytic breakdown of C3b by 

CFI (79). Similarly, CFHR1 binding to rScl1 inhibited the formation of the membrane 

attack complex in vitro. Both CFH and CFHR1 bound to M6-S. pyogenes cells. However, 

CFH binding by M5 S. pyogenes did not contribute significantly to phagocytosis 

resistance or virulence (89). Since M6 protein, was the first bacterial CFH-binding protein 

reported (90), CFH binding by Scl1, in addition to M6 protein, might be necessary for anti-

phagocytic phenotype observed for M6 S. pyogenes. 

Plasma lipoproteins are being increasingly recognized as innate immune 

components. For example, HDL and LDL neutralize LPS endotoxin (91) and 

Staphylococcus aureus α-toxin (92), and HDL is known to downregulate host adhesion 

molecules and inflammatory cytokines (93). Elevated lipoprotein levels may be protective 

against bacterial infections and sepsis in humans (94), and LDL-deficient mice showed 

increased susceptibility to infections with Gram-negative bacteria and Candida albicans 

(95,96). Interaction between Yersinia pestis and ApoB-containing lipoproteins, mediated 

by the pH6 antigen, prevented binding of the bacteria to macrophages in vitro (97). In 

contrast, LDL and HDL could act as opsonins to increase S. pyogenes phagocytosis and 

killing via a CD36-mediated endocytosis (98,99). Notably, half of S. pyogenes strains 

express serum opacity factor, which binds and disrupts the HDL structure (100), which 

could protect S. pyogenes from lipoprotein-mediated opsonization. Clearly, the Scl1-

lipoprotein interactions may have multiple functions during infection and in vivo studies 

are required to determine the effects of these interactions on the host. 

Scl-recruited TAFI to the S. pyogenes cell surface was cleaved and activated by 

plasmin and thrombin-thrombomodulin (86). TAFI functions by removing exposed C-

terminal lysine residues from fibrin during blood clot formation, thereby preventing 

recognition and cleavage of these residues by the tissue-type plasminogen activator, 

ultimately inhibiting fibrinolysis, or the breakdown of clots (101). Additionally, it can 
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regulate inflammation by cleaving the C-terminal residues of bradykinin, osteopontin, and 

the chemoattractants C3a, C5a, and chemerin (102). Therefore, binding and prolonged 

activation of plasmin on the surface of S. pyogenes could contribute significantly to TAFI 

activation. Additionally, activation of TAFI on the S. pyogenes cell surface induced 

inflammation via modulation of the kallikrein/kinin system (103). Since this interaction 

maintains the formation of clots, it may also represent a mechanism for bacteria to remain 

associated with the fibrin clot and evade recognition by immune defenses. 

 

Final Remarks  

 

i) Modular collagens evolved in higher eukaryotes as members of 

extracellular matrix to support tissue structure and provide an essential 

network for cell function. Bacterial collagens likely emerged by convergent 

evolution via simple Gly-X-Y-repeat amplification; sequence similarity 

amongst Scl proteins suggests horizontal gene transfer between closely 

related species.  

ii) Scl proteins are homotrimeric and surface attached, and have several 

modalities of sensing host surroundings. The amino-terminal globular 

“sensing” domain is variable in primary sequence but displays a 

conserved structure.   

iii) Scl1 proteins have adapted binding modalities in tissue and blood to 

mediate S. pyogenes colonization and immune evasion.  

iv) Scl1 down-modulates virulence by fostering the formation of stable tissue 

microcolonies, thus, promoting a focused nidus of infection.  

v) The majority of Scl proteins remain uncharacterized and may exert similar 

functions to those described for Scl proteins of S. pyogenes that are 

important in pathogenesis. 
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PART I 

ROLE OF SCL1 IN ADHERENCE, BIOFILM, AND VIRULENCE
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CHAPTER 1 

THE STREPTOCOCCAL COLLAGEN-LIKE PROTEIN-1 (SCL1) IS A SIGNIFICANT 

DETERMINANT FOR BIOFILM FORMATION BY GROUP A STREPTOCOCCUS 

Heaven A Oliver-Kozup, Meenal Elliott, Beth A Bachert, Karen H Martin, Sean D Reid, 

Diane E Schwegler-Berry, Brett J Green, and Slawomir Lukomski 

Published in BMC Microbiology 2011 11:262 

 

ABSTRACT 

Background: Group A Streptococcus (GAS) is a human-specific pathogen responsible 

for a number of diseases characterized by a wide range of clinical manifestations. During 

host colonization GAS-cell aggregates or microcolonies are observed in tissues. GAS 

biofilm, which is an in vitro equivalent of tissue microcolony, has only recently been 

studied and little is known about the specific surface determinants that aid biofilm 

formation. In this study, we demonstrate that surface-associated streptococcal collagen-

like protein-1 (Scl1) plays an important role in GAS biofilm formation.  

Results: Biofilm formation by M1-, M3-, M28-, and M41-type GAS strains, representing 

an intraspecies breadth, were analyzed spectrophotometrically following crystal violet 

staining, and characterized using confocal and field emission scanning electron 

microscopy. The M41-type strain formed the most robust biofilm under static conditions, 

followed by M28- and M1-type strains, while the M3-type strains analyzed here did not 

form biofilm under the same experimental conditions. Differences in architecture and cell-

surface morphology were observed in biofilms formed by the M1- and M41-wild-type 

strains, accompanied by varying amounts of deposited extracellular matrix and 

differences in cell-to-cell junctions within each biofilm. Importantly, all Scl1-negative 

mutants examined showed significantly decreased ability to form biofilm in vitro. 

Furthermore, the Scl1 protein expressed on the surface of a heterologous host, 

Lactococcus lactis, was sufficient to induce biofilm formation by this organism.  

Conclusions: Overall, this work (i) identifies variations in biofilm formation capacity 

among pathogenically different GAS strains, (ii) identifies GAS surface properties that 

may aid in biofilm stability and, (iii) establishes that the Scl1 surface protein is an important 

determinant of GAS biofilm, which is sufficient to enable biofilm formation in the 
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heterologous host Lactococcus. In summary, the GAS surface adhesin Scl1 may have an 

important role in biofilm-associated pathogenicity. 

 

INTRODUCTION 

Microbial biofilm formation is an important virulence mechanism, which allows immune 

evasion and survival against antibiotic treatments (1,2). Many bacterial nosocomial 

infections are associated with biofilms formed on contaminated medical devices. 

Dispersal of biofilm has also been proposed to augment infection spread (3-8). For group 

A Streptococcus (GAS), biofilm research is an emerging field and little is known about the 

specific surface determinants that aid in biofilm formation. GAS is characteristically 

associated with significant human morbidity and it is responsible for the clinically common 

superficial throat and skin infections, such as pharyngitis and impetigo, as well as invasive 

soft tissue and blood infections like necrotizing fasciitis and toxic shock syndrome (9). 

Although GAS biofilm has not been associated with implanted medical devices, tissue 

microcolonies of GAS encased in an extracellular matrix were demonstrated in human 

clinical specimens (10). Studies reported to date support the involvement of GAS surface 

components in biofilm formation, including the M and M-like proteins, hyaluronic acid 

capsule, pili and lipoteichoic acid (11-13). As shown by Cho and Caparon (11), multiple 

genes are upregulated during biofilm formation and development, including the 

streptococcal collagen-like protein-1 (Scl1).   

The scl1 gene encoding the Scl1 protein has been found in every GAS strain 

investigated and its transcription is positively regulated by Mga (14-18), indicating that 

Scl1 is co-expressed with a number of proven virulence factors. Structurally, the 

extracellular portion of Scl1 protein extends from the GAS surface as a homotrimeric 

molecule composed of distinct domains that include the most outward N-terminal variable 

(V) region and the adjacent collagen-like (CL) region composed of repeating GlyXaaYaa 

(GXY) sequence. The linker (L) region is close to the cell surface and contains a series 

of conserved direct repeats. The Scl1 protein can bind selected human extracellular 

matrix components (19) and cellular integrin receptors (20-22), as well as plasma 

components (23-27).  
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In this study, we investigated the importance of Scl1 in GAS biofilm using defined 

isogenic wild-type and scl1-inactivated mutant strains of GAS. We report that (i) the 

pathogenically diverse M41-, M28-, M3- and M1-type GAS wild-type strains have varying 

capacities to produce biofilm on an abiotic surface; (ii) Scl1 plays an important role during 

the main stages of biofilm formation with Scl1-negative mutants having an abrogated 

capacity for adhesion, microcolony formation and biofilm maturation; and (iii) variations in 

surface morphology as well as in extracellular matrix associated with bacterial cells 

suggest two distinct but plausible mechanisms that potentially stabilize bacterial 

microcolonies. We additionally show that expression of Scl1 in Lactococcus lactis is 

sufficient to support a biofilm phenotype. Overall, this work reveals a significant role for 

the Scl1 protein as a cell-surface component during GAS biofilm formation among 

pathogenically varying strains. 

 

MATERIALS AND METHODS 

GAS strains and growth conditions  

The wild-type GAS strains M41- MGAS6183, M1- MGAS5005, and M28-type MGAS6143, 

as well as their scl1-inactivated isogenic mutants and complemented M41Δscl1 mutant 

have been previously described (22,27,28). In addition, a set of the wild-type M3-type 

GAS strains MGAS158, MGAS274, MGAS315, MGAS335, MGAS1313, and MGAS2079 

was also used. GAS cultures were routinely grown on brain–heart infusion agar (BD 

Biosciences) and in Todd–Hewitt broth (BD Biosciences) supplemented with 0.2% yeast 

extract (THY medium) at 37oC in an atmosphere of 5% CO2–20% O2. Logarithmic phase 

cultures harvested at the optical density (600 nm) of about 0.5 (OD600 ~0.5) were used to 

prepare GAS inocula for biofilm analysis. Colony counts were verified by plating on tryptic 

soy agar with 5% sheep’s blood (Remel). Lactococcus lactis subsp. cremoris strain 

MG1363 (provided by Dr. Anton Steen) were grown using M17 broth or agar media 

(Oxoid) supplemented with 0.5 M sucrose and 0.5% glucose (SGM17 media) at 30oC in 

an atmosphere of 5% CO2–20% O2. 
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Heterologous Scl1 expression in Lactococcus lactis 

Lactococcus transformation: To obtain electrocompetent cells, 500 ml of SGM17 broth 

supplemented with 2% glycine was inoculated with an overnight culture and grown until 

OD600 ~0.4 was reached. Cells were harvested and washed twice with ice-cold solution 

A (0.5 M sucrose, 10% glycerol); cells were then re-suspended in solution A (1/1000 of 

original culture volume) and stored at -80oC (29). For transformation, cells were thawed 

on ice and mixed with 1 l of DNA of the Scl1.41-expressing plasmid pSL230 or pJRS525-

vector(22); and transferred to a cold 1-mm electrode-gap cuvette. Cells were pulsed with 

2.0 kV at 25 F and 400 ohms. Immediately following, suspensions were mixed with 1 ml 

outgrowth medium (SGM17 broth supplemented with 20 mM MgCl2 and 2 mM CaCl2) and 

incubated for 2.5 h before plating on SGM17 agar supplemented with spectinomycin (30). 

 

Molecular characterization of transformants: The pSL230 was detected in 

Lactococcus lactis MG1363 transformants by PCR amplification directly from bacterial 

colonies with scl1.41-gene specific primers 232up (5’-CTCCACAAAGAGTGATCAGTC) 

and 232rev (5’-TTAGTTGTTTTCTTTGCGTTT); pSL230 plasmid DNA was used as a 

positive control. PCR samples were analyzed on 1% agarose gel in Tris-acetate-EDTA 

buffer and stained with ethidium bromide. Inocula from colonies of L. lactis MG1363, as 

well as colonies harboring either pJRS525 vector or pSL230 construct were used in 

subsequent experiments.  

 

Western blot analysis: Cell-wall extracts were prepared as previously described (22). 

Briefly, cells grown to OD600 ~0.4 were harvested, washed with TES (10 mM Tris, 1mM 

EDTA, 25% Sucrose), re-suspended in TES-LMR (TES containing 1mg/ml hen egg 

lysozyme, 0.1 mg/ml mutanolysin, 0.1 mg/ml RNAseA and 1 mM PMSF) and incubated 

at 37⁰C for 1 h. After centrifugation at 2500g for 10 min, the supernatants were 

precipitated with ice-cold TCA (16% final) at -20⁰C overnight. Precipitates were rinsed 

thoroughly with ice-cold acetone and dissolved in 1x sample buffer at 250 l per unit 

OD600. Samples were subjected to 10% SDS-PAGE, transferred to nitrocellulose, and 

probed with anti-P176 antiserum followed by goat anti-rabbit-HRP and detected 

employing chemiluminescent substrate (Pierce). 
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Flow cytometry: Bacterial cells were grown to mid-log phase (OD600 ~0.4), washed once 

with filtered DPBS containing 1% FBS and re-suspended in the same buffer. Five million 

cells were incubated with 1:400 dilution of primary reagents, either rabbit pre-bleed 

(control) or rabbit anti-P176 antiserum for 30 min on ice, washed with DPBS-FBS and 

then incubated with 1:200 dilution of second reagent donkey anti-rabbit-APC (Jackson 

ImmunoResearch) for 30 min on ice. After a final wash and re-suspension in DPBS-FBS, 

flow cytometric data were acquired with FACSCaliber (BD Biosciences) and analyzed 

employing FCS Express (De Novo Software). 

 

Analysis of biofilm formation 

Crystal violet staining assay:  Biofilm formation was tested using tissue culture treated 

polystyrene 24-well plates. 1.5 ml of logarithmic-phase GAS or Lactococcus cultures were 

seeded without dilution into wells and incubated at 37oC for GAS and 30oC for 

Lactococcus in an atmosphere of 5% CO2–20% O2 according to indicated time points 

upon which medium was aspirated. Wells were washed with PBS and 500 µl of 1% crystal 

violet was added to each well, and incubated at room temperature for 30 min. Dye was 

then aspirated, wells were washed with PBS, and stain was solubilized with 500 µl of 

100% ethanol. Spectrophotometric readings at OD600 were recorded for each sample per 

time point. Samples were analyzed in triplicate in at least three experiments. 

 

Confocal Laser Scanning Microscopy (CLSM):  To visualize GAS and L. lactis strains 

by CLSM, bacterial cells were transformed with a GFP-encoding plasmid, pSB027 (31). 

15-mm glass cover slips were placed into 24-well tissue culture plate wells. Logarithmic-

phase bacterial cultures were inoculated without dilution and grown for 24 h. Cover slips 

were rinsed with PBS and fixed with 3% paraformaldehyde at room temperature for 30 

min. Biofilms present on cover slips were washed with PBS and mounted onto slides 

using Prolong Gold mounting media (Invitrogen). Confocal images were acquired using 

a 63x/1.40 Plan-Apochromat objective and a Zeiss LSM 510 laser scanning confocal on 

an AxioImager Z1 microscope. An orthogonal view of the Z-stacks was used to display 

and measure biofilm thickness using Zeiss LSM software. Ten representative images 
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within a single experiment were used to calculate the average vertical thickness 

measured in micrometers.  

To visualize extracellular matrix associated with GAS cells, 24 h biofilm samples 

were reacted with 100 g of tetramethyl rhodamine isothiocyanate- (TRITC)-conjugated 

concanavalin A (TRITC-ConA) (Invitrogen) for 30 min at room temperature in the dark 

prior to mounting with Prolong Gold medium. An average of ten microscopic views within 

each sample was reviewed using the 63x/1.40 objective, as described above. 

 

Field emission scanning electron microscopy (FESEM):  GAS biofilm samples were 

grown for 24 h on glass cover slips, washed with PBS, and fixed with 3% 

paraformaldehyde for 2 h and post-fixed in osmium tetroxide. Samples were next 

dehydrated in an ethanol gradient, dried using hexamethyldisalizane, mounted onto 

aluminum stubs and sputter-coated with gold/palladium. The samples were then imaged 

on a Hitachi S-4800 field emission scanning electron microscope. 

 

Quantitation of hydrophobicity   

A modified hexadecane method (12,32,33) was used to determine the cell hydrophobicity. 

Briefly, 5 ml of the logarithmic-phase GAS or Lactococcus cultures (OD600 ~0.5) were 

pelleted, washed and re-suspended in 5 ml of PBS. One ml of hexadecane was added, 

vortexed for 1 min and incubated for 10 min at 30oC. Mixtures were then vortexed for an 

additional 1 min and allowed to stand for 2 min for phase separation at room temperature. 

The absorbance of the lower aqueous phase was read at OD600 and compared against 

the PBS control. Actual hydrophobicity value was calculated using the following equation: 

Actual Value = [1 – (A/Ao)] x 100, where A is OD600 value after hexadecane treatment and 

Ao is OD600 prior to hexadecane treatment.  

 

Statistical analysis   

Statistical significance was determined using a two-tailed paired Student’s t-test. The 

results were considered statistically significant with P ≤ 0.05 (*) and P ≤ 0.001 (**). 
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RESULTS 

Wild-type GAS strains have heterogeneous capacity for biofilm formation on 

abiotic surfaces  

Biofilm formation was compared between M41-, M28-, M3- and M1-type GAS strains 

representing distinct epidemiological traits (Figure 1). To assess biofilm formation after 

24 h, we used spectrophotometric measurements recorded following crystal violet 

staining (Figure 1a). Both the M41- and M28-type strains produced more biomass as 

compared with M1 strain. Furthermore, the M3-type strain produced the lowest 

absorbance values in a crystal violet assay, indicative of lower cell biomass, as compared 

with the other wild-type strains. These experiments confirm previous observations (1,34) 

that GAS strains have varying capacity to form biofilm in vitro.  

The failure of M3-type strain MGAS315 to produce substantial cellular biomass in 

the above assay was intriguing because sequence analysis of the scl1.3 allele found in 

MGAS315 revealed the presence of a TAA stop codon in the 11th GXY repeat of the 

Scl1.3-CL region containing a total of 25 GXY triplets (35). This premature stop codon 

results in a truncated Scl1.3 variant composed of 102 amino acids (~11.4 kDa), which 

does not contain the cell wall-membrane (WM) associated region, thus, preventing it from 

anchoring to the bacterial cell surface (Figure 1b). This prompted us to investigate the 

biofilm formation by five additional M3-type strains, all harboring the same scl1.3 allele. 

Five additional M3-type strains, MGAS335, MGAS1313, MGAS2079, MGAS274 and 

MGAS158, all harboring the same scl1.3 allele (35) also produced poor biofilm under 

static conditions, as measured by crystal violet staining. Confocal laser scanning 

microscopy (CLSM) of three representative strains (MGAS315, MGAS2079, and 

MGAS158) corroborated results obtained from the crystal violet assay, indicating that 

these M3-type strains lack the ability to form appreciable biofilm structure. Our data 

suggest that the lack of capacity for biofilm-formation among M3-type GAS strains 

examined here might be correlated, at least in part, with lack of surface-attached Scl1.3 

protein. 
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Microscopic evaluation reveals differences in biofilm surface morphology 

We next conducted microscopic analysis of the biofilms formed by the wild-type (WT) 

M41-, M28-, and M1-type GAS strains. First, we examined the overall structural 

characteristics of biofilms formed after 24 h using CLSM (Figure 4 d-f); Additional file 1: 

Figure S1 a-f). The average biofilm thickness (see Methods section) differed among all 

three strains with M1 producing considerably thinner biofilm (mean value of 9 m) 

compared to M28 (12 m) and M41 (15 m), a result consistent with lower 

spectrophotometric absorbance values (Figure 1a). In addition to measured differences 

in biofilm thickness, closer examination of the X-Y orthogonal Z-stack views, representing 

biofilm cross-sections, revealed architectural differences among the M41, M28, and M1 

biofilms. The M1 biofilm, although the thinnest, seems to consist of densely-packed cells 

that form continuous layers, while the M28 and especially M41 biofilms seem to be less 

dense but exhibit more elevated supracellular assembly. We therefore used field emission 

scanning electron microscopy (FESEM) to define more accurately these supracellular 

differences observed by CLSM between the biofilms produced by the WT M1 and M41 

GAS (Figure 2). FESEM exposed notable architectural differences between biofilms 

formed by these two strains. The M41 (Figure 2, panel a) biofilm was characterized by 

more diverse surface architecture with the evidence of depressions or crypts, whereas 

the M1 biofilm (panel b) seems to lack such pronounced surface characteristics. At higher 

magnification, the M41 cells have a studded cell surface morphology with protrusions 

linking both sister cells and cells in adjacent chains (panel c). In contrast, the M1 cells 

had a relatively smoother appearance likely due to the rich bacterial-associated 

extracellular matrix (BAEM) surrounding these cells and covering their surface (panel d). 

BAEM material, which was clearly seen at higher resolution between the M1-type cells, 

was not as evident between cells of the M41-type GAS.  

 

GAS biofilms differ in production of bacterial-associated extracellular matrix  

The production of BAEM has been shown to be an integral component in the structural 

integrity of a biofilm, imparting protection from dehydration, host immune attack, and 

antibiotic sensitivity (36,37). GAS cells encased in a glycocalyx were first identified by 

Akiyama et al. in skin biopsies obtained from impetigo patients. We therefore compared 
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the production of BAEM within biofilms employing GFP-expressing GAS strains of the M1 

and M41 type (Figure 3). Cells were grown to form biofilms on glass cover slips for 24 h 

and stained with TRITC-concanavalin A (ConA), a fluorescently-labeled lectin that binds 

to the extracellular polysaccharides in biofilms (38). Fluorescent microscopy was 

performed to compare matrix production (red staining) by GAS strains (green). Visual 

screening of both biofilms indicated that the M41-type strain formed a more dispersed 

extracellular matrix as compared to the M1 strain, which had a dense, more closely 

associated matrix. In addition, averages of at least 10 fields of ConA stained matrix by 

CLSM support our FESEM observations that more BAEM is deposited within the biofilm 

by the M1 GAS cells as compared to M41 GAS. This is in agreement with the report from 

Akiyama et al that showed a substantial FITC-ConA stained matrix associated with T1-

type GAS microcolonies in vivo and in vitro (10).  

 

Scl1 protein significantly contributes to biofilm formation by GAS 

Variations in GAS pathogenicity and capacity to form biofilm are driven by specific 

proteins and components present on the cell surface or are secreted by the organism. It 

has been shown that deletion of the M and M-like surface proteins or capsule, as well as 

increased expression of the secreted SpeB protease decreases biofilm formation 

dramatically for some strains of GAS (12,39,40). Therefore, we investigated the role of 

Scl1 in biofilm formation by comparing biofilms formed by GAS WT and scl1-inactivated 

(Δscl1) mutant strains (Figure 4; Additional file 1: Figure S1 a-f). Bacterial biomass was 

evaluated spectrophotometrically following crystal violet staining at 1, 6, 12, and 24 h time 

points, representing different stages of biofilm formation, and absorbance values 

rendered for the WT and Δscl1 isogenic mutant strains were compared. The M41Δscl1 

mutant showed a 29-35% decrease in biofilm formation (the OD600 value obtained for the 

WT strain at each time point was considered 100%), which was sustained throughout all 

time points. This reduction was statistically significant at initial adherence (1 h), as well 

as during biofilm development (6-12 h) and at maturation (24 h) (Figure 4a; P ≤ 0.05 at 1 

and 12 h, P ≤ 0.001 at 6 and 24 h). Complementation of Scl1.41 expression in the 

M41Δscl1 mutant (M41 C) restored its ability to form biofilm to WT levels. Similarly, the 

M28Δscl1 mutant had a significantly decreased capacity for biofilm formation in the range 
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of 29-44% as compared to WT strain (Figure 4b; P ≤ 0.05 at 1 and 6 h, P ≤ 0.001 at 3, 12 

and 24 h). Likewise, there was a statistically significant decrease in M1Δscl1 biofilm 

biomass by ~42-75% compared to the WT strain (Figure 4c; P ≤ 0.001 at 1-24 h). CLSM 

analysis of corresponding 24-h biofilms of these strains confirmed our crystal violet 

staining results at 24 h. The Δscl1 mutants had substantially decreased average biofilm 

thickness by more than 50% (mean values) as compared to the parental WT organisms 

(Figure 4d-f). While these low average biofilm thickness values measured for the 

M1Δscl41 (6 M) and M28Δscl1 (5 M) correspond to residual biofilms made by those 

mutants (Figure S1a-d), by comparison, the M1Δscl1 (4 M) was shown not to produce 

a continuous biofilm layer under these conditions (Figure S1e-f). Our data support the 

hypothesis that the Scl1 protein plays an important functional role during GAS biofilm 

formation and that Scl1 contribution varies among GAS strains with different genetic 

backgrounds. 

 

Scl1 expression affects surface hydrophobicity 

The surface hydrophobicity of GAS has been shown to influence the adherence to abiotic 

surfaces. The presence of pili (13) , M and M-like proteins, and lipoteichoic acid 

contributes to cell surface hydrophobic properties (12,41), which in turn may influence 

biofilm formation by GAS. Here, we have investigated the contribution of Scl1 to surface 

hydrophobicity of M41-, M28-, and M1-type GAS strains using a modified hexadecane 

binding assay (12,33,42). As shown in Table 1, the M28-type GAS strain MGAS6143 

gave the highest actual hydrophobicity value of 94.3 ± 0.73, followed by the M41-type 

strain MGAS6183 (92.6 ± 0.86). In contrast, the overall surface hydrophobicity of the M1-

type GAS strain MGAS5005 (80.3 ± 0.89) was significantly lower compared to both M28 

and M41 strains (P ≤ 0.001 for each comparison). Inactivation of scl1.41 in M41-type GAS 

resulted in a modest, although statistically significant, reduction in the hydrophobicity 

index (100% for WT vs. 92% for mutant, P ≤ 0.001). In-trans complementation of the 

Scl1.41 expression in M41Δscl1-C restored the hydrophobic phenotype of the cells to WT 

level (hydrophobicity index ~105%). In comparison, the contribution of the Scl1.1 and 

Scl1.28 proteins to surface hydrophobicity is more substantial, as evidenced by a ~21% 

and ~22% reduction of the hydrophobicity indices of the mutants as compared to the 
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corresponding WT strains, respectively (P ≤ 0.001 for both). Thus, the Scl1-mediated 

GAS-cell surface hydrophobicity reported here may contribute to the ability of this 

organism to form biofilm, as suggested for other cell surface components (12,41). 

 

Scl1 is sufficient to support biofilm formation in Lactococcus lactis 

To assess whether Scl1 expression is sufficient to confer the ability for biofilm formation, 

we chose to express this protein in a heterologous L. lactis system (43,44). The wild-type 

L. lactis strain MG1363 was transformed with plasmid pSL230 encoding the Scl1.41 

protein (22) or with the shuttle vector pJRS525 alone. As shown in Figure 5a, PCR 

amplification of the scl1.41 gene employing specific primers yielded no product from the 

WT L. lactis MG1363 (lane 1) and the MG1363::pJRS525 transformant (lane 2). A product 

of the expected size of 1.4 kb was amplified from the pSL230 plasmid DNA control (lane 

4,) as well as was amplified from the MG1363::pSL230 transformant (lane 3). Surface 

expression of Scl1.41 was confirmed by immunoblot analysis of cell-wall extracts 

prepared from L. lactis WT, and the MG1363::pJRS525 and MG1363::pSL230 

transformants, as well as MGAS6163 (WT M41 GAS). As shown in Figure 5b, rabbit 

antiserum raised against purified recombinant Scl1.41 protein P176 lacking the WM 

region detected the corresponding immunogen (lane 1), and the homologous full length 

protein in cell-wall extracts of MGAS6183 (lane 5) as well as MG1363::pSL230 L. lactis 

transformant (lane 4). This band was absent in cell-wall extracts prepared from the WT 

L. lactis MG1363 (lane 2) and MG1363::pJRS525 transformant (lane 3). Expression of 

Scl1.41 at the cell surface was further established by flow cytometry. Rabbit anti-p176 

antibodies stained Scl1.41 MG1363::pSL230 transformant, confirming the expression of 

Scl1.41 protein at the cell surface in the heterologous host L. lactis (Figure 5c, red trace). 

This protein was absent at the surface of WT MG1363 (black trace) and 

MG1363::pJRS525 transformant (green trace).   

The capacity of L. lactis expressing Scl1.41 to form biofilm was evaluated 

spectrophotometrically following crystal violet staining. As shown in Figure 5d, the 

MG1363::pSL230 transformant demonstrated a significant increase in biofilm-associated 

biomass at 24 h, as compared to wild type L. lactis or L. lactis-containing pJRS525 vector 

(P ≤ 0.001). Crystal violet stained wells were photographed for visual representation of 
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biofilm formation prior to spectrophotometric assay. Biofilm thickness and architecture 

were evaluated by CLSM (Figure 5e; Additional file 1: Figure S2 a-c). The 

MG1363::pSL230 transformant produced a substantially thicker biofilm (14 m) as 

compared to both MG1363 WT (6 m) and the vector-only transformant 

MG1363::pJRS525 (6 m). The MG1363::pSL230 cells formed highly aggregated 

structures, thus, acquiring a phenotype consistent with biofilm formation. As shown in 

Table 2, the MG1363::pSL230 transformant, expressing Scl1.41 surface protein, had 

significantly enhanced cell surface hydrophobicity (hydrophobicity index of ~137% vs. 

100% WT, P ≤ 0.001) with an actual value of 82.0 ± 2.6, when compared to the MG1363 

WT (59.7 ± 7.2) and the vector-only MGAS1363::pJRS525 control (56.6 ± 5.5). These 

data suggest a direct relationship between Scl1 expression and cell surface 

hydrophobicity and establish their involvement in the microorganism’s ability to form 

biofilm in vitro. 

 

DISCUSSION 

Group A Streptococcus strains vary because of the vast number of M-protein types, and 

this variation is associated with varying frequency of isolation and exacerbation of disease 

(45,46). The M41-, M28-, M3-, and M1-type strains selected for the current study 

represent a significant intraspecies diversity among clinical isolates of GAS. M41 GAS 

was a major causative agent of superficial skin infections (47-49), and strain MGAS6183, 

harboring the Scl1.41 protein, has been studied extensively (19,21,22). M28-type GAS 

(strain MGAS6143) has historically been associated with puerperal fever and currently is 

responsible for extensive human infections world-wide (50). M1T1 GAS, represented by 

strain MGAS5005, is a globally disseminated clone responsible for both pharyngitis and 

invasive infections (51-53). The M3-type strains of GAS cause a disproportionally large 

number of invasive GAS infections that are responsible for traumatic morbidity and death 

(54,55).  

Initial studies by Lembke et al. that characterized biofilm formation among various 

M types of GAS typically included several strains of the same M type (1,34). These studies 

reported a significant strain-to-strain variation in ability to form biofilms within each M type. 

Studies that followed compared biofilm formation by defined isogenic WT and mutant 
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strains to assess the contribution of specific GAS surface components responsible for a 

biofilm phenotype, including M and M-like proteins, hyaluronic acid capsule, lipoteichoic 

acid, and pili (12,13). In the current study, we have assessed the role and contribution of 

the surface protein Scl1 in the ability to support biofilm formation by GAS strains of four 

distinct M types. 

Recent advances in molecular mega- and pathogenomics has enabled the 

characterization of numerous M3-type strains with a single nucleotide resolution (56,57). 

Interestingly, all five M3-type strains MGAS158, 274, 315, 335, and 1313 that were 

originally used for scl1-gene sequencing (14), plus an additional strain MGAS2079 (not 

reported) harbor the same scl1.3 allele containing a null mutation that would result in 

secretion of a truncated Scl1.3-protein variant. Here, we demonstrate that these GAS 

strains do not form biofilm on an abiotic surface. Recently, bioinformatic screening of the 

sequences of ~250 invasive M3-type strains isolated globally, has led to the detection of 

this single nucleotide polymorphism that results in disruption of Scl1.3 protein (Steve 

Beres and Jim Musser, personal communication). Lembke et al. reported heterogeneous 

biofilm formation among four M3-type GAS strains examined over a 24, 48, and 72-hour 

period (34). Biofilm was detected for one strain at a 48 h time point, on a fibrinogen-coated 

surface; however, it is not known whether this clinical isolate forms biofilm on abiotic 

surface, whether it expresses the truncated or full-length Scl1.3 protein, and whether it 

produces an unknown fibrinogen-binding protein, which could augment the attachment 

and biofilm formation. Therefore, additional studies are necessary to define the 

contributions of other biofilm-formation determinants in M3-type strains. 

Inasmuch as, variation in biofilm formation among GAS isolates of the same M-

type has been established, the molecular basis of this phenotypic variation is not known. 

Several GAS surface-associated and secreted components were shown to contribute to 

variation in biofilm (12,13,39). In addition, transcription regulators, such as Mga, CovR, 

and Srv are likely to play substantial roles in GAS biofilm formation (11,39) due to their 

transcriptional regulation of numerous genes. Therefore, it is logical to assume that the 

combination of genomic/proteomic make up, allelic polymorphisms, and transcription 

regulation all contribute to this phenomenon. In addition, discrepancies between in vitro 

data obtained with laboratory-stored strains and microcolony formation in vivo likely exist 
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and add yet another unknown to the complexity of GAS biofilm/microcolony formation and 

its role in pathogenesis. Despite this complexity, the analyses involving isogenic strains 

of the same genetic background provide valuable information that allows assessment of 

the role and contribution of a given GAS component to biofilm formation. 

The M1 MGAS5005 strain was shown to form biofilm in vitro and in experimental 

animals (8,39,58), and the present study demonstrates a significant role of Scl1.1 in this 

process. Likewise, the MGAS6183 strain, representing M41-type isolates often 

associated with pyoderma, produced a more robust biofilm biomass under the same 

experimental conditions and Scl1.41-deficient mutant was found to be an important 

determinant in this process. Similarly, Scl1.28 protein significantly contributes to a robust 

biofilm made by the M28-type strain MGAS6143. However, a recent study reported that 

another surface protein, designated AspA, found in M28-type GAS significantly 

contributed to biofilm formation (59). The aspA isogenic mutant showed 60% reduction 

in biofilm formation. The strain MGAS6180, which they used, expresses the same Scl1.28 

variant present in the MGAS6143 strain we used; our Scl1.28 mutant showed ~44% 

reduction in 24 h biofilm. We propose that several surface proteins contribute to biofilm 

formation by M28-type strains including proteins AspA and Scl1.28, and potentially, 

proteins F1/SfbI and F2 that are also present in these strains (22). This redundancy is 

likely responsible for the observed residual biofilms produced by the AspA- and Scl1.28-

deficient mutants. 

The observed heterogeneity in biofilm architecture of different GAS strains was 

previously observed by Lembke et al. (34) and was also documented in the current study 

using FESEM. In addition, here we report the differences in GAS-cell surface morphology 

and within cell-to-cell junctions in biofilms formed by M1- and M41-type strains. The 

structural and genetic determination of these differences is not known since M41 genome 

has not been sequenced, but may be associated with the presence of additional surface 

proteins, such as the F2 protein (60) encoded by prtf2 gene found in this strain (22). Even 

more striking was an observed difference in the amount of the extracellular material 

associated with each strain, referred to as BAEM (bacteria-associated extracellular 

matrix). It has been shown that extracellular matrix, also called glycocalyx, is produced 

by biofilm-forming bacteria. DNA, lipids, proteins (39), polysaccharides and dead cell 
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debris (61) were identified in this matrix and for gram-positive bacteria, teichoic acids 

have also been detected (62,63). The exopolysaccharide component of the glycocalyx is 

detected using carbohydrate-binding lectins, such as concanavalin A (ConA) (10). Both 

FESEM analysis and ConA staining detected more BAEM associated with M1 biofilm 

compared to M41, which produced larger biofilm. These observations suggest that GAS 

biofilm is stabilized differently by different strains and that higher BAEM production does 

not necessarily pre-determine larger biofilm mass. Consequently, a combination of biofilm 

features rather than biofilm size alone may be more relevant to pathogenicity of a given 

GAS strain. 

Diminished adherence and biofilm formation could be associated with changes in 

cell surface hydrophobicity (64) of the scl1 mutants. Indeed, the lack of Scl1 resulted in 

both decreased hydrophobicity and the ability to form biofilm, albeit in a somewhat 

disproportionate manner. A decrease in the hydrophobicity index by only ~8%, as 

compared to the wild type-strain, was measured for the M41scl1 mutant and this modest 

decrease was accompanied by a rather large reduction in biofilm formation capacity after 

24 h by 30%. Greater decrease in cell-surface hydrophobicity was measured for the 

M1scl1 (~21%) and M28scl1 (~22%) mutants, which was accompanied by a significant 

loss in biofilm formation after 24 h by both isogenic strains by ~55% and ~41% (P ≤ 0.001 

for each comparison), respectively. In addition, heterologous expression of Scl.41 in L. 

lactis increased hydrophobicity index of this organism to ~137% of the WT level, which 

was accompanied by significant increase in its ability to form biofilm. Similar observations 

have been reported for the M and M-like protein mutants that typically, but not always, 

exhibit concurrent loss of both biological features (12). For example, isogenic Mrp49 

mutant had a non-significant drop in hydrophobicity (~2%) but significantly lower biofilm 

formation after 48 h by ~30%, whereas Emm1 mutant lost ~78% hydrophobicity and 

~44% biofilm formation capacity. In summary: (i) here we report that the Scl1 adhesin is 

also a hydrophobin with varying contribution to the overall surface hydrophobicity among 

GAS strains representing different M types and (ii) Scl1-associated surface 

hydrophobicity is likely to contribute to Scl1-mediated biofilm formation.  

To test whether Scl1 alone could support biofilm formation, we used a 

heterologous L. lactis strain, which provides an expression system for membrane-bound 
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proteins of gram- positive bacteria with LPXTG cell-wall anchoring motifs (30,44,65,66), 

including the group A streptococcal M6 protein (43,67). In a recent study by Maddocks et 

al. (59) it was shown that heterologous expression of AspA GAS surface protein was able 

to induce a biofilm phenotype in L. lactis MG1363. We were also able to achieve a gain-

of-function derivative of the L. lactis WT MG1363 strain, (MG1363::pSL230), displaying 

an altered phenotype associated with biofilm formation, as compared to wild-type parental 

and vector-only controls. These data support our current model that Scl1 protein is an 

important determinant of GAS biofilm formation. 

As shown by crystal violet staining and CLSM, biofilm formation by the Scl1-

negative mutants was compromised during the initial stage of adherence, as well as 

microcolony stabilization and maturation. Consequently, their capacity for biofilm 

formation as compared to the respective WT controls was greatly reduced. This 

comparison identifies for the first time that the Scl1 protein contributes significantly to 

biofilm assembly and stability. Based on these observations, as well as previous work by 

us and others, we propose the following model of Scl1 contribution to GAS tissue 

microcolony formation (Figure 6). First, the Scl1 hydrophobin (current study) initiates 

bacterial adhesion to animate surfaces within the host (64). Next, the Scl1 adhesin 

anchors the outside edge of growing microcolony in tissue by direct binding to tissue 

extracellular matrix components, cellular fibronectin and laminin (19). Microcolony 

development is stabilized by Scl1-Scl1 scaffolding resulting from Scl1’s capacity to form 

head-to-head dimers (68) between molecules located on adjacent chains. This model will 

be tested experimentally in future studies.  

 

CONCLUSIONS 

In the present work, using pathogenically differing GAS strains, we have demonstrated 

three concepts. First, we have confirmed previous observations that biofilm formation is 

an innate property of GAS strains. The M41-type strain used formed a more robust biofilm 

when compared to M28-type strain as well as M1-type strain. Importantly, the highly 

invasive M3-type strains devoid of the surface-associated Scl1 also lack the ability to form 

biofilm. Secondly, the absence of surface-associated Scl1 decreases GAS-cell 

hydrophobicity suggesting that Scl1 plays a role on the GAS surface as a hydrophobin. 
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Thirdly, we have established that the Scl1 protein is a significant determinant for GAS 

biofilm formation. This concept was further tested by the heterologous expression of Scl1 

in Lactococcus, an organism found in dairy fermentation environments, enabling it to form 

biofilm. Altogether, these data underscore the importance of Scl1 in biofilm-associated 

regulation of GAS pathogenicity. Recently published work has shown that the 

recombinant Scl1 binds to the extracellular matrix components, cellular fibronectin and 

laminin (19). Our current research provides a foundation warranting additional 

investigation as to whether direct Scl1-ECM binding may promote GAS biofilm as a 

bridging mechanism within host tissues. 

 

ACKNOWLEDGMENTS 

We would like to thank Dr. Steen for providing the Lactococcus lactis subsp. cremoris 

strain MG1363. This work was supported in part by National Institutes and Health Grant 

AI50666 and by a research grant (RFDG) from the West Virginia University Research and 

Graduate Education (to S. L.). H. Oliver-Kozup was supported by a grant from the West 

Virginia Graduate Student Fellowship in Science, Technology, Engineering and 

Mathematics (STEM). Confocal microscopy experiments were performed in the West 

Virginia University Microscope Imaging Facility, which is supported in part by the Mary 

Babb Randolph Cancer Center and NIH grant P20 RR016440. We would like to 

acknowledge the assistance of the West Virginia University Flow Cytometry core facility 

which was supported in part by a grant P30 RR032138 from the National Institutes of 

Health. The findings and conclusions in this report are those of the authors and do not 

necessarily represent the views of the National Institute of Occupational Safety and 

Health.  

 

  



 

32 

REFERENCES 

1. Conley, J., Olson, M. E., Cook, L. S., Ceri, H., Phan, V., and Davies, H. D. (2003) 
Biofilm formation by group a streptococci: is there a relationship with treatment 
failure? J Clin Microbiol 41, 4043-4048 

2. Ogawa, T., Terao, Y., Okuni, H., Ninomiya, K., Sakata, H., Ikebe, K., Maeda, Y., and 
Kawabata, S. (2011) Biofilm formation or internalization into epithelial cells enable 
Streptococcus pyogenes to evade antibiotic eradication in patients with pharyngitis. 
Microb Pathog 51, 58-68 

3. Boles, B. R., Thoendel, M., and Singh, P. K. (2005) Genetic variation in biofilms 
and the insurance effects of diversity. Microbiology 151, 2816-2818 

4. Lauderdale, K. J., Malone, C. L., Boles, B. R., Morcuende, J., and Horswill, A. R. 
(2010) Biofilm dispersal of community-associated methicillin-resistant 
Staphylococcus aureus on orthopedic implant material. J Orthop Res 28, 55-61 

5. Kaplan, J. B., Meyenhofer, M. F., and Fine, D. H. (2003) Biofilm growth and 
detachment of Actinobacillus actinomycetemcomitans. J Bacteriol 185, 1399-1404 

6. Raad, II, Fang, X., Keutgen, X. M., Jiang, Y., Sherertz, R., and Hachem, R. (2008) 
The role of chelators in preventing biofilm formation and catheter-related 
bloodstream infections. Curr Opin Infect Dis 21, 385-392 

7. Wang, R., Khan, B. A., Cheung, G. Y., Bach, T. H., Jameson-Lee, M., Kong, K. F., 
Queck, S. Y., and Otto, M. (2011) Staphylococcus epidermidis surfactant peptides 
promote biofilm maturation and dissemination of biofilm-associated infection in 
mice. J Clin Invest 121, 238-248 

8. Connolly, K. L., Roberts, A. L., Holder, R. C., and Reid, S. D. (2011) Dispersal of 
Group A streptococcal biofilms by the cysteine protease SpeB leads to increased 
disease severity in a murine model. PLoS ONE 6, e18984 

9. Cunningham, M. W. (2000) Pathogenesis of group A streptococcal infections. Clin 
Microbiol Rev 13, 470-511 

10. Akiyama, H., Morizane, S., Yamasaki, O., Oono, T., and Iwatsuki, K. (2003) 
Assessment of Streptococcus pyogenes microcolony formation in infected skin by 
confocal laser scanning microscopy. J Dermatol Sci 32, 193-199 

11. Cho, K., and Caparon, M. (2005) Patterns of virulence gene expression differ 
between biofilm and tissue communities of Streptococcus pyogenes. Mol Microbiol 
57, 1545-1556 

12. Courtney, H. S., Ofek, I., Penfound, T., Nizet, V., Pence, M. A., Kreikemeyer, B., 
Podbielski, A., Hasty, D. L., et al. (2009) Relationship between expression of the 
family of M proteins and lipoteichoic acid to hydrophobicity and biofilm formation 
in Streptococcus pyogenes. PLoS ONE 4, e4166 

13. Manetti, A., Zingaretti, C., Falugi, F., Capo, S., Bombaci, M., Bagnoli, F., 
Gambellini, G., Bensi, G., et al. (2007) Streptococcus pyogenes pili promote 
pharyngeal cell adhesion and biofilm formation. Mol Microbiol 64, 968-983 

14. Lukomski, S., Nakashima, K., Abdi, I., Cipriano, V. J., Ireland, R. M., Reid, S. D., 
Adams, G. G., and Musser, J. M. (2000) Identification and characterization of the 
scl gene encoding a group A Streptococcus extracellular protein virulence factor 
with similarity to human collagen. Infect Immun 68, 6542-6553 

15. Lukomski, S., Nakashima, K., Abdi, I., Cipriano, V. J., Shelvin, B. J., Graviss, E. 
A., and Musser, J. M. (2001) Identification and characterization of a second 



 

33 

extracellular collagen-like protein made by group A Streptococcus: control of 
production at the level of translation. Infect Immun 69, 1729-1738 

16. Rasmussen, M., Eden, A., and Bjorck, L. (2000) SclA, a novel collagen-like surface 
protein of Streptococcus pyogenes. Infect Immun 68, 6370-6377 

17. Almengor, A. C., and McIver, K. S. (2004) Transcriptional activation of sclA by Mga 
requires a distal binding site in Streptococcus pyogenes. J. Bacteriol. 186, 7847-
7857 

18. Almengor, A. C., Walters, M. S., and McIver, K. S. (2006) Mga is sufficient to 
activate transcription in vitro of sof-sfbX and other Mga-regulated virulence genes 
in the group A Streptococcus. J. Bacteriol. 188, 2038-2047 

19. Caswell, C. C., Oliver-Kozup, H., Han, R., Lukomska, E., and Lukomski, S. (2010) 
Scl1, the multifunctional adhesin of group A Streptococcus, selectively binds 
cellular fibronectin and laminin, and mediates pathogen internalization by human 
cells. FEMS Microbiol Lett 303, 61-68 

20. Humtsoe, J. O., Kim, J. K., Xu, Y., Keene, D. R., Hook, M., Lukomski, S., and 
Wary, K. K. (2005) A streptococcal collagen-like protein interacts with the a2b1 
integrin and induces intracellular signaling. J. Biol. Chem. 280, 13848-13857 

21. Caswell, C. C., Barczyk, M., Keene, D. R., Lukomska, E., Gullberg, D. E., and 
Lukomski, S. (2008) Identification of the first prokaryotic collagen sequence motif 
that mediates binding to human collagen receptors, integrins a2b1 and a11b1. J 
Biol Chem 283, 36168-36175 

22. Caswell, C. C., Lukomska, E., Seo, N. S., Hook, M., and Lukomski, S. (2007) Scl1-
dependent internalization of group A Streptococcus via direct interactions with the 
alpha2beta(1) integrin enhances pathogen survival and re-emergence. Mol 
Microbiol 64, 1319-1331 

23. Gao, Y., Liang, C., Zhao, R., Lukomski, S., and Han, R. (2010) The Scl1 of M41-
type group A Streptococcus binds the high-density lipoprotein. FEMS Microbiol 
Lett 309, 55-61 

24. Pahlman, L. I., Marx, P. F., Morgelin, M., Lukomski, S., Meijers, J. C. M., and 
Herwald, H. (2007) Thrombin-activatable Fibrinolysis Inhibitor Binds to 
Streptococcus pyogenes by Interacting with Collagen-like Proteins A and B. J. Biol. 
Chem. 282, 24873-24881 

25. Caswell, C., Han, R., Hovis, K., Ciborowski, P., Keene, D., Marconi, R., and 
Lukomski, S. (2008) The Scl1 protein of M6-type group A Streptococcus binds the 
human complement regulatory protein, factor H, and inhibits the alternative 
pathway of complement. Mol Microbiol 67, 584-596 

26. Reuter, M., Caswell, C. C., Lukomski, S., and Zipfel, P. F. (2010) Binding of the 
human complement regulators CFHR1 and factor H by streptococcal collagen-like 
protein 1 (Scl1) via their conserved C termini allows control of the complement 
cascade at multiple levels. J Biol Chem 285, 38473-38485 

27. Han, R., Caswell, C. C., Lukomska, E., Keene, D. R., Pawlowski, M., Bujnicki, J. 
M., Kim, J. K., and Lukomski, S. (2006) Binding of the low-density lipoprotein by 
streptococcal collagen-like protein Scl1 of Streptococcus pyogenes. Mol Microbiol 
61(2), 351-367 

28. Lukomski, S., Hoe, N. P., Abdi, I., Rurangirwa, J., Kordari, P., Liu, M., Dou, S. J., 
Adams, G. G., et al. (2000) Nonpolar inactivation of the hypervariable 



 

34 

streptococcal inhibitor of complement gene (sic) in serotype M1 Streptococcus 
pyogenes significantly decreases mouse mucosal colonization. Infect Immun 68, 
535-542 

29. Holo, H., and Nes, I. F. (1989) High-Frequency Transformation, by Electroporation, 
of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized 
Media. Appl Environ Microbiol 55, 3119-3123 

30. Que, Y. A., Haefliger, J. A., Francioli, P., and Moreillon, P. (2000) Expression of 
Staphylococcus aureus clumping factor A in Lactococcus lactis subsp. cremoris 
using a new shuttle vector. Infect Immun 68, 3516-3522 

