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ABSTRACT
Impacts of Various Boundary Conditions on Beam Vibrations

Ye Tao

In real life, boundary conditions of most structural members are neither totally fixed nor
completely free. It is crucial to study the effect of boundary conditions on beam vibrations. This
thesis focuses on deriving analytical solutions to natural frequencies and mode shapes for
Euler-Bernoulli Beams and Timoshenko Beams with various boundary conditions under free
vibrations. In addition, Green’s function method is employed to solve the close-form expression
of deflection curves for forced vibrations of Euler-Bernoulli Beams and Timoshenko Beams.

A direct and general beam model is set up with two different vertical spring constraints
k1, kr, and two different rotational spring constraints kz4, kg, attached at the ends of the beam.
These end constraints can represent various combinations of boundary conditions of the beam by
varying the spring constraints. A general solution for the Timoshenko beam with this various
boundary conditions is derived, and to the best of our knowledge, this solution is not available in
the literature. Numerical examples are presented to illustrate the effects of the end constraints on
the natural frequencies and mode shapes between Euler-Bernoulli beams and Timoshenko beam.
The results show that Euler-Bernoulli beams have higher natural frequencies than Timoshenko
beams at different modes. The ratio of the natural frequencies for Timoshenko beams to the
natural frequency for Euler-Bernoulli beams decreases at higher modes. Natural frequencies at
lower modes are more sensitive to boundary constraints than natural frequencies at higher
modes.
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NOMENCLATURE

The following symbols are used in the thesis:

=)
I

cross section area

Young’s Modulus

modulus of rigidity

moment of inertia

dimensionless frequency of Euler-Bernoulli beams
numerical shape factor

rotational spring constant on left hand side of the beam
rotational spring constant on right hand side of the beam
vertical spring constant on left hand side of the beam

vertical spring constant on right hand side of the beam

. . kr1L
rotational spring constant = %=

beam length

bending moment

external load

time

shear force

transverse deflection of the free vibration
dimensionless length = x/L

the point where the point load is applied at
bending slope

density

angular natural frequency of beam vibrations
angular frequency of the applied load
Poisson ratio

dimensionless frequency for Timoshenko beams = pAL*w? / (EI)
1/(AL?)

EI/(KAGL?)

\/% [-(r? +5s2) + J(rz — s2)2 + %]

\/%[(rz +52) + \/(rz— 52)2+b4—2]

viii



fr/fep

pAL* w?
EI

Natural frequency ratio of the Timoshenko beam to the Euler-Bernoulli beam

ji[w #57) = (02 = 524 ]



CHAPTER 1 Introduction

1.1 Introduction

Beam vibration is an important and interesting topic. Structures subjected to
random vibrations can cause fatigue failures. When a beam is excited by a steady-state
harmonic load, it vibrates at the same frequency as the frequency of the applied
harmonic load. When the applied loading frequency equals to one of the natural
frequencies of the system, large oscillation occurs, which can cause large beam
deflection. This phenomenon is called resonance. Therefore, determination of natural

frequencies is crucial in vibration problems.

Continuous structural beam systems are widely used in many engineering fields,
such as structural engineering, transportation engineering, mechanical engineering, and
aerospace engineering. The boundary conditions of structural members in continuous
structural beam systems are indeterminate and complicated. It is not accurate to assume

these boundary conditions as totally fixed or completely free.

In this thesis, a direct and general beam model is set up with two different
rotational springs and two different vertical springs at both ends to simulate different
beam boundary conditions. Dynamic responses of Euler-Bernoulli beams and
Timoshenko beams under free vibrations and forced vibrations are analyzed. Euler-
Bernoulli beam theory is also known as the classical beam theory. It is a simplification

of the linear theory of elasticity which presents the relationship between the applied
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load and the deflection of a slender beam. However the classical one-dimensional
Euler-Bernoulli theory is not accurate enough for deep beams and the vibrations at
higher modes. Timoshenko Beam theory counts in the effects of rotatory inertia and
transverse-shear deformation, which are introduced by Rayleigh in 1842 and by
Timoshenko in 1921, respectively. To the best of our knowledge, no one has derived
the general solution for the Timoshenko beam vibration with arbitrary beam boundary

conditions yet.

1.2 Objectives

The objectives of this thesis are: First, derive the solutions to the natural
frequencies and the mode shapes of Euler-Bernoulli beams and Timoshenko beams
with various boundary conditions under free vibration using eigenvalues and
eigenvectors. Second, obtain the close-form expression of deflection shapes of Euler-
Bernoulli beams and Timoshenko beams under forced vibrations using Green’s
function. Last, compare the effects of various boundary conditions on vibrations of

Euler-Bernoulli beams and Timoshenko beams.



CHAPTER 2 Literature Review

2.1 Previous Studies

Vibrations of Euler-Bernoulli beams and Timoshenko beams have been studied
by many researchers over the past decades. Huang (1961) presented normal modes and
natural frequency equations of six types of Timoshenko beams with different end
constraints under free vibrations: supported-supported beam, free-free beam, clamped-
clamped beam, clamped-free beam, clamped-supported beam, and supported-free beam.
Ross and Wang (1985) derived the frequency equation for a Timoshenko beam with
two identical spring constraints kg and two fixed vertical supports. Chen and
Kiriakidis (2005) derived the frequency equation for the cantilever Timoshenko beam
with a rotational spring and a vertical spring. Majkut (2009) analyzed the Timoshenko
beam with identical vertical spring constraints k;, and identical rotational spring
constraints kg at both ends. But he made a mistake on the equation of moments acting
on infinitesimal beam element. The moment should be caused by pure bending angle,

instead of the sum of bending angle and shear angle.

Different approaches have been employed to solve forced vibrations of Euler-
Bernoulli beams and Timoshenko beams, such as the mode superposition method, and
the dynamic Green’s function method. Mode superposition method is an approximate
method since truncations are used in the computation of the finite series. Hamada (1981)

solved the solution for a simply supported and damped Euler-Bernoulli beam under a



moving load using double Laplace transform. Mackertich (1992) studied beam
deflections of a simple supported Euler-Bernoulli beam and a simple supported
Timoshenko beam using mode superposition method. Esmailzadeh and Ghorashi (1997)
analyzed the dynamic response of a simply supported Timoshenko beam excited by
uniformly distributed moving masses using finite difference method. Ekwaro-Osire et
al. (2001) solved the deflection curve for a hinged-hinged Timoshenko beam by series
expansion method. Uzzal et al. (2012) studied the vibrations of an Euler-Bernoulli beam
supported on Pasternak foundation under a moving load by Fourier transform and mode
superposition method. Azam et al. (2013) presented the dynamic response of a
Timoshenko beam excited by a moving sprung mass using mode superposition method.
Roshandel et al. (2015) investigated the dynamic response of a Timoshenko beam

excited by a moving mass using Eigenfunction expansion method.

Green’s function method is more straightforward and efficient compared to
mode superposition method. There is no need to calculate natural frequencies and mode
shapes for the beam for Green’s function method. Many people have contributed to
finding the corresponding Green’s functions for beam vibrations. Mohamad (1994)
tabulated the solutions for mode shapes of Euler-Bernoulli beams with intermediate
attachments using Green’s function. Lueschen (1996) derived the corresponding
Green’s function for forced Timoshenko beams vibrations in frequency domain using
Laplace Transform for the same six beam types of as Huang’s (1961). Foda and
Abduljabbar (1997) studied the dynamic response of a simply supported Euler-

Bernoulli beam under a moving mass using Green’s function. Abu-Hilal (2003)
4



investigated the dynamic response of a cantilever Euler-Bernoulli beam with elastic
support under distributed and concentrated loads using Green’s function. Mehri et al.
(2009) studied the forced vibrations of an Euler-Bernoulli beam with two identical
rotational springs and two identical verticals springs under a moving load. Li and Zhao
(2014) derived the steady-state Green’s functions for deflection curve of forced
vibrations of Timoshenko beam with a harmonic force considering damping effects for

six types of beams for the same six beam types of as Huang’s (1961).

However, to the best of our knowledge, the general solution to dynamic
responses of a Timoshenko beam that can be applied to any arbitrary boundary

conditions is not available in the literature yet.

2.2 Euler-Bernoulli Theory

Euler-Bernoulli theory is applied to a beam with one dimension much larger
than the other two dimensions. There are three assumptions for the Euler-Bernoulli
beam theory: First, the cross section is assumed to be elastic isotropic with small
deflection. Second, the cross section of the beam remains plane after bending. Third,

the cross section remains normal to the deformed axis of the beam.

The classical beam theory describes the relationship between the deflection of

the beam, y(x, t) and the bending moment, M (x, t):

M(x,t) = E1Z2 @.1)

dx2



y represents the transverse displacement of an element of the beam. x stands for
the distance from the left hand end. E denotes the Young’s modulus. I(x) is the moment

of inertia of the section.

From Timoshenko’s (1990) book Vibration Problems in Engineering, the mode

shape for the Euler-Bernoulli beam under free vibration can be stated as:

y(x,t) = Y()T(t) (2.29)
Y(x) = Cysin(kx) + Cycos(kx) + C3sinh(kx) + C,cosh(kx) (2.2b)
T(t) = Acos(wt) + Bsin(wt) (2.2¢c)

k denotes the dimensionless frequency of the beam. w denotes the angular

frequency. C; to C, can be determined by the boundary conditions.

kand w can be related to each other by:

®; = (ki)z\/f:/i (i=1,23,4,5.....,0) (2.3)

2.3 Timoshenko Beams Theory

Stephen Timoshenko introduced Timoshenko Beam theory in early 20" century
(Timoshenko, 1921). The Timoshenko Beam theory takes effects of rotary inertia and
shear deformations into account. It is suitable for describing the behavior of short beams,
beams vibrating at high frequency modes. The extra mechanism of deformation reduces

the stiffness of the beam, causing larger deflection and lower Eigen frequencies. The
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governing equations of Timoshenko beams are 4t"order partial differential equations.

The governing equations for Timoshenko Beams are shown as

20%¢ oy %
EIE-I'KAG(a—(p)—pIﬁ—O (248.)
2%y 2%y _ 09\ _
—pAa?'F KAG (ﬁ—a) =0 (24b)

G, denotes modulus of rigidity; A, denotes cross section area; K, denotes

numerical shape factor; y, denotes transverse deflection; ¢ denotes bending slope.

2.4 Green’s Function

The concept of Green’s function is developed by George Green in 1830s
(Challis and Sheard 2003). Green’s function is defined as the impulse response of a
nonhomogeneous differential equation in a bounded region. It can be used to solve the
solution to nonhomogeneous boundary value problems. It provides a visual

interpretation of the response of a system with a unit point source.

Define a linear differential operator £, acting on distributions over a subset of

R™ Euclidean space. At a point x, a Green’s function G(X,xs) has the following

property:
L{G(x,xp)} = & (x —xp) (2.5)

o is the Dirac delta function. The definition for Dirac delta function is:

400 x=0

5 (1) ={ s o (2.6)



The Dirac delta function has an important property that

IZ f(0)8 (x — @) dx = f(a) 2.7)



Chapter 3 Free Vibrations of Euler-Bernoulli Beams

3.1 Natural Frequencies and Mode Shapes of an Euler-Bernoulli Beam with various
boundary conditions

In real world, boundary conditions of a beam are complicated. In most cases, it is neither
perfectly fixed, nor completely free. In this section, a general model of an Euler-Bernoulli beam
is studied, which is a beam with two different rotational springs and two different vertical

springs at the ends. It is demonstrated below:

Figure 3.1: An Euler-Bernoulli Beam with Two Rotational Springs and Two Vertical
Springs

kgr, and k4 represent the rotational spring constant and the vertical spring on the left
hand side of the beam, respectively. kg, and kg, represent the rotational spring constant and
the vertical spring on the right hand side of the beam, respectively. By varying the spring
constants of the two rotational springs and two vertical springs, various beam boundary

conditions can be simulated.

