
Graduate Theses, Dissertations, and Problem Reports

1999

Java Challenge Software Project Java Challenge Software Project

Karuna Annavajjala
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Annavajjala, Karuna, "Java Challenge Software Project" (1999). Graduate Theses, Dissertations, and
Problem Reports. 1059.
https://researchrepository.wvu.edu/etd/1059

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230484820?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1059?utm_source=researchrepository.wvu.edu%2Fetd%2F1059&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

JAVA CHALLENGE SOFTWARE PROJECT

Karuna Annavajjala

Thesis submitted to the

College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Computer Science

John R. Callahan, Ph.D., Chair
James D. Mooney, Ph.D.

Bojan Cukic, Ph.D.

Department of Computer Science and Electrical Engineering

Morgantown, West Virginia

1999

Keywords: Java, Security, Automation, Programming Contests, Software Development

ABSTRACT

Java Challenge Software Project

Karuna Annavajjala

Programming contests are a means of exploiting the problem solving capabilities of

developers and they provide a forum for display of extraordinary programming skills.

The Java Challenge (JC) Software Project is the saga of creating an automated, secure

and responsive programming contest system for deployment on the Internet and to collect

information about programming practices, habits, and trends in coding in such restricted

environment. The methodology followed to design, implement, and evaluate such a

system uses new technologies such as the WWW, mail filtering and sandboxing

techniques. The current Java Challenge implementation runs the Java Challenge on a

Solaris 2.6 platform under specified regulations. The scripts are developed in Perl. The

security features of jdk1.2 have been researched and successfully implemented. The

mode of entry acceptance is electronic mail in a specified format. Standard Unix features

have been used for data archiving and information redirection. The JC software is an

application package that conducts programming contests in an automated manner,

provides a secure environment for evaluation and does web listing updates automatically.

iii

��������	
�����

��� �����	��
	�������
���� ������ ������	�� �	������ �� ��������������

�����	��������������	��������
���������
����������������������������������

���������������������������	�����
����������������

���������������������	�����������������	���	�����	������������������

���� ����	��� ����	� �	��� ��� ��� ����������
����� ��� ��� ���� 	�
��� ��	�������

 ����� ������� ��� 	���
��!�� ���� ����	��� ��� ������� ������	������ ����� ������

��������������

��������������������	��������������"�	#����	����#������������	�����	

����	�
��������������������������� ������$��������������	���	�
������

�	��
���������
�������

�� �������	��������������� �����	��%�#�������� ��	� ����	� ������� ���

��	���	���
�����������������

��������������&	���������	���&��
�����'����%����	���	�������$������

	�����	�����	���������

���������������	(������
���������������������������

����������� �	�������)�� ���� �$**� ����	������ ��� ���� ��	�� ��� +	�����

�������
� ����������������
	�����������������
���

����� ������� �	�� ��� ��� ��� �	����� ���� �������� ���	����� +��������

������ ����� ��� ��� �����	������� ������ �	��� ��� ��� ����������� ���� ����
����

������
������������

��������	����������������������	�������������������������	��

iv

TABLE OF CONTENTS

Title Page………………………………………………………………………..…………i

Abstract……………………………………………………………………………………ii

Acknowledgements……………………………………………………………………....iii

Table of Contents……………………………………………………………………...….iv

List of Figures……………………………………………………………………………vii

List of Tables……………………………………………………………………………viii

Chapter 1 Introduction………………………………………………………………..1

Chapter 2 Objectives…………………………………………………………………5

2.1 Problem and Solution……………………………………………………..5

2.2 Objective of This Research Work…………………………………………5

Chapter 3 Related Work……………………………………………..……………….7

3.1 Introduction………………………………….…………………………….7

3.1.1 POTM Contest………………………………………………………7

3.1.2 IOCCC………………………………………………………………8

3.1.3 CSCC……………………………………………………………….9

3.1.4 IOI…………………………………………………………………10

3.1.5 USACO……………………………………………………………11

3.1.6 ASCL………………………………………………………………11

3.1.7 ACM Collegiate Programming Contest……………………………12

3.2 Evaluation Methodologies……………………………………………….13

3.2.1 Manual Evaluation…………………………………………………14

3.2.2 On-Site Evaluation…………………………………………………15

3.2.3 Web and E-Mail Based Contests…………………………………..15

3.3 Evaluation Software……………………………………………………...17

3.3.1 NETJUDGE Software……………………………………………...17

3.3.2 PCCS……………………………………………………………….20

3.4 Software Engineering Studies……………………………………………20

Chapter 4 Design Considerations…………………………………………………...23

4.1 Software Evolution………………………………………………………23

v

4.1.1 Phases in Software Evolution……………………………………………..23

4.1.2 Efforts Involved in Each Phase…………………………………….25

4.2 Java Challenge Software…………………………………………………27

4.2.1 Problem Description and Requirements…………………………...27

4.2.2 Project Specifications………………………………………………29

4.3 Design Options…………………………………………………………...29

4.3.1 Contest Entry Acceptance………………………………………….31

4.3.1.1 Via World Wide Web……………………………….…...31

4.3.1.2 Via Electronic Mail………………………………………34

4.3.2 Entry Code Processing……………………………………………..37

4.3.2.1 Evaluation in Physical Isolation………………………….37

4.3.2.2 Evaluation in Isolation…………………………………...39

4.3.3 Authentication of Contestant Identity…...…………………………40

4.3.3.1 Password Protection……………………………………...40

4.3.3.2 Encryption Keys………………………………………….41

4.3.4 System Security……………………………………………………42

4.3.4.1 Chrooted Environment…………………………………...43

4.3.4.2 Sandbox Technique………………………………………44

4.3.4.3 Java Security Manager…………………………………...46

4.3.5 Automation Techniques……………………………………………49

4.3.5.1 Cron Job………………………………………………….49

4.3.5.2 Via E-mail Filter…………………………………………50

4.3.5.3 Deamon Script…………………………………………...51

Chapter 5 System Implementation………………………………………………….53

5.1 Mail Filter………………………………………………………………..55

5.2 Processing of Entry Code………………………………………………...57

5.2.1 Java Security Manager……………………………………………..59

5.3 Notification Process……………………………………………………...60

5.4 Result Listing……………………………………………….……………62

5.5 Processing of Entry Form………………………………………………..64

5.6 Daemon Script Implementation………………………………………….66

vi

Chapter 6 Testing and Test Cases………………………………………………….67

6.1 Mail Filter Testing……………………………………………………….69

6.2 Evaluation Testing……………………………………………………….70

6.3 Security Testing………………………………………………………….71

6.4 Web List Testing…………………………………………………………72

Chapter 7 Data Collection Methodology……………………………………………73

Chapter 8 Results and Conclusions…………………………………………………76

Chapter 9 Future Recommendations………………………………………………..78

References………………………………………………………………………………..79

Appendix A………………………………………………………………………………81

Appendix B………………………………………………………………………………94

Appendix C………………………………………………………………………………98

Vita……………………………………………………………………………………...107

vii

LIST OF FIGURES

Figure 3.1: Architecture Setup of NETJUDGE Software

Figure 3.2: NETJUDGE Internal Scheme Diagram

Figure 4.1: Simplified View of Software Development Figure

Figure 4.2: Relative effort for various activities in a software life cycle

Figure 4.3: Work Breakdown Structure of a Software Project

Figure 4.4: General Layout of the Java Challenge Software Project Modules

Figure 4.5: Entry Acceptance from the Web

Figure 4.6: Mechanism of CGI Script Execution from HTML Form

Figure 4.7: Entry Acceptance via E-Mail

Figure 4.8: Evaluation in Separate Setup

Figure 4.9: Evaluation in Isolation

Figure 4.10: Message Encryption Mechanism

Figure 4.11: Chroot Environment Setup

Figure 4.12: Mechanism of Sandbox Technique

Figure 4.13: Java Security Model for jdk1.1

Figure 4.14: Java Security Model for jdk 1.2

Figure 5.1: Flow of Control in the Java Software Implementation

Figure 5.2: Mail Filter Mechanism

Figure 5.3: Processing Unit Operation

Figure 5.4: Sample E-Mail Notification

Figure 5.5: Mail Notification Mechanism

Figure 5.6: Scheme of Web Reporting

Figure 5.7: Sample Result Listing on Internet

Figure 5.8: CGI Script Mechanism

Figure 5.9: Sample Response Page

Figure 7.1: Java Challenge Entry Form

viii

LIST OF TABLES

Table 4.1: Relative Effort Percentages

Table 6.1: Quality Factors and Definitions

Table 6.2: Mail Filter Test Results

Table 6.3:Processing Unit Test Results

Table 6.4: Security Test Results

1

CHAPTER 1

INTRODUCTION

In any science, by the rule of thumb for principles, put it to a test and you shall

know its worth. Computer science is no different in most senses. The concepts and

principles of computer science are so applicable to real life situations that there is an

ever-increasing need for improvement and better efficiency. Programming or developing

code is a major part of the concepts and applications of computer science. Coding is the

process of creating software packages using the tools provided by computer technology

to satisfy the processing needs. Skillful programming is the ability to produce code that

performs its function correctly, consistently and optimally.

