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ABSTRACT 
 

The Effect of Melatonin or Maternal Nutrient Restriction on Cell Proliferation in the 

Ovine Placenta 

 

Adam W. Eifert 

 

Our objectives were to assess melatonin receptor dependent modulation of placental cell 

proliferation following treatment with either melatonin, luzindole (melatonin receptor 1 and 2 

antagonist), or vehicle. In addition, a second study was conducted to assess placental cell 

proliferation following dietary melatonin treatment in a maternal nutrient restriction model. For 

the first experiment, 14 primiparous ewes were fitted with Alzet mini osmotic pumps attached to 

a catheter and infused with vehicle, melatonin, or luzindole from d 62 to 90 of gestation. Ewes 

were euthanized and placentomes collected for analysis at the end of the 4 week infusion. For the 

second experiment, 31 primiparous ewes were supplemented with 5 mg of melatonin per d 

(MEL) or no melatonin (CON) and allocated to receive 100% (adequate) or 60% (restricted) of 

their nutrient requirements from d 50 to 130 of gestation. On d 130 of gestation, ewes were 

euthanized and placentomes were collected for analysis. Placentomes from both experiment 1 

and 2 were examined for percentage of proliferating cells using an immunofluorescence assay. A 

Ki-67 mouse monoclonal antibody was used to stain proliferating cells within each tissue section 

and was compared to non-proliferating cells stained with DAPI to determine the percentage of 

proliferating cells within each sample. Total RNA, DNA and protein was also analyzed within 

each sample. For experiment 1, cell proliferation in the cotyledon and caruncle was not affected 

(P > 0.30) by vehicle, melatonin or luzindole infusions. Dietary melatonin supplementation from 

mid to late gestation may impact cotyledon cell proliferation; however chronic infusion of 

melatonin or luzindole did not change proliferation in either the cotyledon or caruncle. Treatment 

did not alter the concentrations of RNA, DNA, protein (P ≥ 0.15), or the ratio of RNA:DNA and 

the ratio of protein:DNA (P ≥ 0.17). For experiment 2, there was no melatonin supplementation 

by nutritional plane interactions (P > 0.50) on cellular proliferation in either the cotyledon or 

caruncle. There was a tendency (P = 0.08) for melatonin supplemented ewes to have an 

increased percentage of proliferating cells in the cotyledon; however, this effect of melatonin 

was absent (P > 0.30) in the caruncle. Nutritional plane did not alter cellular proliferation in 

either the cotyledon (P > 0.70) or caruncle (P > 0.50). There was no effect of nutritional plane or 

melatonin treatment on the concentration of DNA or protein (P ≥ 0.21) in caruncular tissue. 

However there was an interaction on RNA (P = 0.02) in caruncular tissue which may be due to 

an increase in gene expression following melatonin treatment. There was no effect of treatment 

or nutritional plane on DNA, RNA, protein (P ≥ 0.20) as well as no effect on RNA:DNA or 

protein:DNA (P ≥ 0.25). In summary, melatonin may alter placental growth in ewes with IUGR; 

however, this needs further investigation.  

  



 

iii 
 

TABLE OF CONTENTS 

TABLE OF CONTENTS..............................................................................................................iii 

LIST OF FIGURES...................................................................................................................... iv 

LIST OF TABLES........................................................................................................................ v 

ACKNOWLEDGEMENTS.......................................................................................................... vi 

STATEMENT OF THE PROBLEM............................................................................................ 1 

REVIEW OF LITERATURE…………………………………………………………………... 3 

 MELATONIN BIOSYNTHESIS………………………………………………………. 3 

METABOLIC CLEARANCE OF MELATONIN………………………………………7 

REGULATION OF MELATONIN…………………………………………………….. 5  

 MELATONIN AND PREGNANCY……………………………………………………10 

 NUTRITIONAL REQUIREMENTS DURING GESTATION…………………………13 

THE EFFECT OF MELATONIN OR MATERNAL NUTRIENT RESTRICTION ON CELL 

PROLIFERATION IN THE OVINE PLACENTA 

 INTRODUCTION……………………………………………………………………… 17 

 MATERIALS AND METHODS……………………………………………………......18 

  ANIMAL MANAGEMENT FOR INFUSION STUDY………………………..18 

  SURGERIES FOR INFUSION STUDY………………………………………..19 

  TISSUE COLLECTION FOR INFUSION STUDY……………………………20 

  ANIMALS AND TREATMENT FOR DIETARY STUDY…………………....20 

  NUTRITIONAL SUPPLEMENTATION FOR DIETARY STUDY…………...21 

  TISSUE COLLECTION FOR DIETARY STUDY…………………………..... 22 

  MEASUREMENT OF PLACENTOME CELLULAR PROLIFERATION…....22 

  IMAGE ANALYSIS…………………………………………………………….23 

  CELLULARITY ESTIMATES (DNA, RNA, TOTAL PROTEIN)………….... 24 

  STATISTICAL ANALYSIS…………………………………………………… 25 

 RESULTS INFUSION STUDY.……………………………………………………...... 25 

 RESULTS DIETARY STUDY……………………………………………………….... 30 

 DISCUSSION……………………………………………………………………........... 35 

 REFERENCES………………………………………………………………………......39  



 

iv 
 

LIST OF FIGURES 

 

Figure 1:   Cellular proliferation based on percent KI-67 positive cells at day 90 of gestation 

from ewes chronically infused with luzindole (LUZ), vehicle control (CON), or melatonin 

(MEL) beginning on day 62 of gestation. 

Figure 2:   Cellular proliferation based on percent KI-67 positive cells at day 130 of gestation 

from ewes supplemented with 5 mg of melatonin (MEL) or no melatonin (CON) and 

provided 100% (ADQ; adequate diet) or 60% (RES; restricted diet) of nutrient 

recommendations beginning on day 50 of gestation. 

  



 

v 
 

LIST OF TABLES 

 

Table 1: Ewe body weight, placental size, fetal size, and uteroplacental blood flow at day 90 of 

gestation from ewes chronically infused with luzindole (LUZ), vehicle control (CON), or 

melatonin (MEL) beginning on day 62 of gestation. Data adapted from Lemley et al. (2013). 

Table 2: Placental measures of DNA, RNA, protein, and cellular proliferation at day 90 of 

gestation from ewes chronically infused with luzindole (LUZ), vehicle control (CON), or 

melatonin (MEL) beginning on day 62 of gestation. 

Table 3: Ewe body weight, placental size, fetal size, and uteroplacental blood flow at day 130 of 

gestation from ewes supplemented with 5 mg of melatonin (MEL) or no melatonin (CON) 

and provided 100% (ADQ; adequate diet) or 60% (RES; restricted diet) of nutrient 

recommendations beginning on day 50 of gestation. Data adapted from Lemley et al. (2012). 

Table 4: Placental measures of DNA, RNA, protein, and cellular proliferation at day 130 of 

gestation from ewes supplemented with 5 mg of melatonin (MEL) or no melatonin (CON) 

and provided 100% (ADQ; adequate diet) or 60% (RES; restricted diet) of nutrient 

recommendations beginning on day 50 of gestation. 

  



 

vi 
 

ACKNOWLEDGEMENTS 

 

Firstly, I would like to thank my advisor Dr. Wilson for the guidance and support he has 

given me over the past several years as both an undergraduate and graduate student at West 

Virginia University. I would also like to thank Caleb Lemley for always being there to answer 

any question I may have had in the area of my research to help me better understand the 

intricacies of reproductive physiology. Additionally, I would like to thank the faculty and 

graduate students in the animal science department at North Dakota State University for the help 

they provided me during my short stay there, I do not know how I would have completed 

everything on schedule without them. On a more personal note, I would like to thank my friends 

and family for giving me the support and motivation I needed to get through some of the long 

days, both in the lab and office, I am truly grateful. Finally, and most importantly, I would like to 

my girlfriend Brenda Shibley for giving me the strength and support I have needed over the 

years, you have been with me through it all and hopefully this is just the beginning. Thank you 

for your love, friendship, and patience, I will be forever grateful.   



1 
 

STATEMENT OF THE PROBLEM 

 

During the neonatal period, offspring with low birth weight have a higher incidence of 

morbidity and mortality, while surviving offspring with low birth weight have lower rates of 

gross energy accretion and poor growth rates (Barker and Clark 1997; Greenwood et al. 1998). 