31. Cramer, T., Yamanishi, Y., Clausen, B. E., Forster, I., Pawlinski, R., Mackman, N., 
Haase, V. H., Jaenisch, R., et al. (2003) HIF-1alpha is essential for myeloid cell-
mediated inflammation. Cell 112, 645-657 

32. Grivet, M., Morrier, J. J., Benay, G., and Barsotti, O. (2000) Effect of hydrophobicity 
on in vitro streptococcal adhesion to dental alloys. J Mater Sci Mater Med 11, 637-
642 

33. Pan, W. H., Li, P. L., and Liu, Z. (2006) The correlation between surface 
hydrophobicity and adherence of Bifidobacterium strains from centenarians' 
faeces. Anaerobe 12, 148-152 

34. Lembke, C., Podbielski, A., Hidalgo-Grass, C., Jonas, L., Hanski, E., and 
Kreikemeyer, B. (2006) Characterization of Biofilm Formation by Clinically 
Relevant Serotypes of Group A Streptococci. Appl. Environ. Microbiol. 72, 2864-
2875 

35. Lukomski, S., Sreevatsan, S., Amberg, C., Reichardt, W., Woischnik, M., 
Podbielski, A., and Musser, J. M. (1997) Inactivation of Streptococcus pyogenes 
extracellular cysteine protease significantly decreases mouse lethality of serotype 
M3 and M49 strains. J. Clin. Invest. 99, 2574-2580 

36. Donlan, R. M. (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8, 881-
890 

37. Kania, R. E., Lamers, G. E., Vonk, M. J., Huy, P. T., Hiemstra, P. S., Bloemberg, 
G. V., and Grote, J. J. (2007) Demonstration of bacterial cells and glycocalyx in 
biofilms on human tonsils. Arch Otolaryngol Head Neck Surg 133, 115-121 

38. Maeyama, R., Mizunoe, Y., Anderson, J. M., Tanaka, M., and Matsuda, T. (2004) 
Confocal imaging of biofilm formation process using fluoroprobed Escherichia coli 
and fluoro-stained exopolysaccharide. J Biomed Mater Res A 70, 274-282 

39. Doern, C. D., Roberts, A. L., Hong, W., Nelson, J., Lukomski, S., Swords, W. E., 
and Reid, S. D. (2009) Biofilm formation by group A Streptococcus: a role for the 
streptococcal regulator of virulence (Srv) and streptococcal cysteine protease 
(SpeB). Microbiology 155, 46-52 

40. Roberts, A. L., Connolly, K. L., Doern, C. D., Holder, R. C., and Reid, S. D. (2010) 
Loss of the group A Streptococcus regulator Srv decreases biofilm formation in 
vivo in an otitis media model of infection. Infect Immun 78, 4800-4808 

41. Wadstrom, T., Schmidt, K. H., Kuhnemund, O., Havlicek, J., and Kohler, W. (1984) 
Comparative Studies on Surface Hydrophobicity of Streptococcal Strains of 
Group-a, Group-B, Group-C, Group-D and Group-G. J. Gen. Microbiol. 130, 657-
664 



 

35 

42. Grivetti, L. E., and Ogle, B. M. (2000) Value of traditional foods in meeting macro- 
and micronutrient needs: the wild plant connection. Nutr Res Rev 13, 31-46 

43. Piard, J. C., Hautefort, I., Fischetti, V. A., Ehrlich, S. D., Fons, M., and Gruss, A. 
(1997) Cell wall anchoring of the Streptococcus pyogenes M6 protein in various 
lactic acid bacteria. J. Bacteriol. 179, 3068-3072 

44. Linares, D. M., Kok, J., and Poolman, B. (2010) Genome Sequences of 
Lactococcus lactis MG1363 (Revised) and NZ9000 and Comparative 
Physiological Studies. J. Bacteriol. 192, 5806-5812 

45. Whatmore, A. M., Kapur, V., Sullivan, D. J., Musser, J. M., and Kehoe, M. A. (1994) 
Non-congruent relationships between variation in emm gene sequences and the 
population genetic structure of group A streptococci. Mol. Microbiol. 14, 619-631 

46. Bessen, D. E., Sotir, C. M., Readdy, T. L., and Hollingshead, S. K. (1996) Genetic 
corelates of throat and skin isolates of group A streptococci. J. Infect. Dis. 173, 
896-900 

47. Anthony, B. F. (2000) Streptococcal pyoderma. in Streptococcal infections 
(Stevens, D. L., and Kaplan, E. L. eds.), Oxford University Press, New York, N. Y. 
pp 144-151 

48. Anthony, B. F., Perlman, L. V., and Wannamaker, L. W. (1967) Skin Infections And 
Acute Nephritis In American Indian Children. Pediatrics 39, 263-279 

49. Top, F. H., Jr., Wannamaker, L. W., Maxted, W. R., and Anthony, B. F. (1967) M 
antigens among group A streptococci isolated from skin lesions. J Exp Med 126, 
667-685 

50. Green, N. M., Beres, S. B., Graviss, E. A., Allison, J. E., McGeer, A. J., Vuopio-
Varkila, J., LeFebvre, R. B., and Musser, J. M. (2005) Genetic Diversity among Type 
emm28 Group A Streptococcus Strains Causing Invasive Infections and Pharyngitis. 
J Clin Microbiol 43, 4083-4091 

51. Aziz, R., and Kotb, M. (2008) Rise and persistence of global M1T1 clone of 
Streptococcus pyogenes. Emerg Infect Dis 14, 1511-1517 

52. Aziz, R. K., Edwards, R. A., Taylor, W. W., Low, D. E., McGeer, A., and Kotb, M. 
(2005) Mosaic Prophages with Horizontally Acquired Genes Account for the 
Emergence and Diversification of the Globally Disseminated M1T1 Clone of 
Streptococcus pyogenes. J. Bacteriol. 187, 3311-3318 

53. Musser, J. M., Kapur, V., Szeto, J., Pan, X., Swanson, D. S., and Martin, D. R. 
(1995) Genetic diversity and relationships among Streptococcus pyogenes strains 
expressing serotype M1 protein: recent intercontinental spread of a subclone 
causing episodes of invasive disease. Infect. Immun. 63, 994-1003 

54. Kaul, R., McGeer, A., Low, D. E., Green, K., Schwartz, B., Study, O. G. A. S., and 
Simor, A. E. (1997) Population-based surveillance for group A streptococcal 
necrotizing fasciitis: clinical features, prognostic indicators, and microbiologic 
analysis of seventy-seven cases. Am. J. Med. 103, 18-24 

55. Sharkawy, A., Low, D. E., Saginur, R., Gregson, D., Schwartz, B., Jessamine, P., 
Green, K., and McGeer, A. (2002) Severe group a streptococcal soft-tissue 
infections in Ontario: 1992-1996. Clin Infect Dis 34, 454-460 

56. Beres, S. B., Sylva, G. L., Barbian, K. D., Lei, B., Hoff, J. S., Mammarella, N. D., 
Liu, M.-Y., Smoot, J. C., et al. (2002) Genome sequence of a serotype M3 strain 



 

36 

of group A Streptococcus: Phage-encoded toxins, the high-virulence phenotype, 
and clone emergence. Proc. Natl. Acad. Sci. USA 99, 10078-10083 

57. Beres, S. B., Sylva, G. L., Sturdevant, D. E., Granville, C. N., Liu, M., Ricklefs, S. 
M., Whitney, A. R., Parkins, L. D., et al. (2004) Genome-wide molecular dissection 
of serotype M3 group A Streptococcus strains causing two epidemics of invasive 
infections. Proc. Natl. Acad. Sci. USA 101, 11833-11838 

58. Roberts, A. L., Connolly, K. L., Doern, C. D., Holder, R. C., and Reid, S. D. (2010) 
Loss of the group A Streptococcus regulator Srv decreases biofilm formation in vivo 
in an otitis media model of infection. Infect Immun 78, 4800-4808  

59. Maddocks, S. E., Wright, C. J., Nobbs, A. H., Brittan, J. L., Franklin, L., Stromberg, 
N., Kadioglu, A., Jepson, M. A., et al. (2011) Streptococcus pyogenes antigen I/II-
family polypeptide AspA shows differential ligand-binding properties and mediates 
biofilm formation. Mol Microbiol 81, 1034-1049 

60. Jaffe, J., Natanson-Yaron, S., Caparon, M. G., and Hanski, E. (1996) Protein F2, 
a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two 
domains. Mol Microbiol 21, 373-384 

61. Branda, S. S., Gonzalez-Pastor, J. E., Dervyn, E., Ehrlich, S. D., Losick, R., and 
Kolter, R. (2004) Genes involved in formation of structured multicellular 
communities by Bacillus subtilis. J. Bacteriol. 186, 3970-3979 

62. Gotz, F. (2002) Staphylococcus and biofilms. Mol. Microbiol. 43, 1367-1378 
63. Nadell, C. D., Xavier, J. B., and Foster, K. R. (2009) The sociobiology of biofilms. 

FEMS Microbiol. Rev. 33, 206-224 
64. Courtney, H. S., Dale, J. B., and Hasty, D. L. (2000) Strategies for preventing group 

A streptococcal adhesion and infection. in Handbook of bacterial adhesion: 
principles, methods, and applications (An, Y. H., and Friedman, R. J. eds.), 
Humana Press, Inc., Totowa, N. J. pp 553-579 

65. Luo, H. L., Wan, K., and Wang, H. H. (2005) High-frequency conjugation system 
facilitates biofilm formation and pAM beta 1 transmission by Lactococcus lactis. 
Appl Environ Microb 71, 2970-2978 

66. Gerber, S. D., and Solioz, M. (2007) Efficient transformation of Lactococcus lactis 
IL1403 and generation of knock-out mutants by homologous recombination. J 
Basic Microb 47, 281-286 

67. Piard, J. C., JimenezDiaz, R., Fischetti, V. A., Ehrlich, S. D., and Gruss, A. (1997) 
The M6 protein of Streptococcus pyogenes and its potential as a tool to anchor 
biologically active molecules at the surface of lactic acid, bacteria. Streptococci 
and the Host 418, 545-550 

68. Xu, Y., Keene, D. R., Bujnicki, J. M., Hook, M., and Lukomski, S. (2002) 
Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices. J Biol Chem 
277, 27312-27318 

 



 

37 

 
 

Figure 1 
 
Variation in biofilm formation among GAS strains. (a) Wild type M41-, M28-, M3-, and 
M1-type GAS strains were grown 24 h under static conditions and analyzed 
spectrophotometrically following crystal violet staining (top). Visual representation of 
corresponding wells is shown below. (b) Schematic representation (not to scale) of Scl1.3 
protein of M3-type GAS. Translated GXY repeats within the collagen-like (CL) region are 
shown with an asterisk representing the location of the premature stop codon resulting in 
a truncated protein. V, variable region; L, linker region; WM, wall-membrane associated 
region. Below, spectrophotometric measurements of 24-h biofilms following crystal violet 
staining are graphed for M3-type GAS strains. Absorbance values (OD600) are averages 
of at least three experiments done in triplicate wells. Corresponding confocal analyses of 
24-h biofilms of MGAS315, MGAS2079, and MGAS158 are shown. Images are X-Y 
orthogonal Z-stack views and average vertical thickness is indicated in micrometers (top 
right). 
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Figure 2 
 
Field emission scanning electron microscopy of GAS biofilms. 24-h biofilms of the 
M1- and M41-type GAS strains were grown on glass cover slips and analyzed by FESEM. 
(a-b) Architecture of GAS microcolonies shown at low magnification. (c-d) Cell surface 
morphology and cell-to-cell junctions observed at higher magnification. Enlargements of 
cell-to-cell junctions are shown below. 
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Figure 3 
 
Production of bacterial-associated extracellular matrix. GFP-expressing wild type 
(WT) M41- and M1-type GAS strains were grown on glass cover slips for 24 h and stained 
with TRITC-conjugated concanavalin A (ConA). Confocal laser scanning microscopic 
(CLSM) images were separated to represent green GFP-expressing GAS cells (left 
images) and red ConA-TRITC staining (right images) for detection of extracellular matrix 
associated with each strain. Images are from one representative experiment. 
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Figure 4 
 
Biofilm formation by wild type and scl1-inactivated isogenic mutants. Crystal violet 
staining and confocal laser scanning microscopy (CLSM) of the GFP-expressing GAS 
were used to compare biofilm formation by GAS strains. Wild type (WT) M41-, M28-, and 
M1-type strains, scl1-inactivated mutants (scl1), and M41 mutant complemented for 
Scl1.41 expression (M41 C) were used. (a-c) Isogenic GAS strains were grown under 
static conditions for 24 h and bacterial biomass was detected spectrophotometrically at 
indicated time points following crystal violet staining. Absorbance values at OD600nm are 
representative of at least three experiments performed in quadruplicate. Statistical 
significance is denoted as *P ≤ 0.05 and **P ≤ 0.001. (d-f) CLSM analysis of 
corresponding 24 h biofilms from same experiment. Images are X-Y orthogonal Z-stack 
views of WT (top) and mutant (bottom) GAS strains. Views are representative of ten 
images within a single experiment. Average vertical biofilm thickness is indicated in 
micrometers (top right). 
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Figure 5 
 
Scl1 expression in L. lactis promotes biofilm formation. L. lactis was transformed 
with the plasmid construct pSL230 to express Scl1.41 surface protein or with pJRS525 
vector. (a) PCR analysis of L. lactis transformants using scl1.41-gene-specific primers; 
lanes: (1) MG1363 wild-type (WT) cells; (2) MG1363::pJRS525 vector-only control; (3) 
MG1363::pSL230 transformant; (4) control pSL230 plasmid DNA. (b) Scl1.41 expression 
by western blot analysis of cell-wall extracts prepared from transformed L. lactis and 
control GAS strains using anti- P176 (rScl1.41) antibodies; lanes: (1) purified recombinant 
P176 protein (truncated Scl1.41); (2) MG1363 WT strain; (3) MG1363::pJRS525 vector; 
(4) MG1363::pSL230 transformant; (5) MGAS6183 (M41) control. (c) Analysis of Sc1.41 
expression by flow cytometry with anti-P176 (rScl1.41) rabbit polyclonal antibodies on the 
surface of MGAS1363 WT strain (black trace), MGAS1363::pJRS525 vector-only control 
(green trace) and MG1363:pSL230 transformant (red trace). (d) Crystal violet staining of 
24 h biofilms formed by L. lactis WT strain, MG1363::pJRS525 vector-only control or 
MG1363::pSL230 transformant (top) with visual representation of the corresponding wells 
(bottom). Statistical significance is denoted as **P ≤ 0.001. (e) CLSM analysis of 24 h 
biofilms from same experiment shown in (d). Images are X-Y orthogonal Z-stack views 
representative of ten images within a single experiment. Average vertical biofilm thickness 
is indicated in micrometers (top right). 
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Figure 6 
 
Scl1-mediated model of GAS biofilm (not to scale). Scl1 hydrophobin (current study) 
initiates bacterial adhesion to animate surfaces (64) within the host (blue field). Scl1 
adhesin anchors the growing microcolony by direct binding to tissue extracellular matrix 
(ECM) components, cellular fibronectin and laminin (19), initiating microcolony formation 
and anchoring the outside edge of GAS microcolony in tissue (yellow field). Microcolony 
scaffolding is stabilized by the formation of head-to-head dimers between Scl1 molecules 
on adjacent chains (pink field). Inset shows Scl1-Scl1 head-to-head dimers formed by 
rScl1.1 as viewed by electron microscopy after rotary shadowing (68). Bar: 50 nm. 
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Table 1. Cell surface hydrophobicity of GAS strains  

GAS Strain M-Type Actual Value† Hydrophobicity 

Index‡ 

MGAS6183 WT M41 92.6 ± .86 100 

MGAS6183 Δscl1 M41 85.2 ± 2.2 **92 

MGAS6183 Δscl1-C M41 98.0 ± .31 105 

MGAS5005 WT M1 80.3 ± .89 100 

MGAS5005 Δscl1 M1 63.3 ± 3.2 **79 

MGAS6143 WT M28 94.3 ± .73 100 

MGAS6143 Δscl1 M28 72.6 ± .62 **78 

† Actual hydrophobicity values were calculated based on hexadecane binding as 
described in Methods. Values are representative of three separate experiments with ten 
replicates ±SD. 
‡ Hydrophobicity Index represents the ration of actual hydrophobicity value for each  
strain to that of the isogenic wild-type (WT) strain multiplied by 100.  
** Asterisks denote a statistically significant difference of Δscl1 mutants versus WTs at P 
≤ 0.001. 
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Table 2. Cell surface hydrophobicity of Lactococcus strains  

Lactococcus Strain  Actual Value† Hydrophobicity 

Index‡ 

L.lactis 1363 WT  59.7 ± 7.2 100 

L. lactis 1363::pJRS525  56.6 ± 5.5 98 

L. lactis 1363::pSL230  82.0 ± 2.6 **137 

† Actual hydrophobicity values were calculated based on hexadecane binding as 
described in Methods. Values are representative of three separate experiments with ten 
replicates ±SD. 
‡ Hydrophobicity Index represents the ration of actual hydrophobicity value for each  
strain to that of the isogenic wild-type (WT) strain multiplied by 100. 
** Asterisks denote a statistically significant difference of Δscl1 mutants versus WTs at P 
≤ 0.001.



 

45 

CHAPTER 2 

UNIQUE FOOTPRINT IN THE SCL1.3 LOCUS AFFECTS ADHESION AND BIOFILM 

FORMATION OF THE INVASIVE M3-TYPE GROUP A STREPTOCOCCUS 

Beth A. Bachert, Soo Jeon Choi, Paul R. LaSala, Tiffany Harper, Dudley H. McNitt, 

Dylan T. Boehm, Clayton C. Caswell, Pawel Ciborowski, Douglas R. Keene, Anthony R. 

Flores, James M. Musser, Flavia Squeglia, Daniela Marasco, Rita Berisio, and Slawomir 

Lukomski 

Published in Frontiers in Cellular and Infection Microbiology 2016 6:90 

 

ABSTRACT 

The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface 

adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type 

strains, however, have evolved two unique conserved features in the scl1 locus: (i) an 

IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within 

the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, 

contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This 

leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and 

Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-

type strains were shown to have reduced biofilm formation on inanimate surfaces coated 

with cellular fibronectin and laminin, and in human skin equivalents. Repair of the 

nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm 

formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-

capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating 

that lack of Scl1 adhesin promotes bacterial spread over localized infection. These 

studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents 

surface expression of the major Scl1 adhesin, contributed to the emergence of the 

invasive M3-type strains. Furthermore these studies provide insight into the molecular 

mechanisms mediating colonization, biofilm formation, and pathogenesis of group A 

streptococci. 
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INTRODUCTION 

Group A Streptococcus (GAS) or Streptococcus pyogenes is a human-specific Gram-

positive pathogen responsible for significant morbidity and mortality worldwide (1,2). The 

clinical outcomes resulting from GAS infection range from superficial pharyngitis and 

impetigo to severe life-threatening diseases, such as streptococcal toxic shock syndrome 

and necrotizing fasciitis, as well as post-infectious sequelae, including rheumatic fever, 

rheumatic heart disease, and post-streptococcal glomerulonephritis (3). Historically, GAS 

has been a significant cause of puerperal sepsis, scarlet fever, erysipelas, and pharyngitis 

(4). GAS strains are epidemiologically subtyped based on nucleotide sequence variation 

at the 5’-end of the emm gene, reflecting differences in the hypervariable N-terminal 

region of the anti-phagocytic surface protein M. Over 240 M-types have been identified 

(http://www.cdc.gov/abcs/index.html), and certain M-types have been shown to have 

nonrandom associations with specific disease outcomes (3,5). Since the 1980’s there has 

been resurgence in invasive GAS diseases in the U.S. and other parts of the world. 

Numerous epidemiology studies conducted in the U.S. (6-11), Canada (12-15), and 

Europe (16-19) have found associations between infections with M1- and M3-type strains 

and invasive diseases. Specifically, M3-type strains have been associated with severe 

invasive disease (6,19) and fatal outcomes (14,16,17).  

These epidemiological observations have spurred significant whole genome 

sequencing efforts aimed at identification of the underlying genetic basis for virulence in 

M3-type GAS. The complete annotated genomes of invasive M3 strains MGAS315 and 

SSI-1 have been reported (20,21). These studies have revealed that differing phage 

elements, insertion sequences, and the large-scale chromosomal inversion identified in 

SSI-1, contributed to much of the genetic variation between M3 and other M-types. 

Acquisition of prophages and SNP’s drive the expansion of different M3 subclones during 

epidemic waves of infection (22,23). Additionally, strains causing pharyngitis and those 

causing invasive infections are derived from the same pool of M3 strains (24). In addition, 

genetic variation in virulence regulators, including RopB and CovRS, which are “hot-

spots” for the accumulation of mutations, also contributes to the hypervirulence of M3 

strains (23-28). The cause of the hyper-invasive phenotype of M3 strains is multifactorial 

http://www.cdc.gov/abcs/index.html
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and involves multiple virulence factors controlled by complex regulatory networks that 

continually undergo remodeling.  

The streptococcal collagen-like proteins 1 and 2, or Scl1 and Scl2 (also known as 

SclA and SclB), are major GAS surface adhesins known to contribute to pathogenesis. 

Both Scl proteins contain an N-terminal variable region, followed by a collagen-like region 

containing Gly-X-Y repeats and a cell-wall-anchored C-terminal region (29-33). 

Transcription of scl1 is positively regulated by the multiple gene regulator Mga (30,32,34). 

Scl1 binds cellular fibronectin and laminin (35), and contributes to the formation of biofilm 

by strains of multiple M-types (36,37). GAS adherence and biofilm formation is enhanced 

on extracellular matrix (ECM) coatings and on fibroblast-deposited ECM network (37,38), 

supporting a role for Scl1 in tissue-microcolony formation described during GAS skin 

infection (39). While the scl1 gene has been found in every GAS strain tested (29,32), the 

scl1.3-allele in M3-type strains harbors a null mutation within the coding sequence (29). 

A rare natural reversion of this polymorphism was identified in a small subset of M3 carrier 

strains (40). 

Scl2-protein expression is regulated during translation by varying numbers of short 

CAAAA repeats downstream of the start codon that determine whether the protein-coding 

sequence is in-frame or translation will be prematurely terminated (30,31); genome 

sequencing indicates majority of the M3-type strain contain in-frame scl2.3 alleles (18,22). 

Scl2 has been shown in some strains to bind the human thrombin-activatable fibrinolysis 

inhibitor (41) and contribute to adherence to fibroblasts (31), although its role in GAS 

pathogenesis is less understood. Recently, the crystal structure of the Scl2.3 globular 

domain, which is structurally conserved between Scl1 and Scl2, has been reported 

(42,43) providing insight into the potential binding interactions with host ligands.  

In this study, we show that invasive M3-type GAS harbor two unique conserved 

features of the scl1 locus including the IS1548 insertion in the promoter region and the 

null mutation in the coding sequence, which results in a secreted instead of cell-attached 

Scl1 protein. We demonstrate significantly different expression patterns of scl1 and scl2 

in M3-type GAS compared to representative strains of M1-, M28- and M41-types. We 

demonstrate that the expression of the Scl1 adhesin is deficient in serotype M3 strains, 

as opposed to M1-, M28-, and M41-type strains. However, the Scl2 protein is upregulated 
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in M3 strains compared to M1, M28, and M41 GAS. The M3 strains lacked significant 

biofilms on cellular fibronectin and laminin coatings, compared to M41-type GAS, and did 

not form tissue microcolonies in a wounded pseudo-organ skin equivalent model of 

infection. Recombinant Scl1.3 specifically bound cellular fibronectin and laminin, and 

restoration of surface expression of Scl1.3 conferred significant biofilm formation by M3 

strains. Inactivation of Scl1 expression in biofilm-capable M28- and M41-type GAS 

resulted in larger skin lesions produced by the mutants in a mouse model of subcutaneous 

infection, supporting a role for Scl1 in maintaining a localized infection. Our model 

advocates that the lack of surface-associated Scl1 adhesin in M3-type strains causes 

decreased tissue adherence and decreased capacity for stable microcolony formation, 

thus, promoting bacterial spread over localized nidus of infection.  

 

MATERIALS AND METHODS 

1. Bacterial strains and growth 

MGAS315 and MGAS10870 are fully sequenced invasive M3-type strains (20,23). 

MGAS315 was isolated from a patient with streptococcal toxic syndrome in the 1980’s (6) 

and MGAS10870 was isolated from a patient with soft tissue infection in Ontario in 2002 

(23). Additional strains from epidemiologically diverse M-types were used for comparison: 

MGAS6183 (M41), MGAS5005 (M1), and MGAS6143 (M28). The MGAS6143∆scl1-, 

MGAS6183∆scl1-, and MGAS10870∆scl1-inactivated mutant strains have been 

previously described (40,44,45). Group A Streptococcus cultures were grown in Todd-

Hewitt broth (Becton Dickinson and Co.) supplemented with 0.2% yeast extract (THY 

medium) and on Brain Heart Infusion agar (Becton Dickinson and Co.) at 37°C in an 

atmosphere with 5% CO2. For antibiotic selection, erythromycin (5 µg mL-1), 

chloramphenicol (10 µg mL-1), kanamycin (200 µg mL-1), and spectinomycin (100 µg mL-

1) were added to the medium.  

Cloning experiments were performed in XL-1 Blue and TB1 E. coli cells, while 

protein expression experiments were performed in BL21 and TB1 E. coli cells grown in 

Luria-Bertani media (Difco Laboratories) at 37°C. For antibiotic selection, 

chloramphenicol (10 µg mL-1), kanamycin (50 µg mL-1), spectinomycin (100 µg mL-1), and 

ampicillin (100 µg mL-1) were added to the medium. 
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2. PCR assays 

2.1. Analytical PCR 

2.1.1. Detection of IS element upstream of scl1 in GAS strains 

The presence of IS1548 upstream of scl1 was determined by PCR with primers IS1548F 

and Scl1R (Figure 1) using Qiagen Taq DNA polymerase (Qiagen, Germantown, MD) as 

follows: 95°C, 5 min-[95°C 1 min, 62°C 1 min, 72°C 1 min] x30 cycles- 72°C, 10 min. 

Sequences of primers used in all PCR assays are listed in Table S1. 

 

2.1.2. PCR amplification of scl1.3 and scl2.3 alleles 

PCR was performed on genomic DNA isolated from M3 strains with primer pairs 232 Up/ 

232 Rev for scl1.3 amplification and sequencing, and Scl2.3 F/R and SclUp/ SclRev for 

length polymorphism analysis and sequencing of scl2.3, respectively. Amplification was 

performed using Qiagen Taq DNA polymerase as follows: scl1.3: 95°C, 5 min-[95°C 1 

min, 55°C 1 min, 72°C 1 min] x30 cycles- 72°C, 10 min; scl2.3: 95°C, 5 min-[95°C 1 min, 

51°C 1 min, 72°C 1 min 45 sec] x30 cycles- 72°C, 10 min. All PCR products were 

analyzed in a 1% agarose gel with 1 kb Plus DNA ladder as a molecular size marker (Life 

Technologies, Grand Island, NY). 

 

2.2. Quantitative reverse transcription PCR (qRT-PCR) 

2.2.1. RNA isolation 

Total RNA was isolated from the logarithmic phase (OD600 0.5) GAS cultures using 

RNeasy Protect Bacteria Mini kit (Qiagen), employing an additional pretreatment step 

with 250 µg lysozyme, 100 µg proteinase K, and 12.5 U mutanolysin per sample to 

augment cell wall disruption. Trace genomic DNA was removed by incubation with 

TurboDNase enzyme (Ambion). RNA quality was assessed in 1% agarose gel and 

spectrophotometrically; A260/280 and A260/230 ratios of >1.8 were considered 

acceptable. RNA was used immediately in cDNA synthesis or stored at -80°C for no more 

than 1 week.  
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2.2.2. Determination of transcription by qRT-PCR  

Synthesis of cDNA was performed using iScript Select cDNA synthesis kit (Bio-Rad) with 

1 µg of RNA per reaction and random primer mix. For each sample, a no reverse 

transcriptase control was performed, containing only RNA, reaction buffer, and random 

primer mix, to ensure the absence of genomic DNA. Incubations were carried out on a 

Bio-Rad C1000 Touch Thermal cycler: 25°C 5 min, 42°C 30 min, 85°C 5 min, and cDNA 

was stored at -20°C until used in qRT-PCR. qRT-PCR reactions were performed with 250 

nM primers using SsoAdvanced SYBR Green Universal Supermix (Bio-Rad). For each 

qRT-PCR reaction, template cDNA, diluted 1:20, control genomic DNA, or no reverse 

transcriptase control were used. PCR was performed using the following conditions on a 

Bio-Rad CFX96 Thermal cycler: 95°C 2 min- [95°C 5 sec, 60°C 30 sec]x30- [65°C- 95°C, 

5 sec, 0.5°C/ step]. Standard curves were generated for each primer set using cDNA from 

MGAS315 to determine the linear range and estimate reaction efficiency. Gene 

expression of scl1, scl2, emm, and mga was normalized against the expression of tufA 

gene, which has previously been identified and validated as an appropriate endogenous 

control (46). The ∆∆Ct method was utilized to compare gene expression between 

MGAS315 and other M3 strains, as well as M1, M28, and M41-type strains. Data was 

averaged from three independent experiments, each containing three technical 

replicates. Statistical significance was determined using an unpaired t-test. 

 

3. Recombinant Scl (rScl) proteins 

3.1. Cloning, expression, and purification of M3-derived rScl proteins  

The rScl proteins were generated using the Strep-tag II cloning, expression and 

purification system (IBA-GmbH, Gottingen, Germany). Proteins were expressed with a C-

terminal affinity tag and purified on Strep-Tactin sepharose, as described (47). rScl 

proteins rScl1.3V and rScl1.3FL are derived from MGAS315, whereas rScl2.3 protein is 

derived from the M3 strain MGAS3375. The recombinant Scl2.3V protein has been 

described previously (42). Construct containing the recombinant full-length Scl1.3FL 

(rScl1.3FL) protein was previously described (40). Briefly, the scl1.3 coding region from 

MGAS315 was cloned into the E. coli/GAS shuttle vector pJRS525 (48), generating 

plasmid pSL501. PCR mutagenesis was used to convert the internal TAA stop codon into 
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a GAA glutamate codon, resulting in plasmid pSL502 with continuous full-length scl1.3FL 

allele. This sequence was subsequently cloned into the pASK-IBA2 expression vector for 

recombinant Scl1.3FL protein production; each clone was verified by sequencing. Protein 

expression constructs are listed in Table 1. 

Protein expression was induced by the addition of anhydrotetracycline at 0.2 µg 

mL-1 for 3 hours. Cells were centrifuged and resuspended in high sucrose buffer (100 mM 

Tris-HCl, 1 mM EDTA, pH 8.0, 500 mM sucrose) or Cell Lytic B Buffer (Sigma), for 

separation of the periplasmic fraction and subsequent affinity purification. Proteins were 

dialyzed against 25 mM HEPES, pH 8.0, and analyzed by SDS-PAGE stained with 

RAPIDstainTM (G-Biosciences). Protein sequence was confirmed using mass 

spectrometry (University of Nebraska Medical Center) and N-terminal Edman 

Degradation sequencing (Iowa State University).  

 

3.2. Electron microscopy of rotary shadowed rScl proteins 

Electron microscopy visualization of the rotary shadowed preparations of rScl1.3FL and 

rScl2.3 was used to assess the domain organization of rScl proteins, as employed 

previously (49). The rScl proteins were dialyzed against 0.1 M ammonium bicarbonate 

and mixed with glycerol to a final concentration of 70% (vol:vol). Samples were nebulized 

onto mica chips with an airbrush and rotary-shadowed with carbon/platinum using an 

electron beam gun. Photomicrograph images were acquired using a transmission 

electron microscope FEI G2 operated at 80KV. 

 

3.3. Mass spectrometry analysis 

Samples from in-gel trypsin digested proteins were cleaned using a Millipore µC18 ZipTip, 

then resuspended in 0.1% formic acid. Samples were fractionated on a Eksigent cHiPLC 

column (75 µm x 15 cm ChromXP C18-CL 3 µm 120 Å), and resulting peptides were 

sequenced using 5600 TripleTOF (typical gradient 2-60% ACN in 60 minutes). Peptides 

identified were searched against the NCBI protein database with Protein Pilot software 

employing the following settings: search effort, thorough; taxonomy, none. Positive 

identification was considered as the identification of two or more unique peptides at high 
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confidence ≥95%, FDR=0.05, 0.01, or 0.001, which matched the same protein entry in 

the database searched.  

 

3.4. Binding of rScl proteins to extracellular matrix proteins and synthetic peptide 

3.4.1. ELISA binding assays 

Binding of rScl proteins to extracellular matrix proteins, cellular fibronectin (cFn) and 

laminin (Lm), was tested by ELISA (35). rScl proteins were immobilized onto Strep-

Tactin® coated microplate wells (IBA GmbH) at 0.5 µM at room temperature for 1.5 hours, 

then blocked with Tris-buffered saline (TBS) containing 1% bovine serum albumin (BSA) 

overnight at 4°C. The cellular fibronectin from human foreskin fibroblasts (Sigma) and 

murine laminin (Invitrogen) were added to the wells at 1 µg per well and incubated at 

room temperature for 1 hour. Bound ECM proteins were detected with rabbit anti-laminin 

at 1:100 (Sigma) and anti- human fibronectin at 1:4,000 (Sigma) polyclonal antibodies. 

Secondary antibody goat anti-rabbit IgG (H+L) HRP conjugate (Bio-Rad) was next used 

with 1-step ABTS substrate (2,2'-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-

diammonium salt) (ThermoScientific). Absorption was measured using Spectramax 190 

at a wavelength of 415 nm. Statistical analysis is based on three independent 

experiments each containing three technical replicates, using an unpaired t-test.  

 In antibody inhibition assay, the IST-9 mAb targeting the C-C’ loop of EDA domain was 

utilized (37). cFn was either untreated or pre-treated with increasing concentrations of 

IST-9 blocking mAb (0.1 µg- 1.0 µg), and added to Strep-Tactin®-coated microplate wells 

immobilized with rScl proteins, then incubated for 1 hour. Bound ECM proteins were 

detected as above. 

 

3.4.2. Design and synthesis of the C-C’ cyclic peptide 

The C-C’ cyclic peptide was designed based on the crystal structure of the EDA domain 

of cFn (PDB code 1J8K). In particular, the region, which was reported to be involved in 

Scl1 binding, connecting to two β-strands C and C’ of EDA was elongated to the whole 

C-C’ β-hairpin by allowing the formation the electrostatic interaction between Arg33 and 

Glu45. The terminal Tyr32 and Pro48 were mutated to Cys to stabilize the β-hairpin by 

introducing a disulfide bond (Figure S4). The obtained sequence, 
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CRVTYSSPEDGIHELFC (molecular weight: 1997.1 Da), endowed with a cyclic structure 

to mimic the structure of this region in EDA, was acetylated and amidated at the N- and 

C-terminus, respectively. Synthesis of the designed peptide was performed employing 

the solid phase method on a 50 μmol scale initially following standard Fmoc strategies 

(50). Due to aspartimide formation during traditional acylation reactions, peptide synthesis 

was carried out employing microwave technology (51). Cyclization was achieved by 

treating the peptide at 0.1 mg/mL (to avoid intermolecular disulphide formation) with buffer 

carbonate 50 mM, pH=9, overnight. The peptide was purified by RP-HPLC and the 

identity and purity (> 97%) was assessed by LC-MS (data not shown). 

 

3.4.3. Surface plasmon resonance (SPR) experiments 

Real time binding assays were performed at 25 °C on a Biacore 3000 Surface Plasmon 

Resonance (SPR) instrument (GE Healthcare). For immobilization, rScl1.3FL protein 

containing the C-terminal Strep-tag II was injected at a concentration of 40 µM on 

streptavidin-coated sensor chip, SA Biacore, until the desired level of immobilization was 

achieved (averaged value of 100 RU). Binding assays were carried out by injecting the 

C-C’ cyclic peptide at concentrations ranging between 10-500 µM. Experiments were 

carried out in HBS buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, pH 7.4). The 

association phase (kon) was followed for 270 s, whereas the dissociation phase (koff) was 

followed for 300 s. The reference chip sensorgrams were subtracted from sample 

sensorgrams. Experiments were carried out in duplicates. Kinetic parameters were 

estimated assuming a 1:1 Langmuir binding model and using version 4.1 Evaluation 

Software (GE Healthcare).  

 

3.4.4. Fluorescence binding analysis 

rScl1.3FL protein, at a concentration of 30 μM, was incubated with increasing 

concentrations of C-C’ cyclic peptide (0 - 300 μM) at 25.0 °C, using an excitation 

wavelength of 298.0 nm and a fluorescence emission wavelength ranging from 300 to 

400 nm. The acquisition parameters were set as follows: excitation and emission slits at 

5 nm; 120 nm/min scan rate; 1.00 nm data interval averaging time at 0.500 s, PMT voltage 

at “high”. Fluorescence values were recorded at 333 nm, and subtracted from the 
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fluorescence intensity of the ligand-free protein, generating -∆fluorescence. The -

∆fluorescence values were plotted against the peptide concentration. (52). Experiments 

were carried out in duplicates. A control assay was carried out employing the buffer as 

titrant to assess that the dilution effect was under 3%, not affecting the results.  

 

4. Complementation of GAS strains with full-length Scl1.3FL  

For trans-complementation experiments, plasmid pSL502, encoding full-length cell-

associated Scl1.3FL protein, was electroporated into MGAS315 WT and 

MGAS6183Δscl1 electrocompetent cells. The pJRS525 vector was electroporated as a 

control. Transformants were selected on BHI agar containing 100 µg mL-1 spectinomycin, 

and plasmids were re-sequenced. For MGAS10870∆scl1, which contains a 

spectinomycin resistance cassette in place of the scl1.3 allele, the spectinomycin 

resistance marker in pSL502 was replaced with a kanamycin resistance, generating the 

plasmid pSL518 and colonies were selected on BHI agar containing 150 µg mL-1 

kanamycin.  

 

4.1. Determination of Scl1.3- and Scl2.3-protein expression in wild-type and 

complemented GAS strains 

4.1.1. Western blot analysis 

Expression of the Scl1.3 and Scl2.3 proteins was determined by western immunoblotting 

of the bacterial cell wall and culture supernatant protein fractions, as described before 

(29,30). Briefly, bacterial cultures were grown to an OD600 of 0.5 and cells were harvested 

by centrifugation. Culture supernatant proteins were precipitated with trichloroacetic acid 

(Sigma) to a final concentration of 10% (vol:vol). The cell wall protein fraction was 

obtained after cell digestion with lysozyme and mutanolysin in a high sucrose buffer. A 

total of 10 µg of protein samples were separated by SDS-PAGE and transferred to a 

nitrocellulose membrane. Detection of Scl1.3, Scl2.3, and M3 proteins was performed 

using the same sample preparations with rabbit polyclonal antibodies generated against 

the truncated rScl1.3WT protein (anti-Scl1 1:15,000 dilution, reported in (40)) and the 

rScl2.3V region (anti-rScl2.3V 1:2,500; generated by Proteintech (43)). Horseradish 

peroxidase-conjugated goat anti-rabbit IgG (H+L) secondary antibody (Bio-Rad), 
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combined with PierceTM ECL western blotting substrate (Thermo Scientific) was used for 

detection. Images were acquired using a ChemiDoc Touch Imaging System (Bio-Rad). 

 

4.1.2. Flow cytometry analysis 

Surface detection of Scl1.3 and Scl2.3 proteins was determined by flow cytometry. 

Bacteria grown to an OD600 of 0.5 were harvested by centrifugation, and washed with flow 

cytometry buffer (sterile phosphate-buffered saline containing 10% Todd-Hewitt broth 

supplemented with 0.2% yeast extract). Cells were incubated with polyclonal antibodies 

against Scl1.3 and Scl2.3 described above at a dilution of 1:100 for 30 minutes on ice, 

then washed and incubated with Allophycocyanin (APC)-conjugated donkey anti-rabbit 

IgG (H+L) (Jackson ImmunoResearch) for 30 minutes on ice. Cells were washed and 

fixed in 0.4% paraformaldehyde, and stored at 4°C until analysis. Before analysis, cells 

were washed twice and resuspended in flow cytometry buffer. Cells were analyzed using 

a BD LSRFortessa, and 50,000 events were collected per sample. Data was analyzed 

using the FCS Express Flow 5 software.  

 

5. Assessment of biofilm formation 

5.1. Crystal violet staining assay 

Wild-type, mutant, and complemented strains were grown to OD600 of 0.5 and seeded 

into 24-well culture plates coated with ECM at 2 µg per well, then incubated at 37°C with 

5% CO2 for 24 hours. Wells were washed with PBS followed by the addition of 0.5 mL 

1% crystal violet solution (Fisher Scientific) diluted in PBS and incubation at room 

temperature for 30 minutes. Wells were rinsed twice with PBS and stain was solubilized 

with 0.5 mL of 75% ethanol. Spectrophotometric readings were taken for each sample at 

OD600. Statistical analysis is shown based on three independent experiments, each 

containing three technical replicates, using an unpaired t-test. 

  

5.2. Confocal laser scanning microscopy (CLSM) 

To visualize GAS by CLSM, bacterial cells were transformed with a GFP-encoding 

plasmid pSB027 (53), as before (36). 15-mm glass cover slips were placed into 24-well 

tissue culture plate wells and coated with 2 µg of cFn or Lm per well. Bacterial cultures 
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grown to logarithmic-phase were added to the wells and allowed to form biofilms for 24 

hours. Wells were rinsed with PBS and bacterial cells were fixed with 3% 

paraformaldehyde at room temperature for 30 min. Wells were washed again and 

coverslips were mounted onto slides using ProLong Gold Antifade Mountant (Thermo 

Scientific). Confocal images were acquired using a 63×/1.40 Plan-Apochromat objective 

and a Zeiss LSM 510 laser scanning confocal microscope.  

 

6. In vitro and in vivo GAS infection models 

6.1. GAS infection of in vitro cultured human skin equivalents 

Wounded full-thickness skin equivalents, EpiDerm-FT (MatTek, Boston, MA) were used. 

The tissues are discs 8 mm in diameter, which are provided in transwells. A 3-mm wound 

is generated by performing a punch biopsy to remove the keratinocyte layer. Immediately 

upon arrival, tissues were equilibrated in antibiotic-free manufacturer’s medium overnight 

at 37°C in atmosphere with 5% CO2. Wounds were infected with 10 µL of GFP-expressing 

log-phase group A streptococcal inocula and incubated in a humid environment at 37°C 

with 5% CO2 in daily-fresh media; a total of 4 experiments were performed and variables 

included the inoculum size of 3 x 106 -1.8 x 107 CFU and collection time points between 

1-5 days. Tissues designated for histopathological evaluation were fixed in 10% formalin, 

whereas tissues for two-photon fluorescence (TPF) microscopy imaging were fixed in 4% 

paraformaldehyde for several hours and then transferred to petri dishes containing PBS. 

For visualization of glycocalyx produced by GAS strains, tissues were permeabilized with 

0.1% Triton X-100 in 1 x PBS and blocked with 0.05% Triton X-100 in 1x PBS with 1% 

BSA before staining with concanavalin A- tetramethylrhodamine (Molecular Probes). 

Tissues were then rinsed and stored in PBS at 4°C until TPF imaging was performed. For 

TPF analysis, an Olympus 60x/ 1.2NA water dipping objective was used. Fixed tissues 

were imaged by two-photon microscopy with the Ti:sapphire laser (Mira, Coherent) 

intensity at 60 mW and input wavelength of 850 nm. Laser scanning images were 

collected at 0.5- 1 µm incremental depths using ScanImage (Janelia Farms, HHMI). 

Images were saved in a single TIFF file with 16 bit depth. Deconvolution of the images 

was performed using AutoQuant x3 and 3D models of z-stacks were generated using 

Imaris software. 
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6.2. Mouse model of soft tissue infection  

Animal experiments were conducted in compliance with the regulations and standards 

under the Animal Welfare Act, the Public Health Service Policy on Humane Care and Use 

of Laboratory Animals, and the Guide for the Care and Use of Laboratory Animals. The 

protocol was approved by the West Virginia University Institutional Animal Care and Use 

Committee (IACUC). 

Subcutaneous infections of mice were carried out as described previously (54). 

Briefly, 5-week-old male, immunocompetent, hairless mice (strain Crl:SKH1-hrBR) were 

used (Charles River, Wilmington, MA). Groups of 10-15 mice anesthetized with isoflurane 

were infected subcutaneously at the right flank with ~109 GAS CFU of WT or scl1-mutant 

strains, and mice were observed for 14 days. The weight and abscess dimensions (length 

[L] and width [W]) of each mouse were recorded daily during the first week and every 

other day thereafter. To analyze differences between mice infected with WT and scl1-

mutant GAS, the area of each abscess was calculated with the equation for the area (A) 

of an spherical ellipsoid: A=(L/2)x(W/2); statistical differences were calculated using the 

student’s t-test. At the conclusion of the experiments, mice were anesthetized and 

sacrificed by cervical dislocation. 

 

RESULTS 

M3-type GAS contain unique insertion of IS1548 element and nonsense mutation 

within the scl1.3 locus  

Since the resurgence of invasive GAS infections in the 1980s and an advent of molecular 

epidemiology fostered by large-scale sequencing, significant efforts have been made to 

define the molecular basis for the invasive phenotype of M3-type strains. In parallel to 

these advances, we identified two unique genomic traits in the scl1.3 locus, encoding 

streptococcal collagen-like protein 1: (i) the presence of an insertional sequence element, 

IS1548, in the promoter region and (ii) the presence of a nonsense mutation within the 

coding sequence of scl1.3 allele that was absent in other M-types.  

Studies employing mga-inactivated mutants have indicated that Scl1 expression 

was positively regulated by the GAS-global transcriptional regulator, Mga (30,32). Two 
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putative Mga binding sites were identified upstream of the scl1 coding sequence in the 

M1-type strain SF370 and experiments demonstrated that the Mga binding site distal to 

scl1 was responsible for transcription activation (34). Identical Mga binding sites I and II 

were also identified upstream of scl1.3 in the sequenced M3-type strain MGAS315 with 

IS1548 element inserted 38 bp upstream of the distal Mga I-binding site (Figure 1A). To 

determine if the IS1548 insertion was specific to M3 strains, we BLAST-searched this 

element in 45 completed GAS genomes representing 21 different M-types. We observed 

the presence of IS1548 in all strains searched with varying locations and occurrences 

from one to twelve per genome (Figure 1B). However, the IS1548 insertion upstream of 

the scl1.3 allele was only found in the sequenced genomes of M3-type strains MGAS315, 

SSI-1, and M3-b. Interestingly, a complete IS1548 element was not present upstream of 

scl1.3 in the recently reported genome of the M3 strain STAB902, which represents a 

non-invasive isolate (55); instead, a 34-bp remnant of IS1548, including the inverted 

repeat and additional 14 bp, was found. Based on this bioinformatics data, we examined 

the presence of the IS1548 element upstream of scl1 by PCR in a panel of 40 M3-type 

strains, using primers located in the IS1548 and scl1.3 sequences (IS1548F and Scl1R, 

Table S1). All M3-type strains examined were positive for the IS1548-scl1.3 amplicon, 

while M1, M41, and M28-type controls were negative (Figure 1C), demonstrating a broad 

and conserved presence of the IS1548 insertion in this location among M3-type GAS. 

 The nonsense mutation in the 11th Gly-X-Y repeat in the Scl1.3-CL collagenous region 

(Figure 1A, red box), presumably results in a truncated secreted variant, which consists 

of the Scl1-V variable region and 10 Gly-X-Y repeats but lacks the cell wall anchor. This 

polymorphism was originally identified in five M3-type invasive GAS strains but was 

absent in 45 other strains analyzed, representing 20 different M-types (29). It was later 

shown in 98.7% of 479 sequenced invasive M3-type isolates (40). We performed targeted 

PCR amplification of scl1.3 from 46 additional M3-type strains and observed identical 

amplicon sizes in all of them (Figure S1A). Sequencing showed that all tested strains 

harbored an identical scl1.3 allele, containing 25 Gly-X-Y repeats in the collagenous 

domain with the null mutation in the 11th repeat (Data Set S1). A complete lack of genetic 

variation within scl1.3 is surprising and differs from the length variation that is commonly 

observed among scl alleles from other M-types (29,32,33). These results demonstrate 
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that the IS1548 insertion and null mutation we identified in the scl1.3 locus are unique to 

and conserved among M3-type GAS. Based on these results, we hypothesized M3 strains 

produce a truncated, but potentially biologically active Scl1.3 variant, which is secreted 

instead of being cell-attached. 

 

scl1.3 expression is diminished in M3-type GAS 

Original reports showed scl1 transcripts in northern blots, as well as full-length Scl1 

proteins (both cell-associated and cell-free fractions) in western blots for strains of emm 

types 1, 28, 52, and 41 (29,30,32,45). To analyze the expression of the truncated Scl1.3 

protein in M3-type GAS, western blot analysis was performed on cell-wall (CW samples) 

and culture-supernatant (Sup samples) protein fractions of several M3-type strains grown 

to exponential phase (Figure 2A). The expected truncated Scl1.3 protein was not detected 

by anti-Scl1 antibodies, whereas the rScl1.3V positive control, corresponding to the V 

region of Scl1.3 variant, produced the expected immunoreactive band of ~8.3 kDa. In an 

additional control experiment, the same panel of M3 strains was tested for Scl1.3 on the 

cell surface using flow cytometry (Figure 2B). No shift in median fluorescence intensity 

was observed in M3 strains incubated with anti-Scl1 antibody compared to a secondary-

only antibody control, indicating a lack of Scl1 on the cell surface among M3 strains.  