The transverse vibration mode shape can be written as:

Y (&) = C;sin(k&) + Cycos(ké) + Cysinh(k&) + Cycosh(ké) (3.1)



where ¢ is the dimensionless length x/L.
The boundary conditions are shown below:
M |g=0 = kg ¥ |5=0 , M |g=1 = —kgp,¥ |g=1
|74 |5=0 = —krY |g=0, |4 |5=1 = kp,Y |§=1 (3.2)
Sign conventions for positive moment and positive shear are defined as:
+M +V
‘o 1

Figure 3.2: Sign Convention

The bending moment M, bending slope ¥, and shear force V can be calculated by:

EIk?
LZ

M(§) = [—Cisin(k&) — Cycos(kE) + Cs3sinh(kE) + Cycosh(ké)]

=l

Y(&) =—-[Cicos(ké) — Cysin(k&) + Cscosh(ké) + Cysinh(ké)]

10



EIK3
L3

V() = [—Cicos(ké) + Cysin(ké) + Cscosh(ké) + Cysinh(ké)] (3.3)

The boundary conditions can be rewritten in matrix format as:

kEI kEI
ki T K T
Elk3 i Elk3 i
E T1 I3 T1
Elk? k Elk? k _ Elk? k Elk? k _
— T sin(k) + Zkchos(k) T cos(k) — Zkstm(k) —sinh(k) + Zkchosh(k) Iz cosh (k) + Zkstmh(k)
Elk3 EIk3 Elk3 EIk3
BE cos(k) — kp,sin(k) B sin(k) — kp,cos(k) B cosh(k) — kp,sinh(k) IE sinh(k) — kr,cosh(k) ]
_Cl - O
C, 0
X =
Cs 0
Lc,l Lo

(3.4)

To find the nontrivial solution of C; to C,, determinant of the four by four matrix must equal to zero. The frequency equation can be

written as:

11



[ I ] [kfl Eilj (EIk ) + kgy X ki X (Ezlj sin(k) — szcos(k)> — % X
ki X (%fcosh(k) — kpysinh(k) ) + % X EZI:B X <E1k szcos(k)) — kr1 (%’_:3 cosh(k) — kr, sinh(k)) — kpq X kgq X
(E”‘ szcosh(k)> | > [Kkas % il <E”‘ inh(k) — szcosh(k)> + kpy X kpy X <—
szsm(k)> + E EZI;S X <E1k > + E Ei’f X <— — szsin(k)> — kpq X kgy X <%’;3 cosh(k) —
szsinh(k)> + kgy X Ei" X (E”‘ szcosh(k)>l X cosh(k)] [Kpy X kgy X (Ei’f sinh(k) —
szcosh(k)> + E X kiq < cos(k) - szsm(k)> + E E:: X <E1k szcos(k)> + E X kg ( e cos(k) -
szsin(k)> — kpq X kg X (152_1;3 sin(k) — szcos(k)> - szcosh(k)] X lkm X kpq X (E:]f szsinh(k)> +
KL I ¢ <— szsin(k)> + ko % (- Ei’f) x (E”‘ szcos(k)> 2 kpy X gy X < Ky X
sin(k)> + % X Ei’j X (Elk kTZSth(k)>l
(3.5)
Eqg. (3.5) can be solved using the MATLAB file shown in Appendix I, by inputting the values of kgq, k11, kg2, k2.
The angular frequency can be calculated by:
(3.6)

= (ki/L)z\//’f:j1 (i=1,2,3,4,5.....,0)
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3.2 Natural Frequencies and Mode Shapes of a Cantilever Euler-Bernoulli Beam with a
Rotational Spring and a Vertical Spring

The natural frequencies and mode shapes of a cantilever Euler-Bernoulli beam with a
rotational spring and a vertical spring under free vibrations are derived in this section using

Eigenvalues and Eigenvectors. Blow is the sketch for the beam:

Figure 3.1: A Cantilever Euler-Bernoulli Beam with a Rotational Spring and a
Vertical Spring

The boundary conditions are shown below:
M |gf:o = kp ¥ |f=0a M |f=1 =0

vV |§=0 = —ley |f=0’ vV |f=1 =0 (37)

Plug in the equations of moment M, bending slope ¥, shear V, and deflection Y into

boundary conditions:

KEI KEI A
kg4 - kr1 - C,1 10
3 3
_Eil; kr Ellfsc kr1 C, 0
X =

2 2 2 2
I sin() 2 cos()  Psinh(k) P cosh ()| |G| o

3 3 3 3
B Ei’; cos(k) Ei’; sin(k) Ei’; cosh(k) LI: sinh(k) | LG, Lo
(3.8)
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In section 3.1, a general model of an Euler-Bernoulli beam has been studied with two

different rotational springs and two different vertical springs at both ends. Assign zero to k.,

and kpg,, the general beam model is simplified to a cantilever Euler-Bernoulli beam with a

rotational spring and a vertical spring, as shown in Figure 3.1. Eq. (3.4) can be reduced to:

kg1 % kg1 - %
B 5213‘3 fery E,{f kri
- 521:2 sin(k) - Egz cos(k) 521;2 sinh(k) 521;2 cosh (k)
| — Egg cos(k) Ei’_,fs sin(k) Ei’;g cosh(k) 521;3 sinh(k) |

(3.9)

which is identical to Eq. (3.8) .

When k;, and kg, approach infinity, k;, and kg, equal to zero, the general beam

becomes a cantilever beam. Below is the sketch:

kre = kgpy = 0, kpy = kr; =0

S
N

Figure 3.2: A cantilever Euler-Bernoulli Beam

Eq. (3.8) can be reduced to,

1 0 1 0 1 rCq (o
0 1 0 1 ¢l lo
k2 . k2 K2 . k2 X = (3.10)
_EZZ sin(k) —EZZ cos(k) EZZ sinh(k) EZZ cosh (k) Cs 0
3 3 3 3
| — Ei]; cos(k) Ei]; sin(k) Ei’; cosh(k) Ei’; sinh(k) | Lc,J Lol
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by dividing the first row of Eq. (3.8) by kg, and the second row of Eq. (3.8) by k;,. The

frequency equation can be simplified to:
cos(k) x cosh(k) = —1 (3.11)

Eqg. (3.11) is identical with Timoshenko’s (1990) result in the book of Vibration

Problems in Engineering.

3.3 Natural Frequencies and Mode Shapes of an Euler-Bernoulli Beam with Two
Rotational Springs and Two Fixed Vertical Supports

In this section, the free vibrations of an Euler-Bernoulli beam with two rotational

springs and two fixed vertical supports are studied. The beam is plotted in Figure 3.3:

ki =kry = 0, kgy = kg,
Yo /

Figure 3.3: An Euler-Bernoulli Beam with Two Rotational Springs

The boundary conditions of the beam are:
M |f=0 = lellu |f=0 ) M |f=1 = _lel}’ &=1
Y |f=0 = 0, Y |f=1 = 0 (312)

Substitute the equations of moment M, bending slope ¥, and deflection Y into boundary

conditions:

15



le

0

kEI
- Tsin(k) + kgycos(k)

sin(k)

kEI
I cos(k) — kgisin(k)

cos(k)

kr1
0
kEI
Tsinh(k) + kricosh(k)

sinh(k)

kEI
Tcos(k) + kgisin(k)

cosh(k)

(3.13)

Eq. (3.4) describes a set of four boundary conditions for a general beam model. Substitute k;; and kp, withinfinity, kg, with kg,. EQ.

(3.4) can be rewritten as:

K1
0

kEI
- Tsin(k) + kgycos(k)

sin(k)

kEI
T cos(k) — kgysin(k)

cos(k)

Eq. (3.14) matches Eq. (3.13) .

kg1
0
kEI
Tsinh(k) + kgycosh(k)

sinh(k)

kEI
Tcos(k) + kgysin(k)

cosh(k)

(3.14)
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When kp; and kg, approach infinity, kgz; and kg, Qo zero, the beam becomes a

simply supported beam, as shown in Figure 3.4.

kry =kr; =, kpy = kg =0

477 R

Figure 3.4: A Simply Supported Euler-Bernoulli Beam

Eqg. (3.13) can be reduced to:

kEI kEI

|0 " 0 -7 | a1 o
I 0 1 0 1 I y C, _ 10
[— % sin(k) - % cos(k) % sinh(k) % cos(k)J Cs 0
sin(k) cos(k) sinh(k)  cosh(k) Ca 0
(3.15)
The frequency equation can be simplified to:
sin(k) =0 (3.16)

EQ. (3.16) is verified with Timoshenko’s (1990) results.
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Chapter 4 Free Vibration of Timoshenko Beams

4.1 Timoshenko Beams under Free Vibrations

In chapter 3, free vibrations of Euler-Bernoulli beams have been studied. Euler-Bernoulli
beam theory is accurate only for slender beams. Timoshenko beams theory takes into account of
the shear deformation and the effects of rotary inertia. It is more accurate than Euler-Bernoulli
beams for frequency calculations of deep beams, especially when beams are vibrating at higher

mode.

The governing equations for Timoshenko Beams are given in Vibration Problem in

Engineering (Timoshenko 1990):

%¢ dy e _
EIZ2+ KAG(2-¢)-p1S2=0 (4.1)
a2y %y  dp\ _
—pASZ + KAG (ﬁ - 5) =0 (4.2)

K is the numerical shape factor. y represents the lateral displacement. ¢ denotes the angle

of rotation of the cross section due to bending.

Sign conventions for positive moment and positive shear are defined as:

+M +V

(oo e

Figure 4.1: Sign Convention for Timoshenko Beams

Moment and shear can be expressed as:
18



M(x,t) = EI 2 (4.3)

V(xt) = —KAG (2 - ¢) (4.4)

After applying of separation of variable methods (Huang 1961), Egs. (4.1) and (4.2) can

be stated as:

%y Elp p oty _
EI +'0A at2 ( +'DI) 26t2 +plig KG at* 0 (4.5)
2% 9%¢ Elp 2% p 9% _
EISL+ A2 — (22 +pl )55 + pl 222 = 0 (4.6)

Transverse deflection y, and bending angle ¢, can be written in term of dimensionless

length &, and time t:

y = Y (E) etwt (4.7)
p=" (et (4.8)

Let’s introduce three variables b, r, and s:

b? = pAL*w? / (EI) (4.9)
r2 = 1/(AL?) (4.10)
— EI/(KAGI?) (4.11)

Substitute Egs. (4.7) and (4.8) into Egs. (4.5) and (4.6), then omit the e“* on both sides

of equations
YV +b2(r2+5s?)Y" - b%(1 —r?s?b?)Y = 0 (4.12)

PV 4 b2(r2 + s ¥" —b2(1 —1r%s2b2)¥Y = 0 (4.13)
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Assume Y equals to e*¢. Therefore, Eq. (4.12) becomes
At xe? +b2(r? +s2) e™ — b2(1 —1r2s2b?) e =0 (4.14)
Eliminate e?¢ on both sides. Eq. (4.14) can be reduced to:

A+ A2b2(r? +52) — b?(1 —1r%s?b?) =0 (4.15)
Let H equals to A2, then Eq. (4.15) can be written as

H?2+b%(r*+s*)H— (1 —12%s*b?) =0 (4.16)

Two roots of Eq. (4.16) are

H, = ”;[—(r2 +52) + \/(rz — )2+ ] (4.17a)

H, = b?z [—(r? + 52) — \/(rz — s%)2 4+ ;—2] (4.17b)

2

When \/(r2 — s52)2 +bi is greaterthan (r? + s2), H, is positive. The four roots of Eq.

(4.15) are
A = b\/% [ (r2 + s2) + \/(rz — $2)2 + ] (4.18a)
Ay = — b\/% [—(r2 +s2) + J(rz — 22+ ] (4.18b)
Ay = ibﬁ [(r? + s2) + \/(rz — )2+ ] (4.18¢)
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b2

/14=—ib\/%[(r2+sz) +J(r2— s2)2 + ]

Let’s define a and f:

a=\/%[—(r2+52) + \/(rz— SZ)Z+%]

ﬁ=j§[(r2+s2) + 0= st

Therefore, 4, to A, can rewritten as

A, = ba, 1, = —ba, A3 = bBi, A, = —bBi

Y can be written as

Y(&) = CeP® +C, e "% + ¢; ePPSi+ ¢, e PP

EQ. (4.22) can be rewritten as

Y (¢) = Cycosh(baé) + C, sinh(ba&) + C5cos(bfé) + Cy sin(bf€)
Similarly, the bending angle can be ¥ derived. ¥ can be expressed as
Y(&) = Dy sinh (ba&) + D, cosh (ba&) + D3 sin (bp&) + D, cos (bBE)

Eq. (4.23) and Eq. (4.24) can be related to each other by the Eq. (4.6),

La La

G = s D C2 = paarsny D2

(4.18d)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)
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_ LB _ __Lp
C3 - MD3 C4_ —_ b(ﬁz—sz) D4_ (425)

Deflection Y can be writtenas Y () = b(az )Dl cosh(ba) + )Dzsmh (baf) —

55 Dacos (BBE) + 5oz Dasin (bE) (4.26)

+ = s less than (r? + s?), H, is a negative number. Following

b2

When J(rz — 52)2
the same derivation procedure, Y and ¥ can be calculated as
Y(&) = Ci'cos (bué) + C,' sin (bpé) + C3' cos (bB¢) + C,' sin (bBE) (4.27)

Y(&) =D, sin (bué) + D, cos (bué) + D3’ sin (bB&) + D,' cos (bBE) (4.28)

where p isﬁ [(r2 + s2) — J(rz — s2)2 +;—2 1.

4.2 Natural Frequencies and Mode Shapes of a Timoshenko Beam with Various Boundary

Conditions

In this chapter, a more general beam model is studied, which is a beam with two different
rotational springs and two different verticals spring on ends. It has the ability to simulate all kinds
of beam ends conditions. To the best of our knowledge, the frequencies and modes shapes of this

beam model is not available in the literature. Below is the sketch of the beam:

22



Figure 4.2: ATimoshenko Beam with Two Rotational Springs and Two Vertical Springs

Majkut (2009) discussed the frequencies and mode shapes of a Timoshenko beam with two
identical vertical springs and two identical rotational springs at both ends, which is not as general
as the beam studied in this section. However, he made a crucial mistake when he calculated the
moment in page 199. The moment should be caused by pure bending angle alone, instead of both

pure bending angle and shear angle.