When birth weights are below average, lamb mortality rates can be as high as 20 to 50%, which 

can be detrimental to the producer (Mukasa-Mugerwa et al. 1994). Lamb survivability can be 

associated with several factors and, when birth weights are low, total lamb loss rate can be as 

high as 5%. As of 2013, the total sheep and lamb inventory in the United States is estimated to 

be approximately 5.34 million with an annual loss of 267,000 lambs due to low birth weight 

(NASS, 2013). Assuming 30 to 40 pounds of meat harvested per lamb, we could estimate an 

annual loss of over 10 million pounds of meat due to low birth weight which amounts to millions 

of dollars in lost revenue. If the amount of offspring with low birth weight could be reduced, we 

could increase production, revenue and amount of meat available for consumption, which is not 

only important for farmers in the U.S., but also important for developing countries that rely on 

sheep as a source of protein. 

Melatonin is produced in the pineal gland located near the hypothalamus in the brain and 

is involved in regulating several physiological processes including reproduction, sleep, energy 

balance and behavior in a variety of species (Almeida et al. 2011). Melatonin is unique in that it 

is one of the few hormones that is able to cross the placenta and be delivered to the fetus 

unaltered (Torres-Farfan et al. 2008). Studies have shown that melatonin supplementation has 

been associated with decreasing uterine contractility in the rat, stimulating the secretion of 

progesterone (Forcada et al. 2006), increasing the release of gonadotropins from the pituitary in 

the ewe (Aleandri et al. 2006), and removal of the pineal gland in pregnant rats has been linked 
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to an elevated incidence of spontaneous abortions (Sandyk et al. 1992).Currently, very little 

research has been conducted on melatonin supplementation and its effects on increasing birth 

weight and uteroplacental blood flow. If melatonin supplementation proves to be effective in 

increasing both of these, it could be used to rescue compromised pregnancies and subsequently 

reduce fetal mortality.  Our objectives were to determine the effect of melatonin 

supplementation, either through the diet or chronic infusion, on cellular proliferation in the 

placentome as well as its effect on the concentration of RNA, DNA and protein in intra-uterine 

growth restriction (IUGR) pregnancies.   
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REVIEW OF LITERATURE 

 

Melatonin Biosynthesis 

Production of melatonin by the pineal gland, located near the hypothalamus in the brain, 

has several important physiological roles including regulating sleep, reproduction, molting, 

immune responses, energy balance, and behavior within a broad range of species (Almeida et al. 

2011). Deficiencies in pineal secretion that cause a reduction in melatonin production can be 

associated with insomnia, anxiety, elevated estrogen/progesterone ratio, and immune suppression 

(Arendt 1998). The biosynthesis pathway for the production of melatonin was adapted from Voet 

and Voet (2004). The first step in the biosynthesis of melatonin is hydroxylation of tryptophan 

by tryptophan hydroxylase to 5-hydroxytryptophan which requires tetrahydrobiopterine as a 

cofactor. Decarboxylation of 5-hydroxytryptophan by 5-hydroxytryptophan decarboxylase 

produces serotonin. Serotonin, with the use of acetyl-coA, is converted to N-acetyl-serotonin by 

serotonin acetyltransferase. The final step is the conversion of N-acetyl-serotonin to melatonin 

by 5-hydroxyindole-O-methyltransferase (HIOMT), which is the rate limiting step in melatonin 

synthesis. HIOMT is known as the “melatonin rhythm enzyme” since it plays a time keeping role 

between environmental signals and the production and release of melatonin (Ganguly et al. 

2002). 
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Melatonin levels in ovine plasma are low during the photophase and usually begin to 

increase at the start of the scotophase and peak between midnight and 3:00 hours followed by a 

rapid decrease in concentration (Yellon and Longo 1987; Ganguly et al. 2002). However, the 

Sensupta A, and Tosini G. 2011. 

The NEI Connection, 2011. 



 

5 
 

timing for the rise in melatonin concentration is dependent on the season (i.e. short days vs. long 

days) when the start of the scotophase occurs. Plasma concentrations of melatonin have been 

found to be highly variable among individuals of the same species and may be under strong 

genetic control (Zarazaga et al. 1998). A study conducted by Zarazaga et al. (1998) examined the 

average concentrations of melatonin in the blood plasma of sheep during both short (December) 

and long (June) days. They found that during short days mean nocturnal plasma melatonin 

concentrations were 400.4 pg/mL compared to long days having a mean concentration of 328.3 

pg/mL although it was highly variable among individuals. A similar study conducted by Coon et 

al. (1999) placed lambs in groups of either high or low genetic value based on endogenous 

nocturnal plasma melatonin concentration of their parents. They found that mean nocturnal 

plasma melatonin concentrations varied significantly among lambs with a high genetic value 

(344.1 pg/mL) compared to lambs with a low genetic value (189.7 pg/mL). This study indicated 

that nocturnal melatonin concentrations are under genetic control.   

 

Metabolic Clearance of Melatonin 

Upon synthesis, melatonin is immediately released into circulation and is found in 

circulation within a very short period (Pandi-Perumal et al. 2006). Zarazaga et al. (1998) found 

that melatonin to be ten-fold higher in the blood plasma compared with saliva and concentrations 

in the third ventricle are 20-30 times higher than that found in the blood. A study done by 

Calustrat et al. (2005) found the half life of melatonin to be bi-exponential with a first 

distribution half-life of two minutes followed by the second of 20 minutes. Keveder and McIssac 

(1961) found that the majority of melatonin (70%) is cleared by the kidneys while the remaining 

30% is excreted in the feces. 



 

6 
 

 The catabolism of melatonin occurs primarily in the liver and is first hydroxylated in the 

C6 position by cytochrome P450 mono-oxygenases specifically CYP1A1, CYP1A2, CYP1B1, 

and CYP2C19 (Ma et al. 2005; Pandi-Perumal et al. 2006). After hydroxylation the product, 6-

hydroxymelatonin, is conjugated with sulfate and is excreted in the urine as 6-

sulfatoxymelatonin (aMT6S) (Claustrat et al. 2005). Melatonin can also be demethylated by 

CYP1A2 to N-acetylserotonin, which is the precursor to melatonin in the synthesis pathway 

(Pandi-Perumal et al. 2006). Ma et al. (2005) studied the metabolism of melatonin by human 

cytochrome P450, and found that CYP1A2 and CYP2C19 were mainly responsible for the hepatic 

clearance of melatonin from blood plasma. They also found that CYP1B1 was not expressed in 

high levels within the liver but has a more wide spread distribution in extra-hepatic tissues 

indicating its role in the 6-hydroxylation of melatonin outside the liver (Ma et al. 2005).   

Secondary sites of melatonin metabolism vary depending on the tissue in which it is located. 

Organs derived from neural tissues such as the pineal gland and the retina contain melatonin-

deacetylating enzymes (Pandi-Perumal et al. 2006). These enzymes can either be specific for 

melatonin deacetylases or aryl acylamidases which are less specific (Hardeland et al. 1996). 

Melatonin can be deacetylated to 5-methoxytryptamine in any tissue containing serine-sensitive 

acetylcholinesterase due to its aryl acylamidase side activity (Hardeland et al. 1993; Hardeland et 

al. 1996). Not only can melatonin be catabolized by specific enzymes, but it can also be broken 

down non-enzymatically both intra and extra-cellularly by free radicals and antioxidants (Pandi-

Perumal et al. 2006). The non-enzymatic metabolism of melatonin is achieved by hydroxylation 

using two hydroxyl radicals, which converts melatonin into 3-hydroxymelatonin and is removed 

from the body through the urine (Tan et al. 1998). In the brain a large portion of melatonin is 

metabolized to kynuramine derivatives specifically N
1
-acetyl-N

2
-formyl-5-methyoxykynuramine 
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(AMFK) (Hirata et al. 1974; Pandi-Perumal et al. 2006). Arylamine formidase or 

hemoperoxidases then deformylates AMFK to N
1
-acetyl-5-methoxykynuramine (AMK) and 

recent studies have found that this reaction contributes to about 1/3 of the total catabolism of 

melatonin (Hardeland et al. 2006). Silva et al. (2004) found that the metabolism of melatonin to 

AMFK played an important role in the innate immune response by inhibiting the release of pro-

inflammatory cytokines, specifically interlukin-8 (IL-8), and tumor necrosis factor-alpha (TNF-

α) from neutrophils which are known to cause inflammation.  