The various aspects of programming that are considered for judging its quality

include design modularity, ingenuity, reusability, portability and efficiency. Though a

quantitative analysis of these aspects is not possible, as they are highly subjective and

relative to the context under consideration, a fair classification can be provided by means

of comparative studies. This leads to the subject of organizing programming challenges

to test the mettle of programmers and study the trends of coding practices in general. This

exploits the programmers’ skills and displays the special capabilities of the language or

tool chosen to accomplish the difficult task. A programming contest is a popular means

of judging programming skills and reviving fast track coding capabilities.

A programming contest entry is different from a software project in many ways.

The goal of the contest entry is to fulfill the challenge requirements in the minimum

possible time in an optimal manner. The software project on the other hand is not so time

2

sensitive. It involves laborious phases that ensure that the end product not only performs

the task at hand but also satisfies the higher principles of software engineering. A

programming contest entry, though not always very reusable or portable, must definitely

fulfill the required objective in probably the shortest time possible and in the most

efficient manner.

A programming contest poses challenging questions that boggle the minds of

people having tremendous experience of coding and thus keeps them active and alert to

the current state of the art concepts and developments. This is also a channel for

promoting advanced study of superior algorithms for various classes of problems. The

challenge demands the study and creation of optimal algorithms for finding a solution to

the posed problem.

Participating in a contest of this kind is one thing and enabling the running of

such contests is an entirely different issue. Development of a package for conducting

such programming contests is a full-fledged software project that involves all the phases

of a software life cycle. The main concerns while running a contest are validity of entries,

automation of the entire process, security of the system and notification and exchange of

information among the contestants.

The increasing popularity of programming contests, and the involvement of

serious professionals in organizing such events, provided the motivation for the JC

software project. It attempts to provide a complete and secure environment and system

for conducting programming contests through e-mail. Suitable efforts have been put in to

ensure the safety and efficiency of the system. There are provisions for optional

3

automation of processing and the automatic update of the score board maintained on the

server’s web page.

Keeping all issues in mind, the specifications of the entire project were drawn up

to formalize the requirements and scope of the package. Design decisions involved the

arduous task of studying various options available, evaluating their ability to fulfill the

requirements in a meaningful manner and then making the most appropriate choices. The

implementation was then carried out to form the entire package.

The Java Challenge Software Project is an attempt to create a complete,

independent environment for conducting programming contests. All the requirements

have been studied and meticulously handled for superior performance. The current

version is a fully functional package with scope for further improvement.

A lot of study and research has gone into the making of this software and its

successful usage for appropriate purposes. Studies were conducted to learn about similar

tasks undertaken by different informal groups and formal organizations. This provided an

insight into the issues to be dealt with, the limitations of the available systems and

complexity of the entire project.

The JC Software Project has created the system for running the Java Challenge

and it now provides a platform for conducting software-engineering studies on various

aspect of programming practices. The entries serve as the input to the contest. The

feedback and information collected from the contestants participating in the contest

provide the real time data that is being analyzed in an attempt to classify coding practices.

The data is used to study the error rate of software and conduct comparative studies on

4

the trends in programming under restrictive conditions, relative performance issues and

efficiency of code.

This thesis is a compilation of all the work involved in the JC software project

development and the final functional application as it exists today. It describes the

various phases in the package development, how various issues were tackled and the

ways in which it is useful as an aid for software engineering research. The tasks

attempted towards meeting the above objective are explained in detail in the following

chapters.

Chapter 3 is a compilation of all the research work in related area and literature

survey undertaken before the commencement of the project. The design considerations

are discussed in Chapter 4. Chapter 5 describes the actual implementation details of the

whole Java Challenge software project. Chapter 6 discusses the various testing

methodologies followed to ensure that the software created is robust and of good quality.

Chapter 7 has the implementation details of the data collection part of the project. In

Chapter 8, the results and conclusions drawn from the entire endeavor are presented.

Finally, Chapter 9 proposes some future recommendations and directions for

enhancement of the package for more extensive usage.

5

CHAPTER 2

OBJECTIVES

2.1 Problem and Solution

The problem under consideration and research was to create an automated, secure

and responsive programming contest system for deployment on the Internet and to collect

information about programming practices, habits and trends in such a system. The

solution to this chosen problem has been designed by the design, implementation and

evaluation of such a system with the use of new technologies like the WWW, mail

filtering and sandboxing techniques.

2.2 Objectives of This Research Work

The objectives of this research are:

� Creating a software package for conducting the programming contest, Java

Challenge, via e-mail facility

� Researching similar attempts and work in related fields undertaken by other

developers

� Study and analysis of various options available for such a project

� Developing a fully automated system of evaluation and result posting

� Ensuring the safety and protecting the security of the system on which the contest is

being conducted

� Trapping and rejecting invalid and illegal code entries to the contest by

implementation and use of appropriate handlers

6

� Study of various software engineering analysis work undertaken in related areas

� Collection of data regarding the efforts of contestants and programming practices

� Inferring results and drawing conclusions from the analysis of data in the context of

coding practices in a constrained environment

7

CHAPTER 3

RELATED WORK

3.1 Introduction

Programming contests have been held in information technology organizations for

a long time to promote friendly competition and develop inspiring code. On a smaller

scale, such contests are held regularly as a source of intelligent entertainment for the

software members of the team. Most contests held in this manner encourage group

entries. The members of the group work together on the posed challenge and work out a

feasible solution. There are monetary and recognition awards for the winners in such

contests. Events of this kind create an active and invigorating work environment.

3.1.1 POTM Contest

A branch of AT&T conducted the Programmer of the Month (POTM) contest for

its employees, which later become open to the general public [3]. The POTM contest

poses a challenging programming question on the web once a quarter and the interested

parties respond to it through e-mail submissions. Results and all other relevant

information are maintained on the web site. There are no material awards and the contest

is purely for coding fun.

This contest is conducted on a Sun4u Sparc SUNW, Ultra-2. The languages

permitted are Perl, Java, C, C++, Fortran and shell scripts. There is a limitation on the

size of source code and size of executable file created for the entry to be considered valid.

The entries are judged and the best ones chosen based on the execution time of the

8

program entry. This entire process is mostly manual with the use of simple scripts for

some regular repetitive tasks.

With the emergence and spread of web technology, programming contests have

gained a lot of attention and popularity. Contests can now be organized and conducted

via the World Wide Web without the need for the contestants to be physically present at a

location for participation in the event. This expands the scope of the contest, gives more

people a chance to participate and respond and also promotes good international

understanding in the technical arena as the contestants are from all over the globe.

3.1.2 IOCCC

The International Obfuscated C Code Contest (IOCCC) is one of its kind that

professes and patronizes the most obscure C programs [4]. Though seemingly strange and

weird at times, this contest is of great significance as it displays the importance of

programming style in an ironic way. It stresses the compilers with unusual code and

illustrates fine subtleties of C language. That this contest is considered a serious affair

can be judged by the fact that the winners for the 1998 IOCCC were announced at

IOCCC BOF during the Usenix’99 Technical Conference.

The IOCCC is conducted via e-mail with the contestants sending in entries in a

specified format by e-mail. The contest has strict rules about the length of code, the

headers and the per-processor directives. To emphasize the importance of interpretation,

a separate section is dedicated to the entries that make the worst abuse of the rules of the

contest! The evaluation of the entries is done on an individual basis manually on a

POSIX compliant platform.

9

The e-mail entry content is unpacked into files to separate the header message,

the author’s information, remarks, the build section and the main code. The text sections

are scanned to retrieve necessary information for running the C program. Then the code

is passed through the C pre-processor for beautification and clean up. This code is then

linted, compiled, executed and tested to determine its level of obscurity.

