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Development of a Vehicle Road Load Model for ECU Broadcast  
Power Verification in On-Road Emissions Testing 

Nathan A. Moynahan 
 
Abstract

West Virginia University (WVU) has become an industry leader in heavy-duty 

emissions testing and is continuously improving and updating their testing goals, 

procedures, and quality.  As emissions testing is conducted at WVU in a real-world, on-

road environment, engine parameter values are read through the test vehicle’s electronic 

control unit (ECU) and recorded for use in data reductions.  One significant value that is 

recorded by the WVU emissions measurement system is the ECU engine power output.  

Theses values are recorded and used to report vehicle’s brake specific emissions values 

over a prescribed open-road test route.  Because of the fact that the engine power output 

values reported by the vehicle’s ECU are difficult to accurately measure elsewhere, they 

are assumed to be accurate and used in the data reduction process.  This presented the 

need for a study to develop a model to validate the ECU power output data.  The 

objective of this work was to develop such a model that accurately produces values for 

the test vehicle’s road load while in use.  By developing this model, the quality of the 

results of the on-road emissions testing performed by WVU could be monitored and 

confirmed. 

By measuring three parameters of a vehicle test, this model was developed and 

produced accurate results.  The three primary variables required by this study to verify 

the ECU power were the ECU vehicle speed, the ambient pressure, and the test time.  

These three values were measured and recorded using the WVU Mobile Emissions 

Measurement System (MEMS) and were used in determining the four main components 

that describe a vehicle’s road load under real-world driving conditions.  Although 

parameters such as driveline efficiency and interactions by the driver, such as brake 

applications, could not be accounted for in this study, the results that were determined 

matched the vehicle’s ECU outputted power values accurately and were repeatable.  

Furthermore, the differences between the two different data sets considered provided an 

estimate for the test vehicles driveline efficiency and were found to be averaged at 

approximately 82%. 
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1. Introduction 
With a large portion of exhaust emissions being created through the use of heavy-

duty diesel engines, substantial restrictions have been placed on manufacturers to produce 

low emission engines within the past two decades, and will continue to do so into the 

future.  Heavy duty diesel engines are large contributors to particulate matter and oxides 

of nitrogen pollution into the ambient air and are of much concern to the general public 

health.  Along with restrictions being placed upon heavy-duty diesel engine 

manufacturers to reduce brake-specific mass exhaust emissions in the design and 

manufacturing process, on-road emissions testing research is currently being conducted 

and required for engine manufacturers. 

In conventional diesel engine dynamometer certification and testing, emissions 

are measured within a dilution tunnel where concentrations of diesel exhaust emissions 

are collected.  In order to create emissions levels from the engine that are comparable to 

on-road driving conditions, the engine in testing is supplied a load with a test cycle 

consisting of a preformed speed-load profile as a function of time.  This load is usually 

supplied to the flywheel of the test engine by an AC or DC dynamometer.  To obtain the 

highest accuracy and precision, the measuring equipment is of laboratory grade and very 

accurate.  Instruments used to supply a load to the test engine are precise and minimize 

uncertainty within testing and measurements.  Chassis dynamometer testing is also 

conducted to certify engines by supplying a simulated road load to the drive wheels of a 

test vehicle to record engine exhaust emissions.  Similar to engine dynamometer testing, 

laboratory grade instruments are present and measured values are accurate.  Chassis 

dynamometer emissions levels are usually reported on a distance specific basis, but fail to 

completely simulate real-world driving conditions as on-road testing provides.  During 

on-road testing, it is difficult to measure engine torque and power directly, with a high 

level of accuracy.  Engine torque must be inferred based upon fueling measurements.  For 

that reason, engine power output data from the vehicle’s electronic control unit (ECU) is 

collected and used to report emissions level on a brake specific basis.   

West Virginia University (WVU) is a leader in on-road emissions testing, and is 

in contract with the six heavy-duty diesel engine manufacturing companies (Settling-
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HDDE) to conduct on-road diesel emissions testing on certain model year engines (6).  

Requirements set forth for testing procedures to be conducted were defined by the 

Consent Decrees into four phases with West Virginia University currently operating in 

phase IV.  Phases I and II consisted of an evaluation of current and available technologies 

and an assessment and proposition for the design and development of an on-road 

measurement diesel engine emissions measurement system.  Phases III and IV consisted 

of the development and commencement of on-road testing of the system. 

Previously developed in-use measurement systems include, but are certainly not 

limited to, ROVER, SPOT, and the Semtech-D model system.  In the early 1990’s, an on-

road measurement system development began by the US Environmental Protection 

Agency (EPA) initially designed for emissions measurements of light-duty gasoline 

vehicles but has grown into a heavy-duty measurement system as well (10).  This system 

measured the mass emissions on a distance basis and is considered one of the first 

generations of Portable Emission Measurement Systems (PEMS).  In 2001 the EPA 

continued their PEMS development program and began their simple portable on-vehicle 

testing system (SPOT).  SPOT was established onto the ROVER system and was 

primarily established for off-road emissions testing on large scale heavy-duty diesel 

engines.  The Semtech-D system, developed by Sensors Inc., is another available system.  

With ECU connections, an exhaust flow meter, gaseous emissions analyzers, and 

supporting transducers attached to a test vehicle, emissions can be recorded on a distance 

specific basis or brake-specific basis. 

Heavy-duty engine manufacturers broadcast engine power, speed, and torque 

through the vehicle’s electronic control unit (ECU).  These broadcast values are 

developed through algorithms that account for instantaneous engine parameters such as 

fueling, and engine speed.  To report brake-specific emissions, engine power values are 

recorded from the vehicle’s ECU and applied to the mass emissions measurements taken.  

The issue here is that the broadcast torque is taken to be true without an alternative for 

comparison. 

For quality control and assurance (QA/QC) purposes, it is desired to develop a 

model to verify and compare vehicle road load and engine power for on-road emissions 
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testing being conducted at West Virginia University and elsewhere.  The objective of this 

study is to develop and test the accuracy of this model.  In order to accurately capture the 

vehicle’s road load power an analysis of the contribution and uncertainty in the rolling, 

climbing (or inclination), acceleration, and aerodynamic resistance was performed.  By 

developing a model that describes the vehicle’s road load, the output of the 

manufacturer’s ECU can be justified and verified. 
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2. Review of Literature 
Multiple studies have been conducted in the past that are relevant to this work.  

Within this section, these studies will be discussed and summarized.  This study is 

dependent upon road loads and dynamic parameters of on-road driving conditions.  

Because of this, this discussion was focused on past studies containing information on 

such things as, but not limited to, vehicle speed measurement devices, aerodynamic drag 

measurements, and rolling resistance measurements.  The studies introduced within this 

section played a key importance role in the development of this work by providing 

guidance into procedure assumptions and test methods. 

2.1. Road Load Studies 

2.1.1. United States Environmental Protection Agency, 
1977  

A study was conducted by the EPA in 1977 in order to predict the vehicle load 

settings a chassis dynamometer would have to be set at in order to provide an accurate 

simulation of realistic light-duty road load values (23).  Using fifteen different light duty 

trucks and twenty track tests, or vehicle coastdown tests, experiments were conducted for 

each vehicle at each test weight in order to determine accurate road load values from a 

vehicle speed verses time relation.  These values were then compared to chassis 

dynamometer test results for the same vehicles.  The study considered the two road load 

constituents of rolling resistance and aerodynamic drag for the basis of the chassis 

dynamometer load settings that were being predicted.  After testing was complete, it was 

found that the aerodynamic drag was the preferred method of predicting the chassis 

dynamometer settings.  Furthermore, the vehicles’ frontal areas were found to be the best 

technique of determining or predicting the vehicles’ aerodynamic drag values.  The study 

determined that by using the vehicles’ aerodynamic drag values as a basis for the chassis 

dynamometer power absorption settings, as apposed to the vehicles’ weights, the 

prediction was accurate. 
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2.1.2. General Motors Corporation, 1978 
A study was conducted in 1978 by the General Motors Company (GMC) that 

described a more accurate method of relating real-world road loads to chassis 

dynamometer testing by determining more precise correction coefficients for the different 

road load constituents (32).  When conducting coastdown tests, a correction was needed 

to convert measured road loads to standard conditions for an analysis of the forces acting 

on a vehicle in a coastdown test for the purpose of determining road load forces for a 

dynamometer absorber level setting.  Such factors as aerodynamic lift on a vehicle while 

traveling were considered in the planning of this study.  However, while lift was shown 

to have an affect on a vehicle’s road load by a few percent decrease, at the speeds that 

coastdown testing takes place, equations used to determine the lift, chassis, and tire drag 

was simplified dramatically by neglecting vehicle lift contributions.  For their testing, 

twenty-two cars and light-duty trucks were used to conduct 157 coastdown tests in 

Arizona and Michigan at the GMC Proving grounds.  Through these tests, GMC was able 

to form a set of corrections for wind, air density, and track surface temperatures.  Their 

methods for determining the road loads and correction factors are described in more 

detail in the SAE paper, but it was found that the effects of ambient temperature and wind 

speed were the most significant factors affecting the rolling resistance of the test vehicles.  

Furthermore, the wind direction was found to have significant effects on the dynamic 

pressure, and the surface temperature of the track was found to correlate to the ambient 

temperature and could not be considered an individual factor. 

2.1.3. Toyota Motor Co., 1982 
A study was done by Toyota Motor Company in 1982 with intentions of 

determining two correction factors or coefficients to relate road load on a vehicle during 

real driving conditions to road load measurements determined from chassis dynamometer 

tests (14).  The two correction coefficients were needed to verify the relationship between 

the rolling resistance of a vehicle’s tires and aerodynamic drag measured during chassis 

dynamometer testing and realistic driving conditions.  By knowing the two correction 

coefficients, vehicle road load could be determined during laboratory testing on a chassis 

dynamometer as apposed to on-road vehicle coastdown tests being performed.  The study 

testing began by varying the tire loss to four levels while maintaining aerodynamic drag, 
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brake drag, and drive train losses at a constant level.  At each of the four levels, 

coastdown tests along with chassis dynamometer tests were performed and using a least 

squares method, a straight line was fit to the data.  From this, the correction coefficient 

could be determined for the tire loss.  Similarly, the tire loss was maintained at a constant 

level, and the vehicles aerodynamic drag was varied to four levels and chassis 

dynamometer and vehicle coastdown tests were performed to determine the correction 

coefficient for the aerodynamic drag. 

2.1.4. Northrop Services Inc., U.S. Environmental 
Protection Agency, 1983 

In conjunction with the United States EPA, Northrop Services Inc. conducted a 

study in 1983 that determined average road load values for class six trucks (5).  The 

factors being focused on in this study included aerodynamic drag, vehicle rolling 

resistance, and drive train drag.  Effects due to variations in road grade were considered 

negligible with the assumption that the testing surface maintained a constant zero grade 

value, but contributions to aerodynamic drag due to nonzero yaw angles and driving 

resistance changes due to ambient air conditions were corrected for in the data analysis.  

Using vehicle coast down tests, speed versus time data was collected for each of the 

vehicles tested, which consisted of two heavy-duty vans, and one medium-duty stake bed 

truck.  During the testing, speed data was colleted at a frequency of ten hertz with the use 

of a fifth wheel containing a minicomputer attached to the rear of the vehicles.  To 

account for nonzero yaw angles of wind, the speed and direction of the wind was 

measured using a three-cup anemometer and vane three times during each test.  These 

three values were averaged and used to establish an overall wind direction and speed for 

each test run.  Four different analytical models were developed with increasing 

complexity to determine the road load for each vehicle and test.  Variations of up to 14% 

were found for the estimated driving resistance between the four different models and it 

was concluded that complicating the analysis models was not the best method of 

determining more accurate results.  Instead, the use of simpler models is more favorable 

if vehicles’ types are considered and categorized to account for differences in body styles, 

frontal areas, and drive train efficiencies.   
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2.1.5. University of Saskatchewan, 1989 
A study was conducted by the University of Saskatchewan in 1989 which 

intended to conduct vehicle coastdown tests and determine vehicle road load due to 

aerodynamic drag and rolling resistance under various weather conditions (20).  The 

coastdown tests were to be conducted under windy conditions, along with the testing 

being performed on a testing track of variable grade.  In this study, certain parameters 

contributing to the vehicle’s road load were considered negligible including centripetal 

force due to road curvature, lift force, velocity dependencies of rolling circumference and 

rolling resistance.  To perform this study, the University of Saskatchewan used the Nexus 

computer car to test, which was a prototype, fuel efficient, safety oriented, single 

passenger vehicle.  The Nexus car was shown to have much lower drag and road load 

than conventional cars and was chosen under the assumption that if repeatable results 

could be acquired with it, results could be found for any conventional vehicle using the 

same model developed.  For the coastdown tests, a free wheel was attached to the Nexus 

vehicle with intentions of measuring resistance due to the pavement/tire interaction, the 

driveline bearings, the aerodynamic drag, and the free wheel itself.  Effects of brake drag 

were eliminated during testing by removing the vehicle’s rear brake, and backing off the 

vehicle’s front brake before each test.  Approximately half of the tests were conducted 

during windy conditions and the other have were conducted during calm conditions 

where wind speed did not exceed eight km/hr.  In analyzing the data recorded during 

testing, the calm conditions could be evaluated as an entire data set with the assumption 

that the yaw angle was assumed to be equal to zero.  However, the windy conditions had 

to be analyzed differently due to the fact that the aerodynamic drag factor is a function of 

the yaw angle, and therefore the data was analyzed in a moving window with an interval 

size of sixteen seconds which moved laterally in five second steps until the end of the 

data points was reached.  The analysis method that was developed for this study produced 

accurate results for the calm condition tests.  However, for the windy conditions, results 

were significantly different from those expected.  For the Nexus vehicle, results showed 

that the aerodynamic force along the traveling direction decreased with yaw angle, which 

was the opposite for most road vehicles where the aerodynamic force increases with yaw 

angle. 
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2.1.6. Ford Motor Company, 1997 
In 1997, the Ford Motor Company conducted a study which presented a concept 

of using an effective road profile to predict and determine vehicle road loads with an 

emphasis on surface loading (33).  This study, using the effective road profile, focused on 

the tire dynamics and developing a model that simulates and determines the load found at 

a vehicle’s tires.  The tire model formed within this study incorporated complicated road 

profiles acting on the vehicle’s tires in the vertical as well as the longitudinal and lateral 

directions.  By the use of a tire test stand, loads were applied statically and dynamically 

to passenger vehicles to determine frequency response times of the tires in order to relate 

the measured times to the road load mathematically.  