 

Regulation of Melatonin 

The regulation of melatonin involves several mechanisms that are in turn regulated by the 

exposure to light (Karsh et al. 1991; Arendt 1995). The suprachiasmatic nucleus (SCN) is the 

bodies’ circadian oscillator and is part of the photoneuroendocrine system.  The circadian rhythm 

is controlled by the circadian oscillator that generates a rhythm which repeats roughly every 24 

hours (Moore and Klein 1974; Klein and Moore 1979; Reppert et al. 1981). There are two main 

systems that control the signals sent to the SCN. The first appears to be classic rods and cones 

located within the retina of the eye (Bronstein et al. 1987; Nelson and Takahashi 1991). The 

second system is comprised of melanopsin-positive retinal ganglion (MPRG) cells (Ganguly et 

al. 2002). These specialized cells are a specific type of photoreceptors located in the ganglion 

cell layer of the retina (Ganguly et al. 2002). Information on day light, perceived from the rods 

and cones, is delivered to the MPRG cells which directly innervate the SCN which either causes 

an increase or decrease in aralkylamine-N-acetyltransferase (AANAT) activity depending on the 

current light conditions leading to an increased production of melatonin when AANAT levels are 

high (Ganguly et al. 2002). Light can either have a stimulatory or inhibitory effect on melatonin 
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synthesis. The stimulatory effects of light increase AANAT activity and melatonin synthesis 

while the inhibitory effects of light interrupt the transmission of signals sent from the SCN to the 

pineal gland decreasing AANAT activity and melatonin synthesis (Klein and Weller 1972; Klein 

1985; Ganguly et al. 2002). 

 The melatonin rhythm generating system involves a complex pathway where signals are 

sent from the retina to locations within the brain. As light conditions are registered by the retina, 

the MPRG cells in cooperation with rods and cones send signals to the SCN on the current 

perceived lighting conditions (Ganguly et al. 2002). This information is then sent to the 

paraventricular nucleus (PVN) which is innervated by cells from the SCN (Kalsbeek and Bujis 

2002). Cells in the PVN innervate the “medial forebrain bundle and reticular formation to 

preganglionic cells in the intermediolateral cell column of the spinal cord” (Ganguly et al 2002). 

The signal is then sent to the superior cervical ganglia and transferred to the pineal gland by the 

inferior carotid nerve and nervi conarii (Ganguly et al 2002). The pineal gland contains 

norepinephrine (NE) containing fibers which are stimulated by the signals received from the 

inferior carotid nerve and nervi conarii (Sugden et al. 1985; Vanecek et al. 1985). When 

stimulated these NE containing fibers release NE that binds to α1 and β1 adrenergic receptors 

(AR) of the pinealocyte (Sugden et al. 1985; Vanecek et al. 1985). The binding of NE to β1-AR 

receptors results in the production of adenylate cyclase through the Gs pathway (Ganguly et al 

2002). Norepinephrine binding to the α1-adernergic receptors increases intracellular calcium 

levels as well as stimulating the production of diacylglycerol (DAG) activating protein kinase C 

(PKC; Sugden and Klein 1988). Adenylate cyclase in cooperation with PKC increases the 

production of the second messenger cyclic AMP (Sugden et al. 1985). Cyclic AMP, through 

several intracellular mechanisms, increases the activity of AANAT within the pinealocyte 
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(Ganguly et al. 2002; Yu et al. 1993). The increased activity of AANAT significantly enhances 

the conversion of serotonin (5-hydroxytryptamine) to N-acetyl-serotonin which is then converted 

to melatonin by hydroxyindole-o-methyltransferase (Ganguly et al. 2002). The newly 

synthesized melatonin is immediately released into circulation, and the amount released is 

controlled by the pineal gland (Illnerova et al 1978). As the nocturnal period ends, neural 

stimulation begins to decrease leading to a reduction in cyclic AMP and subsequently a reduction 

in the activity of HIOMT returning circulating melatonin levels back to a diurnal state (Ganguly 

et al. 2002). 

 The amphibian melatonin receptor was first cloned in 1994 followed by the human and 

sheep receptor soon after (Arendt 1995). The activity of melatonin receptors fluctuate throughout 

the day depending on light conditions and is based upon the circulating levels of melatonin 

(Witt-Enderby et al. 2003). Signal transduction cascades can either be activated or inhibited by 

melatonin which acts either directly through its receptor or independently (Witt-Enderby et al 

2003). Melatonin can act independently from its receptor due to its lipophillic nature and/or due 

to an active uptake mechanism (Benitez-King and Anton-Tay 1993; Finocchiaro and Gilkin 

1998; Mendez-Pelaez and Reiter 1993). There are three main receptor subtypes which melatonin 

can bind to and activate. The MT1 and MT2 receptors are G-protein coupled receptors while the 

MT3 receptor belongs to a family of quinine reductases (Witt-Enderby et al. 2003). The MT1 

receptor is expressed in the SCN of the hypothalamus as well as cardiac vessels and is involved 

in regulating circadian rhythm and constricting blood vessels (Dubocovich et al. 1998; Liu et al. 

1997). It has also been found to be expressed in other regions of the brain and peripheral tissues 

throughout the body, although its actions here are not fully understood (Witt-Enderby 2003). Not 

only can MT1 receptors bind melatonin but they can also bind a wide variety of G-proteins 
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eliciting various responses throughout the body (Brydon et al. 1999; Chan et al. 2002). Several 

studies have shown that MT1 receptors decrease the activity of PKA due to inhibitory responses 

on the cAMP signal transduction cascade as well as decreasing CREB phosphorylation, which 

are both involved in the melatonin synthesis pathway (Ganguly et al, 2002; Witt-Enderby et al. 

2003). The MT2 receptor, like the MT1 receptor is involved in regulating circadian rhythm and 

dilating cardiac vessels as well as being involved in retinal physiology and inflammatory 

responses (Dubocovich et al. 1997; Sugden et al. 1999). The MT2 receptor is not as widely 

dispersed as the MT1 receptor and is expressed in the SCN, retina, kidneys, ovaries, and cardiac 

vessels as well as the sheep placenta (Witt-Enderby et al. 2003; Lemley et al. 2012). The MT3 

receptor is unique in that it displays a binding pattern similar to that of the MT2 receptor 

(Dubocovich 1995). It was recently affinity-purified from the Syrian hamster kidney and has 

been found to share a 95% homology to the quinine-reductase 2 enzyme (Nosjean et al. 2000). 

This protein has been found to be expressed in the heart, brain, kidney, liver, lungs, intestines, 

spleen, testis, skeletal muscle, and brown adipose tissue of the mouse, dog, monkey, and hamster 

(Nosjean et al. 2001).    

 

Melatonin and Pregnancy 

Melatonin is unique in that it is one of the few maternal hormones that is able to cross the 

placenta unaltered (Torres-Farfan et al. 2008). During prenatal development the fetal pineal 

gland is not capable of synthesizing melatonin and relies on maternal production for the supply 

of this hormone even though the enzymes responsible for synthesizing indoles are active before 

birth (Torres-Farfan et al. 2008; Kennaway et al. 1977).  A study conducted by Tamarkin et al. 

(1980) examined the post-natal maturation of pineal innervation in hamsters and found that it 
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coincides with the development of nocturnal rhythm of melatonin release around the second 

week of life. Another study conducted by Klein and Lines (1969) found that in the rat, melatonin 

rhythm is dependent on both the innervation of the pineal gland as well as the presence of the 

enzymes responsible for the synthesis of melatonin. In sheep, nycthemeral release of melatonin 

is not present until the tenth week of postnatal life which may be due to the incomplete 

sympathetic innervation of the pineal gland prenatally (Tamarkin et al. 1980; Yellon and Longo 

1987). Circulating levels of melatonin in the fetus displays a diurnal rhythm that is directly 

related to the maternal release of melatonin; low levels during the day leading to a several fold 

increase during the night (Yellon and Longo 1988; Weaver and Reppert 1986). This pattern of 

secretion relays information on day length and circadian rhythm to the fetus and plays an 

essential role in synchronizing the developing circadian nervous system to the time of day based 

on light conditions (Reppert 1985; Reppert et al. 1987).  Yellon and Longo (1987) looked at 

melatonin rhythm in both the mother and fetus during the last trimester of gestation in sheep. 