Given the unique IS1548-scl1.3 location and the lack of truncated Scl1.3 products 

in culture supernatants, we investigated scl1.3 expression by qRT-PCR. Total RNA was 

isolated from exponential phase cultures of 5 M3-type strains, as well as from previously 

characterized control strains of emm types 1, 28, and 41 (29,30,32,45). Expression of 

scl1 from each strain was compared to scl1.3 transcription in M3 strain MGAS315 (Figure 

2C). Each non-M3-type strain tested had significantly higher transcription level of 

respective scl1 allele compared to MGAS315. The M1 strain had the most increased 

expression by 21-fold, while M28 and M41 strains exhibited 6-fold and 8-fold higher scl1 

expression, respectively. Interestingly, the scl1.3 transcripts examined in four additional 

M3-type MGAS strains 158, 335, 1313, and 10870 were significantly reduced as 

compared to MGAS315, with a range of 25-45-fold decrease. Overall, we observed that 

M3-type GAS harboring the IS element upstream of scl1.3 have drastically decreased 
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scl1.3 transcript levels and lack the Scl1 protein product, as assessed by western blot 

and flow cytometry.  

Since scl1 is regulated by the transcriptional activator Mga, we investigated 

whether the decreased scl1.3 transcripts in M3 strains were due to lack of mga gene 

expression in these strains. In parallel, we assessed transcript levels of the emm gene 

encoding the M surface protein, a key virulence factor regulated by Mga. For comparison, 

we included the M1 strain, which had significantly increased scl1 expression compared 

to the M3 strains. With the exception of MGAS335, which had significantly downregulated 

mga and emm expression, we found no significant differences in either mga or emm gene 

expression between MGAS315 and the other M3 strains or M1 strain (Figure 2D). 

Furthermore, M3 protein was highly expressed, as it was found in both cell wall and 

supernatant fractions, except for the MGAS335 strain, consistent with transcription data 

(Figure 2E). These results demonstrate that the striking downregulation of scl1.3 in M3-

type GAS is not due to decreased mga expression or non-functional Mga protein, as emm 

is normally expressed in these strains. 

 

scl2.3 is expressed in M3-type GAS 

Scl2 shares a similar structure with Scl1 but its biological function is poorly understood. 

One study demonstrated in a different M-type background that isogenic mutant devoid of 

Scl2.55 variant had lower adhesion to human skin fibroblasts (Rasmussen and Bjӧrck, 

2001); however, the Scl2.3 variant present in M3-type GAS has not been investigated for 

expression and ECM binding. Therefore, we next assessed scl2.3/Scl2.3 expression in 

M3 strains. PCR amplification and sequencing showed that the majority of M3 strains 

contained in-frame scl2.3 allele (Figure S1B, Table S2).  

Western blot analysis of cell wall (CW samples) and supernatant (Sup) protein 

fractions found Scl2.3 protein was expressed by M3 strains MGAS315, 10870, 158, 9517 

and 1313, whereas samples obtained from strain MGAS335, which contains an out-of-

frame scl2.3 allele, generated no immunoreactive band; rScl2.3V control produced the 

expected 10.1-kDa band (Figure 3A). Mass spectrometry confirmed the identity of the 

presumed immunoreactive Scl2.3-protein band from MGAS315 (Table S3). Consistently, 

Scl2.3 was detected on the surface of all five M3 strains containing in-frame scl2.3 alleles 
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by flow cytometry, with a positive shift in median fluorescence intensity ranging in 67-131-

fold change, as compared to the secondary-only antibody control (Figure 3B). We next 

compared the scl2-transcription level in M3 strain MGAS315 with scl2-transcription levels 

in M1-, M28-, and M41-type strains. In striking contrast to the pattern of scl1.3 

transcription, scl2 transcripts were significantly decreased in the M1-type strain by 13-

fold, as well as in the M28 (6-fold) and M41 (3-fold) strains (Figure 3C). Additionally, there 

was no significant difference between scl2 expression in MGAS315 and the M3 strains 

MGAS158, 335, 1313, and 10870 (Table S4). These results confirm that the M3 scl2.3 

allele is transcribed at high levels, resulting in considerable expression of the Scl2.3 

protein. These results suggested that Scl2 has an important biological function in M3 

strains and warranted subsequent experiments assessing Scl2.3 function.  

 

GAS infection disseminates through human tissue and inhibits wound healing  

A wounded human skin equivalent, devoid of an inflammatory component, was utilized 

as a “mechanistic model” of GAS tissue colonization. The epidermal wound of each skin 

equivalent was infected with GFP-expressing M3-type invasive strain MGAS315 or M41-

type non-invasive strain MGAS6183, and analyzed after 1-5 days by standard 

histopathology (H&E and Gram’s stain) and using two-photon fluorescence (TPF) 

microscopy. H&E of uninfected tissue controls harvested at day 0 showed the absence 

of a keratinocyte layer where the punch biopsy was performed (Figure 4A). Complete 

healing of the wound was observed after 5 days, with a newly-generated intact 

keratinocyte layer covering the punch biopsy site (Figure 4B). In contrast, tissue infected 

with either GAS strain exhibited delayed wound closure as late as day 5 post-infection 

(Figure 4E, H). H&E staining of skin equivalents infected with either M3 or M41 after 24 

hours revealed bacterial colonization of the exposed dermal surface, as well as bacterial 

invasion into puncture-associated defects extending deep into the dermal layer, largely 

located at the wound edges (Figure 4D, G). Notably, extensive bacterial growth and 

spread was largely confined to tissue crevices in the dermis, whereas the presence of 

large bacterial colonies directly below the wound bed was rarely seen on microscopic 

examination. By day 5 of infection, bacterial invasion via these dermal defects extended 

to the bottom of the dermis for both strains, presenting both vertical and lateral spread of 
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bacteria (Figure 4E, H). Gram stain of infected tissues showed the formation of superficial 

colonies near dermal surfaces, as well as biofilm formation on the surface of exposed 

dermis (Figure 4J-L). Additionally, epidermal tissue neighboring the wound bed exhibited 

~60% decreased thickness of the viable keratinocyte layer in tissues infected with 

MGAS315 and MGAS6183 by day 5, relative to uninfected tissues (Figure 4C, F, I). This 

suggests bacterial infection of the wound affects epidermal cells distant from the site of 

infection in this model.  

 TPF analysis was then performed on whole infected skin equivalents on day 5 

post-infection in order to assess bacterial spread directly below the wound bed. This 

method allowed us to visualize bacterial structures within tissue that were not apparent in 

H&E or Gram-stained sections. Tissue microcolonies were observed in samples infected 

with M41 GAS (Figure 4N), whereas M3 cells had a scattered appearance (Figure 4P). 

TRITC-concanavalin A (TRITC-conA) was utilized to visualize glycocalyx associated with 

bacteria. TRITC-conA stain colocalized with bacterial microcolonies formed by the M41 

GAS (Figure 4O, Figure S3), indicating microcolonies were encased in a glycocalyx, 

much like a classic biofilm. In contrast, TRITC-conA stain was associated with scattered 

M3-GAS chains located at the bottom cell layer in MGAS315-infected skin equivalents 

(Figure 4Q). These results indicate that M41 GAS, but not the M3 GAS, forms 

microcolonies in the tissue during a human skin infection that are encased in a glycocalyx, 

consistent with the observation that M41, but not M3, GAS forms robust biofilm in vitro on 

ECM coatings. In addition, M3 GAS disseminates in a form of scattered chains or single 

cells through the tissue.  

 

M3-type GAS strains form poor biofilms on extracellular matrix coatings  

It was previously reported that M3-type strains have no substantial biofilm formation in 

vitro on an inanimate surface (36). Here, we tested biofilm formation on cellular fibronectin 

(cFn) and laminin (Lm) coatings by a panel of representative M3 strains isolated from 

invasive cases of GAS disease, as compared to the non-invasive biofilm-capable M41-

type model strain MGAS6183. As expected, wells coated with either cFn or Lm supported 

robust biofilm formation by the M41 strain, whereas significantly less bacterial biomass 

was measured for all M3-type GAS on both ECM coatings (Figure 5A). There was also 
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no correlation between Scl2 expression and biofilm formation. We hypothesized that M3-

type GAS, devoid of Scl1 adhesin, have decreased binding to cFn and Lm ECM 

components, thus, preventing the formation of tissue microcolonies, and that restoration 

of full-length Scl1.3 (Scl1.3FL) on the GAS cell surface will confer binding to host ECM, 

as well as biofilm capacity in vivo (Figure 5B).  

 

Full-length recombinant Scl1.3 binds cellular fibronectin and laminin 

To test this hypothesis, we: (i) constructed Scl1.3- and Scl2.3-derived recombinant 

proteins, (ii) characterized their structural organization, and (iii) assessed their ECM-

binding capacities.  

First, rScl1.3FL and rScl2.3 proteins were assessed for purity and integrity by SDS-

PAGE (Figure 6A). The expected 20.6-kDa rScl1.3FL migrated at ~34 kDa, which is 

consistent with previous reports of aberrant migration of rScl proteins (29,30), whereas 

the rScl2.3 protein migrated according to the expected molecular mass of 16.2 kDa; both 

proteins were verified by mass spectrometry (Table S3). Rotary shadowed rScl1.3FL and 

rScl2.3 constructs, exhibited the characteristic lollipop-like structural organization (Figure 

S2), as observed for previously characterized rScl proteins (47,49). Interestingly, 

rScl1.3FL formed aggregates that were mediated by the intermolecular interactions 

between the globular domains; such interactions, however, were not observed between 

rScl2.3 molecules. The appearance of Scl1-Scl1 aggregates implies an attractive 

hypothesis that V-to-V-region interactions between the Scl1 molecules, but not between 

the Scl2 molecules, on the surface of neighboring GAS chains may support biofilm 

structure, as proposed in our model (Figure 5B).  

It has been established that Scl1 proteins selectively bind cellular, but not plasma, 

fibronectin and laminin (35), and that selective cFn binding is achieved by a unique 

binding mechanism involving the C-C’ loop of the extra domain A in cFn (EDA-cFn) (37). 

Here, we pre-incubated cFn with increasing concentrations of EDA-blocking IST-9 mAb 

(0.1, 1.0 µg), then added to wells containing immobilized rScl proteins and allowed for 

binding. We observed significant dose-dependent inhibition of cFn binding to rScl1.3FL, 

with a 36% inhibition at 0.1 µg and a 60% inhibition at 1.0 µg of IST-9 (Figure 6B). In 

addition, the rScl2.3 protein did not bind cFn, which is consistent with our previous data 
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employing several different rScl2 proteins (35). Surface plasmon resonance (SPR) 

measurements of binding affinity between rScl1.3FL and EDA-derived C-C’ cyclic peptide 

provided a dissociation constant of KD= 63.3 µM (Figure 6C). To corroborate the 

rScl1.3FL-EDA binding affinity, an in-solution fluorescence binding assay was performed, 

in which the variation in tryptophan fluorescence of rScl1.3FL was recorded as a measure 

of positive binding to the C-C’ cyclic peptide. Tryptophan fluorescence emission at 333 

nm showed a dose-response quenching upon addition of the C-C’ cyclic peptide and - 

fluorescence intensity was plotted against peptide concentration (Figure 6D). Data were 

fitted with a 1:1 model of interaction, providing a KD = 44.54 ±9 μM, in agreement with 

SPR data (56). 

We next assessed binding of rScl1.3FL and rScl2.3 proteins to laminin (Lm) by 

ELISA. We determined rScl1.3FL had significant Lm binding, whereas rScl2.3 had not 

(Figure 6E), consistent with previous findings that Scl1-derived recombinant proteins, but 

not the Scl2-derived, bind ECM proteins (35). Collectively, these results demonstrate 

specific binding of Scl1.3FL to the EDA domain of cFn and to Lm and its capacity of being 

surface adhesin. 

 

Homologous complementation of M3 strains with full-length surface-exposed 

Scl1.3 adhesin confers biofilm formation on ECM 

To assess the effect of cell-surface Scl1.3FL expression on the capacity to form biofilm, 

an in-trans complementation of two representative invasive M3 strains was performed, 

MGAS315 wild-type (WT) strain, naturally lacking Scl1.3 expression, and a previously 

generated scl1-inactivated mutant of MGAS10870 (10870Δscl1), with plasmids pSL502 

(SpR) and pSL518 (KmR), respectively, both encoding the full-length Scl1.3FL protein. As 

a control, MGAS315 was complemented with a shuttle vector pJRS525. The cell wall-

associated expression of Scl1.3FL in complemented M3-type GAS was first tested by 

western blot analysis of the cell wall protein fractions and on the GAS-cell surface by flow 

cytometry. An expected ~35-kDa immunoreactive band in complemented strains was 

observed, which was absent in the parent strains (Figure 7A). Mass spectrometry analysis 

of the corresponding bands extracted from the gel confirmed they represented the 

Scl1.3FL protein, with five unique peptides identified with 17% sequence coverage for 
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complemented MGAS315 and four unique peptides identified with 11% sequence 

coverage for complemented MGAS10870 (Table S3). A 6.8-fold increase in median 

fluorescence intensity of Scl1.3FL-complemented MGAS315 cells was measured by flow 

cytometry, as compared to the vector-complemented and WT control strains (Figure 7B). 

The Scl1.3FL-complemented 10870Δscl1 exhibited a 2.2 -fold increase in median 

fluorescence intensity, as compared to the mutant control (Figure 7B). These results 

indicate the Scl1.3FL is indeed expressed and surface-exposed in the complemented M3-

type strains. 

 Biofilm formation by the complemented and parent strains was then assessed after 

24 hours following crystal violet staining and using confocal laser scanning microscopy 

(CLSM). Scl1.3FL-expressing MGAS315 showed significantly increased biomass on both 

cFn and Lm coatings compared to the WT parent organism, as well as vector-

complemented control; 3.6 or 2.5- and 2.5 or 2.1-fold OD600 increases on cFn and Lm, 

respectively, were measured compared to MGAS315 WT or to vector-complemented 

MGAS315 (Figure 7C). Significantly thicker biofilm formed by Scl1.3FL-complemented 

MGAS315 was imaged by CLSM. We observed on average a 2.8-fold (P= 0.0002) and 

2.6-fold (P= 0.0002) increased biofilm thickness on cFn and Lm, respectively, compared 

to MGAS315 WT, and a 2.0-fold (P= 0.0036) and 4.8-fold (P= 2.1x10-5) increased biofilm 

thickness on cFn and Lm, respectively, compared to vector-complemented MGAS315 

(Figure 7D and E, representative images). Similar results were obtained for the 

complemented 10870Δscl1 mutant, which had 1.7-fold increase in biomass staining on 

both cFn and Lm compared to the MGAS10870 WT strain, and 2.2- and 2.6-fold increase 

in biomass staining on cFn and Lm, respectively, compared to the 10870Δscl1 mutant 

strain (Figure 7C). CLSM data, however, could not be rendered for MGAS10870 strains 

due to poor GFP expression for unknown reasons. Altogether, it was demonstrated that 

null mutation in the scl1 gene, which ablates surface Scl1.3 protein and is unique to M3-

type GAS, is responsible for the decreased biofilm capacity since restoration of the full-

length surface-exposed Scl1.3 adhesin significantly fosters stable biofilm formation. 
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Heterologous complementation of M41 Δscl1 mutant strain with full-length surface-

exposed Scl1.3 restores biofilm formation on ECM 

In a previous study we showed that scl1.41-inactivation in a non-invasive biofilm-rich M41 

strain MGAS6183 resulted in significantly decreased biofilm capacity, which was restored 

to wild-type level by complementation with surface Scl1.41 (37). Notably, this M41 strain 

expresses at least one additional major Fn-binding protein, protein F2 (45), which binds 

both plasma and cellular fibronectin by a mechanism different from Scl1 (57). Here, we 

hypothesized that expression of rScl1.3FL in the heterologous M41 GAS will confer 

biofilm formation. Western immunoblotting of the cell wall protein fractions detected the 

~35-kDa immunoreactive band, corresponding to full-length Scl1.3, associated with 

complemented cells, while the M41Δscl1 mutant and WT cells were signal-negative 

(Figure 8A). Mass spectrometry of the corresponding band extracted from the gel 

confirmed Scl1.3FL expression, with 3 unique peptides identified, covering 13% of the 

amino acid sequence (Table S3). In addition, we showed the expression of the larger 

Scl1.41 variant in the cell wall of M41 WT, but not in the ∆scl1 mutant, by re-probing a 

portion of the blot with anti-rScl1.41 antibody, using rScl1.41 protein as a positive control. 

Similarly to complementation with homologous Scl1.41 protein, the heterologous 

complementation of the M41Δscl1 mutant with Scl1.3FL also restored biofilm to M41 WT 

levels on cFn and Lm (Figure 8B-D). Crystal violet staining showed increased bacterial 

biomass (Figure 8B) and confocal microscopy revealed significantly thicker biofilms, on 

average 3-fold increased, as compared to the parental M41Δscl1 mutant strain on both 

cFn (Figure 8C) and Lm (Figure 8D) coatings (cFn, P= 0.0105; Lm, P= 0.0011).  

 

Expression of Scl1 adhesin attenuates GAS during subcutaneous infection 

We have previously shown that an M3 strain harboring a carrier scl1.3 allele, producing 

a shorter cell-attached Scl1.3 variant, had an attenuated phenotype in a murine model of 

necrotizing fasciitis (40). Here, we tested our hypothesis that Scl1 adhesin in biofilm-rich 

M28 and M41 background promotes stable colonization and localized infection, using a 

murine skin infection model. Hairless, immunocompetent SKH1 mice were 

subcutaneously infected with ~109 GAS CFU of the M28 and M41 wild-type (WT) or their 
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isogenic scl1-inactivated mutant (scl1) strains (44,45), and mice were assessed for 

changes in gross pathology of the skin. 

Skin lesions caused by both the WT and scl1 strains were observed as early as 48 

hours post-infection, and the lesions began to regress after day 7 with complete resolution 

of the lesion by the completion of the experiment. The areas of the skin lesions calculated 

for mice infected with the scl1 mutant strains were significantly larger than those of WT-

infected mice (Figure 9A; 96 hour time-point is shown); images of lesions of 

representative mice demonstrate differences in lesion severity between WT- and scl1-

GAS infected mice for both the M28- and M41-infected groups (Figure 9B). Thus, the in 

vivo data, using GAS strains expressing surface Scl1 proteins and producing rich biofilms, 

support our hypothesis that decreased adhesion and biofilm formation, due to the 

absence of Scl1.3 on the surface of M3 strains, bears an inverse correlation to the 

invasive potential of the infecting GAS strain.  

 

DISCUSSION 

Since the resurgence of invasive GAS disease in the 1980’s, and emergence of invasive 

M3-type isolates, significant efforts have been made to determine the molecular basis for 

the invasive phenotype of M3-type strains. Numerous whole-genome sequencing 

projects have identified specific genomic features of M3 strains that were correlated with 

their potential to cause invasive infections. In this study, we show that Scl1-negative M3-

type GAS have reduced adhesion and biofilm formation within host tissue, and therefore 

are predisposed to invasive spread over superficial infection (Figure 10).  

 

Unique topography and expression patterns of scl loci 

First, the insertion of IS1548 element in the promoter region of scl1 exclusively found in 

the M3-type strains is an intriguing observation, given the abundance of IS1548 insertions 

across GAS genomes representing a variety of M-types. IS elements are known to cause 

genomic rearrangements and affect the expression of important genes that contribute to 

bacterial virulence (58). For example, the insertion of IS1548 element (59) into the scpB-

lmb intergenic region in group B Streptococcus has been shown to upregulate lmb-gene 

transcription and Lmb-adhesin surface expression, resulting in enhanced laminin binding 
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(60). The IS1548 insertion in the scl1.3 promoter was conserved in the genomes of 

sequenced M3 strains MGAS315, SSI-1, and M3-b, as well as in 40 additional M3 strains 

tested by PCR. However, the recently sequenced STAB902 M3 strain (55), which 

represents a non-invasive isolate, contained a 34-bp IS1548 remnant, suggesting that M3 

circulating strains exist with this polymorphism. We hypothesize that the proximity of the 

IS1548 insertion to the Mga I binding site in M3 strains affects scl1.3 transcription. 

Comparative qRT-PCR analysis showed significantly higher levels of scl1 transcription, 

particularly in M1, as well as in M28 and M41 strains, relative to M3-type strains analyzed.  

Variation in the Mga coding sequence and autoregulated mga promoter has been 

reported to significantly affect Mga-dependent gene expression and virulence properties 

in GAS (26,27,61). For example, a 12-bp deletion of a single repeat in the VNTR region 

of the mga promoter is present in M3 carrier strains and absent in the invasive M3 strains, 

causing a downregulation of Mga expression and Mga-regulated genes in the carrier 

strains (27). We identified an analogous 12-bp deletion in the VNTR of the mga promoter 

of the M1-type MGAS5005 and in M3 strains, MGAS335 and MGAS1313, but not in 

MGAS315, MGAS158 and MGAS10870. It is likely that the variation observed in the 

VNTR region impacts Mga expression but could not, alone, explain differences in scl1 

transcription patterns observed in this work. Consequently, qRT-PCR analyses showed 

mga and emm transcripts (emm is second downstream target of Mga within the Mga 

regulon) were expressed at similar levels in MGAS5005 and M3 strains, except for the 

MGAS335, indicating a mechanism of scl1 downregulation in M3 strains, which is 

independent from the level of Mga transcription. The presence of emm transcripts and 

M3-protein products indicate that Mga is present and functional in the majority of M3 

strains tested, and therefore the polymorphism we observed in the mga promoter did not 

affect Mga expression or activity of Mga-controlled scl1.3 promoter. Altogether, our data 

hint at the insertion of the IS1548 in the downregulation of scl1.3 expression, specifically 

in M3-type GAS, although additional studies are required to firmly establish whether the 

IS element insertion is responsible. 

It is intriguing that scl1 and scl2 expression patterns were drastically different 

between M1 and M3-type GAS, both associated with invasive infections. The scl1.3 

transcript was decreased by 21-fold in MGAS315, and even further in the remaining M3 
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strains studied (additional 20-45 fold), as compared to the M1-type strain MGAS5005. 

The upregulation of scl1 in M1-type GAS has previously been shown in invasive M1 

isolates, including MGAS5005, as compared to pharyngeal M1 isolates (62). Studies 

comparing wild-type and isogenic scl1.1 mutants in M1-type GAS reported that Scl1.1 

contributed to immune evasion by inhibiting neutrophil extracellular trap production and 

by protecting bacteria from the cathelicidin LL-37 (63). We conclude the differences we 

observed in scl1 expression are related to different pathogenicity requirements for Scl1 

protein in M1- versus M3-type strains. In contrast, Scl2 expression is highly upregulated 

in M3-type strains, as compared to invasive M1-type GAS. While the majority of M3-type 

strains contain in-frame scl2.3 alleles, all 21 M1 strains we analyzed contained out-of-

frame scl2.1 alleles (unpublished data). Although the Scl2.3 human ligands are not 

known, it may have an unidentified biological function, which is important for pathogenesis 

of M3, but not M1, strains. Hence, we are reporting striking differences in the expression 

and features of the Scl1 and Scl2 proteins that evolved in the invasive M1 and M3 strains. 

 

Scl1-mediated adhesion and biofilm formation in vitro 

Scl1 mediates binding to human extracellular matrix components, cellular fibronectin and 

laminin, as well as biofilm formation (35-37). Previous work identified that Scl1 binds 

specifically to the C-C’ loop of the type III-repeat EDA domain of cellular fibronectin (37). 

This represents a novel mechanism of fibronectin binding, which is distinct from the 

mechanism employed by other GAS fibronectin-binding proteins that bind to the N-

terminal type I repeats of fibronectin (64). Here, we determined that rScl1.3FL binds to 

cellular fibronectin via the same C-C’ loop-dependent mechanism. It is important for our 

overall model to acknowledge that the EDA-cFn isoform is specifically produced during 

embryogenesis and during wound healing in adult tissue (65-67), which indicates Scl1 

evolved with a unique function for targeting wounded tissue, a presumed pathogen portal 

of entry. We also demonstrate significant binding of rScl1.3FL to laminin, a major 

basement membrane protein at the epidermal-dermal junction; none of those ECM 

ligands were bound by rScl2.3, consistent with previous knowledge that Scl1, but not 

Scl2, variants exhibit binding to cFn and Lm (35). These studies show that full-length 
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Scl1.3, if expressed on the M3-GAS cell surface, would bind ECM, contributing to tissue 

colonization.  

 The diminished Scl1.3 expression and poor biofilm formation, led us to hypothesize that 

lack of surface-expressed Scl1 in M3-type GAS reduces host ECM binding and stable 

microcolony formation in tissue, thus, shifting the balance towards invasive spread, 

augmented by other virulence factors expressed by these strains. Recombinant rScl1.3FL 

formed aggregates that were mediated by the V-to-V region interactions, which could 

represent a mechanism of biofilm and microcolony stabilization by Scl1 molecules on 

adjacent GAS cells. Two representative invasive M3 isolates, MGAS315 and 

MGAS10870, acquired biofilm formation on cFn and Lm when homologous 

complementation was performed with surface-attached Scl1.3FL. MGAS315 has been 

shown to contain a missense mutation in the covS gene, causing upregulation of CovRS-

regulated virulence genes and enhanced virulence during subcutaneous infection of mice, 

compared to an isogenic strain containing the WT covS allele (68). Additionally, 

MGAS315 contains a mutation in the regulator of protein B allele, ropB, which produces 

a nonfunctional RopB variant, while MGAS10870 contains a wild-type covR/S and ropB 

alleles (28), allowing us to demonstrate the effect of Scl1.3FL function in the presence of 

differing regulatory networks. Similarly, heterologous complementation with surface 

Scl1.3FL in a scl1.41-mutant of the non-invasive biofilm-capable strain M41-type 

MGAS6183, restored its biofilm capacity to the wild-type level. These results indicate that 

M3-derived Scl1.3FL variant has the full capacity to support biofilm formation to a similar 

degree as Scl1 from a divergent M-type. The robust biofilm observed in vitro on ECM 

coatings validates the concept that biofilm capacity combined with adherence to the 

surrounding host ECM would reinforce the formation of stable tissue microcolonies in 

vivo.  

  

In vitro skin equivalent model of wound colonization and microcolony formation 

We observed inhibition of wound re-epithelization by GAS infection of wounded skin 

equivalents, as well as the thinning of the viable epidermal layer at sites distant from the 

infected wound. In addition to our study, others have reported changes in skin 

histopathology and wound healing, resulting from bacterial infections. An in vivo study 
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has reported epidermal defects as a result of GAS infection in a humanized mouse model 

with human skin graft (69). Previous study of M3-type GAS infection using a skin 

equivalent model showed that hyaluronic acid capsule interactions with CD44 receptor 

on keratinocytes induced intracellular signaling, resulting in cytoskeletal rearrangement 

and monolayer disruption (70). Infection of an in vitro skin model containing a burn wound 

with Pseudomonas aeruginosa caused a loss of the keratinocyte layer and basement 

membrane, while intact epidermis was observed in burned but uninfected tissue (71). 

Impairment of wound healing has also been demonstrated by staphylococcal infections. 

Infection of dermal wounds in rabbit ears with Staphylococcus aureus showed the 

formation of biofilm, production of a persistent, low grade inflammatory response, and 

significantly delayed wound healing (72). Similarly, delayed wound healing by both S. 

aureus and S. epidermidis biofilms was observed in a mouse model of cutaneous wounds 

(73). The inhibition of wound healing we describe here is by and large consistent with 

reports by other laboratories generated using in vivo animal and in vitro human skin 

infection models. 

Microcolonies have been identified within human streptococcal impetigo lesions 

(39) and in tonsils from patients with recurrent GAS pharyngeal tonsillitis (74), and likely 

represent a superficial or persistent state of GAS colonization. However, streptococcal 

infections can result in invasive disease due to biofilm disruption and bacterial 

dissemination (75,76). We observed large rounded microcolonies formed in tissue during 

infection with M41 strain, while M3 GAS remained scattered throughout the tissue as 

single cells and chains. Microcolony formation has been previously observed with S. 

aureus infection in organotypic skin model (77). Moreover, wound infection in rabbit ears 

with S. aureus produced mature biofilms encased in exopolysaccharide, as revealed by 

concanavalin A staining (72). Similarly, we also demonstrated that microcolonies in M41-

infected tissue were encapsulated in bacterial-associated glycocalyx. However, a lack of 

glycocalyx-encapsulated microcolonies was associated with infection by M3-type GAS.  

These results support our hypothesis that biofilm-poor M3 strains are abolished in 

stable microcolony formation in vivo, in part due to a lack of the ECM-binding Scl1 protein 

and an overall lack of surface adhesins, although they likely express the FbaB protein, 
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identified in M3 GAS to be involved in the adherence and invasion into epithelial and 

endothelial cells (78-80).  

 

In vivo mouse model of skin infection 

Recent study reported that a small proportion of non-invasive M3-type strains (~1.3%) 

were found to harbor the scl1.3 “carrier allele”, which resulted from an in-frame deletion 

in the collagenous region, encompassing the null mutation, producing a shorter cell-

attached Scl1.3 variant. This MGAS10870 strain containing the scl1.3 carrier allele was 

attenuated following intramuscular infection (40). In this study, we utilized the M28- and 

M41-type strains, representing biofilm-rich producers, for subcutaneous inoculation. We 

observed that scl1.28- and scl1.41-inactivated isogenic mutants produced significantly 

larger skin lesions as compared to the wild-type parent strains. These results, again, 

support the hypothesis that lack of Scl1 surface adhesin destabilizes focused nidus of 

infection, resulting in a shift towards increased tissue spread. However, previous studies 

performed in a M1 GAS background, utilizing scl1.1-mutants for subcutaneous infection, 

reported smaller skin lesions in the mutant groups, which likely reflects a differing 

predominant function of Scl1.1 in M1-type GAS (29,63). Investigations using intranasal 

and intraperitoneal mouse infection models of Streptococcus pneumoniae have shown 

that culture-grown bacteria disseminated to the ear and lungs, while biofilm-grown 

bacteria stably colonized the nasopharynx (81,82). A similar study on Streptococcus 

pyogenes showed that bacteria grown in biofilms have downregulated virulence genes 

and tend to colonize the nasal associated lymphoid tissue of mice, while culture-grown 

bacteria had significantly increased dissemination and were more virulent in a septicemia 

model (83). Previous studies reported that inactivation of some GAS genes resulted in 

increased skin pathology produced by the mutants compared to their wild-type organisms, 

and these genes often encoded surface proteins, including SpyCEP (84), Mrp (85), 

protein F1 (86), and Spy0128, encoding a major pilus subunit (87). Similarly, the covS 

mutant of group A streptococcal M1T1 strain with upregulated SpeB-protease activity was 

hypervirulent and had reduced capacity to bind human epithelial cells and fibronectin, and 

also to form biofilm due to increased cleavage of surface proteins (88). Altogether, the 

concept that expression of a surface adhesin, such as Scl1, involved in biofilm formation 
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and host tissue attachment, is inversely related to strain invasiveness has gained support 

from several studies, including this study.   

We show the invasive M1- and M3-type GAS evolved scl1 and scl2 alleles with 

opposite expression patterns, with scl1 downregulated and scl2 upregulated in M3 

compared to M1 GAS. We show M3-type GAS, devoid of surface-expressed Scl1.3, 

lacked biofilm formation on ECM coatings and microcolony formation during infection of 

in vitro wounded skin equivalent. Complementation with surface Scl1.3FL restored biofilm 

capacity of M3-type GAS on ECM coatings. Mouse infection with the isogenic scl1 

mutants of biofilm-rich M28- and M41-type GAS produced larger lesions, supporting the 

role of Scl1 in a localized tissue infection. Lastly we developed a model for Scl1-mediated 

microcolony formation (Figure 10), whereby Scl1 expressed on the GAS surface 

strengthens host colonization by attachment to cFn and Lm expressed within wounded 

tissue, as well as biofilm formation via Scl1-Scl1 interactions, resulting in a local, 

stabilized microcolony. Conversely, when Scl1 is absent on the GAS cell surface, as is 

the case for M3-type GAS, bacteria lack stable anchoring in the surrounding host ECM, 

as well as structural strength within microcolony, promoting cells to disperse more freely.  
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Figure 1 
 
M3-type GAS strains harbor unique polymorphisms in the scl1.3 locus. (A) Schematic 
representation and nucleotide sequence are based on the scl1.3 locus in the M3-type strain 
MGAS315 genome. The scl1.3 promoter region contains two putative Mga binding sites, Pscl1-I 
with Mga I and Pscl1-II with Mga II. IS1548 is inserted 38 bp upstream of the preferred *Pscl1-
I/Mga I promoter, which was shown to be necessary for scl1 transcription. Transcriptional start 
site (solid dot), -10 and -35 boxes are shown upstream of scl1.3 coding sequence. Scl1 regions 
are designated as follows: SS, signal sequence; V, variable region; CL, collagen-like region; L, 
linker region; WM, wall-membrane region; LPATG, cell-wall anchor. The null mutation in the 11th 
Gly-X-Y repeat of the CL region is depicted by the red box, presumably resulting in a truncated 
secreted Scl1.3 protein. Relative location of primers, IS1548F and Scl1R, used to generate 
amplicons in (C) are shown. (B) IS1548 insertion upstream of scl1.3 is unique to M3 genomes. 
BLAST search in the NCBI nucleotide (nr/nt) database using IS1548 (1,317 bp) sequence as 
query identified insertions in 45 GAS genomes representing 21 different M-types. Only genomes 
of M3-type strains harbored IS1548 element upstream of the scl1 allele (bold text). (C) IS1548 
insertion upstream of scl1.3 is conserved among M3 strains. Genomic DNA was isolated from a 
collection of 40 M3-type strains and analyzed by PCR for the presence of IS1548 upstream of 
scl1 using primers IS1548F and Scl1R (located in conserved scl1 signal sequence). Additional 
M1-, M41-, and M28-type control strains, and a no template control (NTC) are included. Expected 
amplicon size, 963 bp; M, 1 kb Plus DNA Ladder. MGAS designation applies to all strain numbers 
shown above gel wells, with the exception of strain AM3. 
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Figure 2 
 
Assessment of Scl1.3 expression. (A) Assessment of Scl1.3 production by M3-type GAS. Cell 
wall (CW) and culture supernatant (Sup) protein fractions prepared from exponential phase 
cultures of several M3-type strains were analyzed by western immunoblotting, using anti-Scl1 
rabbit polyclonal antibody. Recombinant protein rScl1.3V, corresponding to the variable region of 
Scl1.3, was used as a positive control. Expected molecular masses: Scl1.3, 11.4 kDa; rScl1.3V, 
8.3 kDa. M, PageRulerTM Plus Prestained Protein Ladder. (B) Detection of Scl1.3 on the surface 
of M3-type GAS. Flow cytometry analysis of several M3-type strains is shown using anti-Scl1 
antibody described in part (A) (color-shaded histograms) or a secondary only control (2o sample, 
black outlined histogram). Median fluorescence intensities (MFI) are shown in parentheses for 
each strain. (C) Assessment of scl1 transcription. Fold-change of scl1 transcript levels are shown 
compared to scl1.3 transcription in M3-type strain MGAS315. qRT-PCR was performed on RNA 
obtained from exponential phase cultures. Results are shown from three independent 
experiments, each performed in triplicate wells. Standard errors and statistical analysis were 
computed from averaged ΔCt values for each biological replicate prior to normalization against 
the endogenous reference gene tufA; *P≤0.05, **P≤0.01, ***P≤0.001 (student’s t-test). (D) 
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Assessment of mga and emm transcription. Relative expression levels of mga and emm genes 
were compared between MGAS315 and four additional M3 strains or the M1 strain MGAS5005. 
Results are shown from three independent experiments, each performed in triplicate wells. 
Standard errors and statistical analysis were computed from averaged ΔCt values for each 
biological replicate prior to normalization against the endogenous reference gene tufA; **P≤0.01. 
(E) Assessment of M3-protein production by M3-type GAS. The same cell wall (CW) and culture 
supernatant (Sup) protein samples prepared from exponential phase cultures of M3-type strains 
(used in panel A) were analyzed by western immunoblotting, using anti-M3 protein rabbit 
polyclonal antibody. Expected molecular mass: 65 kDa. M, PageRulerTM Plus Prestained Protein 
Ladder. 
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Figure 3 
 
Characterization of the scl2.3 locus in M3-type GAS. (A) Assessment of Scl2.3 production by 
M3-type GAS. The same cell wall (CW) and culture supernatant (Sup) protein samples prepared 
from exponential phase cultures of several M3-type strains (used in Fig. 2A, E) were analyzed by 
western immunoblotting, using anti-rScl2.3V rabbit polyclonal antibody. Recombinant protein 
rScl2.3V, corresponding to the variable region of Scl2.3 protein, was used as a positive control. 
Expected molecular masses based on MGAS315: Scl2.3, 52.5 kDa; rScl2.3V, 10.1 kDa. Aberrant 
migration of detected Scl2.3 variants is characteristic of Scl proteins. M, PageRulerTM Plus 
Prestained Protein Ladder. (B) Detection of Scl2.3 on the surface of M3-type GAS. Flow 
cytometry analysis of several M3-type strains is shown using anti-rScl2.3V rabbit polyclonal 
antibody (color-shaded histograms) or a secondary-only control (2o sample, black outlined 
histogram). Median fluorescence intensities (MFI) are shown in parentheses for each strain. (C) 
Assessment of scl2 transcription. Fold-change of scl2 transcription levels are shown compared to 
scl2.3 transcription in M3-type MGAS315. qRT-PCR was performed on reverse-transcribed RNA 
obtained from exponential phase cultures. Results are shown from three independent 
experiments, each performed in triplicate wells. Standard errors and statistical analysis were 
computed from averaged ΔCt values for each biological replicate prior to normalization against 
the endogenous reference gene tufA; *P≤0.05, **P≤0.01 (student’s t-test). 
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Figure 4 

 
In vitro skin equivalent model of GAS infection. (A-I) H&E stained sections of uninfected (A-
C) or infected (D-I) wounded skin equivalents at 40x magnification; scale bar: 1000 µm. 
Uninfected wound at day 0 (A) shows a lack of the epidermal layer where biopsy punch was 
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performed, which healed by day 5 (B). At day 1, infection of wounded skin equivalents with M3 
and M41 GAS revealed superficial colonization of the wound bed, as well as invasion into the 
defects formed at the wound edge (D, G, arrows). By day 5, bacteria had disseminated throughout 
tissue laterally and vertically (arrows), reaching the bottom of the dermis layer (E, H). (C, F, I) 
H&E stained sections of the keratinocyte layer of intact skin surrounding the biopsy punch; scale 
bar: 100 µm. The thickness of the viable keratinocyte layer outside the wound (C, double arrow) 
was significantly reduced in tissues infected with M3 (F) and M41 (I) by day 5. (J, L) Gram stained 
sections of wounded tissue, corresponding to boxed areas in panels D and H, show tissue 
microcolonies (arrows) and superficial bacterial colonization (arrowheads). (J, scale bar: 400 µm; 
L, scale bar: 200 µm). (K, M) 1000x magnification micrographs of surface biofilms shown in J and 
L (scale bar: 10 µm). (N-Q) Two-photon fluorescence microscopy analysis of infected skin 
equivalents. Vertical dissemination through the wound bed and glycocalyx formation by the GFP-
expressing M41- (N-O) and M3-type (P-Q) GAS at day 5. 3D projections of z-stacks are shown 
from the top view of the z-stack (top panels) or the side view (bottom panels). Multi-channel 
images show GFP fluorescence of GAS cells (N, P) and TRITC-conA stain of glycocalyx (O, Q). 
All images were acquired at 600x magnification. 
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Figure 5 
 
In vitro biofilm formation and hypothetical model of microcolony formation by invasive M3-
type GAS. (A) Limited in vitro biofilm formation by invasive M3 strains on coatings with cellular 
fibronectin and laminin. A panel of invasive M3-type strains was compared to a non-invasive 
biofilm-capable M41-type strain MGAS 6183. Crystal violet staining was used to assess biomass 
formed after 24 hours of growth in wells coated with cellular fibronectin (cFn) and laminin (Lm); 
results represent averaged values from at least 3 independent experiments performed in triplicate 
wells. **P≤0.01 (student’s t-test). (B) Hypothesis model. Top: Infection of wounded skin with wild-
type M3-type GAS. Inherent lack of surface-expressed Scl1.3 causes decreased binding to cFn 
and Lm expressed in wounded tissue, and reduces biofilm and tissue microcolony formation by 
M3-type bacteria (red circles). Bottom: In-trans complementation of M3-type GAS with full-length 
cell-associated Scl1.3, Scl1.3FL, restores binding to cFn and Lm in tissue, which confers biofilm 
and tissue microcolony formation during infection. 
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Figure 6 
 
Construction and binding characterization of recombinant full-length Scl1.3FL and Scl2.3 
proteins. (A) Affinity purified rScl1.3FL and rScl2.3 proteins were analyzed by 4-20% gradient 
SDS-PAGE; expected molecular masses: rScl1.3FL, 20.6 kDa and rScl2.3, 16.2 kDa. (B-D-) 
Binding of rScl1.3FL to extra domain A (EDA) of cellular fibronectin. (B) IST-9 antibody inhibition 
identifies rScl1.3FL binding to the C-C’ loop of EDA-cFN. Inhibition of rScl1.3FL binding to EDA-
cFn was tested by ELISA following pre-incubation of cFn with blocking IST-9 mAb specific to the 
C-C’ loop. Significance of inhibition by 0.1 and 1.0 µg of IST-9 mAb was determined by student’s 
t-test as compared to the untreated cFn. A lack of significant cFn binding by rScl2.3 was evident, 
as compared to rScl1.3FL-cFn binding; student’s t-test. (C) rScl1.3FL binding to a cyclic peptide 
mimicking the C-C’ loop of EDA using surface plasmon resonance. Overlay of sensorgrams for 
the interaction between immobilized rScl1.3FL and EDA-derived C-C’ cyclic peptide is shown. 
The experimental curves corresponding to different concentrations of peptide (10-500 μM) were 
fitted according to a single binding model with 1:1 stoichiometry. (D) rScl1.3FL binding to a C-C’ 
cyclic peptide using tryptophan fluorescence assay. Tryptophan fluorescence quenching analysis 
shows  the dose-response curve of the fluorescence values of rScl1.3FL at 333 nm plotted against 
the concentration values of C-C’ cyclic peptide. (E) Laminin binding to rScl1.3FL and rScl2.3 by 
ELISA. Recombinant rScl proteins were immobilized onto Strep-Tactin-coated wells and 
incubated with laminin. Bound laminin was detected with specific primary pAbs and HRP-
conjugated secondary Abs. Laminin binding was compared between rScl1.3FL and rSc2.3 and 
evaluated statistically using student’s t-test. Results for panels C and F represent averaged values 
from at least 3 independent experiments performed in triplicate wells. *P≤ 0.05, **P≤ 0.01, ***P≤ 
0.001. 
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Figure 7 
 

Homologous complementation of M3-type GAS with full-length surface-expressed Scl1.3 
protein confers biofilm formation. (A) Western blot detection of full-length Scl1.3 in cell wall 
fractions of MGAS315 and MGAS10870∆scl1 complemented in-trans with the scl1.3FL allele. 
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Parent strains were included as negative controls and rScl1.3FL was used as a positive control 
for detection. (B) Flow cytometry detection of Scl1.3FL on the GAS cell surface. Left: 
Fluorescence intensity of Scl1.3FL-complemented MGAS315 WT strain was compared to vector-
complemented or WT parent strain. Right: Fluorescence intensity of Scl1.3FL-complemented 
MGAS10870∆scl1 was compared to WT and ∆scl1 parent strains. Median fluorescence intensities 
are shown in parentheses for each strain. (C) Crystal violet assessment of bacterial biomass after 
24 hours of growth in cFn- or Lm-coated wells. MGAS315 WT complemented in-trans with 
pJRS525 (SpcR vector) or pSL502 (Table 1) harboring the scl1.3FL allele was compared to WT 
parental strain. Spectinomycin resistant MGAS10870∆scl1 mutant was complemented in-trans 
with KanR pSL518 (Table 1), harboring the scl1.3FL allele. Biofilm biomass of the complemented 
strain was compared to MGAS10870 WT and scl1-inactivated parental strains. Results represent 
averaged values from at least 3 independent experiments performed in triplicate wells. *P≤ 0.05, 
**P≤ 0.01, ***P≤ 0.001; students t-test. (D, E) Confocal laser scanning microscopy analysis of 
biofilm formation by GFP-expressing MGAS315 vector and scl1.3FL- complemented strains. 
Biofilms were grown for 24 hours on cFn-coated (D) or Lm-coated (E) coverslips. Maximum 
intensity projections of GAS biofilms with cross-sectional views (left panels) are representative of 
z-stacks from ten fields within a single experiment. Average vertical thickness is indicated in 
micrometers. 3D projections of z-stacks (right panels) are shown from the side view. 
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Figure 8 
 
Heterologous complementation of scl1-deficient mutant of M41-type GAS with full-length 
Scl1.3 restores biofilm formation. (A) Left blot: western blot detection of full-length Scl1.3 
protein in cell wall fraction of M41∆scl1::scl1.3FL using anti-Scl1 polyclonal antibody. The 
M41∆scl1 and M41 WT strains were included as negative controls, and rScl1.3FL was included 
as a positive control. Right blot: western blot detection of Scl1.41 in M41∆scl1 and M41 WT strains 
using anti-rScl1.41 antibody and rScl1.41 as a positive control. (B) Crystal violet assessment of 
biofilm biomass after 24 hours of growth in cFn- or Lm-coated wells. M41 scl1-inactivated 
(M41∆scl1) mutant was complemented in-trans with either homologous scl1.41 allele harbored 
on pSL230 or with heterologous scl1.3FL allele harbored on pSL502 (Table 1). M41 WT, ∆scl1 
mutant and two complemented mutant strains were assessed for biofilm formation and statistical 
significance was assessed by students t-test as compared to M41∆scl1; *P≤ 0.05, **P≤ 0.01. (C, 
D) Confocal laser scanning microscopy analysis of biofilm formation by GFP-expressing 
M41∆scl1 or M41∆scl1:: scl1.3FL. Biofilms were grown for 24 hours on cFn-coated (C) or Lm-
coated (D) coverslips. Maximum intensity projections of GAS biofilms with cross-sectional views 
(top panels) are representative of z-stacks from ten fields within a single experiment. Average 
vertical thickness is indicated in micrometers. 3D projections of z-stacks (bottom panels) are 
shown from the side view. 
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Figure 9 
 
Skin pathology of SKH1 hairless mice infected subcutaneously with wild-type and scl1-
inactivated mutants of M28- and M41-type GAS. (A) Mean area of skin lesions in mice infected 
with M28- or M41-type isogenic GAS strains. The severity of skin lesions was compared following 
infection with wild-type (WT) or scl1-mutant (scl1) GAS; 96-hour time-point is shown. The mean 
lesion area and standard deviation were calculated and compared between experimental groups. 
Data represents mean lesion size from at least 10 mice per experimental group. Statistical 
differences were calculated using the student’s t-test; **P≤ 0.01, ***P≤ 0.001. (B) Gross pathology 
of the skin lesions. Digital images of the skin lesions of representative animals infected with either 
WT or scl1-mutant GAS. The images show skin lesions developed after 96 hours post-infection, 
and scale bar represents 10 mm. 
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Figure 10 
 
Model of Scl1-mediated GAS adhesion, biofilm formation, and host colonization. M28- and 
M41-type GAS express full-length cell-attached Scl1, which mediates adherence to cFn and Lm. 
ECM binding promotes biofilm formation in wounded tissue and allows the formation of superficial 
tissue microcolonies resulting in non-invasive colonization. On the contrary, in M3-type GAS, 
naturally lacking full-length cell-attached Scl1.3 adhesin, bacterial cells have reduced adherence 
to cFn and Lm and reduced capacity for biofilm formation, thereby circumventing the formation of 
localized tissue microcolonies; infection balance is shifted towards dissemination through tissue, 
promoting invasive spread. 
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Table 1. Constructs used in this study 

Plasmid Description Source 

pJRS525 E. coli / S. pyogenes shuttle vector  McIver and Scott. 1997 

pSL230 pJRS525 with scl1.41 allele  Caswell et al. 2007 

pSL501 pJRS525 with scl1.3WT allele  Flores et al. 2015 

pSL502 pSL501 with repaired allele scl1.3FL  Flores et al. 2015 

pSL518 pSL502 with KanR in place of SpcR  This study 

pASK-IBA2 E. coli expression vector IBA, Göttingen 

pSL154 pASK-IBA2 encoding rScl1.3V This study 

pSL503 pASK-IBA2 encoding rScl1.3FL Flores et al. 2015 

pSL514 pASK-IBA2 with rScl2.3  This study 

pSB027 GFP-encoding plasmid Cramer et al. 2003 
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Published in Infection and Immunity 2015 83: 1122-1129 

 

ABSTRACT 

Group A Streptococcus (GAS) predominantly exists as a colonizer of the human 

oropharynx that occasionally breaches epithelial barriers to cause invasive diseases. 

Despite the frequency of GAS carriage, few investigations into the contributory molecular 

mechanisms exist. To this end, we have identified a naturally occurring polymorphism in 

the gene encoding the streptococcal collagen-like protein A (SclA) in GAS carrier strains. 

