
Graduate Theses, Dissertations, and Problem Reports 

2006 

Network effects and spatial autoregression in mode choice Network effects and spatial autoregression in mode choice 

models: Three essays in urban transportation economics models: Three essays in urban transportation economics 

Frank Goetzke 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Goetzke, Frank, "Network effects and spatial autoregression in mode choice models: Three essays in 
urban transportation economics" (2006). Graduate Theses, Dissertations, and Problem Reports. 2497. 
https://researchrepository.wvu.edu/etd/2497 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2497?utm_source=researchrepository.wvu.edu%2Fetd%2F2497&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Network Effects and Spatial Autoregression in Mode Choice Models: 
Three Essays in Urban Transportation Economics 

 
 

Frank Goetzke 
 
 

Dissertation submitted to the 
College of Business and Economics 

at the West Virginia University 
in partial fulfillment of the requirements for the degree of 

 
 

Doctor of Philosophy 
 

in 
 

Economics 
 
 
 

David R. Martinelli, Ph.D., Chair 
Brian J. Cushing, Ph.D. 

Stratford M. Douglas, Ph.D. 
Randall W. Jackson, Ph.D. 

Jerald J. Fletcher, Ph.D. 
Santiago M. Pinto, Ph. D. 

 
 

Division of Economics and Finance 
 
 

Morgantown, West Virginia 
 

2006 
 
 
 

Keywords:  Transportation Economics, Network Externalities, Neighborhood 
Effects, Mode Choice Model, Spatial Econometrics 

 
 
© Copyright 2006, Frank Goetzke 

 



Abstract 
 

Network Effects and Spatial Autoregression in Mode Choice Models: 

Three Essays in Urban Transportation Economics 

 

Frank Goetzke 

 

 

Network analysis in transportation economics has traditionally focused on congestion as 

a negative externality stemming from supply-side capacity constraints. In my first paper paper, an 

analytical mode choice model is developed to examine the demand-side network effects. The 

assumption behind the approach is that, because of social network effects, the utility of people 

taking the mode increases with its mode share. It is found that social network effects change the 

modal aggregate demand curve for the mode to an inverted u-shape. This result has far-reaching 

policy consequences, since multiple equilibria become a possibility, causing positive externalities 

and path-dependency.  

 Transportation planners have always been aware of positive network effects in public 

transit use, which can be attributed to the fact that people choose transit, because other people 

already take it. In my second essay, I employ a spatially autoregressive mode choice mode to 

econometrically test for the existence of social network effects. It is found that the coefficient 

estimate for transit use network effects is positive and significantly different from zero. 

Furthermore, if social network effects are not included, it can be shown that an omitted variable 

bias is introduced into the model, which can lead to a systematic error in travel forecasts. 

 The third essay explains municipal differences in bicycle mode share with social network 

effects. Using data from the nation-wide travel behaviour survey, Mobility in Germany 2002, a 

binary logistic regression model was developed to identify in how much a city-specific “biking 

culture” has an impact on the city’s bike modal split. To avoid endogeneity of the biking culture 

variable, a social network effects instrument was developed. It was found that not only bicycle 

infrastructure, but also social network effects change municipal bike mode share. Further results 

were that work/educational and leisure trips depend less on social network effects than other trip 

purposes. The outcome of this research has significant policy implications, such as, that 

transportation planners can target biking culture in a city as a mean to improve bike mode share. 
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Introduction 
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 During the last decade it became more acceptable to analyze 

sociological topics with economic tools. In the field of social interactions, 

economists began looking at herd behavior, cultural conventions, foreign 

language learning, gift giving and fashion. The concepts of social network or 

spillover effects are the centerpiece of all these works. 

 What are social network effects? Very simply defined, social network 

effects exist if people prefer to do what other people already do. One reason for 

this behavior is that what other people do is viewed as an information signal. A 

person could believe that if someone else does a certain activity, this someone 

else may have additional information about this activity. For example, if a 

restaurant is crowded, people think is must be a good place to eat. Fashion or 

peer pressure are different interpretations of network effects. 

If a person prefers to walk, bicycle or use public transit as long he or 

she sees other people using the same mode, then the concept of social network 

effects also applies to transportation mode choice. In the transportation context, 

social network effects can arise due to an externality, where the central issue 

becomes a coordination problem. For example, while all members of a group 

together would benefit by riding transit, if nobody is willing to take the first 

step in using it the pay-off goes uncollected. 
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 Until recently nobody had applied these ideas towards transportation 

mode choice modeling. Transportation planners were always aware of social 

network effects. They knew that pedestrians like busy sidewalks, or people 

prefer biking when they see other bicyclists. Even more, they understood that if 

a transit system loses enough riders, it may easily collapse. The lack of these 

demand-side network research in the area of transportation is especially 

astonishing because supply-side network externalities, such as congestions, 

were one of the major issues transportation science dealt with during the last 

half century. 

 In the last few years, mainly two groups of authors, Antonio Páez and 

Darren Scott at McMaster University in Canada, as well as Joan Walker at 

Boston University and Elenna Dugundji at the University of Amsterdam in the 

Netherlands, have worked on very similar questions. All of them developed 

approaches to integrate demand-side network effects into their empirical travel 

behavior models. 

 However, my dissertation differs from the above research in three 

significant ways: First, I have developed a theoretical framework to evaluate 

social network effects as an externality problem and discuss their 

consequences. I found that social network effects in transportation mode choice 

modeling can lead to multiple equilibria of this transportation mode, and, 

 3



therefore, this transportation mode share would be path-dependent. The policy 

implications are far-reaching, since modal split, such as walking in American 

cities, results from potentially irreversible historical events. 

 Second, I model empirically the social network effects as a spatial 

autoregressive process, rather than using a simple zonal mode share mean. My 

approach of a spatially weighted modal split moving average is not only more 

realistic, it also takes care of the endogeneity problem of the network variable. 

Spatial data, however, is not always available. In these cases I find an 

instrument for the social network effects. 

 Third, my research has a strong focus on policy matters. My major 

contribution lies in making the transportation planning community aware of the 

consequences of social network effects. Since ignoring network externalities 

may lead to ill-informed decision making, I conclude all three essays with a 

policy discussion that focuses on the relevance of my findings. 

 The dissertation comprises three essays, presented in Chapters 2, 3, and 

4. In the next chapter, I lay out a theoretical framework for mode choice 

decision making that includes social network effects. Starting off with an 

analytical model, I find that social network effects may lead to multiple mode 

share equilibria causing path-dependency. This means that a city’s actual 

modal split (of e.g. pedestrians, bicyclists or transit riders) may follow unique 

 4



historical events, and may be irreversible. A discussion of the welfare 

implications shows that only the equilibrium with the highest level of the mode 

share is welfare maximizing. 

 After generalizing the one-mode model to a two-mode model, I extend 

the basic model to include congestion either on the mode exposed to social 

network effects, or the alternate mode. I find that, for congestion on the 

network-exposed mode, a congestion charge is not necessarily welfare 

maximizing. Furthermore, if the alternate mode (e.g. automobile) is congested, 

the externality of the network-exposed mode (e.g. transit) could be easier to 

overcome. The results shed new light on the post-World War II transit 

ridership collapse in the United States. 

 Based on the New York City household travel dataset, I then develop in 

Chapter 3 a mode choice model to evaluate the presence of social network 

effects in public transit use.  Social network effects are modeled as a spatially 

autoregressive transit mode share process. The regression coefficient estimates 

for the social network effects variable were positive and significantly different 

from zero at the 5-percent level. I also show that, if the mode choice model 

does not account for social network effects, the estimates of the regression 

coefficients exhibit an omitted variable bias. The consequences discussed in 

the conclusion of the chapter are the following: Transit ridership is 
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overestimated for trips going from the suburbs into the CBD, while it is 

underestimated for trips within the central city. This systematic bias in the 

model can become the cause for poor decision making by transportation 

planners. 

 Finally, in Chapter 4 I analyze following the concept of social network 

effects, municipal bicycle mode share differences in German cities. The new 

idea is that a person’s decision to ride the bike depends also on the biking 

city’s culture in which he or she lives. Using a national travel behavior dataset, 

I build a binary logistic regression model to model bicycle mode choice as a 

function of personal, trip and city-specific variables, plus social network 

effects. 

I employed a city-level instrumental variable, based on the bike mode 

share of some excluded records (by trip purpose), and found that the regression 

coefficient estimates were positive in all cases, as well as significantly different 

from zero at the 5-percent level. The impact of two different bicycle 

infrastructure proxies was found to be positive, as well. With this empirical 

evidence of bicycle mode choice decision making depending on social network 

effects, transportation planners may focus not only on infrastructure 

improvements, but also on strengthening the city’s biking culture.  

 6



In Chapter 5, I finish up with a brief conclusion, summarizing all the 

results and giving an outlook onto further research in the field of network 

effects in transportation mode choice modeling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7



 

 

 

 

 

Chapter 2 

Mode Choice and Social Networks: 

The Economics of Walking, Bicycling and Public Transit Use 
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INTRODUCTION 

Ever since the publication of Studies in the Economics of 

Transportation (Beckmann, McGuire and Winston, 1956), network analysis in 

transportation economics has centered on congestion as a negative externality. 

The foundation of this research is the limited capacity of the physical 

transportation network.1 This paper builds upon and extends this approach by 

also examining the positive network externalities stemming from the social 

networks of people choosing certain transportation modes, namely walking, 

bicycling and public transit. While traditional analysis is based on network 

effects in the supply of transportation, my focus is on network effects in 

transportation demand. The idea behind this new concept is simple: For some 

transportation modes, such as walking, bicycling, or transit use, the 

willingness-to-pay for people considering this mode increases with the number 

of other people already taking the same mode. This seems counterintuitive in 

the context of capacity constraints for transportation networks, since 

traditionally an additional person on the same network link is thought as 

imposing a congestion externality on everyone else already using the link. 

While it is possible to include capacity constraints and congestion in my 

argument, I did so only in the very last section of this paper, because for 

                                                 
1 For a survey on network analysis in transportation and beyond see Nagurney (2003). 
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walking, bicycling and public transit the maximum capacity is typically very 

high and rarely reached – a large city, such as New York, may be an exception.  

Why do people prefer to walk, bike, or use public transit together with 

others? The motivations can be grouped into three categories: The first 

category is a utility gain through the network effects coming from some kind of 

complementarity, since people are not alone, can meet other people, 

communicate with them, and feel safer. The second category is based on 

conformity and can be described as avoiding a utility loss by not following 

others because of the social norm, peer pressure and/or fashion. And in the last 

category, the utility improvement stems from internalizing an information 

externality, because people using a certain transportation mode (i.e. public 

transit) send a signal to everyone else that this is a feasible mode (public transit 

is reliable and, therefore, works)2. 

Including these social networks in mode choice decision-making is just 

an additional aspect of current network analysis in transportation. I am not 

claiming that these effects are more or less important than congestion. 

However, this minor extension of accounting for positive network effects, even 

if not given much weight, alters the result rather significantly. 

                                                 
2 This is similar to choosing a restaurant because its popularity is interpreted as a sign of 
quality. 
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Traditional economic reasoning assumes a downward sloping aggregate 

transportation demand curve; however, I will show that, if network effects exist 

in the mode choice decision, the demand curve changes to an inverted u-shape. 

This fact leads to the possibility of multiple equilibria, which has far-reaching 

consequences. First, a critical mass of users is necessary to make a 

transportation mode feasible or a transportation facility utilized. Second, this 

critical mass requirement may lead to local clusters of a specific transportation 

mode, which means mode choice decisions become spatially autoregressive. 

And third, potential multiple equilibria would make the actual mode share 

outcome path-dependent and, thus, a result of unique historical events. All 

three consequences are observable in real mode choices decisions, such as 

walking, bicycling, and transit use, and have important policy implications to 

be discussed in the conclusion. 

While these insights are commonly known in the economics of network 

industries (Economides, 1996; Rohlfs, 1974; Shy, 2001), they have not been 

appropriately applied in the context of transportation networks. Yevdokimov 

(2001 and 2002) incorporated demand-side network effects in his general 

equilibrium model of optimal highway investment, but he did not theoretically 

justify its use or further develop the concept. Goodwin et. al. (2005) mention 

demand-side network effects for transit users in their microeconomics textbook 
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without further developing the argument. Also, there is an emerging literature 

that finds econometric evidence of demand-side network effects in mode 

choice decision making (Dungundij and Walker, 2006; Goetzke, 2006), or 

simulates network effects in travel behavior (Páez and Scott, 2005; 2006). This 

literature, however, does not discuss the phenomena using an analytical model 

derived from economic theory as presented in this paper. Of course, there is 

also a body of economics literature concerning herd behavior (Banerjee, 1992), 

as well as social interaction (Akerlof, 1997), elaborating on externalities and 

multiple equilibria, but they do not explicitly deal with transportation mode 

choice decision-making. 