They found that at day 120 of pregnancy, circulating concentrations of melatonin were present in 

all pregnant sheep and was similar to the circulating levels in non-pregnant ewes. They also 

reported that fetal concentrations of melatonin were higher during the day (36 pg/ml) compared 

to maternal circulating levels (22 pg/ml) and remained this way through day 135 of gestation. 

These data indicate that there is a 24-hour pattern of circulating melatonin in the fetus. A similar 

study conducted by Yellon and Longo (1988) concluded that the 24-hour pattern of melatonin in 

the fetus during the last trimester was directly related to the circadian release of melatonin from 

the maternal pineal gland due to undetectable concentrations of melatonin in the fetus after 

maternal pinealectomy. 
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 Melatonin can be detected in essentially every compartment throughout the body 

including the human preovulatory follicle, and placenta, and may also be synthesized in the 

ovary due to the presence of AANAT and HIOMT, key enzymes involved in the synthesis of 

melatonin (Tamura et al. 2009). Several studies have shown that granulosa cell steroidogenesis 

and follicular function are altered by melatonin in the hen, hamster, and in humans (Tamura et al. 

2009). The melatonin receptors, MT1 and MT2, have been identified in human granulosa and 

luteal cells, human and sheep placenta, and also in rat ovaries (Soares et al. 2003; Yie et al. 1995, 

Lemley et al. 2012). In the ewe, long term administration of melatonin has been found to have a 

stimulatory affect on the hypothalamic-pituitary-ovarian-axis (HPO) by increasing pulsatile 

luteinizing hormone releasing hormone (LHRH) and luteinizing hormone (LH) release from both 

the hypothalamus and pituitary glands respectively (Aleandri et al. 1996). Woo et al. (2001) 

found that melatonin modifies luteal function and also increases mRNA expression of the LH 

receptor in human luteal cells. This response could be attributed to antioxidant properties of 

melatonin protecting the corpus luteum (CL) from reactive oxygen species (Tamura et al. 2009). 

Preventing the regression of the CL would allow production of progesterone during the luteal 

phase and early pregnancy (Tamura et al. 2009). Bittman et al. (1985) found that the pulsatile 

secretion of LH is mediated by melatonin which controls estradiol negative feedback on the 

hypothalamus. Prostaglandin-F2α (PGF2α) is the key hormone responsible for luteolysis and 

suppression of progesterone production. Deng et al. (2006) treated a murine macrophage cell line 

with supra-physiological concentrations (0.1-1 mM) of melatonin and found that the treatment 

inhibited COX-2 gene expression which is the enzyme responsible for the synthesis of PGF2α. 

Maintaining the CL until placental takeover in the sheep, by inhibiting the factors which lead to 
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its regression, is essential for the continued production of progesterone which is necessary for a 

successful pregnancy. 

 

Nutritional Requirements During Gestation 

Following conception, the fertilized egg goes through several developmental stages 

before becoming a blastocyst around day 7 in the ewe (Senger 2003). Approximately 7-8 days 

following fertilization, the blastocyst “hatches” becoming a free floating embryo within the 

lumen of the uterus (Senger 2003). At this time, the ovine embryo produces interferon tau which 

signals for the maternal recognition of pregnancy and the continued production of progesterone 

by the corpus luteum to maintain pregnancy.  Before the rapidly growing embryo can attach to 

the uterine epithelium, placentation must occur. Ruminants, such as the ewe, have an 

epitheliolchorial placenta that is compromised of 60-100 unique structures known as 

placentomes (Reynolds et al. 2005). The placentome is the location of nutrient and gas exchange 

between the mother and fetus throughout gestation. The maternal portion of these structures, 

known as caruncles, are present shortly after birth and their number and location remain constant 

throughout the lifespan of the dam (Reynolds et al. 2005). During early gestation the fetal 

portion of the placentome, the cotyledon, develops from the chorion and attaches to the caruncle 

approximately 15-18 days after ovulation (Senger 2003). Placental growth in terms of mass 

occurs during the first two thirds of gestation and placentomes reach their maximum size and 

weight around day 90 of gestation, while 90% of fetal growth occurs during the last third of 

pregnancy (Sammin et al. 2009; Redmer et al. 2004).  

Adequate maternal nutrition during gestation is essential for the proper growth and 

survival of the developing conceptus. The placenta is responsible for transferring nutrients to the 
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fetus which can be altered due to the size and nutrient transfer capacity of the placenta (Redmer 

et al. 2004). The nutrient exchange system between the dam and the fetus is dependent on both 

the uterine and umbilical blood flow which is in turn dependent on the adequate vascularization 

of the placenta (Redmer et al. 2004). Without proper nutrient transfer, which is largely dependent 

on blood flow, fetal growth and proper development can be significantly reduced. Studies using a 

growth restricted model (ewes restricted 40% compared to controls) have constantly shown that 

when pregnant ewe lambs are nutrient restricted during various periods of gestation, lamb birth 

weight is reduced (Meyer et al. 2010; Swanson et al. 2008), umbilical artery blood flow during 

mid-gestation is reduced (Lemley et al. 2012), and umbilical vascular resistance is increased 

(Vonnahme 2012). On the other hand, studies conducted by Wallace et al. (1996, 1997) have 

shown that over nourishing adolescent ewes throughout gestation led to a decrease in placental 

mass and a significant reduction in lamb birth weight at parturition. Over nourishment during 

gestation in the adolescent ewe favors maternal growth instead of partitioning nutrients to 

support the growth of the gravid uterus leading to inadequate growth of the fetus (Wallace et al. 

2009). A similar study conducted by Wallace et al. (2003) found that overfeeding mature ewes 

throughout gestation had no effect on fetal growth. In summary, these data indicate that proper 

nutrient intake during gestation is essential for the proper growth and development of the fetus. 

Intrauterine growth restriction (IUGR) is not limited to feed intake but can also be caused by 

environmental conditions such as elevated temperatures leading to heat stress (Vonnahme 2012). 

A study conducted by Regnault et al. (2003) induced IUGR by placing pregnant ewes in 

hyperthermic conditions beginning on day 39 of gestation and ending near term. They found that 

ewes exposed to hyperthermic conditions throughout gestation had placentas which were 

approximately 50% smaller than those from control ewes. A decrease in placental size is not seen 
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mid to late term in nutrient restricted ewes during gestation, on the contrary, placental size in 

nutrient restricted ewes increases and may be due to the need to scavenge more nutrients from 

the blood (Vonnahme 2012). 

 Nutrients are delivered to various tissues throughout the maternal body based on the 

metabolic rate of those tissues (Hammond 1944; Barcroft 1946). When nutrients are limited, 

tissues with a lower metabolic rate have less priority to receive nutrients than do tissues with 

higher metabolic activities (Redmer et al. 2004). Tissues with high metabolic activity have 

greater nutrient delivery due to increased blood flow to those tissues, thus blood flow is the 

limiting factor of nutrient delivery to specific tissues (Redmer et al. 2004). During gestation the 

gravid uterus receives a large portion of cardiac output to support the growing conceptus, 

however, during compromised pregnancies blood flow to the gravid uterus is reduced in order to 

support the needs of the dam (Barker et al. 1997; Redmer et al. 2004; Reynolds et al. 2005). 

When nutrient intake is restricted, the rate of cell division is significantly reduced which is either 

due to the effect of undernutrition or the altered concentration of growth factors such as insulin 

like growth factors and/or growth hormone (Barker et al. 1997). The decrease in specific factors 

required for the proper growth and development may lead to the improper growth of the 

developing fetus. 
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Introduction 
 

 Melatonin is a neurohormone produced from the amino acid tryptophan and secreted 

from the pineal gland on a diurnal rhythm depending on environmental lighting conditions. 

Melatonin has been found to regulate seasonal reproduction in a variety of animals including the 

ewe (Monroe et al. 1998; Yellon and Longo 1987). Additionally, melatonin is unique in that it is 

one of the few maternal hormones that is able to cross the placenta unaltered (Torres-Farfan et al. 