All previously sequenced invasive serotype M3 GAS possess a premature stop codon in 

the sclA gene truncating the protein. The carrier polymorphism is predicted to restore 

SclA function and was infrequently identified by targeted DNA sequencing in invasive 

strains of the same serotype. We demonstrate that a strain with the carrier sclA allele 

expressed a full-length SclA protein while the strain with the invasive sclA allele 

expressed a truncated variant. An isoallelic mutant invasive strain with the carrier sclA 

allele exhibited decreased virulence in a mouse model of invasive disease and decreased 

multiplication in human blood. Further, the isoallelic invasive strain with the carrier sclA 

allele persisted in the mouse nasopharynx and had increased adherence to cultured 

epithelial cells. Repair of the premature stop codon in the invasive sclA allele restored the 

ability to bind the extracellular matrix proteins laminin and cellular fibronectin. These data 

demonstrate that a mutation in GAS carrier strains increases adherence and decreases 

virulence and suggest selection against increased adherence in GAS invasive isolates. 
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INTRODUCTION 

The bacterial pathogen Streptococcus pyogenes (group A Streptococcus, GAS) causes 

a wide range of disease in humans. GAS causes severe invasive infections such as toxic 

shock syndrome and necrotizing fasciitis but is also the cause of milder, more benign 

infections (e.g. pharyngitis). In addition to causing disease, GAS colonizes the throats of 

humans in the absence of symptoms. Asymptomatic colonization rates range between 5-

15% in healthy children (1), a rate that far exceeds that of GAS invasive disease (2). 

However, despite the high prevalence of GAS carriage, little is known about the molecular 

factors that contribute to asymptomatic colonization. 

 Colonization of the host epithelium is a key first step to establishing GAS carriage or 

disease. GAS elaborates several key surface proteins that contribute to this process 

including the M protein, fibronectin binding proteins, the GAS pilus, and streptococcal 

collagen-like (Scl) proteins. The collagen-like protein SclA (also known as Scl1) is found 

in all GAS serotypes examined to date (3) and is positively regulated by the well-

characterized regulator Mga (4). The SclA protein extends from the GAS cell surface in a 

homotrimeric, ‘lollipop-like’ fashion (5). The outermost region consists of a globular head 

that varies considerably between GAS serotypes followed by a repeating Gly-X-Y (GXY) 

collagen-like sequence that is in turn linked to the cell wall through a proline-rich linker 

region (Figure 1A). SclA contributes to GAS adherence and colonization through binding 

cellular fibronectin and laminin via the variable globular head (6) and integrins through 

the collagen-like region (7,8). Variability in the degree of binding between GAS serotypes 

to these and other host molecules is predicted based on the differences in the V and CL 

regions of SclA.  

While several studies have begun to unravel the role of SclA as an adhesin, its 

contribution to phenotypic differences based on source of GAS isolation (e.g. invasive 

versus carrier) is unknown. Expression of GAS surface proteins may enhance adherence 

to host surfaces but may also reduce virulence. Expression of pili in serotype M1 GAS 

promotes adherence but enhances GAS killing through neutrophil extracellular traps 

(NETs) reducing systemic virulence (9). Similarly, the fibronectin-binding protein PrtF1 

increased adherence to human cells but decreased dissemination in a mouse model of 

GAS infection (10). Similar paradoxical observations exist for surface proteins in 
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Staphylococcus aureus (11). In contrast to other GAS serotypes, it has been shown that 

the sclA gene in serotype M3 GAS harbors an internal stop codon truncating the predicted 

protein (Figure 1A) (12). In fact, the truncated sclA gene was identical in recent whole 

genome sequencing of >200 invasive serotype M3 GAS (13), suggesting selection 

against a full-length, surface-attached protein. The impact of the truncated sclA allele on 

the pathogenesis of invasive serotype M3 GAS remains unknown. 

Here, we report that human carrier strains of serotype M3 GAS contain a natural 

variant of sclA that restores the full open-reading frame. Expression of the full-length SclA 

in an invasive strain correlates with increased adherence to epithelial cells in vitro and 

decreases virulence in invasive disease in mice. The data presented also suggest that 

the truncated sclA allele contributes to pathogenesis in invasive serotype M3 GAS. Our 

findings suggest that mutations negatively affecting virulence and enhancing colonization 

of mucosal surfaces may contribute to asymptomatic carriage in GAS. 

 

MATERIALS AND METHODS 

Bacterial strains used and culture conditions 

GAS strains are listed in Table S1 and were grown on trypticase soy agar containing 5% 

sheep blood agar (SBA) (Becton Dickinson), in Todd-Hewitt broth containing 0.2% 

(wt/vol) yeast extract (THY) (Difco Laboratories), or on THY agar. When needed, GAS 

media was supplemented with chloramphenicol (Sigma-Aldrich) at 10 μg/mL or 

spectinomycin (Sigma-Aldrich) at 150 μg/ml. E. coli DH5α or TOP10 (Invitrogen) grown 

in Luria-Bertani (LB) broth or on LB agar (Difco Laboratories) were used for cloning and 

supplemented with ampicillin (Sigma-Aldrich) at 100 μg/mL or chloramphenicol (Sigma-

Aldrich) at 20 μg/mL when appropriate.  

 

PCR amplification and sequencing of sclA 

Primers for PCR and sequencing of sclA in GAS strains are listed in Table S2. Growth of 

strains, genomic DNA extraction, PCR amplification and Sanger sequencing were 

performed as previously described (14). 
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Generation of isoallelic and isogenic mutants in MGAS10870 

Plasmids and primers used in this study are listed in Tables S1 and S2. The procedure 

used in generating the isoallelic mutant MGAS10870sclACarrier was as described (15). 

Briefly, the sclACarrier allele was amplified using the primers 2902F and 2487R from the 

carrier strain MGAS23440 and subsequently ligated into the temperature sensitive E. coli-

Gram positive shuttle vector pJL1055 using BamHI and XhoI (16) to generate pJSF41. 

Electrocompetent cells of MGAS10870 were transformed with pJSF41 and allelic 

replacement carried out as previously described (17). The isoallelic mutant was confirmed 

using Sanger sequencing (Applied Biosystems). 

Insertional inactivation of sclA in MGAS10870 was performed as previously 

described (18). Briefly, a three-step process was used to generate a PCR fragment in 

which 810 bases of the sclA open reading frame (ORF) were removed. Primer pair 0488R 

and MSP184 were used to generate a 824-bp fragment including the first 18-bp of the 

sclA ORF. Likewise, primer pair 2901F and MSP183 were used to generate a 791-bp 

fragment containing the last 18-bp of the sclA ORF. Primer pair MSP181 and MSP182 

were used to amplify aad9 with ends homologous to the first and last 18-bp of the sclA 

ORF. The three PCR fragments were then used to generate a 2,581-bp fragment using 

primer pair 2901F and 0488R in a ligation PCR in which all but 36-bp (12 amino acids) of 

the sclA gene were replaced, in-frame, by the spectinomycin cassette aad9. All isoallelic 

and isogenic mutants were confirmed by Sanger sequencing (Applied Biosystems).  

 

RNA isolation and quantitative real-time PCR analysis 

Transcript levels of sclA were assayed as previously described (15). Briefly, RNA was 

isolated and purified using an RNeasy kit according to the manufacturer’s instructions 

(Qiagen). Reverse transcription of RNA to produce cDNA was done with a High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems). TaqMan quantitative real-time 

PCR (qQRT-PCR) was performed with an ABI 7500 Fast Real-Time and tufA used as the 

endogenous control gene. TaqMan primers and probes used in analyses are listed in 

Table S2. All reactions were performed in quadruplicate using RNA purified from at least 

three biologic replicates. 
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Generation of anti-SclA rabbit antibodies and western immunoblot analysis of SclA 

The sclAInvasive gene was PCR amplified using primers MSP263 and MSP264 (Table S2) 

and cloned into the expression vector pET15b (Novagen) to generate pJSF66. The His-

tagged SclAInvasive protein was overexpressed in E. coli (BL21) and purified using nickel 

affinity chromatography. Affinity-purified rabbit polyclonal anti-SclA antibody was 

generated by LifeTein (Hillsborough, NJ).  

Complementation (in trans) of the isogenic deletion mutant MGAS10870ΔsclA 

utilized the Gram-positive expression vector pDC123 (19). The primer pair MSP275 and 

MSP277 were used to amplify the sclA gene from either MGAS10870 (sclAInvasive) or 

MGAS23440 (sclACarrier) and ligated into the EcoRV/HindIII sites of pDC123. The resulting 

plasmids (Table S1) were electroporated into MGAS10870ΔsclA to generate the 

individually transcomplemented strains. Isolation of bacterial proteins and western 

immunoblot analysis was carried out as described (15). 

 

Cloning, expression, and purification of full-length SclA (SclAM3-FL) 

All plasmids and primers are listed in Tables S1 and S2. The sclA coding region of the 

serotype M3 strain MGAS315 was amplified by PCR using the forward primer 232 Up 

and the reverse primer ME7, digested with EcoRI and HpaI enzymes, and, cloned into 

the E. coli/GAS shuttle vector pJRS525. The resulting plasmid, pSL501 served as a 

template for PCR mutagenesis to obtain the full-length sclA allele (pSL502). The forward 

PCR primer pJRS525F1 was used with the reverse primer ME6, which contains a single 

base pair substitution encoding a glutamate residue (GAA) instead of the stop codon 

(TAA) naturally present in the 11th GXY repeat of sclA wild-type allele. 

The recombinant full-length SclA protein (rSclAM3-FL) was generated employing the 

Strep-tag® II expression and purification system (IBA-GmbH, Goettingen, Germany), as 

described previously (5,20). PCR amplification was performed using pSL502 DNA 

template, with the primers Scl1.3 M3VF and Scl1.28WMR. PCR product was digested 

with HindIII and EaeI enzymes and cloned into the pASK-IBA2 E. coli vector designed for 

periplasmic expression, resulting in pSL503 encoding rSclAM3-FL. Each clone, pSL501-

503, was confirmed by sequencing. Protein rSclAM3-FL was affinity purified on Strep-

Tactin® sepharose, dialyzed against 25 mM HEPES, pH 8.0, and analyzed on SDS-
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PAGE stained with RAPIDstainTM (G-Biosciences). Protein identity was confirmed by N-

terminal Edman degradation (Iowa State University, Protein Facility). 

 

Mouse virulence experiments 

Female CD1 mice (Harlan Laboratories) were used for virulence studies as described 

previously (21). Mice were inoculated in the right hind limb with 1 x 107 CFU of GAS in 

100 l PBS for intramuscular infection or intranasally with 1 x 107 CFU in 50 μl PBS for 

nasopharyngeal colonization. Near-mortality was determined by observation using pre-

defined criteria for mice infected intramuscularly (21). Mouse nasopharyngeal 

colonization was performed as previously described (22). All mouse experiments were 

approved by the Institutional Animal Care and Use Committee of Houston Methodist 

Research Institute. 

 

Growth in human blood 

Experiments assessing the ability to grow in human blood were conducted under a 

Houston Methodist Research Institute Institutional Review Board human subjects 

protocol and carried out as described (22,23). A minimum of two healthy, non-immune, 

adult donors were used for each experiment. 

 

Human epithelial cell adherence assays 

GAS adherence to cultured epithelial cells was carried out as previously described (22). 

Assays were performed in quadruplicate. Percentage adherence was calculated by 

dividing the recovered CFU by the original inoculum. 

 

ECM binding assay 

To assess ECM binding by ELISA, recombinant Scl (rScl) proteins (0.5 µM) were 

immobilized onto Strep-Tactin® coated microplate wells (IBA-GmbH), as described 

before (6,24). The cellular fibronectin (cFn) from human foreskin fibroblasts (F2518, 

Sigma), and laminin (Lm) (23017-015, Invitrogen) were added to wells containing rScls 

at 1 µg per well. Rabbit anti-human fibronectin (F3648, Sigma) and anti-laminin (L9393, 

Sigma) primary antibodies were used at concentrations of 1:1000 and 1:250, respectively. 
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Secondary antibody goat anti-rabbit IgG (H+L) HRP conjugate (BioRad), was used at a 

concentration of 1:2000, followed by addition of the HRP substrate 2,20-azino-bis(3-

ethylbenzthiazoline-6-sulphonic acid) (37615, 1-step ABTS, ThermoScientific); 

absorption was measured at a wavelength of 415 nm. OD values from BSA-coated control 

wells were subtracted from the OD values of each test well. Shown are combined results 

from three independent experiments performed in triplicate. 

 

Statistics 

A two-tailed t-test (unequal variance) was used to compare multiplication factors between 

strains grown in human blood, adherence of strains to epithelial cells, and ECM binding 

of recombinant Scl proteins. Kruskal-Wallis analysis of variance was used to compare 

rates of nasopharyngeal colonization between strains. A P-value less than 0.05 was 

considered significant for all statistical tests. 

 

RESULTS 

The variant sclA allele occurs infrequently in serotype M3 GAS invasive strains and 

results in expression of a full-length protein 

In an effort to identify key molecular genetic differences contributing to asymptomatic 

carriage of GAS, we performed whole genome sequencing of 37 serotype M3 GAS 

isolates cultured serially from 9 individuals over time (22). We discovered that 4 strains 

recovered from one subject contained a variant sclA allele compared to the reference 

serotype M3 genome. The variant carrier allele (sclACarrier) differed from all previously 

sequenced serotype M3 sclA (sclAInvasive) by a 153-bp deletion removing the internal stop 

codon within the collagen-like region and restoring the complete open-reading frame 

(Figure 1A). The predicted SclACarrier protein has highest homology (>71% identity) to the 

SclA proteins from serotypes M6 and M5 GAS. 

 All invasive serotype M3 GAS strains studied to date possess the sclA allele with an 

internal stop codon (sclAInvasive) (13). The predominance of the truncated sclA allele in 

invasive serotype M3 GAS suggests host selective pressure against expression of the 

full-length SclA protein in invasive disease. However, the possibility exists that variant 

sclA alleles restoring the open-reading frame and potentially expressing a complete SclA 
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protein are found in more geographically diverse invasive serotype M3 GAS. We 

hypothesized that the frequency of variation in sclA would be substantially less in a 

population of invasive serotype M3 GAS than that found in the carrier population 

examined. To test our hypothesis we performed targeted DNA sequencing of sclA using 

strains obtained from the Centers for Disease Control Active Bacterial Core surveillance 

spanning the years 1998 to 2008 (http://www.cdc.gov/abcs) (14). Very few (6/479, 1.3%) 

of the geographically and temporally diverse invasive serotype M3 GAS isolates harbored 

the same 153-bp deletion in sclA as identified in the GAS carrier strains. The sclA allele 

in the remaining invasive strains contained the internal stop codon as in the reference 

serotype M3 genome (MGAS315).  

 Given that the sclAInvasive allele contains an internal stop codon, it is possible invasive 

strains do not produce sclAInvasive transcript or that it is unstable and quickly degraded. We 

previously showed that peak sclA transcript coincides with peak mga transcript levels in 

serotype M3 GAS (15). Thus, we hypothesized that sclA transcript would be produced in 

a strain with either sclAInvasive or sclACarrier. To test this hypothesis, we generated an 

isoallelic mutant strain that differed from the invasive parental strain MGAS10870 only by 

the presence of the sclACarrier gene (MGAS10870sclACarrier). We subsequently assayed 

sclA transcript in vitro after growth in rich medium (THY). As predicted, we detected sclA 

transcript and observed no significant differences between the isoallelic mutant and 

parental strains (Figure 1B). 

We next hypothesized that the full-length SclACarrier protein is expressed in GAS. 

To test this hypothesis, we complemented in trans the invasive strain MGAS10870 

lacking completely the sclA gene (MGAS10870ΔsclA) with a plasmid expressing either 

sclACarrier or sclAInvasive under the native sclA promoter. Total protein of the knockout and 

trans-complemented strains were probed using a polyclonal anti-SclA antibody generated 

using purified SclAInvasive protein (Figure 1A). Consistent with our hypothesis, we identified 

the SclACarrier protein at the predicted size (~ 21 kDa) in MGAS10870pDCsclACarrier (Figure 

1C). In addition, we also identified an approximately 12-kDa SclAInvasive protein, consistent 

with the predicted protein size based on the premature stop codon, in 

MGAS10870pDCsclAInvasive (Figure 1A). Thus, the variant sclA allele identified in the 
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serotype M3 carrier strains restores expression of a full-length protein, however, a 

shorter, truncated version of SclA is also expressed in invasive serotype M3 GAS. 

 

A serotype M3 invasive strain with sclACarrier has reduced virulence.  

Inasmuch as expression of cell surface adhesion proteins has been shown to reduce 

virulence in GAS (9,10), we next tested the hypothesis that invasive serotype M3 GAS 

with sclACarrier will have decreased virulence compared to invasive strains with sclAInvasive. 

To test this hypothesis, we used a mouse model of necrotizing fasciitis to compare the 

parental MGAS10870 to the isoallelic mutant MGAS10870sclACarrer. Compared to the 

parental invasive strain the isoallelic mutant MGAS10870sclACarrier formed a localized, 

abscess-like lesion on visual inspection of the infected limb at 48h (Figure 2A). 

Microscopic examination revealed extensive myonecrosis in the parental invasive strain 

while the isoallelic mutant with sclACarrier showed an abscess-like lesion with surrounding 

healthy, viable tissue (Figure 2A). This observation is consistent with decreased 

dissemination of the strain with sclACarrier within the infected tissue. In contrast to the 

isoallelic carrier mutant, MGAS10870 lacking sclA (MGAS10870ΔsclA) showed no 

significant difference following visual and microscopic examination compared to the 

parental strain. 

Given that human antibodies against Scl proteins cross-react with Scl of differing 

serotypes (25), it is possible that surface expression of SclA enhances phagocytosis of 

GAS. To further test our hypothesis that the strain harboring sclACarrier reduces GAS 

virulence we next assessed the ability of the mutants to grow ex vivo in human blood. 

Consistent with differences in mouse tissue destruction, we observed a significantly 

decreased ability of MGAS10870sclACarrier to grow in human blood but no such difference 

in MGAS10870ΔsclA compared to MGAS10870 (Figure 2B), suggesting enhanced 

phagocytosis in the mutant with the carrier allele. Similar to previous studies of GAS 

surface adhesins reducing virulence (9,10), both in vivo mouse and ex vivo human data 

confirm a decreased virulence phenotype in an invasive strain expressing SclACarrier. In 

addition, deletion of the sclAInvasive allele in an invasive strain had no significant effect on 

virulence in the models tested. 
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Invasive strain harboring sclACarrier persists in mouse nasopharyngeal colonization 

and demonstrates increased adherence to human epithelial cells. 

SclA has previously been shown to contribute to adherence to epithelial cells (8). 

Furthermore, others have hypothesized that GAS carrier strains are characterized by 

increased ability to adhere to epithelial surfaces (26). Thus, if our hypothesis is correct 

and SclACarrier increases adherence, the invasive strain with sclACarrier should have 

increased ability to colonize epithelial surfaces. We first tested the invasive strain 

MGAS10870 and the isoallelic mutant with sclACarrier in a mouse nasopharyngeal model 

of colonization. We observed a significant decrease in the proportion of mice colonized 

with the isoallelic mutant MGAS10870sclACarrier compared to MGAS10870 (Figure 3A). 

However, mice were stably and persistently colonized by the isoallelic mutant 

MGAS10870sclACarrier at a level similar to the parental invasive strain at day 14 (Figure 

3A) suggesting an ability to persist on the mouse nasopharyngeal mucosa. We also 

observed a significant decrease in mice colonized by the deletion mutant 

MGAS10870ΔsclA (Figure 3A) compared to the parental strain. In addition to decreased 

colonization, both the carrier (MGAS10870sclACarrier) and deletion (MGAS10870ΔsclA) 

mutants had significantly decreased bacterial burden compared to the parental invasive 

strain (Figure 3B). The finding of decreased bacterial burden in the mouse 

nasopharyngeal model is strikingly similar to that observed in GAS carrier strains deficient 

in capsule production (22). 

To further characterize adherence in MGAS10870sclACarrier we performed in vitro 

adherence assays to cultured epithelial cells. Given the known role of SclA in adherence 

to epithelial surfaces (6), we hypothesized that compared to the parental invasive strain, 

the strain with sclACarrier would better adhere to cultured epithelial cells. We assayed the 

in vitro adherence to both a pharyngeal epithelial cell line (HEp-2) and a skin epithelial 

cell line (HaCaT). Compared to the invasive strain, we observed significantly greater 

adherence to both HEp-2 and HaCaT cells in the isoallelic strain MGAS10870sclACarrier 

and the deletion mutant MGAS10870ΔsclA (Figure 3C-D). Our data are consistent with 

the model that presence of the naturally-occurring variant sclACarrier in serotype M3 GAS 

results in decreased virulence, stable and persistent colonization of the mouse 

nasopharynx, and increased ability to adhere to cultured human epithelial cells. Further, 
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while deletion of sclAInvasive did not affect virulence in the mouse intramuscular or ex vivo 

human models of GAS disease, the observed phenotypic differences in colonization and 

adherence suggest biologic activity of the truncated and secreted SclAInvasive protein. 

 

Full-length serotype M3 SclA protein (SclAM3-FL) binds extracellular matrix 

components, cellular fibronectin and laminin 

Several recombinant SclA (rSclA) constructs derived from GAS of different M protein 

serotypes have been shown to bind human extracellular matrix (ECM) components such 

as cellular fibronectin (cFn) and laminin (Lm) (6,24). Since binding is mediated by the 

SclA variable (V) region, we hypothesized that the observed increase in adherence in 

MGAS10870sclACarrier was at least in part due to the expression of a cell-attached, full-

length SclA protein. To test our hypothesis, we cloned the sclA coding region from 

invasive serotype M3 GAS and repaired the nonsense mutation, generating a GAA codon 

encoding a glutamate residue in place of the TAA premature stop codon (Fig. 1A). The 

resulting full-length sclA allele (sclAM3-FL) was cloned into an expression vector to 

generate full-length recombinant SclA protein (rSclAM3-FL), purified (Fig. 4A), and 

subsequently tested for binding to cFn and Lm by ELISA. SclAM3-FL demonstrated 

significantly greater binding to both cFn and Lm compared to SclBM28 (P < 0.05), an ECM-

binding negative control derived from SclB protein of serotype M28 GAS (Fig. 4B). 

Binding of SclAM3-FL was similar to recombinant SclAM1 and SclAM41 proteins, derived from 

serotype M1 and M41 GAS, respectively, and included as ECM-binding positive controls. 

Our data indicate that the full-length cell-attached serotype M3 SclA protein and thus the 

carrier SclA protein function as adhesins able to bind cFn and Lm in human tissue. 

Together, these data suggest that serotype M3 GAS acquired the unique null mutation 

resulting in secretion of a truncated SclA variant rather than cell-attached protein. 

Consistent with the mouse intramuscular infection model, lack of a cell-attached SclA 

adhesin decreases tissue adherence and thereby promotes dissemination in serotype M3 

GAS. 



 

 107 

 

DISCUSSION 

In contrast to our sophisticated knowledge of bacterial mechanisms contributing to 

virulence in invasive disease, comparatively little is known regarding the molecular 

genetic factors contributing to asymptomatic carriage of bacterial pathogens. Several 

studies exist describing mutations, in both virulence genes and virulence regulators, that 

contribute to hypervirulence and increased invasive disease caused by GAS. However, 

despite the much higher prevalence of GAS carriage, few studies have shown that 

specific mutations contribute to a GAS carrier phenotype. Our data not only suggest that 

small genetic changes may contribute to GAS carriage but that study of GAS carrier 

strains may provide greater insight into GAS pathogenesis. 

Our data demonstrating that the presence of sclACarrier is associated with 

decreased virulence and increased adherence are consistent with previous observations 

in GAS carriage. It has long been suggested that key phenotypic features of GAS carrier 

strains include decreased virulence and increased ability to adhere to and persist on 

mucosal surfaces. Further, such a phenotype may contribute to eradication failures in 

cases of GAS pharyngotonisillitis (27). Sela et al. (26) showed that GAS strains from 

subjects with eradication failure following treatment for pharyngotonsillitis had higher 

rates of adherence and internalization compared to strains from subjects with successful 

eradication. Moreover, previous studies have shown an inverse relationship between 

expression of bacterial surface adhesins and virulence (9-11). Thus, the mutation 

identified in sclA is one of the first specific mutations in a surface protein potentially linking 

increased adherence and decreased virulence in GAS carrier strains. 

In addition to shedding new light on GAS carriage, our data suggest positive 

selection to maintain the truncated SclAInvasive protein in the invasive serotype M3 GAS 

population. Invasive strains of serotype M3 have surprisingly few mutations in sclA. Our 

analysis of geographically and temporally diverse serotype M3 invasive GAS strains 

demonstrated that ~1% have the carrier mutation. The remaining invasive strains 

harbored the same sclA allele – the allele containing the premature stop codon – and 

virtually no polymorphisms (467 of 473; 98.7%). The observation that invasive serotype 

M3 GAS express the truncated protein in vitro (Figure 1B) and the isogenic deletion 
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mutant is affected in models of adherence and colonization is intriguing. Recently, it was 

shown that the homologous protein from serotype M1 GAS enhances survival in 

neutrophil extracellular traps (NETs) and interferes with myeloperoxidase release (28). 

Thus, it is possible that expression of a truncated SclA in serotype M3 GAS acts in a 

similar manner to enhance survival in vivo and promote invasive disease but, as it is not 

surface attached, does not directly act as an adhesin and instead facilitates 

dissemination.  

The biologic activity of SclAInvasive appears to be complex and potentially niche-

specific based on the differing phenotypes of the deletion mutant in the models tested. 

The decreased bacterial burden of the deletion mutant in the mouse nasopharynx 

suggests that, at least in this model, SclAInvasive contributes to the ability of invasive 

serotype M3 GAS to multiply at the mucosal surface. However, as indicated by the 

increased ability of the same mutant to better adhere to cultured epithelial cells (similar 

to the SclACarrier mutant), the truncated SclA may interfere with bacterial cell binding of 

host components. The observation that a full-length recombinant SclA protein binds the 

ECM components and that the truncated SclA is conserved among invasive serotype M3 

GAS and has the identical variable region responsible for ECM binding further supports 

this model. Further experimentation is needed to test these hypotheses. 

The mutation identified in sclA in GAS carrier strains is likely one of many 

mutations that may contribute to the carrier phenotype. For instance, it has been 

demonstrated that a mutation in the promoter of the gene for the virulence regulator Mga 

contributes to decreased virulence in GAS carrier strains (15). More recently, mutations 

that eliminate GAS capsule have been shown to arise in vivo during human carriage and 

result in decreased virulence and increased adherence to epithelial cell surfaces (22). 

The current study not only suggests that mutations contribute to GAS carriage but 

enhances understanding of serotype M3 GAS pathogenesis, further emphasizing the 

importance of carriage research. One interpretation of the data presented is that of a 

model in which distinct genetic differences between GAS carrier and invasive strains 

contribute to a carrier phenotype defined by decreased virulence and increased ability to 

adhere to epithelial surfaces (Figure 5). Further research is needed to fully define 

genotype-phenotype relationships in GAS carrier strains. 
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Figure 1 

SclA differs in GAS serotype M3 invasive and carrier strains and is expressed. (A) 

Invasive strains of serotype M3 GAS are characterized by an sclA allele harboring an 

internal stop codon truncating the predicted protein after the 11th GXY repeat (G*Y). The 

shaded region containing the cell wall anchor is untranslated in invasive SclA, indicating 

the protein is not cell-attached. The naturally occurring carrier sclA allele is characterized 

by a deletion removing 17 GXY repeats in the mature protein including the G*R (bold) 

present in the invasive protein. To generate the full-length SclAInvasive protein, the G*R 

(Gly-Stop-Arg) was repaired to GER (Gly-Glu-Arg). (B) TaqMan transcript analysis of 

invasive (MGAS10870), isoallelic (MGAS10870sclACarrier), and isogenic 

(MGAS10870ΔsclA) mutants. P-values determined by t-test (unequal variance). (C) 

Western immunoblot using anti-SclAInvasive antibody and showing SclA expression in 

MGAS10870ΔsclA transcomplemented with either sclACarrier or sclAInvasive. The positive 

control (+ Control) consisted of purified SclAInvasive protein used for generation of rabbit 

anti-SclA antibody. 
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Figure 2 

 

Strain with sclACarrier has reduced virulence compared to the parental invasive 

strain. (A) Visual (top panels, original magnification 4X) and microscopic (bottom panels, 

original magnification 20X) examination of mouse hind limb lesions at 48 hours following 

intramuscular injection of GAS strains. Whereas mice infected with the isoallelic mutant 

(sclACarrier) had a small, circumscribed, abscess-like lesion (white arrowheads), the 

parental invasive strain and isogenic deletion mutant caused a comparatively larger, 

grossly necrotic lesion centered at the inoculation site (boxed). Similarly, compared to the 

extensive spreading myonecrosis observed in the invasive and isogenic deletion strains, 

the isoallelic mutant showed an abscess-like lesion (black arrowheads) on microscopic 

examination. (B) Multiplication after growth in human blood. Shown is multiplication after 

growth in a single donor performed in quadruplicate. Similar results were observed after 

growth using additional donors. Error bars represent standard deviation and asterisk (*) 

indicates P-value < 0.05 as determined by t-test (unequal variance). 
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Figure 3 

 

SclACarrier affects mouse nasopharyngeal colonization and adherence to cultured 

epithelial cells. (A) Mouse nasopharyngeal colonization following inoculation of invasive 

or isoallelic GAS strains. Mice (n=20) were inoculated and swabbed daily for 14 days. (B) 

Bacterial burden of mice colonized after nasopharyngeal infection. Percent of colonized 

mice with >150 CFU after daily swabbing. Asterisk (*) indicates P < 0.05 compared to the 

parental invasive strain as determined by Kruskal-Wallis. (C-D) Adherence of GAS strains 

to cultured epithelial cells. Error bars represent standard deviation and asterisks (*) 

indicate P < 0.05 compared to the parental invasive strain as determined by t-test 

(unequal variance). 
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Figure 4 

 

Recombinant full-length SclA (rSclAM3-FL) binds the human extracellular matrix 

proteins cellular fibronectin (cFn) and laminin (Lm). (A) SDS-PAGE gel of purified 

rSclAM3-FL. Expected size of protein is 20.6 kDa and rSclAM3-FL migrates at approximately 

39 kDa; aberrant migration is characteristic of recombinant Scl proteins. (B) ECM binding 

to rSclAM3-FL protein. Test protein rSclAM3-FL, as well as control ECM-binding positive 

(rSclAM41 and rSclAM1) and binding negative (rSclBM28) control proteins, were immobilized 

onto Strep-Tactin coated wells, and incubated with cFn and Lm. Detection of rScl-bound 

ECM was carried out using specific primary antibodies and HRP-conjugated secondary 

antibodies. Bars represent the mean O.D.415nm values normalized for BSA controls. 

Asterisks represent P-values < 0.05 for rSclAM3-FL, rSclAM1, and rSclAM41 in comparison 

to the negative control rSclBM28 determined from three independent experiments each 

performed in triplicate wells, using one-sample t-test. 



 

 116 

 

 

Figure 5 

 

Model summarizing the effect of invasive (sclAInvasive) or carrier (sclACarrier) sclA 

alleles in serotype M3 GAS. Following establishment of initial infection on an epithelial 

surface, GAS may progress to invasive disease (indicated by red circles) or carriage 

(indicated by blue circles). Invasive strains are characterized by the presence of a 

truncated and secreted SclA protein, decreased adherence to epithelial surfaces, and 

increased tissue destruction. It is postulated that the truncated SclAInvasive protein at least 

partially contributes to decreased adherence to epithelial surfaces and host extracellular 

matrix, and increased ability to disseminate observed in invasive serotype M3 GAS. 

Conversely, carrier strains harboring the sclACarrier allele produce a full-length, surface-

attached SclA protein, have decreased tissue destruction, and have increased adherence 

to host epithelial surfaces. Likewise, it is proposed that the decreased virulence and 

increased adherence in some carrier strains can be attributed to the naturally occurring 

SclACarrier protein.
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PART II 

STRUCTURAL ANALYSIS OF THE SCL PROTEINS
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ABSTRACT 

Streptococcal collagen-like proteins, Scls, are widely expressed by the well-recognized human 

pathogen Streptococcus pyogenes. These surface proteins contains a signature central 

collagen-like region, and an amino-terminal globular domain, termed the variable domain, which 

is protruded away from the cell surface by the collagen-like domain. Despite their recognized 

importance for bacterial pathogenicity, no structural information is hitherto available on proteins 

of the Scl class. The variable domain of Scl2 from invasive M3-type S. pyogenes has 

successfully been crystallized using vapor-diffusion methods. The crystals diffracted to 1.5 Å 

resolution and belonged to space group H32, with unit-cell parameters a =44.23, b =44.23, c 

=227.83 Å. The crystal structure was solved by single wavelength anomalous dispersion using 

anomalous signal from a europium chloride derivative.  
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INTRODUCTION 

Collagen-like proteins that form stable triple-helices have been shown to be present in many 

bacterial species (1) and to play a role in pathogenicity. Best characterized prokaryotic 

collagens are the two collagen-like proteins, Scl1 and Scl2, which have been demonstrated to 

be simultaneously expressed on the cell surface of S. pyogenes and to promote bacterial 

adhesion to the host (2,3). Both Scl1 and Scl2 proteins contain a signal sequence, an N-terminal 

variable globular domain (V), a highly charged collagen-like triple-helix domain (CL) consisting 

of (Gly-Xaa-Yaa)n triplet repeats and a C-terminal Gram-positive cell wall attachment domain. 

The Scl1 and Scl2 proteins form stable triple-helical structures when expressed as recombinant 

proteins (4,5), and their N-terminal globular V domain adjacent to the triple-helix domain 

appears to be important for efficient triple-helix assembly (5-7).  

 Bacterial adherence to host tissues, an early critical step in the infection process, often 

involves surface proteins (8,9). Among these, Scl proteins of S. pyogenes are crucial to host-

pathogen recognition (10). It has been demonstrated that Scl1 can bind selected human 

extracellular matrix components (11), cellular integrin receptors (2,12,13), and plasma 

components (14-17). Importantly, human collagen receptors, such as integrin α2β1, recognize 

the triple helix CL domain of Scl1, and this event results in cell signaling, indicating that 

collagen-like bacterial proteins display not only structural but also functional similarities to 

human collagens (2,12,13). Despite the key role of Scl proteins in bacterial pathogenicity, their 

three-dimensional structure has not been determined. In addition, whereas the triple helical 

structure of CL domain of Scls can be predicted based on sequence identity to collagen (5), no 

structural clues regarding the V domain can be obtain from Scl sequences, owing to poor 

sequence identity with known structures. Here, we report the crystallization and preliminary 

crystallographic investigations of the V domain of Scl2 from invasive M3-type S. pyogenes 

(Scl2.3-V). 
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MATERIALS AND METHODS 

Cloning, expression and purification of recombinant rScl2.3-V protein 

Recombinant rScl2.3-V protein was produced in the Escherichia coli periplasm using the Strep-

tag II expression and purification system (IBA GmbH, Goettingen, Germany), as reported 

previously (4). Briefly, the 5’-portion of the scl2.3 gene from strain MGAS315, encoding the 

amino-terminal Scl2.3-V-region, was PCR-amplified using the forward primer scl2-M3VF (5’-

GAGATGGCCGATGGTGAAGATGCCCAAAAAAG) and the reverse primer scl2-M3VR (5’-

CAGCGTCTCAGCGCTATCAAGGACATGATCTTGTATGCC) and was cloned into pASK-IBA2 

vector, resulting in plasmid pSL155. Escherichia coli strain DH5α was used for cloning and E. 

coli BL21 was used for protein expression. E. coli harboring plasmid pSL155, which encodes 

the rScl2.3-V protein, was grown in Luria-Bertani (LB) liquid medium (BD Biosciences) 

supplemented with ampicillin (100 g mL-1). Plasmid construct pSL155 was confirmed by DNA 

sequencing and the identity of purified recombinant protein rScl2.3-V was confirmed by N-

terminal Edman degradation. 

  

Crystallization experiments 

Crystallization trials were performed at 293 K using the hanging-drop vapor-diffusion method. 

Preliminary crystallization conditions were set up using a robotic station for high throughput 

crystallization screening (Hamilton STARlet NanoJet 8+1) and commercially available sparse-

matrix kits (Crystal Screen, Crystal Screen 2 and Index, Hampton Research). Optimization of 

the crystallization conditions was performed manually by fine-tuning the protein and precipitant 

concentrations. 

 

Data collection and processing 

Diffraction data were collected to 1.52 Å in-house from a native crystal at 100K using a Rigaku 

Micromax 007 HF generator producing Cu Kα radiation and equipped with a Saturn944 CCD 

detector. Cryoprotection of the crystals was achieved without addition of further 

cryoprotectants, given the composition of the crystallization mother liquor, which contained the 

cryoprotectant pentaerythritol ethoxylate (15/4 EO/OH) at 30% (v/v). For phasing purposes, 

native crystals were soaked in solutions containing between 2 and 8 mM EuCl3 for different 

soaking times. Data were collected from several crystals to identify the best single-wavelength 
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Anomalous Diffraction (SAD) signal. The data sets were scaled and merged using HKL2000 

program package (18). Statistics of data collection are reported in Table 1. 

 

Structure determination and refinement 

Phasing was achieved using in-house SAD data. A preliminary evaluation of the anomalous 

signal was performed for all tested crystals using the SCALEPACK software, implemented in 

HKL2000 (18). SHELXD was used to identify europium ion sites (19). Phases were then 

improved by solvent-flattening density modification and phase extension by RESOLVE (20). 

The obtained model was further improved using ARP/wARP (21).  

 

RESULTS AND DISCUSSION 

The recombinant rScl2.3-V protein corresponds to the N-terminal part (residues 1-77) of Scl2.3 

variant from the invasive S. pyogenes M3-type strain MGAS315 (22). This protein construct 

has successfully been purified and crystallized using vapor-diffusion methods. The purified 

rScl2.3-V showed a single band of approximately 10 kDa on SDS–PAGE, which is in good 

agreement with the predicted molecular mass of 10,105 Da. The initial automated crystallization 

screening using commercially available solutions provided the first hints of crystallization 

conditions. Small crystals that were not appropriate for diffractometric experiments were 

obtained in the presence of pentaerythritol ethoxylate. The quality of these crystals was 

improved by fine-tuning the concentration of the protein and of the precipitants. Crystals 

suitable for X-ray diffraction experiments (Figure 1) were obtained in 3 d using a protein 

concentration of 5 mg mL-1 and 0.05 M ammonium sulfate, 0.05M bis-tris pH 6.5, 30% (v/v) 

pentaerythritol ethoxylate (15/4 EO/OH). These crystals, which diffracted to 1.5 Å resolution 

(Figure 2), showed three-fold symmetry and belonged to the space group H32, with unit-cell 

parameters a=44.23, b=44.23, c=227.83 Å (Table 1). Matthews coefficient calculations (23) 

suggested the presence of one molecule per asymmetric unit (VM =2.14 Å3/Da, with 42.6 % 

solvent content). 

Lanthanides can yield high-phasing-power derivatives using in house copper sources 

(24-26). Europium chloride derivative crystals were prepared by soaking the native crystals in 

stabilizing solutions containing between 2 and 8 mM EuCl3 for increasing soaking times. SAD 

data were collected for all crystals at 100K using a Rigaku Micromax 007 HF generator 
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producing Cu Kα radiation. The best SAD data were obtained upon crystal soaking in a solution 

consisting of 8 mM EuCl3, 0.05M ammonium sulfate, 0.05M bis-tris, 30% (v/v) pentaerythritol 

ethoxylate (15/4 EO/OH) at pH 6.5 for 3 hours. The data sets were scaled and merged using 

HKL2000 program package (18) (Table 1). (19), we could identify four Europium sites in the 

asymmetric unit of the protein. With this substructure, a correlation coefficient of 31.4% was 

calculated (CC-all, calculated with all data). The obtained phases were improved by phase 

extension and density modification, using RESOLVE (27) and ARP/wARP (21). Using this 

approach, about 80% of the residues present in the asymmetric unit could be automatically 

modeled (27). Manual model-building sessions (28) aimed at defining the complete Scl2.3-V 

structure are in progress. 
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Figure 1 

Image of typical rScl2.3-V crystals grown using 5 mg mL-1 protein solution and 0.05M 
ammonium sulfate, 0.05M bis-tris, 30% (v/v) pentaerythritol ethoxylate (15/4 EO/OH), pH 6.5. 
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Figure 2 

Diffraction pattern of a rScl2.3-V native crystal. Diffraction data are detectable to 1.5 Å 
resolution.
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Table 1. Data collection statistics. Values in parentheses are for highest resolution 
shells 

† R merge =   

 EuCl3 derivative Native 

Space group H32 H32 

Unit cell parameters a = b = 44.26, c = 228.01, γ = 

120 

a = b = 44.23, c = 227.83, γ = 

120 

Resolution (Å) 1.87 1.52 

Average 

redundancy 

9.5 (7.5) 5.3 (2.6) 

Unique reflections 7545 13802 

Completeness (%) 100 (99.9) 99.2 (86.7) 

Rmerge
† (%) 0.043 (0.419) 0.061 (0.345) 

Average I/σ(I) 47.7 (5.1) 49.2 (3.10) 
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ABSTRACT 

The arsenal of virulence factors deployed by streptococci include streptococcal collagen-

like (Scl) proteins. These proteins, which are characterized by a globular and a collagen-

like domain, play key roles in host-adhesion, host immune defense evasion and biofilm 

formation. In this work, we demonstrate that the Scl2.3 protein is expressed on the surface 

of invasive M3-type strain MGAS315 of Streptococcus pyogenes. We report the crystal 

structure of Scl2.3 globular domain, the first of any Scl. This structure shows a novel fold 

among collagen trimerization domains, of either bacterial or human origin. Despite there 

being low sequence identity, we observe that Scl2.3 globular domain structurally 

resembles the gp41 subunit of the envelope glycoprotein from human immunodeficiency 

virus type 1, an essential subunit for viral fusion to human T cells. We combined 

crystallographic data with modeling and molecular dynamics techniques to gather 

information on the entire lollipop-like Scl2.3 structure. Molecular dynamics data evidence 

a high flexibility of Scl2.3, with remarkable inter-domain motions which are likely 

instrumental to the protein biological function in mediating adhesive or immune-

modulatory functions in host-pathogen interactions. Altogether, our results provide 

molecular tools for the understanding of Scl-mediated streptococcal pathogenesis and 

important structural insights for the future design of small molecular inhibitors of 

streptococcal invasion. 
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INTRODUCTION 

Streptococcus pyogenes or group A Streptococcus (GAS) is a human adapted pathogen, 

causing over 700 million cases worldwide annually (1). GAS infections produce a wide 

range of clinical outcomes, from superficial throat and skin infections to life-threatening 

invasive diseases such as streptococcal toxic shock syndrome (STSS) and necrotizing 

fasciitis (2,3). The mortality resulting from the acquisition of invasive infections is high 

with 163000 deaths globally each year (4). It is known that M3-type GAS strains are 

associated with severe infections. In a survey of 108 isolates from the US, 50% of 

invasive diseases were caused by M1 and M3 type strains, and M3 type strains 

contributed to the majority of STSS cases (5). Over the past decade, molecular 

pathogenomics has facilitated our understanding of the molecular basis for the more 

severe invasive diseases caused by M3-type strains (6-10). GAS produces cell-

associated virulence factors that contribute to host colonization and immune evasion, 

and include the streptococcal collagen-like proteins Scl1 and Scl2, also known as SclA 

and SclB (11-15). 

The Scl1 and Scl2 proteins share a similar structural organization, including an N-

terminal variable globular domain (V), a highly charged collagen-like triple-helix domain 

(CL) consisting of (Gly-Xaa-Yaa)n triplet repeats and a C-terminal Gram-positive cell wall 

attachment domain (Figure 1A). Like collagen, an important structural protein in the 

extracellular matrix of animals, Scl1 and Scl2 form stable triple-helical structures (11,16-

19). The collagen triple helix is composed of three left-handed polyproline helices twisted 

into a right-handed supercoiled structure. In mammals, a strong contribution to triple helix 

stability is given by a high content of hydroxyproline (Hyp) residues at the Y position of 

the X-Y-Gly triplets, whereas bacteria lack the prolyl hydroxylase needed for post-

translational modification of proline residues (17,20,21). To explore the basis of bacterial 

collagen triple-helix stability in the absence of Hyp, biophysical studies were carried out 

on recombinant Scl2 protein and a set of peptides modeling the Scl2 highly charged 

repetitive (Gly-X-Y)n sequences (17). These studies showed that bacteria have 

developed alternative strategies to stabilize the triple helix, involving electrostatic 

interactions, inter-chain hydrogen bonds, and a hydration-mediated hydrogen bonding 

network (17,22). 
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Similar to that observed for human collagen, the V-domain was hypothesized to 

be needed for proper folding of the triple helical regions, since their high symmetry 

constitutes an obstacle for optimal folding. However, the observation that the recombinant 

CL domain of Scl1 is expressed as a stable triple helix (16,23) contrasts this hypothesis, 

at least in vivo. Scls have characteristic “lollipop-shaped” domain organization, which 

seems apt for ligand binding. Indeed, antibody mapping and electron microscopy imaging 

analyses confirmed that the stalk-forming CL region projects the globular V region away 

from the bacterial surface (16), a feature which may facilitate interactions of V regions 

with their potential targets. Several biologically-relevant V-region ligands have been 

identified using experimental approaches. Thus, different Scl variants bind human 

extracellular matrix proteins, cellular fibronectin and laminin (24), as well as plasma 

components including the low-density lipoprotein, thrombin-activatable fibrinolysis 

inhibitor, and complement regulatory proteins factor H and factor H-related protein-1 

(18,25-28). In addition, the CL domain of Scl can bind directly to host cells through cellular 

receptors, integrins α2β1 and α11β1 (29-31). Hence, the two main Scl structural domains 

bind human ligands and are essential for GAS adhesion, host-cell entry, and 

immunomodulation of host defenses. Because of the importance of invasive M3-type 

strains in human morbidity and mortality, the presumed expression of Scl2.3 (Scl2 from 

M3 strain) was previously used as an epidemiological marker of S. pyogenes (7), although 

its actual expression has not been shown. Here, we demonstrate that Scl2.3 protein is 

expressed on the cell surface of an invasive M3-type group A Streptococcus. Since no 

structural clues on Scl2 are available, we have combined x-ray crystallography with 

molecular modeling and dynamics to obtain information on the structure of the entire 

molecule. This structure delivers the first atomic description of a Scl protein and opens 

the field for the understanding of structure-function relationship of key proteins that 

mediate essential adhesive and immunomodulatory functions of group A Streptococcus. 
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MATERIALS AND METHODS 

Bacterial strains and growth 

The group A Streptococcus (GAS) M3-type strain MGAS315 (6) used here was isolated 

from an invasive case of a streptococcal toxic-like shock syndrome in Texas (5). GAS 

was routinely grown in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY 

medium) or on tryptose agar with 5% sheep blood (BD Biosciences) at 37°C in 5% CO2-

20% O2 atmosphere.  

The Escherichia coli strain DH5α was used in cloning experiments and E. coli BL21 

was used for protein expression. E. coli strains were grown in Luria-Bertani media (BD 

Biosciences) supplemented with ampicillin (100 µg/ml). 

 

Protein methods 

Recombinant Scl2.3-V region polypeptide, designated rScl2.3-V, was generated using 

the Strep-tag II expression and purification system (IBA-GmbH), as described previously 

(16). Briefly, the 5’-portion of the scl2.3 allele from strain MGAS315, encoding the amino-

terminal variable (V) region of the presumed mature Scl2.3 protein, was PCR-amplified 

using scl2-M3VF (5’-GAGATGGCCGATGGTGAAGATGCCCAAAAAAG) forward primer 

and scl2-M3VR (5’-CAGCGTCTCAGCGCTATCAAGGACATGATCTTGTATGCC) 

reverse primer, and subsequently cloned into an E. coli expression vector pASK-IBA2, 

generating plasmid pSL155.  

The rScl2.3-V polypeptide is fused at the N-terminus to the OmpA signal peptide 

mediating periplasmic expression of recombinant protein. The OmpA is selectively 

cleaved off during protein export by an endogenous signal peptidase, thus, releasing the 

rScl polypeptide; the N-terminal sequence of purified rScl2.3-V was confirmed by Edman 

Degradation. The rScl2.3-V polypeptide also has a short affinity tag, the Strep-tag II 

(WSHPQFEK), at the C-terminus, which allowed for affinity chromatography purification 

on Strep-Tactin Sepharose. Purified rScl2.3-V protein was dialyzed against 25 mM 

HEPES, pH 8.0 and stored -20°C. Recombinant protein rScl2.3-V was tested for purity 

and integrity on TGX 4-20% gradient gel (Bio-Rad) and stained with RAPIDstain™ (G-

Biosciences).  
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The presence of the cell-wall associated Scl2.3 protein was studied using the 

method described before (11,15). MGAS315 was grown in THY medium until mid-

logarithmic phase (OD600 ~0.5) before GAS cells were harvested by centrifugation. The 

cell wall-associated protein fraction was obtained by resuspending the cell pellet in a high-

sucrose buffer (10mM Tris pH 8.0, 20% sucrose), containing 25 U of mutanolysin and 1 

mg/mL of lysozyme, and incubating at 37°C for 1 hour. rScl2.3-V protein and cell-wall-

associated fraction of MGAS315 were analyzed by SDS-PAGE and Western 

immunoblotting, using rabbit polyclonal antibodies raised against rScl2.3-V (Proteintech 

Group, Inc.). Alkaline phosphatase-conjugated anti-rabbit IgG H&L goat polyclonal 

antibodies (Rockland) were used as the secondary antibody, and detection was 

performed using 1-Step™ NBT/BCIP substrate (Thermo Scientific). PageRuler Plus 

Prestained Protein Ladder (Thermo Scientific) was used as a molecular weight marker. 