In the next section, I will introduce the basic mode choice model, 

consisting of one transportation mode. Then, I will relax some of the 

restrictions for the one-mode model and develop a general form of the basic 

model, which will be used for the social welfare discussion in the following 

section. In the next section, the model will be extended to two modes, before 

finally congestion is added to the model. I finish with a conclusion. 

 

THE BASIC MODEL 

Loosely following the pioneering paper by Rohlfs (1974), where he 

analyzes the demand structure of telecommunication services in the presence of 
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network externalities, I will present a static partial equilibrium model, where 

the marginal cost of using the transportation mode is exogenously determined. 

The basic model includes positive network externalities, but not congestion (a 

negative network externality) and allows a person to either use a certain 

transportation mode for the trip or not do the trip at all. The assumption is that 

all people are homogeneous in every aspect, except for their preference for 

choosing the mode together with others and they all face the same marginal 

cost using this mode. 

Before delving too deeply into the theoretical aggregate model, I want 

to first discuss graphically the impact of a positive network effect on the 

demand curve of an individual person choosing to walk. As seen in Figure 

2.1(a), the downward-sloping walking demand curve shifts up with a higher 

pedestrian mode share, which means that at the same level of walking 

consumption, the willingness-to-pay (WTP) for walking increases. Figure 

2.1(b) exhibits the resulting upward sloping curve of WTP for one walking trip 

with respect to pedestrian mode share, which is a good starting point for 

introducing the basic model. 

 

Figure 2.1 about here 
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Consider now a group of n people choosing to undertake a non-

essential trip where the only possible transportation mode is walking3. 

Assuming a mode preference for walking with others of mx ≥ 04, the utility Ux 

for a specific person x taking this walking trip is defined as follows: 

 mx se –  p  if the person walks and 
 Ux =         (1) 

0                               if the person does not walk. 

The first term in Equation (1), which is the product of the personal mode 

preference for walking with others, mx, and the expected pedestrian mode share 

se ≥ 0, represents the network effect. The second part of the equation, p ≥ 0, 

denotes the full cost of walking. Since a low preference to use the modes with 

others, mx, will result in a value closer to zero, it can be easily seen that this 

leads to the cost of walking becoming more dominant when compared to the 

network effect. However, as the mode preference grows stronger, the walking 

cost term will lose its relative importance. 

Now I can analyze a specific person x’ who is indifferent about walking 

or not walking. This would be the case as long as: 

mx’ se –  p = 0 

                                                 
3 The assumption of a single transportation mode, such as walking, simplifies the analysis for 
better understanding. A later extension of the model will add more realism by allowing an 
alternative mode. 
4 If mx < 0, then the person dislikes walking with others, which would be a congestion case. 
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   p = mx’ se       (2) 

Equation (2) resembles exactly the network effect for an individual person as 

seen in Figure 2.1(b). The larger the preference to use the mode with others, 

mx’, the steeper the slope of the WTP curve in the graph and the more 

pronounced the network effect. A walking preference of zero would cause a 

horizontal WTP curve and a walking preference of infinity, a vertical WTP 

curve. 

 In order to derive the aggregate demand curve, I first need to determine 

the distribution for the preference to use the mode with others, mx, over all n 

people. The simplest case would be a uniform distribution for mx, which is 

defined as a linear equation, where person x is mapped to the preference for 

using the mode with others, mx, as follows: 

mx = M –  M/n x       (3) 

M is the maximum value for mx and n is the number of people potentially 

walking. In this set-up, the first person on the left of the x-axis has the highest 

preference to walk with others, while the last person on the right side of the x-

axis has the lowest preference to walk with others (Figure 2.2). 

 

Figure 2.2 about here 
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 In order to derive the aggregate demand curve, I have to use Equation 

(3) for a specific person x’ in Equation (2): 

 p = mx’ se

 p = (M –  M/n x’) se       (4) 

In Equation (4), I know that while person x’ is indifferent towards walking, all 

people indexed as x < x’ become definitely pedestrians, since their preference 

for walking with others is higher than for person x’. Therefore, assuming 

perfect foresight, I can simply say that the expected pedestrian mode share is 

equal to the number of actual pedestrians: 

 se = 1/n x’        (5) 

The inverse aggregate demand function for walking can now be derived by 

substituting Equation (5) into Equation (4). I also want to normalize x’ to the 

pedestrian share s = x/n : 

 

 p = (M – M/n x’) 1/n x’ 

 p = (s – s2) M        (6) 

 

The aggregate demand curve, as seen in Figure 2.3, has an inverted u-

shape, is upward sloping at low levels of walking and becomes downward 

sloping after reaching the maximum WTP of ¼M at a pedestrian mode share of 

1/2. This means that as long as the mode share is less than 1/2 the WTP for 
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walking increases with every additional pedestrian, which is a result of the 

positive network externality. Assuming constant returns to scale, a horizontal 

marginal cost curve can be added to Figure 2.3. The level of the marginal cost 

curve (MC) will be determined by travel time, the quality of the walking 

facilities (the higher the quality, the lower the cost), and other factors of 

convenience, such as weather and/or aesthetics. 

 

Figure 2.3 about here 

 

As long the marginal cost is above the maximum WTP (MC > ¼M), 

such as in the example of p1, the mode share will be zero (s1), as seen in point 

A in Figure 2.3. However, if the marginal cost drops below ¼M, p2 will 

intersect three times with the demand curve, leading to two stable outcomes (B 

and D), as well as to one unstable outcome (C) according to the phase diagram. 

With outcome B, there are still no pedestrians, but if outcome D is achieved, 

the mode share for walking will be s2. The existence of two stable equilibria 

can result in two similar walking facilities with the same marginal cost, while 

facing the same aggregate demand curve can potentially have two different 

levels of utilization, one at zero and the other significantly above. 

 

 17



THE GENERAL FORM OF THE BASIC MODEL 

The basic model above has quite a few restrictions that I want to relax 

now. The major restriction is the uniformly distributed network preference. The 

question is whether or not the inverted u-shape of the aggregate demand curve 

holds also for skewed mode preference distributions. To discuss the cases of a 

larger number of people having a high or low preference for walking with 

others, I can formulate the following general equation for the network 

preference distribution: 

 mx = [1 – ( x/n)a] M, with a≥ 0     (7) 

The basic model discussed in the section above exists for a =1. If a > 1, 

however, then there are more people with high preferences to walk with others, 

while as long as 0 < a < 1, there are more people with low preferences to walk 

with others. Substituting Equation (7) into Equation (2) and normalizing for 

pedestrian share using Equation (5), I can find the following aggregate demand 

function: 

 p = (s – sa+1) M       (8) 

The characteristic of an inverted u-shape does not change with this addition, 

but the peak moves to the right of the center (pedestrian share equals ½) for a 

> 1, and to the left for 0 < a < 1. If a = 0, which identifies the case where 
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everybody has the same preference to walk with others at M, the inverted u-

shaped aggregate demand curve flattens to a horizontal line at the level of M. 

So far, I have assumed that people are not willing to pay for walking 

independently of the positive network effect. If I relax this assumption, another 

term, bx ≥ 0, can be added to Equation (1), which could be seen as a parameter 

of a personal preference for walking. If aggregated, the functional form of b(x) 

depends on the distribution of bx over all potential pedestrians, which, in this 

context, I do not need to restrict with any assumptions. Therefore, the general 

form of the aggregate demand curve is now: 

p = (s – sa+1) M + b(x)      (9) 

What the minimum WTP for walking independent of others, bx, does, is 

shifting the individual WTP curve up by its value with respect to pedestrian 

mode share. Now it is possible to derive the traditionally downward sloping 

aggregate demand curve by assuming that all people have the same preference 

of walking with others of 0, but they also have a decreasing WTP, which is 

independent of others as well as uniformly distributed between B and 0. This 

would result in the aggregate demand curve starting on the left at the value of B 

for a pedestrian share of 0 and ending on the right at the value of 0 for a 

pedestrian share of 1. By combining different preferences for walking with 
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others, mx, and different WTP for walking independent of others, bx, I can 

derive the aggregate demand curve seen in Figure 2.4. 

 

 Figure 2.4 about here 

 

Figure 2.4 shows the individual demand curves with respect to the 

pedestrian mode share based on their individual combinations of network and 

personal walking preferences: The first person on the far left has a personal 

walking preference of B3, but does not care about walking with others (no 

network effects). Moving from left to right, the next person has a personal 

walking preference of B2 and a network preference equal to the slope of her 

individual demand curve. The following person has the same personal walking 

preference as the person before, but, again, her network preference is equal to 

0. The next person (in the middle) has a personal preference of 0, but now the 

network preference is the same as the one of the second person (same slope of 

the demand curve). The next person has again the same personal walking 

preference of 0, but a lower network preference than the previous person 

(lower slope). Finally, the two following people have both the same network 

preferences (parallel demand curves), however, the very last person, on the far 

right, has a personal walking preference of 0, while the person before has a 
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personal walking preference of B1. If all the individual demand curves are 

combined, an aggregate demand curve can be derived, such as exhibited in 

Figure 2.4. With increasing pedestrian mode share, which means moving in the 

graph from left to right, the highest WTP value is selected for each level of 

pedestrian mode share, to derive the aggregate demand curve. 

Finally, I have to relax the assumption of mx being a real number. As 

long as I have people who always walk independent of others, I have to allow 

mx to become infinity. The result would be a vertical, inelastic aggregate 

demand curve. In Figure 2.5, I have combined all possible cases (discussed 

above) into a more realistic aggregate demand curve. On the far left I start with 

a share of s1 people having a preference value of walking with others of 

infinity, then, still on the left, I continue with a group having high values of mx, 

where the change of the minimum WTP, bx, is more dominant than the network 

effect (until s2), followed by a group to the right, where the network effect 

dominates the change of b (s3), and finish on the far right with a group of 

people having a preference to walk with others of 0 and a decreasing value of 

bx. 

 

Figure 2.5 about here 
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SOCIAL WELFARE DISCUSSION 

 In order to be able to decide which of the two stable equilibria is 

welfare maximizing, I have to evaluate Equation (4) and (8) assuming that the 

expected pedestrian mode share is the actual pedestrian mode share s*. Since 

all pedestrians with a larger value for their preference to use the mode with 

others (on the left of s*) also have a higher WTP then the actual cost at s*, 

there will be a consumer surplus. In order to derive the consumer surplus, I 

need to find the aggregate demand curve at the fixed level of se = s*. To 

simplify the exercise, I assume that b(x) is equal to 0: 

 p = (M – M sa) se

 p = M s*  – (M s*) sa       (10) 

As seen in Figure 2.5, the aggregate demand curve at the actual level of 

pedestrian share s* is classically downward sloping and intersects with the 

inverted u-shaped aggregate demand curve at the point s* = s1. In the graph I 

assume that the walking preference parameter bx is the same for everyone at a 

level of B. 

Using Equation (10), the consumer surplus for the stable right-hand, 

non-zero equilibrium outcome at s* can be estimated as follows: 

 CS = 0∫s* [M s* – (M s*) sa] ds 
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      = ½ M S* – (1/a+1) M (s*)a+2 + k         

       = M s*2 (½ – 1/a+1 s*a) + k ≥ 0 for ½ ≤ s* ≤ 1 and a ≥ 1  (11) 

The constant of integration is k. Assuming that there is no producer surplus, the 

right-hand stable equilibrium with a pedestrian mode share of s1 ≥ ½ (point B) 

must be the welfare maximizing outcome (CS ≥ 0), because the consumer 

surplus will be always greater then for a pedestrian share of 0 (point A), where 

the consumer surplus is just zero. 

 

 Figure 2.6 about here 

 

However, the actual mode share outcome is path-dependent. Therefore 

the welfare maximizing result is not guaranteed. This can typically be seen in 

new pedestrian infrastructure investments, which indeed decrease the marginal 

cost of walking without necessarily increasing its usage. In order to take 

advantage of the positive network effects, a subsidy may be needed, at least in 

theory, ideally paid to the people with the highest preference to walk with 

others. Then the zero-equilibrium will move towards the welfare maximizing 

equilibrium. In practice, this subsidy could be an informational advertisement 

campaign or consist of other kinds of promotions for the new infrastructure, 

such as group walks, which first convinces people with a large value for their 
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preference to walk with others to use the new infrastructure. Then other 

pedestrians should follow as soon as the critical mass is passed.5 In the context 

of transit, a monthly pass may also make the people with the highest network 

preference willing to start using the bus, with the result that others may follow. 