2008).  Previous studies have shown that melatonin supplementation has been associated with 

decreasing uterine contractility in the rat, stimulating the secretion of progesterone (Forcada et 

al. 2006), increasing the release of gonadotropins from the pituitary in the ewe (Aleandri et al. 

2006), and removal of the pineal gland in pregnant rats has been linked to an elevated incidence 

of spontaneous abortions (Sandyk et al. 1992). 

 Adequate maternal nutrition during gestation is essential for the proper growth and 

survival of the developing conceptus. During gestation in mammals, the placenta is the organ 

which is responsible for the transfer of nutrients, oxygen, and immunological factors such as 

cytokines and lymphocytes  from the mother to the fetus. Studies have shown that when pregnant 

ewe lambs are nutrient restricted during various periods of gestation, lamb birth weight is 

reduced (Meyer et al. 2010; Swanson et al. 2008), umbilical artery blood flow during mid 

gestation is reduced (Lemley et al. 2012), and umbilical vascular resistance is increased 

(Vonnahme 2012). These data indicate that proper nutrient intake during gestation is essential for 

the proper growth and development of the fetus.  

Lemley et al. (2012, 2013) found that supplementing ewes with melatonin either through 

the feed or direct infusion into the mesometrial region of the gravid uterus during mid gestation  

decreased caruncle weight (2013), increased fetal abdominal girth (2012), and increased 
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umbilical blood flow (2013). These results led us to hypothesize that supplementation with 

melatonin during mid gestation would offset the negative effects of nutrient restriction during 

mid gestation and increase placental cell proliferation. The hypothesis was tested through two 

separate studies. First, we wanted to determine the effects of chronic in vivo infusions of vehicle, 

melatonin or melatonin antagonist on placental cell proliferation during mid-gestation. Secondly, 

we wanted to determine if supplementing melatonin directly into the feed would increase 

placental cell proliferation in ewes that were nutrient restricted during mid gestation. 

 

Materials and Methods 

All protocols involving animals were approved by the North Dakota State University 

Intuitional Animal Care and Use Committee protocol #A11061 (infusion study) and protocol 

#A10071 (dietary study). 

 

Animal management for Infusion Study 

 The animal management, breeding, and experimental design were previously published 

(Lemley et al., 2013). Initially, 24 primiparous ewes were placed on pasture with ad libitum 

access to hay and water with one ram of proven fertility fitted with a crayon marking harness. 

Mating was recorded every 12 hours. At day 28 after breeding, ewes were transported to the 

Animal Nutrition and Physiology Center (ANPC; Fargo, ND) which is a temperature controlled 

facility (14˚C) with a 12:12 light: dark cycle with lights on at 07:00 hours and off at 19:00 hours 

for the remainder of the study. The study was conducted in August of 2011 and ewes were fed to 

meet early gestational nutrient requirements beginning on day 28 of gestation. Ewes carrying 

singleton pregnancies were assigned to treatments and housed in individual pens (0.91 x 1.2 m) 
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at ANPC for the remainder of the experiment. On day 35 of gestation ewes were acclimated to a 

common alfalfa hay diet (2% of body weight), provided trace mineralized salt blocks (American 

Stockman, Overland Park, KS), and ad libitum access to water. 

 

Surgeries for Infusion Study 

Melatonin was purchased from Spectrum Chemical Mfg. Corp. (Gardena, CA) and 

luzindole was purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). One day prior 

to surgery (day 61 of gestation) Alzet mini-osmotic pumps (model 2ML4; Durect Corporation, 

Cupertino, CA) were prepared using aseptic techniques. The 2ML4 model has a mean pumping 

rate of 2.80 μL/hr (standard deviation of 0.14 μL/hr), a mean fill volume of 2100 μL, and a 

pumping duration of 28 days (without catheter attachments). Melatonin and luzindole were 

prepared at a concentration of 1 mg/mL in vehicle and then sterile filtered. In addition, vehicle 

alone (45% DMSO in water) was sterile filtered for control ewes. Melatonin, luzindole, or 

vehicle were loaded into mini-osmotic pumps and then attached to a 20 cm PE-60 polyethylene 

catheter preloaded with the respective infusion treatment. The mini-osmotic pump and catheter 

attachment were completely submerged in sterile filtered saline and kept at 37˚C overnight (one 

day prior to surgery). 

On day 62 of gestation, ewes were weighed and anesthetized with sodium pentobarbital 

at 3 mg/kg sodium pentobarbital per 20 kg of body weight. Anesthesia was maintained via a 

jugular catheter. The abdomen was sheared and cleaned with betadine scrub. Through a mid-line 

abdominal incision the gravid uterine horn was exposed. During surgery the uterus was covered 

with warm surgical towels, and liberal amounts of sterile saline (37˚C) were applied to the uterus 

every 5 minutes. Pumps and catheters were sutured under the perimetrium and catheters were 
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advanced to the gravid uterine vascular network (arterial and venous) of the mesometrial region. 

Post-surgical care consisted of twice daily i.m. injections of flunixin meglumine (50 mg/mL; 

Prevail; Meridian, ID) and once daily i.m. injections of Penicillin G Procain (300,000 U/mL; 

Durvet; Blue Springs, MO) for the first 2 days post-surgery, following manufacturer 

recommendations. In addition, ewes were provided 50% of their rations post-surgery and feed 

was increased in a stepwise manner during this post-operative phase. Fifteen ewes were selected 

for this surgical procedure and all fetuses were viable during the 4 week infusion period; 

however, one ewe was removed because of a twin pregnancy.  

 

Tissue Collection for Infusion Study  

On day 90 of gestation (following the 4 week chronic uterine infusion) ewes were 

euthanized via captive bolt followed by exsanguination. The uterus was removed at the cervix 

and the fetus was dissected from the gravid uterine horn. Fetal membranes were removed and 

several placentomes were dissected from the uterine wall, weighed, and flash frozen for later 

analysis.  Caruncular and cotyledonary tissues were separated, weighed, flash frozen, and stored 

at -80°C for further analysis. 

 

Animals and Treatments for Dietary Study 

The animal management, breeding, and experimental design were previously published 

(Lemley et al. 2012). Nulliparous Western white face ewe lambs (n=64) and 2 rams fitted with 

crayon marking harnesses were put on pasture with ad libitum access to hay and water. Mating 

was recorded daily at twelve hour intervals. On d 28 of gestation, dams were transported to the 

Animal Nutrition and Physiology Center (ANPC; Fargo; ND) which is a ventilated, temperature 
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controlled facility (14°C) with 12:12 h light-dark cycle with lights on at 07:00 and off at 19:00. 

The study was conducted in September of 2010 and ewes were fed to meet their early gestational 

nutrition requirements beginning on d 28 of gestation. At ANPC, pregnancy was determined 

during days 28 through 35 using a B mode ultrasound (model SSD-3500; Aloka America, 

Wallingford, CT) fitted with a 7.5 MHz, linear transrectal probe, adapted from Schrick and 

Inskeep (1993; Lemley et al. 2012). Lutalyse was administered to ewes carrying multiple 

conceptuses and reintroduced to the rams 2 wk later. Ewes carrying singletons were individually 

housed in 0.91 x 1.2m pens at ANPC for the duration of the study.  

Previous work conducted at NDSU on mid- to late-gestational maternal under nutrition 

has shown to be an effective model to observe the effects of under nutrition during this stage of 

pregnancy. This IUGR model has consistently resulted in decreased fetal weight, decreased birth 

weight, no difference in placental weight, and decreased postnatal growth rates (Meyer et al., 

2010; Lemley et al., 2012). 

 

Nutritional Supplementation for Dietary Study 

On d 50 of gestation, ewes were assigned to one of four treatment groups consisting of 5 

mg of melatonin (MEL; Spectrum Chemical Mfg., Gardena, CA) or no melatonin (CON) and 

supplied 100% (adequate diet; ADQ) or 60% (restricted; RES) of NRC recommendations (1985) 

for the remainder of the study. The four resulting treatment groups consisted of CON-ADQ 

(n=7), MEL-ADQ (n=8), CON-RES (n=8), MEL-RES (n=8). Nutrient recommendations were 

set based on the mid- to late- gestational requirements for a 60 kg body weight pregnant ewe 

lamb. All ewes were fed and/or supplemented five hours before the start of the dark cycle at 

1400 with melatonin enriched pellets. A melatonin solution was made by dissolving powered 
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melatonin in 95% ethanol at a concentration of 5 mg/ml. A day prior to feeding, 1 ml of the 

melatonin solution was applied to control pellets (100g) and placed in a plastic bag to allow the 

ethanol to evaporate overnight at room temperature with no exposure to light (Lemley 2012). At 

1400, the melatonin supplemented pellets (100g) were fed to the MEL groups and were 

consumed within ~5 minutes. After the consumption of the melatonin treated pellets, the 

remainder of the control pellet was divided between all melatonin treated animals. 