3.1.3 CSCC

Another issue of interest is in the area of promoting computing science knowledge

and inspiring more young minds to take to modern tools of technology by spread contests

among high school children. The base of programming is an algorithm, and the

foundation of any algorithm is logical and analytical thinking. High school is the right

place to nurture these skills in the minds of students, as they are open to new ideas, more

receptive to friendly challenges and ever so keen to learn and build upon what they

already know.

The Calgary Schools’ Computer Competitions (CSCC) organized and maintained

by The Department of Electrical and Computer Engineering, University of Calgary,

Canada, is one such event [5]. The CSCC is a collection of varied kinds of competitions

in computer related fields. There are separate sections that deal with each kind of

specialty such as Computer based art, web-based programming, creative programming

and hardware simulations.

This competition provides a platform for various schools in that region to display

their talent. Being free of any system restrictions, the contestants have the opportunity to

explore the capabilities of various computing tools and use those to their advantage. This

10

is not simply a coding exercise, but there are provisions to emphasize the importance of

documentation, originality, presentation, enhancement capability and robustness. These

are the vital ingredients of any software undertaking and it is thus important to emphasize

their role to programming novices who will carry the experience and knowledge a long

way into the future. This contest being so varied and broad based, does not use a standard

code for evaluating and grading the entries. The entries are judged by different groups of

judges each considering a particular aspect of the task performed.

3.1.4 IOI

The International Olympiad in Informatics (IOI) is an International contest in the

discipline of computer science for senior students in secondary schools all over the world.

IOI is an annual contest and is held at different places in various countries every year.

This idea was proposed to the United Nations Educational, Scientific and Cultural

Organization (UNESCO) by the Bulgarian delegate Professor Sandov [6]. The IOI is one

of the five Olympiads held in various branches of Science. This event not only provides a

forum for a variety of programming issues but also attempts to popularize good

publications in the appropriate fields by recommending study material for the tasks

assigned.

This is a venue based contest unlike others that are web based or e-mail entry

based. The participants gather at the venue on the specified date and work on the tasks for

two competition days on personal computers. The committee then judges the results.

Recreational and cultural events are organized during those days to promote international

tolerance and amity.

11

3.1.5 USACO

The USA Computing Olympiad (USACO) is the selection ground for the

participants from USA in the IOI [7]. The USACO conducts Internet hosted contests in

various fields of computer science with a wide variety of entry criteria and problem

specifications. The contests emphasize individual entries as it increases the level of

programming expertise and enables an improved selection of outstanding performance.

The chosen candidates are invited to attend the training camp to prepare for contesting in

the IOI. The USACO also conducts a National Championship, which is a proctored

competition held for five hours at local schools. There are other contests like the

Challenge of the Week maintained via the e-mail facility.

3.1.6 ASCL

Another competition is held by the American Computer Science League (ACSL)

specific to the schools all over the United States of America [8]. This is a distributed

contest held at all participating schools at the same time. It is open to all grades and the

contestants are 3 or 5 person teams. The competition is conducted and managed by

individual schools with the questions, input and output data being provided by ACSL.

The faculty advisors at each school grade the performance of the contesting teams and

then the consolidated results are sent to ACSL for tabulation.

There is no specific software used for this entire process as ACSL simply receives

the output data from various participating schools and decides if it matches their solution

or not. As an expression of motivation and encouragement, the outstanding entries’

creators are given prizes of good value like computer peripherals and useful books.

12

All the contests that are held at school level are designed keeping in mind the

low-level problem solving capacity, the restricted analytical ability and limited

knowledge base of secondary school pupils. A more practical and meaningful contest

would be to design contest tasks based on real-life problems. Such problems would

exploit the computing capabilities to the maximum and render excellent services to

studies and improvement in problem solving techniques.

3.1.7 ACM Collegiate Programming Contest

Students at college level are more exposed to computing techniques and have a

better understanding of the entire software scenario. They constitute the population in the

institutes of higher education that is at the threshold of building the workforce of the

commercial world. The facilities and technical support available at most colleges is the

latest technology that serves well as the platform for honing the programming skills of

the interested students. In view of the education system that provides exposure to detailed

principles of algorithms and programming language concepts for students studying

introductory and advanced computing and mathematical techniques, contests can be more

specific, restrictive and yet innovative and challenging enough to attract creative minds.

The Association for Computing Machinery (ACM) is a prestigious international

institute dedicated to the promotion and advancement of science and information

technology application among students and computer professionals. As a part of the

agenda for fulfilling its mission of providing a standard international podium for

computing skills, the ACM organizes the International Collegiate Programming Contest

13

on an annual basis [9]. The contest is preceded by a series of regional competitions that

form the teams to participate in the world finals.

For the regional ACM contests, all continents are divided into an appropriate

number of regions. Teams are sent from the institutions depending on their regional

affiliation. The contest is held for a fixed duration of time with the evaluation based on

number of problems solved and the total time taken by the team. Every team works on a

single workstation. The languages allowed at the regional level are C and C++ with the

addition of Pascal and Java for the World finals. The entries in these contests are judged

purely based on the output for the test-input data, which is not revealed to the contestants.

This kind of competition is a test of understanding, interpretation, problem analysis and

solving and programming skills.

3.2 Evaluation Methodology

Programming contests are an efficient method of inspiring superior computing

capabilities and provide a means for judging the skills of the contestant in various aspects

of programming. For any contest to be successful in its goals, it needs to be conducted in

a consistent and fair manner. There are various ways of evaluating the contest entries and

different methodologies for conducting the contests that mainly depend on the contest

requirements and specifications.

14

3.2.1 Manual Evaluation

The most common and primitive method of conducting a contest and evaluating

the entries is to do the entire process manually; possibly using simple shell scripts for

recurring tasks. This involves posting the questions, accepting the response via e-mail or

forms on the web, evaluating the entries by going through the code to ensure legitimacy,

compiling and executing it and then comparing the output to judge if the entry performs

the task correctly.

An advantage of this kind of set up is that the contest problems need not be very

restrictive and definite. The manual judging process provides a scope for the contest to be

held in highly interactive fields involving applications and tools that have numerous

graphic or multi media capabilities. Thus the contest serves not merely as a testing

ground for problem solving and programming skills but also enables testing of analytical

and interfacing skills.

Though seemingly simple and straightforward, this method has certain

disadvantages and loopholes. The entries generally stream in at a constant rate all through

the contest period, which requires that the judging panel always be available to go

through the entire evaluation procedure. There are security issues to be taken care of to

ensure that the contest entries do not pose a threat to the security of the system running

the contest. There have been instances of studies undertaken to analyze the impact of

unsafe code on the security of the system, especially in the context of running a

programming contest [10]. Such a contest cannot be very broadly conducted due to

security and accessibility limitations.

15

For contest settings, software has been developed that assists the conducting of

contests in numerous ways. Such a package would typically handle various possible

settings and contain provisions for various modes of entry acceptance, evaluation and

result notification.

3.2.2 On-Site Evaluation

Contests that are held at particular sites for limited time periods can be handled

quite successfully by manual evaluation due to the limited duration and fixed number of

entries. The system specifications of the contestants’ entries make the evaluation process

simpler and easier to accomplish by on-site evaluation. There are no major system

security issues involved in such environments. There is more reliability as far as the

contestants’ intentions are concerned due to their continued presence and answerability to

the committee conducting the event. The system can be temporarily set up to

accommodate the challenge requirements and include provisions for the contestant’s

technical requirements.

3.2.3 Web and E-mail Based Contests

With the emergence of web technology, programming contests are now

increasingly held on the World Wide Web or via the electronic mail facility. The tasks

assigned in these contests are more restrictive and well defined. They deal with very

specific problem descriptions and are usually judged on a comparative basis. The

problems are more algorithm design and problem solving skill oriented. It is not the

number of features implemented that matter but the efficiency of the chosen design that

16

has been incorporated in the implementation that is the deciding factor. These contests

give rise to different security and implementation concerns. There are major security

issues to be handled to ensure that the entries do not perform any malicious actions. The

contest entries need to be carefully studied before being allowed to enter the system setup

for execution.

Due to the widespread availability of Internet based challenges, the evaluation

technique needs to be systematically automated for faster and efficient processing. Web

based contests provide an opportunity for a vast range of individuals to participate. This,

in effect, increases the probability of intentional or experimental malice. The interface to

accept entries via the web needs to be secure and robust. Also, there must be an

appropriate method of authenticating the true author of the entry sent in cases where

material rewards are involved. A programming contest conducted on the web has wider

participation and is more popular as it appeals to all classes and levels of people without

any strict restrictions on educational qualifications and age.