2.1.7. IVK/FKFS – University of Stuttgart, 2003 
A study was conducted by the University of Stuttgart in 2003 with intentions of 

validating a new method of determining vehicle road load (16).  Their method of 

measuring road load was done with the use of a driving torque measurement and an 

additional vehicle rolling resistance measurement to increase accuracy.  The torque 

measurement was taken with the use of special measuring wheels contributed by the 

Kistler Instrument Corporation.  These wheels measured the driving torque specifically 

and avoided introducing measurements of wheel bearing friction and brake drag that are 

found when driveshaft torque measurements are taken.  The Kistler torque measuring 

wheels used were based on the principle of piezoelectric quartz force sensors.  The 

additional rolling resistance measurements were taken with a trailer fabricated with 

instruments to measure rolling drag specifically and avoid interference from wind and 

drive train components.  With road load measurements being taken on a small part of the 

Autobahn, accurate results were found to show the new system developed was an 

alternative to vehicle coastdown tests. 

2.1.8. SAE J1708/1587 and J1939 Protocols 
Vehicle parameters such as engine speed and power are broadcast by the vehicle’s 

ECU within accordance of the SAE J1708/1587 and J1939 protocols (6).  These protocols 

are defined to govern or establish standards on the methods used by heavy-duty engine 

manufacturers to broadcast vehicle information.  The protocols prescribe such factors as 
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the rate at which the data must be broadcast, the data range, and the data resolution.  

However, the accuracy of the signals broadcasted by the vehicle’s ECU is not defined by 

the protocols and therefore introduces possibilities of inexactness. 

2.2. Aerodynamic Drag Studies 

2.2.1. The Motor Industry Research Association, 1969 
A study was done in 1969 by the Motor Industry Research Association with intent 

of determining a simple method to estimate vehicle drag coefficients (30).  The study’s 

broad nature was to be simply used as a guideline in early stages of vehicle design to 

prevent undesirable vehicle features and was not intended to replace wind tunnel testing.  

This study considered many passenger and light-duty vehicle types and shapes and 

categorized them into different classes depending on their physical attributes.  After the 

classes were constructed, vehicle drag contributions due to each attribute could be 

summed to determine an overall drag coefficient estimate.  Classes included such features 

as front end shape, ground clearance or elevation, cowl and fender cross section, 

windshield plan and peak, roof plan, rear roof/trunk, lower rear end, and the underbody.  

Drag coefficients determined using the estimation method developed in this study were 

found to be within seven percent of actual wind tunnel testing values which shows that 

the method can be of some help at early design stages which was the intent of the study to 

begin with. 

2.2.2. University of Illinois, 1972 
In 1972, a study was conducted by the department of mechanical and industrial 

engineering at the University of Illinois with intentions of deriving an improved method 

for determining vehicles’ aerodynamic drag coefficients (29).  At the time of the study, 

primary methods for determining drag coefficients were determined from wind tunnel 

testing of scaled models and full-sized vehicles, and vehicle coast down testing.  

Limitations with these two methods include boundary layer inconsistency and separation 

due to the ground plane simulation in wind tunnel testing, and with vehicle coast down 

tests, test results accuracy was decreased due to the combination of aerodynamic drag and 

rolling resistance.  This study, using a mathematical analysis, developed two 

dimensionless parameters to determine any vehicle’s aerodynamic drag coefficient.  The 
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mathematical model developed by imitating the energy of the coast down process 

produced statistical results to predict aerodynamic drag coefficients for vehicles of any 

size or weight including medium-duty and heavy-duty applications. 

2.2.3. University of Maryland, 1976 
The mechanical engineering department at the University of Maryland conducted 

a study in 1976 to compare coastdown data, with emphasis on aerodynamic drag, for 

multiple roof mounted drag and vortex reducers on full scale heavy-duty tractor trailers 

(4).  One important aspect of this study was the fact that the coastdown tests were 

conducted in windy conditions and not restricted to conditions of approximately wind 

velocity yaw angles of zero degrees.  The justification of this study was the fact that 

under high speed travel, the aerodynamic drag becomes responsible for approximately 

one-half of the truck’s fuel consumption and with dramatic reductions in aerodynamic 

drag, efficiency would increase similarly and operating costs for tractor-trailer 

combinations could be decreased.  Certain aspects, or discontinuities, of wind tunnel 

testing that are inaccurate of on-road testing were discussed in the paper such as the fact 

that ground effects cause an increase in wind speed with an increase in vertical height, 

and that large wind eddies exist in nature commonly the size of a tractor-trailer and are 

independent of wind speed, neither of which are accurately simulated in wind tunnel 

testing.  The University’s testing was conducted on an 8,750ft runway specifically 

designed for research by NASA in Wallops, Virginia.  An International Harvester cabin-

over engine tractor with a sleeper was used as the test vehicle.  It was noted that the 

tractor-trailer combination was not loaded and fluctuations in weight were due only to 

fuel consumption and different aerodynamic devices installed, and that airflow was 

prevented through the grill of the tractor as it was covered during testing.  Four different 

aerodynamic devices were used in testing consisting of a wind deflector that was 

commercially available, a commercial wind deflector and vortex stabilizer combination, a 

roof mounted fairing specifically designed and built by the University for the testing, and 

a gap seal and fairing combination.  Due to the fact that testing was conducted in windy 

conditions, air speed and direction was measured using an anemometer mounted to the 

front of the truck at a height of approximately half of the maximum truck height for the 

68 tests conducted on the runway.  The study found that there was an inconsistency 
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between wind tunnel testing and the coastdown tests.  Results showed that the addition of 

aerodynamic devices in some cases showed no significant improvement in aerodynamic 

drag in the wind tunnel but showed dramatic reductions in the coastdown tests and 

suggested that the real world flow field was almost impossible to recreate in a wind 

tunnel setting. 

2.2.4. Rover Group Ltd. and Loughborough University, 
1994 

A study was conducted in 1994 by Loughborough University in conjunction with 

Rover Group Ltd. with intent to develop a coastdown method or test procedure that was 

repeatable and produced high accuracy (19).  In the study developed, multiple 

components of vehicle loading were calculated such as rolling resistance and driveline 

losses, and aerodynamic resistance.  For the test vehicle, a 1990 model year Rover 820Si 

Saloon was used and instrumented with an anemometer located approximately 1.3 meters 

ahead of the vehicle’s front bumper.  The anemometer was used to develop a time history 

of relative wind direction and velocity.  Before conducting coastdown tests, the vehicle 

was tested in a full scale wind tunnel owned and maintained by the Motor Industry 

Research Association (MIRA) at standard test speeds of 27m/s.  During wind tunnel 

testing, instruments were installed and removed for a comparison between the 

aerodynamic drag coefficients determined and was shown to increase the vehicle’s drag 

coefficient about 0.006 with the anemometer instrumented onto the vehicle.  During the 

study’s coastdown testing, such parameters as tire pressures were maintained at 28psi and 

68oF, vehicle weight was measured pre and post testing with a linear reduction of weight 

assumed, and the static trim heights of the vehicle were measured pre and post testing as 

well to ensure accuracy and repeatability.  Twenty coastdown tests were conducted as a 

whole with data being collected at a sampling rate of 10Hz.  Vehicle speed was measured 

by the use of a Leitz Correvit optical speed measuring device while the wind velocity and 

traveling direction was determined with the vane anemometer attached to the vehicle.  

With coastdown testing completed a relationship was found that showed an average 

aerodynamic drag coefficient from the coastdown testing that was 7.5% above values 

determined within the wind tunnel and was primarily accounted for on the bases that 

wind flow in the tunnel is an inadequate simulation.  One final important factor that was 

 11



 

determined throughout this study that when using this model, accuracy results 

determining drag coefficients to within 1% can only be reached with a  minimum of forty 

pairs of coastdown tests. 

2.3. Rolling Resistance Studies 

2.3.1. Uniroyal Tire Company, 1971 
In 1971, the Uniroyal Tire Company conducted a study to try to compute power 

consumption of passenger tires (9).  Uniroyal’s intent of describing tire power 

consumption was because its effects on gasoline mileage, acceleration performance, and 

high speed durability.  Eighty tires were analyzed in this study and the rolling resistance 

was divided into two components.  One of which was due to the general distortion of the 

tire at very low speeds and was considered extremely speed dependent, and the other 

component was due to additional distortions of the tires at high speeds and was shown to 

be negligible at low speeds (less than 50mph).  At higher speeds, the high speed 

component was show to account for around two-thirds of the entire rolling resistance of 

the tire being tested.  One problem that was discussed and considered in this study was 

the fact that the general rolling resistance of a tire can vary depending on the type of 

testing being conducted.  Factors such as tire pressure, temperature, alignment, surface 

condition, and so on contribute to the rolling resistance and must be accounted for.  

Studies conducted in the past on power consumption have contradicting results which is 

intended to be accounted for in this study by acknowledging the different testing 

procedures and variables.  Relationships were created by this study that showed 

correlations of velocity, temperature, tire size, pressure, belt angle, tread design, and 

materials with the rolling resistance. 

2.3.2. Goodyear Tire and Rubber Company, 1977 
A study was conducted by the Goodyear Tire and Rubber Company in 1977 that 

considered the effects of the reinforcing material of passenger tires on a vehicle’s rolling 

resistance and also fuel consumption or economy (21).  This study considered the effect 

of both the tire’s belt and carcass when taking into consideration the entire fabric 

reinforcing material.  Twenty tires in all were created for their testing with varying 

carcass material and belt construction combinations.  Testing was done using a 
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conventional coast down test to determine rolling resistance and fuel economy for each 

tire type.  All tires tested were broken in for 100 miles at 55mph and a tire pressure of 

28psi was maintained.  Results of the test showed that aramid provided the best overall 

fuel efficiency and rolling resistance while nylon provided the worst.  The study did, as 

expected, find that rolling resistance did increase due to tire or carcass weight increases, 

and at the same time, fuel economy decreased.  It was found that a change in rolling 

resistance of no more than five percent could be reached using certain tire designs and 

fuel economy values could be increased around that same five percent by using a high 

tenacity, light cord in a single ply carcass. 

2.3.3. General Motors Corporation, 1978 
In 1978 a study was done by General Motors Corporation to develop a 

relationship between the elasticity of vehicle tire and rolling resistance (22).  Their basis 

was that due to misshapen tires, a torque is created due to the weight of the vehicle on the 

road.  Because of the vehicle’s weight, the symmetry of the tire is distorted and 

undergoes a non-radial acceleration, even at constant speeds, which implies a torque that 

must be countered and a resistance and energy loss is produced if the tire is not perfectly 

elastic.  In their analysis, a simplified case was considered where a perfectly circular tire 

was distorted by the road in a fashion where the tire was deformed into a truncated circle, 

with the width of it being undisturbed.  Further analysis introduced non-uniform 

distortions where a lack of symmetry was allowed as the tire became introduced to a 

surface.  To describe the rolling resistance of a tire, the force was divided into two 

components and included the resistance of the tire due to inelastic impact effects and 

resistance due to flexing of the tire.  Results of the study showed that tires with a smaller 

effective elastic inefficiency, as speed is varied, could be produced under the conditions 

that temperature and tire inflation pressure were held constant.  By increasing the 

elasticity of the tire, or decreasing the inefficiency of it, would decrease the overall 

vehicle rolling resistance created by the tire.    

2.3.4. General Motors Corporation, 1978 
In 1978 a study was conducted to consider and determine the major effects that 

road surface texture has on a vehicles rolling resistance (7).  This study was conducted 
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and overseen by the General Motors Corporation.  Four categories were used to separate 

rolling resistance into its major contributing factors and they were tire design, tire 

operating parameters, ambient conditions, and highway design.  Both indoor and outdoor 

testing was completed with the indoor tests focusing on the differences between two 

surfaces on a tire dynamometer.  The two surfaces considered were the smooth steel 

surface, and a 3-M safety walk surface which had the texture comparable to 80-grit 

sandpaper.  The outdoor tests were conducted on multiple roadway surfaces with asphalt 

and concrete constructions.  The laboratory tests, or indoor tests, were comprised of two 

tires being tested in ten different radial constructions with a test speed of 50mph.  The 

tests showed that rolling resistance was much higher, as anticipated, on the 3-M surface 

as compared to the smooth steel surface with average differences being about 5.3% 

higher for the 3-M surface.  In order to measure the rolling resistance in the outdoor tests, 

a single wheel test fixture was mounted to the rear of a vehicle and load and tire inflation 

pressure were controlled from inside the vehicle’s cabin and could be modified at any 

time if desired.  Again ten passenger tire constructions were tested but at a speed of 

30mph as apposed to 50mph.  The outdoor test results were similar to the laboratory 

testing results with a significant effect shown between the road surface texture and tire 

rolling resistance, and an increase of up to 30% for different road surfaces and a 

difference of approximately 8% on primary type highway surfaces alone. 