The boundary conditions for this beam are
M |f=0 = lellu |f=0 |4 |f=0 = _kT1Y |f=0

M |f=1 = —kRzlP |§=1 %4 |§=1 = kTZY |§=1 (4.29)

Deflection Y, bending angle ¥, moment M, and shear force V, can be calculated as below
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LB _ LB
Y(&) = b( " )Dl cosh(baf) +- )Dz sinh(baé) — 55?5 )D3 cos(bBé) + —— 5 D4sm(b,85) (4.30)
Y(&) = Dy sinh(ba&) + D, cosh(ba&) + D5 sin(bf&) + D4 cos(bf€) (4.31)
M(§) = 22 cosh(bag)D; + = sinh(bag)D; + =2 cos(bBE)D; — L sin (bBE)D, (4.32)
V(&) = KAG ( smh (baé)D, + SZ cosh (ba§)D, — —— sin (b§)Ds — ——— cos (bBE) (4.33)
Plug Egs. (4.30) to (4.33) into boundary equations,
—kp La —KAGs? kp LB KAGs?
Elba EIbB
I —kp1 I —kp1
KAGs?b sinh(ba) — kpyLa cosh(ba) KAGs?bcosh(ba) — kr,Lasinh(ba) —KAGs?bsin(bf) + k,LB cos(ba) —KAGs?bcos(bf) — kLB sin(ba)
b(a? + s2) b(a® + 52) b(B* — 52) b(BZ — s2)
Elba cosh(ba) + kg, Lsinh(ba) Elba sinh(ba) + kg, Lcosh(ba) EIbB cos(ba) + kg, Lsin(ba) —EIbp sin(ba) + kg,Lcos(ba)
L L L L
_Dl_ O
D, 0
X = (4.34)
D5 0
p,l Lo
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The frequency equation can be calculated by

—leLa
b(a?+s2)

—KAGs?bsin(bB)+kr,LB cos(ba) . —EIbp sin(ba)+kgr,Lcos(ba) , —EIbf sin(ba)+kgr,Lcos(ba)
X —kR1 X X + X
b(B2%2-s2) L L
—KAGs?bcos(bB)—kr,LB sin(ba) % EIba sinh(ba)+kgyLcosh(ba)
b(B2-s2) L

KAGs?bcosh(ba)—kr,La sinh(ba) 5 EIbpB cos(ba)+kg,Lsin(ba)
b(a?+s2) L

+ kg, X

—kpy X

—KAGs?bcos(bB)—kr,LB sin(ba) x EIbp cos(ba)+kg,Lsin(ba) _ EIbB v

—KAGs?bsin(bB)+kr,LB cos(ba) _ Elbasinh(ba)+kg,Lcosh(ba)
X + kpq X

b(B2%2-s2) L b(B2%2-s2) L L
KAGs?bcosh(ba)—kr,La sinh(ba) % —EIbp sin(ba)+kgaLcos(ba)] —KAGs? [ Elba _ —KAGs?bsin(bB)+kr,LB cos(ba)
b(a?+s2) L (a?+s2) L b(B2%2-s2)

—EIbB sin(ba)+kgyLcos(ba) n EIbfB % —KAGs?bcos(bB)—kr,LBsin(ba) x Elba cosh(ba)+kpyLsinh(ba)

L L b(B2—s2) L — kg1 X

KAGs?b sinh(ba)—kryLacosh(ba) x EIbf cos(ba)+kg,Lsin(ba) + kot X —KAGs2bsin(bf)+kryLBcos(ba) x Elba cosh(ba)+kpyLsinh(ba)
R1 -

b(a?+s2) L b(ﬁz—sz) L

Elba v —KAGs?bcos(bB)—kr,LBsin(ba) % EIbB cos(ba)+kgyLsin(ba)  EIbB v KAGSs?b sinh(ba)—kr,Lacosh(ba) v —EIbB sin(ba)+kR2Lcos(ba)] n
L b(B?-s2) L L b(a?+s2?) L
krLB [ Elba % KAGs?bcosh(ba)—kr,Lasinh(ba) % —EIbB sin(ba)+kg,Lcos(ba) Koe X —KAGs?bcos(bB)—kr,LB sin(ba) %
b(B%—s?2) L b(a?+s2) L R1 b(B%—s2)
ElIba cosh(ba)+kg,Lsinh(ba) KAGs?b sinh(ba)—kr,Lacosh(ba) _ Elbasinh(ba)+kg,Lcosh(ba) KAGs?bcosh(ba)—kr,Lasinh(ba)
- le X 2 2 X +kR1 X 2 2 X
L b(a?+s?) L b(a?+s%)
ElIba cosh(ba)+kg,Lsinh(ba) Elba . —KAGs?bcos(bB)—kr,LBsin(ba) % Elba sinh(ba)+kgyLcosh(ba) 4 kot X KAGs?b sinh(ba)—kr,Lacosh(ba)
L L b(B2-52) L R1 b(a?+s2)
—EIbfB sin(ba)+kR2Lcos(ba)] KAGs? [ Elba % KAGs?bcosh(ba)—kr,Lasinh(ba) % EIbB cos(ba)+kg,Lsin(ba) Kor X
L (B2-s2) L b(a?+s2) L R1
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—KAGs?bsin(bB)+kr,LB cos(ba) _ Elba cosh(ba)+kg,Lsinh(ba) + EIbB % KAGs?b sinh(ba)—kr,Lacosh(ba) v ElIba sinh(ba)+kgyLcosh(ba) EIbf 5

b(B2-s2) L L b(a?+s2) L L

KAGs?bcosh(ba)— kr,Lasinh(ba) % EIba cosh(ba)+kg,Lsinh(ba) Elba % —KAGs?bsin(bB)+kr,LBcos(ba) v EIba sinh(ba)+kg,Lcosh(ba) + kot X
- R1

b(a?+s2) L L b(B2-s2) L
2p o _ .
KAGs*b sinh(ba)— krLacosh(ba) % EIbf cos(ba)+kR2Lsm(ba)] -0 (4.35)
b(a%+s2) L

Dimensionless frequency b, can be obtained by solving Eq. (4.35) using the MATLAB file in Appendix II.

The angular frequency can be calculated as by:

w; = (b;/L)? ;’—/’4 (i=1,2345.....,0) (4.36)
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4.3 Natural Frequencies and Mode Shapes of a Cantilever Timoshenko Beam with a

Rotational Spring and a Vertical Spring

In this section, the free vibration of a cantilever Timoshenko beam with a rotational spring

and a vertical spring is analyzed. The beam is demonstrated below:

Y

Figure 4.3: A Cantilever Timoshenko Beam with a Rotational Spring and a Vertical Spring

The boundary conditions are shown below:
M |E=0 =kR111U |f=0, M |f=1 =0

|74 |§=0 = —ley |f=0‘ |74 |f=1 =0

Plug Egs. (4.30) to (4.33) into boundary equations,

_leLa _KAGSZ leLﬁ
b(a? + s?) (a? + s2?) b(B? — s?)
Elba Elbp
L ~Fr1 L
KAGs? KAGs? KAGs?
Sz-l-—alenh (ba) Sz-l-—aZCOSh (ba) —’m sin (bﬁ)
Elba Elba EIbfS
I cosh(ba) 7 sinh (ba) 7 cos (bB)

(4.37)

KAGs?
(B2 —s2)

_le

KAGs?
— m coS (bﬁ)
b
L

sin (bB) ]
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_Cl_ 0
G, 0
X =
C3 0
¢l Lo

(4.38)

The boundary conditions of the general Timoshenko beam under free vibrations are

described by a set of four homogenous equations in Eq. (4.34) . Let

ky, and kg, equal to zero,

the beam becomes to a cantilever beam with a rotational spring and a vertical spring, as shown in

Figure 4.3. Eq. (4.34) can be simplified to be:

—kr1La
b(a? + s?)
Elba
L
KAGs?
Sz-l-—aZSlnh (ba)
Elba
cosh(ba)
L
_Cl_ O
C, 0
X =
Cs 0
[ C, ] 0

—KAGs?
(a? + s2)

_le

KAGs?
sz-l-—az cosh (ba)

% sinh (b
I sinh (ba)

Eq. (4.39) is identical to Eq. (4.38) .

kr1Lp
b(B?* — s?)

EIbB

L

KAGs?
—m sin (bﬁ)

EILb'B cos (bB)

(4.39)

The frequency equation of the cantilever beam with a rotational spring and a vertical spring

can be written as:
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[b27r?(r?—s2)+(3r2-s?

V1-b2r2s2

b%2EIKAGS? [2 — 2 cosh(ba) cos(bf) + 2 )sinh(ba) sin(bﬁ)] +

b(r?+s?)

kpkyL? [2 + (b2(r? — s*)? + 2) cosh(ba) cos (bB) — 7=

sinh(ba) sin(b)| +
krEILb3(a? + B*)[a(a? + s?) sinh(ba) cos(bB) — B(B? — s?) cosh(ba) sin(bB) —
krKAGLb3s? a%fz [B(B? — s2) sinh(ba) cos(bB) + a(a? + s?) cosh(ba) sin(bB) = 0
(4.40)

EQ. (4.40) can be validated with Chen and Kiriakidis’s (2005) frequency equation.

Let kr, and kg, go to infinity, k;, and kg, equal to zero, the beam becomes a

cantilever beam.

Eq. (4.38) can be reduced to be:

—La 0 LB 0
b(a? + s2) b(B? —s?)
0 -1 0 -1
KAGs? h (ba) KAGs? h (b) KAGs? 5 KAGs? 5
R sinh (ba) = s cosh (ba 5T 52 sin (bB) 5752 cos (bf)
Elba Elba EIbf EIbf .
cosh(ba) sinh (ba) [ €os (bB) —— sin (bB)
_Cl_ O
C, 0
X = (4.41)
Cs 0
Noy B )|
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The frequency of the cantilever beam can be calculated by

b (r?+s?)
(1-12 52p2)

2 + [b%(r? = s%)? + 2]cosh(ba)cos(bB) — sinh(ba)sin(bp) = 0 (4.42)

Eq. (4.42) matches Huang’s (1961) results.

4.4 Natural Frequencies and Mode Shapes of a Timoshenko Beam with Two Rotational
Springs and Two Fixed Vertical Supports

The natural frequencies and mode shapes of a Timoshenko beam with two rotational spring

and two fixed vertical supports are derived in this section. Blow is the sketch of the beam:

ki =kry = o, kpq = kg,
2 Q7

Figure 4.4: ATimoshenko Bernoulli Beam with Two Rotational Springs

The boundary conditions of the beam are:

M |f=0 = lellu |$=0
M |€=1 = —kp,¥ |§=1
Vo =0

Y |$=1 =0 (4.43)
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Substitute Eqgs. (4.30) to (4.33) into boundary equations,

- La LB |

b(a?+s2) 0 - b;(B2—s2) 0 (D 7 07
EILba ki EIZ)B ey D, 0
LB LB 1,17
e 2+ 2)cosh(boc) ba 2+ 2)smh(ba) ~ 5750 cos(bf) G 2)sm(b[?) D3 0
EIba cosh(ba)+kgq Lsinh(ba) ElIbasinh(ba)+kgq Lcosh(ba) EIbB cos(ba)+kgrqLsin(ba) —EIbBsin(ba)+kgq Lcos(ba) D 0
m ni
- L L L L -
(4.44)
Substitute k;; and kg, withinfinity, kg, with kg, into Eq. (4.42),
- La LB 1T D 9 N4
b(a?+s?) 0 b;(B2-s2) 0 D, 0
EILba Ky EILbﬁ ke D, 0
LB LB 117
e 2+ 2)cosh(boc) ha 2+ 2)Smh(baz) ~ 55 cos(bB) G 2)Sm(b[?) Ds 0
EIba cosh(ba)+kgq Lsinh(ba) Elbasinh(ba)+kgq Lcosh(ba) EIbB cos(ba)+kgrq Lsin(ba) —EIbBsin(ba)+kgq Lcos(ba) D 0
m ni
- L L L L -
(4.45)

EQ. (4.43) matches Eq. (4.44) .



The frequency equation of the beam can be written as:

ﬁ o (le » b(ﬁzﬁ cos(bf) X —EIbB sin(ba1+kR1Lcos(ba) + Ellll)ﬁ % b(BLZLjSZ) x sin (bf) x
EIbacosh(ba)Z-leLsinh(ba) + gy X ( Slnh (ba) % EIbp Cos(ba)Z-leLsin(ba) — gy X b(ﬁzﬁ cos (bB) X
Elbasinh(ba)z-leLcosh(ba) — K, X b(,gzﬁ sin (bB) X EIbB Cos(ba);-leLsin(ba) _ EIZ)[)’ % b(achisz) sinh (ba) x
—EIstm(ba)L+kR1Lcos(ba) _ b([;zliSZ) % [EILba 9 b(al;isz) sinh(ba) X —EIstin(ba)L+kR1Lcos(ba) + k,, X sin(bp) X
EIbacosh(ba)Z-leLsinh(ba) —k, % cosh(ba) x EIbasinh(ba)z-leLcosh(ba) + K, X
» 2+ . sinh (ba) Elbacosh(ba)Z-leLsinh(ba) _ Elfa b(BLZ/iSZ) sin (bB) X Elbasinh(ba)-Ll-leLcosh(ba) —_ b(azf.SZ) %
cosh (ba) o ZEIbB sin(ba)tkp,Leos(ba) _ 0 (4.46)

L

EQ. (4.45) can be converted to Ross’s (1985) frequency equation by following his notations.