The contests run via e-mail have a slightly different flavor. They are widely

spread in their response, like the web-based contests, but tend to have fewer uncertainties

regarding the contestants’ credentials. The entry sent in is an address in itself. It gives

information about the source of the e-mail, which can be traced if required. The problems

posed in a contest held via e-mail have to be concise and specific to provide for the

functioning of e-mail filters and conversion techniques. The electronic mailing system

limits the problems to be solvable with a single comprehensive algorithm. There cannot

be multiple files or multiple formats as it is expected that the entry be sent as the content

of the mail in its entirety. This method of conducting the programming contest depends

17

on the host system setting for the evaluation and automation procedures. The contest is

specific to particular machine architecture and all entries need to execute successfully on

that system to be considered valid entries. Proper provisions must be made for archiving

the contest responses.

3.3 Evaluation Software

There are different methods followed for conducting programming contest via the

web or e-mail. As stated earlier, the manual processing is not an effective solution for

these scenarios. There is software developed by different institutions for this kind of

work.

3.3.1 NETJUDGE Software

The NETJUDGE � software is one such complete package. Developed by the

Universidad De Valladolid, it provides the environment for running an online real time

programming contest via the e-mail system [12]. This software prohibits the use of any

file input/output and system calls of any kind. The contest is conducted in C, C++ and

Pascal languages. The entries are accepted in a prescribed format through e-mail. The

format of the body of the e-mail message incorporates the user identification number,

problem and solution description.

The Online Judge Software attempts to evaluate the entry by compiling executing

and tabulating the results. There is a provision for automated e-mail notifications

regarding the various stages of processing. There are special traps and exception handlers

for cases of entries sent from non-authenticated sources or from Internet address to which

18

access is denied by the system. There are restrictions on size of source code and the time

and memory limits for executing the entry on the system.

Netjudge also creates and maintains logs for detection of inappropriate usage or

attempt of hacking. This project is still under development as enhancements are being

designed for implementation on a Linux system and to create a submission tool that will

overcome the size limitations.

Figure 3.1: Architecture Setup of NETJUDGE Software [12]

The software implementation is done on various levels of evaluation and there are

separate modules for different kinds of functions. The design is based on queue

management processes and scripts for various operations. The scheme incorporates

servers for rank listing and for common gateway interface programs.

The internal scheme shown in figure 3.2 depicts the way the entire system works.

The processing is parallel and there is true automation and immediate updating of rank

listing by the software itself.

19

Figure 3.2: NETJUDGE Internal Scheme Diagram [12]

20

3.3.2 PCCS

Another package that satisfies the requirements of running a programming contest

in different computing environments in limited site locations is the Programming Contest

Control System (PC2). The P-C-squared is software developed by the students of

California State University, Sacramento as an aid for evaluation and result posting during

programming contest [11]. The latest version of this software written in Java was used at

the International Olympiad of Informatics at Eindhoven, Netherlands.

P-C-squared package has a wide variety of configurable options for specifying the

contest rules, the language involved, the scoring methodology and result notification and

score update frequency. This package can be used only in contests where the entries are

accepted on floppy disk or on the network. The earlier versions supported only LAN

submissions but the software was later enhanced to include floppy disk submissions.

3.4 Software Engineering Studies

As mentioned earlier, programming contests serve as a means of conducting

software engineering related studies of programming practices. Software Engineering is

the establishment and use of sound engineering principles in order to obtain economically

software that is reliable and works efficiently on real machines [13].

This view is as appropriate now as it was years ago. In view of the various facets

of software engineering, it can be stated that software engineering is not same as

programming, even though programming is an important ingredient of software

engineering.

21

One definition that provides the crux of software engineering states, Software

Engineering is the systematic approach to the development, operation, maintenance and

retirement of software [14].

Software engineering studies range from testing the software for correct

functionality to assessment of its reliability and verification and validation of the design

with regards to requirements and specifications. Reliability of software is the probability

of its failure free operation for a specific duration under a specific environment [15].

Studies are conducted on various aspects of software engineering to analyze and infer

results regarding the quality of software and estimation of costs and benefits involved.

A study was conducted on reliability measurement and modeling for large

commercial software by observing and analyzing the trends in test execution data that

was collected during system testing [15]. It is a comparative study on various reliability

measurements and modeling tools available for use in large-scale commercial software

environment. The work concluded that run based models are robust and provide good

measures of reliability if runs are conducted homogeneously across the test cases and

over a certain period of time. The data used was coarse-grained and thus the testing

environment was not very conducive for robustness of Execution-time-based models.

A major part of software engineering research deals with the cost effectiveness of

various methodologies and procedures. For any software, the cost of development and the

cost incurred in its testing and maintenance is an important concern to be considered.

Walter J Gutjhar proposed a generalization of the input-domain based software reliability

measures by including the expected failure cost under the operational distribution as a

measure of unreliability [16]. The principle is in accordance with the recent attempt in

22

software engineering to use risk as a structuring element in software development. The

model used completely random selection strategy for risk estimation. This work is of

significance for software metrics study too.

These studies and others works undertaken in similar areas emphasize the

complexity of a software development project. The tasks involve deep knowledge of

modern computing methodologies and a good understanding of advanced techniques to

deal with design and implementation issues.

There have not been many serious studies specifically focused on programming

contests and about the research that can be initiated from such events. This is mainly due

to the lack of involvement from the industrial consortium. The programming contests are

usually events conducted in limited domain for no scientific reason of doing software

studies. Though not viewed as a very important issue currently, programming contests

have their own patrons and backing from the development world.

An application called Smart Security Manager has been designed for executing

“unsafe” code especially in the context of programming contests. The study of need for

such a system, the approaches considered and the implementation details of the final

package have been recently published [10].

The JC software attempts to efficiently use the current technology for the purpose

of conducting programming contests in a secure and safe environment. The study of

various contests currently being conducted provided the necessary knowledge for

deciding the design considerations and system issues involved. The software engineering

studies have brought into focus the scope of using programming contests as a forum for

analysis of software, study of failure rates and the study and analysis of coding practices.

23

CHAPTER 4

DESIGN CONSIDERATIONS

4.1 Software Evolution

The construction of software is an engineering task that involves much expertise,

planning and effort as in any other physical construction project. A software life cycle

typically has a number of phases that are followed for successful completion of the entire

project. The process model in Figure 4.1 shows the main classification of tasks on a

software project cycle. Though the phases are depicted in sequential order, this is not

always the case. This figure is a simplified view of a software life cycle. There is no strict

linear progression from the first to the final phase.

4.1.1 Phases in Software Lifecycle

According to Scacchi, A software life cycle model is a descriptive or prescriptive

characterization of software evolution [2]. This view suggests that software process

models can be intuitive or very system specific. The Requirements Analysis phase

involves defining and getting a complete description of the problem. The feasibility

study, as a part of requirement analysis, involves the assessment of the problem to see if

an economical and technically feasible solution is possible.

The Specification is the act of identifying and formalizing the scope of solution,

the attributes and relationships of the objects along with the system constraints. This

leads to the division of the problem solution domain into manageable pieces called

modules to denote logical sub units.

24

Figure 4.1: Simplified View of Software Development

Requirement Analysis

Specification

Detailed Design

Implementation

Testing and Debugging

Documentation and
Maintenance

PROBLEM

25

The Design phase is an important step as it is the prerequisite to the

implementation of the proposed solution to the given problem. It includes the crucial task

of separating the what from the how. A precise definition is given to the interfaces among

various modules designed.

This phase is followed by the actual Implementation. Instead of directly starting

to translate the design specifications into working programs, an intermediate step of

developing pseudocode is introduced for better clarity and understanding of the solution

technique. This phase presents a broad scope for improvement and optimization at

various levels.

After the implementation, the application developed is tested for erroneous or

anomalous conditions in the Test and Debug phase. This phase is practiced in two

flavors, Verification, to test if transition from one phase to next is correct, and Validation

to check if the work is on the right track as regards to fulfilling the requirements.

Finally, the phases of Documentation and Maintenance handle the documentation

and maintenance, which includes enhancements, sustenance of usefulness, performance

improvements and conversions for portability or upgrade.