2.3.5. KEVA Engineering, LLC, 2003 
With intent of developing accurate frictional drag coefficients, a study was done 

in 2003 by KEVA Engineering (28).  Factors that have significant impacts on a 

roadway’s friction were discussed in the study and include the age of the pavement, the 

amount of excess tar, and the amount of excess oils and binders.  KEVA Engineering’s 

testing involved instrumentation of a passenger vehicle with an optical speed sensor, tri-

axial accelerometer, and pitch and yaw angular rate sensors.  Twenty-five locked-wheel 

braking tests were conducted on freshly pave roads at three different locations.  The 

method used in the experiments to determine vehicle velocity involved using the DLS 

sensor and numerical integration of the accelerometer data and comparing the two.  

Similarly, values for the braking distance were determined and compared using an AAA 

brake gun and double integration of the accelerometer data.  Three averaging methods 
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were used to calculate the friction drag and insignificant differences were found between 

them.  After analyzing the data, it was recommended that a sampling frequency of at least 

100Hz be used in any future testing to establish accurate results.  It was found from the 

study that asphalt’s friction drag, or coefficient, increases as it ages as the density of the 

asphalt is increased from vehicles’ weights and traffic flow.  However, there comes a 

time when the drag reaches a peak and begins to decrease, and at this point fresh asphalt 

needs to be considered. 

2.4. Climbing Resistance and Vehicle Speed Studies 

2.4.1. West Virginia University, 2004 
A study was conducted by West Virginia University in 2004 to account for road 

grade variations in heavy-duty chassis dynamometer testing (24).  In traditional methods 

of chassis dynamometer testing, a driver has the responsibility of following a trace 

provided on a computer screen in the cabin of the truck being tested.  The trace shown 

was a graphical representation of the desired vehicle speed, and a second line was 

overlaid onto the first to display the vehicles actual speed.  The driver was required to 

match the desired speed to his or her ability and the ability of the vehicle to provide the 

required power.  By developing a virtual reality interface, road grade or inclination was 

introduced into the testing.  Unlike the two dimensional line trace method used, virtual 

reality allowed the driver to anticipate speed and inclination changes more clearly as 

opposed to adding additional lines to the trace method which would become increasingly 

more confusing for the driver.  The virtual reality system was created by WVU using 

Microsoft Visual C++ and OpenGL for the system’s graphics.  To test the developed 

system, two tests were conducted.  The first test introduced road grade into the line trace 

method by displaying an inclination value on the bottom of the screen, while the second 

test used the virtual reality configuration.  It was found that the numerical display of the 

grade did not significantly improve the driver’s load response.  It was in most cases 

ignored by the driver, because of its difficulty to see while watching the trace, and the 

driver’s focus was maintained on matching the trace.  The use of the virtual reality 

system was found not to interfere with the driving cycle and introduced a great way of 
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displaying the multiple test parameters, such as speed and inclination, to the driver at the 

same time without creating difficulties in test matching.  

2.4.2. Hosei University, 1992 
In 1992 a study was conducted in Tokyo, Japan to develop a new method of 

determining a vehicle’s traveling speed (15).  This study was based upon intensity and 

spatial periodic patterns noticed in UHF/VHF radio waves.  For this study, two antennas 

were mounted to a test vehicle, and through the use of a phenomenon described as multi-

pass fading, the vehicle’s velocity could be determined.  Multi-pass fading is a noise 

present in radio waves which can best be described as a propagation of wave intensity 

due to large reflections from such large objects such as mountain ranges or buildings.  By 

measuring the time delay between the two antennas as they received the propagations, the 

vehicle speed was calculated.  On-road testing was performed on highways, urban city 

areas, and very rural areas where it was found the intensity of the radio waves diminished 

significantly away from the presence of large skyscrapers, buildings, and large geological 

objects.  When speeds calculated using the developed radio wave method was compared 

with vehicle speedometer readings, an average error between the two was found to be 

approximately ±6.2km/hr. 

2.5. Acceleration Resistance Study 

2.5.1. Toyota Motor Corporation, 1992 
A study was conducted in 1992 by engineers at Toyota Motor Corporation in 

which a sensor was developed and tested for determining the acceleration values for an 

object such as a motor vehicle (13).  With vehicle accelerations taking place in three 

different directions, lateral, longitudinal, and vertical, the sensor developed focused on 

the first two and was not designed to calculate the vertical accelerations.  The 

configuration of their sensor that was developed consisted of an aluminum housing with 

an outer shell made of iron which acted as a magnetic shielding.  The aluminum casing 

was filled with a magnetic fluid consisting of ultra fine particles of a ferrite substance 

with particle sizes on the order of 0.01µm.  Placed within this fluid was a magnet which 

was suspended by the magnetic field created around itself.  A pair of Gallium-Arsenide 

Hall elements were fixed to each end of the housing with the purpose of detecting 
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translational displacements of the internal magnet due to changes in the magnetic field’s 

flux density and a relative voltage was induced.  The electrical signals produced could 

then be amplified and recorded by a data acquisition system and the acceleration of the 

object could be determined.  Note that with an acceleration value of zero, the internal 

magnet would be fixed within the center of the aluminum housing and equal voltage 

outputs would be created by each of the Hall elements on each end of the housing.  

Testing of the sensor included mounting it onto a small disc connected to a DC motor and 

recording voltage outputs and comparing them to the known acceleration of the motor, 

and an installation on a test vehicle.  Vehicle testing consisted of sudden accelerations, 

decelerations, and slalom tests where the sensor showed accurate results when the axis of 

the sensor was mounted in the longitudinal direction.  However, when mounted with the 

axis of the sensor in the lateral direction, sudden accelerations and decelerations were 

relatively unnoticed by the sensor except for the slalom tests performed where it 

responded accurately and produced precise results. 

2.5.2. Endevco, 2000 
Endevco conducted a study in 2000 to develop an accelerometer on a very small 

scale (12).  Basis for this development came from the fact that accelerometers were 

desired to measure values of accelerations during vehicle crashes, specifically in race car 

applications.  A problem that was faced was that previously designed accelerometers 

were only small enough to be mounted securely to a driver’s protective helmet.  At this 

mounting location, accelerations are significant due to any rotation of the driver’s head 

during crashes or normal driving conditions.  Because of this, accurate measurements 

could not be made to describe decelerations felt by drivers during vehicle accidents.  The 

accelerometer developed was based upon a previously designed sensor frame and had 

dimensions of 1mm high by 3.8mm long by 1.4mm wide which allowed the design to be 

configured to fit within an ear piece of the driver.  The sensor developed was composed 

of silicone and had an inner core with a mass fixed to a hinge which allowed it to move 

during accelerations and decelerations.  Strain gages measured the translational 

movement of the inner mass and produced an electrical output that could be correlated to 

acceleration values.  The developed sensor had a range of approximately 4.9km/sec2 

which is equal to 500 times the pull of gravity.  At the same time, it has a sensitivity of 
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81.6mV/km/sec2 which allows it to be accurate at very low accelerations.  To develop 

these results, and the others presented in this study, testing was conducted in the fields of 

frequency response, shock testing, transverse sensitivity testing, and temperature 

response testing. 
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3. Model Development 
This chapter discusses the methods used to develop this study and model.  

Discussions on background fundamentals of different measured parameters and vehicle 

road loading are presented as well as equipment used for taking measurements during 

testing.  One test vehicle was used for the model development and is discussed within this 

chapter along with a description of the route chosen for testing to take place.     

3.1. Road Load Equation 
The road load model that was developed uses the fundamental road load equation 

for vehicles presented below in Equation 1, where Z is the force needed for the vehicle to 

be in motion and is defined by four terms (1).   

Equation 1 ACRD WWWWZ +++=   

The four terms that develop the total force applied to the drive wheels are defined 

as the aerodynamic drag, the vehicle’s rolling resistance, the climbing force due to 

variations in road grade, and the inertial or acceleration resistance.  With the driving force 

determined, the engine’s power can be calculated using the relationship shown below in 

Equation 2. 

Equation 2 
AG

ZVP
ηη

=   

In this relationship, the power required is determined by multiplying the force 

determined previously, by the vehicle’s speed.  The two coefficients shown in the 

denominator of Equation 2 are the terms that correspond to a vehicle’s driveline 

efficiency comprised of the gearbox or transmission, and axle efficiency.  Vehicles with 

lower driveline efficiency require more engine power to overcome losses in the gearbox 

and axle such as friction between gears and heat. 

3.2. Aerodynamic Drag 
A vehicle’s aerodynamic drag is created when the ambient air is forced to change 

directions as it is displaced by the volume of the vehicle as it is in motion.  As the vehicle 

travels through ambient air, high pressure and low pressure regions are created and the 

drag due to aerodynamic effects is created.  The magnitude of the pressure distribution 
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about the vehicle is dramatically affected by the curvature of the vehicle’s body.  A more 

blunt faced object, or sharp bends in a vehicle’s body, causes a more severe change in 

direction for the ambient air to maneuver and will induce a larger aerodynamic drag.  

With smoothed lines and curvatures, the ambient air is allowed to follow the body of the 

vehicle much easier and the overall drag is reduced. 

A small portion of aerodynamic drag can also be contributed to a vehicle’s skin 

friction.  Small imperfections in a vehicle’s surface area, or skin, will cause friction to 

occur as the ambient air travels across it.  The viscosity of the fluid, or ambient air, fills 

these imperfections, which are tiny bumps due to the body material’s surface finish and 

paint, and a shear stress is created.  This shear stress acts tangential to the surface of the 

vehicle’s body and contributes to the overall aerodynamic drag.  A third contribution to 

overall aerodynamic drag is due to wave effects.  However, when dealing with on-road 

vehicle dynamics, transonic or supersonic speeds, where wave drag is present, are not 

reached and can be considered zero below the drag-divergence Mach number (2).  It has 

been shown by Buckley how different combinations of drag reducing attachments, such 

as gap seals and roof fairings, can greatly reduce the overall aerodynamic drag effects 

specifically in heavy-duty truck applications (4).    

A vehicle’s motion resistance due to aerodynamic friction can become timely and 

expensive to measure when wind tunnel testing and extensive measurement systems are 

involved.  It has been shown that an estimation of a vehicle’s aerodynamic drag 

coefficient based on the vehicle’s frontal area, can be comparatively similar to full scale 

aerodynamic wind tunnel testing.  For this study, the test vehicle’s drag was determined 

using the following equation. 

Equation 3 ACVW DD
2

2
1 ρ=   

In Equation 3 above, the aerodynamic drag coefficient is found by combining the 

ambient air density, the square of the vehicle’s velocity, the total drag coefficient, and the 

frontal area of the vehicle.  The value of the vehicle’s frontal area was determined by the 

use of a planimeter.  With a picture of the test vehicle taken, and a reference 

measurement taken of the frontal area of one of the vehicle’s headlights, the planimeter 
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determines a value for the vehicle’s entire frontal area and headlight’s frontal area by 

tracing them in the picture.  The value for each can be related and with the known frontal 

area of the headlight measured, the entire frontal area can be calculated.  From previous 

studies conducted, drag coefficient values for medium duty trucks, city busses, and 

heavy-duty trucks have been determined.  With these previous values, an estimation for 

the test vehicle’s drag coefficient for this study could be projected. 

Traditional drag resistance testing includes vehicle coastdown tests.  During a 

vehicle coastdown test, a vehicle is accelerated to a certain speed and allowed to coast 

down to a speed close to equilibrium between 1mph to 10mph depending on the testing 

requirements.  Coastdown tests are conducted under idle conditions where the inclination 

angle of the road is approximately zero and near zero magnitude wind conditions.  Once 

the vehicle is accelerated and the transaxle is shifted into neutral, the coastdown process 

begins and the time rate of change of velocity is recorded.  Through a mathematical 

relationship, the aerodynamic drag of the vehicle can be determined and furthermore the 

vehicle’s aerodynamic drag coefficient.  This is described in Passmore, where a specific 

drag study was conducted using traditional coastdown methods for testing (19). 

3.3. Rolling Resistance 
As a vehicle travels on a surface, a resistive force is created through the vehicle’s 

tires in contact with the road.  This is the test vehicle’s rolling resistance.  There are five 

key elements that contribute to a vehicle’s rolling resistance.  The first contributing factor 

is the tire temperature.  As a vehicle is set in motion, the tires’ temperatures will increase 

non-linearly with a dramatic increase over the first thirty to forty miles of travel and then 

begins to level off and maintain a constant value.  As the temperature is rising in this 

manner, the tire drag reduces inversely with a dramatic decrease over the warm-up period 

of approximately thirty miles before reaching a plateau and approaching an equilibrium 

state.  In the case of short trips in the vehicle, advantages of reduced drag are never 

reached because of the tire temperature not being allowed ample time to warm up (11). 

The second key element contributing to a vehicle’s tires’ rolling resistance or drag 

is the inflation pressure of the tires in contact with the road surface.  With tire sidewall 

deflection playing a major contributor to rolling drag, the tires’ inflation load is a 
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substantial element to consider since the internal tire pressure will determine the sidewall 

deflection.  Different contact surfaces react differently to tire pressure and sidewall 

deflection also.  In the case of sand, maintaining a lower tire inflation pressure allows a 

larger sidewall deflection, which in turn prevents surface penetration.  When traveling on 

sand, surface penetration will significantly increase rolling drag and therefore it is better 

to operate at a lower inflation pressure and minimize the tire’s travel depth.  However, on 

a paved surface the opposite is true.  Operating at a higher inflation pressure reduces 

sidewall deflection which at the same time will decrease the tires’ contact area and rolling 

drag.  