When k;, and kp, approach infinity, kz; and kg, Qo zero, the beam becomes a simply supported beam. Eq. (4.43) can be

reduced to
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b(azf—sz) 0 N b(ﬁl;[isz) 0 b 0
Elba 0 EIbp 0 D, 0

’ : B X = (4.47)
b(a2+ 5 —————cosh(ba) e 2+ 5 ————sinh(ba) b(ﬁz cos(bB) b33 sm(b,[?) D, 0
tbe ——cosh(ba) £he — —sinh(ba) Elbﬁ —cos(bp) Elbﬁ —sin(bp) | | p,] Lo

The frequency of the simply supported beam can be stated as

sin(bp) =0 (4.48)

EQ. (4.47) is identical to Huang’s (1961) results.



CHAPTER 5 Forced Vibrations of Euler-Bernoulli Beams

5.1 Deflection Curves of Forced Vibrations of Euler-Bernoulli Beams

In this section, the deflection curve of forced vibrations of Euler-Bernoulli beams with an
arbitrary exciting distributed force q(¢,t) are presented. q(¢,t) points upwards. The governing

equation for the Euler-Bernoulli beam is

E19%y

2
e T PATE=4qE D) (5.1)

at?
Apply Laplace transform to Eq. (5.1),
YV (€ w) — pAw? y(§ ) = q(§ ) (5.2)

The forced vibration shape of an Euler-Bernoulli beam can be written as a Green function

in order for the beam to be in a steady state:

y(E,t) = G, $r) exp(int) (5.3)
where ¢ is the point where the arbitrary force is applied at.

Eq. (5.2) can be rewritten as

G (£6) - pAw? G(§,&7) = 85— &p) (5.4)
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In this section, the effects of internal damping and external damping are neglected. The

vibration functions derived in this section are for dimensionless frequencies b, lower than cut-off

1
r2s2’

frequency: \/(rZ — s%)2 4+ ;—2 > (r? + s2), which can be rewritten as b <

G (¢, &f) issummation of two parts: homogenous solution, and particular solution.

G (§,8) = Go(§) + G1(§,8p) HEE —$f) (5.5)

where H(¢ — &¢) is the step function. It has the property that when ¢ is smaller than &, the

function equals to 0; when ¢ is bigger than &, the function equals to 1.

G, (&) is the solution to homogeneous equation, which can be stated as:

Go(&) = Cysin(ké) + C, cos (k&) + Cs sinh (k&) + C, cosh (k&) (5.6)
k is the dimensionless frequency, which can be written as:

1/4
E1w2L4) /

k= (2

(5.7)
Gy(¢, &) is the solution to inhomogeneous equation, which can be written as:
Gy(§,¢f) = Py cosh[k(§ — &)] + Py sinh[ k(& — )]+ Ps cos| k(¢ — &f)]
+ Pysin[ k(§ — &f)] (5.8)
From continuity conditions
G &) — GG &) = 0 (5.9a)

YT, &) —PET, &) =0 (5.9b)
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M(ff+v $p)— My, &) =0 (5.9¢)
V(ff+, §p)— V(Er , &p) =1 (5.9d)

Bending slope ¥, moment M, and shear force V, can be calculated by:

Y8 = Z—i =1% (5.10)

d*¢ _ EId?G

ME ¢ =El — =Zaz (5.11)
_ d3G¢ __ EId3G
V(¢ =El 5 =50s (5.12)

Apply Egs. (5.8), (5.10), (5.11), and (5.12), into continuity conditions. After simplification,

we get the following terms

P,+Py=0 (5.133)
2 (P4 P) =0 (5.13b)
o (P —P) =0 (5.13¢)
B Py—P =1 (5.13d)

Therefore, the four terms can be solved, which are

L3 L3

P1:0,P2 :ﬁ' P3:0, P4,: _ﬁ (514)

The close-form expression of forced vibration shape can be written as
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G, &) = Cysin(ké) + C; cos(ké) + C5sinh(ké) + €4 cosh(ké) + 2E13k

sinh[ k(& — &)HIKG — &)~ s=zsin[k(E — E)] HKE — )]
(5.15)

5.2 Forced Vibrations of Euler-Bernoulli Beams with Two Different Rotational Springs and
Two Different Vertical Springs

A highly simply and general beam model is set up with two different rotational springs and
two vertical springs at both ends. The sketch has been presented Figure 3.1. To the best of my
knowledge, the force vibration of the general Timoshenko beam has not been studied by others
yet.

The deflection G, bending slope ¢, moment M, and shear V can be written as

G(&,¢f) = Cysin(k) + C, cos(ké) + Cs sinh(ké) + C, cosh(ké) + 2EL13k3 X

[k(§ —$ATH(S —$p)] = Lgsm[k(f —$PIHE = $p)]

(5.16)

13
V(&) = % [C, cos(k&) — C, sin(ké) + C5 cosh(kE) + C, sinh(kE) + —,

coshL (€ — ] H(E — &) — ~EzcosT k(€ — €] H(E — )]
(5.17)

M@ ép) = EI ——[—C, sin(k&) — C, cos(ké) + Cgsinh(k€) + C, cosh(ké) +
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2EI

——5 cosh[ k(§ — ED]H(E — &) +

3 3

X sinh[k(§ =& H(E — &) +

L
3
k 2Elk

V(&) = %’;3 [—C, cos (k&) + C, sin (k&) + Cscosh (k&) + C, sinh(k&) +

L3 3

3¢08 [K(§ =S H(S —$5)]

L
2EIk

The boundary conditions for this beam are
MO, $p) = kri ¥ (0, &p)
VO, &) = —kri G(O, &f)
ML &) == kg ¥ (1, §p)

V(I &) = kra G(L &p)

3 sin [k(§ =S H(S — §p)] (5.18)

(5.19)

(5.20a)
(5.20h)
(5.20c)

(5.20d)
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Plug Egs. (5.16) to (5.19) into boundary conditions, we have:

le
Elk3
-
Elk2
Sln(k) + kRZ
E1k3
-
G,

k Elk
cos(k) — Iz

cos(k) — kp,sin(k)

L
2EIk3

2

3

k
sin(k) — kp,cos(k)

L3

L
T smh[k(l

3

k
cos(k) — kRz

&)l -

sinh[k(1 - ff)]

0

0

le

Elk3
L3

k
Slnh(k)‘l'kRz

k
3 cosh(k) — kp,sinh(k)

sm[k(l ff)] 2EIk2COSh[k(1 Ef)] 2E1k2 cos[k(l—ff)]

——sin[k(1-&;)] - —COSh[k(1 - &) - —cos[k(l - ff)]

k
cosh (k) + kRZ sinh(k)

k
5 sinh(k) — krycosh(k) |

(5.21)
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5.3 Forced Vibration of Simply Supported Euler-Bernoulli Beams

In this section, the forced vibration curve of a simply supported Euler-Bernoulli beam

under a moving delta load is derived.

For simply supported beam, the four boundary conditions are

G0 $) =0.G(1L &)=0

M (0, &) =0,M (1, &)=0 (5.22)
Plug Egs. (5.16) and (5.18) into boundary conditions. Eq. (5.22) can be written as:

kEI kEI

— _ ] [ Cy
0 L 0 L
0 1 0 1 ¢z
X
kEI @ kEI @ kEI () kEI h (0 Cs
I sin 7 cos 7 sin T cos
sin(k) cos(k) sinh(k) cosh(k) | LGy
0
0
B L sinn[ k(1 L [kl
—o=sinh[ k(1= §)] = = sin[ k(1 = )]
3 L3
_—Wsmh[k(l—ff)] +le3$m[k(1— Ef)]_

(5.23)

Eq. (5.21) describes a set of four nonhomogeneous equations of a general Timoshenko
beam. When kg; and kg, equal to zero, kp; and kg, approach infinity, the general beam

becomes a simply supported beam. Eq. (5.21) can be reduced to:
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0 I 0 L
0 1 0 1
— ?sin(k) - ?COS(’C) ?sinh(k) ?cosh (k)
sin(k) cos(k) sinh(k) cosh(k)
0
0
= L . L.
—ﬁsmh[k(l — &0l — ok sin[ k(1 — &¢)]
3 3
|~ 5p Sinhl k(L= 0]+ opmzsin[k(1 = §)] |

Eqg. (5.24) matches Eqg. (5.23), and can be validated by a simply supported beam.

kEI

(5.24)
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CHAPTER 6 Forced Vibrations of Timoshenko Beams

6.1 Deflection Curves of Forced Vibrations of Timoshenko Beams

The governing equations for forced vibration of Timoshenko beams are:

EIZ2+ KAG(2 - ¢) - p1 22 2 =0 (6.1)
o
—paZY > + KAG ( 22 = —q(x,0) (6.2)

where q(x,t) is the applied exciting distributed load function pointing upwards. It can be
written as

q(€,t) = exp(iwyt) 6 (§ —f) (6.3)
where ¢ is the dimensionless length x/L.

After applying separation of variable, Egs. (6.1) and (6.2) become

2ty a9y _ (Elp P2ty _ EL2% | Ip

El ox* +pA at2 ( + pI) 26t2 +pl KG at* q(x, t) KGA dx2 T KGA 0t? (6'4)
9o%¢ _ (Elp o' p 0% _daxt)

EI + pA at2 - (KG T pl) dx20t2 + pI KG at* ox (6'5)

The deflection shapes for forced vibrations of a Timoshenko beam can be defined as a

Green function

y(t) = Y, $r) exp(iwgt) (6.6)

where &, is the point where the arbitrary force is applied at.
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Y (&, &f) has two components, a general solution to the homogenous equations and a

particular solution to the nonhomogeneous equations.
Y (§,8p) = Yo(§) + (5,8 H(E — &p) (6.7)
From chapter 4, the homogenous solution has been given
Yo(&) = C; cosh (ba&) + C, sinh (ba&) + C5 cos (bBE) + C, sin (bLE) (6.8)
¥y (§) = Dy sinh (ba&) + D, cosh (ba&) + D3 sin (bB¢) + D, cos (bfE) (6.9)

Substitute Egs. (6.6) and (6.7) into Eq. (6.4), and omit exp(iw,t) on both sides of

equation. Eq. (6.4) can be written as:

aty (58 | Pwo’p(ltg) d?v (§§p) | L*oP(pPww’gp —pA)

dé’él— + E dé’Z + EI Y (E' ff) =
12 d*8 (§-§p) L* Ipwe?
“a ae T g 0@ =& (6.10)

From section 4.1, we know

b? = pALl*w,?/ (ED) (6.11)
= 1/ (AL?) (6.12)
s? = EI / (KAGL?) (6.13)

Eqg. (6.10) can be written as
r 4
YV 4 b2 (s Y — b2 (1—r2s2b?)y = BT (e gy

% 5"(8 - &) (6.14)
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The damping effect is neglected in this thesis, which may cause large errors for the

vibration curves at high frequencies. The mode shape functions derived in this chapter are just for

1
r2s2

).

dimensionless frequencies b, lower than cut-off frequency (b <
The particular solution to the nonhomogeneous Eq. (6.14) has the following format,
Y,(¢,é5) = Py cosh[ba(§ — &)]| + Py sinh[ba(§é — &)] + Pscos[bB(¢& — &f)]

+ Pysin[bB(§ — &p)] (6.15)

P, to P, can be determined by the continuity conditions. The continuity conditions are

listed below:

Y (&8~ Y (& &) = 0 (6.16a)
YETE)—W(ETLEN =0 (6.16b)
M (&7, &) —MEr6) =0 (6.16¢)
V(ET &) —V(ET &) =1 (6.16d)

Egs. (6.1) and (6.2) can be rewritten in term of b, r, and s as:

s2P" — (1 = b*r2sHW+Y'/L=0 (6.17)
8 (§-¢p)L?
17 2.2y L f7
Y'" 4+ b%s°Y — LY’ = — (6.18)
From Eq. (6.18), ¥’ can be written as
124 2.2 5 —-&)L
l,U’:Y +b2s%y $=$p) (6.19)

L KAG
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""" can be calculated by

_ Y p3s?y! 8 (E-8y)

L4 12 KAG (6.20)
From Eq. (6.17), we get
W= (29" + /(1 - b2r?s?) (6.21)
Plug Eq. (6.20) into Eq. (6.21)
p = ( Szy”ifzml _ 2 (;\?52 + %) /(1 — bir2s?) (6.22)
For Timoshenko beams, the moment can be calculated by
M =ElY (6.23)
Plug Eq. (6.19) in to Eq. (6.23), then M can rewritten as
M= EI(Y"+ lzzszy 3 5(?{;2‘)[') (6.24)
Shear force can be obtained by
V=-KAG(Y'(§¢) —W(E &) (6.25)
Plug Eqg. (6.22) into Eq. (6.25), then shear force can be stated as
V= KAGY — (SLEESY DG v 2 (6.26)
L KAG L

Plug in Egs. (6.22), (6.24), and (6.26) to the continuity conditions. After simplifying, the

continuity conditions can be written as:
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Y15 87) = 0 (6.27a)

(b2s* + L)Y, (64,65) + 520" (65, 67) = 0 (6.27b)
Yi"(&r &p) + D252V (&, 85) = 0 (6.27c)
o (O L+ D) Y (660 — 16 E)] = 1 (6.27d)

P; to P, can be obtained by solving Egs. (6.27a) to (6.27d). We get

_ L(1-b3s%r2-b%s?a?)
2~ KAGb3s2a(a?+p2)

L(1-b?s%r2+b?s28?)
KAGb3s2B(a?%+pB2)

P, = (6.28)

In conclusion, the vibration shapes for forced vibrations of Timoshenko beams can be

stated as

Y (&) = C; cosh(ba&) + C, sinh(ba&) + C5 cos(bB¢) + C,sin(bB§) +

L(1- b?s%r?-b?s2a?) . _ _ L(1-b?%s?r2+b%s2B2) _
KAGb352a(a2+ﬁ’2) X Slnh[ba(g 5f)] KAGb3SZﬁ(a2+ﬁ2) Sln[bﬁ(f ff)]
(6.29)
where « and £ are defined as
a= \]% [—(r? +s2) + \/(rz — s2)2 + %] (6.30)
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p= j [(r? + %) + J(rz — s+ ] (6.31)

Deflection Y, and bending slope ¥ can be written as
Y(&,¢&f) = Cy cosh(ba) + C, sinh(baf) + C5 cos(bBE) + C, sin(bBE) +

P,sinh[ba(¢é — &)] + Pysin[bB(& — &)] (6.32)

¥ (§,¢5) = Dy sinh(ba&) + D, cosh(ba&) + Dssin(bf€) + Dy cos(bBE) + M, X

cosh[ba(§ — &f) + M, cos[bB(E — &)l (6.33)

The coefficients from Eq. (6.32), C; to P, can be related with the coefficients in Eq.