In summary, it can be said, since the inverted u-shaped aggregate 

demand curve exhibits positive network effects causing changing WTP curves 

for each pedestrian mode share level, that the area underneath the demand 

curve is not equal to the consumer surplus. 

 

THE TWO-MODE MODEL 

Most transportation mode choice decisions involve at least two 

alternatives, such as public transit and the automobile. This extended model 

will therefore account for two modes, one with positive network externalities 

(public transit) and one without any network externalities. The change is 

conceptually easy to include into the general form of the basic model. All 

previous assumptions remain, except now everyone has to undertake the trip 

with one of both transportation modes. Therefore, nobody can choose to not 

take the trip at all: 

                                                 
5 To refer back to the previously mentioned restaurant example, the first few customers receive 
a free meal or discount, is a typical approach use by restaurants to take advantage of the 
positive network effects. 
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 mx se –  p + bx  if the person uses transit and 
 Ux =          (12) 
                        – c + dx   if the person takes the car 

In Equation (12), p ≥ 0 is the full cost for using transit, which is the fare, but 

could also include the travel time as well as the mode’s disamenities. The full 

cost of driving a car (operation, parking and travel time) is represented by c, 

while dx ≥ 0 is the individual WTP for driving the car, again a parameter of 

personal preference for driving6. After manipulating Equation (12), not 

assuming a functional form for the distribution of dx, it can be shown that the 

aggregate demand curve just shifts upwards by the amount of the automobile 

cost [c – d(x)], while all previously discussed characteristics remain, including 

the potential for multiple equilibria: 

p = (s – sa+1) M + b(s) + [c – d(x)]     (13) 

As soon as the cost of the alternative mode to transit, automobile cost, 

c, decreases, the inverted u-shaped aggregate demand curve shifts down as 

expected with the result of a lower transit share. This means, because of the 

inverted u-shape characteristics of the aggregate demand curve that transit 

could lose its critical mass of users. Transit mode share would collapse from  s1 

to s2 with the decrease of the automobile operating cost from d1 to d2 (see 

                                                 
6 In the context of the individual WTP curve p = mx se + bx + c – dx, the term (bx – dx) becomes 
the personal preference for walking relative to driving. 
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Figure 2.7). Therefore, positive network effects may provide a good 

explanation for what has happened to the public transit mode share between the 

end of World War II, 1945, and the first Oil Crisis, 1975. During this time 

transit ridership declined in the United States at a very rapid rate as a result of 

increased access to cars and lower automobile operation costs (APTA, 1995; 

Clair, 1981).  When using my explaination, however, I do not have to assume a 

change in the preferences towards either public transit or the automobile, 

represented in the WTP b(s) and d(s), respectively. Nor do I even have to 

assume a lower quality of transit service, which would result in an upward shift 

of the marginal cost curve, p, as is common in the conspiracy theories 

surrounding this issue (Slater, 1997). Both an additional change of individual 

preferences away from public transportation and towards the car, as well as a 

lower transit service quality, would further accelerate the described process. 

 

 Figure 2.7 about here      

 

ADDING CONGESTION TO THE MODEL 

 At last, I want to add congestion to the models discussed above. There 

are two possible cases to consider: The first case is where marginal social cost 

for the transportation mode exhibiting positive network effects is greater than 
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its marginal private cost. The question in this context is if a congestion toll 

equal to the externality is efficient as is the case without the network effects. In 

the second case, I want to discuss consequences in the aggregate demand curve 

when the alternative mode is congested. 

 Using the basic model in its general form, I now assume that the 

walking facility can get congested, which means that with a higher pedestrian 

share it is slower to walk because of crowding. Assuming that the congestion 

cost is equal for everyone, I can subtract a congestion term f(s) from Equation 

(8), which is a positive function of the pedestrian share. After again 

manipulating the equation as previously done, the following aggregate demand 

function can be found: 

 p = (s – sa+1) M + bx – f(s)      (14) 

In equation (14) the WTP for walking falls at the rate of increasing congestion 

cost, with the result that the inverted u-shaped aggregate demand curve pivots 

around the origin down to the left and gets compressed to scale. As seen in 

Figure 2.8, this leads to a flatter inverted u-shape of the aggregate demand 

curve, as well as one which intersects with the x-axis before the pedestrian 

share reaches the value of one. Since the supply curve representing the cost of 

walking did stay the same, the change could lead to a zero mode share 

equilibrium because the WTP for walking is at all points less than the cost. 
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 Figure 2.8 about here 

 

So far the analysis has only taken into account that an additional 

pedestrian faces a higher cost of walking. However, to complete the picture, 

this pedestrian also imposes a congestion externality on all already existing 

pedestrians. The traditional approach for internalizing this congestion cost on 

others is to charge a toll in the amount of this congestion externality. But with 

positive network effects, there may be cases where a congestion toll may not be 

welfare maximizing. To see that, consider again Equation (14). A congestion 

toll of t(s) would further decrease the willingness to pay (the inverted u-shape 

becomes even more flat) with the possible consequence of moving a stable 

right-hand equilibrium with a positive pedestrian share to a zero equilibrium. If 

that happens, it can be stated that as long as the consumer surplus of the 

equilibrium without the congestion toll minus the total external cost from the 

congestion is greater than zero, not charging a congestion toll is welfare 

maximizing, since the alternative is a consumer surplus of zero.  

It is possible that a congestion toll may not be welfare maximizing even 

if the congestion toll does not lead to a zero mode share equilibrium, because 

the aggregate demand curve at a fixed level of pedestrian share is changing 
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with the actual pedestrian share (see again Figure 2.6). Therefore, it can happen 

that the consumer surplus of the equilibrium without the congestion toll minus 

the total cost from the congestion is still greater than the consumer surplus of 

the equilibrium with congestion cost. This result stems from the fact that the 

positive network effect is an external benefit, counteracting the effect coming 

from the congestion externality. 

In summary, it can be said that as long as the externality caused by the 

positive network effect cannot be internalized, as it would be typically the case 

in the real, second-best world, a congestion toll can turn out to be economically 

inefficient. Since the finding also holds for the two-mode model, it is especially 

important to stress in the context of congested transit systems that instituting a 

congestion-based fare system could lead to suboptimal outcomes. 

Now I want to evaluate congestion cost occurring in the alternative 

mode of a two-mode model. Using transit as the mode with positive network 

effects and the automobile as the alternative transportation mode, a negative 

congestion term, g(1 – s), which is a positive function of how many do not use 

transit (1 – s), needs to be added to the automobile cost, so that Equation (13) 

changes as follows: 

p = (s – sa+1) M + [b(s) – d(s)] + [c + g(1 – s)]   
   

   = (s – sa+1) M + [b(s) – d(s)] + [c – g(s)]    (15) 
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Interpreting Equation (15), in Figure 2.9 it can be seen that the congestion term 

pivots the aggregate transit demand curve up to the right around the point 

where the transit share is 1, and, therefore, increases the WTP for transit at the 

amount of the automobile congestion cost. The result is that the inverted         

u-shaped aggregate transit demand curve is lifted up on the left, essentially 

decreasing the positive network characteristics. In cities with high congestion 

costs, this again can lead to a purely downwardly sloped aggregate demand 

curve for transit, which coincides with the empirically observed facts of large, 

congested cities with a functioning transit system. This also explains why 

automobile congestion prevents the collapse of transit use as previously 

described. 

 Furthermore, if a congestion toll would be charged for the automobile 

mode, equal to the external cost an additional driver imposes on all the other 

already existing drivers, then this congestion toll would further lift the 

aggregate transit demand curve up on the left, and would cause an increased 

WTP for transit at low transit share levels. Thus, a congestion toll would not 

only, increase transit ridership as expected, but may prevent transit systems 

close to collapse from doing so. 
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POLICY  CONCLUSION 

 Transportation planners always knew about the existence of network 

effects for the walking, bicycling and transit modes. However, nobody 

formalized the theory as I have done, so that it becomes possible to derive clear 

and unambiguous policy recommendations. 

 Since the aggregate demand curve derived for transportation modes 

exhibiting positive network effects has an u-shape which can lead to multiple 

equilibria, there are two major conclusions to draw from this research: On the 

one hand, transportation modes such as walking, biking and/or transit require a 

critical mass because of the u-shaped demand curve. On the other hand, the 

actual mode share outcome is path-dependent and historically determined 

because of the existence of multiple equilibria. 

 Despite the historic uniqueness of actual local transportation mode 

share equilibrium, I also expect that the actual mode share outcomes are locally 

clustered, because of the spill-over characteristics of networks, and therefore 

spatially correlated. The result would be pockets of very high walking or transit 

use in a certain city, while other areas of the same city have extremely low 

shares of these transportation modes. This is exactly what can be observed in 

large cities, such as New York, where it can be found that in parts of 

Manhattan the pedestrian mode share for walking trips is almost half, while 
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other neighborhoods have a transit mode share well above 50%. As 

econometrically shown in Goetzke (2006), this phenomenon cannot 

exclusively be explained by travel time, but also needs to be informed by the 

theory of positive network effects. 

 Goetzke (2006) further finds that if mode choice decisions are spatially 

autoregressive, a systematic bias in traffic forecasting will be introduced into 

the mode choice model, severely impacting the foundation of policy decision 

making in the context of new infrastructure investment. 

 Additional policy-relevant findings are as follows: It is not enough to 

just build new and better infrastructure with the intent of raising the mode 

share for this transportation mode. As long as the current mode share is at the 

zero equilibrium it takes more to convince people to use new and better 

facilities, which can be seen with new pedestrian, biking and/or transit facilities 

in areas with virtually no pedestrians, bikers or transit users. 

 Therefore, it is crucial for cities with a still functioning transit system to 

prevent transit ridership to drop below the critical mass. Improving automobile 

traffic may eventually lead to an irreversible collapse of transit with the 

consequence that drivers are also worse off. In this context it is important to 

mention that in a city the more people who depend on transit as their sole mode 
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of transportation, the more likely it is, that a person who owns an automobile 

will use transit, as well, because of network effects. 

 Finally, promoting walking, biking and/or transit use and improving 

information about these transportation modes may make it possible that the 

mode share moves from the zero equilibrium to a right-hand equilibrium, since 

marketing and advertisement campaigns function as a subsidy, essentially 

internalizing the external network benefit. 
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Figure 2.1: Positive network effects for an individual person in their mode choice 
decision. 
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Figure 2.2: Linear distribution of the preference for walking with others mx over the 
group of all n potential pedestrians. 
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Figure 2.3: Phase diagram for the u-shaped aggregate walking demand curve with 
network effects. 
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Figure 2.4: Aggregate walking demand curve for a combination of per person 
different preference for walking with others as well as for different WTP for 
walking independent of others. 
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Figure 2.5: A realistic example of all combination of preference to walk with others, 
M, and minimum WTP for walking, b (explanation see text). 
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Figure 2.6: Welfare analysis for walking demand with positive network effects, 
assuming a constant bx. 
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Figure 2.7: The collapse of transit use from s1 to s2 after automobile cost drops from 
c1 to c2 (example for the United Stated between 1945 and 1975). 
 

Transit mode 
share s 1 

WTP for 
transit p 

c1

c2

p 

s2 s1 

Aggregate demand curve 
with automobile cost of c2 

Aggregate demand curve 
with automobile cost of c1 

. .A B 

 
 

 

 

 

 

 

 

 43



Figure 2.8: The u-shaped aggregate demand curve for walking pivots around the 
origin as soon the marginal congestion cost is included and decreases the willingness 
to pay. 
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Figure 2.9: With congestion on the alternative mode, the aggregate demand curve 
pivots around the point of a transit share 1. This can result into a traditionally 
downward sloped demand curve. 
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Chapter 3 

Social Network Effects in Public Transit Use: 

Evidence from a Spatially Autoregressive Mode Choice Model 
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INTRODUCTION 

In this paper, I empirically test for positive network effects in transit 

use by applying a spatial autoregressive logit mode choice model with 1997/98 

work trip data from New York City. Positive network effects exist when people 

prefer to use transit together with other people as a result of social spill-over. 

Although these network preferences should differ for each person, because of 

statistical restrictions in the model, I cannot get individual network 

preferences. However, I will be able to econometrically derive a measure of 

their aggregate network preference.  