The third significant contributor to rolling resistance is the vehicle’s velocity 

along with the tire’s translational and rotational velocities.  Tires contribute very high 

rolling resistance at higher speeds, but at lower velocities, the amount of tire drag is very 

small and in many cases is assumed to be constant.  Problems with velocity arise in the 

higher speed ranges where vibrations and fatigue become and issue.  At higher speeds, a 

free standing wave is produced within the tire carcass located behind the tire’s contact 

patch with the road (11).  This wave is the sole provider of the large increase in rolling 

resistance at higher speeds.  Over periods of time, short or long, tire failure can occur as a 

result of this wave.  Tire inflation, as discussed previously, acts in conjunction with the 

tire’s velocity and if two problems such as under inflation pressure and a free standing 

wave combine, the chance of failure can increase significantly.  Tire manufacturers rate 

tires for their operating speeds and inflation pressures to prevent such failures.  Higher 

rated tires are implemented with design characteristics such as shoulder and sidewall 

stabilizers to dampen the standing wave created at higher speed ranges. 

The material and design of a vehicle’s tires is the fourth largest contributor to the 

overall rolling resistance.  Manufacturers of tires modify and design tires with different 

tread heights, tire tread thickness, tire sidewall thickness, and tire material to try and 

develop tires that perform better under specific driving operations.  As different design 

aspects are implemented, rolling resistance may increase or decrease respectively.  A 

different tire material may have the ability to reach higher temperatures after the warm-

up period but which would decrease the tires’ rolling drag, but at the same time may not 

be able to withstand the standing wave developed at higher speeds as discussed earlier 
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and therefore may experience an increase in rolling resistance.  Different combinations 

and designs of thickness, dimensions, and materials will play an important role in the 

magnitude of tires’ rolling resistance.   

The fifth and final contributor to rolling resistance is the tire’s slip or slip angle.  

It has been shown that wheel slip has a non-linear effect on rolling resistance similar to 

that of the effects velocity has on tire drag.  At higher slip angles, vehicles show much 

higher rolling resistance and follow an exponential relationship.  With a small increase of 

slip angle approximately one to two degrees, the rolling resistance may as much as 

double, normally seen in high speed cornering.   

There are two mechanisms within the contact of a tire to the traveling surface and 

are the vehicle’s connections to rolling resistance.  At the tire contact patch, the rubber is 

in meshing with the aggregate surface of the road which is where the two mechanisms of 

adhesion and hysteresis occur.  As the rubber of the tire comes in contact with the road 

surface, the molecular bond, or adhesion that occurs between the two contributes to the 

majority of the traction or rolling resistance under dry conditions.  However, under wet 

conditions, the adhesion is significantly reduced and prevented by the water on the road 

surface.  In this situation, a decrease in traction occurs which is why traction is drastically 

less in the rain (11).  Under wet conditions, the other of the two mechanisms becomes the 

primary source of traction and is the hysteresis.  This occurs due to the weight of the 

vehicle causing the tires to deform around the aggregate on a minute scale and provide 

traction.  A tire’s hysteresis ability is not affected by wet conditions, but is significantly 

affected by the roughness or smoothness of the road surface.  One balancing problem 

manufacturers are faced with is the fact that as rolling resistance is decreased, traction 

follows and is also decreased.  Traction is needed to control the motion of the vehicle but 

there is a trade off.  Sacrificing traction for a reduced rolling resistance and an increase in 

vehicle efficiency is under consideration in a tire’s design and purpose.  Figure 1 below 

displays the difference between the two mechanisms of tire traction and rolling resistance. 

 23



 

 
Figure 1:  Tire Hysteresis and Adhesion Components of Tire Traction 

A vehicle’s rolling resistance is the most significant contributor to its total road 

load and is followed up by aerodynamic drag which is only significant at higher traveling 

speeds.  For this study, the rolling drag or resistance of the test vehicle was determined 

using Equation 4 below. 

Equation 4 NRR GfW =  

The rolling resistance is determined by multiplying the entire weight of the 

vehicle by the rolling force coefficient.  Note that for this model that was developed, the 

aerodynamic lift that was created on the vehicle, either positive or negative, was 

neglected and the stationary weight of the test vehicle was used to determine the rolling 

resistance.  A similar assumption was made in the study discussed earlier by the 

University of Saskatchewan (20).  The affects of road-way surface on the overall rolling 

resistance of vehicles are described by Varat (28).  It was shown how the age and 

composition of the road-way significantly affect the ability of the vehicle to gain traction 

and produce resistance due to rolling friction.  

Coastdown testing is also used to determine a test vehicle’s rolling resistance.  

With the time rate of change of the vehicle during a coastdown period recorded at an 

outside test location, the rolling resistance and aerodynamic drag are determined as a 

lumped sum.  Further coastdown testing on a chassis dynamometer allows tests to 

eliminate any presence of wind resistance and the isolated rolling resistance due to tire 

friction, drive train loss, and bearing loss can be determined.  The use of coastdown 
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testing is an acceptable method of determining a vehicle’s rolling resistance and 

aerodynamic drag resistance but fails to describe an accurate interpretation of a vehicle’s 

entire road load under real-world driving conditions which is where this model stands.  

The mathematical approach of translating recorded coastdown velocities, or velocity rate 

of changes, is described in detail by Yasin (32). 

3.4. Climbing Resistance 
A significant amount of resistance is created when a vehicle is traveling on a 

surface with a slope or grade other than zero.  A grade of zero represents a condition 

where climbing resistance is absent.  On a road surface with a slope other than zero, there 

is a resistance that must be overcome as the vehicle is working against the Earth’s 

gravitational pull and is proportional to the magnitude of the surface’s climb angle.  

Figure 2 shows a component diagram of the weight of the vehicle traveling on an incline.  

Under conditions of a negative incline, or a down slope, the opposite effect occurs where 

the Earth’s gravitational pull is working with the engine and helping to accelerate the 

vehicle.  Under this condition, less power is needed to be produced by the vehicle’s 

engine in order to overcome loading.  Inclination angle was introduced to chassis 

dynamometer testing by West Virginia University where a virtual reality system was 

implemented to provide the test vehicle driver with a visual signal to simulate real-world 

driving on uneven pavement (24).   

 
Figure 2:  Climbing Force Component Diagram 
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This resistance is simple to calculate once the altitude change or grade of the 

traveling surface is known, but determining that can be somewhat complicated.  For this 

model, Equation 5 below was used to determine the climbing resistance of the test 

vehicle during testing. 

Equation 5 GWC )sin(θ=  

In order to determine the grade of the test route described earlier, ambient 

pressure readings were taken along the test route for each test.  This was done using the 

West Virginia University Mobile Emissions Measurement System (MEMS).  Through 

the use of an ambient pressure transducer, pressure readings were recorded and reduced 

at a frequency of 5Hz.  The procedure to determine the road grade along the test route is 

discussed in more depth in the Procedure section.  With the slope, or inclination angle 

determined, the climbing resistance was found by taking the sine function of the angle 

and multiplying it by the test vehicle’s weight component normal to the inclined surface.  

As mentioned in the discussion of the rolling resistance, lift due to aerodynamic effects 

was neglected for the construction of this study and the weight of the vehicle alone was 

used to describe the climbing resistance component of the total road load. 

3.5. Acceleration Resistance 
The final component that describes the total road load of a vehicle traveling is the 

acceleration resistance.  This term usually is the least significant term in the road load 

equation when all four terms are present.  At the same time, it is also one of the hardest to 

accurately determine.  The acceleration resistance of a vehicle can be described as the 

force needed to overcome the linear and rotational accelerations of the test vehicle’s 

components.  Everything rotating on the test vehicle contains inertia and requires energy 

to create and maintain rotation.  Some significant components included in the 

acceleration resistance term are the tires rotating, along with the transmission shafts, and 

gears rotating.  Other rotating components that are accounted for in this term include the 

engine crankshaft, axle shafts, and the test vehicle’s driveshaft.  Every rotating mass on 

the vehicle that is being supplied energy through the engine’s combustion process is 

accounted for here and Equation 6 below is the relationship used to calculate this term. 
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Equation 6  mVWA )1(
.

ε+=

With the acceleration values for the test recorded, the acceleration resistance term 

can be determined.  Note that the process for determining the vehicle’s acceleration is 

discussed in further detail in the Procedure section.  The first term in Equation 6 above is 

the acceleration term and is multiplied by a function of epsilon.  This epsilon value is a 

fractional value that encompasses, or describes the contribution of the rotating masses 

and their moments of inertia on and inside the vehicles drive train such as the rotation of 

the transmission gears (1).  Finally, the equation is multiplied by the mass of the vehicle. 

3.6. Test Vehicle 
Testing was conducted using a 2002 Ford F650 medium duty truck rented from 

Stringfellow Truck Rentals in Nashville, TN.  This vehicle was powered by a 2002 

Cummins ISB compression ignition engine.  Specifications for this engine along with the 

truck are shown below in Table 1. 

Table 1:  Test Engine and Vehicle Specifications 

Model 2002 Cummins ISB 225 Diesel Type 2002 Ford F650
Family Number 2CEXHO359BAB Classification Medium Duty / Single Axle
Serial Number 46218597 Vehicle VIN Number 3FDNF65Y33MB02010
Displacement 5.9 Liter Syle 2-Door Flat Bed
Power Rating 225 Hp @ 2,300 RPM GVWR 26,000 Lbs

Timing Control Electronic Front / Rear GAWR 8,500 Lbs / 17,500 Lbs

Engine  Vehicle

 

With the test vehicle’s gross vehicle weight rating (GVWR), it was considered 

under the commercial vehicle limits and a non-Commercial Drivers Licensed driver was 

legal to conduct tests with it.  It was chosen for this testing to load the vehicle at three 

weights and conduct multiple experiments, or data collections at each weight.  The first 

loading was an empty weight where no additional weight was added to the test vehicle 

besides the necessary data collection equipment and a driver.  The test truck is shown 

below in Figure 3. 
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Figure 3:  Ford F650 Test Vehicle 

  Table 2 below displays each test weight and the number of experiments 

conducted at each.  The second test weight was one that was chosen to be approximately 

halfway between the test vehicle’s empty weight and GVWR, and the third and final test 

weight was within 95% of the test vehicle’s GVWR.  Weight was added to the test 

vehicle’s flatbed through concrete blocks securely mounted on the bed which can be seen 

above in Figure 3. 

Table 2:  Testing Weights and Number of Experiments 

Test Weight (Lbs) Experiments
Empty Load 17,140 6
Half Load 21,220 6
Full Load 25,220 6  

3.7. Test Route 
The route chosen for testing was one that incorporated city driving as well as 

interstate situations with many variations in elevation and road grade.  It can be seen 

below in Figure 4 where the starting and finishing location is defined by S/F (31).  The 

testing route began at the West Virginia University Mobile Laboratory located in 

Westover, WV and traveled north on Industrial Park Rd.  Continuing north, Industrial 

Park Rd. became Dupont Rd. and led to US route 19.  The testing route continued 

traveling west on US route 19 and onto interstate I-79 south.  Interstate I-79 south split 

and the testing route followed interstate I-68 east to the Sabraton exit #3.  After exiting, 
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WV route 7 north (Earl Core Road) was taken through Sabraton and a right was taken 

onto Hartman Run Rd. which lead to US route 119 south (Mileground Rd.).   

 
Figure 4:  Vehicle Test Route Around Morgantown, WV 

WV route 705 north was then taken which traveled through the city of 

Morgantown until meeting US route 19 north which traveled through Star City eventually 

turning leading to interstate I-79 south again.  Interstate I-79 south was taken to the 

Westover exit where US route 19 north was taken back to Dupont Rd., eventually leading 

back to the WVU Mobile Laboratory on Industrial Park Rd.  This route was completed 

six times for each of the different test weights described earlier with each test lasting 

approximately fifty minutes depending on traffic conditions and test weight.  Furthermore, 

ambient conditions ranged from sunny days, to rain, to snow over the course of the 

testing period. 

3.8. Test Equipment 

3.8.1. Measurement System 
During the testing period for this study, the test vehicle described earlier was 

outfitted with a complete MEMS system even though only a few parameters were needed 

and would be sufficient to establish the desired road load model.  The extra data recorded 

could be used in further studies.  The truck used for testing was outfitted with an Annubar 

mounted to a fabricated exhaust tube to draw flow from the exhaust pipe to an emissions 
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box consisting of measurement devices used to determine amounts of emission 

constituents in the exhaust.  Connecting the MEMS emissions box to the annubar box 

was a heated line to prevent condensation in the sampled exhaust as some of the 

measurements taken in the initial stages of the emissions box are wet measurements.  

Note that a detailed description of the MEMS testing equipment is located in Thompson 

(25).  

3.8.2. Data Acquisition 
The data acquisition system developed by West Virginia University is a computer 

platform constructed of National Instruments components making up the computer 

platform, data acquisition card, signal conditioning unit, and temperature and voltage 

cards.  The data acquisition system has multiple serial port inputs for allowance of many 

different measurements to be taken all at once; ECU outputs and ambient pressure 

readings for this study.  Mounted to the data acquisition system was a monitor to allow 

measurements being taken during testing to be viewed by the test engineer and prevent 

any unnecessary testing to be conducted if modifications were needed due to any 

problems.  Power was supplied to the data acquisition unit through an onboard generator 

securely fixed to the bed of the test vehicle. 

3.9. Data Collection 
By reducing or minimizing the number of parameters needed for this model 

development, the complexity of the analysis was also kept to a minimum.  As discussed 

by Cha, it has been shown that increasing the complexity of a road load model does not 

instinctively provide more accurate results (5).  Instead of creating a complex model, 

more accurate results could be gathered by following a simpler approach and describing 

the test vehicle’s constant parameters, such as its drag coefficient, in a manor based upon 

its size, dimensions, and body style, in a more realistic way.   