 

CD spectroscopy 

To analyze the conformational state of rScl2.3-V, far-UV CD spectra were registered at 

20°C. All CD spectra were recorded with a Jasco J-810 spectropolarimeter equipped with 

a Peltier temperature control system (Model PTC-423-S). Molar ellipticity per mean 

residue, [ᶿ] in deg cm2•dmol-1, was calculated from the equation: [ᶿ] = [ᶿ]obs•mrw•(10•l•C)-

1, where [ᶿ]obs is the ellipticity measured in degrees, mrw is the mean residue molecular 

mass (116.1 Da), C is the protein concentration in g•L-1 and l is the optical path length of 

the cell in cm. Far-UV measurements (190-260 nm) were carried out at 20 °C using a 0.1 

cm optical path length cell and a protein concentration of 0.2 mg•mL-1. Thermal 

denaturation studies were conducted at 222 nm with increasing temperature from 20 to 

70°C. Proteins were equilibrated at each temperature point for 2 min, and the temperature 

was increased with an average rate of 0.5 °C/min. Tm was obtained by taking the peak 

of the first derivative of the melting curve. 

 

Multiple light scattering 

Purified rScl2.3-V was analysed by size-exclusion chromatography (SEC) coupled to a 

DAWN MALS instrument (Wyatt Technology) and an OptilabTM rEX (Wyatt Technology). 

1 mg of sample was loaded a S75 10/30 column, equilibrated in 25 mM HEPES, 100 mM 
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NaCl, pH 7.4. A constant flow rate of 0.5 ml/min was applied. The on-line measurement 

of the intensity of the Rayleigh scattering as a function of the angle as well as the 

differential refractive index of the eluting peak in SEC was used to determine the weight 

average molar mass (Mw) of eluted protein, using the Astra 5.3.4.14 software (Wyatt 

Technologies). 

  

Crystallization, data collection and processing  

Crystallization trials were performed at 293 K using the hanging-drop vapor-diffusion 

method. Preliminary crystallization conditions were set up using a robot station for high 

throughput crystallization screening (Hamilton STARlet NanoJet 8+1) and commercially 

available sparse-matrix kits (Crystal Screen kits I and II, Hampton Research, Index). 

Optimization of the crystallization conditions was performed manually by tuning protein 

and precipitant concentrations. Best crystals were grown in 0.05M Ammonium sulfate, 

0.05M Bis-Tris pH 6.5, 30% v/v Pentaerythritol ethoxylate (15/4 EO/OH) (32). For 

structure solution, europium chloride derivative crystals were prepared by soaking a 

native crystal in a solution containing 8 mM EuCl3, 0.05M ammonium sulphate, 0.05M 

Bis-Tris, 30% v/v Pentaerythritol ethoxylate (15/4 EO/OH) for 3 hours at pH 6.5. A single-

wavelength anomalous diffraction experiment (SAD) was recorded in-house at 100K 

using a Rigaku Micromax 007 HF generator producing Cu Kα radiation and equipped with 

a Saturn944 CCD detector. The data sets were scaled and merged using HKL2000 

program package (33) (Table 1). 

 

Structure determination and refinement 

Phasing was achieved using in-house single anomalous dispersion data, using a 

previously adopted protocol (34). Using these data, both SHELXD (35) and SOLVE (36) 

identified five europium ions. Phases, improved by phase extension and density 

modification by RESOLVE (36) and wARP (37), allowed us to trace nearly the entire 

molecule structure. Crystallographic refinement was carried out against 95% of the 

measured data using the CCP4 program suite (38). The remaining 5% of the observed 

data, which was randomly selected, was used in Rfree calculations to monitor the 
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progress of refinement. The structures was validated using the program PROCHECK (39) 

and deposited with the PDB (accession code 4nsm). 

 

Sequence and structure alignments  

Alignments of all available Scl2 sequences were performed using the ClustalW program. 

This sequence alignment was used to obtain phylogenetic relationships. Structure 

alignments were carried out using the DALI server. 

 

Modeling of the full Scl2.3 

Molecular modeling sessions were carried out to model the collagen like domain and 

obtain the entire Scl2.3 structure. The collagen-like domain was modeled using the 

structure of the collagen-like peptide (Pro-Pro-Gly)10 as a template (40). The full sequence 

of Scl2.3 was adjusted on the domain structure using ad hoc made routines. The full 

model was energy minimized using the GROMACS package. 

 

Molecular dynamics simulations 

Molecular dynamics (MD) simulations were performed using the region 7-123 of the 

Scl2.3 as a starting model, including the crystallographic V-domain (residues 7-77) and 

part of the modelled region (residues 78-123). MD simulations were carried out with the 

GROMACS package by using the all-atom AMBER99sb ILDN force field (41) in 

combination with the  TIP4P-ew explicit water model (42). To avoid any bias on the 

hydration status of the protein derived from the MD analyses, crystallographic water 

molecules were removed from the starting model. The simulations were carried out in the 

NPT ensemble with periodic boundary conditions at a constant temperature of 300 K by 

using a weak coupling with external bath (V-rescale method) (43) and a constant pressure 

of 1 atm (berendesen pressure coupling)(44). A rectangular box was used to 

accommodate the protein, water molecules, and ions. The system included 28827 water 

molecules and a total of 120438 atoms.  

 Bending angles between CL and Scl2.3-V, or between regions of the collagen triple 

helix were defined between centre of masses of three group of atoms. For the definition 

of the global inter-domain angle, these atoms are the Cα atoms of residues 57 and 60 of 
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each chain (from Scl2.3-V), residues 75-77 (hinge region) and residues 82-84 (from CL). 

For the bending angle between three zones of the CL domain, we selected the Cα atoms 

of residues 77-78 of each chain (bottom region), residues 94 and 95 (hinge region) and 

residues 112 and 113 (top region). 

 

RESULTS 

Expression of Scl2.3 protein by M3-type GAS 

Expression of the Scl2 proteins is regulated at the level of translation and depends on a 

number of pentanucleotide repeats CAAAA found downstream to a GTG start codon 

(12,14,15). Based on the number of these repeats, the scl2-coding sequence may be in-

frame, resulting in expression of the full-length protein, or out-of-frame, leading to early 

translation termination. We assessed the cell-surface expression of Scl2.3 protein by 

MGAS315, a strain representative of global invasive M3 organisms.  

To generate tools for the detection of Scl2.3 protein, we cloned, expressed, and 

purified the recombinant Scl2.3-V protein (rScl2.3-V), corresponding to the V region of 

Scl2.3 from MGAS315. SDS-PAGE analysis of purified rScl2.3-V shows a single protein 

band of the expected size of about 10.1 kDa (Figure 1B), as further confirmed by 

sequencing. Rabbits were immunized with rScl2.3-V to generate specific anti-Scl2.3 

antibodies, which we used to test the presence of the Scl2.3 in the cell wall-associated 

protein fraction of MGAS315 by western immunoblotting (Figure 1C). In addition to 

positive control (rScl2.3-V lane), we detected a prominent immunoreactive band of 

approximately 65 kDa in the cell-wall fraction (Scl2.3 lane) using post-immune rabbit 

serum, while probing with control pre-immune serum was negative for the rScl2.3 and 

Scl2.3 bands. Based on sequence analysis, the predicted molecular mass of the mature 

Scl2.3 protein is ~52.5 kDa. However, an aberrant migration of Scl proteins has been well 

documented (11,13). Altogether, our data show that the Scl2.3 protein is expressed on 

cell surface of invasive M3-type strain MGAS315 of S. pyogenes.  

 

Structural studies in solution 

Structural features of rScl2.3-V in solution were checked using circular dichroism (CD) 

and light scattering studies. As previously shown (22), Scl2-V has a typical α-helical CD 
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spectrum (Figure 2A). Thermal stability curves, determined by monitoring the CD signal 

at 222 nm, evidences a cooperative unfolding with melting transition at Tm=50°C. 

Consistent with previous data, denaturation of rScl2.3-V is fully reversible (Figure 2B). 

Analytical size-exclusion chromatography (SEC), coupled with multiangle light scattering 

(MALS) was carried out to investigate the oligomerization state of rScl2.3-V in solution. 

The on-line measurement of the intensity of the Rayleigh scattering as a function of the 

angle as well as the differential refractive index of the eluting peak in SEC was used to 

determine Mw. This analysis produced an Mw value of 26600 ±107 Da, which 

corresponds to a trimeric organization of the molecule (Figure 2C). 

  

Overall structure of rScl2.3-V 

rScl2.3-V was crystallized in the space group H32. The structure was solved by single-

wavelength anomalous dispersion (SAD) analysis of europium-derivatized crystal and 

refined to a resolution of 1.6 Å (Table 1). Analysis of crystal packing using the software 

PISA confirms that the biologic unit of rScl2.3-V is a trimer. Consistently, a large surface 

area is buried (32% of the total surface, 5470 Å2) upon trimer formation, with a strong 

gain of free energy of solvation (∆iG=-42.1 kcal/mol). rScl2.3-V molecules are organized 

about three-fold crystallographic axes to form a six helical bundle structure (Figure 3A). 

The inner core of this bundle consists of a parallel, trimeric structure in which helices are 

wrapped in a gradual left-handed super-helix. Three further helices wrap antiparallel to 

the internal helices in a left-handed direction around the exterior of the central trimer. The 

six-helix bundle forms an elongated cylinder measuring about 30 Å in diameter and 60 Å 

in height. Interestingly, external helices are shifted with respect to internal ones, as a 12-

residue-long loop, embedding residues from Lys31 to Asp42, connects internal and 

external helices in each monomer. This region, which contains Pro34 and Pro36, adopts 

a well-defined polyproline II conformation (Figure 3B).  

The V-domain of Scl2 was proposed to be stabilized by coiled coil interactions (23), 

although prediction servers do not provide a clear answer. We searched rScl2.3-V crystal 

structure for the typical structural features of coiled coils, named knobs-into-holes, using 

the software SOCKET (45). In typical coiled coils, hydrophobic side chains at ‘a’ and ‘d’ 

positions on one helix act as knobs and dock into holes formed by diamonds of four 
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residues on the partnering helix. This analysis shows that rScl2.3-V does not contain 

coiled coils.  

Interactions between inner helices of the rScl2.3-V six-helix bundle involve 

different types of contacts along the bundle. Hydrophobic interactions exist at the two 

poles of the molecule, whereas an intricate pattern of salt bridges is formed in the central 

part (Figure 4). In this pattern, Arg56 bridges Glu60 of two adjacent protomers and 

interacts with Asp61 of an adjacent protomer. Further salt bridges exist between the 

central Glu60 and Arg64 and between Asp61 and more peripheral Lys57 (Figure 4). As 

a result, as many as 16 salt bridges stabilize the central region of the bundle.  

Three outer N-terminal helices (residues 7-38) pack obliquely against the outside 

of the inner trimer in an antiparallel orientation. As such, they interact through hydrophobic 

interactions and salt bridges with residues in three grooves on the surface of the central 

helical trimer, whereas interactions mediated by the PPII strand are mostly hydrophobic 

(Figure 5A). The analysis of the electrostatic potential surface reveals an uneven 

distribution of charged patches, with a concentration of negative charges in the region 

opposite to the origin of the collagen triple helix (Figure 5C, D). The negatively charged 

patch generated by Asp42 and Asp43 of each chain surrounds a solvent exposed 

hydrophobic region, generated by Leu41 and Met46. Of these residues, the position of 

Met46 is occupied by hydrophobic residues in all members of a subgroup of Scl2 

sequences, identified by phylogenetic analysis (branch C in Figure 6). In the same 

subgroup, negatively charged residues are often occurring in a region embedding Asp42 

and Asp43. Different features characterize the other two subgroups, but all sequences 

present both charged and hydrophobic residues in loop regions (either experimentally 

determined or predicted), indicating that these features may be functionally important. 

 

Sequence alignments 

Several sequences of both Scl2 and Scl1, deriving from different S. pyogenes strains, 

have been identified. Multiple sequence alignment shows that a hallmark of all Scl2 

sequences is the occurrence of hydrophobic residues at regular positions, most of which 

are conserved in all analyzed sequences. An analysis of rScl2.3-V structure shows that 

these residues constitute the inner core of the 6-helix bundle fold (Figure 4). This finding 
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suggests that all Scl2 proteins share the same 6-helix bundle fold we observe in rScl2.3-

V structure. The same considerations apply to Scl1 sequences, since most conserved 

hydrophobic residues are also conserved in Scl1 (data not shown). Phylogenetic analysis 

shows that Scl2 sequences can be subdivided into three main branching groups (A, B 

and C in Figure 6). In each branch, specific characteristics are conserved. For example, 

a striking difference between branches A-B and branch C, which contains Scl2.3, is the 

presence of a fully conserved Pro residue in A-B in a position corresponding to Scl2.3 

Ser26, which belongs to the α-helix α2 in Scl2.3 structure. Another almost conserved Pro 

residue characterizes branch B, in place of Scl2.3 Ser48, which is embedded in α-helix 

α2. These considerations suggest that the structures of proteins in each branch differ in 

the boundaries of α-helices constituting their six-helix bundle fold. Compared to Scl2.3, 

secondary structure predictions suggest that branch A and B are characterized by shorter 

α1 and α2 helices, connected by a longer loop in branch A, and by a loop-helix-loop motif 

in branch B (Figure 6). 

 

Scl2.3-V structurally resembles gp41 

A search for similar folds in structural data bases revealed a strong structural relationship 

between rScl2.3-V and subunit gp41 of the envelope glycoprotein from human 

immunodeficiency virus 1 (HIV-1) (PDB code 3o40, Z=12.1, r.m.s.d. 2.8 Å), with 

sequence identity between the two proteins of 9%, after alignment of 165 residues. In 

addition, the 3-carboxy-cis,cis-muconate lactonizing enzyme from Agrobacterium 

radiobacter (PDB code 2fen, Z=10.0, r.m.s.d. 3.3 Å) and the adenylosuccinate lyase from 

E. coli (PDB code 3gzh, Z=10.0,  r.m.s.d. 3.4 Å) also show structural relationship with 

Scl2.3-V fold, with sequence identities in the range 9-10%. In the case of the two bacterial 

proteins identified by DALI (PDB codes 2fen and 3gzh), only five of the six helices of 

rScl2.3-V six-helix bundle are conserved. On the contrary, the superposition of rScl2.3-

V structure on that of gp41 evidences a striking similarity in the helical arrangement of 

the two six-helix bundles (Figure 7). However, the three inner α-helices of gp41 are 

packed together in the ‘knobs-into-hole’ arrangement typical of coiled coils whereas 

coiled coil interactions were not found in rScl2.3-V structure. This feature is likely 

responsible for a more compact arrangement of inner helices in gp41, compared to 
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rScl2.3-V (Figure 7). Also, whereas gp41 fold is a highly regular six-helix bundle, rScl2.3-

V presents a polyproline region at the N-terminal side of external helices. Although the 

position of these proline residues is not conserved among Scl2 sequences (Figure 6), 

their presence in the region connecting the two main helices forming protomers of the 

six-helix bundle is a distinctive feature of all Scl2 sequences. 

 

Modeling of triple helical regions and MD simulations  

Good quality electron density maps allowed us to define the conformation of rScl2.3-V 

C-terminal ends, up to Leu76. In Scl2, this is the site of attachment of the collagen-like 

triple helix. Notably, whereas all three Leu76 residues from rScl2.3-V are in a plane, the 

triplets of the collagen triple helix are typically staggered by one residue. This poses a 

question whether the asymmetry of the triple helix is accommodated by the rScl2.3-V 

structure or if a kink of the two domains is necessary, as previously observed for the 

engineered foldon-collagen (46). To tackle this question, we modeled the triple helical 

part of Scl2.3, thus producing the first structural description of a Scl (Figure 8A), and 

carried out Molecular Dynamics (MD) simulations. To assess the evolution of the 

structure in the simulation timescale (100 ns), a number of stereo-chemical parameters 

(gyration radius, secondary structure and RMSD) were monitored along the trajectories. 

The evaluation of root-mean-square deviations (RMSD) (calculated on the Cα atoms) 

from the starting structure evidences that large motions characterize the simulated 

system (Figure 8B). The RMSD values are smaller when they are separately computed 

for Scl2.3-V and Scl2.3-CL regions. Of these, RMSD values for the Scl2.3-V region are 

on average smaller than those of the Scl2.3-CL region (Figure 8B). Likely, the difference 

in the RMSD behavior for the two regions is in its structural characteristics. Indeed, local 

fluctuations on an elongated structure (i.e. Scl2.3-CL) propagate into larger effects on 

the RMSD than in globular structures (i.e. Scl2.3-V). The RMSD data are consistent with 

the presence of a principal motion involving a global inter-domain bending motion 

between Scl2.3-CL and Scl2.3-V (Figure 8C). Analysis of the MD trajectory structures 

evidences a continuous evolution from linear conformations, in which the Scl2.3-V and 

Scl2.3-CL domains are coaxial, to a more ‘bent’ state. In particular, the bending angle 
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between the axis of the Scl2.3-V and Scl2.3-CL domains (See Methods for definition) 

ranges from 143° to 180° in an elastic fashion (Figure 8C).  

A direct indicator of the stability of the triple helix motif is the number of conserved 

main-chain hydrogen (H)-bonds along the trajectory (Figure 9A). These intermolecular H-

bonds are distinctive of the triple helix motif and are established between the amide group 

of the Gly residues and carbonyl groups from complementary peptides that form the triple 

helix. The analysis confirms that the force field and simulation setup used were able to 

maintain the initial H-bonding pattern of the structure: on average, 87.5% of the native 

main-chain H-bonds were maintained. In addition to the observed inter-domain 

rearrangements along the trajectory, MD data also evidence a high flexibility of the Scl2.3-

CL domain, with a bending angle around the center of the Scl2.3-CL region ranging 

between 152 and 180° (Figure 8D). The increased flexibility of amino-acid-rich triple 

helices, compared to imino-acid rich ones, is in line with previous MD analyses of other 

collagen-like polypeptides (47-49).  

 

DISCUSSION 

The arsenal of virulence factors deployed by streptococci include streptococcal collagen-

like (Scl) proteins, which arm the cell wall of the bacterium and establish multiple 

functions, like host-adhesion (29-31), evasion of host immune defenses (27,28), or biofilm 

formation (50,51). There are nearly 300 collagen-like proteins annotated to streptococci 

(52), including several pathogenic organisms like S. pyogenes (11-15), S. pneumoniae 

(53), and S. equi (54,55). In addition to a signature collagen-like domain, Scl proteins 

contain a globular domain (V domain) and both Gram-positive signal peptide (YSIRK) and 

cell-wall anchor (LPXTG) domains, predicting that they are all cell-surface proteins. 

Despite their established importance in bacterial pathogenesis, no three-dimensional 

structural information is available so far for any of the Scl proteins. In this work, we 

formally demonstrate that the Scl2 protein is expressed by invasive M3-type strain 

MGAS315 and is found on the bacterial cell surface (Figure 1). By combining x-ray 

crystallography with computational techniques, we provide a structural description of the 

entire Scl2.3 molecule.  
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Scl2 is known to be regulated at the level of translation by the varying number of 

CAAAA pentanucleotide repeats directly downstream of the start codon, which may result 

in frameshift of the scl2-gene reading frame and early translation termination (12,14,15). 

Analysis of scl2 within 50 GAS strains representing 21 different M types showed that the 

scl2 allele is present in virtually all strains tested, though the number of the repeats, as 

well as resulting Scl2 expression, varied among strains. For example, none of the M1-

type strains, whereas about half of the M28- and M12-type strains were predicted to 

express the full-length Scl2 variants. Interestingly, all of the M3-type strains initially tested 

(15) and 84% of 255 M3 global isolates (7) were found to contain in-frame scl2.3 alleles. 

This suggests that there may be a selective advantage in M3 strains to express Scl2, and 

it may have an important role in the pathogenesis of M3-type GAS.  

Previous binding studies have delineated roles for Scl1 and Scl2 in both host 

colonization and immune evasion. Thus, some Scl1 variants may aid host colonization by 

binding to cellular fibronectin and laminin, which are major components of human 

extracellular matrix, and integrins α2β1 and α11β1, which are present on the host cell 

surface (24,31). Scl1 has also been shown to bind the plasma lipoproteins and 

complement regulators of the immune system (18,27,28). Furthermore, both Scl1 and 

Scl2 proteins have been shown to bind thrombin-activatable fibrinolysis inhibitor, 

interfering with the normal fibrinolytic breakdown of blood clots (26), which may resemble 

a role of staphylococcal coagulases that produce clots as protective barrier against the 

immune response (56). These observations suggest Scl2 is involved in evasion or 

modulation of the immune response, rather than in host colonization. Though the role of 

Scl2 during infection is currently unclear, the structural data gained from this study 

provides very interesting clues into its possible function. The crystal structure of the V 

domain of Scl2.3 (rScl2.3-V) unveils a compact trimeric six-helix bundle fold. Consistently, 

light scattering experiments evidence that rScl2.3-V exhibits a trimeric arrangement also 

in solution (Figure 2). Trimeric six-helix bundle folds are, to date, not observed in bacteria, 

but typically characterize several glycoproteins involved in viral fusion, including the gp41 

subunit of the envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1), the 

glycoprotein B of Herpes Simplex virus (57) and the GP2 domain of  the envelope 

glycoprotein GP from the Marburg and Ebola viruses (58-61). However, different than 
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gp41 and from previously reported data on Scl2 (23), the structure of rScl2.3-V does not 

contain coiled coils, but it is stabilized by both hydrophobic and ion pair interactions 

(Figure 4). Alignment of proteins with known structure shows that, even with low 

sequence identity (9%), rScl2.3-V structurally resembles the gp41 subunit of HIV-1, a 

subunit responsible for membrane fusion of the HIV virus (62,63). Since gp41 functions 

as a viral entry protein into CD4+ T lymphocytes, this might suggest a novel potential role 

for Scl2 in interacting with T cells and causing hyper-activation of the immune response, 

which is a hallmark of the STSS infections that are often associated with M3-type strains.  

We modeled the triple helical region of Scl2 and performed MD analysis with the 

aim of investigating structural and dynamic features of Scl2.3. Scl2.3-V is located at the 

tip of an extremely elongated triple helical structure (about 1030 Å, Figure 8A) and 

exposes highly hydrophobic residues, like Leu41 and Met46 (Figure 5), a feature which 

may play a role in Scl2.3-mediated interaction of S. pyogenes with the hydrophobic milieu 

in the host. MD data evidenced an extremely flexible nature of Scl2, with a dynamic kink 

of the inter-domain organization (Figure 8). A kinked structure was previously observed 

for the an engineered foldon-collagen (46) and reflects the need of the structure to fit the 

three-fold symmetry of the V domain (which brings the site of attachment of the three 

collagen-like chains in a plane) with the one-residue stagger of the collagen-like chains. 

Our data show that the Scl2.3 structure can undertake both kinked and linear 

conformations, in a rapid equilibrium between them (Figure 8). The high structural 

flexibility we observed in Scl2.3 is likely instrumental to its biological function in mediating 

adhesive or immune-modulatory functions in host-pathogen interactions. 

The V domain of Scls has been proposed as a trimerization domain which helps 

collagen folding. Indeed, different than for globular proteins, misfolding of the collagen 

triple helix is a likely event because of its repeating structure, whose stability is relatively 

insensitive to lateral shifts by one or more Gly-X-Y repeats. Consistently, trimerization 

domains have been found in many different proteins containing collagen triple helices. 

However, it has been shown that the V domain of Scls is not needed in vivo, since the 

CL region of Scl1 can be expressed in a folded triple helical state (16,23). This 

observation highlights a different folding mechanism of Scl proteins, compared to human 

collagen, for which trimerization domains are crucial to the correct triple helical 
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arrangement (64). Likely, V-domains of Scls display dichotomous functions by acting as 

triple helix stabilization domains, since they exhibit higher folding temperature than the 

CL regions (23), and by mediating host-pathogen interaction (29-31). 

To date, there are five known atomic structures of trimerization domains of 

collagen, the NC1 domain of collagen IV (65), the homologous NC1 domain of collagens 

VIII and X (66,67) and the trimerization domains of collagen XV and XVIII (68,69). A 

trimerization domain was also characterized for BclA, the major component of the 

exosporium of the B. anthracis spore (70). All of them have a high content of β-structure 

but share no structural homology. The structure of rScl2.3-V presents novel features as 

it is mainly composed of α-helices. Multiple sequence alignment suggests that the 6-helix 

bundle fold exhibited by Scl2.3 is conserved in all Scl2 sequences, albeit with different 

α-helix boundaries and length of the loop connecting alpha helices α1 and α2 (Figure 6).  

Phylogenetic analyses of variation in Scl2 V region among different M types 

revealed several interesting observations. Scl2 sequences from different M types formed 

three separate clades, referred to as A, B, and C (Figure 6). The invasive M type 3, found 

in branch C, clustered with M types 1 and 28, which are also associated with invasive 

infections, including streptococcal toxic shock syndrome and necrotizing fasciitis 

(5,71,72). Our analysis additionally evidenced that cluster C contains M types associated 

with rheumatic fever, including types 1, 3, 6, and 18 (71,73), thus suggesting a possible 

role of Scl2.3 in this disease. Altogether, our work delivers the first atomic description of 

a Scl protein. This structural information, which can be extended to other members of the 

Scl family, is precious to the understanding the structural basis of Scl-mediated 

streptococcal infection. 
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Figure 1 

Expression of Scl2.3 surface protein by the invasive M3-type strain MGAS 315. (A) 

Domain organization of Scl2.3, according to the PFAM database. (B) Characterization of 

recombinant Scl2.3-V protein (rScl2.3-V). rScl2.3-V polypeptide expressed in E. coli and 

affinity purified was resolved on 4-20% SDS-PAGE gradient gel and stained. Purified 

rScl2.3-V was used to immunize rabbits and the resulting post-immune sera were used 

to detect native Scl2.3 protein expressed by MGAS315. (C) Surface expression of Scl2.3 

protein by GAS. Cell wall-associated protein fraction of MGAS315 was analyzed by 

Western immunoblotting to detect native Scl2.3 protein using anti-rScl2.3-V post-immune 

rabbit sera. The same blot developed with pre-immune sera from the same rabbit is 

shown as a negative control. PageRuler™ Plus Prestained Protein Ladder was used as 

a molecular weight marker. 
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Figure 2 

Structural characterization of Scl2.3-V in solution. (A) CD spectra of Scl2.3-V at 20°C 
after refolding are shown as solid and dashed lines, respectively. (B) Denaturation (solid 
line) and refolding (dashed line) of Scl2.3-V followed at λ=222 nm. (C) Analytical SEC-
MALS; The black curve represents the Rayleigh ratio (left scale) against the retention 
time. Molecular mass (right scale) values correspond to a trimeric state of Scl2.3-V. 
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Figure 3 

Cartoon representation of the crystal structure of Scl2.3-V trimer. (A) Top view of 
Scl2.3-V six-helix bundle. (B) A detail of (2Fo-Fc) Electron density on the polyproline II 
(PPII) region. 
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Figure 4 

Main interactions stabilizing the six-helix bundle of Scl2.3-V. (A) Three regions are 
identifiable, with the central one stabilized by salt bridges and the external ones stabilized 
by hydrophobic interactions. (B) A detail of salt bridge interactions in the central part of 
the six-helix bundle. 
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Figure 5 

Surface features of Scl2.3-V. (A) Side and (B) top view of Scl2.3-V surface. Hydrophobic 
and hydrophilic residues are colored yellow and gray, respectively. Charged residues are 
colored blue. (C, D) Side and top views of Scl2.3-V electrostatic potential surface. The 
positive and negative charges are colored blue and red, respectively. 
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Figure 6 

Multiple sequence alignment analysis of Scl2-V region variants. (A) Sequence 
alignment was performed using CLUSTALW. Conserved residues are shown in green 
(hydrophobic), blue (positively charged), red (negatively charged), and grey (polar); Pro 
residues are shown in cyan. A, B and C refer to the three respective branches calculated 
by phylogenetic analysis using CLUSTALW. Secondary structure prediction, according to 
JPRED, is reported in magenta whereas the secondary structure based on Scl2.3-V 
crystal structure is reported in blue. 
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Figure 7 

Scl2.3-V structural alignment with the HIV protein gp41. Side (A) and top (B) views of 
the superposition between Scl2.3-V (orange) with gp41 (blue, PDB code 3o40). 
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Figure 8 

Modeling and molecular dynamics analyses. (A) Modeling of Scl2.3 structure: a view 

of the entire Scl2.3 structure; The cyan region (residues 7-123 of each chain of the Scl2.3 

trimer) was used for MD studies. (B) Evolution of the RMSD calculated on Cα atoms, 

throughout the MD trajectory for the entire model (black), the Scl2.3-V (red) and Scl2.3-

CL (green). (C) Evolution of the bending angle between the Scl2.3-V and Scl2.3-CL 

domains throughout the MD trajectory; (D) Evolution of the bending angle between three 

zones of the Scl2.3-CL domain throughout the MD trajectory; The insets of panels C and 

D show atoms used for the computation of the bending angle as red balls. 
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Table 1. Data collection and refinement statistics 

aValues in parentheses are for highest resolution shells: 1.90-1.87 Å for EuCl3 
derivative and 1.55-1.52 Å for the native crystal.

A. Data collectiona   

 Europium chloride 
derivative 

Native 

Space group H32 H32 

a, b, c (Å),  (°) 44.3, 44.3, 228.0, 120.0 44.4, 44.4, 227.8, 120.0 

Resolution (Å) 1.87 1.52 
Average redundancy 9.5 (7.5) 5.3 (2.6) 
Completeness (%) 100 (99.9) 99.2 (86.7) 
Rmerge (%) 0.043 (0.419) 0.061 (0.345) 
Average I/σ(I) 47.7 (5.1) 49.2 (3.1) 
   

B. Refinement   

Resolution range (Å) 15.00-1.52 
Rwork, Rfree (%) 18.5, 23.3 
No. atoms (protein, ligands, 
water) 
r.m.s. deviations 

623, 13, 100 

Bond lengths (Å) 0.02 
Bond angles (°) 1.6 
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Brandon C. Durney, Beth A. Bachert, Hillary S. Sloane, Slawomir Lukomski, James P. 

Landers, and Lisa A. Holland 
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ABSTRACT 

Phospholipid additives are a cost-effective medium to separate deoxyribonucleic acid 

(DNA) fragments and possess a thermally-responsive viscosity. This provides a 

mechanism to easily create and replace a highly viscous nanogel in a narrow bore 

capillary with only a 10 °C change in temperature. Preparations composed of dimyristoyl-

sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine 

(DHPC) self-assemble, forming structures such as nanodisks and wormlike micelles.  

Factors that influence the morphology of a particular DMPC-DHPC preparation include 

the concentration of lipid in solution, the temperature, and the ratio of DMPC and DHPC. 

It has previously been established that an aqueous solution containing 10% phospholipid 

with a ratio of [DMPC]/[DHPC] = 2.5 separates DNA fragments with nearly single base 

resolution for DNA fragments up to 500 base pairs in length, but beyond this size the 

resolution decreases dramatically. A new DMPC-DHPC medium is developed to 

effectively separate and size DNA fragments up to 1,500 base pairs by decreasing the 

total lipid concentration to 2.5%. A 2.5% phospholipid nanogel generates a resolution of 

1% of the DNA fragment size up to 1,500 base pairs. This increase in the upper size limit 

is accomplished using commercially available phospholipids at an even lower material 

cost than is achieved with the 10% preparation. The separation additive is used to 

evaluate size markers ranging between 200 and 1,500 base pairs in order to distinguish 

invasive strains of Streptococcus pyogenes and Aspergillus species by harnessing 

differences in gene sequences of collagen-like proteins in these organisms. For the first 

time, a reversible stacking gel is integrated in a capillary sieving separation by utilizing 

the thermally-responsive viscosity of these self-assembled phospholipid preparations. A 
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discontinuous matrix is created that is composed of a cartridge of highly viscous 

phospholipid assimilated into a separation matrix of low viscosity. DNA sample stacking 

is facilitated with longer injection times without sacrificing separation efficiency.  

 

INTRODUCTION 

Estimating the size of DNA is critical in genetic analysis associated with human 

identification (1), species identification (2,3), detecting personal biomarkers (4), analyzing 

food (5), and categorizing pathogenicity (6). Moreover, following sample preparation, 

accurate determination of the size of DNA fragments is a mandatory analytical step in 

sophisticated high-throughput sequencing techniques. It is also a critical endpoint for 

methods based on PCR amplification, where the length of the product is used to 

determine the presence of a specific target sequence in the DNA template. Confirmation 

of size is achieved by comparing the fragment migration time during electrophoretic 

sieving using various sieving agents. Slab gel electrophoresis, the workhorse of modern 

analytical science, is a commonly used tool for DNA sizing due to the simplicity and low 

cost of the method. Sizing is achieved by comparing the migration time of the targeted 

DNA with a DNA ladder that contains a mixture of fragments of known size. The DNA 

ladder standard is run in a separate lane. A serious disadvantage of slab gels is the poor 

separation efficiency and the reduced throughput even when completed in parallel lanes 

in the gel (7,8). Although more expensive than slab gel methods, capillary gel 

electrophoresis provides a size discrimination that is improved substantially, and higher 

sample throughput. Sequencing of the human genome provides direct proof of this (9). 

Capillary gel electrophoresis separations of DNA fragments are accomplished 

using polymer solutions that provide a size-based separation of DNA fragments by 

creating networks or matrices that form dynamic pores for sieving (10-12), or separation 

through DNA entanglement (13). DNA fragments ranging from 50-1,500 bases are often 

present in an electropherogram, but the resolution obtained for the larger DNA fragments 

is poor and accurate sizing is limited to DNA fragments that are shorter than 500 bases 

in length. Ultra-high resolution separations were achieved with 0.75% hydroxyethyl 

cellulose used to size a 256 base pair (bp) DNA fragment (14). Although larger fragments 

could not be sized, 1,078 bp and 1,353 bp DNA were baseline resolved (14). A 
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commercial system utilized hydroxyethyl cellulose to separate 50 bp to 10 kbp DNA and 

to accurately size 275 to 815 bp DNA (15). In another case, a matrix of 2% linear 

polyacrylamide was used to sequence a DNA fragment 1,300 bases long (16). Several 

polymer properties dictate the utility of the material and the useful size range of the 

separation (17). Increasing the upper fragment size limit of the separation can be 

accomplished by increasing the length of the polymer and maintaining the concentration 

of the gel at or above the entanglement threshold (10). This increase in concentration is 

accompanied by an increase in viscosity (11), which provides challenges for the 

introduction to or replacement of, the gel in the separation capillary.  

Temporary gels, which rupture and reform during the separation, are an exciting 

alternative to permanent gels because the upper size limit increases when the rate of gel 

rupture is optimized (18). Wormlike micelles form large self-assembled structures that 

dynamically rupture and reform. Aqueous solutions of the long-chain phospholipid 

dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the short-chain phospholipid 1,2-

dihexanoyl-sn-glycero-3-phosphocholine (DHPC) are known to form wormlike micelles 

(19,20). A dynamic sieving matrix of 10% phospholipid with [DMPC]/[DHPC] = 2.5 was 

optimized for single-base pair resolution that was adequate for detection of short tandem 

repeats (STR) in selected loci utilized for human identification using a 100 cm long 

capillary within a 30 minute run time (21). This is comparable to separations on 

commercial capillary electrophoresis instruments for forensic STR analyses (22). What 

makes this particularly attractive, is that the phospholipid nanogel is substantially more 

cost-effective at roughly one-fourth the cost of commercial gels utilized for human 

identification (23-25). A significant advantage of the dynamic sieving matrix is the 

thermally-responsive viscosity. The sieving matrix has low viscosity below the gel-phase 

transition temperature of the phospholipids and becomes gel-like at higher temperatures.  

As a result, the sieving agent is easily introduced into or expelled from the narrow bore 

separation capillary at a temperature of 19 °C. Prior to the separation, the matrix is 

transformed into a viscous gel in-capillary at a separation temperature of 30 °C.  

While a phospholipid additive has been previously described for the separation of 

DNA fragments below 500 bp (21), we show that the DNA sizing range of the separation 

can be extended by reducing the concentration of wormlike micelles in solution. The size, 
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shape, and stability of the phospholipid structures depend upon the phospholipid 

concentration, the ratio of DMPC and DHPC, and the temperature. The effect of these 

parameters on the size limit of DNA separations was evaluated, and the linear range for 

size separation was extended to 1,500 bp by tuning the concentration of the phospholipid 

nanogel and the ratio of [DMPC]/[DHPC]. This preparation was used to compare the size 

of the DNA fragments to internal standards. The effectiveness of the sieving matrix was 

demonstrated with the analysis of PCR-amplified DNA sequences specific to select 

pathogens. The difference between the true size of a DNA fragment and the size 

calculated from internal standards is less than 2.3% for fragment sizes between 200-500 

bp. For fragments that range from 600-1,500 bp this difference between the true size and 

measured size is less than or equal to 4%. Different properties of the high and low 

concentration phospholipids were exploited by integrating both dynamic sieving matrices 

into a single capillary to create a discontinuous gel in-capillary used to concentrate DNA 

samples through gel stacking.  

 

MATERIALS AND METHODS 

Chemicals and reagents 

The fluorescently labeled DNA ladder (catalog # MM-1000-FAM, 50-1,000 bp) was 

purchased from BioVentures (Murfreesboro, TN). The fluorescent intercalating dye SYBR 

Green 1 nucleic acid gel stain (catalog # S-7567), 1 Kb Plus (catalog # 10787-018, 100-

12,000 bp), and 100 bp (catalog # 15628-019, 100-2,072 bp) DNA ladders were 

purchased from Life Technologies (Grand Island, NY). The methanol was purchased 

through Calbiochem/EMD (Gibbstown, NJ). The DMPC and DHPC phospholipids were 

purchased through Avanti Polar Lipids (Alabaster, AL), and the 3-(N-morpholino)-

propanesulfonic acid (MOPS) was purchased from Alfa Aesar (Ward Hill, MA). Sodium 

hydroxide was obtained from Sigma-Aldrich (St. Louis, MO). All deionized water used 

was obtained from an ELGA PURELAB ultra water filtration system (Lowell, MA). 

 

Preparation of phospholipid mixture 

The phospholipid preparations were made as described previously (26) to obtain molar 

ratios of [DMPC]/[DHPC] = 0.5 and [DMPC]/[DHPC] = 2.5. The phospholipids were stored 
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at -20 °C and thawed before being weighed out.  Once they were weighed, an aqueous 

buffer of 100 mM MOPS (pH 7.0) was added to obtain the appropriate concentration of 

phospholipid per volume of aqueous diluent (% w/v). The solution was then mixed using 

a vortex mixer for several minutes to dissolve the phospholipids. The phospholipid 

medium was then exposed to three rapid freeze thaw cycles using liquid nitrogen followed 

by centrifugation (10,000 rpm at 4 °C) for 10 minutes. The matrix was then portioned into 

working volume aliquots of 200 μL [DMPC]/[DHPC] = 0.5 (5% w/v) and 100 μL 

[DMPC]/[DHPC] = 2.5 (10% w/v). The [DMPC]/[DHPC] = 2.5 lipids were then diluted with 

the same 100 mM MOPS (pH 7.0) buffer to obtain the 7.5, 5.0, and 2.5% phospholipid 

used for electrophoresis. No freeze thaws were done after the dilution from the 10% 

phospholipid. The additional phospholipid matrices with [DMPC]/[DHPC] = 3.0, 4.0, and 

5.0 used in the study were prepared the same manner. The MOPS buffer was also used 

for capillary rinses between runs and served as the solution in the anodic and cathodic 

reservoirs during electrophoresis separations. 

 

PCR amplification 

Primers were based on scl2 genes with the following gene bank accession numbers and 

genome locations; M3: AE014074, location 791329-793050; M12: CP000259, location 

862738-863880; M28: CP000056, location 781169-782437. Forward primers specific for 

each scl2 allele, are as follows: M3-Scl2.3_CLflank_2F,  

5’-AGGCATACAAGATCATGTCCTTGA-3’; M12-Scl2.12_CLfl_1F,  

5’-AAGAGTGGGATATCTTTAGGC-3’; M28-Scl2.28_CLfl_1F,  

5’-CTACAGGAACGAGAACAAGC-3’. A single reverse primer Scl2.3_CLflank_2R,  

5’-TTTGGTGTATGTGCTGCGGT-3’, targeting a conserved 3’ region of scl2 gene was 

paired with each forward primer. Genomic DNA was purified and isolated as described 

previously (27). PCR reactions were carried out with 1.5 units of Taq DNA polymerase 

(Qiagen, Germantown, MD) in a final volume of 50 µL per reaction and DNA template in 

the nanogram range using a C1000 Touch Thermal Cycler (BioRad, Hercules, CA). The 

manufacturer’s PCR buffer was supplemented with 0.2 µM concentration of each primer 

and 0.2 mM deoxynucleotide triphosphates (Bioline, Taunton, MA). Amplification 

conditions consisted of an initial denaturation step at 94 °C for 3 min, followed by 30 
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cycles of 1 min at 94 °C, 1 min at 51 °C, and 1 min 45 s at 72 °C, followed by a final 

extension step at 72 °C for 7 min. The amplicons were analyzed by agarose gel 

electrophoresis and the true size of each scl2-PCR product was determined by Sanger 

DNA sequencing (Eurofins Genomics, Huntsville, AL). The DNA sequences were 

assembled and analyzed with the Lasergene 11 Genomics Suite (DNASTAR, Inc., 

Madison, WI) software, as previously described (28). Isolation of genomic DNA and 

purification from fungal cultures, PCR primers (Eurofins Genomics, Huntsville, AL), 

amplification conditions, and verification of conserved amplicon sizes for acl-based 

detection of Aspergillus species were previously established (29). 

 

Gel extraction of DNA ladder standards 

Fragments from the two unlabeled DNA ladders were separated using a VWR horizontal 

gel box Midi Plus 15x10cm connected to a Hoefer hsi (San Francisco, CA) power supply 

using a 1% agarose (CalbioChem/EMD Chemicals) in 1X TBE buffer (G Biosciences, St. 

Louis, MO) gel. Slab gel electrophoresis was accomplished using an applied voltage of 

110 V for 3 hours, and alternate gel lanes were stained using ethidium bromide (part # 

15585011, Life Technologies) for UV visualization. Extraction and purification of DNA 

bands in unstained lanes was done using the illustraTM GFXTM PCR DNA and Gel Band 

Purification Kit manufactured by GE Healthcare (Buckinghamshire, UK) prior to analysis 

on the P/ACE MDQ Capillary electrophoresis instrument (Beckman Coulter, Fullerton, 

CA). DNA that was isolated and recovered from the agarose gel was then utilized as an 

internal standard to size PCR amplicons. The 600, 1,000, 1,500, and 1,650 bp fragments 

were used as internal standards to size S. pyogenes and B. anthracis amplicons, whereas 

the 150, 450, and 500 bp were used to size Aspergillus spp. amplicons. 

 

Pre-treating the separation capillary 

Separations were performed using fused silica capillary with an outer diameter of 360 µm 

and an inner diameter of 25 µm (Polymicro Technologies, Phoenix, AZ). The separation 

capillary had a total length of 40 cm, and an effective length of 30.2 cm. New capillary 

was conditioned with a 4-step rinse procedure performed at 140 kPa with (1) 1N NaOH 

for 30 min, (2) deionized water for 15 min, (3) methanol for 15 min, (4) deionized water 
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for 15 min. The conditioned capillary was then passivated with a semi-permanent 

phospholipid coating to suppress electroosmotic flow as previously described (30). This 

was accomplished using a 2-step rinse at 140 kPa with (1) 5% phospholipid of 

[DMPC]/[DHPC] = 0.5 containing 1.25 mM Ca2+ for 20 min and (2) a 2 min flush with 100 

mM MOPS buffered to pH 7. This passivation rinse is repeated once (i.e., 4-steps). The 

capillary was then filled with phospholipid nanogel at an ambient temperature of 19 °C. 

Once filled with the phospholipid, the capillary temperature was increased to the desired 

separation temperature. A reverse polarity voltage of 20 kV was applied for 5 min prior to 

the first run of the day. 

 

Capillary electrophoresis sample introduction and separation 

Sample was injected by first introducing a pre-plug of run buffer at 6.9 kPa for 7 sec, then 

applying a reverse polarity electrokinetic injection of DNA for the specified time, and finally 

by inserting a post-plug of run buffer at 3.4 kPa for 5 sec. The purpose of these pre- and 

post-plugs was to facilitate stacking and improve the theoretical plate count (31). 

Separations were performed at 4 kV under reverse polarity conditions. Between each 

separation the capillary was flushed at 140 kPa for 3 min with 5% [DMPC]/[DHPC] = 0.5, 

2 min MOPS (pH 7), and 3 min with the phospholipid preparation used to separate DNA. 

 

Fluorescence detection and analysis of DNA 

The Beckman Coulter P/ACE MDQ was equipped with a laser induced fluorescence 

detection module and an air cooled argon ion laser (λex=488 nm and λem=520 nm). The 

optimization of concentration and composition of phospholipid nanogel was accomplished 

using a fluorescein end-labeled DNA ladder. The intercalating dye SYBR Green 1 was 

utilized for separations of PCR amplicons. SYBR dye was diluted to a concentration of 20 

μM SYBR in phospholipid preparations of [DMPC]/[DHPC] = 2.5 at a concentration equal 

to that used for the separation. The concentration of the plug was calculated based on a 

literature estimate of 20 mM stock concentration from the manufacturer (32). Unless 

otherwise stated, a 7 second 34.5 kPa plug of phospholipid modified with dye was pushed 

toward the detection window in the separation capillary prior to sample injection. Under 

an applied field, the positively-charged dye and negatively-charged DNA migrated toward 
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each other and the two bound effectively upon contact as the Kd is 3.1 nM (33). Any 

variation in the ratio of dye and DNA in a separation will change the migration time of the 

DNA. Reproducible run times are achieved by utilizing a dye concentration compatible 

with the detector output, in this case an output of approximately 1-5 relative fluorescent 

units was achievable with a plug of 20 μM SYBR Green 1. As summarized in Table S-1, 

the reproducibility in migration time is less than or equal to 5% for separations with a 7 

second dye plug. The use of internal size standards in each separation further mitigates 

any bias in migration time due to variation in the ratio of dye to DNA. 

The size of the PCR amplicons was calculated using internal standards purified 

from the DNA ladders listed in the materials section. Sizing of fragments was 

accomplished using two DNA standards that bracketed the size of the PCR amplicon. All 

DNA fragments were co-injected and a linear fit was used to relate the migration time to 

the known size in bp of the DNA standards. Using this fit, the size of each PCR amplicon 

was calculated based on the migration time. Resolution between fragments was 

calculated using the expression Rs = 0.589*(Δt/w1/2av), where Δt is the difference in 

migration time between the two peaks of interest, and w1/2av is the average width at half 

height for the same two peaks. Resolution in base pairs was calculated by dividing the 

difference in the number of base pairs for the two fragments (Δbp) by the calculated 

resolution. Therefore, base pair resolution can be expressed as 

Rsbp=(Δbp)/(0.589*(Δt/w1/2av)). Data collection and analysis were performed using 32 

Karat Software version 7.0 (Beckman Coulter), and peak width at 50% height as well as 

theoretical plate count were calculated using the “USP” criterion. 
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RESULTS AND DISCUSSION 

Effect of gel concentration on the separation 

The total lipid concentration (% w/v) determined the number of ‘ribbons’ or ‘disks’ in 

solution and the degree of long-range interaction, including the extent of lipid 

entanglement of the nanogel.  Using a fluorescently-labeled DNA ladder, the separations 

were examined in the 500-1,000 bp range to quantify the effect of phospholipid 

concentration on separation performance. Our previous literature reported the effect of 

concentrations of phospholipid ranging from 5-15% for separations based on subtle 

difference in hydrodynamic volume (26) and from 6-12% for separations based on sieving 

(21). For both studies (21,26) a 10% phospholipid concentration generated the most 

effective separation efficiency and peak resolution. In the current study concentrations of 

2.5, 5.0, 7.5, and 10% were used to evaluate the effect of phospholipid concentration on 

the useful upper size limit for DNA separations. Preparations below 2.5% phospholipid 

did not generate reproducible DNA separations, presumably because wormlike micelles 

are not stable under these conditions, and consequently, these were not assessed. The 

peak resolution summarized in Table 1 was measured for a set of DNA fragments at 450 

and 475 bp as well as a set at 900 and 950 bp. There was no significant improvement in 

resolution of DNA fragments with a length of 450 and 475 bp for separations 

accomplished at 23 °C. When the separation was performed at the optimum temperature 

for each lipid preparation, which was 25 °C for 5% nanogel, and 30 °C for both 7.5% and 

10% nanogel, the resolution of DNA fragments smaller than 500 bp was similar when 

comparing a 2.5% to a 10% phospholipid nanogel (see Table S-2 in the supporting 

information). The resolution between the DNA fragments with a length of 900 and 950 bp 

improved substantially (2.3-fold) when comparing a nanogel of 2.5% phospholipid to one 

of 10% phospholipid. When the separation was performed at the optimum temperature 

for each lipid preparation (i.e., 25 °C for 5% nanogel, and 30 °C for both 7.5% and 10% 

nanogel), the resolution between fragments of 900 and 950 bp improved 1.8-fold (see 

Table S-2 in the supporting information). These results indicated that the lipid 

preparations should be maintained at a concentration of 2.5% lipid. 
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The effect of temperature and composition, factors that impact nanogel 

morphology, on separation 

The ratio of long-to-short-chain lipid determines the shape of the self-assembled 

aggregate formed in solution. When the relative amount of long chain lipid increases, the 

aggregates are transformed from a bilayer disk conformation with a small diameter, to 

disks with larger diameters and ‘ribbons’ (19,20). The temperature also impacts the 

transformation from nanodisks to nanoribbons and a substantial change in apparent 

viscosity is observed over a temperature range specific to the preparation (34-36). The 

morphologies adopted by the matrix were dependent on the ratio of long-to-short chain 

lipid as well as the temperature of the preparation. At a total lipid concentration of 2.5%, 

preparations were examined with a ratio of long-to-short chain lipid of 2.5, 3.0, and 4.0. 