There is increasing interest in analyzing spatial dependencies and 

network effects in travel behavior. LeSage and Polasek (2005) examine 

commodity flow matrices by extending a gravity model, a tool widely used in 

the field of transportation, to include spatial autocorrelation. Using a Monte 

Carlo simulation, Páez and Scott (2005; 2006), investigate in two forthcoming 

articles the impact of social networks in discrete choice models. 

It is not entirely new to include network effects into empirical choice 

models. Brock and Durlauf have been researching methods to account for 

social interaction and neighborhood effects in both binary, as well as 

multinomial choice models (Brock and Durlauf, 2001; 2002). However, they 

do not explicitly include a spatial dimension to the discussion of the problem. 
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On the other hand, very few spatial discrete choice models have been estimated 

because of its computational complexity, none of them deal with social 

interaction and spatial spill-over effects in disaggregate transportation behavior 

(Anselin, 1988; Fleming, 2004). 

While there exists a spatially autoregressive mode choice model using 

aggregate data (Boldoc et al., 1995), a spatially autoregressive disaggregate 

mode choice model based on real-world, empirical data to examine network 

effects has never been done. 

In the next section, I will lay out the theory of how to econometrically 

model network effects, followed by an overview of the data used and the issues 

surrounding the design of the weight matrix. Then, I develop the actual 

econometric models and evaluate the result before finishing with a discussion 

of the consequences for policy makers. 

 

THEORY OF MODELING NETWORK EFFECTS 

In Goetzke (2006) the theory of network effects is introduced as it 

applies to transportation mode choice decision making. Interpreting network 

effects as a signal that a certain transportation mode is safe and reliable7, the 

main claim of the paper is that the utility of taking this mode increases with its 

                                                 
7 Just like a full restaurant is a sign for good food and satisfied customers. 
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mode share. Therefore, the more people use the mode, the more attractive this 

transportation mode becomes for all other people. These social spill-over 

effects lead to positive demand-side network externalities, the exact opposite 

from what is known as congestion.8

However, Goetzke did not provide any empirical evidence that these 

network effects exist. In this paper, I develop a rigorous econometric 

framework to examine real-world data and quantify these network effects. The 

starting point for the analysis is the random utility conditional mode choice 

model, the traditionally used workhorse of transportation demand modeling 

and forecasting (McFadden, 1974; Ben-Akiva and Lerman, 1985; Train, 2003). 

Because of the structure of the spatial weight matrix used in the model, I will 

restrict the analysis in this paper to a binary mode choice model. However, the 

general approach can be extended to a multinomial mode choice model, as 

discussed in the conclusion. 

Let’s consider the utility vni of N individuals with n = 1, …, N using 

mode i, which is a function of A personal characteristics, xan, with a = 1, …, A, 

and the B mode-specific characteristics, tbi, with b = 1, …, B.  Assuming that 

vni is a linear combination of xan, tbi, as well as a random error term εni 

                                                 
8 While it is in this context possible to also analyze negative congestion externality, it is not the 
focus of this study. 
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(stemming from unobserved utility determinants), an empirical utility model 

could be expressed as follows: 

 

vni = α1 x1n  + …+ αa xan + β1 t1i + … + βb tbi + εni = xn α + ti β + εni (1) 

 

where xn is a 1 x A vector of personal characteristics, ti is a 1 x B vector of 

mode characteristics, and α and β are the corresponding column vectors of 

regression parameters.  

However, data can only be collected on transportation mode choice 

decisions, not on mode-specific utility levels. Therefore, Equation (1) has to be 

transformed in such a way that vin becomes an unobserved, latent variable. 

Assuming that εni is logistically distributed, a binary logit mode choice model 

can be derived, with Pn(i) being the probability of person n to choose mode i 

over mode j: 

 

Pni = P (vni ≥  vnj) 

      = (exp vni)/(exp vni + exp vnj) 

      = 1/[1 + exp –(vni – vnj)]        (2) 
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If the above random utility model is extended to account for network 

effects, it is necessary to add a spatially autogressive mode-choice term to 

Equation (1). Therefore, the model includes a spatial weight matrix, W, of the 

dimension N x N, as well as an N x 1 vector mi of revealed mode choice 

decisions by people. Both terms together, (Wmi), result in the spatially 

weighted average mode share of mode i for all the neighboring people of 

individual n. The scalar ρ is the regression coefficient for the spatial lag term: 

 

vni = xn α + ti β + (W mi) ρ + εni      (3) 

 

The spatially autoregressive structure becomes more visible when 

considering that mi is actually a function of the N x 1 mode-specific utility 

vector vi for all individual n. If the mode choice model is now written down in 

its full matrix form, then the issue of spatial autoregression can be easily seen: 

 

P (mi = 1) = 1/[1 + exp –(vi – vj)] 

      = F[x α, ( ti≠1 – ti=1) β, (W mi) ρ]     (4) 

 

Assuming that the error term does not exhibit any spatial 

autocorrelation, Equation (4) represents now what Anselin (2002) calls a 
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conditional spatially autoregressive discrete choice model. The estimation of 

this model is straight forward, since a maximum likelihood approach can be 

used. The model design is also very similar to the one proposed by Páez and 

Scott (2006), except that the network effects are not based on social 

interaction, but rather on spatial dependency. 

The 1 x N vector of probabilities P to use mode i becomes a function of: 

the N x A individual characteristics matrix x; the differences between the two    

N x B mode-specific characteristics matrices ti≠1 and ti=1, which are related to 

both available modes; the average mode share of all surrounding neighbors 

(Wmi), representing network effects; and all the corresponding vectors of 

regression coefficients α, β, as well as the regression coefficient scalar ρ. 

Because of the spatial weight matrix referring to just one mode, in its basic 

form this model can only be applied to binary choice models. I will discuss in 

the conclusion an extension towards multinomial choice models. 

 

Figure 3.1 about here 

 

Equation (4) essentially says that, with increasing neighboring mode 

share in mode i = 1, the probability of a person to also choose this 

transportation mode increases as well. Therefore, a positive value of ρ, which 
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is significantly different from zero, indicates the existence of network effects. 

Now, if the utility of using the mode is an indicator of the willingness to pay 

(WTP) and assumed to be correlated with the WTP for the transportation 

mode, the regression coefficient ρ can be interpreted as the value of the slope 

for the upward-sloping WTP curve with respect to mode share, due to network 

effects (see Figure 3.1). However, in reality it is expected that different people 

have individual levels of ρ, which cannot be modeled as such, because the 

number of variables, including all the personal network preferences would 

surpass the available degrees of freedom. Therefore, the network effects 

estimate ρ refers to the aggregate network effects. 

 

DATA SET AND WEIGHT MATRIX 

 The data used for the spatially autoregressive logit mode choice model 

is based on the 1997/1998 comprehensive regional household travel diary 

survey conducted for the Best-Practice Travel Demand Forecasting Model by 

the New York Metropolitan Transportation Council (NYMTC). New York City 

seemed to be a very good choice for this analysis, because, while it is an 

American city, it also has a large transit ridership. These two facts make the 
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results easier transferable to both different American and other cities in the 

world.9

  The data was collected for the whole metropolitan area of 28 counties, 

which include parts of upstate New York, New Jersey and Connecticut, but I 

only took data from the five New York City boroughs of the Bronx, Brooklyn, 

Manhattan, Queens and Staten Island. The main reasons for choosing these 

boroughs are: 

 

 The New York City area has a relatively high density of surveyed 

households, allowing a meaningful weight matrix to be developed, which is 

necessary for estimating the autoregressive model. Outside of the NYC 

area, the distances between surveyed neighbors becomes rather large. 

 

 Only in New York City is the number of transit riders high enough to get 

the variability in the data set desired for econometric analysis. Also, NYC 

has an integrated transit system. Therefore, individuals there face roughly 

the same transit infrastructure. 

 

                                                 
9 The fact that the data set is almost 10 years old should not have any impact on the results, 
because of the general nature of this research. 
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For the mode choice model, only trips from home to work were used. 

The literature in classical transportation modeling distinguishes between the 

three typical trip purposes: Home-based work trips (HBW), non home-based 

trips (NHB), and home-based other trips (HBO). Each trip purpose is modeled 

differently, since the mode choice determinants are expected to differ. Purely 

for practical reasons I decided to restrict my analysis only to HBW trips. I also 

included only transit and drive-alone trips (more than 90% of all HBW trips) 

between different travel analysis zones (TAZ) within New York City which 

were longer than 1.5 miles or 2.4 km (to exclude the possibility of walking). In 

the end I had 1,652 person trips from all five boroughs of New York City, of 

which 32.7 percent drove alone to work and the remaining 67.3 percent used 

transit. 

Using U.S. census block group longitude and latitude information, 

Figure 3.2 displays the location of the surveyed households used to create the 

spatial weight matrix. As it can be seen in the map, the density of households is 

much greater in Manhattan compared to the remaining four boroughs. This can 

be contributed to the fact that the sample is not spatially random, since the 

sampling was not done with a spatially autoregressive model in mind. 

 

Figure 3.2 about here 
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Accounting for the heterogeneous household location density, a row-

standardized spatial weight matrix of the dimension N x N was developed as 

follows: Each row contains the 40 closest neighbors of the corresponding 

observation n which are equally weighted. Adding more than 40 neighbors 

would have not given significantly more information, since the average mode 

share will not change much anymore. As soon as a neighbor lives further away 

than 0.75 miles (1.2 km), however, he or she was not included, unless the 

number of neighbors would drop below four. The weight matrix needs a 

minimum number of neighbors in order to be meaningful. If a neighbor is 

further away than 0.75 (1.2 km), or a 20 minute walk, the neighborhood 

characteristics may change too much to reflect network effects. The sum of the 

weights in each row adds up to one, so that the spatial weight matrix 

effectively calculates the spatially moving transit mode split average. 

This method of deriving a spatially moving transit mode split average 

represents a unifying decision rule, while it also allows accounting for the 

heterogeneity of the boroughs in terms of spatial household density. It turns out 

that the average number of neighbors is 23, with the maximum number of 40 

neighbors existing for about a quarter of the records. The average distance of 
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neighbors is 0.4 miles (0.64 km) and very few of them, a little more than ½ 

percent, are further away than 0.75 (1.2 km).  

 

MODEL AND RESULTS 

The objective for developing the following model is to find out whether 

or not network effects exist for transit use. The basic set-up is a McFadden-

type mode choice model (McFadden, 1974) that includes the commonly used 

determinants of mode choice decision making: total travel time, access to a car, 

income, and gender. Age was not considered because of the large number of 

missing observations. Mainly to control for parking cost in Manhattan, a 

dummy was added as a proxi for all Manhattan destinations. Finally, the 

network effects for transit use was measured as the spatially autoregressive 

term of revealed mode choice decisions previously described, which essentially 

is equivalent to the spatially weighted average transit mode share of all 

neighbors. The model, however, accounts only for aggregate network effects. 

The expected individual network effects cannot be captured econometrically, 

due to the restricted number of degrees of freedom, as discussed above. 

Three different models were evaluated. The first model, called the basic 

model, omits network effects and represents the traditional approach of mode 

choice modeling. In the following two models, network effects are included. 
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The model with network effects incorporates a variable for the aggregate 

network effects. In the model with network effects controlled for car access, 

which was run to do sensitivity analysis, the network effects were split into an 

aggregate component and a component for people not having access to a car. 

 

Table 3.1 about here 

 

The results of all three models are exhibited in Table 3.1. Standard 

errors are shown in parentheses and statistical significance is indicated by stars. 

All estimated regression coefficients of the basic model have the expected 

signs. Except for the mode-specific constant and the high income group 

variable, they are also significantly different from zero at the one-percent level. 

While it is not a problem that the estimate of the regression coefficient for the 

high income group variable is not significantly different from zero, it is 

potentially a problem for the mode-specific constant term, since it is expected 

that people prefer the automobile over transit. 

The regression coefficient of the total travel time variable is negative 

because the indirect utility derived from using any transportation mode 

decreases with more time spent on it. In this context it should be emphasized 

that the total travel time regression coefficient of the McFadden-type mode 
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choice model is based on the difference of the mode-specific travel time, using 

the transportation mode in the constant term as the point of reference. 

Therefore, total travel time measures effectively how much it takes longer to 

ride transit in comparison to the car. 

Obviously, if a person does not have access to a car, he or she is more 

likely to use transit. This explains the positive sign for the no-access-to-a-car 

dummy coefficient estimate. Since parking is very costly in Manhattan, people 

are more inclined to take transit there, which makes the regression coefficient 

positive. The automobile is a normal good, therefore, the high income group 

will avoid transit, resulting in a negative coefficient estimate. Finally, men are 

less willing to ride transit, leading to a negative regression coefficient. 