3.9.1. Engine Speed 
Engine speed was recorded through the output of the test vehicle’s ECU.  The 

vehicle measures its engine speed through the use of a variable reluctance pickup sensor 

which is a type of crank position sensor that is commonly found on most automobiles 
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today.  As the flywheel rotates, the teeth in the outer ring pass very close to the sensor 

and a voltage is induced as a result of the magnetic pick up and is recorded by the ECU.  

The ECU records the number of pulses it receives and also the increase or decrease in 

pulse width indicating an increase or decrease in engine speed respectively.  Using a 

Deutsch connection located under the vehicle’s dashboard, the ECU of the vehicle was 

connected to a Dearborn DPA Protocol adaptor.  The output from this device was 

connected to the MEMS data acquisition system via a serial cable.  Using the data 

acquisition system described previously, the test vehicle’s engine speed could be 

monitored and recorded at a sampling rate of 5Hz to be used in calculating the different 

components of the road load during testing.  

3.9.2. Ambient Pressure 
Ambient pressure readings were taken using an ambient pressure transducer 

manufactured by Omega.  The specific transducer used, shown below in Figure 5, was a 

model PX176 ambient pressure transducer with an output voltage range of one to six 

volts DC (17).  The PX176 transducer was in a waterproof casing allowing it to be used 

in a wide variety of weather conditions and operating temperature range of -55oC to 

105oC.  The specific model pressure transducer had an operating pressure range of 0-

25psia with an accuracy of ±1% of full scale.  An aluminum casing, titled an ambient box, 

was used to protect the pressure transducer from environmental elements and allow the 

sensor to be securely fixed to the test vehicle during testing.  Also installed within this 

ambient box was an ambient temperature and relative humidity sensors, but were not 

used or included in the data reduction.  Voltages produced by the transducer were 

transferred to the MEMS data acquisition program and recorded during testing to be used 

in calculating changes in altitude discussed in further detail in the Procedure section of 

this paper. 
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Figure 5:  Omega Model PX176 Pressure Transducer 

Using the MEMS data acquisition hardware and software, the Omega ambient 

pressure transducer was calibrated prior to each test run to ensure accurate measurements.  

This was done with the calibration software linked with the MEMS test program and a 

Heise model PTE-1 pressure calibrator.  This specific pressure calibrator has a duel 

display liquid crystal display (LCD) monitor and has an accuracy of approximately 0.1% 

of full scale and is shown below in Figure 6 (8). 

 
Figure 6:  Heise Model PTE-1 Pressure Calibrator and Pressure Unit 

3.9.3. Vehicle Speed 
The vehicle speed used for the development of this model was the ECU vehicle 

speed output.  Vehicle speed was detected by the test vehicle’s ECU through the use of a 
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similar variable reluctance pick-up sensor as described earlier for engine speed 

measurements.  Located at the output shaft of the transmission, before the rear driveshaft, 

the pick-up sensor measured the rotational output speed of the transmission.  This 

placement reduced complexity of measuring vehicle speed since transmission gear 

engagement was irrelevant.  If the sensor was mounted ahead of the transmission, for 

example, the current gear engaged would have to be accounted for by the ECU to 

determine proper gear ratios and calculate the vehicle speed.  With the sensor mounted 

aft of the transmission, the axle ring gear ratio, and tire size are the only two adjustments 

that need to be accounted for.  These two factors remain relatively constant over the life 

of the vehicle with an assumption that tire wear or deflection does not affect the 

rotational speed of the rear axle significantly.  Therefore, the accuracy of the ECU speed 

sensor was considered sufficient and used as the primary velocity values for this model. 

A secondary method of recording vehicle speed for testing was through a global 

positioning sensor (GPS).  Through the use of a connection between a roof-mounted 

sensor and satellites in space, the vehicle speed could be monitored and recorded through 

the MEMS data acquisition system.  The GPS sensor broadcasted data at a rate of 1Hz, 

but was interpolated by the MEMS data reduction program to present the data collected at 

a rate of 5Hz to match the other data parameters recorded by the test system.  Note that 

GPS data was recorded as a backup to the vehicle’s ECU vehicle speed data outputs and 

was used in a secondary study within this work to verify and check the ECU’s accuracy, 

and show the GPS speed’s accuracy and its possibilities of being the primary vehicle 

speed measurement device.  However, for this work, the primary vehicle speed data used 

was collected through the ECU vehicle speed output.  

3.9.4. Inferred Torque and Power 
An alternate way of measuring engine torque is by inferring it from several ECU 

output measurements, a minimum load idle curve, and a supplied lug curve for the 

specific engine.  By using the two engine curves and output values of the ECU engine 

speed and percent load, the torque produced by the engine can be calculated (26).  The 

engine lug curve is a set of data that describes the specific engine’s maximum torque 

producing abilities throughout its operating speed range.  The purpose of the idle curve is 
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to determine the fueling that is required by the engine to overcome its own internal 

loadings, and in the case of chassis dynamometer testing or on-road testing, the idle curve 

helps to determine loading from vehicle accessories such as air conditioners and 

alternators.  

 34



 

4. Procedure 
To begin reducing the data, each Microsoft Excel spreadsheet created by the 

MEMS data acquisition reduction program was simplified to include only the data needed 

to create the desired model.  The three main components needed for the model were the 

time, ambient pressure readings, and the ECU vehicle speed.  Note that for comparative 

purposes, the vehicle’s ECU power output was also recorded but not necessary.   

This section encompasses the work performed to analyze the data recorded and 

produce comparisons for later results.  Steps were taken to reduce outliers found within 

recorded data to begin the reduction.  This section describes and justifies the logic used to 

eliminate the outlying data points.  The data was then manipulated and expanded to 

create and describe the road load felt by the test vehicle’s engine.   

4.1. Ambient Pressure 
It could be seen that within the ambient pressure readings that there was some 

noise that needed to be addressed.  This electrical noise recorded could be contributed to 

multiple things such as the ambient pressure transducer being mounted on the outside of 

the test vehicle, which would allow it to be open to an extremely windy environment 

during the test route, especially at highway speeds.  In order to decrease the noise, a 

moving window of an eleven point average was used, the relationship of which is shown 

below in Equation 7. 

Equation 7          
11
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It can be seen in Equation 7 that each new ambient pressure reading was 

calculated using the five previous raw data points, the current raw data point, and the 

following five raw data points.  This results in a two second moving window.  

Furthermore, within the data calculations, if the difference between two different raw 

ambient pressure data points changed by an absolute pressure value of 0.038inHg or 

greater, the current point was neglected and replaced with the previous.  With the data 

being recorded at a rate of 5Hz, a change in 0.038”Hg over two data points would imply 

an altitude change of approximately 35ft over a 0.2sec period, which is unrealistic for the 

testing being conducted.  This logic could have been more strict but the intent of it was 
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just to eliminate any raw data points that were obviously outliers and irrelevant to the 

study at hand. 

4.2. ECU Vehicle Speed 
Similar reduction methods were used with the recorded ECU vehicle speed.  An 

eleven point smoothing spread was used as shown above in Equation 7, and a similar 

logic statement was used.  The difference between the ambient pressure logic, and the 

ECU vehicle speed was that if the difference between two raw vehicle speed data points, 

considering a current point in the data set and the previous one, was greater than 2mph, 

the previous point was used instead of the current.  With a change of 2mph or greater 

over a period of 0.2sec, an acceleration would be produced of 10mph/sec.  This would 

not be seen given the size and loading of the test vehicle being considered. 

4.3. Distance 
With each test being driven on a route that was as similar as possible for each run, 

it was difficult to relate and compare each run because of a few different factors.  One 

factor was that each run had an undefined idle period once data recording had begun until 

the time that the test route was driven.  Similarly, at the end of the test run, the vehicle 

data was recorded at another undefined idle period where different test parameters which 

were displayed through the MEMS data acquisition system were allowed to stabilize and 

reach equilibrium before the test was ended.  In addition, because of the multiple loading 

magnitudes and uncontrolled traffic events, the total test time was uncontrollable.  For 

those reasons, the tests were modified to be analyzed on a distance basis rather than a 

time basis.  Through the use of the recorded ECU vehicle speed, and the recorded time, 

the instantaneous distance change could be determined for each point and the test run 

could be relative to a distance base.  This was done by using Equation 8 below. 

Equation 8 

hour

mile
ft

Vdd iii sec3600

280,5
sec*2.0*1 += −  

In Equation 8 above, the instantaneous distance traveled was calculated by adding 

the previous distance calculated and the current velocity multiplied by the time interval, 
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which was 0.2sec.  With the velocity being measured and displayed in miles per hour, the 

distance calculated was converted to feet with the applied conversions shown in Equation 

8.  Note that the velocity used in Equation 8 is the velocity value determined after 

smoothing techniques, discussed earlier, were implemented and not the raw data point. 

After determining each tests’ distance basis values, it was noticed that some of the 

runs were shorter than others due to modifications in the test route as a result of changing 

weather conditions.  At the time of testing this was not assumed to be a problem, but 

when the tests were aligned, as described later in the inclination section of this work, 

problems occurred and some of the recorded tests were not considered to support the 

study.  Similar to Table 2 shown earlier, Table 3 below shows the weights and number of 

tests conducted at those weights that were used in the model analysis.  Moreover, one test 

presented a problem with the ECU output and was neglected in the analysis and 

comparison of power and work.  To clarify, there were 13 tests producing applicable 

results with the exception of one test where ECU power data was erroneous and 

unreadable.  Because of this, the 13 tests were used in all of the data reduction 

computations, but there were only 12 tests where a comparison could be made between 

the road load developed and engine power as well as the integrated work over the test. 

Table 3:  Final Testing Weights and Number of Experiments 

Test Weight (Lbs) Experiments
Empty Load 17,140 3
Half Load 21,220 3
Full Load 25,220 6  

4.4. Air Density  
At this point in the data reduction, the ambient air density was determined, it’s use 

briefly discussed earlier in the aerodynamic drag calculation.  This was done by using 

Equation 9 below. 

Equation 9 
)(92.29

)(696.14
*

)()(

)(144*)(
22

2

inHg
in
lb

RT
Rlb

ftlb
R

ft
ininHgp

RT
p

f

m

f
==ρ  

The instantaneous air density during the run was calculated using the ideal gas 

law with the term “p” being the relative ambient pressure.  Note that units for each term 
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in Equation 9 above equation are shown in parenthesis.  The universal gas constant “R” 

was taken to be 53.33ftlbf/lbmR for standard atmosphere and the relative ambient 

temperature was taken from measurements taken before and after each individual test, 

leaving the density calculated in units of pounds mass per cubic foot.  With temperature 

values recorded pre and post each test, an average was taken assuming that altitude 

changes throughout the test route were minimal to the degree to which there would not be 

large fluctuations in ambient temperature values.  Furthermore, the test times for each run 

was short enough that temperature changes before and after testing were on the order of 

1oF or 1R. 

4.5. Vehicle Acceleration 
In order to determine the test vehicle’s acceleration, a differentiation of the ECU 

vehicle speed was taken with respect to the recorded test time.  To accomplish this, two 

similar methods were considered and are shown below in Equation 10 and Equation 11. 

Equation 10 
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Equation 11 
h

VVVV
a iiii

12
88 2112 −−++ +−+−

=  

Equation 10 is a statistical central difference method of differentiation with a step 

size order of h2, and in this case with the sampling rate of the system recording at 5Hz, 

with a step size was 0.2sec.  Similarly, Equation 11 is a differentiation method of 

determining the test vehicle’s acceleration with an order of h4.  After comparing both 

methods of calculating acceleration values, there was not very much difference between 

the two results, but in the end, Equation 11 was used because of its higher order and 

accuracy.  Note that because of a possible resolution problem with the vehicle’s ECU 

velocity output, at vehicle speeds existing below 10mph, the acceleration was assumed to 

be zero and a negligible component to the vehicle’s road load.  In such a case, velocity 

changes of 1mph were reported by the vehicle’s ECU over a 0.2sec interval which 

suggested an acceleration of 5mph/sec which is highly unlikely for the category of test 

vehicle being considered.  Also note that in both equations, instead of using the raw 

vehicle velocity measured by the vehicle’s ECU, the calculated smoothed values were 

used. 
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4.6. Altitude 
With the ambient pressure recorded and the noise, and or assumed outliers 

removed, the altitude of the test vehicle during testing could be determined.  With road 

grade being the primary calculation goal from the altitude calculation process, the 

changes in altitude were more important than the actual altitude values.  Because of this, 

a reference altitude of 1200ft was chosen for the beginnings of each test located at the 

West Virginia University Mobile Laboratory in Westover, WV.  This reference height 

was chosen and then compared with a topographic map and was found to be slightly 

greater, but with only changes in altitude under consideration, modifying the initial 

altitude would not change any results (27).  Once the reference height, or altitude, was 

fixed, the instantaneous altitude values throughout the tests were determined using 

Equation 12 below. 

Equation 12 )(*)(9601 inHgp
inHg

fthh ii ∆−= −  

The change in pressure term was determined by the change in ambient pressure 

readings recorded, and the overall height was recorded in feet.  Also note that units for 

each term are shown in parenthesis.  The value of 960ft/inHg was determined by 

calculating densities at multiple altitudes through the use of standard atmosphere tables 

and relating them to their corresponding values.  Within the range of altitude changes 

associated with the conducted tests, an approximate value of 960ft was found for a 

change in ambient pressure of 1inHg (2).   