4.1.2 Efforts Involved in Each Phase

As shown in figure 4.2, the relative efforts that are put in the testing phase are

more than the other phases in the life cycle [1]. Table 4.1 quantifies the relative efforts

put in the different phases of the software life cycle. The various phases of the life cycle

and all the sub classes of the system design considerations will now be dealt with in great

detail in the context of the JC software project.

26

Figure 4.2: Relative effort for various activities in a software life cycle

Activity Relative Effort

Requirement Analysis 10%

Specification 10%

Design 15%

Coding / Implementation 20%

Testing 45%

Table 4.1: Relative Effort Percentages

Req. Analysis

Specification

Design

Implementation

Testing

27

4.2 Java Challenge Software

The Java Challenge Software Project was a task on the same lines as any other

software development project. This chapter describes all activities in the initial phases in

of requirements, specifications and design details. The implementation details are

explained in Chapter 5. The testing strategy and detailed test plans are described in

Chapter 6.

4.2.1 Problem Description and Requirements

The main objective of the JC software project was to fulfill the need of a complete

self sustained package that is an implementation of the mechanism of conducting a

programming contest. The main requirements of the project were:

� The processing should be automated

� The package shall process the entries correctly as per the contest rules

� It shall not compromise the security of the platform

� Evaluation shall be done in an isolated set up with no outside interference or access

� The application performance shall be reliable and consistent

� There will be enough scope and proper provision for administrative monitoring

� It shall be suitable for World Wide Web or Electronic Mail to be the mode of entry

� Suitable data shall be collected for analysis of coding practices

These requirements are a general idea of what the JC software should attempt to

fulfill. The issues mentioned here have a very broad meaning and need to be narrowed

down to the true attributes before the project progresses to next stage. Some system

restrictions need to be applied for a specific design.

28

Figure 4.3: Work Breakdown Structure of a Software Project [1]

As shown in figure 4.3, the tasks at hand can be broken down into distinct

modules that can be then dealt with separately. This helps in better planning and control

of the entire situation. The main characteristic of the project under consideration is that it

has quality constraints fixed in advance and the goal is to produce effectively a system

that satisfies those quality constraints. Proper understanding of the entire project helps in

separating the sequential tasks and the tasks that can be performed concurrently. This will

ensure that the project progresses in a disciplined manner and there is no wastage of

resources at any stage.

PROJECT

DESIGN

TEST PLAN CODE

TESTING

CODE BCODE A

29

4.2.2 Project Specifications

Keeping all the requirements in view, the JC software project specifications were

drawn to formalize what the system shall be capable of performing.

� The system shall run on a POSIX compliant platform

� The tasks shall be automated with appropriate means

� There shall be a means of authenticating the contestants’ identity for security reasons

� All contest entry codes shall have restricted access to the system

� Result listings shall be available on an official JC web site

� Data collection shall be done through an Entry Form

� Data analysis shall include time performance analysis, frequency of errors, failure

rate as related to contestant characteristics and related issues

These specifications narrowed the options to be considered and also informally

decided the course of action that the project shall follow to achieve the proposed

objectives. There still exists some scope for variation and ambiguity even after the

specifications have been defined due to constraints in the availability of tools and other

issues that shall emerge when these specifications are put into detailed design.

4.3 Design Options

The following sections describe the characteristics of various design options that

were considered for achieving the objectives that are laid out in the specification list. The

relative merits and demerits of each approach will be discussed to throw light on the

decision making process in which the designs are rejected, accepted or modified for

suitability and better performance in the given context.

30

Figure 4.4: General Layout of the Java Challenge Software Project Modules

Contest Entry
Acceptance

Processing

Result Posting

Notification to
Contestant

31

4.3.1 Contest Entry Acceptance

The first step in software that conducts a programming contest is to provide means

of accepting the contestants entry. There are certain specifications that need to be

prescribed for uniformity of acceptance mode and criteria. The candidate interested in

contesting the challenge needs to have a means of submitting his entry for evaluation.

Keeping in view the fact that the Java Challenge is an online programming contest, this

task of accepting entries can be achieved in two ways:

4.3.1.1 Via World Wide Web

One of the options considered to facilitate submission of entry code was to

provide an interface on the Internet. This means that the information would have to be

exchanged through a special interface. As shown in figure 4.5, the contestant would

develop the entry code in response to the challenge posted. This code would be

transmitted through a form available on the Web. The contents of the form would be

received and processed by the processing unit.

The standard mechanism that enables transfer and processing of data through the

Internet is called the Common Gateway Interface (CGI). It is the standard for interfacing

the external application with the information servers like HTTP or Web servers. Using

this method of entry submission, the code would be sent as content of a form. The CGI

script associated with the form would then process this content. This processing involves

the evaluation and grading of the entry code and logging of the resulting data. The CGI

script provides an efficient means of accepting data but it does not have a provision of

returning static data entirely by itself.

32

Figure 4.5: Entry Acceptance from the Web

A CGI program is executed in real time and is capable of outputting dynamic

information [17]. Since a CGI program is executable, it leaves the host system open to

the outside world. Thus, CGI is a security threat to a system and appropriate security

precautions need to be taken while using this mechanism. The accessibility to the CGI

library is restricted to control its usage on a web server. With proper permissions and

access paths, the average user can execute the CGI script. Such scripts can be written in a

scripting language like PERL or TCL or in conventional programming languages like C

or FORTRAN.

Figure 4.6 is the schematic representation of the process of executing a CGI Script

via an HTML Form.

Contestant
Entry

Form on
Web

Processing
Unit

33

Figure 4.6: Mechanism of CGI Script Execution from HTML Form [18]

With the addition of a set of special tags in HTML code, a form can be created on

the document to enable the user to input data. This form is associated with a script to be

executed. This execution is triggered by a specific action on the form document. In figure

4.6, the Web client running on Computer A acquires a form from some web server

running on Computer B. The form is displayed, the user enters data and the client sends

the information to the HTTP server running on Computer C. There, the data is handed

over to a CGI program or script which prepares a document and sends it to the client on

Computer A. The client then displays the document. Instead of displaying a document in

return, there can be other processes or executions triggered.

34

Though this method of submission seems to serve the purpose of the

programming contest entry acceptance, there are other issues involved in the

implementation of this design. Being a matter of system security, the CGI will have to

incorporate elaborate security measures to ensure that it does not provide a security hole.

The requirement of the scripts to be in a specific directory so that the Web server knows

to execute them instead of displaying it needs special permission to be given by the web

master or the Web server administrator.

The submission through a form on the Web leaves the system open to

unauthorized and malicious actions. There is no means of authenticating the sender of the

data and the identification of participants cannot be properly monitored. It would be

difficult to resolve controversies regarding results as the contestant identity can be easily

faked. Moreover, a CGI script must execute fast and display information soon enough

because the user will click the SUBMIT button and expect to see some information

immediately.

For all the reasons mentioned above and many more, this option of entry

submission was not chosen for implementation.

4.3.1.2 Via Electronic Mail

Another means of transmitting data over a network is by use of the Electronic

Mail facility. Figure 4.7 shows the basic transfer of content according to this method.

This option requires that the sender and receiver have the facility of using e-mail as the

mode of communication.

35

Figure 4.7: Entry Acceptance via E-Mail

E-mail is the transfer of content across network with the help of Mail Transfer

Agents. There are different kinds of MTAs available that perform well in specific

conditions. Every system that is networked and facilitates transactions usually has some

kind of MTA for e-mail message exchanges.

On most Unix platforms, sendmail is available as the MTA. This is a package that

transfers mail messages across by the Simple Mail Transfer Protocol. This is an efficient

system that works well and performs fast but poses security problems, as it is not

designed for high security. Sendmail on unix can be used with the available mail

managers as Pine or Elm.

An alternative to sendmail is qmail. Qmail is an Internet Mail Transfer Agent

(MTA) for UNIX-like operating systems. It's a drop-in replacement for the Sendmail

system provided with UNIX operating systems [19]. qmail uses the Simple Mail Transfer

Protocol (SMTP) to exchange messages with MTA's on other systems. Qmail has a few

Contestant
Entry

Processing
Unit

E -MAIL

36

advantages over sendmail as it is designed for higher security. It provides flexible

interfaces for the mailboxes and is also simple to configure and use. qmail parallelizes

mail delivery for faster processing. It also supports a new mailbox format that works

reliably even over NFS without locking.

After an e-mail message is received, it needs to be processed and filtered before

the contents can be used for other phases of the software project. The option that was

considered for e-mail filtering was to use Procmail. Procmail has a mail filter that can be

customized for any desired action to be performed on the arrival of a new message. It

provides a means of filtering incoming mail and processing the contents as required. With

proper invocation, this filter tests the message content and does the prescribed operation.