The model with network effects improves upon the mode-specific 

constant (in comparison to the basic model), since the regression coefficient 

estimate, while keeping its negative sign, becomes now significantly different 

from zero. In addition, the new model reveals a positive aggregate network 

effects for transit use, while all the other coefficient values remain very robust. 

A negative network effects coefficient value would have been a sign of an 

aggregate personal aversion towards transit crowding which is typically known 

as congestion externality. 
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It is interesting to interpret the constant term together with the network 

effects: With very low transit mode share, the relative indirect utility of using 

transit is smaller than for driving alone (see negative value of the constant). As 

soon as the transit mode share moves towards one, the difference of indirect 

utility between transit use and drive alone decreases until transit use utility 

eventually surpasses indirect utility of driving alone, since the network effects 

coefficient is larger than the coefficient for the constant. This is exactly what is 

expected from network effects. The willingness to pay for transit, which is 

related to the indirect utility, increases when more people take transit, and thus 

lowers the relative cost of using transit (vs. the car). 

In the model with network total travel time is the major variable 

representing the supply side. For the transit mode, total travel time includes in-

vehicle travel time, access and egress time, as well as wait time. For the drive 

alone mode, total travel time is based on the automobile travel speed. 

Therefore, total travel time is an aggregate variable of the physical 

infrastructure, accounting for transit service level and highway congestion. 

However, what if the network effects variable captures a portion of the 

supply side? It can be seen in Table 3.1 that the coefficient estimates for total 

travel time are essentially the same in the basic model and the model with 

network effects. In the case of network effects incorporating the infrastructure, 
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it is expected that the values would be not as close as they are. It could also be 

argued that the network effects variable accounts for some unmeasured supply 

level. For example, a person without having access to a car may live closer to a 

transit station and is more likely surrounded by people also without car access. 

Thus, better transit availability could easily explain network effects. 

The model with network effects controlling for car access addresses the 

issue by splitting the network effects into two components: the aggregate 

network effects and the network effects for people without access to a car. The 

most important finding is that the inclusion of the second network effect 

component does not greatly change the value of the regression coefficient for 

aggregate network effects. Furthermore, the estimate of the network effects 

regression coefficient for people without access to a car is not significantly 

different from zero. If the network effects variable for people with no access to 

a car is analyzed in conjunction with the no-access-to-a-car dummy, it can be 

seen that the network effects coefficient absorbs part of the dummy coefficient. 

The dummy coefficient estimate becomes less significant and decreases at 

about the same value of the additional network effects regression coefficient 

for people without access to a car, multiplied by the average transit mode 

share. All other coefficient estimates remain stable in value and significance. 

The attempt of the last model to control for potentially unobserved supply side 
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effects that stem from the physical infrastructure did not yield any 

improvements. The original model with network effects can be viewed as 

robust. 

It still may be possible that the network effects variable captures some 

effects of the transit amenities such as transit safety, crime rates, station 

cleanliness or infrastructure quality. Furthermore, using transit in high numbers 

may even generate these amenities, when, for example, transit riders create a 

less crime-ridden environment, or demand a cleaner transit station. This is 

exactly what Goetzke (2006) discussed as the possible source of network 

effects, when he views them as a signal for safe and reliable transit. Therefore, 

unlike in the typical mode choice model, all these formerly omitted transit 

characteristics can now conveniently be seen as summarized in the network 

effects variable. In this context, the network effects variable gives way to a 

nice interpretation: It essentially becomes an indication of people’s perception 

how well transit works. 

Now it can be concluded that in the presence of network effects, the 

individual mode choice decision making does not only depend on personal 

traits and mode-specific characteristics, but also on the mode share of the 

person’s neighborhood. This means, everything else being equal, and counter 

to conventional wisdom, that poor people are less likely to use transit in areas 
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with low transit share than in areas with high transit share. On the other hand, 

more wealthy people take transit in areas with high transit share compared to 

areas with low transit share. 

 

POLICY CONSEQUENCES 

The fact that transit use exhibits network effects may lead to far-

reaching policy consequences. It is typical for both transportation planners as 

well as policy decision makers to depend on travel demand forecasting models 

for evaluating new transit projects. The centerpiece of every travel demand 

forecasting model is the mode choice model, which traditionally does not 

include a network effects variable to account for spatial autoregression. This 

non-inclusion of network effects in the model formulation causes an omitted 

variable bias which becomes visible in the mode-specific constant term, as 

shown in Goetzke (2003). The result is, therefore, a systematic forecasting 

error where transit ridership in suburbs with low transit mode share are 

overestimated and transit ridership in the central city with high transit mode 

share are underestimated. 

In the traditional mode choice model approach, with everything else 

being equal, the mode-specific constant term for transit use captures the 

difference in indirect utility between transit use and the alternative mode (in 
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this case: drive-alone trips). If this mode-specific constant term is not allowed 

to change in space, a person in the suburbs with low transit ridership will be 

forced to have the same average differential indirect utility for transit use over 

driving alone as the person living in the central city with high transit ridership. 

However, in reality, network effects are responsible for the fact that a person 

living in a transit-unfriendly suburb derives less differential utility from 

choosing transit over driving with the car, than the person living in the transit-

friendly city.  

It should now be easy to see that as long as the differential utility for 

using transit in the suburbs is lower than average, and in the central city, higher 

than average, transit ridership will be overestimated in the suburbs and 

underestimated in the central city. Figure 3.3 demonstrates graphically how not 

including the network effects variable into the model leads to an omitted 

variable bias in the regression. 

 

Figure 3.3 about here 

 

This new insight might at least partially explain why new rail starts in 

the past decade have had problems with inflated ridership forecasts compared 

to the observed ridership after opening (Pickrell, 1989; Kain, 1992). Since the 
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federally funded rail projects studied by Pickrell serve mostly the commuter 

market from the suburbs to the CBD, the systematic bias in the mode choice 

model caused by unaccounted for spatial autoregression stemming from 

network effect could be responsible for overestimating ridership. Not 

accounting for network effects may have also dwarfed the forecasts of Tren 

Urbano in Puerto Rico, which is in 2005 less than a third of the originally 

expected ridership (Green, 2005). 

 

CONCLUSION 

I have shown that network effects play a role in mode choice decision 

making. However, the theory only allows for spatially autoregressive binary 

mode choice models because of the spatial weight matrix character (Wm*), 

with m* taking on the value of either zero or one, but never a larger number. 

Given what was discussed in this paper about spatially autoregressive binary 

mode choice models, it is not difficult to extend the general concept to 

multinomial or even nested mode choice models. The spatial lag term 

representing the network effects is just the average mode share of all the 

spatially weighted neighbors. By replacing the social interaction with spatial 

dependency, this concept can easily be included in the model structure 

proposed by Páez and Scott (2005). 
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An extension of the mode choice model would be to not only include 

network effects on the origin side of the trip, but also on the destination side of 

the trip. Intuitively, this makes a lot of sense since people make their mode 

choice decision based on both origin characteristics and on destination 

characteristics. LeSage and Pace (2005) find an elegant solution for designing 

the appropriate spatial weight matrix. 

While the estimation of a spatially autoregressive mode choice model is 

feasible as long as the data is collected on the basis of spatial sampling, the real 

challenge poses the inclusion of network effects in mode choice forecasting for 

new infrastructure investment projects. In traditional mode choice models, the 

mode share is exclusively determined by the social characteristics as well as 

trip costs – both being assumed to be exogenous. Network effects, however, 

lead to the fact that a portion of the trip cost (WTP for using the mode with 

others) itself becomes endogenous. At the same time, one does not know what 

the individual preference for using the transportation mode together with other 

people would be. 

This problem is somewhat similar to the issue of congestion in the 

mode choice model, where a portion of the trip cost (congestion cost) also 

becomes endogenous. As part of the travel time variable, it is assumed that the 

congestion cost effects everyone the same way as an average congestion cost 
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does. When faced with this problem, the typical resolution for deriving model 

forecasts is a simulation approach, where the model results are iteratively 

looped until convergence is reached. 

In the context of network effects, the simulation approach assumes that 

socio-economic characteristics are exogenous and will not change with the 

implementation of new transit facilities, which essentially means that improved 

public transit triggers nobody to move. Such an assumption is unrealistic, since 

the social composition of a neighborhood is, of course, endogenous with 

respect to transportation infrastructure. This problem even exists for traditional 

mode choice models, but may be alleviated by including a land-use model. 

However, network effects do magnify the problem. People move into the 

neighborhood because of the new transportation infrastructure and will use this 

mode now available. In addition, the new residents will also trigger already 

older residents to switch to the newly available transportation mode. Therefore, 

a mode choice model that includes network effects has to always integrate a 

land-use model when deriving forecasts. 

In the context of the four-step transportation model, I am convinced that 

not just the mode choice step is spatially autoregressive, but also the trip 

generation model and the trip assignment model. LeSage and Polasek (2005) 

discuss the possibility of spatial autoregression in the trip distribution model. 
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Naturally, people in the central city make more, but shorter trips than their 

suburban counterparts. They also tend select their destinations, i.e. shopping, 

based on the destinations of others. Especially in congested cities, people might 

even choose their routes on what is conceived as being the fastest way, but may 

actually become slower because of these route choice network effects causing 

congestion. After all, the actual decision making in difficult traffic conditions 

will always lack full information with the result that assignment flows may be 

in a continuous disequilibrium, or in equilibrium, but with network effects. 
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Figure 3.1: Positive network effects for an individual person in 

their mode choice decision. 
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Figure 3.2: Geo-coded locations of all surveyed households in New York City. 
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Table 3.1: Estimation results for the New York City mode choice model. 

 Basic Model Model with                 
Network Effects 

Model with Network Effects   
Controlling for Car Access 

Transit Mode Constant  
(drive alone = 0, transit = 1) 

-0.079                     
(0.194) 

-1.047**                    
(0.248) 

-1.001**                    
(0.250) 

Total Travel Time (0, 1) 
-0.036**                    
(0.006) 

-0.035**                    
(0.006) 

-0.036**                    
(0.006) 

           Average Network 
Effect for Transit Use (1) 

 1.887**                     
(0.293) 

1.813**                    
(0.296) 

Additional Transit Network 
Effect for No Car Access (1) 

  2.174                     
(1.591) 

  No Car Access Dummy (1) 
4.258**                     
(0.398) 

3.893**                     
(0.404) 

2.463*                    
(1.041) 

Destination Manhattan (1) 
1.991**                     
(0.201) 

1.831**                     
(0.207) 

1.819**                    
(0.207) 

High Income Dummy (1) 
-0.242                     
(0.157) 

-0.311                     
(0.161) 

-0.309                    
(0.161) 

Male Dummy (1) 
-0.702**                    
(0.159) 

-0.735**                    
(0.163) 

-0.730**                   
(0.163) 

Sample Size 1,652 1,652 1,652 

Log-likelihood -534.03 -512.75 -511.80 

Pseudo-R2 0.528 0.546 0.546 

*significant at the 5%–level 
**significant at the 1%–level 



Figure 3.3: In the presence of network effects transit utility increases with 

higher transit mode share. However, if network effects are not included 

into the model, transit utility is forced to be constant, which leads to an 

omitted variable bias. Therefore, transit ridership will be systematically 

underestimated in the suburbs (v1 < v2), and overestimated in the central 

city (v1 > v2). 

 

Network effects not included (v2) 

Network effects included (v1) 

Transit mode share 

Transit utility 

Central city Suburb Average transit 
mode share 

 

 

 

 

 

75 



 

 

 

 

 

Chapter 4 

Bicycle Use in Germany: Explaining Differences  

between Municipalities with Social Network Effects 
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INTRODUCTION 

The bicycle modal split in German cities differs significantly. It ranges 

from a low of less than five percent in the state capital, Wiesbaden, to a high of 

more than one-third in the university town, Münster. Conventional wisdom 

would refer to Wiesbaden’s hilliness to explain the small number of bicyclists, 

and to Münster’s young average age in Münster to explain the opposite pattern 

there. A city’s physical environment (i.e. its topography, infrastructure, socio-

economic composition, including age and the trip characteristics) plays a 

dominate role in determining how many people use their bike. The results of 

Siu et. al. (2000) and Rieveld (2004) support the importance of these 

municipal traits. In this paper, I apply a binary discrete choice model, which 

includes not only these traditional variables, but also a measure of the city’s 

“biking culture”. I find that the probability of a person riding a bicycle 

increases with the city’s level of “biking culture”. 