(6.33),D, to M, by Eqg. (6.5). We get

€= b(o;isZ) Dy C2 = b(al;isz) D,
Gl G i
P, = s M2 “= b(ﬁLﬁsZ) 4
e T ae

In summary, the bending angle ¥ can be written as

¥ (¢,¢r) = Dysinh (ba$) + D, cosh (bag) + Ds sin (bpE) + D, cos (bBE) +

a?+s? 1- b2s2r2—p2s2q? 2-s2 1-b%s%r2+b2s2p?

B
PR KAGb2s2a(a?+B?) cosh[ba(§ — §f)] — B KAGD?s?B(a’+B?) cos[bB (& — &f)]

(6.35)
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6.2 Forced Vibrations of Timoshenko Beams with Two Different Rotational Springs and
Two Different Vertical Springs

Free vibrations of the general Timoshenko beam with two different rotational springs and
two different vertical springs are discussed in section 4.2. In this section, forced vibrations of the
general Timoshenko beam are studied. To the best of my knowledge, dynamic response of the

general beam has not been published in any literature yet.

The boundary conditions are

M (0, ff) = kr1?¥ (0, ff)
V(0,8) = —kr1Y (0,$5)
M (1, ff) = —kg¥ (Lff)

V(1L,$5) = krz2 Y (1,$f) (6.36)

Deflection Y, bending angle ¥, and moment M, can be calculated by

D, sinh (baé) — _LB ———D3 cos (bBE) +

Y(¢,¢) = )chosh (bad) +-——— b (B2—57)

s2)

s Dy sin (DBE) + 5 Masinh[ba(§ — )] + 5ot My sinlbB(E — £7)]

(6.37)

Y(,8f) = Dy sinh (bas) + D, cosh (ba&) + Dz sin (bB§) + Dy cos (bS) +

Mycosh[ba(§ — &f)] + M,cos[bB(E — &)] (6.38)
M(§,&5) = 222 cosh (bag) Dy + =22 sinh (ba§)D, + =L cos (bE)D; —
EIbB Elba EIbB

in (bBS)Dy + ——Mysinh[ba(§ — §p)] — —— M, sin[bB(§ — $r)] (6.39)
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The shear force can be calculated as

V=—KAG(Y'(§,¢5) —¥(¢p)) (6.40)
which can be re-written as
sz 52 s2 .
V = KAG ( smh(baf) D, + mcosh(baf) D, — 5o x sin(bBé) D3 — /32 > cos(bfE)D, + Mzcosh[ba(f —
$p)] = 2z Ma cos[bB(§ — $p)]
(6.41)
Substitute Egs. (6.39) to (6.41) into boundary conditions, one gets the following expression:
—kpqLa —KAGs? kr.LB KAGs? D
b(a?+s?) (a%+s?) b(B2—s2) (B2-s2) 1
e kg1 = kg1 D,
X =
KAGs?b sinh(ba)—kpyLacosh(ba)  KAGs?bcosh(ba)—kp,Lasinh(ba) —KAGs?bsin(bB)+kr,LEcos(ba) —KAGs?bcos(bB)—kr,LBsin(ba) D
b(a?+s?) b(a?+s?) b(B2—s?) b(B2—s?) 3
EIba cosh(ba)+kg,Lsinh(ba) Elba sinh(ba)+kg,Lcosh(ba) EIbf cos(ba)+kg,Lsin(ba) —EIbf sin(ba)+kg,Lcos(ba) D
L 4_
L L L L
0
0
—KAGs? KAGSs?

= - Mycosh[ba(l — &f)] + —— 5 kraMsinh[ba(1 — &6)] +

— M, cos[bB(1 — &)] + b(a +59) b(B2
Elba

— —Mzsmh[ba(l — Ef)] + Elbﬁ — M, sin[bf (1 — &¢)] —kpaMycosh[ba(1 — &f)] — kgy Mycos[bB(1 — &f)]

M4 krosin[bB(1 — $r)

(6.42)
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6.3 Forced Vibrations of Simply Supported Timoshenko Beams

Forced vibration deflection shape of a simply supported Timoshenko beam is calculated in this chapter. The boundary conditions

of a simply supported beam are

Y(0, &) =0, Y(1,§) =0

M (0,$5) =0,M (1,¢) =0

Apply Eq. (6.37) and Eq. (6.39) into boundary conditions,

_ Lo 0 LB
b(a?+s2) b(B%-s?)
Eiba 0 ibg
L L
o 2+ 5 ————cosh(ba) b(az—zsinh(ba) _W os(bB)
| Zfcosh(ba) T sinh(ba) 228 cos(bp)
0
0
— s Masinh[ba(1 = §9)] = =t Masin[bB(1 = &p)]
— Z2 M,sinh[ba(1 — &) + 2L M,sin[bf(1 — &)

LB
b(B?=s?)
Elbﬁ

0
0

sin(bp)
——sin(bp) |

(6.43)

(6.44)
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When kg, and kg, equal to zero, kr; and kg, reach infinity, the general beam studied in section 6.2 becomes a simply

supported beam. Eq. (6.42) can be simplified to

La

b(a2+s2) 0
Elba 0
L
La
" 2+ 5 ————cosh(ba) bt ts 2)smh(ba)
| @cosh(ba) %smh(ba)
0
0
LB
b(a2+ ) ————M,sinh[ba(1 — &f)] — 5575
— ZE M,sinh[ba(1 — &)+ 2L M,sin[bB(1 — &)

LB
" b(B?-s?) 0
Eibg 0
L
i C0SBP) g sin(b)
228 cos(bp) — 2L sin(bp) |

g2 —smy Masin[DB (1 — $p)]

(6.45)

Therefore, Eq. (6.42), describing the boundary conditions of the general beam model, is verified with Eq. (6.45). The simple

beam case expressed in Eq. (6.45) is identical to that derived by Lueschen et al. (1996).
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CHAPTER 7 Results and Discussion

7.1 Comparison of Natural Frequencies between Euler-Bernoulli Beams and Timoshenko

Beams under Free Vibrations

To verify accuracy of the numerical derivation of natural frequencies in this thesis, a
cantilever beam with a rotational spring constraint is studied using Euler-Bernoulli beam theory
and Timoshenko beam theory. The results are compared with Chen and Kiriakidis’s (2005) results.
The boundary conditions for the beam are k;, approaches infinity, kz, and k;, equal to zero.

Below is the sketch of the beam:

kT1=OO

Figure 7.1: A Cantilever Beam with a Rotational Spring
The properties of the beam are listed in Table 7.1:

A=1571 cm? E=572x 10* MPa |p=1976kg/m® |K=0.56

E/KG =4.29 r=0.012 L=15m

Table 7.1: Beam Properties for the Numerical Example in Section 7.1
Define two new variables: dimensionless rotational spring constant k”, and dimensionless

frequency y. k™ and y can be calculated as,

4 _ PAL*w?

o (7.1)
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kA = kriL

EIl

(7.2)

Dimensionless frequency of the Euler-Bernoulli beam y and natural frequency ratio of the

Timoshenko beam to the Euler-Bernoulli beam fr/feg, are summarized using Table 7.2. The

dimensionless frequencies of first five modes (1,72 73 4 ) are all smaller than the dimensionless

cut off frequency 3352.

Case 71 fr/fes y2 fr/fes V3 fr/fes V4 fr/fes Vs fr/fes
Hinge-free

(k*=0) 3.927 [ 0.994 |7.069 |0.982 |10.21 |0.964 |13.35 |0.940 |16.49 |0.913
kr=1 1.248 | 0.999 |4.031 |0.994 |7.134 |0.982 |10.26 |0.963 |13.39 | 0.940
k~=10 1.723 {0999 |4402 |0991 |7.451 |09/8 |10.52 |0.959 |13.61 |0.936
k~=100 1.857 | 0.997 |4.650 |0.986 |7.783 |0.970 |10.90 |0.950 |14.01 |0.928
(Fllfii;f)ree 1875 |0.997 | 4694 |0.986 |7.855 |0.969 |11.00 |0.947 |14.14 | 0.924

Table 7.2: Comparison of Frequency Ratio (fr/feg) between Timoshenko Beam and Euler-
Bernoulli Beam with Various Boundary Conditions

The results matches Chen and Kiriakidis’s (2005) results very well. Chen and Kiriakidis’s results

are tabulated in Table 7.3.

Case v filfee v fifse vs flfee ve flfse v frlfee
Hinge-free (K" =0) 3927 0994 7069 0982 1021 0964 1335 0940 1649 0913
Kr=1 L2448 0999 4031 099 7134 0982 1026 0963 1339 0940
K" =10 L7230 0999 4402 099 7451 0978 1052 0939 1361 093
K" =100 1857 0997 4650 0986 7783 0970 1090 0950 1401 0928
Fixed-free (K" = =) 1875 0997 4694 (986 TR3 0969 1000 0947 1414 0924

Table 7.3: Chen and Kiriakidis's Results for Comparison of Frequency Ratio (fr/fes) between
Timoshenko Beam and Euler-Bernoulli Beam with Various Boundary Conditions

From Table 7.2, conclusions can be drawn that when dimensionless rotational spring k*

increases, the natural frequency increases. The ratio of natural frequency for the Timoshenko beam

to natural frequency for the Euler-Bernoulli beam becomes smaller at higher modes. Natural
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frequencies at lower modes are more sensitive to boundary restraints than natural frequencies at

higher modes.

Furthermore, the frequency ratio of mode m to mode n for Euler-Bernoulli beams is
independent of the material properties and dimensions of the beam, but the frequency ratio is
dependent on the boundary constraints, k. However, the frequency ratio of mode m to mode n for
Timoshenko beams is dependent on the materials properties, dimensions, and dimensionless
rotational spring constant k. For the same boundary conditions, natural frequency of the
Timoshenko beam is always less than the natural frequency of the Euler-Bernoulli beam, because

of the shear deformation and rotatory inertia effects.

In Table 7.2, the inverse slenderness ratio r is fixed at 0.012. Figure 7.2 shows the
frequency ratio fr/fes (natural frequency of the Timoshenko beam to natural frequency of the Euler-
Bernoulli beam) with three k” values, versus dimensionless inverse slenderness ratio r for the
first three modes. It is worth noting that the frequecy ratio fr/fes at higher modes drops more rapidly

as r increases. The boundary restraints k*, and fr/fes has a negative relationship.

Mode 1

1 N<,"\4\ﬂ ———
0.98 \
0.96

\ ——kr=1
0.94 kA=10
\ =>6=k7=100

0.92 \

0 0.01 0.02 0.03

0.9

Inverse Slenderness Ratio r
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Mode 2
0.98 \
0.96
8 N\
= 094 \ —B—-k"=1
Y— _
0.92 e kA=10
\ == kA=100
0.9 \(
0.88
0 0.005 0.01 0.015 0.02 0.025 0.03
Inverse Slenderness Ratio r
Mode 3
1 M
0.98 é\‘\\
0.96
0 0.94 \ \
q\—"” \ B
~0.92
+= \ —A—kn=10
0.9
=== kA=100
0.88 \
0.86
0 0.005 0.01 0.015 0.02 0.025 0.03
Inverse Slenderness Ratio r

Figure 7.2: Frequency Ratio (f/feg) between Timoshenko Beam and Euler-Bernoulli Beam
Due to Different k”, and Dimensionless Inverse Ratio r
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7.2 Comparison of Mode Shapes between Euler-Bernoulli Beams and Timoshenko Beams

under Free Vibrations

7.2.1 Mode shapes Comparison of a Cantilever Beam under Free Vibration
In this section, comparison of mode shapes between an Euler-Bernoulli beam and a
Timoshenko beam is presented. The numerical example used in this section is the same as Huang’s

(1961) example. The beam properties are summarized in Table 7.4:

A =1 in? E =3x 107psi y = 0.281b/in3 K =2/3

E/G =8/3 r =0.02 L=144in S=0.04

Table 7.4: Beam Properties for the Numerical Example in section 7.2.1

When the beam is a cantilever beam, mode shapes of the Euler-Bernoulli beam and the
Timoshenko beam have been derived in section 3.2, and section 4.3, respectively. The
dimensionless cut off frequency for the beam is 1250. The dimensionless natural frequencies of
the first five modes for the Euler-Bernoulli beam are 1.87, 4.69, 7.85, 11.00, and 14.14, which are
smaller than the cut off frequency. The dimensionless natural frequencies of the first five modes
for the Timoshenko beam are 1.87, 4.62, 7.58, 10.34, and 12.91, which are also smaller than the

cut off frequency.
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Figure 7.3 shows the first five mode shapes for the Euler-Bernoulli beam, which can be
generated using the MATLAB program in Appendix Il1. Blue line represents the mode shape of
the first mode. Red line represents the mode shape of the second mode. Yellow line represents the
mode shape of the third mode. Green line represents the mode shape of the fourth mode. Black

line represents the mode shape of the mode. Each mode shape is reduced in the way that the

coefficient of hyperbolic cosine equals to 1.