Procmail is a powerful filtering mechanism that can be used effectively not only to filter

e-mails but also to perform complex processes and executions while it is activated.

The availability of sendmail on Unix platform and the feasibility of determining

the source of every message were desirable qualities in the system. E-mail transactions

can be easily traced to their source and thus the contestant identity can be monitored and

authenticated efficiently.

These special features available in Procmail that are suitable for the task at hand

prompted the selection of this e-mail and filter combination to be used as the means of

accepting contest entries and communicating with the contestant in an efficient manner.

The usage of procmail and the functions of the filter shall be discussed in later sections of

the thesis.

37

4.3.2 Entry Code Processing

After an entry has been received in response to the challenge, the next step is to

evaluate the code and determine if it qualifies to be among the winning entries. The

evaluation of code mainly consists of compiling the code, executing it and testing if the

output is as expected. This processing of the entry code can be done in two different

kinds of set ups that both satisfy the requirement of being independent of the rest of the

system.

4.3.2.1 Evaluation in Physical Isolation:

To ensure that the evaluation of all entries is fair and done in a consistent manner,

the simplest setting would be that transfers the entry code to an independent isolated

system and conducts the processing there. For this setting, a new system would be

required to serve as the processing platform for the challenge.

Figure 4.8: Evaluation in Separate Setup

Contest
Entry

Networked
Server

LINUX

Isolated
Processing

Unit

Contest Entry Code

Evaluation Result

38

A networked server receives the entry code via e-mail. This code is then

transferred to a different system (probably Linux) where it is processed and the results are

then sent back to the parent system. This set up requires an additional server that needs to

be configured properly to match the parent system settings. This option was considerably

well formed because of all the flexibility it provided. The processing could be done

independent of the rest of the package. The system would automatically get rid of any

illegal code by trapping the errors. The presence of an isolated environment for

processing of entries would ensure that there is no discrepancy in the procedures and

eliminate the possibility of usage of unfair means.

Though so advantageous, this setting is not a very practically feasible and

economical option. It involves the added overhead of configuring and maintaining the

additional system for the processing work. This setup would have to be somehow

connected to the parent server for transfer of code files and result data. If not networked,

these tasks would have to be done manually which would fail the objective having a truly

automated system for running the programming contest.

The data would be distributed all over and there would again have to be

duplication of work for transfer and archiving of all data. This option was partially

implemented in view of the secure environment it provided but the attempt was not

successfully concluded due to administrative obstacles. Moreover, current version of

Linux (REDHAT 5.2) does not have a compatible version of jdk1.2, which made the

whole effort futile.

For these reasons, this option was abandoned after attempting to set up the Linux

server on an old i486 machine (contest.csee.wvu.edu).

39

4.3.2.2 Evaluation in Isolation

This design option was a modified version of the one mentioned above. It

eliminated the need of creating and maintaining a separate system for the processing

tasks.

Figure 4.9: Evaluation in Isolation

As shown in figure 4.9, this method of evaluation does not need an additional

system. The processing is done on the same system that receives the contest entry. This

implies that the processing unit is isolated from the rest of the system and packages by

means of appropriate partition walls in the form of a closed shell that does not interact

with the outside world.

This system setting is possible only in cases where the entire process is running

under the root or administrator. The ability to isolate a portion of the system setting can

be achieved only by commands that are accessible at the system administration level. To

be able to run at user level, this mode of processing has been modified. Further

description is available in later chapters.

Contest
Entry NetworkedSystem

Processing
Unit

40

4.3.3 Authentication of Contestant Identity

While the entries are being processed, there is a need for determining the identity

of the contestant and to ensure that there is no cheating or forgery involved in sending the

entries in response to the challenge. There are various ways of determining and

stabilizing the entry options in a system of programming contests. The following were

considered to establish identity of the contestant and provide authenticated participation.

4.3.3.1 Password Protection

One of the oldest and most common means of controlling access and monitoring

usage of a facility is to make it password protected. This means that the system or facility

would be available for usage only when a login name and password successfully

authenticate the identity of the requesting party.

In the context of conducting a programming contest as the Java Challenge, this

strategy requires issue of login and passwords to the parties interested in participating.

The contestant who desires to send in an entry applies and requests a login and password.

These are stored in the system database and are referred to every time the contestant tries

to access information or send a new entry to the challenge.

Though feasible and fulfilling, this option is not a very appropriate means simply

because a programming contest is not of any special strategic importance to be password

protected. Creating and enabling login-password information usage would incur

tremendous overhead on the system maintenance. It would additionally give rise to the

need of giving the users the flexibility of configuring their details and modifying the

password at their will. This was thus not chosen for implementation.

41

4.3.3.2 Encryption Keys

Another sophisticated means of ensuring secrecy and privacy of the user on a

system is to use cryptography. A public key cryptosystem can be used to successfully

encrypt messages sent between two parties such that no third party will be able to decode

and understand them [20]. The encryption mechanism can also be used to create a digital

signature that is unique to the owner and thus authenticates his identity.

When a contestant sends an entry to the Java Challenge, the message can be

encrypted to ensure that it cannot be seen and used by any other party midway. The

contestant can be provided with a key pair that shall be used to create a signature that will

always accompany the entry he sends. This is an effective means of preventing fake

identity and ensuring that the information exchange is completely secure and private.

In a public key cryptosystem, each participant has a pair of keys, a public key and

a private key. The public key is available for anyone to look at but the corresponding

private key is a secret kept only by the owner. Both the keys specify functions to be

applied to the message. These functions for any participant are a “matched pair” in that

they are inverse of each other. This means that any message if transformed by both the

keys of the pair consecutively, in any order, would yield the same message back.

Figure 4.10: Message Encryption Mechanism

PK SK

M C = PK(M)

Outsider
sees C

42

When applied to digital signatures, the encryption provides both authentication

of the signer’s identity and the authenticity of the contents of the signed message. The

entire system of cryptography works on the assumption that the secret key cannot be

determined or computed by anyone except the owner in practical time duration. The

security of communications relies on two factors: the secrecy of the decryption key and

the difficulty of computing or finding it without knowing it.

This is a perfect tool for electronic communication that needs to be authenticated.

From figure 4.10, the major difficulty of designing a workable public-key cryptosystem is

in figuring out how to create a system in which the transformation PK (public key) for a

messages (M) can be revealed without thereby revealing the means of computing the

corresponding inverse transformation of the secret/private key (SK).

The complexity of the whole procedure and all the political controversy regarding

how difficult can an encryption mechanism be were enough reasons for leaving this

option as a research topic currently not suitable for implementation in the Java Challenge

software project.

4.3.4 System Security

A major issue to be considered when external code is run on a system is security.

A strong solution is sought to ensure that the applications from the contestants are run on

the system without putting the system at risk and prohibiting all illegal pathways to

system resource access. There are many ways of restricting access to the system while a

code is executing. The choice depends mostly on the extent of security desired and the

level of usage of the available tools.

43

4.3.4.1 Chrooted Environment

The most used mechanism of high level security on Unix environments is the

Chroot facility. Chroot is the command that allows the system administrator to force a

program to run under a sub set of the file system, without allowing access from it to any

other part of the file system.

Figure 4.11: Chroot Environment Setup

As shown in the figure above, the chrooted environment is a part of the entire file system

but does not have any access to the rest of the system. This system is most often used for

anonymous ftp from a server and for the server web tree.

This command completely fulfills the security requirement of the JC software but

cannot be implemented at any other level except the root on the system. The

implementation problems of this design include the complexity of deciding if it is a

doable task. If the subset file system is to be complete in itself with the top level as root,

extensive efforts are needed to duplicate the real tree structure without the real contents.

UNIX

Entire File System

UNIX

Subset File System

chroot

44

If the tree is very wide spread with links and scripts reaching out all across, chrooting is

not a very efficient solution.

Chroot provides an additional security layer but is not so completely

impenetrable. Any program, if running with the root privileges, can break out of the

chroot trap. Any user who attempts to do this simply requires access to a C compiler or

Perl interpreter and security holes to gain root access. Also, due to the limitations of Unix

security architecture, the server cannot run as more than one user with the current server

model while maintaining sufficient security on other fronts.

Due to the above mentioned limitations and other system administrative

difficulties, the system security problem was not solved by using the chroot method.