“Biking culture” is best described as a social interaction or spill-over 

phenomenon, where a larger number of bicyclists make it more likely that 

some other person will also ride a bike. In the literature, this subject matter is 

discussed as neighborhood or social network effects (Shy, 2001; Goetzke, 

2006a). In the last few years innovative econometric approaches were 

developed to empirically test for these social network effects (Brock and 
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Durlauf, 2001; 2002; Paez and Scott 2005; 2006; Dugundji and Walker, 2005; 

Goetzke 2006b). This study is not only the first bicycle choice model for 

Germany,10 but also the first to use municipal-level social network effects 

reflecting “biking culture” to explain bicycle modal share differences across 

cities.11 If social network effects indeed play a significant role in whether or 

not people choose a bike as their transportation mode, then approaches to 

bicycle policy may shift to building and supporting a “biking culture” rather 

than exclusively to improving infrastructure. In general, bicycle infrastructure 

results from biking culture, while good bicycle infrastructure does not 

necessarily improve biking culture. 

The next section provides an overview of the data used and develops an 

explanatory framework. Then I introduce a methodology to capture biking 

culture through social network effects and develop an econometric model. 

Finally, I finish with a policy discussion and conclusion. 

 

 

 

 

                                                 
10 All German bicycling studies are restricted to either qualitative or univariate statistical 
analysis. 
11 As of now, no mode-choice model has dealt with city-wide network effects. 
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PREVIOUS LITERATURE,  

EXPLANATORY FRAMEWORK, AND DATA 

 Using data from the 2002 nationwide survey of travel behavior, 

“Mobility in Germany – MiG 2002” (BMVBW, 2003), I build a binary logistic 

regression model to analyze municipal differences in bicycle mode choice 

decision making. 

Few regression models have been developed to explain the difference 

in bicycle use between cities within a country. For Germany, just two studies 

compare bicycle behavior across cities (Pez, 1998, Flade et. al., 2002), but 

neither employs a regression model. Rietveld and Daniel (2004) used an 

aggregate regression model with data from 103 Dutch municipalities. They 

found that besides socio-economic and demographic variables, weather and 

bicycle infrastructure have statistically significant impacts on bicycle mode 

share. In the only discrete choice model looking at municipal differences in the 

bike modal split, Siu et. al. (2000) determined that a topography dummy 

variable is positive and significantly different from zero. Rave (2005) provides 

an excellent overview of the empirical bicycle studies. 

 Explanatory variables used in these regression models, as well as in 

other research papers, such as single-city bike choice models (Ortuzar et. al., 

2000), can be grouped into three categories: 

 79



 

1. Individual characteristics: Sex, age and income are considered the 

most important personal variables to determine bicycle use. Males are 

typically more likely to use a bike, while bicycle riding decreases with 

age. Poor people tend to ride their bike more often. 

 

2. Trip characteristics: Trip length and weather are the typically included 

determinants of bicycle use. Longer trips, and bad weather are not 

conducive to biking. 

 

3. Municipal characteristics: Empirical evidence points to biking 

infrastructure and topography as having a significant impact on 

bicycling. People are more likely to bike if the biking infrastructure is 

good and if the topography is flat. In some aggregate regression 

analyses, such as in Rietveld and Daniel (2004), other municipal 

characteristics, e.g. city size and density are used as a proxy for 

average trip length. In this study, which uses a discrete choice model, 

the inclusion of trip length renders these variables as unnecessary. 
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The MiG 2002 provides most of the data described above. The basic 

sample has 25,000 household records, 61,000 person records and 180,000 trip 

records. The additional regionally extended samples (Aufstockungstichprobe) 

bring the total up to approximately 50,000 households, 100,000 persons, and 

400,000 trips.  

Using the extended samples for the state of Nordrhein-Westfalen 

(Northrhine-Westphalia), as well as for the metropolitan area of Frankfurt, the 

region of Hannover, as well as the transportation districts of Nordhessen 

(North Hesse) and Bremen/Niedersachsen (Lower Saxony), I could identify a 

total of 32 cities larger than 50,000 inhabitants. The dataset with these 32 cities 

had more than 30,000 trips, which was reduced to around 10,000 trips after 

trips of persons less than 15 years old, weekend trips, trips longer than 100 km, 

business trips, and return trips were removed. However, I could derive 

bicycling infrastructure proxies for only 24 of the 32 municipalities, which 

brought the final sample size to 8,725, with each city subset having at least 100 

trip records. Table 4.1 exhibits the summary statistics, as well as the source for 

all variables included in the model. 

 

Table 4.1 about here 
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 Included variables describing individual characteristics are male, age, 

and low income. Since I have only information on income groups, I have 

aggregated the three lower income groups (monthly net household income less 

than 1,500 Euro) into a “poor” dummy variable. This dummy variable 

represents a bit more than one-eighth of the population, which coincides with 

the German poverty data. 

Our model uses three variables, trip length, bad weather, and trip 

purpose for trip characteristics. A bad weather dummy was set to one if the 

conditions reported in MiG were either rain or snow. The trip purpose was 

split up into five categories: work trips, educational trips, shopping trips, 

leisure trips and all other trips (includes doctor visits, running an errand, etc). 

The three variables included as municipal characteristics are 

topography, biking infrastructure and social network effects. None of these 

variables were part of the MiG survey. A flat topography dummy was set to 

one as long the city center and most of the area within the city did not appear 

as hilly by looking at topographical maps. I verified the results by telephone 

interviews with city officials. The flat topography values for each city are 

reported together with the other important municipal characteristics in Table 

4.2. 
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Table 4.2 about here 

  

This dataset only has information about travel time and distance for the 

chosen mode, but not for all the alternative modes, as is typically for    

McFadden-type travel demand models (McFadden, 1974). Thus, a different 

approach had to be found to control for each municipality’s unique 

infrastructure. To avoid multicollinearity between variables, the additional 

challenge was to find an infrastructure variable that does not correlate with the 

social network effects variable (we discuss this issue in the next section). Two 

different approaches were used to derive a social network effects variable: 

 

1. We conducted a telephone survey for 20 cities to find the bike lanes 

length in each municipality (in km). This value is divided by the 

population to calculate the bike lane length per 1,000 inhabitants. It 

would have been preferable to compute bike lanes per area, but in 

Germany the municipal boundaries are politically determined and do 

not reflect the urbanized area. A city’s reported area often includes 

small, annexed villages where most of the land use is for agriculture or 

forestry. 
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2. In 2005, the German Federation of Bicyclist (ADFC) undertook a 

survey where people evaluated the bicycle infrastructure in their city 

(ADFC, 2005). Using the mean of both, accessibility for infrastructure 

quantity and average speed for infrastructure quality, I aggregate a bike 

infrastructure score which is ranging between a low of 0 for the worst 

infrastructure and a high of 5 for the best infrastructure. However, the 

data was available for only 17 cities. 

 

While the “Bike Lane per Capita” variable seems to be more objective, 

bicyclists typically make decisions based on a personal, highly subjective 

assessment of the bicycle infrastructure. This may be better captured in the 

“Infrastructure Score” variable. The infrastructure proxies are highly 

correlated with each other, having for the 13 common cities in the two datasets 

a correlation coefficient of 0.675, which is significant at the 2-percent level. 

This result is some indication that both infrastructure variables may capture 

essentially the same effects. 

 

METHODOLOGY AND ECONOMETRIC MODEL 

Goetzke (2006a) introduces the theory of social network effects as it 

applies to transportation mode choice decision making. Interpreting social 
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network effects as a signal that biking is safe and reliable,12 the paper’s main 

claim is that the utility of taking a bicycle increases with its mode share. 

Therefore, the more people using a bike, the more attractive a bike becomes to 

all other people. These social spill-over effects lead to positive demand-side 

network externalities, which I also refer to as biking culture in this paper. 

In the last few years, several articles developed different approaches to 

econometrically model these social network effects. Based on the theoretical 

work by Brock and Durlauf (2001; 2002), Dugundji and Walker (2005) and 

Goetzke (2006b) used a social network effects approach to model travel 

demand. While Dugundji and Walker took zonal modal spit averages as a 

proxy for social network effects, Goetzke extended this approach to a spatially 

autoregressive mode choice model with moving mode share averages. Because 

of the different nature of the dataset, which includes more than one 

municipality, neither of these two methods is applicable for this paper. 

In the spirit of the previous papers, I could have taken the average 

modal split for bicycling in each municipality as the proxy for social network 

effects. Because of the endogeneity of the biking culture proxy, however, this 

approach may exhibit a correlation between the social network effects variable 

and the error term, leading to a biased regression coefficient estimate. 

                                                 
12 Just like a full restaurant is a sign for good food and satisfied customers. 
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Therefore, the model requires an instrument that is correlated with the social 

network effects variable but not with the error term.  

To create such an instrument, I have taken the trip purpose category 

(work and educational trips, shopping trips, leisure trips, and all other trips) 

and removed one trip purpose at a time from the dataset to get four different 

subsets. Then, the bicycle mode share derived from the excluded trip purpose 

records could be used as the instrument for the social network effects. 

 A total of four new datasets were generated: one excluding work and 

educational trips (bike mode share of work and educational trips is the social 

network effects variable); one excluding shopping trips (bike mode share of 

shopping trips is the social network effects variable); one excluding leisure 

trips (bike mode share of leisure trips is the social network effects variable); 

and one excluding all the other trips (bike mode share of other trips is the 

social network effects variable). The first column of Table 4.3 shows the 

correlation coefficients between the instrumental variables for biking culture 

and the total municipal bicycle mode share, an indicator of social network 

effects used in previous studies. 

 

Table 4.3 about here 
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The social network effects instrument captures municipal biking 

culture only as long as they are neither correlated with an omitted variable, nor 

with an included variable, such as biking infrastructure. Ignoring the 

infrastructure variable should upwardly bias the network coefficient because of 

the positive correlation between social network effects and infrastructure 

(omitted variable bias). On the other hand, if the infrastructure proxy is highly 

correlated with the social network effects variable, then coefficients of both 

variables may be adversely affected by multicollinearity. 

Column 2 and 3 of Table 4.3 report the correlation coefficients between 

the social network effects proxies and the two infrastructure variables 

introduced in the previous section. The bicycle modal split for work and 

educational trips is correlated with the infrastructure score at the one percent 

significance level, the bicycle modal split for shopping trips is correlated with 

the infrastructure score at the five percent level, and four other correlations are 

significant at the ten percent level. 

When I combine all three groups of determinants for bicycling choice, 

municipal, trip, and individual characteristics, a structural form of the binary 

logistic regression model can be derived as follows: 
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Bike = α + β* individual characteristics + γ*trip characteristics  

+ δ*municipal characteristics + ε     (1) 

 

Equation (1) ties together all the previous information. Male, age and 

the poverty dummy were used as individual characteristics. Included trip 

characteristics were trip length, a bad weather dummy, as well as the trip 

purpose (work, educational, shopping, leisure and other trips). Finally, the 

social network effects instruments, either of the two infrastructure proxies, and 

a flat topography dummy were taken as municipal characteristics. 

 In order for the regression estimation to be unbiased, the error terms 

should not be correlated with any of the independent variables which is a 

reasonable assumption. The social network effects instrument will actually 

capture all the remaining city-level autocorrelation in the error term, while, at 

the same time, not being correlated with the error term, because it is an 

exogenous instrument (bike mode share of the excluded trip purpose). 

 Another assumption of the model set-up is that there is no self-selection 

of the residential location. Since I analyze the city as a whole, and not specific 

neighborhoods, this assumption is expected to be met since few people will be 

choosing a city to live in just because of its biking culture. In this context, it 

may be also important to mention, that the dataset includes only trips where 

the bicycle is used predominately as a mode of transportation, not as a 
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recreational tool. All the trips which recorded leisure as the trip purpose refer 

to the leisure activity undertaken at one of the trip ends. 

 At this point, however, the reader needs to be cautioned about one 

issue. Each municipality has a different level of biking culture represented in 

the social network effects variable. The regression coefficient for the social 

network effects estimates just the average impact of this biking culture on 

bicycle mode choice for all the cities combined. Unfortunately, a city-specific 

coefficient estimate is statistically impossible to obtain because the social 

network effects instruments would essentially become a municipal dummy. It 

would account for the average effect of all omitted city-level variables that 

would otherwise enter into the error term. 