RN

Amplitude

0 0.1 02 03 04 05 06 07 08 09 1
Mormalized length

Figure 7.3: First Five Mode Shapes for a Cantilever Euler-Bernoulli beam
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Figure 7.4 sketches the first five modes shapes for the Timoshenko beam. The mode shapes

can be determined using the MATLAB program in Appendix V. Each mode shape is reduced in

the way that the coefficient of hyperbolic cosine equals to 1.

Amplitude
—

15 First Mode
’ Second Mode
Third Maode
= Fourth Mode
Fifth Mode . . . . . . .
25

0 0.1 02 03 04 05 06 07 08 08 1
Normalized length

Figure 7.4: First Five Mode Shapes of a Cantilever Timoshenko Beam
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Figure 7.5 illustrates the comparison of the superimposed mode shape amplitude of the

first five modes for the Euler-Bernoulli beam and the Timoshenko beam.

Euler Bernoulli Beam
Timoshenko Beam

Superimposed First Five Modes Amplitude

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized length

Figure 7.5: Comparison of Superimposed Mode Shapes for a Cantilever Beam

Figure 7.5 are reproduced and compared with Huang’s (1961) plot, as shown in Figure 7.6.
Dashed line represents the superimposed mode shape for the Euler-Bernoulli beam, and continuous
line denotes the superimposed mode shape for the Timoshenko beam in Figure 7.6. It can be seen

that the results are matched well.
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Figure 7. 6(a): Huang's (1961) Results for Superimposed Mode Shapes for a Cantilever
Beam (Dashed Line: Euler-Bernoulli Beam, Continuous Line: Timoshenko Beam)
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Figure 7.6(b): Superimposed Mode Shapes for a Cantilever Beam from This Thesis

(Dashed Line: Euler-Bernoulli Beam, Continuous Line: Timoshenko Beam)



7.2.2 Comparison of Mode Shapes of a Beam with Two Fixed Vertical Supports and Two
Rotational Springs under Free Vibrations

In this section, mode shapes of a beam with two fixed vertical supports and two rotational
springs at both ends are presented using Euler-Bernoulli beam theory and Timoshenko beam

theory. Below is the sketch of the beam:

(kr1 = kr2 = 00, ks1 = 10EI/L kr2= 20EI/L)

% A7

Figure 7.7: A Beam with Two Different Rotational Springs

Same numerical example is used as the example in section 7.2.1. Beam properties can be

found in Table 7.4. The boundary conditions of the beam are given by:

kry =kry =0

10EI 20EI
— kg =— (7-3)

ko, =
R1 I I

The dimensionless cut off frequency for the beam equals 1250. The dimensionless natural
frequencies of the first five modes for the Euler-Bernoulli beam are 4.25, 7.14, 10.06, 12.92, and
15.71. The dimensionless natural frequencies of the first five modes for the Timoshenko beam are
4.20, 6.98, 9.67, 12.23, and 14.63. The dimensionless natural frequencies of the first five modes

for the Euler-Bernoulli beam and the Timoshenko beam are smaller than the cut off frequency.
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By running the MATLAB file in Appendix Ill, the first five mode shapes for Euler-

Bernoulli beam are generated, as shown in Figure 7.8. Each mode shape is reduced in the way that

the coefficient of hyperbolic cosine equals to 1.

First Mode
8 - Second Mode
Third Mode
Fourth Mode
6 Fifth Mode

Amplitude

0 0.1 0z 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mormalized length

Figure 7.8: First Five Modes Shapes for an Euler-Bernoulli Beam with Two Different
Rotational Springs
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From Appendix 1V, the first five mode shapes for the Timoshenko beam can be obtained

by inputting beam properties and boundary conditions. Each mode shape is reduced in the way

that the coefficient of hyperbolic cosine equals to 1.

First Mode
8- Second Mode

Third Mode

Fourth Mode
G Fifth Mode

Amplitude

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mormalized length

Figure 7.9: First Five Modes Shapes for a Timoshenko beam with Two Different Rotational
Springs
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Figure 7.10 illustrates the comparison of superimposed first five modes between the Euler-
Bernoulli beam and the Timoshenko beam. The red dashed line represents the superimposed mode
shape for the Euler-Bernoulli beam. The blue solid line shows the superimposed mode shape for

the Timoshenko Beam.

20 T T T T T T T T T

Timoshenko Beam
Euler Bernoulli Beam

Superimposed First Five Modes Amplitude

__1 D i i i i i i i i i
0 01 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1

Mormalized length

Figure 7.10: Comparison of Superimposed Mode Shapes for a Beam with Two Different
Rotational Springs
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7.3 Deflection Curves Comparison of Forced Vibrations

7.3.1 Deflection Curves of a Simply Supported Beam under Forced Vibrations

In this section, comparison of deflection curves between an Euler-Bernoulli beam and a
Timoshenko beam under forced vibration of a moving delta load is presented with numerical
calculation. Using the same numerical examples as presented in Lueschen’s (1996) paper, the

beam properties are summarized in Table 7.5:

A =4 in? E =3x 107psi p=1728x%x10"*b/in® |K=0.83

E/G =8/3 v =0.3 L=20in | =1.33 in*

Table 7.5: Beam Properties for the Numerical Example in 7.3.1 and 7.3.2

A delta load is located at the mid-span of the simply supported beam. The cut off frequency is
25965 Hz. When the frequencies of the applied harmonic load equal to 100 Hz, 1700 Hz, 3000 Hz,
and14000 Hz, the deflection curves for the Euler-Bernoulli beam and the Timoshenko beam are

plotted in Figure 7.11

%108 Frequency= 100 Hz

Euler Bernoulll Beam
Timashenko Beam

Forced Vibration Deflection{in)

o 0.1 02 03 04 05 06 07 08 08 1
Normalized Beam Length
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Forced Vibration Deflection(in)
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Euler Bernoulli Beam
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8 »10 Frequency= 14000 Hz Timoshenko Beam

Forced Vibration Deflection(in)
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Figure 7.11: Comparison of Deflection Curves of a Simply Supported Beam under Forced
Vibrations

From Figure 7.11, the deflection of the Timoshenko beam is always greater than the
deflection of the Euler-Bernoulli beam. Also, the deflection difference becomes larger at higher

frequencies.

The deflection curves presented by Lueschen et al (1996) are shown in Figure 7.12. It
can be seen that Figure 7.11 results match closely with Lueschen’s (1996) plots, as illustrated in
Figure 7.12 with the frequencies of the applied harmonic load equal to (a) 100 Hz, (b) 1700 Hz,

(c) 3000 Hz, and (d) 14000 Hz.
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Figure 7.12: Deflection Curves of a Simply Supported Beam under Forced Vibrations from
Lueschen et al. (1996), (Solid Line - Timoshenko Beam and Dotted Line - Euler Bernolli
Beam)

7.3.2 Deflection Curves of a Beam with Two Fixed Vertical Supports and Two Rotational
Springs under Forced Vibrations

In this section, deflection curves comparison of a beam with two fixed vertical supports and
two rotational springs under a moving delta load using Euler-Bernoulli beam theory and

Timoshenko beam is illustrated. The boundary conditions are shown as Figure 7.7. The

10EI k __ 20EI
»y*R2 —

boundary conditions of the beam are given by kry = kr, = o and kg, = — >

68



The beam properties are summarized in Table 7.5. A delta load is located at the mid-span of
the beam. The cut off frequency is 25965 Hz. When the frequencies of the applied harmonic load
equal to 100 Hz, 1700 Hz, 3000 Hz, and14000 Hz, the deflection curves for the Euler-Bernoulli

beam and the Timoshenko beam can be plotted in Figure 7.13.

%1077 Frequency =100 Hz

—
=2}

e
-
T

—
[gS}
T

=
=
T

-]
T

L=}
T

-
T

Forced Vibration Deflection(in)

s Euler Bernoulli Beam
Timoshenko Beam

1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
Mormalized Beam Length

x 107 Frequency =1700 Hz

Euler Bernoulli Beam
Timoshenko Beam

1

=

o
T

'
-
T

N
in
T

2r

Forced Vibration Deflection(in)

45 . . . . .
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

MNormalized Beam Length

69



108 Frequency = 3000 Hz
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Figure 7.13: Comparison of Deflection Curves of a Beam with Two Rotational Springs
under Forced Vibrations
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It can be seen from the results that the deflection shapes are not symmetric when the
loading frequencies are low, because the rotational springs at two ends are different. However, the
deflection shapes tend to become symmetric at high loading frequencies. The influence of the

boundary constraints becomes smaller when the loading frequency becomes higher.

It is worth noting that when the loading frequency reaches 14000 Hz, the Euler-Bernoulli
beam and the Timoshenko beam vibrate at different modes. The natural frequency of the fifth
mode of the Euler-Bernoulli beam is 12327 Hz, and the natural frequency of the seventh mode of
the Timoshenko beam is 14592 Hz. Therefore, the Euler-Bernoulli beam vibrates at the fifth mode,
and the Timoshenko beam vibrates at the seventh mode. The deflection shapes of the beam with

harmonic excitation at 14000 Hz shown in Figure 7.11, 7.12 and 7.13 display this behavior.
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Chapter 8 Conclusions and Recommendations

8.1 Conclusions

This study presents the derivation of natural frequencies and modes shapes of uniform
Euler-Bernoulli beams and Timoshenko beams with various boundary conditions under free
vibration using Eigenvalues and Eigenvectors. Furthermore, dynamic Green’s functions and
Fourier Transform are used to determine the deflection curve for forced vibrations of Euler-
Bernoulli beams and Timoshenko beams. A general solution for a Timoshenko beam that can be
applied to any arbitrary combinations of boundary conditions is derived, and to the best of our
knowledge, this solution is not available in the literature. In this study, the transverse vibrations of
Euler Bernoulli beams and Timoshenko beams using a general and direct beam model with two
different rotational springs and two different vertical springs at the ends are analyzed, and the
close-form solutions are presented. Numerical examples are presented to illustrate the differences
in the natural frequencies and the mode shapes between Euler-Bernoulli beams and Timoshenko
beams under free vibrations. Various boundary conditions can be achieved by assigning different
values to the four spring constants. The ratio of the natural frequency of the Timoshenko beam to
the natural frequency of the Euler-Bernoulli beams decreases at the higher modes. Natural
frequencies at the lower modes are more sensitive to the boundary restraints than the natural

frequencies at the higher modes.
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8.2 Recommendations

The forced vibrations of uniform Euler-Bernoulli beams and Timoshenko beams are
analyzed with the assumption that internal damping and external damping are neglected. The
damping influence can cause a large error for the deflection amplitudes. The properties of the beam
are constants in this thesis, such as the Young’s modulus E, moment of inertia I, and cross section
area A. For future study, damping effects and variations of beam properties should be included. In
addition, dynamic responses of beams supported by an elastic foundation can be an interesting

topic for future study.
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Appendixes

Appendix I Dimensionless Frequencies of Euler-Bernoulli Beams

o

Input otational spring constants T1,T2 and vertical spring constants R1,R2
K is dimensionless frequency

o\

R1=10*E*I/L;R2=20*E*I/L;
T1=9999999;T2=9999999;

clc

clear
k=2/3;M=4;A=1;r=0.02;E=30000;e=0.28;1L=14.4;G=3*E/8;
I=r*r*A*L*L;
s=0.04;

syms K

Al=R1;
A2=E*I*K/L;
A3=R1;
A4=-E*I*K/L;
Bl=-E*I*K"3/L"3;

B2=T1;

B3=E*I*K"3/ (L"3);

B4=T1;

Cl=-E*I*K/L*sin (K)+R2*cos (K) ;

C2=-E*I*K/L*cos (K)-R2*sin (K) ;
C3=E*I*K/L*sinh (K)+R2*cosh (K)

C4= E*I*K/L*cosh(K)+R2*51nh( ) ;

D1=-E*I*K" 3*cos(K)/( ) -T2*sin (K) ;

D2=E*I*K"3*sin (K)/ (L T2*cos(K)

D3=E*I*K~3*cosh (K)/ (L -T2*sinh (K) ;

D4 E*xI*K*"3*sinh (K)/ (L -T2*cosh (K) ;

=[Al,A2,A3,A4;B1,B2, B3 B4;C1,C2,C3,C4;D1,D2,D3,D4];