With a global positioning system (GPS) connected to the MEMS data acquisition 

system, altitude, as well as vehicle speed, was recorded based upon satellite signals.  This 

altitude data was recorded with intent to compare to the values calculated from Equation 

12 above.  However, a problem exists within GPS altitude data where the signal received 

from satellites in orbit is partially scrambled to cause the initial and final altitudes of a 

closed path that returns to the same position to be different.  This was found to be true 

when analyzing GPS data recorded during testing.  Although the initial and final 

positions were controlled to be exactly at the same point, a difference in altitude was 

recorded on the order of approximately 14m.  
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4.7. Road Inclination Angle 

4.7.1. Individual Test Inclination Angle Calculations 
With the altitude determined from the changes in ambient pressure recorded, the 

road grade, or inclination angle, during the test was desired.  The slope between the 

altitude and the distance traveled was then calculated by linearizing the altitude data 

within a ten second moving window.  For each instantaneous point, this moving window 

helped to eliminate small spikes in the data collection by fitting a linear curve over the 

previous five second window, the current point under consideration, and the following 

five second window to determine the ratio of the change in vertical height, or altitude, 

and the change in horizontal distance.  With instantaneous values for the “rise over run” 

or slope of the altitude distance relationship, the road inclination angle could be 

determined using Equation 13 below. 

Equation 13 )(tan 1

hd
h

∆
∆

= −θ  

Note that the change in distance term in Equation 13 is not the change in distance 

measured from the previous distance calculated with Equation 8.  This change in distance 

is a horizontal value unlike the distance determined earlier, which is a tangential distance 

that travels along the altitude or velocity curve.  The horizontal distance change was 

needed to find an accurate inclination angle and was calculated using Pythagorean’s 

theorem for a ninety degree triangle stated below in Equation 14. 

Equation 14 22 hddh ∆−∆=∆  

For a visual description, Figure 7 below shows the triangle used to determine 

these different parameters. 
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Figure 7:  Inclination Calculation Triangle 

4.7.2. Overall Test Inclination Angle Calculations 
With road inclination angles determined for all instantaneous points during each 

test, it was noticed that there were still some spikes in the data that needed to be 

accounted for and corrected in some way.  To resolve these data points, an overall or 

averaged inclination angle data set was calculated.  In order to do this, the test-specific 

inclination angles calculated and their corresponding distance values were organized and 

grouped together to be manipulated further.  With each test run containing different 

numbers of total data points, it was difficult to correlate each one with each other.  To 

settle this problem, the data was aligned to one set of distance values.  With all of the data 

aligned, an average value was calculated at each corresponding distance value.  At this 

point, the overall inclination angle values were introduced back into each of the 

individual test runs the angles were imputed back within the recorded data and used from 

that point on.  That is, the twelve valid test runs in Table 3 were used to obtain an average 

inclination angle as a function of distance. 

4.8. Power 

4.8.1. Rolling Power 
With the ECU vehicle speed recorded, the power required to overcome rolling 

resistances could be calculated.  Rolling power was determined using Equation 15 below.  

For each test, the value for the rolling friction coefficient for the test vehicle was assumed 

to be 0.02 while the weight varied for each test depending upon the test weight desired 

(3). 
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Equation 15 VGfP NRR *=  

4.8.2. Climbing Power 
After determining the inclination angles over the entire test run on a distance basis, 

the power required for the vehicle to overcome the Earth’s pull of gravity could be 

determined and was done so using Equation 16.  Note that as road inclination angles 

approach zero, the sine function of that angle will also approach zero and essentially 

eliminate the power needed for climbing. 

Equation 16 VGPC *)sin(θ=  

4.8.3. Acceleration Power 
Although minor compared to the vehicle’s rolling resistance and aerodynamic 

resistance at higher vehicle speeds, the power needed for the vehicle to overcome 

rotational accelerations taken place was still significant and needed to be calculated.  This 

was done using Equation 17 below. 

Equation 17 VMaPA *)1( ε+=  

The value for epsilon was a constant value of 0.25 used throughout the testing 

analysis to incorporate all of the rotating masses on or within the vehicle.  Values for 

epsilon are representative of rotating masses on the test vehicle and varied depending on 

the quantity and size of the masses (1). 

4.8.4. Aerodynamic Power 
The aerodynamic resistance and the power needed for the vehicle to overcome it 

was determined using Equation 18 below. 

Equation 18 VACVVACqP DDD *
2
1* 2ρ== ∞  

It can be seen in the above equation that the velocity squared term along with the 

density make up what is called the dynamic pressure shown in the first form of Equation 

18.  The value for the drag coefficient was a constant used throughout the testing analysis 

and was assumed to have a value of 0.7 (5).  The value for the frontal area was 

determined using a planimeter, described earlier, and was found to have a frontal area 

value of 43.4ft2. 
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4.9. Work 
With power values determined, the work could be determined.  With the use of 

Equation 19 below, the power calculated previously could be multiplied by the length of 

time between measurements and provide values for the instantaneous work throughout 

the test period.  By summing the instantaneous work values calculated, the total work 

performed by the vehicle’s engine could be found.  This was done for the power output 

by the vehicle’s ECU and the values calculated by this model. 

Equation 19 ∑∫ ∆== tPPdtW  

By calculating the vehicle inferred torque as discussed earlier, a third work value 

could be determined for comparative purposes.  Equation 20 below shows how the torque 

was converted to power. 

Equation 20 )
sec*

(550/*
lbsft
hpNTP InferredInferred −

=  

Note that the engine speed is recorded in revolutions per minute and the time 

needed to be converted such that it was used in the calculations in revolutions per second.  

With the inferred power determined, the inferred work could be determined using 

Equation 19 as described above. 

4.10. Uncertainty Analysis 
To finalize the study, an uncertainty analysis was conducted to describe the error 

associated with road load power values calculated due to uncertainties in the initial 

measured values.  This allowed for the significance of each term in the road load equation 

to be considered and have the knowledge of what terms were more sensitive than others 

due to minor changes in recorded values such as the vehicle’s speed measurements.  

Equation 21 below shows how the uncertainty analysis began.  

Equation 21 PPP Average ∆±=  

The ∆P term in the above equation was the uncertainty value for the power 

combined from all the road load terms.  Equation 22 below shows how this term was 

determined. 
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Equation 22 ∑ ∆
∂
∂

=∆ 2)( i
i

x
x
PP  

To perform Equation 22 above, the total road load was expanded and the partial 

derivative was taken with respect to each individual variable defining it.  With the partial 

derivatives found, each was multiplied by the uncertainty of the individual parameter, 

squared, summed up over all the terms, and the square root was taken.  This provided an 

uncertainty for the total road load values found.  Then, as shown in Equation 21, the road 

load power values could be shown with an uncertainty value attached to it. 
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5. Results 
Results shown within this section are representative of one test conducted with a 

gross vehicle weight of 17,140lbs.  With the exception of comparison results and figures 

of power and work production, additional individual test results are located in the 

appendix of this work, Chapter 8.   

5.1. Ambient Pressure 
Presented below in Figure 8 is the raw ambient pressure readings taken for the test.  

The noise associated with the raw pressure sensor can easily be seen and the necessity to 

reduce, or eliminate it becomes evident.  Excluding the large gradients, or spikes, in the 

data due to noise, the ambient pressure displays an approximate interpretation of altitude 

changes with an increase in pressure indicating a decrease in altitude and vice versa. 
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Figure 8:  Ambient Pressure Readings During One Empty Load Test Run 

5.2. Vehicle Speed 
The ECU vehicle speed recorded through the MEMS data acquisition system is 

shown below in Figure 9 for the test.  Noise issues, like those found in ambient pressure 

readings, are not present to a significant affect with the ECU vehicle speed output and 
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recordings.  Because of this, the noise reduction methods described earlier for the vehicle 

speed were insignificant and did not modify the data to any considerable extent but were 

still performed. 
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Figure 9:  ECU Vehicle Speed During One Empty Load Test Run 

Figure 10 below illustrates a comparison between the GPS speed recorded, and 

the ECU vehicle speed.  The values broadcast by the GPS signal are similar to the ECU 

values and can be used as a viable backup for vehicle speed if needed.  There are small 

variations in the data at higher speeds but the two correlate at lower and medium speeds. 
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Figure 10:  ECU and GPS Vehicle Speed Comparison 

5.3. Distance Base 
As stated earlier, by converting each test into a distance based relationship 

allowed multiple experiments to be compared together without introducing data 

alignment issues which would be present under a time based comparison because of the 

fact that there was an idle period at the beginning and end of each test run.  This idle 

period differed from test to test and lasted on the average of 45sec to allow the data to be 

manipulated during reduction without interfering or eliminating any data that took place 

during the dynamic period of a test run.  Figure 11 below displays the calculated distance 

for one test run. 
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Figure 11:  Test Distance Determined From ECU Vehicle Speed and Test Time 

The average distance over the thirteen total tests that were considered for the 

model development was 144,342ft which is approximately 27.3miles.  Figure 12, shown 

below, displays a distance comparison between each test run analyzed.  The first four 

tests are of the 17,140lb empty load test weight, the next three are of the 21,220lb half 

load test weight, and the final six bars represent the 25,220lb full load test weight.  As 

briefly described earlier, the empty load weight of 17,140lbs is the weight of the test 

truck with no additional weight added to its chassis.  The full load weight of 25,220lbs 

was 97% of the test vehicle’s GVWR of 26,000lbs.  During testing at a vehicle’s full load, 

because loading it to its exact legal loading limit is difficult, it is desirable to be within 

95% of its GVWR.  This requirement of testing within 95% of the test vehicle’s GVWR 

was set forth by the Consent Decrees for on-road emissions testing.  The half load weight 

of 21,220lbs was a test weight chosen that was close to half of the allowable weight 

addition to the test vehicle.   
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Figure 12:  Total Distance Traveled During Each Test Run 

Table 4 below shows the distance comparison for the thirteen tests conducted, 

along with average values and standard deviation values.  It can be seen in Figure 12 

above and Table 4 below that there were differences in the total driving distances for the 

different tests on the order of 770ft, or approximately 0.5% of the average test distance, 

between the maximum and minimum distance.  These differences can be attributed to 

such things as ECU vehicle speed resolution, weather conditions, vehicle test weights, 

and lane changes occurring during testing.  The first four test runs (17,140lbs) maintained 

precise distances as they were conducted under the same weight, and weather conditions.  

Similarly, the next three tests conducted, although different than the first four’s totals, 

produced precise results as they were tested under the same weight (21,220lbs) and 

weather conditions.  Differences between these two sets of runs could be accounted for 

significantly because of the fact that the first set was tested under cloudy, dry conditions 

and the second set was tested under snowy conditions.  

The vehicle’s test weight could cause a difference in driving distances due to the 

fact that under larger vehicle loadings, there is a larger tire deflection.  The tire deflection 

is going to cause the tire to rotate faster as it is acting as a smaller wheel and cause the 

overall test distance to increase.  Tire pressure was not checked during the testing period 
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and differences in test distance.  Furthermore, due to the circular nature of the test route, 

and average test route radius of 1.7miles, a difference in total distance traveled can be on 

the order of 75.4ft depending on weather the truck traveled in the outside lane or the 

inside lane for the testing period. 

Table 4:  Test Distance and Test Time Values 

Test Number Test Weight (lbs) Distance (ft) Time (sec)
1 17,140 144,076 3,151
2 17,140 144,027 3,569
3 17,140 144,072 3,151
4 17,140 144,014 3,573
5 21,220 144,440 3,213
6 21,220 144,431 3,187
7 21,220 144,447 3,419
8 25,220 144,399 3,331
9 25,220 144,438 3,507
10 25,220 144,784 3,050
11 25,220 144,393 3,297
12 25,220 144,442 3,545
13 25,220 144,479 3,088

Average (ft) & (sec) 144342 3,314
Standar Deviation (ft) & (sec) 227.0 190.3
Coefficient of Variation (%) 0.157 5.742  

One of the final six tests overall distance differed significantly while the weather 

conditions did not change drastically.  A possible reason for this error could be a small 

error within the test vehicle’s ECU velocity output that would cause the overall distance 

to be increased.  Note that the difference for test number 10 may seem significant when 

closely compared to the other tests, but its difference is on the order of 0.3% of the 

average test distance values.  Table 5 below summarizes the different weather conditions 

between the different test runs including the test date for each run, the pre and post 

testing weather conditions and temperatures. 
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Table 5:  Pre and Post Weather Conditions During Testing 

Test Run Date Weather Pre/Post Temp Pre/Post  (oF)
1 1/24/2005 Overcast/Cloudy 23/22
2 1/25/2005 Cloudy/Cloudy 35/35
3 1/24/2005 Overcast/Overcast 23/22
4 1/25/2005 Overcast/Overcast 35/35
5 1/20/2005 Snow/Snow 25/25
6 1/20/2005 Snow/Snow 25/25
7 1/20/2005 Snow/Snow 25/25
8 1/23/2005 Clear/Clear 39/35
9 1/21/2005 Clear/Clear 20/15
10 1/23/2005 Overcast/Overcast 10/11
11 1/18/2005 Clear/Clear 39/35
12 1/21/2005 Cloudy/Cloudy 20/15
13 1/23/2005 Overcast/Cloudy 10/11  

5.4. Acceleration 
With the ECU vehicle speed determined and the instantaneous test time known, 

the acceleration of the vehicle was calculated.  Below in Figure 13, the values calculated 

for the vehicle’s acceleration are shown.  When compared with acceleration values 

determined for the other weights and tests, attached in the appendix, the highest 

acceleration values are found in the testing conducted at the test weight of 17,140lbs.  