 

Tissue Collection for Dietary Study 

On day 130 of gestation, ewes were weighed and anesthetized with sodium pentobarbital 

at 3 mg/kg of body at 08:00. A catheter was inserted into the jugular vein and used to maintain 

anesthesia via intermittent infusion with sodium pentobarbital. The following surgical 

procedures were non-survival; however aseptic techniques were used to preserve tissue samples 

for later analysis. The abdomen was sheared and cleaned with Betadine and the uterus was 

exposed via a midventral laparotomy, covered with warm surgical towels and liberal amounts of 

saline (37°C) were applied to the uterus every 5 minutes. Intraoperative uterine and umbilical 

blood flows were determined using duplex B-mode and D-mode program of the color Doppler 

ultrasound instrument (Lemley et al., 2012).  Prior to ewe euthanasia the gravid uterine horn was 

dissected and the fetus was removed under general anesthesia before the uterus was removed at 

the cervix. Fetal membranes were removed and several placentomes were dissected from the 

uterine wall, weighed, and flash frozen for later analysis.  Caruncular and cotyledonary tissues 

were separated, weighed, flash frozen, and stored at -80°C for further analysis. 

 

Measurement of Placentome Cellular Proliferation 
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 Placentomes excised from pregnant ewes on days 90 (infusion study; Experiment 1) and 

130 (feeding study; Experiment 2) of gestation were analyzed using an immunofluorescence 

protocol developed at NDSU specific for cell proliferation. Fresh placentomes were fixed in a 

10% solution of neutral buffered formalin containing 4% formaldehyde for < 24 hours and 

transferred to a 70% ethanol solution. After fixation, the placentomes were embedded in paraffin 

and 5 µm tissue sections were made and mounted on glass slides to prepare for staining. The 

prepared tissue samples from all ewes were incubated with a KI-67 mouse monoclonal antibody 

(VP-k452 Vector Laboratories) at 1:350 (6 µL/2.1 mL of blocking buffer). To label the primary 

antibody, a goat anti-mouse IgG secondary antibody conjugated to Alexa-647 fluorophore (A-

21235, Life Technologies) was applied to the slides for a 1 hour incubation period. In order to 

differentiate between the maternal and fetal sides of the placentome, rhodamine labeled lectin 

(RL-1102, Vector Laboratories) was applied to the slides following the secondary antibody 

incubation. Before applying the cover slips, a drop of Prolong Gold anti-fade reagent with DAPI 

(P36931, Life Technologies) was added to each slide as a nuclear counter stain.  Cellular 

proliferation was quantified using Image-Pro Plus (Media-Cybernetics Inc.).  

  

Image Analysis 

 Photomicrographs were taken at 20x magnification in a low light environment using a 

Zeiss Axio Imager 2 microscope (Zeiss, Oberkochen, Germany). Because KI-67, rhodamine 

lectin and DAPI fluoresce at different wave lengths (625nm, 555nm, and 365nm respectively), a 

picture was taken at each specific wave length. The three pictures were then overlaid to get a 

representative image of the sample. This was repeated at four other random sections of the slide 

for each sample.  The resulting images were analyzed using Image-Pro Plus software (Media-
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Cybernetics Inc). For each image, the fetal and maternal portions were distinguished and a macro 

was developed to quantify the total area of maternal or fetal tissue as well as the area of 

proliferating and non-proliferating cells. By obtaining the average area of a proliferating and 

non-proliferating cell, the quantity of each could be determined for each treatment group.   

   

Cellularity Estimates (DNA, RNA, and Protein) 

 Individually frozen caruncular and cotyledonary tissues were ground into a fine powder 

using a mortar and pestle while submerged in liquid nitrogen and transferred to a chilled tube to 

allow the excess liquid nitrogen to evaporate. AllPrep DNA/RNA/Protein Mini kit (Qiagen, 

Hilden, Germany) was used to quantify the amount of DNA, RNA, and protein present in both 

cotyledonary and caruncular tissues from both the infusion and feeding studies. Supplied buffer 

(buffer RLT) was then added and the sample was homogenized using a Tissuemiser (Fisher 

Scientific, Waltham, MA). The lysate was centrifuged at full speed (18,000 RCF) for three 

minutes before being transferred to a DNA spin column. DNA and RNA were extracted and 

washed according to Qiagen’s protocol and were eluted to a final volume of 50 µL of RNase free 

water (RNA), or 100 µL of Buffer EB (DNA) before being quantified using NanoDrop 

spectrophotometer (ND-1000, Thermo Scientific, Waltham, MA). 

 Tissue homogenates suspended in buffer (buffer RLT, Qiagen) were used to assess total 

protein.  The prepared tissue homogenates were quantified with Coomassie Brilliant blue G 

(Bradford, 1976) using bovine serum albumin (Thermo Scientific, Waltham, MA) as the 

standard. The prepared samples were measured at 595nm using a spectrophotometer (Spectra 

Max Plus 384, Molecular Devices, Sunnyvale, CA). The concentration of DNA was used as an 
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index of cell number with protein:DNA ratio a measure of cell size, and RNA:DNA ratio used as 

an index of transcriptional activity (Reed 2007).     

 

Statistics 

 Data for the melatonin infusion were analyzed using the MIXED procedure of SAS (SAS 

Software version 9.2, SAS Institute Inc., Cary, NC). Fetal sex was included in the model, and it 

was removed if P ≥ 0.25. The model compared means across all three treatments; control (con), 

melatonin (mel), or luzindole (luz). Data were considered significant if the P < 0.10. 

Data for the melatonin feeding study were analyzed as a completely randomized 2x2 

factorial design using the MIXED procedure of SAS (SAS Software version 9.2, SAS Institute 

Inc., Cary, NC). Fetal sex and breeding date were included in the model to help control for 

variation in the number of male vs. female fetuses or the date of breeding. If fetal sex and 

breeding date had a P ≥ 0.25, they were removed from the model statement. The model 

contained the effects for nutritional plane (adequate and restricted), melatonin supplementation 

(control versus melatonin), and the interaction between nutritional plane and melatonin 

supplementation. In the absence of interactions, main effects were considered significant when P 

˂ 0.05. 

 

Results 
 

 

Study 1 (Infusion Study) 

Gross weights and blood flow 

Maternal body weight, placental size, fetal size, and umbilical blood flow at day 90 of 

gestation are illustrated in Table 1. These data were adapted from Lemley et al. (2013). Ewe final 
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body weight, gravid uterine weight, and empty uterine weight at day 90 of gestation were not 

different (P > 0.30) across all treatment groups. Placentome weight and cotyledon weight were 

not different (P > 0.08) across all treatment groups at day 90 of gestation; however, caruncle 

weight was decreased (P < 0.05) in both LUZ and MEL infused dams versus CON infused. Fetal 

weight, crown rump length, and ponderal index at day 90 of gestation were not different (P > 

0.10) across all treatments. In contrast fetal abdominal girth was increased (P < 0.05) in 

melatonin versus luzindole infused dams with vehicle control infused dams being intermediate 

(Table 1).  

 

Cellularity estimates 

 Placental cellularity estimates are illustrated in Table 2. In caruncular tissue, treatment 

did not affect (P ≥ 0.15) the concentration of DNA, RNA or protein. There was no effect (P ≥ 

0.21) of treatment on the ratio of DNA:RNA, and the ratio of protein:DNA. In cotyledonary 

tissue, there was no effect (P ≥ 0.17) of melatonin, luzindole or vehicle infusion treatment on 

DNA, RNA, or protein concentrations. The DNA:RNA ratio as well as the protein:DNA ratio 

was also not affected by treatment (P ≥ 0.60). 