The results, summarized in Table 2, revealed that the lipid composition had no significant 

effect on the resolution of DNA fragments under these conditions. When the ratio of long-

to-short chain lipid was 5.0, the separation performance decreased. The resolution 

improved marginally for nanogels with different lipid composition when the optimum 

performance was observed at a temperature different from 23 °C (see Table S-3 in the 

supporting information). Although, the performance of the separation matrix was tolerant 

of changes in lipid composition, the preparation made with a 2.5 ratio of long-to-short 

chain lipid was used for analytical separations and the effect of temperature on separation 

performance was tested. The results for a 2.5% w/v preparation composed of 

[DMPC]/[DHPC] equal to 2.5 are summarized in Table S-4 in the supporting information. 

The best resolution for both the 450 and 475 bp DNA and the 900 and 950 bp DNA was 

obtained at 23 °C. At this temperature 450 and 475 bp DNA fragments were separated 

with 5 bp resolution, and 900 and 950 bp DNA fragments were separated with 8 bp 

resolution. For both size domains the resolution obtained using a 2.5% nanogel is 1% 

when normalized by dividing the resolution (in bp) by the size of the separated DNA 

fragments. This is a substantial increase over the 10% resolution obtained with a 

commercial system that utilizes a hydroxypropylmethylcellulose matrix for DNA shorter 

than 1,000 bp (15). This improved sizing obtained with the phospholipid nanogel is an 

extraordinary advantage for DNA analyses with sieving that require accurate size 

determinations. 
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Expanded size range of sieving using a wormlike nanogel 

These optimization studies confirmed that decreasing the concentration of the lipid 

preparation separated a wider range of DNA fragments than previously reported. This is 

demonstrated in Figure 1, which depicts the separation of the 1kilobase DNA ladder. The 

separation performance obtained with the DNA size ladder improves by successively 

decreasing the viscosity of the nanogel used for sieving DNA. Figure 1 trace A is of 10% 

lipid with [DMPC]/[DHPC] equal to 2.5 at 30 °C, which is the higher viscosity formulation 

and provides accurate sizing for DNA fragments smaller than 500 bp in length. When the 

temperature of the 10% nanogel matrix is decreased the viscosity is decreased as well. 

The trace in Figure 1 B obtained using a 10% nanogel matrix at a separation temperature 

of 23°C demonstrates some improvement in the resolution of larger fragments ranging 

from 1,000 to 12,000 bp in length. The trace in Figure 1C is obtained using a 2.5% 

nanogel matrix at a separation temperature of 30°C. This material has a lower viscosity 

than the 10% nanogel matrix and relative to the 10% nanogel the resolution is improved 

for the fragments ranging from 1,000 to 12,000 base pairs. Figure 1 trace D is of the 

optimized preparation of 2.5% lipid with [DMPC]/[DHPC] equal to 2.5 at 23 °C. This 

nanogel has the lowest viscosity and generates the best resolution for DNA fragments 

larger than 500 bp. For DNA fragments shorter than 500 bp, the performance of the 

optimized preparation was similar. The resolution of 450 and 475 bp fragments decreased 

from 6.2, using the 10% phospholipid preparation with [DMPC]/[DHPC] = 2.5 at 30 °C 

(see Table S-2), to 5.0, using the optimized preparation of 2.5% phospholipid with 

[DMPC]/[DHPC] = 2.5 at 23 °C. This slight decrease in resolution performance to 78% of 

the previously reported value of 6.2, did not limit the application of the material to analyze 

and accurately calculate the size of these PCR amplicons. 

 

Application to assess length polymorphism of PCR amplicons derived from 

pathogenic bacteria 

PCR amplicons were identified using bioinformatics to predict unique DNA biomarkers of 

different strains of Streptococcus pyogenes ranging from 634 to 1,332 bp in length. Over 

700 million infections annually are attributed to this pathogenic bacterium associated with 

common throat and skin diseases with more than 0.5 million deaths resulting from 
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invasive and autoimmune complications (37). Strains are typically characterized 

epidemiologically by serological typing of the M protein or, more recently, by sequencing 

of the emm gene (38-40). However, epidemiological surveillance during outbreaks of 

infection requires additional tools to distinguish between strains of the same M-type. The 

scl2 gene, encoding a common S. pyogenes surface protein, exhibits significant length 

polymorphism between strains of the same M-type, due to the presence of repetitive Gly-

X-Y motifs in the collagenous domain (28,41). Strain typing by length variation in collagen-

like genes has been successfully demonstrated for the bcl genes of Bacillus anthracis 

(42) and is a viable strategy for typing S. pyogenes. The scl2 alleles from strains of M-

types 3, 12, and 28 were selected here as epidemiological markers since these are 

among the most prevalent M-types causing infection in the United States and globally 

(43,44). Importantly, M3-type strains are associated with invasive diseases like 

necrotizing fasciitis and streptococcal toxic shock syndrome (43,45-47). 

Primers were designed to generate PCR amplicons of scl2 alleles associated with 

each M-type. The 2.5% phospholipid preparation was utilized to evaluate the applicability 

of the method for the analysis of PCR amplicons. Three amplicons were separated, as 

shown in Figure 2a, and sized with internal standards of 600 and 1,000 bp. The 634 bp 

and 715 bp amplicons, which were sequenced in the genome of three different M12-type 

strains, and the 842 bp amplicon, which was sequenced in the M28-type strain, were 

detected and sized using the phospholipid nanogel. The remaining amplicons (1,071, 

1,152, and 1,332 bp) sequenced in the M3-type strains were detected and sized (see Fig. 

2b) using internal standards of 1,000 and 1,500 bp. The extended sizing range of the 

phospholipid nanogel enabled detection of larger scl2-derived amplicons to generate 

unique DNA markers that distinguish strains of S. pyogenes. To further demonstrate the 

effectiveness of the phospholipid nanogel for size determination, a previously reported 

amplicon of bcl gene that is 1,446 bp in length (42) was analyzed using internal standards 

of 1,000 and 1,650 bp as shown in Figure 2c. 

 

Characterization of the difference between true and measured size (bias) 

To demonstrate that the phospholipid preparation optimized for the separation of large 

DNA fragments remained effective for the analysis of DNA fragments below 500 bp in 
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size, unique biomarkers of several Aspergillus species were analyzed (see Figure S-1 in 

the supporting information). This fungus leads to increased mortality among 

immunocompromised patients suffering from invasive aspergillosis (48-51) and is also 

associated with crop contamination (52). Detection of Aspergillus through unique DNA 

sequences is significant because PCR methods are faster and more conclusive than the 

traditional means of identifying Aspergillus species based on morphology observed in 

microbiology laboratory cell cultures. Unique sequences in Aspergillus collagen-like 

genes (acl) found in five pathogenic species were targeted by PCR resulting in amplicons 

of distinct lengths: A. nidulans 227 bp; A. terreus 262 bp; A. niger 297 bp; A. flavus 402 

bp; and A. fumigatus 338 and 489 bp. Using internal standards of 150 and 450 bp to 

calculate the size, these six biomarkers were resolved in a capillary with 30.2 cm effective 

length and a separation additive containing 2.5% phospholipid preparation of 

[DMPC]/[DHPC] equal to 2.5 at 23 °C. This separation additive optimized for larger DNA 

fragments estimated the size with a bias ranging from 0-6 bp (see Table 3), which 

represented a size accuracy within 2.5% of the true fragment size. Previously, these 

biomarkers were separated using a 40 cm effective length and a 10% phospholipid 

preparation of [DMPC]/[DHPC] equal to 2.5 at 30 °C (29). In that study, the amplicon size 

was estimated using three size standards of 150, 250, and 350 bp with a bias ranging 

from 1-7 bp, which represented a size accuracy within 2% of the true fragment size. 

The analysis of DNA biomarkers for strains of S. pyogenes revealed that the 

phospholipid nanogel generated a relative bias in size accuracy less than 1% (2-4 bp 

bias) of the total fragment size for 634, 715 and 842 bp, and increased to 2%, 3%, and 

4% (19-48 bp bias) of the total fragment size for 1,071, 1,152, and 1,332 bp, respectively 

(Table 4). The analysis of the 1,446 bp PCR amplicon for the bcl C gene of Bacillus 

anthracis shown in Figure 2c had an estimated size of 1,449 ± 8 bp (n = 5), generating a 

size bias of less than 1%. Each single Gly-X-Y repeating unit in scl2 or bcl is encoded by 

9 bp. Thus, the phospholipid nanogel will separate two distinct scl2 or bcl alleles differing 

only by one Gly-X-Y repeat at the ~500-850-bp range and by 1-5 Gly-X-Y repeats at the 

~1,000-1,400-bp range. The phospholipid nanogel performance is similar to the values 

reported for a commercial system that utilizes hydroxyethyl cellulose, which generated a 
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size bias ranging from 0-7% for 119 to 1270 bp DNA fragments (15). Clearly, the material 

can be used for DNA fragments approaching 1,500 bp. 

This is a valuable assay to be used alone or in combination with other 

epidemiological markers to trace the emergence of new strains with a higher 

discriminatory power. Accurate size evaluation for any extended repeating sequence will 

also be an important tool assisting in long-range genomic assemblies produced from short 

(50-150 bp) DNA sequences obtained using next generation sequencers (53). 

 

Advanced material properties enable in-capillary sample stacking 

Continuous nanogels were used to generate the data in Figures 1 and 2 as well as Tables 

1-4; however, the separations in Figure 1 confirmed that DNA had a faster mobility in the 

2.5% phospholipid preparation than in the 10% preparation, which also has a substantially 

higher apparent viscosity. The different viscosity of the 10% vs the 2.5% phospholipid 

nanogels was integrated to create a discontinuous nanogel to stack DNA within a small 

plug of the highly viscous 10% phospholipid nanogel and then separate the DNA in the 

low viscosity 2.5% nanogel that yielded higher separation performance. These two 

nanogel preparations were introduced serially into the separation capillary. DNA was 

stacked using a 10 kV, 30 second injection in the discontinuous nanogel as shown in 

Figure 3A. At a temperature of 19 °C, the capillary was first filled with the 2.5% nanogel 

for 3 minutes at 140 kPa (20 psi). This was followed by a small plug of 10% nanogel 

introduced for 10 seconds at 69 kPa (10 psi), and finally a pre-plug of aqueous buffer was 

introduced for 15 seconds at 34 kPa (5 psi). The temperature was raised to 30 °C to 

increase the viscosity, which caused the 10% phospholipid to form a highly viscous 

nanogel. The DNA was electrokinetically-injected at 30 °C and stacked. The temperature 

was then dropped to 23 °C and the separation proceeded. The enhancement in peak 

area achieved with stacking is apparent by comparing the electropherograms shown in 

Figure 3A with 3B and 3C. The DNA in the electropherogram in Figure 3B, obtained with 

a 10 kV, 2 second injection in a discontinuous nanogel, was difficult to detect. The peaks 

were broad when the large 10 kV, 30 second injection was performed in the absence of 

the stacking gel as shown in Figure 3C. The plate count of the 600 bp peak in Figure 3C 

(40,000 theoretical plates) was 12-fold lower than that obtained with stacking in Figure 
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3A (500,000 theoretical plates). Integrating both materials offered a means to harness 

advantages of each medium for unique processes of injection and separation of large 

DNA fragments. 

 

CONCLUSIONS 

A practical alternative to slab gels was developed to separate and size DNA fragments 

as large as 1,500 bp, with a size accuracy ranging from 1-4%. The material was 

compatible with the higher concentration medium reported previously (21) and was 

suitable for thermally controlled gel-stacking and separations. By decreasing the 

concentration of the phospholipid preparation from 10% to 2.5%, the net cost of the 

dynamic sieving gel was reduced. The ease with which the dynamic sieving nanogel was 

introduced into capillary channels was ideal for microscale separations because the low 

flow resistance required only nominal pressures for loading. This holds potential to benefit 

microfluidic separations as well because when the separation device can be used 

repeatedly, the lifetime of the device is increased, which in turn decreases the overall cost 

of the analytical measurement. 
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Figure 1 

Separations obtained at different phospholipid concentration and run temperature. 
Electropherograms of a 1 kilobase DNA ladder are detected using SYBR Green 1 
fluorescent dye using a phospholipid nanogel with [DMPC]/[DHPC] = 2.5: (A) at a 
concentration of 10% and temperature of 30 °C, (B) at a concentration of 10% and 
temperature of 23 °C, (C) at a concentration of 2.5% and temperature of 30 °C, and (d) 
at a concentration of 2.5% and temperature of 23 °C. The DNA fragments in the ladder 
(Life Technologies, #10787-018) range from 100-12,000 bp and the size in bp specified 
by the manufacturer is indicated above each corresponding peak. 
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Figure 2 

Separation of PCR amplicon obtained with the phospholipid nanogel optimized for 
DNA up to 1,500 bp in length. Electropherograms detected using SYBR Green 1 
fluorescent dye and a phospholipid nanogel with [DMPC]/[DHPC] = 2.5 at a concentration 
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of 2.5% and temperature of 23 °C. The true sizes are specified above each peak while 
the measured sizes are denoted in the brackets.  The peaks for each marker are labeled 
to indicate: (A) the three scl2 strains designated 6166, 6140, 6180 (B) the three scl2 
strains designated 9716, 10118, 9842, and (C) bcl C. The separation is accomplished 

using a capillary that is 40 cm long, 25 m id, with an effective length of 30.2 cm and Eapp 
= 100 V/cm. 
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Figure 3 

DNA stacking with phospholipid additives. Depicts the process of (A) discontinuous 

phospholipid nanogels in which the DNA is stacked in the 10% phospholipid and 

separated in the 2.5% phospholipid, (B) discontinuous phospholipid nanogels in which 

the 10 kV 2 sec injection is too short to stack DNA, and (C) a continuous nanogel using 

a 10 kV 30 sec injection without a stacking plug. The separation is accomplished using a 

capillary that is 40 cm long, 25 m id, with an effective length of 30.2 cm and Eapp = 100 

V/cm. 
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Table 1. Effect of concentration on resolutiona 

aSeparations (n = 5) of DNA base ladder MM-1000-FAM are achieved at 23 °C with 

[DMPC]/[DHPC] = 2.5 in a 40 cm long, 25 m id capillary. The effective length is 30.2 cm 
and Eapp = 100 V/cm. 
bResolution is calculated as 0.589(Δt/w1/2av), where Δt is the difference in peak migration 
times and w1/2av is the average peak width at half height 
cResolution in base pairs is calculated as the difference in base pairs/resolution. 

Phospholipid 
(%) 

 Resolution 450/475 bp DNA  Resolution 900/950 bp DNA 

  Resolution (CV)b  in bpc  Resolution (CV)b  in bpc 

2.5  5.0 (6)  5  6.4 (7)  8 

 

5.0  4.6 (10)  5  4.3 (10)  12 

 

7.5  4.5 (9)  6  3.4 (10)  15 

 

10.0  4.4 (10)  6  2.8 (9)  18 
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Table 2. Effect of [DMPC]/[DHPC] ratio on resolution at 23°Ca 

 aSeparation conditions, calculation of resolution, and calculation of resolution in bp are 

identical to that reported in Table 1. 

[DMPC] 
[DHPC] 

 Resolution 450/475 bp DNA  Resolution 900/950 bp DNA 

  Resolution (CV)  In bp  Resolution (CV)  In bp 

2.5  5.0 (6)  5  6.4 (7)  8 

 

3.0  4.4 (10)  6  5.2 (10)  10 

 

4.0  4.8 (10)  5  5.5 (10)  9 

 

5.0  1.1 (20)  23  1.2 (20)  42 
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Table 3. Performance of 2.5% phospholipid for Aspergillus biomarkers 

Species  True size in bpa  Measured size in bpb (CV) Bias in bpc 

A. nidulans  227  227 (0.3) 0 
  

A. terreus  262  256 (0.4) 6 
  

A. niger  297  301 (0.3) 4 
  
A. fumigatus  338  333 (0.5) 5 

  
A. flavus  402  402 (0.1) 0 

  
A. fumigatus  489  495 (0.4) 6 

 aTrue size established as described in [26]. A. fumigatus derived amplicons of gene 
aclF1-5' and -3' were sequenced and represent true sizes of 338, 489 bp. Amplicons 
derived from A. terreus (gene aclT2-5'), A. nidulans (gene aclNl-3'), and A. niger (gene 
aclNi-5') were based on bioinformatics and were also partially sequenced with forward, 
but not with reverse, primers that were used to generate these amplicons. The amplicon 
from A. flavus (gene aclFL-3') was sequenced in full and the size of this amplicon is 402 
bp. 
bSeparation conditions are identical to those reported in Table 1. Size standards of 150 
and 450 bp are used. 
cBias is calculated as the difference between the true fragment size and the measured 
size. 
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Table 4. Performance of 2.5% phospholipid for Streptococcus biomarkers 

Strain, type True size in bpa Measured size in bpb (CV) Bias in bpc 

6166, M12 634 630 (0.2) 4 
6144, M12 715 717 (0.4) 2 
6180, M28 842 844 (0.5) 2 
9716, M3 1071 1090 (0.4) 19 
10118, M3 1152 1185 (0.3) 33 
9842, M3 1332 1380 (0.2) 48 

aTrue size established using DNA sequencing as reported in reference [27]. 
bSeparations conditions are identical to those reported in Table 1. For strains 6166, 6144, 
and 6180 the size is determined using 600 and 1,000 bp standards. For strains 9716, 
10118, and 9842, the size is determined using 1,000 and 1,500 bp standards 
cBias is calculated as the difference between the true fragment size and the measured 
size.
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ABSTRACT 

Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority 

pathogens, are significant human and animal pathogens that are highly infectious and 

broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by 

Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. 

mallei infection remains a challenge due to limited detection methods. Here, we provide 

a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) 

that were identified among B. pseudomallei and B. mallei select agents. We infer that 

several Bucl proteins participate in pathogenesis based on their noncollagenous domains 

that are associated with the components of a type III secretion apparatus and membrane 

transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 

points to a role in multi-drug resistance. We determined that bucl genes are widespread 

in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate 

that the majority of bucl genes are highly associated with these pathogenic species versus 

nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay 

which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 

CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed 

considerable genomic plasticity and adaptation of Burkholderia spp. to host and 

environmental niches. In this study, we identified a large set of phylogenetically unrelated 

bucl genes commonly found in Burkholderia select agents, encoding predicted 

pathogenicity factors, detection targets, and vaccine candidates. 
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INTRODUCTION 

Collagen structure is formed by three polypeptide chains of continuous repetitive Gly-

Xaa-Yaa (GXY) sequence, each adopting left handed polyproline II type helices that 

combined form a right-handed superhelix (1). It is a universal structure that is broadly 

found among members of all three domains of life. It is the most abundant protein in 

mammals where it harbors important structural functions in the extracellular matrix and in 

support of cell adhesion, differentiation and growth (2,3). The prokaryotic collagen was 

identified and studied more recently, and has similar GXY sequence and triple helical 

structure (4-8). In mammalian collagens, proline (Pro) in the Y position is hydroxylated 

post-translationally and resulting Hyp (hydroxyproline) residues confer the maximum 

stability to the triple helix. As bacteria lack the prolyl hydroxylase required for these 

residues, bacterial collagens must be stabilized by other mechanisms, including 

increased proline content and electrostatic interactions between amino acid side chains 

(9-12). Several bacterial collagen-like proteins have been shown to form stable triple 

helices, including streptococcal collagen-like proteins 1 and 2 of Streptococcus pyogenes 

(4,13), rCLCp from Clostridium perfringens (14), and BclA of Bacillus anthracis (15,16). 

Bacterial collagen-like proteins are found in species that are pathogenic to humans and 

animals (5-8,16-22). They are often surface-exposed and participate in important 

pathogenesis processes, including adherence and biofilm formation, host colonization 

and immune evasion (6,7,18,19,23-30). Several collagen-like genes have been evaluated 

as biomarkers for pathogen detection by targeting their conserved non-collagenous 

regions (31,32) and for strain fingerprinting by targeting highly polymorphic repetitive 

collagen-like sequences (32-35). 

The Burkholderia species are ubiquitous in the environment but also include 

animal and plant pathogens. A group of 17 closely related species, designated B. cepacia 

complex organisms, cause pulmonary infections primarily in patients with cystic fibrosis 

(36). Two other species, Burkholderia pseudomallei and Burkholderia mallei, are 

significant human and animal pathogens in endemic regions and also represent 

biowarfare threats. These bacteria have been classified as category B priority pathogens, 

in part due to their high infectivity, an intrinsic broad-spectrum antibiotic resistance, and 

previous use as biological weapons during wartime (37). B. pseudomallei is a soil 
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saprophyte endemic to southeastern Asia and northern Australia, which causes 

melioidosis in humans. Melioidosis has a variety of clinical outcomes, from localized skin 

infection to pneumonia and acute septicemia, as well as chronic illness with abscess 

formation in major organs (38). As 50% of patients with septicemic melioidosis die within 

48 hours, rapid diagnosis is crucial to patient survival (39). B. pseudomallei has a large 

genome of about 7.2 Mb, which undergoes frequent horizontal gene transfer as 

evidenced by multiple genomic islands that differ between strains (40). B. mallei is a 

closely related bacterium with a smaller genome, ~5.8 Mb (41). It is the causative agent 

of glanders in horses and other animals that can be transmitted to humans. It has been 

demonstrated by multi-locus sequence typing analysis that B. mallei is a clonal derivative 

of B. pseudomallei (42), which has undergone significant genomic reduction and 

rearrangement during host-adaptation (41). Consequently, B. mallei is unable to survive 

outside the host. B. mallei was one of the first microbes to be weaponized during World 

War I to infect livestock and humans (37). A third closely related organism, B. 

thailandensis, is considered non-pathogenic for humans (43). B. thailandensis is also a 

soil saprophyte with a large genome of ~6.7 Mb, which is endemic to geographical regions 

coinciding with B. pseudomallei (43,44); therefore, it is necessary to differentiate between 

the two species. 

In this study, we identified and characterized an unexpectedly large set of 13 

distinct Burkholderia collagen-like (bucl/Bucl) genes and proteins that are conserved in 

pathogenic B. pseudomallei and B. mallei species. We report the widespread presence 

of bucl genes in B. pseudomallei and B. mallei assessed by bioinformatics and analytical 

PCR, explore their phylogenetic relationships, infer important pathogenicity traits and 

antibiotic resistance mechanisms associated with Bucl proteins, and demonstrate the use 

of bucl genes as detection markers for these select agents in an animal model of infection. 
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RESULTS 

Identification of Burkholderia collagen-like (bucl) genes  

An increasing number of collagen-like proteins have recently been identified and studied 

in a variety of bacterial species, including Gram-positive pathogenic group A (5-8,17), B 

(SL, unpublished data), C (20,45) streptococci and pneumococci (18), bacilli and 

clostridia (16,21,32), as well as Gram-negative respiratory pathogen Legionella 

pneumophila ((19); SL, unpublished data). Here, we assessed the presence and 

distribution of the collagen-like proteins among Burkholderia species in the Pfam collagen 

family database (PF01391). We identified a total of 85 sequences among the members 

of the Burkholderiaceae family, with 77 of these sequences designated Burkholderia 

collagen-like (Bucl) proteins, among various species of the Burkholderia genus. We next 

focused on 59 protein sequences found in three closely related species of Burkholderia, 

B. pseudomallei (Bp), B. mallei (Bm), and B. thailandensis (Bt) that we initially categorized 

into 16 (Bucl1-16) protein types, based on domain organization and GXY-repeat types in 

their collagen-like (CL) regions; subsequent refinement eliminated three Bucl types, 

resulting in 13 Bucl proteins 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 14, 15, and 16. To assess their 

distribution, nucleotide sequences of these 13 bucl genes were used as independent 

queries to BLASTn-search the NCBI nonredundant database. Though we observed 

collagen-like sequences in other Burkholderia species, this set of 13 bucl genes and 

proteins were unique to Bp, Bm, and Bt species.  

 

Identification of bucl genes in Bp K96243, proof of principle  

A BLAST search of bucl alleles from various strains against the genome sequence of the 

reference strain Bp K96243 revealed that all 13 bucl genes were present and were 

distributed around both chromosomes (Fig. 1A). Six bucl genes were localized on 

chromosome one and seven bucl genes on chromosome two, and were found on both 

plus and minus strands (Fig. 1A, B). The presence of each bucl gene in Bp K96243 

genome was confirmed by PCR with primers targeting the noncollagenous regions (Fig. 

1C). Mapping of bucl genes in additional seven Bp and four Bm fully sequenced genomes 

revealed significant intra- and inter-species genomic rearrangements involving bucl loci 

(Fig. 2). For example, the region encoding bucl genes 6, 8, and 10 in Bp 668 was inverted 
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compared to Bp K96243 genome (Fig. 2A). Additionally, we observed both 

rearrangements (Fig. 2B, C) and deletions of bucl loci (Fig. 2C) in Bm genomes, 

compared to Bp, which is consistent with Bm-genomic plasticity as well as the evolution 

of Bm from Bp through genome reduction (41,46). To further characterize the genomic 

organization of these strains, organizational patterns (OP) of bucl biomarkers were 

assigned according to their position and orientation on each chromosome (Table 1). In 

aggregate, chromosomal rearrangements occur more frequently on chromosome one (six 

distinct organizational patterns were observed for both Bp and Bm strains analyzed) 

compared to chromosome two (three organizational patterns observed). While only one 

major organizational pattern on chromosome 1, Ch1 OPII, was found exclusively among 

Bp strains, major organizational pattern on chromosome 2, Ch2 OPI, was found in both 

Bp and Bm genomes. All observed rearrangements were intrachromosomal in both 

species, indicating no exchange of genetic material involving bucl markers occurred 

between the chromosomes. In summary, consistent with bioinformatic data, we here 

confirmed by PCR the presence of all 13 bucl genes in Bp K96243. We also captured 

significant genomic plasticity of the Bp and Bm species by employing bucl markers. 

 

Characterization of Bucl proteins 

Overall characteristics of Bucl proteins were examined in a set of geographically diverse 

Burkholderia strains sequenced, including 13 Bp, 11 Bm, and 9 Bt strains (Table 2, Table 

3). All 13 Bucl proteins identified contained a collagen-like region (CL) flanked by 

noncollagenous N- and C-terminal regions. The noncollagenous regions were conserved 

among all three species within each Bucl with sporadic length variations observed (Table 

2). As expected, the CL regions of the same Bucl varied significantly in length between 

strains due to differing numbers of GXY repeats. For example, Bucl3 varied from 38 

repeats to 63 repeats in different strains of Bp, Bm, and Bt (Table 2). The triplet usage 

was unique to each Bucl across species and usually one or two GXY-repeat types 

dominated each CL region. For example, Bucl1 and Bucl8 contained exclusively GAN 

and GAS repeats, respectively, while Bucl3 contained predominantly GTS repeats and 

Bucl10 had predominantly GIH triplets.  
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In order to assess whether the Bucl proteins will form collagen-like triple helices, 

stability predictions were performed on representative Bucl-CL amino acid sequences. 

GXY repeat number in Bucl proteins varies from 2 in Bucl14 to 63 in Bucl3 (Table 2). 

Stability of the predicted collagenous regions of each Bucl was computed using an 

approach derived from host-guest peptide studies (47). Examination of the stability 

profiles shows highest stabilities for Bucl2, Bucl5, Bucl13, and Bucl15, with predicted 

melting temperatures ranging between 35-38°C, while all other Bucl proteins had melting 

temperatures between 20-35°C (Fig. 3). Transmembrane regions were predicted in CL 

domains of Bucl proteins 4, 6, 7, 8, 14, 15, and 16, whose stability ranks low (Fig. 3). 

Hydrophobic interactions occurring in a membrane environment likely stabilize these triple 

helices.   

 

Structural Predictions  

In addition to the CL region, four Bucl proteins were predicted to contain putative domains 

proven to participate in pathogenesis in other bacterial species (Table 2, Fig. 4A). Bucl3 

contains a putative Talin-1 domain; Talin-1 is a cytoskeletal protein that binds and 

activates integrins in mammals and talin-1-integrin interaction links the cytoskeleton with 

the extracellular matrix, allowing cell adhesion and migration (48-50). Bucl4 contained a 

Bac_export_1 domain (Bacterial export proteins, family 1; PF01311) found in members 

of type III secretion protein family, including the SpaR of Shigella and Salmonella, and 

the YscT of Yersinia. These proteins form the inner-membrane part of the needle 

complex, which transports bacterial effector proteins to afflict host cells. Bucl8 contained 

the OEP domain; the members of outer membrane efflux protein family (PF02321) form 

channels that allow export of various compounds, including anti-microbial agents, in 

Gram-negative bacteria across the outer membrane (51). Bucl13 contained a SBP_bac_3 

domain (Bacterial extracellular solute-binding proteins, family 3; PF00497), which is found 

in periplasmic proteins that bind specific solutes within the periplasmic space and are 

often associated with ABC-type transporters (52). 

Signal sequences were predicted in Bucl proteins 3, 4, 8, and 15, additionally 

supporting extracellular location for Bucl4 and Bucl8 (Table 2). Most Bucl proteins had 

transmembrane regions, interestingly, often associated with the CL regions (Table 2). 
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Modeling of the OEP domains in Bucl8 

The OEP domains found in Bucl8 are inferred in the formation of an efflux pump, thus, 

contributing to multi-drug resistance of Bp and Bm species (53). Two tandem OEP 

domains were predicted with high confidence (E-values 7x10-22 and 4.5x10-18). The Bucl8 

is also predicted to be a lipoprotein with an amino-terminal lipid-binding cysteine residue 

and a transmembrane region predicted with TMpred (54).  

HMM search in the PDB database using Bucl8-OEP region as a query identified 

closest similarity (E-value=6.6x10-53) to the drug discharge outer-membrane lipoprotein 

OprM of P. aeruginosa (55,56). Using OprM structure as a template (pdb code 3d5k, 

sequence identity 27%), the model of Bucl8 was generated with MODELLER 9 v.9 (57).  

The OEP domains of Bucl8 form a trimeric structure containing the characteristic 

α-barrel, which spans the periplasmic space, and the β-barrel, which spans the outer 

membrane (Fig. 4B). In OprM, the β-barrel is known to anchor the protein to the outer 

membrane, and also contains a series of surface exposed loops that are involved in 

constriction of the β-barrel pore, thereby preventing influx of xenobiotics at the resting 

state (56,58). The α-barrel contains an arrangement of twelve short helices and six long 

helices that form a bundle which is constricted at both ends but contains a bulge in the 

middle that can accommodate antibiotics. Twisting of the helices to loosen the pores 

forms a funnel-channel structure allowing for the active transport of antibiotics across the 

outer membrane outside of the bacterial cell (56).  

The bucl8 gene was found in all Bp and Bm strains tested by PCR and 

bioinformatics (Table 4), signifying the potential importance of Bucl8-efflux pump in the 

survival and pathogenesis of these species. Interestingly, all Bt strains analyzed 

contained DNA sequence homologous to the OEP-domain of Bucl8 in Bp and Bm but 

lacked the sequence corresponding to the Bucl8-collagenous domain; thus, it could not 

be recognized as a true Bucl. Additionally, a single nucleotide insertion at position 52, 

directly preceding the OEP-encoding region, was found, causing a frameshift mutation, 

which resulted in an altered amino acid downstream sequence.  
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Phylogenetic analyses of bucl genes 

To better understand the relationship of bucl genes among Burkholderia spp., parsimony 

and model-based phylogenetic analyses were performed. All 13 bucl sequences, 

originally identified in collagen Pfam database, were BLASTn-searched against 

completed genomes of Bp, Bm, and Bt, and each bucl sequence was downloaded. The 

13 bucl genes demonstrate no sequence similarity, indicating these are non-homologous 

genes, whereas alleles encoding the same bucl gene were orthologous across species. 

Nucleotide sequence alignments were generated for each bucl gene present in 13 Bp 

and 11 Bm strains; analysis of bucl3 and bucl4 also included 9 Bt strains (S1 data set). 

Pairwise alignments of each bucl among the different strains revealed that percent 

identities ranged from 42%-100%, with the average percent identity for each bucl ranging 

from 76.5-94.9% (S2 data set). In general, the non-collagenous regions of bucl genes 

were conserved, while the CL regions showed significant length polymorphisms. 

Consequently, the bucl1 phylogeny based on non-CL region sequence produced a star 

pattern, while the bucl1 phylogeny generated based on the entire bucl1 sequence showed 

more extensive branching patterns, most of which were supported by Bayesian Posterior 

Probability values and several of which were also supported by maximum parsimony 

bootstrap values (S1 Fig). The CL region of bucl1 encodes a single GAN-repeat type, 

therefore, the only difference between bucl1 alleles from different strains represented in 

this tree arises from different GAN-repeat numbers. Since this is a common feature of all 

bucls, and incorporation of these regions would likely lead to long branch attraction, only 

the non-CL regions were used in further analyses. Multiple sequence alignments of bucl 

genes 2, 5, 6, 7, 10, 13, 14, 15 and 16 showed highly conserved nucleotide sequence, 

similar to bucl1, therefore phylogenetic analysis was not performed.  

Phylogenetic trees were generated for individual and concatenated bucl3, bucl4, 

and bucl8, as these genes were present in all three species and contained the most 

informative characters. We included the OEP-encoding sequence of bucl8 from Bt strains 

in this analysis, despite the lack of CL-encoding sequence and conserved frameshift 

mutation, because of significant sequence similarity to bucl8-OEP sequences shared with 

Bp and Bm. The phylogeny generated from concatenated sequences showed similar 

associations as phylogenies for the individual genes, although usually with higher 
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statistical support. All analyses showed Bp and Bm strains were more closely related to 

each other than to Bt strains, which formed a main separate branch (Fig. 5, 6, S2). This 

observation is consistent with the hypothesis that the pathogenic Bp and Bm strains 

diversified from Bt (42,59-61). On the concatenated tree, Bm strains formed a single clade 

without further resolution that was strongly supported by both Bayesian posterior 

probability (PP, 100) and maximum parsimony (MP, 100) bootstrap values (Fig. 5). This 

observation indicates either inadequate time for the diversification of Bm strains or 

purifying selection for the retention of nucleotide identity due to importance in adapting to 

its host pathogen niche (41). In contrast, Bp strains exhibited higher diversification as 

shown by the presence of multiple clades. Four supported clusters were observed, two 

of which, Cluster 1 and Cluster 4, showed geographical associations as these strains 

were all Australian isolates. Cluster 1 (PP 98, MP 100) contained Bp strains 20B16, 

MSHR146, MSHR511, and NCTC 13178, all isolates obtained from Australia. Cluster 2 

(PP 58, MP 100) contained Bp strains NCTC13179 and 1026b, isolated from human 

infections in Australia and Thailand, respectively. Cluster 3 (PP 100, MP 100) contained 

Bp strains 1106a and BPC006, obtained from northeast Thailand and China, respectively. 

Finally, Cluster 4 (PP 100, MP 100) contained Bp strains MSHR305 and MSHR520, which 

are both human infection isolates from Australia. Clusters 1 and 4 were also supported 

by trees based on individual bucl3, bucl4, and bucl8 genes, although strain NCTC 13178 

as part of Cluster 1 was only supported by the tree based on bucl4 (Fig. 6, S2). Similar to 

Bp, Bt strains showed significant diversification as evidenced by the formation of three 

supported clusters in the concatenated tree. These clusters were numbered 

consecutively Cluster 5, Cluster 6, and Cluster 7 (Fig. 5). Clusters 5 and 7 were supported 

by individual bucl3 and bucl4 phylogenies (Fig. 6), while only Cluster 5 was supported by 

bucl8 phylogeny (S2 Fig). Analysis performed using amino acid sequences of Bucl 

proteins generated phylogenetic trees with similar patterns, though the support values 

were lower (S3 Fig), indicating many of the nucleotide changes were synonymous.  

Overall, most bucl genes were highly conserved among Bp and Bm with most of 

the variation occurring in the CL region due to differing numbers of GXY repeats. Variation 

in non-CL regions of bucl3, bucl4, and bucl8 revealed divergence between Bt and select 

agents Bp and Bm, as well as diversification among Bt strains. Bp and Bm appear more 
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closely related, but only Bp strains showed diversification across the bucl loci by the 

formation of multiple distinct clades with strong statistical support. 

 

Assessment of bucl distribution across Burkholderia spp. 

In order to assess the distribution of bucl genes across Burkholderia, nucleotide BLAST 

searches were performed using bucl-gene sequences from the reference strain Bp 

K96243, as queries against completed genomes of 13 Bp, 11 Bm, and 9 Bt strains. All 13 

bucl genes were present in all Bp genomes, while the majority of bucl genes were 

maintained within Bm genomes (Table 4). Up to three bucl genes were missing in 8 Bm 

genomes, which is consistent with the reduced genetic material in this species (41,46). In 

contrast, only complete open reading frames of bucl3 and bucl4 were present in Bt 

genomes, presumably encoding a lipoprotein with a putative Talin-1 domain and a type 

III secretion inner membrane protein (Table 2, Fig. 4A), respectively.  

In addition to bioinformatic data, we tested distribution of bucl genes by standard 

PCR in a collection of genomic DNA from 25 Bp and 20 Bm strains, as well as the DNA 

from non-select agent controls 4 Bt, 3 B. cepacia (Bc), 5 B. cenocepacia (Bce), and 6 B. 

multivorans (Bmv) strains (Table 5, Table 6). Consistent with bioinformatic data, virtually 

all 25 Bp strains were found to contain all 13 bucl genes, with the exception of strain 

China 3 (BpCh3) which was missing bucl1 and bucl4 (Table 4, Fig. 7, S4 Fig). Almost all 

Bm strains tested (15 out of 20) were lacking up to three bucl genes, in agreement with 

bioinformatic results. We calculated bucl frequencies as the proportion of Bp and Bm 

strains positive for each bucl, as tested by both PCR and bioinformatics. High frequencies 

were observed for bucl3, bucl4, bucl7, and bucl15 (0.90-0.98), while lower frequencies 

were observed for bucl2 (0.85) and bucl10 (0.82). The bucl2 and bucl10 genes were most 

frequently absent from Bm strains, missing in about one-third of strains analyzed, 

indicating these genes are nonessential for Bm survival in mammalian host. Finally, all Bt 

strains contained only bucl3 and bucl4, while no amplification of these two bucl genes 

was obtained for other control Burkholderia spp. (Table 4, Fig. 7, S4 Fig).  

We next evaluated the association of bucl presence with pathogenicity among Bp, 

Bm, and Bt strains. The Fisher Exact Probability Test and Cramer’s V analysis were 

performed on the number of bucl genes present and absent among two groups: 1) 
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pathogenic Bp and Bm strains and 2) nonpathogenic Bt strains. The Fisher test provides 

a measure of the statistical significance between two groups, and Cramer’s V squared 

(V2) is a value, which measures the degree of association between two variables on a 

scale of zero (no association) to one (perfect association). The Fisher test showed 

significant differences between group 1 and 2 for all bucl genes, except for bucl3 and 

bucl4, indicating the presence of collagen-like genes is significantly associated with 

pathogenic B. pseudomallei and B. mallei species as compared with non-pathogenic B. 

thailandensis (Table 4). Further calculation of Cramer’s V2 showed perfect association 

(V2=1) for bucl genes 5, 6, 8, 13, 14, and 16 that were present in all Bp and Bm strains, 

while absent in all Bt strains. High V2 values were calculated for bucl1 (V2=0.829), bucl7 

(V2=0.829), and bucl15 (V2=0.908), indicating positive association with these bucl genes 

with pathogenic Bp and Bm, as compared with nonpathogenic Bt lacking them. The 

remaining bucl genes, 2, 3, 4, and 10, had little or no association with pathogenic Bp and 

Bm compared to Bt (V2<0.5). Hence, our statistical analyses strongly infer association 

between the presence of the majority of Bucl proteins and pathogenicity.   

 

Detection of Burkholderia select agents by analytical PCR  

Four conserved amplicons generated from bucl genes that were uniformly found in all Bp 

and Bm strains, but were absent in Bt, Bc, Bce, and Bmv strains, were assessed for select 

agent detection by standard agarose gel electrophoresis and capillary gel 

electrophoresis: bucl5 (216 bp), bucl13 (212 bp), bucl14 (178 bp), and bucl16 (123 bp) 

(Fig. 7C). Size-identification of bucl-based amplicons by capillary gel electrophoresis was 

performed in a 10% phospholipid nanogel, allowing near single base pair resolution (62), 

including bucl5 and bucl13 amplicons that differ by 4 bp. Sizing of the target DNA 

fragments was accomplished by linear regression analysis for DNA size (in bp) versus 

migration time. The bucl gene amplicon sizes were calculated using the linear fit obtained 

for the migration times of internal standards with lengths of 100 bp and 250 bp, and the 

standard deviation calculated from 5 replicate measurements. The bias is calculated as 

the difference between the true fragment size and the measured size. Sizing results are 

reported as follows for n=5 separations: [gene name (true size): calculated size ± 

standard deviation, percent relative size bias defined as bias divided by the true size]; 
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bucl5 (216 bp): 218 ± 2 bp, 0.9%; bucl13 (212 bp): 215 ± 1 bp, 1%; bucl14 (178 bp): 181 

± 1 bp, 2%; bucl16 (123 bp): 120 ± 1 bp, 2%. 

 

Detection of Burkholderia select agents by quantitative PCR  

Identification of molecular targets for Burkholderia select agents is challenging due to the 

high genomic plasticity reported in these organisms that include significant genomic 

rearrangements and deletions. PCR assays developed for Burkholderia detection include 

BurkDiff, a dual-probe assay able to detect and differentiate Bp and Bm (63,64), and the 

TTS1 assay targeting orf2 of type three secretion system I, detecting Bp only (64-66). 

Here, we developed a qPCR assay for the detection of Bp and Bm based on bucl16 target. 

A locked nucleic acid hydrolysis probe specific for bucl16 gave robust amplification using 

DNA of Bp K96243 (Cq= 21.85±1.37). This probe was then tested against the genomic 

DNA collection, providing amplification of all Bp and all Bm strains, with no amplification 

from non-select agent controls including Bt, Bce, and Bmv, as well as a no DNA template 

control (Fig. 8A). 30 ng of DNA was used for each strain and Cq values ranged from 

23.42- 29.05.  

We next tested the bucl16-based qPCR assay towards detection of an infection 

with Burkholderia select agents by employing samples spiked with human plasma, and 

with samples obtained from experimental animals. PCR reactions performed with 30 ng 

Bp K96243 DNA and spiked with 5% human plasma produced positive amplification with 

average Cq=24.28±2.14 (Fig. 8B), whereas reactions spiked with 10% and 20% human 

plasma produced averaged Cq= 25.89±1.76 and Cq=27.96±1.82, respectively.  

Next, Bp strain HBPUB10134a was used for the detection of Burkholderia infection 

in vivo. Our recent studies have shown that Bp HBPUB10134a was the most virulent in 

the intraperitoneal infection model among a panel of 11 Bp strains, with an LD50 of 10 

CFU at day 21 post-infection (67). Following the injection, mice presented common 

clinical manifestations, including abscess and pyrogranuloma formation in the spleen and 

liver, and in some cases lesions and inflammation in the eyes and tail. A common 

pathological observation was the loss of rear limb function occurring between 6 and 30 

days post-infection, associated with the pyrogranulomatous inflammation in the skin, 

skeletal muscle, bone, and peripheral nerves in the hind limbs. Here, mice that were 
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injected intraperitoneally, were euthanized and sampled after 3, 7, or 14 days 

postinfection. Homogenized spleen samples were plated on blood agar to assess 

bacterial loads and 1 µL samples of irradiated sterile spleen extracts were used directly 

in qPCR reactions. Four samples, with original bacterial loads of 5x107, 5x106, 2x105, and 

103 CFU/ mL, thus, presumably corresponding to 5x104, 5x103, 2x102, and 10 CFU per 1 

µL added to each qPCR reaction, respectively, were tested using our bucl16-based 

assay. When crude spleen extracts were used in qPCR, positive detection was obtained 

for 5x103 CFU and 5x104 CFU samples with averaged Cq values of 29.49±1.67 and 

26.39±1.71, respectively (Fig. 8B). Importantly, we observed that 1:10 dilution of the 

sample containing 5x104 CFU/ µL, resulted in improved amplification, as evidenced by 

lower Cq value (23.32±0.42), while 1:100 dilution resulted in similar amplification as 

undiluted crude sample (Cq= 27.23±1.10) (Fig. 8B, red curves). Further 1:1000 dilution 

of spleen extract provided detection level as low as 50 CFU per reaction with a Cq value 

of 32.63 ±1.57. On the other hand, 1:10 dilution of the sample originally containing 5x103 

CFU/ µL resulted in poorer amplification (Cq= 32.66±2.46) than crude undiluted sample 

(gray curves). We think that crude spleen extracts contained varying levels of inhibitors 

that differentially affected amplifications in these two samples. Finally, in addition to 

bucl16, bucl genes 5, 6, 8, 13, and 14 that were found in all Bp and Bm strains are similarly 

good candidate markers for the development of diagnostic qPCR assays.  

 

DISCUSSION 

Traditionally, collagen has been associated with multicellular animals, although, the 

number of collagen-like proteins identified in bacterial genomes has recently increased 

with 2554 sequences currently (search on 04/12/15) deposited in the Pfam collagen data 

base. The distribution of these collagen-like proteins is not uniform, however; they are 

absent in some bacteria and are overrepresented in other species. Here, we identified 

and characterized a group of 13 discrete collagen-like proteins in Burkholderia, referred 

to as Bucl, which are largely found in the pathogenic Bp and Bm species. Furthermore, 

we found that bucl genes provided important clues on the genomic plasticity and evolution 

of Burkholderia select agents. We observed Bucl proteins contained domains that are 

known to be involved in pathogenesis and antibiotic resistance, including an outer 
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membrane efflux protein which we modelled. Finally, we utilized bucl genes as detection 

targets and successfully detected Bp infection in a mouse model.  

 

Characterization of Bucl-CL Region  

Collagen-like sequences, embedding the typical repetition of triplets of the type Gly-X-Y 

(2,68-70) have been identified in all Bucl sequences. We observed that for each Bucl, 

one or two GXY types predominated the CL region. This limited variation in GXY content 

resembles that seen in Bcl proteins of Bacillus anthracis (32) but is in contrast to Scl 

proteins of Streptococcus pyogenes, whose GXY sequence varies significantly within the 

CL region (13). Typical of prokaryotic collagens, these sequences do not contain triple-

helix-stabilizing hydroxyprolines, since bacteria lack the prolyl-hydroxylase enzyme 

necessary for post-translational modification of Pro to Hyp. The highest triple helix 

stabilities were predicted for Bucl2, Bucl5, Bucl13 and Bucl15, within the range of 35-38°, 

which is similar to that of previously studied bacterial collagens as well as human collagen 

(11,13,71,72). Similar to the CL regions of other prokaryotic proteins, like Scls from S. 

pyogenes (7,8), the CL regions of these proteins share the common characteristics of 

possessing charged residues GEX, GLE and GXR triplets, respectively (Fig. 3, Table 2). 

Indeed, ion pairs play a major role in stabilizing the triple helix, with an enthalpic 

stabilization, which likely involves interactions of polar groups with an ordered hydration 

network (9,10,12). Additionally, specific GXY triplets were found to have favorable 

enthalpy values, corresponding to increased hydrogen bonding potential, including GPE 

(71), which is a common GXY triplet in the Bucl5 CL region. These regions are likely to 

be of biological importance in establishing interactions with charged counterparts. 

Interestingly, bacterial collagens have been shown to have relatively high proline content, 

20% in S. pyogenes and up to 40% in B. anthracis (11), especially in the X position (73), 

whereas Bucl proteins lack Pro residues; only Bucl5 contains GPE repeats, likely 

contributing to its predicted high stability. Other Bucl proteins with lower thermal stability 

may rely on the hydrophobic membrane environment for triple helix stabilization, as those 

were predicted to have transmembrane regions, especially within the CL regions. Stability 

predictions shown here were computed using long CL sequences, whereas some Bucl 

variants had short CL regions, which may not form triple helices. This is substantiated by 
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the fact that few triplets may also exist in other folds e.g., G5 domain, whose structure 

presents a pseudo-triple helix (74). In summary, while overall characteristics of the Bucl 

proteins we identified were similar to previously described bacterial collagen-like proteins, 

i.e., presence of collagenous and non-collagenous domains and length variation in 

collagen region, the GXY content observed in Bucls was unique and likely impacts the 

structural stability of the Bucl-CL triple helix. 

  

Characterization of Bucl non-collagenous domains and their inferred roles in 

Burkholderia pathogenesis 

It has been observed that collagen-like proteins are often surface associated. Indeed, 

among 53 bacterial and viral collagen-like proteins analyzed in an initial genome-based 

study, 16 were annotated as cell-wall attached or membrane associated (73). 

Additionally, surface expression of collagen-like proteins including Scls of S. pyogenes, 

PclA of S. pneuomonia, and Lcl of L. pneumophila, has been demonstrated 

experimentally (7,8,18,19). Structural predictions performed for Bucl proteins revealed 

that their majority, 10 out of 13, have transmembrane regions, supporting the location of 

Bucl proteins in the inner or outer membrane of Burkholderia spp. Moreover, four of these 

proteins were predicted to contain both signal sequences and transmembrane domains, 

further supporting surface association. Further non-collagenous features include well-

conserved domains (in Bucl3, Bucl4, Bucl8 and Bucl13), which are inferred in 

pathogenesis.  