This would be expected because of the fact that a vehicle with a lower weight will have 

less resistance and will have the ability of accelerate at a higher magnitude. 
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Figure 13:  Vehicle Acceleration Over The Test Period 

For further analysis, Figure 14 was created and shown below which entails the 

ECU vehicle speed layered onto the acceleration values.  It can be seen that under 

constant vehicle speeds, the acceleration magnitude decreases and fluctuates about zero 

as would be expected.  This test reached a maximum acceleration value of around 1ft/sec2 

which is approximately an increase in vehicle velocity of 0.7mph/sec and is a reasonable 

value for the size and weight of the test vehicle.  It is noted that the accelerations below 

10mph were neglected. 
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Figure 14:  Vehicle Acceleration Layered With ECU Vehicle Speed 

5.5. Density 
Ambient air density, as discussed earlier was determined from ambient air 

pressure readings taken.  Because of this, large spikes in the data were seen 

corresponding to the same spikes within the ambient pressure readings.  However, with 

the use of the smoothing technique described in the procedure section of this work, the 

noise was decreased and in some cases eliminated.  Figure 15 below shows the ambient 

air density values derived from the raw data of ambient pressure values. 
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Figure 15:  Ambient Air Density Determined From Raw Ambient Pressure Readings 

5.6. Altitude and Inclination Angles 
From the ambient air pressure readings taken, the altitude was determined and is 

shown below in Figure 16.  Certain problems existed within the altitude calculations due 

to large fluctuations in the recorded ambient pressure readings, and can be seen below.  

Large altitude gradients were calculated which were obviously erroneous.  Corrections 

were made to resolve these issues as discussed earlier.  The correlation between the 

altitude in Figure 16 below and the previously two figures created for ambient pressure 

and density in Figure 8 and Figure 15 respectively.  Notice that the large increase, or peak, 

in the ambient air pressure and density at approximately 30,000ft is interrelated with the 

valley in the altitude figure below which should be expected as altitude is inversely 

proportional to density and ambient air pressure. 
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Figure 16:  Altitude Values During Test Run Calculated From Smoothed Ambient Pressure Readings 

From the smoothed altitude, the initial values of road inclination could be found.  

Note that the first values of inclination angle were not the final values used in the test 

analyses, but were the first step in calculating an averaged inclination angle data set used 

for all of the tests.  This was discussed in more detail in the procedure chapter of this 

paper.  The initial inclination values are shown below in Figure 17.  Throughout the 

figure showing the inclination angle, large spikes exist and are obviously incorrect.  

Certain points exist that suggest an inclination of the test route of 30o in some points and 

even as high as 75o at one point. 
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Figure 17:  Primary Inclination Angle’s Determined From Smoothed Ambient Pressure Readings 

Notice how it can be seen in Figure 17 that the large fluctuations found in the 

altitude figure displayed earlier have carried through to the road inclination angle values.  

After eliminating these large gradients, Figure 18 below was created and shows the initial 

inclination angles calculated layered onto the final inclination angles determined.  It can 

be seen how erroneous values, due to the noise, were eliminated by the method described 

earlier and a smooth curve showing inclination angles was created.  On a moderately 

steep hill on a highway or interstate is not uncommon to see road grade values of 

approximately 6-7%.  A grade of 7% indicates that the road will increase or decrease in 

altitude 7ft for every 100ft traveled.  Under this grade, the inclination angle of the grade 

is approximately 4o.  After reducing the erroneous points found in the first calculations of 

the road inclination angles, values were determined with realistic magnitudes. 
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Figure 18:  Primary and Final Test Rout Inclination Angles After Averaging All Test Runs 

By zooming in on a smaller interval, a distance range between 15,000ft and 

35,000ft, the value of the method used to correct the road inclination angle can be seen 

and is displayed below in Figure 19.  Large spikes indicating inclination angles of 

approximately 40o and -70o are reduced and corrected.  This portion of the test shown 

includes a large hill climb as the test route is followed and the first entrance onto 

Interstate 79 is made and should, for the most part, consist of a constant grade as the 

vehicle climbs the hill at a constant velocity.  In Figure 19 below, the road inclination 

angle holds steady at approximately 4-5o which would be expected.  Other portions of the 

inclination angle data follow form as should after being corrected and represent the 

varying grade of the test route accurately and realistically. 
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Figure 19:  Inclination Angles Between 15,000ft and 35,000ft of Test 

5.7. Rolling Resistance 
With all variables needed for power calculations, the four components that make 

up the vehicle’s theoretical road load were determined.  Below in Figure 20, the power 

for the test vehicle to overcome its rolling resistance is shown.  In comparison to the 

other components of the test vehicle’s road load, the rolling resistance can easily be seen 

as the dominant constituent due to the fact that it reaches values on the order of 40hp and 

above for significant amounts of time.  It can be seen in Equation 15 that the rolling 

resistance only changes with respect to velocity as the rolling resistance coefficient and 

vehicle weight were constant.  Because of this, the rolling resistance increases as speed 

increases and holds a significant power requirement for a large portion of the test time.  

When compared to Figure 9, the rolling resistance curve follows it almost exactly and for 

the most part differs only in values of magnitude.  
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Figure 20:  Vehicle Rolling Resistance Over Test Route 

5.8. Climbing Resistance 
Using the inclination angles found with the smoothed data, the climbing 

resistance was found and is shown below in Figure 21.  Notice that with the exception of 

the large hill climb portion of the test route, the climbing power does not reach significant 

values for long periods of time.  It can be seen from Equation 16 that the climbing 

resistance is largely affected by the inclination of the road and the velocity of the vehicle.  

On large incline angles such as five or six degrees, the power required to compete with 

gravity reaches values above 100hp.  Although this is a significant value, the amount of 

time that climbing resistance is the dominant component of the entire road load is not 

very large and also become negated multiple times by inclines of a negative slope.  It can 

be seen in the figure below that during the 15,000-35,000ft section of the test route, 

which includes the largest inclination angles over a period of time, the climbing 

resistance reaches a large magnitude of approximately 120hp and reduces to negative 

values of approximately -120hp as the peak of the hill is passes and a long decent began 

of a similar inclination angle as the climb. 
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Figure 21:  Vehicle Climbing Resistance Over Test Route 

5.9. Acceleration Resistance 
The least significant component of the vehicle’s road load is the acceleration 

resistance.  With the acceleration of the vehicle calculated, and compensation for rotating 

objects located on or in the test vehicle, the power needed to overcome acceleration 

resistance was found and is shown in Figure 22.  Equation 17 shows how the acceleration 

resistance is primarily determined by changes in the vehicle velocity and during periods 

of constant velocity, the acceleration is approximately zero and the corresponding power 

requirement is also zero.  The acceleration resistance seems sporadic at first glance but 

because it is based upon changes in velocity which are always taking place, acceleration 

values are always changing.  A vehicle’s velocity can remain constant theoretically but in 

real world driving situations, it is highly unlikely.    
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Figure 22:  Vehicle Acceleration Resistance Over Test Route 

5.10. Aerodynamic Resistance 
The final road load component, the power magnitude needed to overcome 

aerodynamic resistance, was then found and is shown in Figure 23.  This component is 

the second most significant factor describing the test vehicle’s road load with large power 

magnitudes being reached over significant periods of time.  With the test vehicle’s frontal 

area remaining constant along with its drag coefficient, the aerodynamic resistance is 

primarily dependent upon the vehicle’s speed as shown in Equation 18 with the velocity 

term on the order of V3.  When comparing Figure 9, the vehicle’s velocity, and Figure 23 

below it can be seen that at lower vehicle speeds, the aerodynamic resistance is 

insignificantly low with values around 15-20hp but as the speed increases, the 

aerodynamic drag increases exponentially and reaches upper values around 60-70hp. 
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Figure 23:  Vehicle Aerodynamic Resistance Over Test Route 

5.11. ECU Power 
From the vehicle’s ECU, power output is recorded over the entire test period and 

is shown below in Figure 24.  The values here were determined by the ECU by recording 

and analyzing multiple engine operating parameters and were needed to be verified.  The 

vehicle’s ECU is able to report torque by measuring such things as fuel injection timing, 

the volume of fuel injected, and engine speed.  Factors that cannot be accounted for by 

the ECU which affect the actual power produced by the vehicle’s engine are the 

efficiency of the engine which decreases with age, engine wear, and variations in fuel 

properties.  Measured fuel and engine quantities are controlled by the ECU and using an 

algorithm developed by the engine manufacturer, the engine’s power output can be 

determined.  Accuracy of measured torque highly depends upon the complexity of the 

control algorithm developed (25).  
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Figure 24:  Test Vehicle ECU Power Output 

In Figure 24 above, the values reported by the vehicle’s ECU reach values below 

zero of approximately -10hp, which is considered motoring of the engine.  Moreover, in 

Figure 25 power calculations show negative power values, or motoring, on the order of    

-50hp or more.  The Consent Decrees do not require power to be accurately reported 

below zero, and because of this, the engine manufacturers only care about accurately 

reporting power within not to exceed zones (NTE) where they are required to by the 

Consent Decrees.  Due to this fact, the accuracy of the motoring torque and power 

provided by the ECU is questionable.  In Figure 24 above, the largest power producing 

period of the test is during the large hill climb area as discussed earlier where power 

magnitudes reach as high as 225hp approximately.  As shown in Equation 2, by summing 

the four components of road load determined by this analysis and multiplying the values 

by the instantaneous vehicle speed, the road load could be calculated throughout the test 

run.  

5.12. ECU and Model Comparison 
 Figure 25 below was created by layering the calculated power during the test 

period onto the output power data provided by the vehicle’s ECU power data output. 
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Figure 25:  Vehicle Road Load From Vehicle ECU Values and Developed Model 

Note that in Figure 25, it can be seen that at certain locations, the two power 

curves are not exactly equal and do not follow the same path.  Certain factors such as 

driveline efficiency are not taken into account into determining the vehicle’s road load.  

In the cases where the model curve does not reach the peaks of the ECU output power is 

because of the fact that the engine is producing more power to overcome losses 

unaccounted for within the analysis.  As the ECU power output reaches its lower peaks, it 

can be seen that the model’s values continue to decrease.  Similar to the peaks not 

matching up between the two, a factor such as braking was not accounted for in the 

model which would absorb a large portion of the road load primarily due to negative road 

inclination angles or downhill sections. 

Note that there are certain locations where the road load model developed over 

predicts the necessary power and raises above the broadcast ECU power values.  One 

factor causing this is in the acceleration power component of the road load.  At locations 

of approximately 23,000ft and 41,000ft there is a large spike in the model power that 

rises above the ECU power.  At these two locations, a significant hill climb is ending and 

a downhill section begins.  This induces a significantly large acceleration in the vehicle 

and provides power values of around 35hp.  This can be seen in Figure 22 where there are 
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large peaks in the acceleration power component.  Combining this with the fact that the 

climbing resistance changes directions around these locations and begins helping, or 

pulling, the test vehicle down road, and a large spike or peak is created in the total road 

load. 

5.13. Weight Effects on Road Load 
By averaging power values for each of the three test weights, the effect of weight 

on road load was determined and shown below in Figure 26.  It can be seen that the 

maximum road load power values are created at the vehicle loading of 25,220lbs.  This 

would be expected due to the higher vehicle payload and overall weight, more work 

would be required to overcome road load resistances.  Over the course of the entire test, 

the power for the different weights overlap very closely for the majority of the time, but 

there are instances where the three different curves diverge a bit and they can easily be 

seen individually.  In most of these cases, the 25,220lbs test weight is above the other two 

curves representing the lower two test weights. 
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Figure 26:  Calculated Road Load Power Averaged for Three Test Weights 

To further compare the three loadings road load values calculated, Figure 27 

below was constructed showing the average speeds for each test weight over the course 

of the test runs.  It can be seen that where the road load powers differ significantly is 
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directly related to differences in speed.  Consider the large hill climb portion of the test 

route, beginning around 20,000ft.  As the higher weights have lower vehicle speeds, 

shown in Figure 27, their corresponding road load values are also less as shown in Figure 

26.  As the crest of the hill was reached at around 30,000ft, the vehicle speeds converged 

as well as the calculated road load values. 
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Figure 27:  Averaged ECU Vehicle Speeds for Each Test Weight 

5.14. Work 
Once the values for work were determined for one single test run of the empty 

loading, Figure 28 below was created.  This figure distinguishes between negative and 

positive work values for vehicle acceleration and road inclination angles calculated over 

the entire test run.  Note that both of these components negate themselves over the course 

of an entire test.  This would be expected since over the test route the starting and 

finishing locations are the same.  Because of the fact that the test vehicle returned to the 

same initial altitude, there was approximately an equal amount of time on positive 

inclination hills and negative inclination hills.  Similarly, since the vehicle began and 

returned to an equilibrium position at rest, the acceleration over the course of the test run 

would be approximately zero.  
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Figure 28:  Positive, Negative, and Total Work Due To Acceleration and Inclination Angle 

With all values of work determined, Figure 29 below was developed.  It can be 

seen in the figure that the work associated with climbing resistance and acceleration 

resistance are negligible over a closed test route and the two significant components of 

work are due to rolling resistance and aerodynamic resistance.  The column in Figure 29 

titled Total Work is representing the summation of the four work components determined 

by this study.  The Total ECU Work column is determined from the output of the 

vehicle’s ECU, while the inferred work is determined from calculations using Equation 

19 and Equation 20.  Note that Figure 29 is a representation of the work comparison for 

one single test run at the empty loading test weight.  

As mentioned earlier, inefficiencies due to the mechanical losses within the test 

vehicle’s drive train were neglected which include losses from the gearbox and axle.  

This is the reason for the large difference between the two power curves created and 

shown in Figure 25 above.  If you refer back to Equation 2, it can be seen how these 

values for efficiency affect the values calculated for the power.  Furthermore, the 

differences between the overall work calculated from the road load calculations and the 

vehicle ECU provided an accurate representation of the losses experienced from the 

vehicle’s drive train.  By dividing the work determined by the road load calculations by 
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the work broadcast by the ECU, a value of approximately 82%, which provides a 

reasonable value for the vehicles gearbox and axle efficiency that would be expected. 