4.3.4.2 Sandbox Technique

The problem of system security is solvable not only by redefining the run time

environment of the system but also by specifically restricting access to resources by

creation of a new control class. As Java Challenge is based on Java programming

languages, one choice was to define a separate accessibility class that allowed certain

resource access and prevented the rest by throwing appropriate exceptions.

This design choice is aptly suitable for the purpose as it clearly controls the

system access in a defined manner. Such a class and its associated methods would

eliminate any security hole issues and remove all ambiguity regarding the environment in

which the code would run. This setup would work by forcing all calls from the

application code to pass through this accessibility class. The request is fulfilled if the

method is permitted, otherwise it would be rejected as a security exception.

45

This method of controlled access is a valid solution and is also implemented in

the jdk1.1 security model with some more complexity. For the task at hand, it is not very

practical. In view of the vast number of classes and methods available in Java, it is

impossible to correctly bring together the necessary subset. The class hierarchy that

governs the entire class library dictates the need of the super class for any functionality to

be enabled by the sub class. This would blow the accessibility class out of proportion and

thus render it ineffective in solving the security problem.

Figure 4.12: Mechanism of Sandbox Technique

Figure 4.12 shows the schematic view of the functioning of the sandbox method.

If the entry code arrives, it is sent directly to the sandbox, which has a number of

methods and sub classes too. If the program calls method A, which is prohibited or

Entry
Code

JDK CLASS LIBRARY

SANDBOX

 Method A

Method B

SYSTEM

46

restricted, the program shall throw an exception but if a call is made to method B, the

execution will proceed smoothly as method B is allowed access and execution.

4.3.4.3 Java Security Manager

In the context of conducting the Java Challenge programming contest, Java 1.2

has all the features required to enforce and control limited access to the system on which

the application runs. The security manager in jdk enables the configuration of system

permissions to be applied when an application or an applet runs on the system.

Figure 4.13: Java Security Model for jdk1.1

47

The java security architecture has undergone tremendous improvement and

enhancement [21]. The original security model also called the “sandbox” model provided

a very restricted environment for running untrusted code obtained from the open network.

According to this model, any code that was local had complete access to all vital system

resources where as remote code (as an applet from the web) could access only limited

resources present inside the sandbox.

The latest release of Java, the Java 2 SDK, introduces new concepts of permission

and policy that enable fine grained, highly configurable, flexible and extensible access

control. It also provides tools for cryptographic services and certificate and key

management classes and interfaces. Figure 4.13 shows the working of the security model.

Figure 4.14: Java Security Model for jdk 1.2

48

With the concept of “signed applet” already in implementation, the later versions

of Java attempted to enhance the security manager by enabling all code, whether local or

remote, to be subject to the security policy.

The security policy defines a set of permissions available to code that can be

customized and configured by the user. With the current architecture of the security

model, applets can still run in the restricted sandbox environment and the applications

can be optionally subject to security policy or given complete access as in earlier

versions. The domain grouping has now changed from full access and sandbox access to

a broader range to include intermediate domains that have less than full access but more

than the sandbox.

Along with the file access permission enhancements, extensions have been

implemented in the cryptography architecture too. The Java Cryptography Architecture is

a framework for accessing and developing cryptographic functionality on the Java

platform. Certificate interfaces and classes for parsing and managing certificates have

been introduced in jdk 1.2 for better security features.

After thorough research of the features provided by the Java Security Manager, it

was found to satisfy all the security configuration requirements of the Java Challenge

Software. It was then implemented and used appropriately. The usage of the security

features of Java ensured that the entry code running on the system was fully under

control. Access to the file system, the network and to all other vital resources was

definable and configurable as desired. So, this design option was chosen for handling the

system security issue.

49

4.3.5 Automation Techniques

The main advantage of any processing software lies in its ability to perform

functions at specified times without the user having to physically start and monitor the

processes. A function can be automated by giving it a time handle or arranging for an

event trigger that starts when a certain condition is fulfilled or a particular event occur.

One of the objectives of the Java Challenge software project is to create a package

that performs all the tasks in an automated manner without the need for any manual

intervention. The requirement is basically to accept entries and process them immediately

without having to wait for the administrator to check if an entry has arrived and then start

the processing scripts. Apart from constant polling for new entries which would put a lot

of load on the server, There are a number of ways to achieve this objective in the context

of Java Challenge software.

4.3.5.1 Cron Job

One of the features of Unix is the provision of timer and time dependent

functions. Crontab is a program that runs in conjunction with the Unix shell that

functions as an event timer. Cron command used to start a process that executes

commands at specified dates and times. A cron job can be submitted at any level on the

file system and it shall execute given commands at specified times. These jobs are used

commonly for regular tasks in system administration. It can be configured for emptying

temporary directory contents, loading processes automatically and switching log files at

certain time and dates.

50

This mechanism was considered appropriate and also implemented to some

extent but was later abandoned. The cron mechanism functioning is not very predictable

and consistent when the tasks make assumptions and depend on shell and environment

properties. As the cron job runs when the user is not logged on to the system, it is

difficult to monitor and control. The job runs at root level and there are many ambiguities

in the way it handles temporary files. A job given to cron gets triggered at specified time

irrespective of the status of the previous run. This can give rise to system overload and

slowdown if one of the runs is not successfully completed. For these reasons, an alternate

means of automation was researched.

4.3.5.2 Mail Filter Trigger

To avoid the inconsistencies of processing and also eliminate the need for

constant polling, the mail filter features were more deeply researched. As evident from

experience of other developers and documentation details, a mail filter is more than a

mere message-redirecting application. A mail filter has extensive features for customized

configuration, redirecting of mails, automatic deletion of messages, auto-reply

mechanism and also support for executing commands in the event of the incoming mail

property matching the desired characteristic.

This feature is available in procmail and was a viable option but the commands

that can be executed this way have some system restrictions. The command must be on

the same file system. A script or command on a different server or system cannot be

invoked from the e-mail filter. This was a limitation that could not be worked around in

the Java Challenge software as the processing was being done on a different system that

51

had a mirror image of the file system on the machine that actually receives the contest

entry as an e-mail message. The triggering of processing scripts by the entry of a new

contest entry would be true automation. This would eliminate all unnecessary executions

when there are no new entries to be processed. Due to system limitations, this option

could not be pursued in real time.

4.3.5.3 Daemon Script

There are a number of mechanisms for performing certain tasks at timed intervals.

The selection of the method depends on the task at hand, how accurately timed it needs to

be and the priority of the job. There are ways of invoking time and event triggered

processes by complicated implementation in conventional programming languages like

C. These implementations can be extended to invoke jobs on different systems by calling

appropriate methods with the right accessibility options.

For the Java Challenge software project, the need is to invoke an event that

executes the processing scripts to evaluate the contest entries. This execution needs to be

done at timed intervals with no dependence on the user’s presence on the system. This

process shall be responsible for evaluation of the contest entry code, logging of data,

notification to contestants and updating of the result listing.

An efficient way of performing any function on a Unix platform is the use of

Shell scripts. A shell script is a sequence of commands that can be executed at one point

without having to issue each one of those at the command prompt separately. There are

different kinds of shells in a Unix system, C shell, Bourne shell, R shell and Z shell. Each

shell has its own special features and syntax for setting of global values. Though having

52

subtle differences, all shells basically perform the same functions in the same manner. It

is a matter of considering specialized purposes and convenience to select a particular

shell for use in the entire process.

A daemon script is a script, shell or otherwise, that does not terminate when the

user logs off. This is a script that runs infinitely on the system as long as the server is up

and alive. Daemons are usually designed for the web server, mail purposes and ftp usage.

These are functions that need to be simply active and running all the time. Any regular

script can be converted into a daemon by appropriate commands and run time property

configurations.

This option was chosen for the Java Challenge project as it is feasible to

implement and has good logging facility for monitoring and control. The implementation

details of this method are discussed in the next chapter.

Now that the available options for various tasks have been considered, researched

and the choices made, the next step is to implement the selected options to create a

functional package that can be tested and then used.

53

CHAPTER 5

SYSTEM IMPLEMENTATION

In the life cycle of a software project, the design phase is followed by

implementation phase. After all options have been considered, all methods analyzed and

the merits and demerits of each one weighed carefully, final decisions are made regarding

the choice of design methodology. Work then proceeds to bring these choices to real

application platform by implementing them as part of the development code.