Bucl3 was predicted to have a Talin-1 domain. Talin-1 in eukaryotes is known to 

bind and activate integrins as well as link the cell cytoskeleton to the extracellular matrix 

(50). Cell-to-cell invasion by Burkholderia is largely achieved by the disruption of the host 

cytoskeletal network, as well as the fusion of host cells resulting in the formation of 

multinucleated giant cells, mediated mainly by type III and type VI secretion systems 

(75,76). The intra- and inter-cellular spread is facilitated by the formation of actin tails 

which propel the bacterial cells. Thus far, several type III secretion effector proteins are 

known to be involved with host actin polymerization allowing cell invasion, including BimA, 

BopE, and BipD (43). The putative Talin-1 domain found in Bucl3 may also be involved 
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in interactions with host actin that allow for cell invasion or the formation of actin tails 

during infection.  

The Bucl4 protein is putative inner membrane protein part of the type III secretion 

T3SS-2 system (77). There are three known type III secretion gene clusters (T3SS-1, 

T3SS-2, and T3SS-3) distributed among Bp, Bm, and Bt species. T3SS-1 is specific to 

Bp while T3SS-2 and 3 are found ubiquitously in all three species (78). The T3SS-3 is 

known to be important for virulence in Bp (44,75,79), as mutants deficient in the T3SS-3 

have reduced replication in host cells, and are unable to escape endocytic vacuoles, and 

to form membrane protrusions and actin tails (80). The other two secretion systems are 

less well characterized, and the role of the T3SS-2 secretion system in pathogenesis is 

not known. The unique association of a collagenous domain with Bac_export_1 domain 

in this inner membrane protein of T3SS-2 has not been previously acknowledged.  

Bucl13 contains the SBP_bac_3 domain, and is predicted to be a bacterial 

periplasmic solute binding protein. Binding of the solute causes a conformational change, 

which allows interaction of the solute with inner membrane proteins and subsequent 

transport of the solute into the cell. Family 3 solute-binding proteins are known to bind 

polar amino acids and opines (52), therefore Bucl13 is likely associated with amino acid 

transport; interestingly, Bucl13 is present in all Bp and Bm strains tested, while it is absent 

in non-pathogenic Bt. Bucl13 was also predicted to have a collagenous domain with a 

relatively high thermal stability, possibly contributing to its function.  

Of particular interest is the Bucl8 protein, which was found to contain two tandem 

outer membrane efflux protein (OEP) domains that are known to contribute to the 

multidrug resistant phenotype of Bp and Bm species. These organisms are intrinsically 

resistant to multiple antibiotics including aminoglycosides, macrolides, and β-lactams 

(53,81). The outer membrane protein is an integral component of a tripartite Resistance-

Nodulation-Division (RND) efflux pump that also requires an accessory protein in the 

periplasm and an inner membrane transport protein. It is known that there are 10 RND 

efflux pumps annotated in the Bp K96243 strain, many of which have not been explored 

(40). Currently, only three of these systems, BpeAB-OprB, AmrAB-OprA, and BpeEF-

OprC, have been investigated for their roles in multidrug resistance (82-84). Interestingly, 

Bucl8 was found to be present in all Bp and Bm strains and absent in the non-pathogenic 
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Bt, suggesting selective pressure for the Bucl8-OEP in human or animal infection. We 

homology-modeled the Bucl8-OEP region based on OprM protein of Pseudomonas 

aeruginosa and observed a trimeric arrangement forming an outer membrane-spanning 

β-barrel and periplasmic α-barrel. The presence of the CL domain in Bucl8 is an 

unexpected observation, as collagenous regions have not been reported as part of efflux 

pump systems. On the other hand, the trimeric arrangement of Bucl8 is consistent with 

the formation of a collagen triple helix. TMPred predicted a transmembrane region, albeit 

with lower score, for a part of the collagen-like region (amino acids 539-557) indicating 

the CL region folds back across the membrane. The CL region is then predicted to extend 

into the extracellular space, projecting the carboxyl-terminal region from the cell surface. 

The triple-helical CL region may have a number of functions: i) to project the C-terminal 

region, which may serve as a surface adhesin, ii) to stabilize the trimeric arrangement of 

the OEP, and iii) may assist in blocking the β-barrel pore at the resting state, thus, 

preventing entry of xenobiotics into the cell. Ongoing studies will determine the potential 

role of Bucl8-OEP in drug resistance, Bp and Bm pathogenesis, as well as a potential as 

vaccine candidate.  

 

Bucl phylogeny  

The presence of 13 collagen-like genes in Bp and Bm genomes poses the question how 

have these unique sequences been acquired in Burkholderia? The GXY repeats found in 

bacterial collagens may have arisen through mechanisms including de novo spontaneous 

mutation and subsequent triplet repeat expansion independent within each gene, or by 

horizontal gene transfer. It has been initially suggested that collagen sequences are 

acquired by horizontal transfer from eukaryotes to prokaryotes based on the lack of 

collagen sequences in ancestral archaeal genomes and relatively few sequences 

identified in bacterial genomes (73). However, current collagen Pfam contains 2,554 

bacterial collagen sequences, as well as 14 archaeal. A recent study, focused on bacterial 

molecular mimics of host proteins, proposed that collagen-like sequences found in 

pathogens evolved independently to mimic human host proteins (85). The uniformity of 

GXY content within each Bucl indicated they are likely to have evolved from the 

accumulation of repeats within each gene, resulting in diverse Bucl proteins that share 
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the GXY motif but with different GXY composition. Additionally, gene-enrichment analysis 

showed that collagen-like proteins were related to extracellular matrix mimicry and cell 

adhesion, supporting the evolution of repetitive sequences in virulence factors. Our 

phylogenetic analyses show that 13 collagen-like genes observed in numerous Bp and 

Bm genomes are unrelated to each other, which supports their independent acquisition, 

as well as selective adaptation of their collagen-like sequences in the host environment. 

This is further supported by the lack of collagen-like proteins (11 out of 13) in the closely 

related environmental species of Bt, indicating these sequences were acquired after 

divergence of Bp and Bm from Bt. Since Bucl proteins are unrelated and encoded in 

various locations in the genome, within-gene expansion of GXY-repeat motifs may point 

to convergent evolution of collagenous sequences to fulfill a similar function.  

Phylogenetic trees based on three bucl loci showed Bt strains formed a distinct 

separate branch from Bp and Bm strains. This is consistent with previous studies based 

on phylogenetic analyses of seven MLST loci (42) and over 11,000 SNPs (60) which 

showed Bp and Bt isolates were resolved into two groups that were supported in 100% 

of bootstrap replicates. We also observed Bm strains share high sequence similarity, 

while Bp strains exhibited more intraspecies diversity, forming more extensive clusters 

that often corresponded to geographical associations. Previous phylogeographic 

reconstruction of Burkholderia strains based on over 14,000 SNPs showed that Bp and 

Bm strains formed separate clusters. The same study also showed Bp strains were 

significantly divided between those originating from Australia and Asia (60), in agreement 

with our observation that Australian isolates formed distinct clusters in bucl-based 

phylogenetic trees.  

 

Bucl distribution  

Both bioinformatic and PCR analyses showed that the majority of bucl genes are unique 

to Bp and Bm strains, with the exception of bucl3 and bucl4. This observation may indicate 

these two genes are selected for in the environment of Bp and Bt, as several genomes of 

host-adapted Bm, lack these genes. The absence of most bucls from Bt is a surprising 

observation since its genome is overall similar to that of Bp (59), which may suggest either 

the acquisition of bucls in Bp or the loss of bucls in Bt after divergence of the two species. 
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Both Bp and Bt species have large genomes of approximately 7.2 and 6.7 Mb, 

respectively, divided between two chromosomes. Comparative genomics showed that Bp 

and Bt genomes share a large number of conserved genes involved in both core and 

accessory functions, while genes associated with virulence in Bp have increased diversity 

(59). Interestingly, bucl3 and bucl4, encoding proteins potentially involved in 

pathogenesis, are found in the avirulent Bt. It has been shown that 71% of virulence-

related genes in Bp are conserved in Bt with similarities of over 80%, including type III 

secretion gene clusters (59). Amino acid differences in virulence proteins present in both 

species may confer functional differences impacting virulence in Bp vs. Bt. Lastly, the 

presence of bucl3 and bucl4 alone in Bt was not sufficient to cause pathogenesis, a new 

biological trait acquired by Bp and Bm after the acquisition of additional virulence factors, 

including additional Bucls. A prominent feature of Burkholderia genomes is the presence 

of multiple horizontally acquired genomic islands that differ between Bp and Bt (40,59). 

These genomic islands are associated with survival in the soil environment and are 

absent in Bm genomes, possibly explaining why Bm cannot persist in the environment 

(46). The presence of most bucl biomarkers in both Bp and Bm genomes indicates they 

are not located within genomic islands but are rather a part of the core genome.  

 Previously, it has been reported that Bm is a clonal derivative of Bp, which has evolved 

to adapt to the host environment. Multilocus sequence typing analyses show that, in 

contrast to Bp, Bm strains are genetically homogenous, while relatively few new genes 

are being identified, as additional genomes are sequenced (46). However, the variable 

portion of the genome, though not acquiring new genetic information, is continuing to alter 

via expansion of IS elements and chromosomal rearrangements. Our phylogenetic 

analysis of bucl genes within Bm supports the genetic homogeneity among Bm strains, 

and mapping of bucl markers showed considerable chromosomal rearrangements 

occurring between Bm strains.  

Different collagen-like proteins, unrelated to 13 Bucls characterized here, were 

also present in other Burkholderia species. We noticed these collagen-like proteins found 

in B. cepacia, B. cenocepacia, B. multivorans, B. ambifaria, B. glumae, B. gladioli, and B. 

xenovorans, contained GTS repeats within the CL region, similar to Bucl3. However, 

outside of the CL region, sequence identity was very low, therefore these proteins were 
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not included in the Bucl3 group. Given the importance of Burkholderia species as human 

pathogens and part of the Burkholderia cepacia complex (B. cepacia, B. cenocepacia, B. 

multivorans, and B. ambifaria), plant pathogens (B. glumae and B. gladioli), and plant 

symbionts (B. xenovorans), investigation of these collagen-like proteins is an interesting 

area for further study.  

 

bucl-based infection detection  

Bp and Bm are reported to have fatality rates up to 80% and 95%, respectively (86,87), 

making early diagnosis and treatment critical for patient survival. Currently, culture-based 

identification of Burkholderia select agents remains the gold standard for diagnosis 

(86,88). Highly variable genomes present a challenge in finding reliable genetic targets 

that are not subjected to chromosomal deletion, especially for B. mallei. Although a few 

laboratory-developed qPCR tests have been reported, there are no FDA-approved 

assays for the detection of Burkholderia select agents. The TTS1 assay (65,66) detects 

specifically Bp, and the BurkDiff assay (63) detects both organisms and differentiates 

them based on a SNP-associated shift of approximately 1 ΔCt (64). Here, we assessed 

bucl markers as detection targets. Standard PCR performed on a large collection of gDNA 

yielded specific amplicons for bucl5, 13, 14, and 16 from Bp and Bm but not from the non-

select agent controls. This PCR test with 4 bucl targets detected Bp infection in laboratory 

animals using spleen extracts as a specimen. Separation of these conserved amplicons 

by capillary electrophoresis in a phospholipid nanogel matrix allowed for size-based 

identification, similarly to previously described identification of Aspergillus spp. (31) and 

Streptococcus pyogenes (35). Precise microfluidic separation could be used for strain 

fingerprinting based on multiplexed amplicons generated with primers flanking the 

repetitive CL region, as previously tested with B. anthracis strains (32). Our achieved 

resolution <9 bp along a wide range of amplicon sizes will allow to differentiate two strains 

that differ by a single GXY repeat. We further developed a qPCR assay for bucl16, which 

detects both Bp and Bm; it was tested with purified genomic DNA templates, gDNA spiked 

with 5% human plasma, and spleen extracts from infected mice. The bucl16 assay was 

able to detect as low as 50 CFU per reaction in diluted spleen samples; however, it should 

be noted that sample-to-sample variation was observed. The specimen type will also 
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affect detection outcome. For example, sputum and pus typically contain high bacterial 

loads (102-109 CFU/ mL) (89), whereas blood of 45% of patients with septicemic 

melioidosis had less than 1 CFU/ mL bacteria in the blood (90), which presents a 

sensitivity challenge, even for highly performing qPCR assays. In as much as current 

work was focused on a single assay, which would simultaneously detect both select 

agents similarly to BurkDiff assay, the ongoing research is focused on the development 

of a probe-based qPCR assay targeting nucleotide polymorphisms identified in bucl3 and 

bucl4 genes. In summary, selected bucl genes represent promising detection targets as 

they are both specific to and ubiquitously found in Bp and Bm strains.  

 

MATERIALS AND METHODS 

Ethics statement   

Animal Studies: Animal research at the United States Army Medical Research Institute 

of Infectious Diseases (USAMRIID) was conducted under an animal use protocol 

approved by the USAMRIID Institutional Animal Care and Use Committee (approved by 

the USAMRIID-IACUC) in compliance with the Animal Welfare Act, PHS Policy, and other 

Federal statutes and regulations relating to animals and experiments involving animals. 

The facility where this research was conducted is accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care International (AAALAC) and 

adheres to principles stated in the Guide for the Care and Use of Laboratory Animals, 

National Research Council, 2011. Tissue samples used in this study were generated in a 

previously published work (67). Briefly, challenged mice were observed at least daily for 

14 days for clinical signs of illness. Humane endpoints were used during all studies, and 

mice were humanely euthanized when moribund, according to an endpoint score sheet. 

Animals were scored on a scale of 0–11: 0–2 = no significant clinical signs; 3–7 = 

significant clinical symptoms; such as subdued behavior, hunched appearance, absence 

of grooming, and impacted hind limb function and hind limb paralysis (increased 

monitoring was warranted and mice were checked at least twice per day); 8–11 = distress. 

Those animals receiving a score of 8–11 were humanely euthanized by CO2 exposure 

using compressed CO2 gas followed by cervical dislocation. The mice that were serially 

sampled were deeply anesthetized and then euthanized by exsanguination followed by 
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cervical dislocation. However, even with multiple observations per day, some animals 

died as a direct result of the infection in between observation periods. 

 

Human plasma collection: Anonymized human plasma samples were utilized in 

quantitative PCR experiments. Plasma samples were obtained from an already-existing 

collection, which was established by the corresponding author (SL; IRB Protocol Number: 

1308076685). Collection of human blood of healthy adults was performed in accordance 

with the Human Research Protections Policy at West Virginia University. This study was 

approved by the Institutional Review Board at West Virginia University (IORG0000194) 

and written informed consent was obtained from all participants. 

 

Bioinformatic analyses 

Burkholderia collagen-like proteins, designated Bucl, were identified by searching the 

Sanger Institute Pfam collagen database (PF01391). Bucl proteins found in B. 

pseudomallei, B. mallei, and B. thailandensis were categorized into 13 Bucl-protein types 

based on similar domain organization and primary sequence similarity. Next, nucleotide 

BLASTn search was performed using each of 13 bucl-gene sequence as a query against 

the NCBI Nucleotide collection (nr/nt) database, as well as whole genome shotgun 

contigs (wgs) database, to determine bucl distribution in completed Burkholderia spp. 

genomes. DNA analyses were performed using the Lasergene Core Suite v. 12 

(DNASTAR, Inc., Madison, WI).   

 

Protein structure prediction and modeling 

Domain organization of Bucl proteins was adapted from the Pfam collagen database (91) 

and verified independently using the Fugue 2.0 Server (92), which additionally identified 

the putative Talin-1 domain within Bucl3. Presence of a signal peptide was predicted with 

the hidden Markov model component of the SignalP 3.0 Server 

(http://www.cbs.dtu.dk/services/SignalP-3.0/) (93-95). The presence of transmembrane 

domains was predicted with TMpred (96). 

When possible, as in the case of Bucl8, a 3D model was generated by homology 

modeling. Best template was identified by employing profile hidden Markov models 

http://www.cbs.dtu.dk/services/SignalP-3.0/
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(profile HMMs) and the program HMMer (97). Once the best template was identified (pdb 

code 3d5k, sequence identity 27%, residues 51-516), the model of Bucl8 outer membrane 

efflux protein (OEP) domains was generated using MODELLER 9V9 (57). Stereo-

chemical quality of the model was improved by energy minimization using GROMACS 

(98).   

Thermal stability along the predicted triple helices of Bucl-collagen domains was 

assessed with an algorithm developed by Persikov et al. 2005 (47). With this approach, 

a stability coefficient is assigned for every GXY triplet and averaged over a window of 5 

tripeptide units. The averaged relative stability values are plotted against the tripeptide 

number in the collagen sequence. 

 

Phylogenetic analyses 

Both individual (with and without the collagen-like domains) and concatenated nucleotide 

sequences were aligned with ClustalV in the Megalign module in DNASTAR® Lasergene 

software, and verified manually. Maximum parsimony analyses were performed with 1000 

bootstrap replicates using MEGA 6.06 (99), with the Tree-Bisection Reconnection 

heuristic search and 200 max trees saved. The evolutionary models used for each data-

set were determined by MrModelTest 2.3 (100) with the Akaike Information Criterion 

(AIC). Bayesian analyses were performed within MrBayes 3.1.2 (101) implementing six 

Markov chains, 1000000 generations, with trees sampled every 100 iterations. Posterior 

probabilities were calculated using the last 20% of saved trees (burnin=8000). Cutoff 

values for significance were assigned 95 for Bayesian analysis and 70 for maximum 

parsimony analysis. All phylogenetic trees were constructed using the majority rule 

consensus. Trees were viewed in FIGTREE v1.3.1 

(http://tree.bio.ed.ac.uk/software/figtree/). Phylogenies were constructed based on single 

bucl genes as well as concatenated bucl genes.  

 

bucl distribution among Burkholderia species 

bucl distribution was assessed in a broad collection of Burkholderia strains using genomic 

DNA (Table 2) obtained from: (i) NIH Biodefense and Emerging Infections Research 

Resources Repository, NIAID, NIH, (ii) Dr. Christopher Cote (The United States Army 

http://tree.bio.ed.ac.uk/software/figtree/
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Medical Research Institute of Infectious Disease), and (iii) Dr. Joanna Goldberg (Emory 

University). The total collection consisted of DNA from 25 B. pseudomallei and 20 B. 

mallei strains, and non-select agent control DNA from 4 B. thailandensis, 3 B. cepacia, 5 

B. cenocepacia, and 6 B. multivorans strains. Analytical PCR was performed with primers 

targeting conserved non-collagenous regions of bucl alleles present in the reference 

strain B. pseudomallei K96243. PCR buffer (10 mM Tris-HCl, 1.5 mM MgCl2, 50 mM KCl, 

pH 8.3) included 0.2 µM primers, 0.2 mM dNTP’s, and 1.5 M betaine (Sigma-Aldrich, St. 

Louis, MO) to ameliorate amplification problems associated with high GC content (~68%) 

of Burkholderia genomes (41). A temperature gradient of 50-65°C was tested for each 

primer pair and gDNA of B. pseudomallei K96243 harboring all 13 bucl genes as a 

template; uniform amplification conditions were established for all bucl genes at an 

annealing temperature of 64°C. Amplification was performed with an in-house Taq 

polymerase as follows: 95°C, 5 min-[95°C 30 sec, 64°C 30 sec, 72°C 45 sec] x30 cycles- 

72°C, 10 min. 40 ng of template DNA was used for screening genomic DNA collection 

and reactions were carried out on a Bio-Rad S1000 thermal cycler. Resultant PCR 

products were analyzed on a 2% agarose gel with a 50-bp ladder DNA standard (New 

England Biolabs Inc., Boston, MA). Gels were imaged using the Eagle Eye II (Stratagene, 

La Jolla, CA), and FOTO/ Analyst Investigator/ Eclipse gel documentation workstation 

(Fotodyne, Harland, WI).  

 

qPCR amplification of bucl targets 

Testing of selected bucl amplicons by real-time PCR with SYBR green intercalating dye 

was performed to assess potential candidates for probe-based detection of B. 

pseudomallei and B. mallei species. Reactions were carried out with SsoAdvanced™ 

SYBR® Green Supermix (Bio-Rad, Hercules, CA), 0.5 µM concentration of each primer 

and 25 ng of gDNA from strain B. pseudomallei K96243 as a template in a total volume 

of 20 µL. Amplification curves were obtained with the following program: 95°C, 3 min-

[95°C 5 sec, 64°C 10 sec]x35 cycles. qPCR was performed using a Bio-Rad CFX96 

instrument and data analyzed with the CFX Manager™ software Version 3.0. 

PrimeTime® qPCR probe was developed for the bucl16 gene, which yielded robust 

amplification in 5’ nuclease qPCR assays, to detect B. pseudomallei and B. mallei 
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species. Locked nucleic acid (LNA) bucl16-based probe (Table 4) contained a 5’-FAM 

fluorophore and a 3’-Iowa Black fluorescent quencher. Reactions were carried out using 

SsoAdvanced™ Universal Probes supermix (Bio-Rad), 0.5 µM primers, 0.2 µM 

concentration of probe and 25 ng of gDNA template in a total volume of 20 µL. 

Amplification curves were obtained with the following program: 95°C 3 min-[95°C 5 sec, 

64°C 10 sec]x35 cycles.  

 

Capillary gel electrophoresis 

Reagents for separation of DNA by capillary gel electrophoresis included the nanogel 

matrix composed of the phospholipids dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 

and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) (Avanti Polar Lipids, Alabaster, 

AL), 3-(N-morpholino)-propanesulfonic acid (MOPS) (Alfa Aesar, Ward Hill, MA) buffer, 

and SYBR green 1 (Life Technologies, Grand Island, NY). The phospholipid pseudogel 

was prepared at a molar ratio of [DMPC]/[DHPC] =2.5 at 10% wt/vol in an aqueous 

solution of 100 mM MOPS buffer (pH 7) in order to generate the nanogel separation 

matrix. Intercalating dye was incorporated into the nanogel at 1x concentration to enable 

fluorescent DNA detection. The 50-bp DNA ladder (New England BioLabs, Ipswich, MA) 

was used as a molecular size marker.  

Separations were performed on a Beckman Coulter P/ACE MDQ system equipped 

with a laser-induced fluorescence detection module and a 3 mW air-cooled argon ion 

laser (λex = 488 nm and λem = 520 nm). The fused silica capillary was conditioned prior to 

electrophoresis separation of DNA using previously described rinsing (62) and coating 

(102) procedures. The capillary was filled with liquid nanogel solution a temperature 

below 24°C (19-21°C); then the temperature was increased to 30°C in order to form the 

sieving gel for accurate sizing separations of PCR amplicons. DNA samples were 

electrokinetically injected under reverse polarity as previously described (103). Data 

collection and analysis were performed with 32 Karat Software version 5.0 (Beckman 

Coulter). Sizing was accomplished by co-injecting the bucl5, 13, 14, and 16 amplicons 

with two internal standards of known length that bracketed the size of the DNA targets. 

Internal standards of 100 bp and 250 bp were used to create a linear fit for DNA size (in 

bp) versus migration time.  The resulting slope and intercept were then used to calculate 
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the size (length in bp) of the bucl gene targets based on their migration times. The 

reported values for the calculated DNA size and standard deviation (in bp) are an average 

for n=5 consecutive separations. 

 

Detection of B. pseudomallei gDNA in infected mice and human plasma using bucl 

markers 

BALB/c mice (female 7-10 weeks of age at time of challenge-National Cancer Institute, 

NCI-Frederick, MD) were injected by the intraperitoneal (i.p.) route. Mice were infected 

with a dose equivalent to approximately 6 times the LD50 of B. pseudomallei 

HBPUB10134a (LD50 is 10 CFU) (67). At various time points after infection mice were 

euthanized by exsanguination under deep anesthesia and spleens were harvested. 

Spleens were weighed and homogenized in RPMI 1640 medium (Life Technology, Grand 

Island, NY). Bacterial load in the freshly prepared spleen extracts was determined by 

plating serial dilutions on sheep blood agar (ThermoScientific Remel Products, KS). 

Plates were incubated at 37°C for two days before determining CFU counts. The spleen 

extracts were irradiated and confirmed sterile before use in PCR assays, and were stored 

at -70°C. Standard PCR for bucl genes 5, 13, 14, and 16, and probe-based qPCR for 

bucl16 were performed as described above using 1 µL of DNA-containing spleen 

specimen. Additionally, qPCR reactions were performed with 30 ng B. pseudomallei 

K96243 gDNA spiked with 5% human plasma collected in EDTA tubes to test the 

feasibility of the assay on clinical samples containing plasma. qPCR experiments were 

performed in triplicate and Cq values were averaged.  

 

Statistical analyses 

Statistical significance of bucl presence in pathogenic B. pseudomallei and B. mallei 

strains vs. nonpathogenic B. thailandensis was performed using the Fisher Exact 

Probability Test, followed by calculation of Cramer’s V squared. 
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Figure 1 

 
Identification and characterization of bucl genes in B. pseudomallei reference 
strain K96243. (A) Schematic representation of bucl distribution. Relative position and 
orientation of each bucl gene is shown; six bucl genes are present on chromosome one 
and seven on chromosome two. (B) Summary table of bucl distribution. bucl location, 
orientation, and length are mapped to the genome of Bp K96243. Molecular weight of 
each Bucl protein encoded by each bucl allele is shown. (C) PCR amplification of 13 bucl 
genes from Bp K96243. Primers were designed targeting the non-collagenous conserved 
regions, and PCR conditions were established for all bucl amplicons at a uniform 
annealing temperature of 64°C. Amplicon sizes; bucl1, 123 bp; bucl2 133 bp; bucl3, 166 
bp; bucl4, 176 bp; bucl5, 216 bp; bucl6, 115 bp; bucl7, 264 bp; bucl8, 96 bp; bucl10, 109 
bp; bucl13, 212 bp; bucl14, 178 bp; bucl15, 95 bp; and bucl16, 123 bp ; M, 50-bp DNA 
size marker.  
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Figure 2 
 
Chromosomal rearrangements and deletions involving bucl loci. Relative positions 
and orientations of each bucl gene was rendered from the NCBI database, and used for 
chromosomal mapping. (A) Intraspecies chromosomal inversion (inv) between B. 
pseudomallei strains K96243 and 668 involving the region encoding bucl genes 6, 8, and 
10. (B) Interspecies chromosomal inversion between Bp K96243 and Bm ATCC 23344 
involving the region encoding bucl genes 2, 3, and 5 on chromosome 2. (C) Interspecies 
chromosomal inversion involving bucl genes 6, 8, and 15, and deletion of bucl10 between 
Bp K96243 and Bm ATCC 23344 on chromosome 1. Ch, chromosome. 
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Figure 3 
 
Thermal stability of the Bucl collagen regions. (A) The CL region sequences, 
representative of all 13 Bucl proteins, plotted in B) are shown with averaged stability 
values calculated for the entire CL region. (B) Triple helix thermal stability plot. Amino 
acid sequences for Bucl-CL regions shown in A) were used to model thermal stability with 
an algorithm developed by Persikov et al. 2005. Relative thermal stability is shown as the 
melting temperature for each GXY triplet along each Bucl-CL region. 
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Figure 4 
 
Characterization of Burkholderia collagen-like proteins. (A) Architecture of Bucl 
proteins identified in collagen Pfam data base (not to scale). Proteins were categorized 
into 13 distinct Bucl types based on sequence similarities and domain organization. 
Predicted domains in each Bucl are shown: SS, signal sequence; CL, collagen-like 
domain; Talin-1 domain; Bac_export_1, bacterial export protein family 1; OEP, Outer 
Membrane Efflux Protein; and SBP_bac_3, bacterial extracellular solute-binding protein 
family 3. (B) Cellular organization of Bucl8 and homology modelling of the OEP domains. 
Bucl8 protein schematic is shown above homology model of OEP domains generated 
with MODELLER. Three monomers, each containing two OEP domains, assemble to 
form a homotrimer. Shown from top to bottom are the cell-surface exposed loops, the β-
barrel spanning the outer membrane and the α-barrel spanning the periplasmic space, 
corresponding to the predicted OEP domains. The two OEP domains from a single 
monomer are highlighted in orange and purple, and the remaining monomers are colored 
gray. Following the OEP domains, the CL region is predicted to be partially extracellular 
with an additional C-terminal non-collagenous domain. 
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Figure 5 

 
Phylogenetic analysis of B. pseudomallei, B. mallei, and B. thailandensis strains 
by bucl-locus typing. Bayesian analysis was performed on concatenated nucleotide 
sequences of the non-collagenous regions of bucl3, bucl4, and bucl8 present in a set of 
13 B. pseudomallei, 11 B. mallei, and 9 B. thailandensis strains (as shown in Table 3). 
Support values for each branch are shown as posterior probability from Bayesian analysis 
and bootstrap values from maximum parsimony analysis, respectively (PP/MP). Posterior 
probability value which was not supported by maximum parsimony analysis is shown in 
red. Phylogenetic Clusters 1-4 (C1-C4) correlated with geographic location of B. 
pseudomallei strains, whereas Clusters 5-7 (C5-C7) contained B. thailandensis strains 
that made up a separate branch from B. pseudomallei and B. mallei strains. Scale bar is 
representative of evolutionary distance in substitutions per nucleotide. 
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Figure 6 

 
Phylogenetic analysis of B. pseudomallei, B. mallei, and B. thailandensis strains 
using individual bucl3 and bucl4 genes. Bayesian analysis was performed on 
nucleotide sequences of non-collagenous regions of a set of Burkholderia strains 
described in Table 3. Support values for each branch are shown as posterior probability 
from Bayesian analysis and bootstrap values from maximum parsimony analysis, 
respectively (PP/MP). Posterior probability values not supported by parsimony analysis 
are shown in red. Scale bar is representative of evolutionary distance in substitutions per 
nucleotide. Several clusters of strains corresponding to those observed in the 
concatenated analysis, C1-C7 in Fig. 5, were also observed in the individual trees. 



 

229 

 

 
Figure 7 

 
Distribution of bucl genes among Burkholderia spp. select agents by PCR. 
Presence of bucl genes was assessed by PCR on (A) a collection of genomic DNA from 
25 B. pseudomallei and 16 B. mallei strains, as well as (B) in control strains of B. 
thailandensis, B. cepacia, B. cenocepacia, and B. multivorans; selected bucl genes 5, 13, 
14, and16 are shown. (C) Detection and separation of selected bucl amplicons generated 
from the B. pseudomallei reference strain K96243 by traditional 2% agarose gel 
electrophoresis (left) or by capillary gel electrophoresis (right). Electropherogram 
generated by capillary gel electrophoresis with phospholipid nanogel matrix shows 
separation of amplicons over time. Amplicon sizes: bucl5, 216 bp; bucl13, 214 bp; bucl14, 
178 bp; and bucl16, 123 bp. M, 50-bp DNA ladder. PCR data shown in Panel A for 25 Bp 
strains come from two merged gel images. 
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Figure 8 
 
Detection of B. pseudomallei and B. mallei by qPCR. (A) Real-time qPCR detection 
of bucl16-gene target. Genomic DNA of 25 B. pseudomallei (red) and 15 B. mallei strains 
(blue), and control DNA from 4 B. thailandensis, 4 B. cenocepacia, and 6 B. multivorans 
strains (gray). (B) qPCR detection of bucl16 target in the presence of human plasma and 
in spleen extracts from infected mice. 25 ng of gDNA from Bp K96243 was used as a 
positive control (blue line). Amplification of bucl16 in qPCR reaction spiked with 5% 
human plasma is shown (green line). Mice were infected with Bp HBPUB10134a and 
CFU counts used in each qPCR reaction were based on plating spleen extracts on blood 
agar. Positive amplification is shown for spleen samples with 5x104 CFU (red lines: 
square, undiluted; triangle, 1:10 dilution; circle, 1:100 dilution; diamond, 1:1000 dilution) 
and 5x103 CFU (gray lines: square, undiluted; triangle, 1:10 dilution), while no 
amplification was obtained for crude spleen samples with original 2x102 CFU and 10 CFU 
per reaction and no template control, NTC (black lines). Inset; amplification of bucl 
markers 5, 13, 14, and 16 by standard PCR using crude spleen samples containing 5x104 
CFU per reaction. M, 50-bp DNA ladder. 
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Table 1. Assessment of genomic plasticity of B. pseudomallei and B. mallei using 
biomarkers. 

aOrganizational patterns (OP) of bucl genes were assigned to each chromosome, Ch1 

and Ch2, according to position and orientation. OPs were labeled I-VI for chromosome 1, 

and I-III for chromosome 2. bucl position on the plus or minus strand is shown 

corresponding to each OP. 

   bucls on 
Chromosome 1 

   bucls on 
Chromosome 2 

OPa Strains plus 
strand 

minus 
strand 

Ch2 
OP 

Strains plus 
strand 

minus 
strand 

Ch1 
OPI 

BpK9624 6, 8, 
16 

10, 14, 
15 

Ch2 
OPI 

BpK9624, Bp668, 
Bp1026b, Bp1106a, 
Bp1710b, BpBP006, 
Bp305, Bp146, Bp511, 
Bp520, Bp20B16, 
Bp78, Bm10229, 
Bm10247, BmSAVP1 

2, 3, 4, 
5 , 7 

1, 13 

Ch1 
OPII 

Bp668, Bp1026b, 
Bp1106a, Bp1710b, 
BpBP006, Bp305, 
Bp79, Bp146, Bp511, 
Bp520, Bp20B16, Bp78 

10, 16 6, 8, 
14, 15 

Ch2 
OPII 

Bp79 2, 3, 4, 
5 

1, 7, 
13 

Ch1 
OPIII 

Bm23344 15, 16 6, 8, 14 Ch2 
OPII
I 

Bm23344 4, 7 1, 2, 
3, 5, 
13 

Ch1 
OPIV 

Bm10229 6, 8, 
14, 
15, 16 

10 
 

   

Ch1 
OPV 

Bm10247 10, 15 6, 8, 
14, 16 

       

Ch1 
OPVI 

BmSAVP1 15 6, 8, 
10, 14, 
16 
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Table 2. Characterization of Bucl proteins in Burkholderiaa. 
 

No. of amino acids  Collagen-like region (CL)  Structural predictions 

Bucl  
No. 

Total N-
terminus 

C-
terminus 

 No. of GXY 
repeats 

GXY type  Putative 
domains 

bSS cTM 

Bucl1 152-
197 

42 80-89  7-22 GAN  N/A No Yes 

Bucl2 171-
228 

141 21  3-19 GEV. GEA  N/A No No 

Bucl3 551-
640 

44 372-405  38-63 GTS. GSS  Talin-1 Yes Yes 

Bucl4 297-
379 

271 9-18  7-30 GVS. GAS  Bac_export_1 Yes Yes, CL 
region 

Bucl5 168-
230 

35-41 114  7-25 GLE. GPE. 

GLD. GFD 
 N/A No No 

Bucl6 40-
88 

1 27  4-20 GAL. GAS. 
GAA. GAE 

 N/A No Yes, CL 
region 

Bucl7 188-
212 

134 36  5-14 GLS. GSS. 
GAS. GVA 

 N/A No Yes, CL 
region 

Bucl8 608-
677 

522 74  4-24 GAS  OEP Yes Yes, CL 
region 

Bucl10 92-
155 

2-8 63  8-25 GIH. GMH. 

GMR 
 N/A No No 

Bucl13 385-
433 

24 318  12-25 GIR. GVR. 

GSG. GGS. 
 SBP_bac_3 No Yes 

Bucl14 83-
191 

11 69  2-37 GWC. GRC. 
GRR. GRH 

 N/A No Yes, CL 
region 

Bucl15 56-
91 

21-69 4  5-14 GVL. GAL. 
GML. GAT. 
GAI. GAA 

 N/A Yes Yes, CL 
region 

Bucl16 227-
307 

65-67 148  4-30 GFG. GVD. 
GFD. GAF 

 N/A No Yes, CL 
region 

aCharacteristics of Bucl proteins are shown based on analysis of completed genomes of 
13 Bp, 11 Bm, and 9 Bt strains (see Table 3). The total protein length and length of protein 
sequences that are amino- and carboxyl-terminal to CL regions in each Bucl protein is 
shown as amino acid number, whereas the length of each CL region, which varies 
between strains, is expressed as the number of GXY repeats. Predominant GXY repeats 
are represented in bold text. Putative domains in the noncollagenous regions of each Bucl 
are shown: Talin-1 domain; Bac_export_1, bacterial export protein family 1; OEP, outer 
membrane efflux protein; and SBP_bac_3, bacterial extracellular solute-binding protein 
family 3.  
bSS; Signal sequence predictions are based on hidden Markov model predictions in the 
SignalP 3.0 server.  
cTM; Transmembrane domain predictions were made using TMPred. 
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Table 3. Burkholderia strains used in this studya. 

Species Abbreviation Strain Isolate information 

B. 
pseudomallei 

BpK9624b K96243 female diabetic patient- Khon Kaen hospital, Northeast 
Thailand 

1996 

B. 
pseudomallei 

Bp1710bb 1710b relapse of same patient infected with 1710a, blood 
culture, Northeast Thailand, Sappasithiprasong 
hospital 

1999 

B. 
pseudomallei 

Bp305b MSHR305 brain sample, fatal encephalomyelitis, Australia, Royal 
Darwin hospital 

1994 

B. 
pseudomallei 

Bp1026bb 1026b blood culture from 29-year old female rice farmer with 
diabetes milletus, Northeast Thailand, 
Sappasithiprasong hospital 

1993 

B. 
pseudomallei 

BpBP006 BPC006 Blood from patient with Type I diabetes and multiple 
abscesses, China, Baoting Town, Hainan 

2008 

B. 
pseudomallei 

Bp1106ab 1106a female rice farmer, Northeast Thailand, 
Sappasithiprasong hospital 

1993 

B. 
pseudomallei 

Bp79 NCTC 
13179 

skin ulcer, Australia 2014 

B. 
pseudomallei 

Bp668b 668 blood culture from 53-year old male patient with 
severe melioidosis encephalomyelitis, Darwin Australia 

1995 

B. 
pseudomallei 

Bp146 MSHR146 goat udder, Australia 1992 

B. 
pseudomallei 

Bp511 MSHR511 throat of goat, Australia 1997 

B. 
pseudomallei 

Bp520 MSHR520 human blood culture, Australia 1998 

B. 
pseudomallei 

Bp20B16 NAU20B-16 soil, Australia 2006 

B. 
pseudomallei 

Bp78 NCTC 
13178 

human post-mortem brain, Australia N/A 

          
B. mallei BmSAVP1 SAVP1 pathogenic strain which became avirulent after 

passage through 6 equids, originally caused disease in 
a mule in India 

  

B. mallei Bm10229 NCTC 
10229 

Europe   

B. mallei Bm10247 NCTC 
10247 

Europe   

B. mallei Bm23344b ATCC 
23344 

human post-mortem knee fluid, skin pustules and 
blood, Burma 

1944 

B. mallei Bm21280b 2002721280 Iran 1952 
B. mallei BmA188 A188 >8 passages   
B. mallei BmA193 A193 Pasteur Institute, France 1964 
B. mallei Bm10399b ATCC 

10399 
horse lung, Southern China 1949 

B. mallei BmPRL20 PRL-20 blood of a gelding from the Lahore Polo Club, Lahore, 
Pakistan 

2005 

B. mallei Bm11 strain_11 human, Turkey 1949 
B. mallei Bm6 strain_6 human 1950 
          
B. 
thailandensis 

BtE264 E264 rice field soil sample, Central Thailand   

B. 
thailandensis 

Bt121 MSMB121 soil, Australia 2007 

B. 
thailandensis 

BtH0587 H0587 human pleural wound, LA, United States 1997 

B. 
thailandensis 

BtE444 E444 soil, Thailand 2002 

B. 
thailandensis 

Bt43 MSMB43 bore water source in Darwin, Australia; first isolate of 
B. thailandensis in Australia 
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B. 
thailandensis 

BtTXDOH TXDOH United States   

B. 
thailandensis 

Bt21723 2002721723 Human, CDC 2010 

B. 
thailandensis 

Bt4 4     

B. 
thailandensis 

BtE555 E555     

a13 Bp, 11 Bm, and 9 Bt strains listed in this table were used for analysis of Bucl 
characteristics (Table 2), in part for distribution assessment (Table 4), and for 
phylogenetic analyses. Strain abbreviations listed in this table are used in all figures.  
bStrains which were also tested by PCR for bucl distribution. 
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Table 4. Distribution of all bucl genes in Burkholderia spp. as assessed by 
bioinformatics and PCR amplificationa. 

  bucl No. 

Strain 
Abbreviatio
n 

1 2 3 4 5 6 7 8 10 13 14 15 16 

BpBP006b + + + + + + + + + + + + + 
Bp79b + + + + + + + + + + + + + 

Bp146b + + + + + + + + + + + + + 

Bp511b + + + + + + + + + + + + + 

Bp520b + + + + + + + + + + + + + 

Bp20B16b + + + + + + + + + + + + + 

Bp78b + + + + + + + + + + + + + 

Bp1026bb + + + + + + + + + + + + + 

BpE203 + + + + + + + + + + + + + 

Bp4845 + + + + + + + + + + + + + 

Bp1152 + + + + + + + + + + + + + 

Bp1992 + + + + + + + + + + + + + 

BpE8 + + + + + + + + + + + + + 

Bp423 + + + + + + + + + + + + + 

Bp6068 + + + + + + + + + + + + + 

BpS13 + + + + + + + + + + + + + 

Bp1710a + + + + + + + + + + + + + 

Bp1710bb + + + + + + + + + + + + + 

BpK9624b + + + + + + + + + + + + + 

Bp1106b + + + + + + + + + + + + + 

BpCh3 - NT NT - + + + + NT + + + + 

Bp121 + + + + + + + + + + + + + 

Bp1112 + + + + + + + + + + + + + 

Bp305b + + + + + + + + + + + + + 

Bp668b + + + + + + + + + + + + + 

Bp406e + + + + + + + + + + + + + 

Bp1106ab + + + + + + + + + + + + + 

Bp5855 + + + + + + + + + + + + + 

Bp5848 + + + + + + + + + + + + + 

Bp5858 + + + + + + + + + + + + + 

Bp0134a + + + + + + + + + + + + + 

Bp0303a + + + + + + + + + + + + + 

Bm10229b + - + + + + + + + + + + + 

Bm10247b + + + + + + + + + + + + + 

BmA188b + - - + + + + + + + + + + 

BmA193b + - - + + + - + + + + + + 

Bm10399b + + + + + + + + + + + + + 

BmPRL20b + - + + + + + + + + + + + 

Bm6b + - + - + + + + + + + + + 

Bm11b + + + + + + + + + + + + + 

BmSAVP1b - + + - + + - + + + + + + 

BmGB3 + - - - + + + + + + + + + 

BmGB4 + + + - + + + + + + + + + 

BmISU + + + + + + + + - + + + + 

BmTurk1c + + + + + + + + + + + + + 

Bm234 + + + + + + + + - + + + + 

Bm235 + + + + + + + + - + + + + 

BmHI533 + + + + + + + + - + + + + 

BmGB11 + - + + + + + + + + + + + 

BmNBL7 + + + + + + + + - + + + + 

BmGB8 + + + + + + + + - + + + + 

Bm23344b + + + + + + + + - + + + + 

BmTurk2c + + + - + + + + + + + + + 
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BmFMH + + + + + + + + - + + + + 
Bm21280b + + + + + + + + - + + - + 

Bm85567 + + + + + + + + + + + + + 

Bm2700C + - + + + + + + + + + + + 

BmCh7 + + + + + + + + - + + + + 

BmCh5 + + + + + + + + + + + + + 

Bm10230 + - + + + + + + + + + + + 

BmGB8 + + + + + + + + - + + + + 

Bt21723b - - + + - - - - - - - - - 

BtH0587b - - + + - - - - - - - - - 

BtE444b - - + + - - - - - - - - - 

Bt121b - - + + - - - - - - - - - 

BtE555b - - + + - - - - - - - - - 

Bt43b - - + + - - - - - - - - - 

Bt4b - - + + - - - - - - - - - 

BtTXDOHb - - + + - - - - - - - - - 

BtE264b - - + + - - - - - - - - - 

BtDW503 - - + + - - - - - - - - - 

BtE421 - - + + - - - - - - - - - 

BtE426 - - + + - - - - - - - - - 

Fisher p-
value <0.0001 0.581 0.353 <0.0001 

Cramer’s V2 0.829 0.486 0.009 0.018 1 1 0.829 1 0.426 1 1 0.908 1 

Bc706 - - - - NT NT NT NT - NT NT NT NT 

Bc709 - - - - - - - - - - - - - 

Bc710 - - - - - - - - - - - - - 

Bce6656 - - - - - - - - - - - - - 

BceBC7 - - - - - - - - - - - - - 

BceK562 - - - - - - - - - - - - - 

BceJ2315 - - - - - - - - - - - - - 

Bce103a2 - - - - NT NT - NT - NT - NT - 

BmvCF2 - - - - - - - - - - - - - 

BmvCGD1 - - - - - - - - - - - - - 

BmvCGD2 - - - - - - - - - - - - - 

BmvCF1 - - - - - - - - - - - - - 

Bmv17616 - - - - - - - - - - - - - 

Bmv13010 - - - - - - - - - - - - - 

aPresence or absence of bucl amplicons are indicated by + or –, respectively. NT, not 
tested (not sufficient amount of gDNA available). Association of bucl presence with 
pathogenic Bp and Bm species, compared to nonpathogenic Bt strains, was assessed 
using the Fisher Exact Probability Test and Cramer’s V2 analysis.  
bStrains for which bucl presence was determined by bioinformatics. 
cSmaller-sized amplicons observed for bucl2 amplicon (S4 Fig. 4A). 
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Table 5. Primers and probe used for bucl amplificationa. 

bucl# Primer name  Primer sequence 5'-3' Amplicon size 

bucl1 Bucl1_4F GTGGCGCTGGCGCATCGTGAACGGC 103 bp 

  Bucl1_4R CTTCGTCGGTTGCGTGTCGTCCGTTGC   

bucl2 Bucl2_1F CGGCGTGCGACGGAA 133 bp 

  Bucl2_1R GCCCACTTCGCGATTCTTC   

bucl3 Bucl3_2F CTGCTCGGCGGCCTGTCGGGTTCGG 166 bp 

  Bucl3_2R CGGGCGCGGTCGTCGTCGA   

bucl4 Bucl4_2F_ext GACGAATTCATCCGCTTCATCGTG 176 bp  

  Bucl4_2R_ext2 CCGCTGCGCATCGGGCCTTTCA   

bucl5 Bucl5_2F AACTCGACGAACTCAACGCGAATCGAC 216 bp 

  Bucl5_2R GCGCGCCGTTCTTTCTAGCGCTGC   

bucl6 Bucl6_CL flank_F AGGAGCGGCGCTTGCCGGGCG 115 bpb  

  Bucl6_Clflank_2R GAACGGCGACGGTCCGACGCAGC   

bucl7 Bucl7_2F ATGGACACGACCACGCAGGACGGG 264 bp 

  Bucl7_2R CCAATGAACGGCCCGCGTCGCTTTC   

bucl8 Bucl8_2F GCAGCTCGATTCGTGGAT 243 bp 

  Bucl8_2R AGGTGGTACGACAGGCTCAG   

 Bucl8_3F CTACGCGCTCCTCGACATCGCGC 96 bp 

 Bucl8_3R TGCGTGCCGATGCCCGCGCGCA  

bucl10 Bucl10_1F GCATGCGTTGGACACGA 109 bp 

  Bucl10_1R GCAACGTCGTCATCTCGTC   

bucl13 Bucl13_2F GTTCGATTTCACGACGTACCGGCTCG 212 bp 

  Bucl13_2R CGTCGTCGTCGAAGTACAGCACGTC   

bucl14 Bucl14_1F TCGGCACATCTGTCGCCGCGAACC 178 bp 

  Bucl14_1R CGTATGGCCGCCGTGTCGATCGG   

bucl15 Bucl15_1F GATCGCTCGACGCGCCCGRCGTGC 95 bpb 

  Bucl15_1R CTAAAACCGCCGGCGYGCCGCGC   

bucl16 Bucl16_2F CCGGCAGCACCGACTCGAGCGTGCG 123 bp 

  Bucl16_2R CGTCGTTCGMGCTCGCCGATCGCTCG   

 cBucl16_5'FAM_3'IBQ TCTGCA+CG+G+CG+GTG+AGCCGCTTCA  
aPrimers were designed to generate conserved amplicons within the non-collagenous 
region of each bucl gene. Primers for bucl6 and bucl15 were designed flanking the 
collagenous region, which varies in size among strains (S4 Fig. 4B). Primers Bucl8_3F/3R 
were used to generate amplicon from Bp K96243 reference strain, whereas primers 
Bucl8_2F/2R  selectively amplify products from Bp and Bm gDNA and were used in large-
scale PCR screening (S4 Fig. 4B). 
bAmplicon sizes expected for the Bp K96243 reference strain.  
cLNA probe for bucl16 detection; + symbols precede LNA bases.
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Table 6. Genomic DNA collection. 