0

5

10

15

20

25

30

35

40

45

50

W
or

k 
(h

p-
hr

)

Rolling Work Climbing Work Aero Work Accel Work Total Work Total ECU Work Inferred Work
 

Figure 29:  Work Comparison Over One Test at 17,140lb Test Weight 

5.15. Uncertainty Analysis  
The results of the uncertainty analysis are shown below in Figure 30.  It can be 

seen that maximum uncertainty values exist on the order of ±7hp.  This occurs at 

locations where the vehicle’s engine is producing its maximum power and is 

approximately 200hp, as can be seen in Figure 25 shown earlier, which represents an 

uncertainty of around ±3.5%.  Also note that higher uncertainty values are located around 

the higher road load calculations and vice versa.  This is due to higher order 

measurements being taken during those time periods leading to higher uncertainty values 

in the calculations. 
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Figure 30:  Power Calculations Uncertainty Results 
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6. Conclusions and Recommendations  

6.1. Conclusions 
After developing the model discussed in this work, the values of power produced 

by the vehicle’s ECU were matched by the calculated values.  Although the two curves 

were not exactly the same magnitude and duration for some portions of the tests, that was 

not the primary objective of this study.  The primary objective of this work was to 

develop a model to verify the ECU output for an in-use test route and this was done.  

With the testing conducted, such factors as driveline efficiency and driver interactions 

could not be accounted for which would have a significant effect on matching the two 

curves closer, but were not needed to show, or verify real-world driving resistance on an 

instantaneous basis and on a closed test route.     

6.1.1. Integrated Work 
It can be seen in the bar chart below in Figure 31 that the values determined for 

work changed throughout testing, while efficiency values remained relatively constant.  

The first three tests and second three tests are corresponding to the empty weight and half 

weight tests respectively.  While the final six tests, seven through twelve, correspond to 

the full payload weight.  It can be seen that as the weight is increased the necessary work 

to perform also increases.  As the test weight increases, the vehicle’s engine must 

produce more work to overcome the additional mass that is being moved and accelerated.  

This would account for the vehicle’s ECU broadcasting higher values of work and also 

higher values being calculated by the model as the weight of the vehicle is  a crucial term 

in each of the four components of road load.  
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Figure 31:  Integrated Work for All Tests Conducted 

6.1.2.   Efficiency 
From the calculations involving power and work, it was found that there was a 

difference between the road load values calculated and the values reported by the 

vehicle’s ECU were found to have an average of 82.2%.  This was due to the fact that 

efficiencies of the mechanical systems of the test vehicle were neglected in the analysis, 

and therefore, is represented by the difference between the road load and engine power 

values.  Differences between these values can also be accounted for greatly in driver 

response or actions.  During testing, braking provided by the driver performing the test 

could not be accounted for and would produce a significant effect between the road load 

and ECU power.  The efficiency values were determined from the division of the model 

values for work, and the ECU values for work calculated.  Furthermore, the uncertainty 

analysis for the calculations of road load performed in this analysis presented verification 

that the values determined were accurate and were on the order of ±3% or below.   

 71



 

6.2. Future Studies and Experiments 

6.2.1. Ambient Pressure 
For future work, one recommendation would be to record the ambient pressure 

during testing with a different instrument or an additional one for multiple comparisons 

of altitude calculations.  The ambient pressure transducer used in this work produces 

signals with significant values of noise that caused complications during the data 

reduction phase of this study.  One alternative would be to use the Heise instrument 

described earlier.  This instrument has the ability to read ambient pressure values and 

output them through a serial cable.  This serial cable could be connected to one of the 

many available electrical signal input ports located within the MEMS data acquisition 

hardware and recorded in addition to the other connected sensors.  After using the Heise 

pressure instrument, it was seen that the values it displayed were stable and may produce 

ambient pressure readings more accurately and precise, with less noise than the ambient 

pressure transducer used produced by Omega. 

6.2.2. Inclination Angles 
Another recommendation for adjustments to the data collection previously 

described would be to gain accurate road inclination angles over the test route from an 

outside source.  This could be done through such things as a detailed topographical map.  

This will help to verify the ECU values over the prescribed test route, but one problem 

that exists is that this model is intended to be used in real-world driving situations and 

although was performed on a closed test route, it has the ability to provide accurate 

information on a non-prescribed path beginning at any starting point desired. 

6.2.3. Acceleration 
In order to have multiple acceleration values to compare and contrast, an 

accelerometer could easily be implemented into the system.  The purpose of an 

accelerometer is to measure an object’s acceleration, as described earlier in the review of 

literature section of this work.  By measuring and recording the electrical output of an 

accelerometer securely fixed to the test vehicle through the MEMS data a secondary set 

of acceleration data could be used to validate the vehicle acceleration values determined 

by differentiating the ECU vehicle speed output data.  Having two measurements of the 
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same parameter will not only provide the ability for each parameter to validate each other, 

but in the case of a problem occurring during testing where one measurement may fail, 

the other can be used to complete the test and provide reduction results.  This is 

applicable to any of the measurements taken during testing within this study. 

Acceleration values for this study were neglected at lower speeds as discussed 

earlier.  Further experiments need to be performed that focus on collecting accurate 

acceleration values at lower speeds.  Multiple methods need to be considered to collect or 

measure the vehicle’s acceleration, not just at low speeds, but throughout the vehicle’s 

normal operating range.  This will allow for acceleration resistance values to be recorded 

that can be compared to, if not replace, the values determined through calculations 

involving the broadcast vehicle speed. 

6.2.4. Wind Loading 
Additional testing would be relevant to this study that looked at the aerodynamic 

resistance in more depth.  In particular, the effects of yaw angles other than zero or head-

on.  Tail winds would produce significant effects on the aerodynamic resistance felt by a 

vehicle traveling and would play an important role in the road load of the vehicle since 

the aerodynamic resistance becomes a dominant component of the road load as vehicle 

speed increases.  Furthermore, the drag coefficient for the test truck in this study was 

assumed and was derived from previous studies of similar trucks that determined drag 

coefficients.  Conducting tests to determine a more accurate drag coefficient for the test 

vehicle would also provide a significant increase in the model’s accuracy. 

6.2.5. Friction 
In order to increase the models integrity further, studies could be conducted to 

determine factors such as the rolling friction coefficient of the test vehicle, and values for 

mechanical losses within the test vehicle.  By determining an accurate friction coefficient 

for the vehicle’s tires, the assumed value could be replaced with an accurate one.  

Furthermore, in this study, as stated earlier, driveline efficiencies were neglected and 

were shown in the differences between the model’s and ECU’s power and work values.  

By incorporating accurate correction values, for the specific test vehicle, for axle losses, 

transmission losses, bearing losses, and engine accessories, the calculated road load 
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values could be calculated and possible tighten around the broadcast values of the ECU.  

The two curves could potentially follow the same path very closely and the percent 

difference between the two could become closer and closer to zero. 
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8. Appendix 

8.1. Empty Load 

8.1.1. Test 1 / Empty Load 
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Figure 32:  Test 1 / Empty Load ECU Vehicle Speed 
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Figure 33:  Test 1 / Empty Load Altitude 
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Figure 34:  Test 1 / Empty Load Rolling Power 

-200

-150

-100

-50

0

50

100

150

200

0 20000 40000 60000 80000 100000 120000 140000

Distance (ft)

Po
w

er
 (h

p)

 
Figure 35:  Test 1 / Empty Load Climbing Power 
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Figure 36:  Test 1 / Empty Load Acceleration Power 
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Figure 37:  Test 1 / Empty Load Aerodynamic Power 
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Figure 38:  Test 1 / Load Weight Power Comparison 

8.1.2. Test 2 / Empty Load 
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Figure 39:  Test 2 / Empty Load ECU Vehicle Speed 
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Figure 40:  Test 2 / Empty Load Altitude 
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Figure 41:  Test 2 / Empty Load Rolling Power 
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Figure 42:  Test 2 / Empty Load Climbing Power 
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Figure 43:  Test 2 / Empty Load Acceleration Power 
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Figure 44:  Test 2 / Empty Load Aerodynamic Power 
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Figure 45:  Test 2 / Empty Load Power Comparison Showing Problem in ECU Power Output 
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8.1.3. Test 3 / Empty Load 
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Figure 46:  Test 3 / Empty Load ECU Vehicle Speed 
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Figure 47:  Test 3 / Empty Load Rolling Power 
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Figure 48:  Test 3 / Empty Load Climbing Power 
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Figure 49:  Test 3 / Empty Load Acceleration Power 
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Figure 50:  Test 3 / Empty Load Aerodynamic Power 

-150

-100

-50

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000 120000 140000

Distance (ft)

Po
w

er
 (h

p)

ECU Equation  
Figure 51:  Test 3 / Empty Load Power Comparison 
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8.1.4. Test 4 / Empty Load 
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Figure 52:  Test 4 / Empty Load ECU Vehicle Speed 
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Figure 53:  Test 4 / Empty Load Rolling Power 
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Figure 54:  Test 4 / Empty Load Climbing Power 
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Figure 55:  Test 4 / Empty Load Acceleration Power 
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Figure 56:  Test 4 / Empty Load Aerodynamic Power 
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Figure 57:  Test 4 / Load Weight Power Comparison 
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8.2. Half Load 

8.2.1. Test 1 / Half Load 
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Figure 58:  Test 1 / Half Load ECU Vehicle Speed 
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Figure 59:  Test 1 / Half Load Rolling Power 
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Figure 60:  Test 1 / Half Load Climbing Power 
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Figure 61:  Test 1 / Half Load Acceleration Power 
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Figure 62:  Test 1 / Half Load Aerodynamic Power 
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Figure 63:  Test 1 / Half Load Power Comparison 

 93



 

8.2.2. Test 2 / Half Load 
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Figure 64:  Test 2 / Half Load ECU Vehicle Speed 
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Figure 65:  Test 2 / Half Load Rolling Power 
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Figure 66:  Test 2 / Half Load Climbing Power 
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Figure 67:  Test 2 / Half Load Acceleration Power 
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Figure 68:  Test 2 / Half Load Aerodynamic Power 
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Figure 69:  Test 2 / Half Load Power Comparison 
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8.2.3. Test 3 / Half Load 

0

10

20

30

40

50

60

70

80

90

0 20000 40000 60000 80000 100000 120000 140000

Distance (ft)

Ve
hi

ca
l S

pe
ed

 (m
ph

)

 
Figure 70:  Test 3 / Half Load ECU Vehicle Speed 
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Figure 71:  Test 3 / Half Load Rolling Power 
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Figure 72:  Test 3 / Half Load Climbing Power 
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Figure 73:  Test 3 / Half Load Acceleration Power 
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Figure 74:  Test 3 / Half Load Aerodynamic Power 
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Figure 75:  Test 3 / Half Load Power Comparison 
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8.3. Full Load 

8.3.1. Test 1 / Full Load 
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Figure 76:  Test 1 / Full Load ECU Vehicle Speed 
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Figure 77:  Test 1 / Full Load Rolling Power 
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Figure 78:  Test 1 / Full Load Climbing Power 
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Figure 79:  Test 1 / Full Load Acceleration Power 
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Figure 80:  Test 1 / Full Load Aerodynamic Power 
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Figure 81:  Test 1 / Full Load Power Comparison 
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8.3.2. Test 2 / Full Load 
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Figure 82:  Test 2 / Full Load ECU Vehicle Speed 
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Figure 83:  Test 2 / Full Load Rolling Power 
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Figure 84:  Test 2 / Full Load Climbing Power 
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Figure 85:  Test 2 / Full Load Acceleration Power 
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Figure 86:  Test 2 / Full Load Aerodynamic Power 
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Figure 87:  Test 2 / Full Load Power Comparison 
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8.3.3. Test 3 / Full Load 
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Figure 88:  Test 2 / Full Load ECU Vehicle Speed 
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Figure 89:  Test 3 / Full Load Rolling Power 
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Figure 90:  Test 3 / Full Load Climbing Power 
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Figure 91:  Test 3 / Full Load Acceleration Power 
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Figure 92:  Test 3 / Full Load Aerodynamic Power 
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Figure 93:  Test 3 / Full Load Power Comparison 
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8.3.4. Test 4 / Full Load 
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Figure 94:  Test 4 / Full Load ECU Vehicle Speed 
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Figure 95:  Test 4 / Full Load Rolling Power 
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Figure 96:  Test 4 / Full Load Climbing Power 
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Figure 97:  Test 4 / Full Load Acceleration Power 
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Figure 98:  Test 4 / Full Load Aerodynamic Power 
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Figure 99:  Test 4 / Full Load Power Comparison 
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8.3.5. Test 5 / Full Load 
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Figure 100:  Test 5 / Full Load ECU Vehicle Speed 
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Figure 101:  Test 5 / Full Load Rolling Power 
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Figure 102:  Test 5 / Full Load Climbing Power 
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Figure 103:  Test 5 / Full Load Acceleration Power 
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Figure 104:  Test 5 / Full Load Aerodynamic Power 
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Figure 105:  Test 5 / Full Load Power Comparison 
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8.3.6. Test 6 / Full Load 

0

10

20

30

40

50

60

70

80

0 20000 40000 60000 80000 100000 120000 140000

Distance (ft)

Ve
hi

ca
l S

pe
ed

 (m
ph

)

 
Figure 106:  Test 6 / Full Load ECU Vehicle Speed 
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Figure 107:  Test 6 / Full Load Rolling Power 
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Figure 108:  Test 6 / Full Load Climbing Power 
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Figure 109:  Test 6 / Full Load Acceleration Power 
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Figure 110:  Test 6 / Full Load Aerodynamic Power 

-150

-100

-50

0

50

100

150

200

250

300

350

0 20000 40000 60000 80000 100000 120000 140000

Distance (ft)

Po
w

er
 (h

p)

ECU Equation  
Figure 111:  Test 6 / Full Load Power Comparison 
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