 

Placentome cellular proliferation  

Placentome cellular proliferation is illustrated in Table 2. Treatment of ewes with 1 

mg/mL of melatonin, luzindole, or vehicle delivered at a rate of 2.80 µL/hr for 28 days did not 

affect (P ≥ 0.30) the percentage of KI-67 positive cells in either caruncular or cotyledonary 

tissue. There was also no effect (P ≥ 0.39) of fetal sex on the percentage of KI-67 positive cells 

in either caruncular or cotyledonary tissue (data not shown). 
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Table 1.  Ewe body weight, placenta size, fetal size, and uteroplacental blood flow at day 90 of gestation from ewes 

chronically infused with luzindole (LUZ), vehicle control (CON), or melatonin (MEL) beginning on day 62 of 

gestation. 
  

     
P-value

 

Dependent variable
‡
 LUZ CON MEL    SE      Trt 

Ewe weight, kg        69.2         64.2         67.8        5.9 0.82 

Gravid uterine weight, kg 2.6         2.4         2.6        0.2 0.74 

Empty uterine weight, g        359         364         388        16 0.36 

Placenta      

Placentome weight, g        590         551         490        43 0.21 

Caruncle weight, g        102
b
         159

a
         97

b
        13 0.01 

Cotyledon weight, g        432         363         329        35 0.09 

Fetal weight, g         572         567         612        43 0.67 

Crown rump length (cm)        26         27         27        1 0.33 

Ponderal index (kg/m
3
)        32         29         29        1 0.15 

Abdominal girth (cm)        16.7
b
         17.5

ab
         18.2

a
        0.4 0.01 

Umbilical artery, ml/min        130
b
         141

b
         200

a
        17 0.02 

 
a,b

Least square means with different letter superscripts depict differences P < 0.05. 
‡
Data adapted from Lemley et al. (2013).  
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Table 2.  Placenta measures of DNA, RNA, protein and cellular proliferation at day 90 of gestation from ewes 

chronically infused with luzindole (LUZ), vehicle control (CON), or melatonin (MEL) beginning on day 62 of 

gestation. 
 

     
P-value

 

Dependent variable LUZ CON MEL    SE      Trt 

Caruncle      

DNA, mg/g 4.3         3.7         4.6        0.6 0.48 

RNA, mg/g 5.4         5.5         5.2        0.9 0.97 

    Protein, mg/g        124         128         131        3 0.15 

RNA:DNA 1.5         1.8         1.2        0.4 0.31 

Protein:DNA        32         47         33        8 0.21 

Proliferating cells, % 1.2         1.9         1.5        0.2 0.39 

Cotyledon      

DNA, mg/g 4.1         3.0         4.3        1.3 0.66 

RNA, mg/g 8.2         5.1         7.0        1.4 0.17 

Protein, mg/g        143         139         144        4 0.44 

RNA:DNA 2.4         1.7         1.8        0.7 0.60 

Protein:DNA        42         48         42         11 0.84 

Proliferating cells, % 8.3         8.1         6.7        1.7 0.47 
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Figure 1. Cellular proliferation based on percent KI-67 positive cells at day 90 of gestation from ewes chronically 

infused with luzindole (LUZ), vehicle control (CON), or melatonin (MEL) beginning on day 62 of gestation. 
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Study 2 (Dietary Study) 

Gross weights 

Maternal body condition, placental size, fetal size, and uteroplacental blood flow at day 

130 of gestation are illustrated in Table 3. These data were adapted from Lemley et al. (2012). 

Ewe final body weight and empty uterus weight at day 130 of gestation were decreased in RES 

versus ADQ fed ewes. No main effects or interactions were observed for placentome weight or 

placentome number (P > 0.10). Fetal weight was decreased (P < 0.01) in RES versus ADQ fed 

ewes. At day 130 of gestation umbilical blood flow was increased (P < 0.05) by approximately 

20% in MEL versus CON ewes, with no effect (P > 0.30) of nutritional plane on umbilical artery 

blood flow. In contrast, uterine artery blood flow was decreased (P < 0.05) by approximately 

20% in RES versus ADQ fed ewes, with no effect (P > 0.25) of melatonin supplementation on 

uterine artery blood flow. 

 

Cellularity estimates 

 Placental cellularity estimates are illustrated in Table 4. There was no effect (P ≥ 0.21) of 

nutritional plane or melatonin treatment on DNA or protein concentrations in caruncular tissue. 

However, there was a significant (P = 0.02) melatonin treatment x nutritional plane interaction 

for maternal RNA concentrations in caruncular tissue. Ewes treated with melatonin under a 

restricted diet had an increase in RNA concentration compared to adequately fed ewes treated 

with melatonin. Although there were no melatonin treatment x nutritional plane interactions on 

the ratio of RNA:DNA or the ratio of protein:DNA in caruncular tissue. In cotyledonary tissue, 

neither melatonin supplementation nor nutritional plane affected (P ≥ 0.20) DNA, RNA, or  
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Table 3. Ewe body weight, placenta size, fetal size, and uteroplacental blood flow at day 130 of gestation from ewes 

supplemented with 5 mg of melatonin (MEL) or no melatonin (CON) and provided 100% (ADQ; adequate diet) or 60% 

(RES; restricted diet) of nutrient recommendations beginning on day 50 of gestation.  
 

      
             P-values

† 
  

Dependent variable
‡  CON 

ADQ 

CON 

RES 

MEL 

ADQ 

MEL 

RES 
   SE      Trt    Nut Trt*Nut 

Ewe weight, kg    53   41    51  41 1 0.56 <0.01 0.64 

Empty uterus weight, g    653   557    674  530 24 0.88 <0.01 0.32 

Placentome weight, g    478   436    488  448 30 0.70 0.17 0.97 

Fetal weight, g    3405   3173    3691
a
  3066 110 0.40 <0.01 0.07 

Crown rump length, cm    53.6   51.7    52.5  51.7 0.9 0.52 0.15 0.52 

Ponderal index
3
, kg/m

3
    22.2

b 
  22.9

b 
   25.9

a
  22.4

b 
1.1 0.11 0.19 0.04 

Abdominal girth, cm    32.5
b 

  32.1
b 

   34.1
a
  31.7

b 
0.4 0.09 <0.01 <0.01 

Uterine artery, ml/min    1261   1023    1520  1094 165 0.30 0.04 0.55 

Umbilical artery, ml/min    650   643    805  710 67 0.04 0.37 0.42 
 

a,b
Least square means with different letter superscripts depict differences P ≤ 0.05. 

†
Main effect of melatonin supplementation (Trt), main effect of nutritional plane (Nut), or the interaction between 

melatonin supplementation × nutritional plane (Trt*Nut). Least square means and SEM for main effects are reported in 

the text. 
‡
Data adapted from Lemley et al. (2012).  

Ponderal index calculated as fetal weight (kg)/crown rump length (m)
3
.   
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Table 4. Placenta measures of DNA, RNA, protein and cellular proliferation at day 130 of gestation from ewes 

supplemented with 5 mg of melatonin (MEL) or no melatonin (CON) and provided 100% (ADQ; adequate diet) or 60% 

(RES; restricted diet) of nutrient recommendations beginning on day 50 of gestation.  
 

      
             P-values

† 
  

Dependent variable
  CON 

ADQ 

CON 

RES 

MEL 

ADQ 

MEL 

RES 
   SE      Trt    Nut Trt*Nut 

Caruncle         

DNA, mg/g 2.2 2.3   1.8 2.8 0.4 0.83 0.18 0.20 

RNA, mg/g 2.8
ab 

1.8
b 

  2.0
b 

4.5
a 

0.8 0.20 0.31 0.02 

Protein, mg/g    137   134   133   129    3 0.14 0.20 0.95 

RNA:DNA 1.4 1.1   1.2 1.8 0.5 0.69 0.74 0.33 

Protein:DNA    85   73   78   63    13 0.48 0.28 0.91 

Proliferating cells, % 0.69 0.70   0.76 0.92 0.04 0.33 0.58 0.59 

Cotyledon         

DNA, mg/g 5.2 4.6   4.9 5.2 0.9 0.88 0.83 0.50 

RNA, mg/g 6.3 7.6   7.1 6.7 0.7 0.92 0.51 0.20 

Protein, mg/g    124   122   124   122    3 0.91 0.47 0.85 

RNA:DNA 1.7 1.9   1.7 1.4 0.3 0.35 0.98 0.25 

Protein:DNA    36   33   31   29    8 0.54 0.76 0.92 

Proliferating cells, % 5.6 5.3   6.6 6.7 0.7 0.08 0.73 0.58 
 

a,b
Least square means with different letter superscripts depict differences P ≤ 0.05. 