 

MODEL AND RESULTS 

We evaluated eight models, two subgroups with four different data sets, 

respectively. The first subgroup includes bike lanes per capita for 20 

municipalities as the infrastructure proxy, while the second subgroup uses the 

bike infrastructure score existing for 17 cities. Each of the four different data 

sets excludes one trip purpose (work and educational, shopping, leisure or 

other trips) so that the bike mode share for the excluded trip purpose could be 

used as the social network effects instrument. Tables 4.4(a) and 4.4(b) present 
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the regression results. Most regression coefficients are significantly different 

from zero at the five-percent level or better and, with one exception discussed 

below, the signs are as expected. 

 

Tables 4.4(a) and 4.4(b) about here 

 

In all eight models, the social network effects regression coefficients 

have the expected positive sign, and are significantly different from zero at the 

one-percent level. This is a strong indication that municipal biking culture 

plays an important role in bicycle mode choice decision making. Therefore, a 

strong biking culture raises the probability that a person will ride the bike, 

ceteris paribus. 

As seen in Table 4.4 (a), the regression coefficients for bike lanes per 

capita also have the expected positive sign, and are significantly different from 

zero at the ten-percent level or better. But if the infrastructure variable is used 

instead, the sign of the regression coefficient in Model (5), which excludes 

work and school trips, becomes unexpectedly negative at the one-percent 

significance level. All other regression coefficients are still positive and 

significantly different at the one-percent level. 
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The “wrong” sign for the bike lane coefficient in Model (5) may be 

explained by multicollinearity between the infrastructure measure and social 

network effects proxy, which are both correlated with each other at the one-

percent level (see Table 3). This multicollinearity will likely result in the 

infrastructure score picking up some remaining effects from an omitted 

variable. 

The effects of all the other included variables are as follows. Flat 

topography is more conducive to biking, as seen in the corresponding positive 

sign of the regression coefficient, which is in all cases significantly different 

from zero at the five-percent level or better. The longer the trip, the fewer 

people ride the bike. This relation ship is expressed in the trip length 

regression coefficient, which is always negative at the one-percent significance 

level. In bad weather, people are less likely to use their bicycle, causing the 

corresponding regression coefficient to have a negative sign which is 

significantly different from zero at the one-percent level at all times. 

If compared to the base trip purpose (which is leisure in three models, 

and other trips in the remaining one), people prefer to ride the bike to work and 

especially to educational destinations (positive signs for both the work and 

educational trip coefficients are always significantly different from zero at the 

one-percent level). For all other trip purposes the regression coefficient is not 
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significantly different from zero at the ten-percent significance level. Only in 

Model (8) is the shopping trip regression coefficient negative, and significantly 

different from zero at the five-percent level, making it a less preferred bike trip 

compared to the base trip purpose (leisure trip). 

Males are more likely to use the bike, signified by a positive regression 

coefficient, which is always significantly different from zero at the one-percent 

level. On the other hand, age never has a statistically significant effect on 

bicycle riding. Finally, in two of the models using bike lanes per capita as the 

infrastructure measure, the poverty dummy has a significant positive effect at 

the five-percent level, providing some evidence that biking is an inferior good. 

Multicollinearity may explain the low level of significance of the age and 

poverty coefficient estimate. Both variables are correlated with the trip purpose 

categories. For example, work trips are undertaken by people who are typically 

not poor, and people taking educational trips tend to be young. 

The magnitude of the regression coefficients estimated do not change 

between the eight models, and, in most cases, the actual values are very close 

together. This result supports the fact that the model specification is robust, 

especially given the somewhat different set of municipalities the two 

subgroups cover. 
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In summary, the regression results show that social network effects, 

such as a varying biking culture in different cities, play an important role in 

determining a person’s probability to ride the bicycle. The outcome, however, 

hinges on the assumption that the models control sufficiently for all other 

effects, especially the ones positively correlated with social network effects, 

such as infrastructure. Given the robustness of the model’s regression 

coefficient estimates for social network effects, I believe that this assumption 

is a reasonable one.  

 

POLICY DISCUSSION 

 Transportation planners typically believe that the most important policy 

for increasing bicycle mode share is to improve biking infrastructure (Nelson 

and Allen, 1997). The basic argument is that better facilities will lower the 

cost, and hence will increase the consumption of biking. In general, the model 

supports this policy approach, as the positive marginal effects of the 

infrastructure proxies reported in Tables 4.5(a) and 4.5(b) show. 

 

Tables 4.5(a) and 4.5(b) about here 

 

 93



Because of the easier interpretation, only bike-lanes-per-capita is used 

for the discussion of the infrastructure variable. Depending on which trip 

purpose is excluded, its marginal effects range between 0.05 and 0.10, with an 

average of 0.075. This means that for a city of 100,000 inhabitants, building 1 

km of bike lanes (or 0.01 km per 1,000 capita) will add 0.00075 to an average 

person’s probability to ride the bike, or 0.075 percentage points. In other 

words, if a city invests in about 13.3 km of new bike lanes, the bike choice 

probability would go up by approximately one percentage point, say from 10 

percent to 11 percent. 

 The model also included a second policy variable, social network 

effects capturing aspects of biking culture. Its marginal effects are shown in 

Tables 4.5(a) and 4.5(b). The values for the marginal effects for social network 

effects lie between one-third and two-third, again depending on which trip 

purpose is excluded. 

The excluded trip purpose can be used to identify the relative 

dependence of each trip purpose on social network effects and which one less. 

Again, only the dataset with the bike-lane-per-capita variable is used for ease 

of interpretation. The two models with the lowest marginal effects for the 

network instruments are the ones excluding other trips (0.34) and shopping 

trips (0.46). This means the trip purposes that depend most heavily on social 
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network effects are other trips and shopping trips. The trip purposes most 

independent of social network effects are work and education trips, as well as 

leisure trips, since the marginal effect of the datasets excluding these two trip 

purposes were 0.53 and 0.65, respectively. 

 It makes sense that social network effects are not so important for 

leisure trip. People take their bicycle for recreation, because they enjoy it and 

not because they see other people riding their bike. While social network 

effects become more important for work and educational trips, they still do not 

have such an impact if compared to shopping and other trips. The reason may 

lie in the fact that for work and educational trips people evaluate the bike mode 

in comparison to their other alternatives whose cost can be significantly higher 

as long as congestion and parking for the automobile are included (infinite for 

people who do not have access to a car, such as young people with an 

educational destination). And public transit may make the trip much longer if 

access, wait, transfer and egress times are accounted for, in addition to the cost 

of being sometimes unreliable. 

 It is not at all surprising that shopping and other trips are the most 

sensitive to social network effects. People may only get the idea to go 

shopping or see the doctor by bicycle as long as they are inspired by others 

who do the same. This analysis indicates that both shopping and other trips 
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have the highest potential for increasing their bike mode share following if a 

city’s biking culture improves.  

 In reality, however, better infrastructure for bicycles and improved 

biking culture complement, rather than supplement each other. Of course, if a 

new bicycle facility increases the bike modal split, this higher bike mode share 

will, in return, have a positive impact on social network effects. At the same 

time, municipalities with a strong biking culture are more inclined to invest in 

bicycle infrastructure. Hence, there may be some truth to the claim that not 

only biking culture is endogenous to bicycle infrastructure, but also vice versa. 

 On the other hand, while better bicycle facilities will decrease the cost 

of biking, the lower cost may not necessarily prompt people to start riding the 

bike, as long as nobody did before. This is the deeper insight of the model 

results: If people already use their bike, infrastructure improvements will carry 

a double dividend, one from the lower biking cost and one through the social 

network effects. If nobody did ride the bicycle before the infrastructure 

improvement, however, it may very well be possible that the better biking 

facility will not increase bike ridership. Therefore, in the later case, the focus 

of bicycle policy should be foremost on improving the city’s biking culture. 
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CONCLUSION 

 This research adds a new dimension to the bike policy discussion by 

finding that the quantity and quality of bicycle infrastructure is not the only 

policy variable determining a city’s bike mode share, but that in this context 

biking culture, or social network effects also needs to be considered. Whether 

or not focusing on improving biking culture turns out to be more cost-effective 

than building better bicycle facilities, however, remains to be researched. 

 The regression results presented in this paper show that municipal 

biking culture has an important impact on the probability of choosing the bike 

as a transportation mode. To quantify the importance of these social network 

effects, I additionally ran a regression with the whole dataset (no trip purpose 

excluded) using just a city-specific dummy variables to capture infrastructure, 

topography and social network effects combined. Then I regressed both 

infrastructure (bike-lanes-per-capita) and topography together on the city-

specific dummy variables, and finally added in another regression a newly 

derived social network effects measure (the city’s bike mode share for all 

trips). The result was that the first two variables account for approximately 

40% of the variation, while social network effects account for another 45% 

(see Table 4.6). 

 

 97



Table 4.6 about here 

 

 This alternative approach confirms that biking culture, controlled for 

infrastructure and topography, has explanatory power. If the social network 

effects instrument would not be included, it is expected that an omitted 

variable bias will develop, making the model inconsistent. The bias will then 

most likely be captured in the infrastructure variable, which is strongly 

correlated with social network effects. 

The result that social network effects are important is also visible in the 

city-specific dummy coefficient estimate for Münster, which was not 

significantly different from zero even at the ten-percent level. The 

interpretation of the result would be that in Münster nothing deters people 

from riding the bike. As the average person is indifferent between using the 

bicycle and all the other transportation modes, the bike must be viewed as 

essentially equal to any other transportation mode. On the other hand, the 

dummy regression coefficients of all the other cities have a negative sign and 

are significantly different from zero at the one-percent level. This result shows 

that Münster, which is considered the biking capital of Germany and where 

one third of all trips are done by bicycle, has indeed a stronger biking culture 

than the other cities included in the study. 
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 Bike mode choice and biking culture may be a simultaneous process, 

possibly making the social network effects variable endogenous. The 

consequence would be that the coefficient estimate for social network effects is 

upwardly biased. My approach to circumvent this problem was to use an 

instrument derived from the excluded trip purpose records. 

Another simultaneous process could be biking culture and 

infrastructure, which would explain the correlation between both variables. 

This means that the model may exhibit some level of multicollinearity. The 

coefficient estimates of all other variables would be still unbiased, but the 

model as a whole would become less robust. However, except for model (2), 

all the regression coefficients in the models are stable. 

All together, this paper presented an innovative approach to analyze 

bicycle mode share differences in German municipalities, which could change 

the way bike policy is conducted in the future. The results of the models 

emphasize the importance of the city’s biking culture as a determinate of an 

individual’s probability to choose the bike as the mode of transportation. 
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Table 4.1: Summary statistics for included model variables. 
 

 Source N Min. Max. Mean S.E. 

Bike Trips MiG 2002 8,725 0 1 0.12 0.003 

Bike Share (Work & 
Education) MiG 2002 8,725 0 0.41 0.15 0.001 

Bike Share (Shopping) MiG 2002 8,725 0 0.42 0.11 0.001 

Bike Share (Leisure) MiG 2002 8,725 0 0.34 0.12 0.001 

Bike Share (Other Trips) MiG 2002 8,725 0 0.34 0.11 0.001 

Bike Lanes per Capita Phone 
Survey 6,634 0.26 1.16 0.69 0.003 

Bike Infrastructure 
Score 

ADFC 7,834 1.13 3.67 2.39 0.008 

Flat Topography Own 
derivation 8,725 0 1 0.77 0.005 

Trip Length MiG 2002 8,725 0 96 6.70 0.111 

Bad Weather MiG 2002 8,725 0 1 0.21 0.004 

Work Trips MiG 2002 8,725 0 1 0.22 0.004 

Educational Trips MiG 2002 8,725 0 1 0.04 0.002 

Shopping Trips MiG 2002 8,725 0 1 0.29 0.005 

Leisure Trips MiG 2002 8,725 0 1 0.28 0.005 

Other Trips MiG 2002 8,725 0 1 0.18 0.004 

Male MiG 2002 8,725 0 1 0.45 0.005 

Age MiG 2002 8,725 15 91 46.45 0.184 

Poor MiG 2002 8,725 0 1 0.14 0.004 
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Table 4.2: Municipal characteristics used in the model. 
 