Det det (H)

fl=inline (Det, 'K")

z=zeros (21,1);

for y= 1:1:20

K=fsolve (fl,vy)

z(y+l)=

end

fid=fopen ('Nl.txt', 'wt');

$4.3f\n is the statistical form of the array
fprintf (fid, '$4.4f\n’
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Appendix Il Dimensionless Frequencies of Timoshenko Beams

o\

Input rotational spring constants T1,T2 and vertical spring constants R1,R2
x 1s dimensionless frequency

o

T1=999999999;T2=999999999;R1=10*E*I/L;R2=20*E*I/L;

k=2/3;M=4;A=1;r=0.02;E=30*10"6;e=0.28/(32.2/12);1L=14.4;G=3*E/8;
I=r*r*A*L*L;
s=0.04;

syms x

a=1/sqrt (2) *sqrt (- (r"2+s"2) +sqrt ((r"2-s"2)"2+4/x"4)) ;
b=1/sqrt (2) *sqrt ((r"2+s72) +sqrt ((r"2-s8"2)"2+4/x"4)) ;
Al=-T1*L* (a)/ (x"2* ((a) "2+s"2));
A2=-E*A*s"2/ (M* ((a)"2+s"2));
A3=T1*L*b/ (x"2* ((b) "2-5"2));
A4=E*A*s7*2/ (M* ((b) ~2-5"2)) ;

Bl=E*I*x"2* (a)/L;

B2=-R1;
B3=E*I*x"2* (b) /L;
B4=-R1;
E*A*s”2*x"2*sinh (x"2*a) /M-T2*L*a*cosh (x"2*a))/ (x"2* ((a)"2+s"2));
E*A*s*2*x"2*cosh (x"2*a) /M-T2*L*a*sinh (x"2*a))/ (x"2* ((a)"2+s"2));
—E*A*s"2*x"2*sin (x"2*b) /M+T2*L*b*cos (x"2*b) ) / (x"2* ((b) *2-35"2)) ;
(x"2*b) /M-T2*L*b*sin (x"2*b) )/ (x"2* ((b) *"2-8"2)) ;

ExI*x"2*a*cosh (x"2*a)+R2*L*sinh (x"2*a))/L;
E*xI*x"2*a*sinh (x"2*a)+R2*L*cosh (x"2*a))/L;
E*xI*x"2*b*cos (x"2*b)+R2*L*sin (x"2*b)) /L;

D4=(-E*I*x"2*b*sin (x"2*b)+R2*L*cos (x"2*b)) /L;

H=[Al,A2,A3,A4;B1,B2,B3,B4;Cl1,C2,C3,C4;D1,D2,D3,D4];

Det=det (H)

fl=inline (Det, "x")

z=zeros (21,1);

for y= 1:1:20

x=fsolve (fl,vy)

z (y+1)=x;

end

fid=fopen ('Nl.txt', 'wt');

%4.3f\n is the statistical form of the array

fprintf (fid, '$4.4f\n'", z)

Cl=(
C2=(
C3=(
Cd4=(-E*A*s"2*x"2*cos
D1=(
D2=(
D3=(
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Appendix I11 First Five Mode shapes for Euler-Bernoulli Beams

% Input the first five frequencies K
Input rotational spring constants T1,T2 and vertical spring constants R1,R2

o

$% Mode 1

K=2.1515;
k=2/3;M=4;A=1;r=0.02;E=30000;e=0.28;L=14.4;G=3*E/8;
I=r*r*A*L*L;

s=0.04;

R1=10*E*I/L;R2=20*E*I/L;

T1=9999999;T2=9999999;

Al=R1;
A2=E*I*K/L;
A3=R1;
A4=-E*I*K/L;
Bl=-E*I*K"3/L"3;

B2=T1;

B3=E*I*K"3/ (L"3)

B4=T1;

Cl=-E*I*K/L*sin (K)+R2*cos (K) ;

C2=-E*I*K/L*cos (K)-R2*sin (K) ;

C3=E*I*K/L*sinh (K)+R2*cosh (K)

C4=E*I*K/L*cosh(K)+R2*51nh( ) ;

D1=-E*I*K"3*cos (K)/ (L"3)-T2*sin (K) ;

D2=E*I*K"3*sin (K)/ (L ) -T2*cos (K) ;

D3=E*I*K*3*cosh(K)/ (L"3)-T2*sinh (K) ;
)

D4=E*I*K*3*sinh (K)/ (L"3)-T2*cosh (K) ;
=[Al,A2,A3,A4;B1,B2,B3,B4;C1,C2,C3,C4;D1,D2,D3,D4];
E11=[Al,A2,A3;B1,B2,B3;C1,C2,C3]1;E10=[A4;B4;C4];E01=[D1,D2,D3];E00=[D4];

MM=-inv (E11l) *E10;

E1=MM (1) ;E2=MM (2) ; E3=MM (3) ;E4=1;

t=0:0.001:1;

Ul2=El*sin (K*t)+E2*cos (K*t)+E3*sinh (K*t)+cosh (K*t)

hold on

plot(t,Ul2, ':b'");

%% Mode 2

K=5.0605;
k=2/3;M=4;A=1;r=0.02;E=30000;e=0.28;1L=14.4;G=3*E/8;
I=r*r*A*L*L;

s=0.04;

R1=10*E*I/L;R2=20*E*I/L;

T1=9999999,;T2=0;

Al=R1;

A2=E*I*K/L;

A3=R1;

A4=-E*I*K/L;

Bl=-E*I*K"3/L"3;
B2=T1;

B3=E*I*K"3/ (L"3)
B4=T1;
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Cl=-E*I*K/L*sin (K)+R2*cos (K) ;
C2=-E*I*K/L*cos (K)-R2*sin (K) ;
C3=E*I*K/L*sinh (K)+R2*cosh (K)

C4= E*I*K/L*cosh(K)+R2*51nh( ) ;
D1=-E*I*K~3*cos (K)/ (L ) -T2*sin (K) ;
D2=E*I*K"3*sin (K)/ (L -T2*cos (K) ;
D3=E*I*K~3*cosh (K )/( ) -T2*sinh (K) ;

)

D4=E*I*K*3*sinh (K)/ (L"3)-T2*cosh (K) ;
=[Al,A2,A3,A4;B1,B2,B3,B4;C1,C2,C3,C4;D1,D2,D3,D4];

El11=[Al,A2,A3;B1,B2,B3;C1,C2,C3]1;E10=[A4;B4;C4];E01=[D1,D2,D3];E00=[D4];

MM=-inv (E11) *E10;

E1=MM (1) ;E2=MM (2) ; E3=MM (3) ;E4=1;

t=0:0.001:1;

U22=El*sin (K*t)+E2*cos (K*t)+E3*sinh (K*t) +cosh (K*t)
hold on

plot(t,U22,"':b");

o cC
0

mode 3

8.0538;

k 2/3;M=4;A=1;r=0.02;E=30000;e=0.28;1L=14.4;G=3*E/8;
I=r*r*A*L*L;

s=0.04;

R1=10*E*I/L;R2=20*E*I/L;

T1=9999999,;,T2=0;

|| o\

Al=R1;
A2=E*I*K/L;
A3=R1;
A4=-E*I*K/L;
Bl=-E*I*K"3/L"3;

B2=T1;

B3=E*I*K"3/ (L"3)

B4=T1;

Cl=-E*I*K/L*sin (K)+R2*cos (K) ;

C2=-E*I*K/L*cos (K)-R2*sin (K) ;

C3=E*I*K/L*sinh (K)+R2*cosh (K)

Cd= E*I*K/L*COSh(K)+R2*Slnh( )

D1=-E*I*K"3*cos (K)/ (L -T2*sin (K) ;

D2=E*I*K"3*sin (K)/ (L T2*cos(K)

D3=E*I*K"3*cosh (K )/( ) -T2*sinh (K) ;
)

D4=E*I*K*3*sinh (K)/ (L"3)-T2*cosh (K) ;
H=[Al,A2,A3,A4;B1,B2,B3,B4;C1,C2,C3,C4,;D1,D2,D3,D47];

E11=[Al,A2,A3;B1,B2,B3;C1,C2,C3]1;E10=[A4;B4;C4];E01=[D1,D2,D3];E00=[D4];

MM=-inv (E11) *E10;

E1=MM (1) ;E2=MM (2) ; E3=MM(3) ;E4=1;

t=0:0.001:1;

U32=El*sin (K*t)+E2*cos (K*t) +E3*sinh (K*t) +cosh (K*t)
hold on

plot (t,U32,":b");

smode 4
K=11.0832;
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k=2/3;M=4;A=1;r=0.02;E=30000;e=0.28;L=14.4;G=3*E/8;
I=r*r*A*L*L;

s=0.04;

R1=10*E*I/L;R2=20*E*I/L;

T1=9999999;T2=0;

R1=9999999; R2=0;T1=9999999,;T2=0;
Al=R1;

A2=E*I*K/L;

A3=R1;

A4=-E*I*K/L;

B1=-E*I*K~3/L"3;

B2=T1;

B3=E*I*K"3/(L"3

B4=T1;

Cl=-E*I*K/L*sin (K)+R2*cos (K) ;

C2=-E*I*K/L*cos (K)-R2*sin (K) ;

C3=E*I*K/L*sinh (K)+R2*cosh (K)

Ci= E*I*K/L*cosh(K)+R2*51nh( )

D1=-E*I*K*3*cos (K)/ (L ) -T2*sin (K) ;

D2=E*I*K"3*sin (K)/ (L -T2*cos (K) ;

D3=E*I*K~3*cosh (K)/ (L ) -T2*sinh (K) ;
)

D4=E*I*K*3*sinh (K)/ (L"3)-T2*cosh (K) ;
=[Al,A2,A3,A4;B1,B2,B3,B4;C1,C2,C3,C4;D1,D2,D3,D4];
E11=[Al,A2,A3;B1,B2,B3;C1,C2,C3]1;E10=[A4;B4;C4];E01=[D1,D2,D3];E00=[D4];

MM=-inv (E11l) *E10;

E1=MM (1) ;E2=MM (2) ;E3=MM(3) ;E4=1;

t=0:0.001:1;

U42=El1*sin (K*t)+E2*cos (K*t)+E3*sinh (K*t) +cosh (K*t)
hold on

plot (t,U42,'":b");

xlabel ('"Normalized length')

ylabel ('Amplitude")

%$mode 5

K=14.1371;
k=2/3;M=4;A=1;r=0.02;E=30000;e=0.28;1L=14.4;G=3*E/8;
I=r*r*A*L*L;

s=0.04;

R1=10*E*I/L;R2=20*E*I/L;

T1=9999999;T2=0;

Al=R1;

A2=E*I*K/L;

A3=R1;

A4=-E*I*K/L;

Bl=-E*I*K"3/L"3;

B2=T1;

B3=E*I*K"3/ (L"3

B4=T1;

Cl=-E*I*K/L*sin (K)+R2*cos (K) ;
C2=-E*I*K/L*cos (K)-R2*sin (K) ;



C3=E*I*K/L*sinh (K)+R2*cosh (K)

Cc4= E*I*K/L*cosh(K)+R2*51nh( ) ;
Dl=-E*I*K" 3*cos(K)/( ) -T2*sin (K) ;
D2=E*I*K"3*sin (K)/ (L -T2*cos (K) ;
D3=E*I*K~3*cosh (K)/ (L ) -T2*sinh (K) ;
D4=E*I*K"3*sinh (K )/(L 3)-T2*cosh (K) ;

=[Al,A2,A3,RA4;B1,B2,B3,B4;C1,C2,C3,C4;D1,D2,D3,D4];
E11=[Al,A2,A3;B1,B2,B3;Cl1,C2,C3];E10=[A4;B4;C4];E01=

MM=-inv (E11l) *E10;

E1=MM (1) ;E2=MM (2) ; E3=MM (3) ;E4=1;

t=0:0.001:1;

U52=El*sin (K*t)+E2*cos (K*t)+E3*sinh (K*t)+cosh (K*t)
hold on

plot (t,U52, ":b");

[

% super imposed mode shape
U62=(U12+U22+U324+U42+U52) ;
plot(t,U62,"':x")

hold off

[D1,D2,D3];E00=

[D4];
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Appendix 1V First Five Mode shapes for Timoshenko Beams

o\

Input the first five frequencies x
Input rotational spring constants T1,T2 and vertical spring constants R1,R2

o

o

Mode 1

x=1.8708;
k=2/3;M=4;A=1;r=0.02;E=30000;e=0.28;1L=14.4;
I=r*r*A*L*L;

s=0.04;

a=1/sqrt (2) *sqrt (- (r"2+s"2) +sqgrt ((r"2-s"2)"2+4/x"4))
b=1/sqrt (2) *sqrt ((r"2+s72) +sqgrt ((r"2-s8"2)"2+4/x"4))
Al=-T1*L*(a)/ (x"2*((a)"2+s"2));
A2=-E*A*s"2/ (M* ((a) "2+s"2));
A3=T1*L*b/ (x"2* ((b) "2-5"2));
A4=E*A*s*2/ (M* ((b) *2-5"2)) ;