Species Abbreviation Strain Isolate information Source of 
DNA  

 
 

Alternative designations Source of isolate Year 
 

B. pseudomallei  Bp1026b 1026B   blood culture from 29-year old female rice farmer with 
diabetes milletus, Northeast Thailand, 
Sappasithiprasong hospital 

1993 USAMRIIDa 

B. pseudomallei BpE203 E203    Soil sample from Roi Et, Thailand  1997 USAMRIID 
B. pseudomallei Bp4845 NCTC4845 (S. 397, NRRL B-1112, 

CCEB 472) 
Monkey, Singapore 1935 USAMRIID 

B. pseudomallei Bp1152 STW-115-2   water, Thailand 1965 USAMRIID 
B. pseudomallei Bp1992 STW-199-2   water, Thailand 1965 USAMRIID 
B. pseudomallei BpE8 E8    Soil sample obtained on road to Trakan Phuet Phon 

District, Ubon Ratchathani Thailand 
  USAMRIID 

B. pseudomallei Bp423 423   Blood culture, Cambodia  2008 USAMRIID 
B. pseudomallei  Bp6068 Pasteur 

6068  
2002721763 Vietnam   BEI 

Resourcesb 
B. pseudomallei  Bp13 S13   muicodal strain, environmental isolate, Singapore   BEI Resources 
B. pseudomallei  Bp1710a 1710a   blood culture of 52-year old male rice farmer with 

diabetes milletus, Northeast Thailand 
1996 BEI Resources 

B. pseudomallei  Bp1710b 1710b   relapse of same patient infected with 1710a, blood 
culture, Northeast Thailand, Sappasithiprasong 
hospital 

1999 BEI Resources 

B. pseudomallei  BpK9624 K96243   female diabetic patient- Khon Kaen hospital, 
Northeast Thailand 

1996 BEI Resources 

B. pseudomallei  Bp1106b 1106b   relapse of same patient infected with 1106a- female 
rice farmer, pus aspirated from liver abscess, 
Northeast Thailand, Sappasithiprasong hospital 

1996 BEI Resources 

B. pseudomallei  BpCh3 China 3   septicemia of American soldier, Burma   BEI Resources 
B. pseudomallei  Bp121 NBL 121 strain 286, MP-S chronic melioidosis case, infection acquired while 

living in Far East, Louisiana, United States 
1953 BEI Resources 

B. pseudomallei Bp1112 NRRL B-
1112 

strain S 397, CCEB 472 naturally infected lab monkey, Singapore 1935 BEI Resources 

B. pseudomallei  Bp305 MSHR305   brain sample, fatal encephalomyelitis, Australia, Royal 
Darwin hospital 

1994 USAMRIID 

B. pseudomallei  Bp668 MSHR668   blood culture from 53-year old male patient with 
severe melioidosis encephalomyelitis, Darwin 
Australia 

1995 USAMRIID 

B. pseudomallei  Bp406e 406e   disseminated melioidosis patient, toe swab, Ubon 
Ratchathani province, Northeast Thailand 

1988 USAMRIID 

B. pseudomallei  Bp1106a 1106a   female rice farmer, Northeast Thailand, 
Sappasithiprasong hospital 

1993 USAMRIID 

B. pseudomallei  Bp5855 MSHR5855   Australia 2011 USAMRIID 
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B. pseudomallei  Bp5848 MSHR5848   inhalational melioidosis, Australia 2011 USAMRIID 
B. pseudomallei  Bp5858 MSHR5858       USAMRIID 
B. pseudomallei  Bp0134a HBPUB 

10134a 
  sputum, Thailand, Mahidol University 2010 USAMRIID 

B. pseudomallei  Bp0303a HBPUB 
10303a 

  sputum, Thailand, Mahidol University 2011 USAMRIID 

B. mallei BmGB3 GB3 2002734306, 
2002734311, strain A, 
NCTC120  

Lister Institute, London 1920 USAMRIID 

B. mallei BmGB4 GB4 M4, 2002734304, strain 
6, NCTC10248 

human, Ankara, Turkey 1950 USAMRIID 

B. mallei BmISU ISU   Iowa State University   USAMRIID 
B. mallei BmTurk1 Turkey 1 2000031065, #1 Turkey Turkey, isolated by Dr. Linda Schlater  2003 USAMRIID 
B. mallei Bm234 KC234 2002721273, 3783  human, Burma- isolated via CA Gleisser Army 

Medical School 
1956 USAMRIID 

B. mallei Bm235 KC235 2002721274 Fort Detrick, Maryland, United States 1956 USAMRIID 
B. mallei BmHI533 HI533 2000031304, 

2000031281 
human liver abscess drainage, Maryland, United 
States 

2000 USAMRIID 

B. mallei BmGB11 GB11  NCTC 10245, 
2002721275, China 5, 
ATCC10399 

horse lung, Southern China 1949 USAMRIID 

B. mallei  BmNBL7 NBL 7  China 7 Prep of B mallei China 7 derived from ATCC23344 via 
passage through several individuals  

  BEI Resources 

B. mallei  BmGB8 GB8 horse 
4  

  derivative of ATCC23344 passaged through horse 
and isolated from the lung as a single colony, 
Manitoba, Canada 

  BEI Resources 

B. mallei Bm23344 ATCC 
23344 

  human post-mortem knee fluid, skin pustules and 
blood, Burma 

1944 BEI Resources 

B. mallei BmTurk2 Turkey 2 T2 Turkey   BEI Resources 
B. mallei BmFMH FMH   derivative of ATCC23344 passaged through human, 

laboratory acquired infection- blood 
2000 USAMRIID 

B. mallei Bm21280 2002721280 KC1092, 52-236 Iran 1952 BEI Resources 
B. mallei Bm86567 86-567 India86-567-2, 

2000031064 
mule, East India   BEI Resources 

B. mallei Bm2700C SR092700C       BEI Resources 
B. mallei  BmCh7 China 7 NBL7 preparation produced directly from ATCC 23344 1942 BEI Resources 
B. mallei  BmCh5 China 5 MM-A, NBL4 lung and nose of infected horse, Kweiyang, China 1942 BEI Resources 
B. mallei  Bm10230 NCTC 

10230 
strain Ivan horse with glanders, Hungary 1961 BEI Resources 

B. mallei BmGB8** GB8 
(atcc23344) 

  Laboratory passage of ATCC 23344 in mouse 1997 USAMRIID 

B. thailandensis  BtE264 E264   rice field soil sample, Central Thailand   BEI Resources 
B. thailandensis  BtDW503 DW503   Derived from E264; (∆amrR-oprA) (Kms Gms Sms); 

rpsL (Smr), Central Thailand 
  BEI Resources 
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B. thailandensis  BtE421 E421   rice field soil sample from Ubon Ratchathani province, 
Northeast Thailand 

2001 BEI Resources 

B. thailandensis BtE426 E426   rice field soil sample from Ubon Ratchathani province, 
Northeast Thailand 

2001 BEI Resources 

B. cepacia Bc706 DD-706       BEI Resources 
B. cepacia Bc709 DD-709       BEI Resources 
B. cepacia Bc710 DD-710       BEI Resources 
B. cenocepacia Bce6656 LMG16656   sputum of cystic fibrosis patient, Edinburgh, United 

Kingdom 
1989 BEI Resources 

B. cenocepacia BceBC7 BC7   sputum from 15-year old patient with "cepacia 
syndrome", Canada 

  Emory Uc 

B. cenocepacia  BceK562 K56-2   less antibiotic resistant derivative of BC7, Canada   Emory U 
B. cenocepacia  BceJ2315 J2315   sputum from cystic fibrosis patient, Edinburgh, United 

Kingdom 
1989 Emory U 

B. cenocepacia Bce103a2 DD-707       BEI Resources 
B. multivorans BmvCF2 CF2   sputum from cystic fibrosis patient, NIH Clinical 

Center 
  Emory U 

B. multivorans  BmvCGD1 CGD1   sputum from chronic granulomatous disease patient, 
NIH Clinical Center 

  Emory U 

B. multivorans BmvCGD2 CGD2   blood from chronic granulomatous disease patient, 
NIH Clinical Center 

  Emory U 

B. multivorans  BmvCF1 CF1   sputum from cystic fibrosis patient, Belgium   Emory U 
B. multivorans Bmv17616 ATCC 

17616 
  soil sample, United States   Emory U 

B. multivorans  Bmv13010 LMG13010 CCUG 34080, Lauwers 
Cepa 002, CIP 105495, 
DSM 13243, NCTC 
13007 

sputum of cystic fibrosis patient, Belgium 1992 BEI Resources 

aUSAMRIID; United States Army Medical Research Institute of Infectious Disease.  
bBEI Resources; NIH Biodefense and Emerging Infections Research Resources Repository, NIAID, NIH.  
cEmory U; Dr. Joanna Goldberg, Emory University School of Medicine, Atlanta, GA. 
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CONCLUSIONS 

 

Adhesion and biofilm formation: friend or foe? 

The main goal of this work was to investigate the role of the major surface adhesin of 

GAS, streptococcal collagen-like protein 1 (Scl1), in host tissue attachment, biofilm 

formation, and virulence. Specifically, our studies focused on the invasive M3-type strains 

that form poor biofilms in vitro and harbor a unique scl1.3 allele, which encodes a 

truncated cell-free protein variant. Biofilm formation by bacteria is typically considered 

disadvantageous to the host because biofilm-embedded bacteria are considerably more 

resistant to phagocytosis by PMNs and antibiotic treatment (104). However, it has been 

an emerging concept that adherence and biofilm formation are inversely related to 

invasiveness and virulence during bacterial infection. Specifically, up to 99.5% of GAS 

infections are superficial infections of the throat and skin that are associated with localized 

tissue microcolonies or biofilms, whereas the remaining 0.5% are invasive infections that 

are not biofilm-associated (105). Our unique observations in biofilm-deficient M3-type 

strains led us to devise the following hypothesis to explain this phenomenon: Invasive 

M3-type GAS, devoid of Scl1 surface adhesin, have reduced adherence to host 

ECM proteins, including cellular fibronectin (cFn) and laminin (Lm), and reduced 

biofilm capacity, thus circumventing the formation of stable tissue microcolonies 

and shifting the balance towards invasive dissemination instead of localized 

infection. Our major findings, summarized below in the context of relevant literature, 

support this model. 

 

Poor biofilm formation and the unique scl1.3 allele of M3-type GAS 

Our initial study demonstrated that Scl1 significantly contributes to biofilm formation by 

GAS on inanimate surfaces (Chapter 1). We showed that deletion of scl1 in strains of M1, 

M28 and M41 type resulted in decreased biofilms, with at least 50% reduced average 

thickness. Heterologous complementation of the biofilm-deficient Lactococcus lactis with 

scl1 conferred biofilm formation. Although the mechanism of Scl1-mediated biofilm 

formation was not fully established, Scl1 expression was correlated with increased 

surface hydrophobicity in these strains. Notably, several invasive M3 wild-type strains had 
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diminished biofilms in comparison to biofilm-capable M1-, M28-, and M41-type strains. 

We hypothesized that poor biofilm formation was associated with the predicted lack of 

surface Scl1, based on the presence of a unique null mutation in the scl1.3 allele of the 

M3-strains. The nonsense mutation occurred in the 11th Gly-X-Y repeat of the collagenous 

region, presumably resulting in a truncated secreted Scl1 variant. This unique scl1.3 allele 

was conserved in >98% of invasive M3 isolates (Chapter 3). Our successive studies 

confirmed the lack of Scl1 expression on the surface of M3 strains by flow cytometry, and 

in cell wall extracts of M3 strains by western blot. Interestingly, the truncated Scl1.3 

variant was not detected in supernatant fraction, likely a result of the diminished 

expression of the scl1.3 transcript that was also perceived for these strains in comparison 

to other M-types (Chapter 2). Altogether, association between the lack of Scl1 expression, 

accompanied by limited biofilm formation, prompted further investigations into the 

invasive traits of M3-type strains.  

 

Scl1-mediated biofilm and ECM binding: implications in tissue microcolony formation 

Accumulating evidence has supported the importance of Scl1 in mediating the formation 

of in vivo tissue microcolonies, or biofilms, during infection. First, previous data showed 

that Scl1-mediated biofilms were enhanced on cFn and Lm coatings, as well as on a 

complex ECM matrix deposited by human fibroblasts (54). Next, Scl1 specifically binds 

to extra domain A-containing isoforms of cellular fibronectin (EDA/cFn) and basement 

membrane laminin (Lm), which are both ECM components found in wounded tissue 

(54,60). Consequently, both binding functions could foster ligand recognition at the 

pathogen portal of entry, which supports bacterial adherence and formation of stable 

tissue microcolonies. Here, we used an in vitro model of wounded human skin equivalents 

to compare wound colonization and tissue invasion by GAS. The Scl1-lacking biofilm-

poor M3-type GAS invaded wound bed in a form of loose chains and cells, whereas Scl1-

expressing biofilm-capable M41-type GAS formed large rounded microcolonies encased 

in glycocalyx, as imaged by two-photon microscopy (Chapter 2). These results 

demonstrated striking phenotypic difference in tissue invasion by M3 and M41 GAS.  
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Full-length surface-attached Scl1.3 supports adherence and biofilm formation 

To test our hypothesis shown in Figure 1, we 

first had to assess whether full-length Scl1.3 

variant binds cFn and Lm, and second, if it 

restores biofilm formation of M3-type GAS on 

cFn- and Lm-coated surfaces (Chapter 2). 

First, recombinant full-length Scl1.3 

(rScl1.3FL) protein was generated, following 

the reversion of the null mutation and 

restoring the open reading frame, and tested 

for ECM binding. Positive binding of rScl1.3FL 

to cFn and Lm was demonstrated by ELISA, 

surface plasmon resonance, and tryptophan 

fluorescence binding assays. These results 

support the concept that Scl1.3FL on the GAS 

cell surface would behave as an adhesin 

conferring adherence to EDA/cFn and Lm. 

Interestingly, rotary shadowing and electron 

microscopy of rScl1.3 proteins showed 

aggregates mediated by V-to-V domain 

interactions that could stabilize biofilm 

structure. 

A second set of experiments was 

designed to test the effect of Scl1.3FL surface 

expression on GAS biofilm formation. 

Homologous complementation of two invasive 

M3-type strains with Scl1.3FL conferred biofilm formation on cFn- and Lm-coated 

surfaces. Additionally, heterologous complementation of a ∆scl1 mutant of M41-type 

strain with Scl1.3FL restored biofilm formation to the wild-type level. Biofilms formed by 

the complemented strains were at least two-fold thicker on average, compared to vector-

complemented controls. Overall, these results reinforce our hypothesis that M3-type 

 
Figure 1. Hypothesis model. Top: Infection 
of wounded skin with wild-type M3-type GAS. 
Inherent lack of surface-expressed Scl1.3 
causes decreased binding to cFn and Lm 
expressed in wounded tissue, and reduces 
biofilm and tissue microcolony formation by 
M3-type bacteria (red circles). Bottom: In-trans 
complementation of M3-type GAS with full-
length cell-associated Scl1.3, Scl1.3FL, 
restores binding to cFn and Lm in tissue, which 
confers biofilm and tissue microcolony 
formation during infection. 
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strains have reduced adherence and microcolony formation due to a natural lack of 

surface Scl1 with intrinsic capacity for ECM binding and biofilm support (Figure 1). 

 

Inactivation of Scl1 in GAS results in hypervirulent phenotype  

If our hypothesis is correct, the inactivation of scl1 in biofilm-capable GAS strains should 

result in increased virulence during infection. We validated this concept by demonstrating 

that scl1-inactivated isogenic mutants of the M28- and M41-type strains produced larger 

skin lesions during subcutaneous infection of mice than the wild-type parental strains 

(Chapter 2). A similar phenotype was displayed by Scl1-deficient M3-type GAS in 

comparison to M3 strain containing a rare cell-attached Scl1 variant. While the majority 

of M3-type strains harbor the scl1.3 allele containing the null mutation, ~1.3% of M3 

strains harbor a “scl1.3 carrier allele” containing an in-frame deletion encompassing the 

null mutation, and thus, express a cell-attached variant. An isoallelic replacement strain, 

harboring the carrier allele, formed a limited abscess compared to the invasive parental 

M3 strain (Chapter 3). The carrier strain also exhibited increased adherence to human 

epithelial cells.  

 

Adherence and biofilm formation: an inverse relationship with invasiveness 

Overall, our results support the hypothesis that M3-type GAS, naturally lacking surface 

Scl1, are reduced in adherence and microcolony formation, thus resulting in bacterial 

dissemination and invasive infection. Figure 2 depicts a model for Scl1-mediated 

adhesion and microcolony formation during infection, comparing M28- and M41-type GAS 

expressing Scl1 to M3-type GAS lacking Scl1.  
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The main hypothesis presented in my thesis, which postulates an inverse 

relationship between strain invasiveness and its capacity to form biofilm, has gained 

recent support from several studies. Streptococcus pneumoniae grown in biofilm was less 

able to disseminate to the blood in mouse models of intranasal and intratracheal infection 

(106). Biofilm-grown bacteria also had increased adherence to host epithelial cells, as 

compared to bacteria grown in culture (106). Another study showed that biofilm-deficient 

mutants of S. pneumoniae elicited greater cytokine responses in a mouse model of 

intranasal infection colonization, and had decreased adherence and increased invasion 

of epithelial cells in vitro (107). Destabilization of S. pneumoniae biofilm and subsequent 

dissemination was triggered by co-infection with influenza A virus in vivo, as well as febrile 

temperatures and nutrient availability in vitro. The dispersed bacteria had altered gene 

expression profile and enhanced dissemination in mice (108). Similarly, GAS cells that 

formed biofilm in vitro on epithelial cells had downregulated expression of virulence 

genes, including streptolysins, emm, and hyaluronic acid capsule gene hasA, and showed 

enhanced colonization of nasal-associated lymphoid tissue, while dissemination to distant 

 

Figure 2. Model of Scl1-mediated GAS adhesion, biofilm formation, and host colonization. M28- 
and M41-type GAS express full-length cell-attached Scl1, which mediates adherence to cFn and Lm. ECM 
binding promotes biofilm formation in wounded tissue and allows the formation of superficial tissue 
microcolonies resulting in non-invasive colonization. On the contrary, in M3-type GAS, naturally lacking 
full-length cell-attached Scl1.3 adhesin, bacterial cells have reduced adherence to cFn and Lm and 
reduced capacity for biofilm formation, thereby circumventing the formation of localized tissue 
microcolonies; infection balance is shifted towards dissemination through tissue, promoting invasive 
spread. 
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organs was decreased (109). Likewise, the cleavage of bacterial surface adhesins by the 

potent GAS protease SpeB, resulted in dispersal of biofilm, which was associated with 

increased lesion sizes in mice (110).  

  

Scl variants of GAS- a shared structure with diverse ligand binding properties 

The majority of our work has focused on adherence and biofilm conferred by the Scl1 

protein, functions that are lacking for the Scl2 protein; however both Scl proteins are 

ubiquitous among GAS strains and share a similar overall structure. Early studies based 

on recombinant Scl proteins of GAS showed they harbor a conserved lollipop-like domain 

organization with a globular variable domain and stalk-like collagenous domain (20,21). 

Additionally, multiple sequence alignment and secondary structure analyses of the Scl1- 

and Scl2-variable regions predicted two conserved α-helices interspaced by the 

hypervariable sequence (51). A major contribution that came from current work was the 

report of the crystal structure for the V domain of the Scl2 protein of M3-type GAS, which 

provided insights into possible ligand binding sites and function of the Scl proteins 

(Chapters 4 and 5). The Scl-globular (homotrimeric) domain folds into unique six helical 

bundle structure, which is predicted to be conserved across all Scl1 and Scl2 variants. 

The two antiparallel α-helices that are conserved in all variants form a structural core for 

the exposed variable loops that are likely involved in ligand binding. The V domain was 

also found to be structurally similar to the gp41 subunit of the envelope glycoprotein of 

HIV-1, a membrane fusion protein involved in viral entry into CD4+ T cells, although the 

two proteins had low sequence identity. The six-helix bundle structure is largely absent in 

bacteria, with the exception of the cholix toxin which was reported to contain a bundle of 

six helices within the translocation domain (111). Membrane fusion and entry or 

translocation across the membrane seems to be a function offered by this structural 

element. Since internalization of GAS by host cells has been reported (112), it would be 

interesting if the V domain of Scl also mediates an interaction with host cell membranes 

to accomplish host cell entry. 
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SUPPLEMENTARY MATERIAL FOR CHAPTER 1 

 
THE STREPTOCOCCAL COLLAGEN-LIKE PROTEIN-1 (SCL1) IS A SIGNIFICANT 

DETERMINANT FOR BIOFILM FORMATION BY GROUP A STREPTOCOCCUS 

Heaven A Oliver-Kozup, Meenal Elliott, Beth A Bachert, Karen H Martin, Sean D Reid, 

Diane E Schwegler-Berry, Brett J Green, and Slawomir Lukomski 

Published in BMC Microbiology 2011 11:262 
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Figure S1 

 

Figure S1 (a). Confocal laser scanning microscopy (CLSM) of GFP-expressing M41 WT 

GAS biofilm at 24 h. Panels represent a gallery view of consecutive images taken at 1 

micrometer increments. Panel shown in lower right corner represents an X-Y orthogonal 

Z-stack view (Fig. 4d). Thickness is indicated in micrometers.  

 

  

M41 WT
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Figure S1 (b). Confocal laser scanning microscopy (CLSM) of GFP-expressing M41Δscl1 

GAS biofilm at 24 h. Panels represent a gallery view of consecutive images taken at 0.75 

micrometer increments. Panel shown in lower right corner represents an X-Y orthogonal 

Z-stack view (Fig. 4d). Thickness is indicated in micrometers.   

M41Δscl
1 

M41∆scl 
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Figure S1 (c). Confocal laser scanning microscopy (CLSM) of GFP-expressing M28 WT 

GAS biofilm at 24 h. Panels represent a gallery view of consecutive images taken at 1 

micrometer increments. Panel shown in lower right corner represents an X-Y orthogonal 

Z-stack view (Fig. 4e).  Thickness is indicated in micrometers.  

M28 WT
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Figure S1 (d). Confocal laser scanning microscopy (CLSM) of GFP-expressing M28Δscl1 

GAS biofilm at 24 h. Panels represent a gallery view of consecutive images taken at 1 

micrometer increments. Panel shown in lower right corner represents an X-Y orthogonal 

Z-stack view (Fig. 4e). Thickness is indicated in micrometers.  

 

 

  

M28Δscl
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Figure S1 (e). Confocal laser scanning microscopy (CLSM) of GFP-expressing M1 WT 

GAS biofilm at 24 h. Panels represent a gallery view of consecutive images taken at 1 

micrometer increments. Panel shown in lower right corner represents an X-Y orthogonal 

Z-stack view (Fig. 4f). Thickness is indicated in micrometers.   

M1 WT

M1 WT 
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Figure S1 (d). Confocal laser scanning microscopy (CLSM) of GFP-expressing M1Δscl1 

GAS biofilm at 24 h. Panels represent a gallery view of consecutive images taken at 1 

micrometer increments. Panel shown in lower right corner represents an X-Y orthogonal 

Z-stack view (Fig. 4f). Thickness is indicated in micrometers. 

  

M1Δscl1 M1∆scl
1 
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Figure S2 

 

 

Figure S2 (a). Confocal laser scanning microscopy (CLSM) of GFP-expressing 

Lactococcus lactis MG1363 WT biofilm at 24 h. Panels represent a gallery view of 

consecutive images taken at 0.25 micrometer increments. Panel shown in lower right 

corner represents an X-Y orthogonal Z-stack view (Fig. 5e). Thickness is indicated in 

micrometers.   

MG1363 WT 

MG1363 WT 
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Figure S2 (b). Confocal laser scanning microscopy (CLSM) of GFP-expressing 

Lactococcus lactis biofilm at 24 h. L. lactis was transformed with the shuttle vector 

pJRS525 (MG1363::pJRS525). Panels represent a gallery view of consecutive images 

taken at 0.25 micrometer increments. Panel shown in lower right corner represents an X-

Y orthogonal Z-stack view (Fig. 5e). Thickness is indicated in micrometers.   

MG1363::pSL525 
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Figure S2 (c). Confocal laser scanning microscopy (CLSM) of GFP-expressing 

Lactococcus lactis expressing Scl1.41 protein (MG1363::pSL230) biofilm at 24 h. L. lactis 

was transformed with the plasmid construct pSL230 encoding Scl1.41 protein 

(MG1363::pSL230). Panels represent a gallery view of consecutive images taken at 0.5 

micrometer increments. Panel shown in lower right corner represents an X-Y orthogonal 

Z-stack view (Fig. 5e). Thickness is indicated in micrometers. 

 
  

MG1363::pSL230 
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SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

 
UNIQUE FOOTPRINT IN THE SCL1.3 LOCUS AFFECTS ADHESION AND BIOFILM 

FORMATION OF THE INVASIVE M3-TYPE GROUP A STREPTOCOCCUS 

Beth A. Bachert, Soo Jeon Choi, Paul R. LaSala, Tiffany Harper, Dudley H. McNitt, Dylan 

T. Boehm, Clayton C. Caswell, Pawel Ciborowski, Douglas R. Keene, Anthony R. Flores, 

James M. Musser, Flavia Squeglia, Daniela Marasco, Rita Berisio, and Slawomir 

Lukomski 

Published in Frontiers in Cellular and Infection Microbiology 2016 6:90 
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Figure S1. Analytical PCR of scl1.3 and scl2.3 in M3-type GAS. (A) PCR of scl1.3 in 42 

M3-type strains was performed with primers 232Up and 232Rev flanking the scl1 locus 

(Table S1). Expected size based on MGAS315: 1,010 bp. M, 1 kb Plus DNA Ladder. (B) 

PCR of scl2.3 in 42 M3-type strains was performed with primers Scl2.3 F and Scl2.3 R 

flanking the scl2.3 collagen-like region (Table S1). Expected size based on MGAS315 

genome is 1,125 bp. M, 1 kb Plus DNA Ladder. MGAS designation applies to all strain 

numbers shown above gel wells, with the exception of strain AM3. 
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Figure S2. Domain organization of rScl1.3FL and rScl2.3 proteins. Rotary shadowing 

of rScl proteins demonstrates the conserved lollipop-like domain organization. Aggregates 

mediated by the interactions between V regions of rScl1.3FL are seen in the top panels 

(depicted by arrows). No apparent aggregation was observed in the rScl2.3 preparation 

(single lollipops are depicted by arrowheads). All scale bars reflect 100 nm.   
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Figure S3. Colocalization of glycocalyx staining with GFP-expressing M41-type GAS 

during in vitro infection of skin equivalent. Representative TPF gallery image of z-stack 

layers from 3D projection (Figure 5 of manuscript), showing colocalization of TRITC-

concanavalin A staining of glycocalyx (red) with GFP-expressing GAS microcolonies 

(green). Z-stack step size: 1 µm; 600x magnification. 
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Figure S4. Strategy for C-C’ loop peptide design. Cartoon model of the EDA domain of 

cFn (PDB code 1J8K) used for the C-C' peptide design. The designed peptide includes the 

C-C' beta-hairpin (orange). The terminal residues of the beta-hairpin (magenta) were 

mutated to cysteine to induce a disulfide bond and mimic the conformation of the peptide 

in the protein. The key residue for recognition, Asp41, is reported in ball-and-stick along 

with the residues Arg33 and Glu45, which form a salt bridge, and the terminal residues 

mutated to cysteine. 
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Table S1. Primers used in this study 

Primer name Sequence (5’-3’) Use  

Analytical PCR   
IS1548F GCCGTCTGCGTGCCCATTGCGTCTA Detection of 

IS1548  Scl1 R ACTAGATCTGAGATTATGGTGCTTTGATGTC 
232 Up CTCCACAAAAGAGTGATCAGTC Amplificatio

n of scl1.3 232 Rev TTAGTTGTTTTCTTTGCGTTT 
Scl2.3 F AGGCATACAAGATCATGTCCTTGA Amplificatio

n of scl2.3  Scl2.3 R TTTGGTGTATGTGGTGCGGT 
Scl Up CTTTCAATGGATGACGATACC Amplificatio

n of scl2.3 Scl Rev ACTTTCCATCAGTTAGGTAGC 
   
Cloning   
Scl1.3 M3VF GAGATGGCCGAGACTCCTATGACATCAAAGG Cloning of 

scl1.3V 
region  

Scl1.3 M3VR CAGCGTCTCAGCGCTCTTTGTTGCACCTTTTTC
AATCAG 

232 Up CTCCACAAAAGAGTGATCAGTC Cloning of 
scl1.3WT  ME7 TCAGTGAATTCTCTTTAGAGGATTAG 

pJRS525F1 GGGTTTTCCCAGTCACG Repair of 
scl1.3 null 
mutation 

ME6a TCCAGCAGGACCTCGAGGTGAACGC 
Scl1.3 M3VF GAGATGGCCGAGACTCCTATGACATCAAAGG Cloning of 

scl1.3FL  Scl1.28WMR GTCAAGCTTATTATTTTTCGAACTGCGGGTGG
CTCCAAGGTTTTTCTGGAGCTGGAGTTACC 

Scl1.3 M3VF ext GAGATGGCCGAGACTCCTATGACATCAAAGGA
GAGACAAG 

Cloning of 
scl1.3WT  

Scl1.3 truncR2 GGTCTCAGCGCTACCTCGAGGTCCTGCTGGA
CCTTG 

Scl2 M3VF GAGATGGCCGATGGTGAAGATGCCCAAAAAAG Cloning of 
scl2.3  Scl2.28_WMR GTCAAGCTTATTATTTTTCGAACTGCGGGTGG

CTCCAT 
   
qRT-PCR analysis   
tufA_F CAACTCGTCACTATGCGCACAT qRT-PCR of 

tufA tufA_R GAGCGGCACCAGTGATCAT 
Scl1_WMR_exp_F TGCTGACAAAGAAGCTAACCAAAC qRT-PCR of 

scl1  Scl1_WMR_exp_R GTGGTTGTTGGCTACAGGTGTCT 
Scl2_WMR_exp_F TCCTAAAACACCAGAGGTCC qRT-PCR of 

scl2  Scl2_WMR_exp_R
2 

TGTGTGTGTCGTGAGCTGC 
emm3_exp_F2 AACAAATCTCAGACGCAAGCCGTC qRT-PCR of 

emm  emm3_exp_R2 TTCAAGCTCTTTGTTWAGTTTTTCAAG 
Mga_TMF CAAGTCAACAGTGGAGAGAACTAAAATT qRT-PCR of 

mga  Mga_TMR ATGGAGATGTTGAGAGCTTTGCT 
Mga_F1 ATCAGACAAAAACATTAAATTGCATG Sequencing 

of mga 
promoter 

Mga_R1 TTGCATGTTAGTGAGACAAGTTTGC 
a Bolded GAA in primer ME6 indicates codon for glutamine in place of the original TAA stop 
codon.  
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Table S2. Variation in scl2.3 gene among M3 strains 

Strain  No. of GXY 
repeats 

No. of bp in the  
CL region 

Amplicon size 
(bp)a 

No. of 
CAAAA 
repeats 

GTG in 
frameb 

MGAS274 ~125 ~1125 ~1206  8 yes 

MGAS315   116   1044   1125  5 yes 

MGAS335 ~135 ~1215 ~1296  4 no 

MGAS1313 ~119 ~1071 ~1152  8 yes 

AM3 ~129 ~1161 ~1242  10 no 

MGAS3375   17   153   234   5 yes 

MGAS9517   113   1017   1098 8 yes 

MGAS9622   111   999   1080 11 yes 

MGAS9631   113   1017   1098  18 no 

MGAS9716   110   990   1071 14 yes 

MGAS9726   111   999   1080 11 yes 

MGAS9739   119   1071   1152 5 yes 

MGAS9760   113   1017   1098 11 yes 

MGAS9780   106   954   1035 14 yes 

MGAS9842   139   1251   1332 9 no 

MGAS9852   103   927   1008 8 yes 

MGAS10080   117   1053   1134 5 yes 

MGAS10118   119   1071   1152 5 yes 

MGAS10220   110   990   1071 12 no 
a Amplicons were generated using primers Scl2.3 F/ R (Table S1) 
b GTG is scl2 start codon 
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Table S3. Mass spectrometry identification of rScl and native Scl proteinsa 

Sample No. of 
peptides 
>95% 
confident 

Peptide Confidence Sequence 
coverage 

Confident 
ID 

rScl1.3V 4 EENSQEELK 99% 40% yes 
EENSQEELKNFTEER 99%   
LKEILDLIEK 99%   
WYGTYFKEENSQEELK 99%   

rScl2.3 2 GIQDHVLDGQDGDR 99% 18% yes 
EELLSALIDGTSR 98.13%   

      
MGAS315 WT 
Scl2.3 in Sup 12 DVTPAPQNPSN 99% 17% yes 

DVTPAPQNPSNR 99%   
EELLSALIDGTSR 99%   
GEAGPAGPR 99%   
GIQDHVLDGQDGDR 99%   
GIQDHVLDGQDGDRGEAGPA
GPR 

99%   

GLNKPQTQGGNQL 99%   
GLNKPQTQGGNQLAK 99%   
NKPQTQGGNQLAK 99%   
REELLSALIDGTSR 99%   
TPEVPQKPDTAPHTPK 99%   
TPQIPGQSK 99%   

Scl2.3 in CW 7 DVTPAPQNPSNR 99% 15% yes 
EELLSALIDGTSR 99%   
GIQDHVLDGQDGDR 99%   
GIQDHVLDGQDGDRGEAGPA
GPR 

99%   

GLNKPQTQGGNQLAK 99%   
REELLSALIDGTSR 99%   
TPEVPQKPDTAPHTPK 99%   

 
Scl1.3FL- complemented GAS 
315WT :: 
scl1.3FL 

5 EENSQEELKNFTEER 99% 17% yes 
EILDLIEK 99%   
GDKGETGLAGPVGPAGK 99%   
GETGLAGPVGPAGK 99%   
LKEILDLIEK 99%   

10870∆scl1 :: 
scl1.3FL 

4 EILDLIEK 99% 11% yes 
GDKGETGLAGPVGPAGK 99%   
GETGLAGPVGPAGK 99%   
LKEILDLIEK 99%   

M41∆scl1 :: 
scl1.3FL 

3 EENSQEELKNFTEER 99% 13% yes 
GDKGETGLAGPVGPAGK 99%   
GETGLAGPVGPAGK 99%   

a Protein identification is confident by the presence of at least two distinct peptides with 
>95% confidence each. Sup, supernatant protein fractions; CW, cell-wall association 
protein fractions. 
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Table S4. Summary table of fold-changes in scl1 and scl2 expressiona 

Strain Gene Fold change +SE - SE P value Significance 

M1 scl1 21.05195084 -2.33583 -2.62734 0.001184755 **  
scl2 -23.6920597 -1.97551 -1.82347 0.01549836 * 

M28 scl1 6.237987683 -1.1098 -1.34997 0.01395444 * 

 scl2 -7.25032516 0.960352 1.106978 0.034822349 * 

M41 scl1 7.787441864 -0.82018 -0.91673 0.004897482 ** 

 scl2 -3.22615419 0.376259 0.425935 0.141911016 N.S. 

M3 MGAS: 

10870 scl1 -25.2160816 1.366976 1.445328 5.48581E-06 *** 

 scl2 -1.84753589 -0.01174 -0.01166 0.077646106 N.S. 

158 scl1 -45.8489636 -0.86051 -0.84465 0.000121468 ***  
scl2 1.077129939 0.059307 0.056212 0.753558444 N.S. 

335 scl1 -42.9309881 -4.03211 -3.68593 5.18378E-05 ***  
scl2 -2.44408041 -1.65928 -0.98832 0.283398851 N.S. 

1313 scl1 -43.929358 0.938527 0.959016 5.45812E-06 ***  
scl2 -3.89390614 -2.38312 -1.47835 0.117229672 N.S. 

aFold-changes in scl1 and scl2 expression relative to M3 MGAS315 are shown for each 
strain. Data is based on qRT-PCR analysis of RNA isolated during exponential growth 
phase and expression is normalized to the expression of tufA gene. +SE, positive standard 
error; -SE, negative standard error. Significance is calculated based on three independent 
experiments, each performed in triplicate wells. *P<0.05, **P<0.01, ***P<0.001; student’s 
t-test.   
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Table S1. Strains and plasmids used in this study 

Strain Description Source 

MGAS315 Serotype M3 invasive strain (1) 
MGAS10870 Serotype M3 invasive strain (2) 
MGAS23440 Serotype M3 invasive strain (3) 
MGAS10870sclACarrier Isoallelic mutant with sclACarrier This study 
MGAS10870∆sclA Isogenic deletion mutant lacking sclA This study 
MGAS10870∆sclA:: 
pDCsclAInvasive 

Isogenic deletion mutant complemented in 
trans with pDCsclAInvasive 

This study 

MGAS10870∆sclA:: 
pDCsclACarrier 

Isogenic deletion mutant complemented in 
trans with pDCsclACarrier 

This study 

Plasmid Description Source 

pDC123 E. coli/S. pyogenes shuttle vector used 
for trans-complementation and 
expression 

(4) 

pJL1055 E. coli/S. pyogenes shuttle vector used 
for allelic exchange in GAS 

 

pCR2.1 E. coli cloning vector Invitrogen 
pET15b E. coli expression vector Novagen 
pDCsclAInvasive pDC123 shuttle vector with sclAInvasive allele 

and native promoter from 
MGAS10870 

This study 

pDCsclACarrier pDC123 shuttle vector with sclACarrier 
allele and native promoter from carrier 
strain MGAS23440 

This study 

pJSF41 pJL1055 with sclACarrier from MGAS23431 This study 
pJSF66 pET15b containing sclAInvasive from 

MGAS10870 used for overexpression and 
subsequent antibody generation 

This study 

pJRS525 E. coli/ S. pyogenes shuttle vector used 
for cloning and repair of sclAInvasive allele 
from MGAS315 to generate sclAM3-FL 

(5) 

pSL501 pJRS525 with sclAInvasive from MGAS315 This study 
pSL502 pSL501 with repaired allele sclAM3-FL 

generated by PCR mutagenesis 
This study 

pASK-IBA2 E. coli expression vector used for generation 
of rSclAM3-FL 

IBA, Gӧttingen 

pSL503 pASK-IBA2 with sclAM3-FL This study 
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Table S2. Primers used in this study 

Primer Use Sequence (5’-3’) 

2902F 
 

3’ end of sclA used to amplify sclA from invasive 
and carrier strains 

ATTTTTGCCATTTCGTT
CCT 

2487R  
 

5’ end of sclA upstream of promoter used to 
amplify sclA from invasive and carrier strains 

CGAATTTTCCAAGATT
GACGA 

2901F 
 

Downstream of sclA used to generate in-frame 
allelic replacement of sclA with aad9 

GAAATGCGCTCTTGTT
TGTC 

MSP166  
 

Forward primer used for PCR amplification and 
sequencing of sclA in invasive GAS 

TCTTTTGGGATCTCTC
AGGC 

MSP167 
 

Reverse primer used for PCR 
amplification and sequencing of sclA in invasive 
GAS 

TAAATAATCAGGTCTA
GCTACC 

MSP183 
 

Used with 2901F to generate 3’- 
flanking region overlapping with 
aad9 

CTATTTAAATAACAGA
TTAAAAAAATTATAAC
GCAAAGAAAACAACTA
ATCCTCTAAATTGAG 

MSP181 
 

Used with MSP182 to amplify aad9; contains 18-
bp at end of sclA ORF 
 

CTCAATTTAGAGGATT
AGTTGTTTTCTTTGCG 
TTATAATTTTTTTAATC
TGTTATTTAAATAG 

MSP182 
 

Used with MSP181 to amplify aad9; contains 18-
bp at beginning of sclA ORF 
 

GAAAGAGAGAACAAC
ATATGTTGACATCAAA 
GCACAATACATGTTAT
AATAACTATAAC 

MSP184 
 

Used with primer 0488R to generate 5’-flanking 
region overlapping with aad9 for in-frame 
deletion of sclA 
 

GTTATAGTTATTATAAC
ATGTATTGTGCTTTGA
TGTCAACATATGTTGT
TCTCTCTTTC 

0488R 
  

Upstream of sclA used to generate in-frame 
allelic replacement of sclA with aad9 

TATGAACAGGCTTCTG
ATTT 

MSP204 sclA forward TaqMan primer TGAAAAAGGTGCAACA
AAGGGCGATA 

MSP205 sclA reverse TaqMan primer GTCCTGCTGGACCTT
GTGCG 

MSP206 
 

Probe for sclA TaqMan transcript analysis. 
Contains 5’- FAM and 3’-BHQ1 labels 

CTGGGCCTACTGGAC
CGGCT 

MSP263  
 

5’-end of sclA and excluded signal sequence 
used for cloning of sclA for expression; contains 
NdeI site 

GCAGCGTTAAGCATAT
GACTCCTATG 

MSP264  
 

3’-end of sclA used for cloning of sclA for 
expression; contains XhoI site 

CCTTGCTCCTCGAGTT
AACCTCGTGGTCC 

MSP275  
 

5’-end – including native promoter – of sclA and 
used with MSP277 to amplify for cloning into 
pDC123; contains EcoRV site 

TATCCAACGATATCAG
AAGGTACAAG 
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MSP277  
 

3’-end of sclA used with MSP275 to amplify for 
cloning into pDC123; contains HindIII site 

ACCTTGAAAAGCTTGC
TCACCGCG 

232Up  
 

5’ end of sclA used for amplification of MGAS315 
sclAInvasive allele 

CTCCACAAAAGAGTGA
TCAGTC 

ME7  
 

Used with 232Up to generate sclAInvasive from 
MGAS315 for cloning into pJRS525 

TCAGTGAATTCTCTTT
AGAGGATTAG 

pJRS525
F1  

Used with ME6 to generate repaired full-length 
sclA fragment from MGAS315 (sclAM3-FL) 

GGGTTTTCCCAGTCAC
G 

ME6  
 

Reverse primer used for PCR mutagenesis to 
repair null mutation in sclAInvasive 

TCCAGCAGGACCTCG
AGGTGAACGC 

M3VF  
 

5’ end of sclA for cloning sclAM3-FL into pASK-
IBA2 expression vector 

GAGATGGCCGAGACT
CCTATGACATCAAAGG 

Scl1.28W
MR 
 

3’ end of sclA containing StreptagII 
sequence for cloning sclAM3-FL into pASK-IBA2 
expression vector 
 

GTCAAGCTTATTATTTT
TCGAACTGCGGGTG 
GCTCCAAGGTTTTTCT
GGAGCTGGAGTTACC 
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Figure S1. Separation of (a) 5 amplicons unique to different species of Aspergillus as well 

as electropherograms that contain internal standards of 150, 450, and 500 base pairs as 

well as a single amplicon for (b) A. nidulans (227 bp); (c) A. terreus (262 bp); (d) A. niger 

(297 bp); (e) A. fumigatus (338 and 489 bp); (f) A. flavus (403 bp).  

16 17 18 19 20 21 22 23 24 25

Primers

A. nidulans

227 bp

A. terreus

262 bp A. niger

297 bp

A.flavus

403 bp

A. fumigatus

338 bp

A. fumigatus

489 bp

a)

16

150 bp

A. fumigatus

338 bp

A. fumigatus

489 bp
500 bp

450 bp

17 18 19 20 21 22 23 24 25

e) 

16

150 bp

A. terreus

262 bp

500 bp

450 bp

17 18 19 20 21 22 23 24 25

c) 

16

150 bp

A. nidulans

227 bp

500 bp

450 bp

17 18 19 20 21 22 23 24 25

b) 

16

150 bp

A. niger

297 bp

500 bp

450 bp

17 18 19 20 21 22 23 24 25

d) 

16

150 bp

A. flavus

403 bp

500 bp

450 bp

17 18 19 20 21 22 23 24 25

f) 

Time (min)Time (min)

Time (min)Time (min)

Time (min)Time (min)

0.25 RFU
0.25 RFU

0.25 RFU

0.25 RFU

0.25 RFU
0.25 RFU

Figure S-1: Separation of (a) 5 amplicons unique to different species of Aspergillus as well

electropherograms that contain internal standards of 150, 450, and 500 base pairs as well as a single

amplicon for (b) A. nidulans (227 bp); (c) A. terreus (262 bp); (d) A. niger (297 bp); (e) A. fumigatus (338

and 489 bp); (f) A. flavus (403 bp).

Figure S-1: Separation of Aspergillus species markers
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Table S1. Effect of SYBR Green 1 concentration on migration time of 650 bp DNAa 

Concentration Injection size Migration time in minutes Chromatographic2 
resolution (CV) 

2 µM 5 psi 7 sec 27.9 (4) 
20 µM 5 psi 7 sec 27.8 (2) 
100 µM 5 psi 7 sec 26.1 (5) 

a[DMPC]/[DHPC] = 2.5, 2.5% phospholipid.  Separations (n = 5) are accomplished in a 25 

m id capillary with a total length of 40 cm capillary and effective length of 30.2 cm, with 
Eapplied = 100 V/cm.  The DNA base ladder (1Kb+ DNA ladder, Life Technologies) is 
detected with LIF at 520 nm using SYBR green 1 nucleic acid stain at different 
concentrations positioned before the detection window. 
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Table S2. Effect of phospholipid concentration on resolution1 

  Resolution 450/475 base pair 
DNA2 

 Resolution 900/950 base pair 
DNA3 

Hydration 
(%) 

Temp 
(°C) 

Chromatographic2 
resolution (CV) 

In base 
pairs3 

 Chromatographic2 

resolution (CV) 
In base 
pairs3 

2.5 23 5.0 (6) 5  6.4 (7) 8 
5.0 25 5.1 (10) 5  4.5 (10) 11 
7.5 30 5.4 (7) 5  4.2 (20) 12 
10.0 30 6.2 (7) 4  3.6 (20) 14 

1Separations (n = 5) are achieved at the specified temperature with [DMPC]/[DHPC] = 2.5 

in a 40 cm long, 25 m id capillary.  The effective length is 30.2 cm and Eapp = 100 V/cm.   
2Resolution is calculated as 0.589(Δt/w1/2av), where Δt is the difference in peak migration 
times and w1/2av is the average peak width at half height 
3Resolution in base pairs is calculated as the difference in base pairs/resolution. 
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Table S3. Effect of [DMPC]/[DHPC] on resolution1 

  Resolution 450/475 base pair 
DNA2 

 Resolution 900/950 base pair 
DNA3 

Hydration 
(%) 

Temp 
(°C) 

Chromatographic2 
resolution (CV) 

In base 
pairs3 

 Chromatographic2 

resolution (CV) 
In base 
pairs3 

2.5 23 5.0 (6) 5  6.4 (7) 8 
3.0 21 5.1 (8) 5  5.3 (10) 9 
4.0 21 5.5 (10) 5  5.5 (10) 9 
5.0 21 1.4 (20) 18  2.6 (20) 36 

1Separations (n = 5) are achieved at the specified temperature with [DMPC]/[DHPC] = 2.5 

in a 40 cm long, 25 m id capillary.  The effective length is 30.2 cm and Eapp = 100 V/cm.   
2Resolution is calculated as 0.589(Δt/w1/2av), where Δt is the difference in peak migration 
times and w1/2av is the average peak width at half height 
3Resolution in base pairs is calculated as the difference in base pairs/resolution. 
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Table S4. Effect of temperature on resolution1 

 Resolution 450/475 base pair 
DNA2 

 Resolution 900/950 base pair DNA3 

Temp 
(°C) 

Chromatographic2 
resolution (CV) 

In base 
pairs3 

 Chromatographic2 

resolution (CV) 
In base 
pairs3 

19 1.2 (20) 22  1.8 (20) 27 
20 3.2 (10) 8  5.3 (10) 9 
21 4.5 (9) 6  5.7 (10) 9 
22 4.5 (8) 6  5.8 (10) 9 
23 5.0 (6) 5  6.4 (7) 8 
24 2.7 (10) 9  4.2 (20) 12 
25 2.5 (10) 10  3.3 (20) 15 

1Separations (n = 5) are achieved at the specified temperature with [DMPC]/[DHPC] = 2.5 

in a 40 cm long, 25 m id capillary.  The effective length is 30.2 cm and Eapp = 100 V/cm.   
2Resolution is calculated as 0.589(Δt/w1/2av), where Δt is the difference in peak migration 
times and w1/2av is the average peak width at half height 
3Resolution in base pairs is calculated as the difference in base pairs/resolution. 
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Figure S1. Phylogenetic analyses of bucl1 in B. pseudomallei and B. mallei strains. 

Nucleotide sequences encoding (A) the noncollagenous domain and (B) entire gene 

of bucl1 alleles were used. Support values for each branch are shown as posterior 

probability from Bayesian analysis and bootstrap values from maximum parsimony 

analysis, respectively (PP/MP). Scale bar is representative of evolutionary distance in 

substitutions per nucleotide. 
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Figure S2. Phylogenetic analysis of bucl8 among Burkholderia strains. Bayesian 

analysis was performed on nucleotide sequences of bucl8 non-collagenous regions of a 

set of Burkholderia strains described in Table 3. Support values for each branch are shown 

as posterior probability from Bayesian analysis. Several clusters of strains, C1, C4, and C5, 

corresponding to those observed in the concatenated analysis were also observed. Scale 

bar is representative of evolutionary distance in substitutions per nucleotide.  
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Figure S3. Phylogenetic analysis of Bucl3 and Bucl4 amino acid sequences 

among Burkholderia strains. Bayesian analysis was performed on amino acid 

sequences of (A) Bucl3 and (B) Bucl4 non-collagenous regions of a set 

of Burkholderia strains described in Table 3. Support values for each branch are shown as 

posterior probability from Bayesian analysis and bootstrap values from maximum 

parsimony analysis, respectively (PP/MP). Posterior probability value, which was not 

supported by maximum parsimony analysis is shown in red. Scale bar is representative of 

evolutionary distance in substitutions per nucleotide. 
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Figure S4. Distribution of bucl genes among Burkholderia spp. select agents by 

PCR. Presence of (A) bucl genes 2, 3, and 10 and (B) bucl genes 6, 7, 8, and 15, was 

assessed by PCR on a collection of genomic DNA 

from B. pseudomallei and B. mallei select agents (top panels), as well as in control strains 

of B. thailandensis, B. cepacia, B. cenocepacia, and B. multivorans (bottom panels). 

Amplicon sizes based on Bp K96243: In A) bucl2, 133 bp; bucl3, 166 bp; and bucl10, 109 

bp; In B) bucl6, 115 bp; bucl7, 264 bp; bucl8, 243 bp; and bucl15, 95 bp.M, 50-bp DNA 

ladder. PCR data shown in panels A and B for 25 Bp strains come from two merged gel 

images. 
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