Municipality 
Flat 

Topography 
Total Bike 

Share 
Bike Lane per 

Capita* 
Bike Infra-

structure Score

Aachen 1 10.3% 0.47  

Arnsberg 0 7.6% 0.64  

Bielefeld 1 6.9% 1.10 2.31 

Bonn 1 12.2% 0.80 2.59 

Darmstadt 1 19.1% 1.16 2.07 

Delmenhorst 1 21.0%  2.52 

Düsseldorf 1 18.4% 0.61 1.15 

Frankfurt 1 9.5%  1.76 

Hamm 1 8.5% 0.87 2.64 

Hanau 1 8.0%  1.70 

Hannover 1 14.3% 0.71 2.94 

Kassel 0 1.0% 0.35 1.34 

Köln 1 9.9%  1.60 

Marburg 0 9.4% 1.03  

Münster 1 35.4% 0.98 3.67 

Neuss 1 6.2% 0.50 2.28 

Offenbach 1 3.8% 0.64  

Oldenburg 1 25.3% 0.94 3.16 

Recklinghausen 1 2.8% 0.79  

Rüsselsheim 1 11.8% 1.02 2.78 

Velbert 0 4.2% 1.14  

Viersen 1 11.0% 0.94  

Wesel 1 16.8% 0.94 3.42 

Wiesbaden 0 2.4% 0.26 0.72 
* in km per 1,000 capita 
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Table 4.3: Coefficients for the correlations of the network proxies with 
total bike model share and the two different infrastructure variables. 

 

Network Proxies (Based on 
the Bike Mode Share of 
Excluded Trip Purpose) 

Total Bike 
Mode Share 

Bike Lane   
per Capita 

Bike Infra-
structure 

Score 

Work and Education 0.901*** 0.295 0.782*** 

Shopping 0.927*** 0.407* 0.541** 

Leisure 0.872*** 0.335 0.475* 

Other 0.789*** 0.426* 0.421* 

*** significant at the 1-percent level 
**   significant at the 5-percent level 
*     significant at the 10-percent level 
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Table 4.4(a): Binary logistic regression results for bicycle trips using “Bike Lanes 
per Capita” as the infrastructure measure. The network effect proxy is the bike 
mode share of the excluded trip purpose. 
 
 (1) (2) (3) (4) 

Constant Term -3.708*** 
(0.256) 

-3.218*** 
(0.256) 

-3.960*** 
(0.316) 

-3.250*** 
(0.245) 

Network Effects 5.248*** 
(0.703) 

4.279*** 
(0.662) 

6.112*** 
(0.805) 

3.126*** 
(0.560) 

Bike Lanes per Capita 1.028*** 
(0.268) 

0.525* 
(0.280) 

0.814*** 
(0.283) 

0.492* 
(0.268) 

Flat Topography 0.423** 
(0.192) 

0.665*** 
(0.178) 

1.318*** 
(0.198) 

1.011*** 
(0.168) 

Trip Length -0.052*** 
(0.010) 

-0.084*** 
(0.010) 

-0.196*** 
(0.017) 

-0.093*** 
(0.010) 

Bad Weather -0.467*** 
(0.125) 

-0.364*** 
(0.122) 

-0.443*** 
(0.126) 

-0.417*** 
(0.113) 

Work Trips Excluded 
0.306*** 
(0.113) 

0.748*** 
(0.138) 

0.316*** 
(0.112) 

Educational Trips Excluded 
0.672*** 
(0.190) 

1.027*** 
(0.216) 

0.682*** 
(0.188) 

Shopping Trips -0.152 
(0.108) Excluded 

-0.012 
(0.127) 

-0.207* 
(0.107) 

Leisure Trips Base  Base  Excluded Base  

Other Trips -0.243* 
(0.125) 

-0.242* 
(0.125) Base  Excluded 

Male 0.268*** 
(0.094) 

0.402*** 
(0.093) 

0.264*** 
(0.097) 

0.266*** 
(0.086) 

Age -0.001 
(0.003) 

-0.001 
(0.003) 

-0.004 
(0.003) 

0.000 
(0.003) 

Poor 0.320** 
(0.126) 

0.207 
(0.128) 

0.017 
(0.133) 

0.237** 
(0.118) 

Sample Size 4,927 4,739 4,779 5,457 
- 2 Log-Likelihood 3,180.09 3,175.93 2,944.73 3,686.91 

*** significant at the 1-percent level 
**   significant at the 5-percent level 
*     significant at the 10-percent level 
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Table 4.4(b): Binary logistic regression results for bicycle trips using “Bike 
Infrastructure Score” as the infrastructure measure. The network effect proxy is 
the bike mode share of the excluded trip purpose. 
 
 (5) (6) (7) (8) 

Constant Term -3.349*** 
(0.261) 

-3.440*** 
(0.259) 

-3.875*** 
(0.311) 

-3.504*** 
(0.251) 

Network Effects 6.690*** 
(0.782) 

3.893*** 
(0.661) 

5.877*** 
(0.743) 

3.136*** 
(0.470) 

Bike Infrastructure 
Score 

-0.261*** 
(0.096) 

0.249*** 
(0.079) 

0.262*** 
(0.075) 

0.306*** 
(0.070) 

Flat Topography 1.1529*** 
(0.253) 

0.926*** 
(0.251) 

1.198*** 
(0.292) 

1.072*** 
(0.242) 

Trip Length -0.061*** 
(0.009) 

-0.087*** 
(0.009) 

-0.190*** 
(0.015) 

-0.099*** 
(0.010) 

Bad Weather -0.610*** 
(0.116) 

-0.534*** 
(0.115) 

-0.520*** 
(0.115) 

-0.528*** 
(0.106) 

Work Trips Excluded 
0.218** 
(0.103) 

0.643*** 
(0.123) 

0.247** 
(0.103) 

Educational Trips Excluded 
0.542*** 
(0.176) 

0.933*** 
(0.197) 

0.573*** 
(0.175) 

Shopping Trips -0.153 
(0.096) Excluded 

-0.033 
(0.111) 

-0.188** 
(0.096) 

Leisure Trips Base Base  Excluded Base 

Other Trips -0.184* 
(0.110) 

-0.177 
(0.110) Base  Excluded 

Male 0.208** 
(0.084) 

0.376*** 
(0.084) 

0.254*** 
(0.086) 

0.210*** 
(0.078) 

Age -0.002 
(0.002) 

-0.003 
(0.003) 

-0.003 
(0.003) 

-0.002 
(0.002) 

Poor 0.103 
(0.115) 

0.058 
(0.120) 

-0.157 
(0.122) 

0.037 
(0.110) 

Sample Size 5,819 5,564 5,675 6,444 
- 2 Log-Likelihood 3,981.92 3,827.32 3,678.07 4,455.02 

*** significant at the 1-percent level 
**   significant at the 5-percent level 
*     significant at the 10-percent level 
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Table 4.5(a): Marginal effects for regressions (1) through (4). 
 

 (1) (2) (3) (4) 

Network Effects 0.5252 0.4622 0.6468 0.3393 

Bike Lanes per Capita 0.1029 0.0567 0.0861 0.0534 

Flat Topography 0.0423 0.0718 0.1395 0.1097 

Trip Length -0.0052 -0.0091 -0.0207 -0.0101 

Bad Weather -0.0467 -0.0393 -0.0469 -0.0453 

Work Trips Excluded 0.0331 0.0792 0.0343 

Educational Trips Excluded 0.0726 0.1087 0.0740 

Shopping Trips -0.0152 Excluded -0.0013 -0.0225 

Leisure Trips Base Base Excluded Base 

Other Trips -0.0243 -0.0261 Base Excluded 

Male 0.0268 0.0434 0.0279 0.0289 

Age -0.0001 -0.0001 -0.0004 0.0000 

Poor 0.0320 0.0224 0.0018 0.0257 
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Table 4.5(b): Marginal effects for regressions (5) through (8). 
 

 (5) (6) (7) (8) 

Network Effects 0.7201 0.4348 0.6494 0.3524 

Bike Infrastructure 
Score -0.0281 0.0278 0.0290 0.0344 

Flat Topography 0.1241 0.1034 0.1324 0.1204 

Trip Length -0.0066 -0.0097 -0.0210 -0.0111 

Bad Weather -0.0657 -0.0596 -0.0575 -0.0593 

Work Trips Excluded 0.0243 0.0711 0.0278 

Educational Trips Excluded 0.0605 0.1031 0.0644 

Shopping Trips -0.0165 Excluded -0.0036 -0.0211 

Leisure Trips Base Base Excluded Base 

Other Trips -0.0198 -0.0198 Base Excluded 

Male 0.0224 0.0420 0.0281 0.0236 

Age -0.0002 -0.0003 -0.0003 -0.0002 

Poor 0.0111 0.0065 -0.0173 0.0042 
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Table 4.6: Regression results for city-specific dummies as the dependent variable. 
 

 (1) (2) 

Constant Term -3.947*** 
(0.296) 

-3.784*** 
(0.296) 

Network Effects  8.497*** 
(1.138) 

Bike Lanes per Capita 1.456** 
(0.652) 

0.607* 
(0.337) 

Flat Topography 0.992** 
(0.387) 

0.387* 
(0.205) 

Sample size 17 17 

Adjusted R2 0.41 0.86 
*** significant at the 1-percent level 
**   significant at the 5-percent level 
*     significant at the 10-percent level 
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While transportation planners were always aware of social network 

effects in transportation mode choice modeling, recently they have gained 

more interest for academic researchers. My three dissertation essays give 

further insight in both the theoretical foundation as well as the empirical 

analysis of social network effects in mode choice modeling.  

 In my first, more analytically oriented essay, I start out by developing a   

mode choice model with just one transportation mode, which I later extend to 

include a second, alternative mode. I describe social network effects as a 

coordination externality with the potential problem of having a Nash 

equilibrium that is not welfare maximizing. In this context I shed new light on 

the collapse of transit ridership in the United States after World War II. 

 The other two essays are econometric applications of social network 

effects. In the second essay, I investigate social network effects in transit 

ridership using travel behavior data from New York City. In the third essay, I 

explain bike mode share differences in German cities through social network 

effects. In both cases I had to deal with the problem of social network effects 

being endogenous. In the New York dataset, I resolved the issue by choosing 

to use a spatially autoregressive process for social network effects. For the 

German dataset, I decided to derive an instrument from records with excluded 
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trip purposes. Both models empirically indicate the existence of social network 

effects for transit use in New York and bicycling in Germany, respectively. 

 The main contribution of the dissertation, however, is to emphasize the 

importance of social network effects for transportation policy. This issue runs 

through all three essays like a red thread. In the theoretical essay, I establish 

the possibility that there exist multiple mode share equilibria, and that a city’s 

mode share is path-dependent. Hence, certain unique historical events may 

result in irreversible changes to transportation mode shares. Then, in the 

second essay, I show that ignoring social network effects may lead to an 

omitted variable bias, with the result of systematically overestimating 

suburban transit ridership, and underestimating transit ridership in the CBD. 

Finally, in my third essay, I contrast biking policies relying on infrastructure 

improvement with a policy approach that considers strengthening the city’s 

biking culture. 

 At the end of a research project, one always recognizes what could 

have been done better. This, of course, applies to my dissertation as well, 

which I interpret as a sign of successful learning. The two issues in need of 

further investigation would be the endogeneity of social network effects and 

the self-selection of residential location choice. A possible improvement for 

the first issue of endogeneity may be a simultaneous equation approach with a 
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linear probability model formulation, while a nested logit choice model could 

help to alleviate the second issue of self-selection. 

 I see this dissertation as the beginning of my research agenda, in laying 

the groundwork for the topic of social network effects in transportation mode 

choice modeling, which I will build upon. I plan to improve the modeling 

approaches by addressing the endogeneity and self-selection issues in future 

papers. 

 Another problem in these models is that residential location choice 

depends on transportation infrastructure. To complicate the issue, residential 

location choice, again, will depend on social network effects. While the 

Tiebout model does not explicitly include social network effects in such a way 

as it is modeled in my dissertation, voting by feet is an expression of social 

network effects. Hence, based on the methodological fundaments laid in my 

dissertation, it would be a challenging but also exciting exercise for me to 

improve present-day land-use and residential choice model by treating 

transportation infrastructure as endogenous and accounting for social network 

effects, as well. 

 Two similar fields of social network effects applications in urban and 

regional economics are immigration and fertility decision making. The two 

research areas are especially interesting for me as a German, coming from the 
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country with the lowest reproduction rate in the world and, therefore, more 

than ever dependent on immigration. Both these issues are inherently 

interlinked: It is expected that with the depopulation of German cities, some 

cities are in danger of collapse, while other cities may even continue to grow, 

mainly do to interregional as well as international immigration. As a sideline, I 

should mention that the cities currently growing also have a highest 

reproduction rate (and not rural areas). 

 I expect that the concept of social network effects with its many 

applications will become more important in future policy analysis. The 

revelation of the dynamic character inherent to social network effects will 

deepen the insight of any policy issue to be analyzed, and therefore strengthen 

the derived recommendations. Better access to improved modeling techniques 

will make empirical estimations of social network effects more operational for 

planners and consultants. 
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