Bl=E*I*x"2*(a)/L

B2=-R1
B3=E*I*x"2* (b) /L;
B4=-R1;
=(E*A*s"2*x"2*sinh (x"2*a) /M-T2*L*a*cosh (x"2*a))/ (x"2* ((a)~2+s"2)) ;
=(E*A*s"2*x"2*cosh (x"2*a) /M-T2*L*a*sinh (x*2*a))/ (x"2* ((a)~*2+s"2)) ;
—E*A*s"2*x"2*3sin (x"2*b) /M+T2*L*b*cos (x*2*b) )/ (x"2* ((b) *2-5"2)) ;
(x"2*b) /M-T2*L*b*sin (x"2*b) )/ (x*2* ((b) *2-5"2)) ;

=(E*I*x"2*a*cosh (x"2*a)+R2*L*sinh (x"2*a))/L;
=(E*I*x"2*a*sinh (x"2*a)+R2*L*cosh (x"2*a))/L;
=(E*I*x"2*b*cos (x"2*b)+R2*L*sin (x"2*b)) /L;
D4=(-E*I*x"2*b*sin (x"2*b)+R2*L*cos (x*2*b)) /L;
=[Al,A2,A3,A4;B1,B2,B3,B4;C1,C2,C3,C4;D1,D2,D3,D47];
El1l1=[Al,A2,A3;B1,B2,B3;Cl1,C2,C3];E10=[A4;B4;C4];E01=[D1,D2,D3];E00=[D4];
MM=-1inv (E11) *E10;
E1=MM (1) ;E2=MM (2) ; E3=MM(3) ;E4=1;
t=0:0.001:1;
p=x"2
Sl=(El*L*a*cosh (p*a*t)/ (p* (a”2+s"2))+E2*L*a*sinh (p*a*t)/ (p* (a”2+s"2)) -
E3*L*b*cos (p*b*t) / (p* (b"2-s872) ) +E4*L*b*sin (p*b*t) / (p* (b"2-5"2))) ;
Yl=(((p*(a”2+s72))/(E1*L*a))) *Sl;
hold on
plot(t,Y1l,"':b");
xlabel ('"Normalized length')
ylabel ("Amplitude")

(

(

(
=(-E*A*s"2*x"2*cos

(

(

(

% Mode 2

x=4.621109;
k=2/3;M=4;A=1;r=0.02;E=30000;e=0.28;1L=14.4;
I=r*r*A*L*L;

s=0.04;

a=1/sqrt (2) *sqrt (- (r"2+s"2) +sqgrt ((r"2-s"2)"2+4/x"4))
b=1/sqgrt (2) *sqrt ((r"2+s72) +sqgrt ((r"2-s"2)"2+4/x"4))
Al=-T1*L* (a)/ (x"2*((a)"2+s"2));
A2=-E*A*s"2/ (M* ((a)"2+s"2));
A3=T1*L*b/ (x"2* ((b) *2-8"2));
A4=E*A*s”2/ (M* ((b) "2-5"2));
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BL=E*I*x"2* (a) /L;

B2=-R1
B3=E*I*x"2* (b) /L;
B4=-R1;
=(E*A*s"2*x"2*sinh (x"2*a) /M-T2*L*a*cosh (x"2*a))/ (x"2* ((a) ~2+s"2)) ;
=(E*A*s"2*x"2*cosh (x"2*a) /M-T2*L*a*sinh (x"2*a)) / (x"2* ((a) ~2+s"2)) ;
—E*A*s"2*x"2*sin (x"2*b) /M+T2*L*b*cos (x"2*b) )/ (x"2* ((b) ~2-5"2)) ;
—E*A*s"2*x"2*cos (x"2*b) /M-T2*L*b*sin (x"2*b) )/ (x"2* ((b) ~2-5"2)) ;

(
(
(
(
=(E*I*x"2*a*cosh (x"2*a)+R2*L*sinh (x"2*a)) /L;
=(E*I*x"2*a*sinh (x"2*a)+R2*L*cosh (x"2*a))/L;
D3=(E*I*x"2*b*cos (x"2*b) +R2*L*sin (x"2*b)) /L;
D4=(-E*I*x"2*b*sin (x"2*b)+R2*L*cos (x"2*b) ) /L;
=[Al,A2,A3,R4;B1,B2,B3,B4;C1,C2,C3,C4;D1,D2,D3,D4];

Ell1=[Al,A2,A3;B1,B2,B3;C1,C2,C3];E10=[A4;B4;C4];E01=[D1,D2,D3];E00=[D47];

MM=-inv (E11) *E10;

E1=MM (1) ;E2=MM(2) ; E3=MM(3) ;E4=1;

t=0:0.001:1;

p=x"2

S2=(El*L*a*cosh (p*a*t)/ (p* (a”2+s"2))+E2*L*a*sinh (p*a*t)/ (p* (a"2+s"2)) -
E3*L*b*cos (p*b*t) / (p* (b"2-572) ) +E4*L*b*sin (p*b*t) / (p* (b"2-5"2)));
Y2=((p*(a”2+s"2))/ (EL*L*a)) *S2

plot(t,Y2,"':b")

k=2/3;M=4;A=1;r=0.02;E=30000;e=0.28;1L=14.4;
I=r*r*A*L*L;

s=0.04;

a=1/sqrt (2) *sgrt (- (r"2+s"2) +sqrt ((r"2-s"2)"2+4/x"4)) ;
b=1/sqrt (2) *sqrt ((r"2+s72) +sqgrt ( (r"2-s8"2)"2+4/x"4))
Al=-T1*L*(a)/ (x A2*((a)A2+sA2));

A2=-E*A*s72/ (M* ((a) “2+8"2)) ;

A3=T1*L*b/ (x"2* ((b A2 s™2));

A4=E*A*s"2/ (M* ( (b A2 s™2));

B1=E*I*x"2*(a)/L;

B2=-R1
B3=E*I*x"2* (b) /L;
B4=-R1;
=(E*A*s"2*x"2*sinh (x"2*a) /M-T2*L*a*cosh (x"2*a) )/ (x"2* ((a) "2+s"2));
=(E*A*s"2*x"2*cosh (x"2*a) /M-T2*L*a*sinh (x"2*a) )/ (x"2* ((a) ~2+s"2)) ;
—E*A*s72*%x"2%sin (x"2*%b) /M+T2*L*b*cos (x*2*b) ) / (x*2* ((b) ~2-58°2)) ;
—E*A*s"2*x"2*cos (x"2*b) /M-T2*L*b*sin (x"2*b) )/ (x"2* ((b) *2-5"2)) ;

(
(
(
(
=(E*I*x"2*a*cosh (x"2*a)+R2*L*sinh (x"2*a))/L;
D2=(E*I*x"2*a*sinh (x"2*a)+R2*L*cosh (x"2*a))/L;
=(E*I*x"2*b*cos (x"2*b)+R2*L*sin (x"2*b)) /L;
D4=(-E*I*x"2*b*sin (x"2*b)+R2*L*cos (x"2*b)) /L;
=[Al,A2,A3,A4;B1,B2,B3,B4;C1,C2,C3,C4;D1,D2,D3,D4];

Ell1=[Al,A2,A3;B1,B2,B3;Cl,C2,C3];E10=[A4;B4;C4];E01=[D1,D2,D3];E00=[D4];

MM=-inv (E11l) *E10;

E1=MM (1) ;E2=MM (2) ; E3=MM (3) ;E4=1;

t=0:0.001:1;

p=x"2

S3=(El*L*a*cosh (p*a*t)/ (p* (a"2+s"2))+E2*L*a*sinh (p*a*t)/ (p* (a"2+s"2)) -
E3*L*b*cos (p*b*t) / (p* (b"2-5872) ) +E4*L*b*sin (p*b*t) / (p* (b"2-5"2))) ;
Y3=(((p*(a”2+s72))/(E1*L*a))) *S3;

plot (t,¥3,':b")

84



% Mode 4

x=10.340520;
k=2/3;M=4;A=1;r=0.02;E=30000;e=0.28;1L=14.4;
I=r*r*A*L*L;

s=0.04;

a=1/sqrt (2) *sqrt (- (r"2+s"2) +sqgrt ((r"2-s"2)"2+4/x"4))
b=1/sqgrt (2) *sqrt ((r"2+s”2) +sqgrt ((r"2-s8"2)"2+4/x"4))
Al=-T1*L* (a)/ (x"2* ((a)"2+s"2));
A2=-E*A*s"2/ (M* ((a)"2+s"2));
A3=T1*L*b/ (x"2* ((b) *2-5"2)) ;
A4=E*A*s"2/ (M* ((b) *2-5"2)) ;

Bl=E*I*x"2* (a)/L;

B2=-R1
B3=E*I*x"2* (b) /L;
B4=-R1;
=(E*A*s”"2*x"2*sinh (x"2*a) /M-T2*L*a*cosh (x"2*a) )/ (x"2* ((a) "2+s"2));
=(E*A*s"2*x"2*cosh (x"2*a) /M-T2*L*a*sinh (x"2*a) )/ (x"2* ((a) "2+s"2));
—E*A*s"2*x"2*s1in (x"2*b) /M+T2*L*b*cos (x"2*b) ) / (x"2* ((b) *"2-35"2)) ;
—E*A*s"2*x"2*cos (x"2*b) /M-T2*L*b*sin (x"2*b) )/ (x"2* ((b) *2-s"2));

(
(
(
(
=(E*I*x"2*a*cosh (x"2*a)+R2*L*sinh (x"2*a))/L;
=(E*I*x"2*a*sinh (x"2*a)+R2*L*cosh (x"~2*a))/L;
D3=(E*I*x"2*b*cos (x"2*b)+R2*L*sin (x"2*b)) /L;
D4=(-E*I*x"2*b*sin (x"2*b)+R2*L*cos (x"*2*b)) /L;
=[Al,A2,A3,A4;B1,B2,B3,B4;C1,C2,C3,C4;D1,D2,D3,D4];

E11=[Al,A2,A3;B1,B2,B3;C1,C2,C3]1;E10=[A4;B4;C4];E01=[D1,D2,D3];E00=[D4];

MM=-inv (E11l) *E10;

E1=MM(1) ;E2=MM(2) ;E3=MM(3) ;E4=1;

t=0:0.001:1;

p=x"2

S4=(El*L*a*cosh (p*a*t)/ (p* (a”2+s"2))+E2*L*a*sinh (p*a*t)/ (p* (a"2+s"2)) -
E3*L*b*cos (p*b*t) / (p* (b"2-s872) ) +E4*L*b*sin (p*b*t) / (p* (b"2-5"2))) ;
Y4=(((p*(a”2+s"2))/ (E1*L*a))) *S4;

plot(t,Y4,':b")

% Mode 5

x=12.909686;
k=2/3;M=4;A=1;r=0.02;E=30000;e=0.28;1L=14.4;
I=r*r*A*L*L;

s=0.04;

a=1/sqrt (2) *sqgrt (- (r"2+s"2) +sqgrt ((r"2-s"2)"2+4/x"4)) ;
b=1/sqgrt (2) *sqrt ((r"2+s72) +sqrt ((r"2-s8"2)"2+4/x"4)) ;
Al=-T1*L* (a)/ (x A2*((a)A2+sA2));

A2=-E*A*s"2/ (M* ((a) ~2+s"2)) ;

A3=T1*L*b/ (x"2* ((b) *2-5"2)) ;

A4=E*A*s"2/ (M* ( (b) A2 s™2));

Bl=E*I*x"2* (a)/L;

Dlz
D2=

ExI*x"2*a*cosh (x"2*a)+R2*L*sinh (x"2*a))/L;
E*xI*x"2*a*sinh (x"2*a)+R2*L*cosh (x"2*a))/L;

B2=-R1

B3=E*I*x"2* (b) /L;

B4: R1;
=(E*A*s”"2*x"2*sinh (x"2*a) /M-T2*L*a*cosh (x"2*a) )/ (x"2* ((a) "2+s"2));
=(E*A*s"2*x"2*cosh (x"2*a) /M-T2*L*a*sinh (x"2*a) )/ (x"2* ((a) "2+s"2));
=(-E*A*s"2*x"2*sin (x"2*b) /M+T2*L*b*cos (x"2*b) )/ (x*2* ((b) *2-5"2)) ;
=(-E*A*s"2*x"2*cos (x"2*b) /M-T2*L*b*sin (x"2*b) )/ (x"2* ((b) *2-5"2)) ;
(
(
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D3=(E*I*x"2*b*cos (x"2*b) +R2*L*sin (x"2*b)) /L;
D4= (-E*I*x"2*b*sin (x"2*b)+R2*L*cos (x"2*b) ) /L;
H=[Al,A2,A3,A4;B1,B2,B3,B4;Cl1,C2,C3,C4,;D1,D2,D3,D4];

El11=[Al,A2,A3;B1,B2,B3;C1,C2,C3]1;E10=[A4;B4;C4];E01=[D1,D2,D3];E00=[D4];

MM=-inv (E11l) *E10;

E1=MM(1) ;E2=MM (2) ;E3=MM (3) ;E4=1;

t=0:0.001:1;

p=x"2

S5=(El*L*a*cosh (p*a*t)/ (p* (a"2+s"2))+E2*L*a*sinh (p*a*t)/ (p* (a"2+s"2)) -
E3*L*b*cos (p*b*t) / (p* (b"2-5872) ) +E4*L*b*sin (p*b*t) / (p* (b"2-5"2))) ;
Y5=(((p*(a”2+s72))/(E1*L*a))) *S5;

plot(t,¥Y5,"':b")

Y66=(Y1+Y2+Y3+Y4+Y5) ;
plot(t,Y66, '-b")
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