†
Main effect of melatonin supplementation (Trt), main effect of nutritional plane (Nut), or the interaction between 

melatonin supplementation × nutritional plane (Trt*Nut). Least square means and SEM for main effects are reported in 

the text. 
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protein concentrations. There was no effect (P ≥ 0.25) of nutritional plane or melatonin treatment 

on the RNA:DNA ratio or the ratio of protein:DNA in cotyledonary tissue. 

    

Placentome cellular proliferation 

Placentome cellular proliferation is illustrated in Table 4. There were no melatonin 

treatment x nutritional interactions (P ≥ 0.58) or main effects of nutritional plane (P ≥ 0.58) on 

placentome cellular proliferation of the caruncle or cotyledon. There was a tendency (P = 0.08) 

for melatonin supplemented ewes to have an increased percentage of KI-67 positive cells in 

cotyledon tissue, but this effect was not present (P > 0.33) in caruncle tissue. 
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Figure 2. Cellular proliferation based on percent KI-67 positive cells at day 130 of gestation from ewes supplemented 

with 5 mg of melatonin (MEL) or no melatonin (CON) and provided 100% (ADQ; adequate diet) or 60% (RES; 

restricted diet) of nutrient recommendations beginning on day 50 of gestation. 
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Discussion 
 

 

 The present study indicates that chronic infusion with melatonin does not alter placental 

cellular proliferation when infused during mid-gestation. This observation does not suggest that 

melatonin does not play a role in increasing cellular proliferation during other stages of 

gestation. The majority of placental development occurs during the first two thirds of gestation 

(Redmer et al. 2004). Melatonin treatment may have varying levels of affect during early 

gestation when placental growth is just starting, although there have been no reports on the effect 

of melatonin infusion on cellular proliferation at this time point of pregnancy. Lemley et al. 

(2013) reported placentome weight and cotyledon weight were not different across all treatment 

groups at day 90 of gestation however, caruncle weight at day 90 of gestation was decreased in 

ewes infused with either luzindole or melatonin compared to controls. This indicates that 

placental growth may be altered by melatonin infusion during mid gestation. Sammin et al. 

(2009) found that placentomes reach their maximum size and mass by day 90 of gestation which 

explains why there was no difference in placentome weight between the three treatment groups 

at day 90 of gestation. However, the decrease in caruncle weight could be attributed to an 

increase in cellular turnover, although the exact mechanism by which this occurs remains 

unclear.  Lemley et al. (2013) found that chronic infusion with melatonin, luzindole or vehicle 

for a 28 day period during mid-gestation did not alter ewe final body weight, gravid uterine 

weight, or empty uterine weight. Fetal growth parameters including fetal weight, crown rump 

length, and ponderal index were not different between the three treatment groups at day 90 of 

pregnancy (Lemley et al. 2013). However, fetal abdominal girth was increased in melatonin 

versus luzindole infused dams with vehicle infused dams being intermediate (Lemley et al. 

2013). In our study, the same treatment did not alter the concentration of DNA, RNA or protein 
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in any of the treatment groups as well as not altering the ratio of DNA:RNA or the ratio of 

protein:DNA in fetal or maternal tissues.   

 Dietary treatment with 5 mg of melatonin per day for 80 days had a tendency to increase 

the percentage of proliferating cells in cotyledonary tissue although there was no effect in 

caruncular tissue. The precise mechanisms by which melatonin increases placentome cellular 

proliferation in cotyledonary tissue remains to be determined and needs to be further 

investigated. During the last third of gestation the rate of fetal development is greatly increased 

(Redmer et al. 2004). Additionally, placental and fetal nutrient requirements are highest during 

late pregnancy and in order for these nutrients to be delivered at a rate to keep pace with fetal 

growth, blood flow to the fetus must increase (Wallace et al. 2004). During late gestation in 

nutrient restricted pregnancies, uterine and umbilical blood flows are impaired (Reynolds et al. 

2005). In the current work, Lemley et al. (2012) found that maternal melatonin supplementation 

during mid to late gestation increased umbilical blood flow by approximately 20% compared to 

control ewes. However, melatonin treatment did not alter uterine artery blood flow compared to 

controls (Lemley et al. 2012). There was also no affect of nutritional plane on placental cellular 

proliferation in either fetal or maternal tissues. Lemley et al. (2012) found that there was no 

change in placentome weight or number at day 130 of gestation due to placental development 

being complete at this period of pregnancy.  RNA concentration was increased in the caruncular 

tissue of nutrient restricted ewes treated with melatonin although this was not seen in 

cotyledonary tissue. The increase in total RNA within the maternal portion of the placentome 

may be linked to an increase in gene expression and subsequently protein synthesis in caruncular 

tissue. Reactive oxygen species (ROS) especially O2
●-

 react with nitric oxide (NO) to form 

peroxynitrite (ONOO
-
) which is a known oxidant and nitrating agent (Richter et al. 2009). This 
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specific ROS has been shown to cause oxidative cellular damage and reduced blood flow due to 

the increase in sequestration of NO which is important in maintaining blood flow in placental 

and umbilical circulations (Schultz et al. 2004). A study conducted by Richter et al. (2009) found 

that nutrient restricted rats treated with melatonin had a significant increase in expression of the 

antioxidant enzymes Mn-SOD and catalase. This increase in antioxidant activity may decrease 

free radical production and ROS allowing for an increase in placental perfusion and the delivery 

of nutrients to the fetus in nutrient restricted pregnancies. However, there have been no studies 

looking at the affect of melatonin on the expression of antioxidant enzymes in the placenta of a 

nutrient restricted ewe.  In our current study, the increased RNA concentration in caruncular 

tissue as well as the increase in umbilical blood flow reported by Lemley et al (2012) may be due 

to the antioxidant properties of melatonin. However, further research needs to be conducted 

regarding the role of melatonin on increasing the expression of antioxidant enzymes in an ovine 

model of IUGR.     

To our knowledge there have been no reported studies on both the dietary treatment and 

infusion of melatonin and its effects on cellular proliferation during mid-gestation in an ovine 

model. However, there have been numerous studies on the effects of nutrient restriction on fetal 

growth and placental development during different times of pregnancy. Placental growth in 

terms of mass occurs during the first two thirds of gestation and maximal proliferative placental 

growth occurs between days 50 and 60 (Redmer et al. 2004; Heasman et al. 1998). The placenta 

is responsible for transporting nutrients to the fetus throughout gestation and without proper 

nutrient transfer, which is largely dependent on blood flow; fetal growth and development can be 

significantly reduced. Studies have shown that when ewes are nutrient restricted for periods of 

time throughout gestation, placental growth is reduced (McCrabb et al. 1991), birth weight is 
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reduced (Meyer et al. 2010), amino acid concentration in both fetal and maternal blood plasma is 

reduced (Kwon et al. 2004), and placental angiogenesis is altered (Reynolds et al. 2005). 

Additionally, Clark et al. (1998) found that feeding ewes with half of the energy required to 

maintain pregnancy from day 30-80 of gestation, reduced mean placentome weight and total 

cotyledonary weight compared to animals fed to meet their nutrient requirements. In the present 

study, Lemley et al. (2012) found that nutrient restricted ewes had a decreased final body weight 

and empty uterine weight compared to adequately fed ewes with no main affect of melatonin 

supplementation. Moreover, fetal weight was reduced in nutrient restricted ewes compared with 

adequately fed ewes with no melatonin by nutritional plane interaction (Lemley et al. 2012). 

In conclusion, supplementing melatonin during mid-gestation either through the diet or 

infusion may help reduce the effects of IUGR, although this needs further investigation to better 

understand the mechanisms involved. Our results show that melatonin supplementation has a 

tendency to increase cotyledonary cell proliferation as well as increasing caruncular RNA 

expression and fetal umbilical blood flow. Methods that increase umbilical blood flow, cellular 

proliferation, and protein synthesis (as a result of increased RNA expression), may help rescue 

IUGR pregnancies.  
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