Figure 5.1 depicts the complete flow of control in the Java Software. The entire

process starts with the entry sent by the contestant. The rules of the contest and the

current challenge are posted on the web. Interested parties, who visit the site, are

expected to observe all the rules for participation and qualification. The entry form is also

available on the web site. The web site also holds the data regarding previous challenges

held, if any. Contestants work on the problem posed and send the candidate solution as

part of an e-mail message that is formatted as per the rules of the contest. Now, the Java

Challenge software takes over.

This mail message passes through the mail filter and the body of the message is

separated as the entry code. The processing unit for evaluation then picks up this code.

The processing unit attempts to compile and execute the entry code. All processing data

and results are archived for later use. After evaluating the entry, the processing unit sends

out the final results for web posting and also sends e-mail notification to the sender of the

entry code message. All though this process, data is archived and log files are generated

for future reference and analysis.

54

Figure 5.1: Flow of Control in the Java Software Implementation

CONTESTANT

MAIL BOX

PROCESSING
UNIT

WEB
LISTING

DAEMON
CONTROLLED

CODE

RESULTS

EMAIL

NOTIFICATION

55

5.1 Mail Filter

The first module that gets activated when the Java Challenge software runs is the

e-mail filter. A procmail filter has been created and customized for the desired functions.

The filter scans all messages that enter the system and looks for the key word match on

the Subject line of the message header. On success, the filter performs the specified

actions.

The procmail filter can automatically process incoming mails depending on the

headers and message content. A procmail filter is usually invoked from the .forward file

mechanism that confirms the presence and location of the filter file. The rc file used for

procmail basically has a mixture of environment variable assignments and recipes. A

recipe is a simple one line regular expression that is searched for in the message header.

When the first match is found, the mail is processed according to the action part of the

recipe.

The action lines on the recipe can be simple commands to redirect or bounce the

message to specified places and can also be complex commands that execute shell scripts

and manipulate the message content as desired. The action line can be a single statement

or a nested block of commands to be executed in sequence. There are specific syntax

formats to be followed for specifying the recipe for a procmail filter.

In the Java Challenge software, the procmail filter looks for the string (CONTEST) in the

subject line, and if found sends an acknowledgement message to the sender. It then

proceeds to truncate the mail header while retaining only the sender’s address. The

content of the mail message along with the sender’s e-mail address is written to a file

named based on the current process number and time of receipt with a .java extension.

56

This file is then ready for the rest of processing software. This mail filter need not be

manually activated. By appropriate setting of the .forward file, this filter is always

invoked when a new message arrives in the system. After the mail message has been

processed, a copy is still retained in a specific folder in the user mailbox. Figure 5.2 is the

schematic layout of the working of the procmail filter as described above.

Figure 5.2: Mail Filter Mechanism

CONTESTANT

MAIL FILTER

DUPLICATE COPIES

REMOVE HEADER

JAVA FILE WITH
SENDER ADDRESS

RETAIN ORIGINAL
IN MAIL FOLDER

E MAIL

JAVA
FILE

ENTRY RECEIPT
ACKNOWLEDGEMENT

57

5.2 Processing of Entry Code

After the mail filter has done the work of processing the incoming message and

creating the java file, the system is ready for the processing of this entry code. The

processing scripts developed in Perl are invoked and they perform the functions of

evaluating the code.

Perl is a scripting language for easy manipulation of text, files and processes [22].

It provides sophisticated operators and functions that have the ability to process multiple

items with a single command. Every operation in a perl script is evaluated in a context

and the behavior of the object depends on the requirement of the context. This language

provides advanced functions for system interfacing and manipulation. Perl is efficient and

faster in performance simply because it is an interpretative language.

The processing scripts for Java Challenge software are written in Perl. Appendix

A contains a listing of these scripts for reference. The script polls the directory and looks

for the file name of a specified format to be picked up for evaluation. The content of the

file is separated into java source code and sender’s e-mail address. The java code is then

compiled using jdk1.2 on Solaris 2.6 platform. This java runtime environment installation

is specific to the JC software access and does not interact with the rest of the system

software on the Solaris.

On successful compilation, the script attempts to execute the class file generated

and stores the resulting output in a file. This output is compared with the standard output

or the correct output to the posed challenge to determine if the entry is correct. While, the

class file is being executed, the Java security manager is invoked with appropriate

arguments to enforce the permissions on the execution. This activates the security feature

58

of the software and checks for permissions before performing any action based on the

execution of the entry code.

The processing unit performs all these functions from inside the Perl script and

there are log files generated all along. Details of entry files being evaluated are stored in

data files. The result of every processing action is archived for later analysis. These data

files shall later be used when the coding practices are being compared with the results

they yield. After the entire processing is over, the other scripts read the data files created

by this script for further actions to be taken.

Figure 5.3: Processing Unit Operation

EVALUATION UNIT

COMPILATION

EXECUTION

EVALUATION

RESULT DATA

JAVA
FILE

DATA
FILE

SECURITY
MANAGER

59

5.2.1 Java Security Manager

A security manager is not automatically installed when a java application runs on

the system. The application has full access to all resources and cannot be restricted

directly. To control and restrict the access an application ahs, the security manager needs

to be specifically invoked by an extra command line parameter while using the interpreter

to run a java class file. The system policy file loaded by default, grants permission to

access some commonly useful properties. The default permissions can be overriden with

appropriate policy file creation.

A policy configuration file contains details of what permissions are granted to

code from specified source locations. It contains a list of entries that have grant entries

and optional keystore entries. The Runtime environment for Java 1.2 SDK provides

various graphic tools to aid in the creation of these policy files. The policytool is one

such application. It can be invoked by a regular command and brings up windows with

text boxes where the desired information can be entered. When finished, the tool

translates all the information into a syntaxed java permission file.

The main components of specifying permissions are available with the possible

values when the policy tool is used. The CodeBase is required to specify the source of the

code that shall be subject to these permission policies. The optional SignedBy field is to

indicate if the code has an encrypted signature for verification. The kind of permission to

be granted, the target names of files or details whose access is being controlled and

finally the corresponding action that is being enabled are also to be specified. When the

policy file is saved and successfully loaded into the appropriate location, it can be called

from anywhere for accessibility checks while running an application. Appendix C

60

describes the various implementation details of the java permission classes along with

the syntax for the policy files. The methods available in each permission class are defined

with the details of how different target names and actions need to be specified. The jar

signer and keytool are additional tools available for security management. They have not

been included as their functionality is beyond the scope of this project.

The policy file for the Java Challenge is configured so that any code whose source

is the directory tree rooted at the level where the scripts run is subject to restrictions. The

only files that have read and write permissions are the ones in /var/temp location. The

socket permissions are restricted to mere listening on the 65000 port of any host. This

means that the entry code does not have access to any system resources while it is being

executed. It cannot connect and perform transactions over the network and cannot read or

write data at any random place on the file system.

5.3 Notification Process

An application package for conducting a programming contest must not only

perform evaluation and tabulation, but also incorporate means of prompt communication

with the contestants regarding their entries. One way to achieve this objective is to send

out e-mail message as soon as the processing and evaluation is over.

The mailing script in the Java Challenge software is designed to notify the

contestants the result of their entry and update all interested parties of the current

standings of the Challenge. The script looks at data files generated by the evaluation

process to determine the content of the e-mail message. The logs are meant to specify if

61

the execution was a success and if the entry qualified among the contest winners.

Sendmail on Unix is used for sending messages to the owner or sender of the entry code.

Figure 5.4: Sample E-Mail Notification

Figure 5.5: Mail Notification Mechanism

To: abc@xyz.com
Cc: aaa@csee.wvu.edu
Subject: Correct!!!
X-Status:
X-Keywords:
X-UID: 21

Dear abc@wxz.com, The following program:

public class contest {
public static void main(String x[]){
- - -
}

}

 is correct and has qualified! Its class size is
 418 and was received on Tue Jul 6 14:06:13 US/Eastern 1999.
See http://www.csee.wvu.edu/… for current standings!

NOTIFICATION UNIT

RESULT NOTIFICATION

E-MAIL TO
CONTSTANT

DATA
FILE

DATA
FILE

62

The script then sorts the data files to prepare them for the result listing. The

mailing script also generates a log file that is appended every time the script gets

executed. The details of this entire process can be analyzed by studying the source code

listings provided in Appendix A of this thesis.

5.4 Result Listing

The final step in the entire functioning of the Java Challenge software is the

maintenance of result data on the web page. The result data files that have been created

by the earlier scripts need to be converted to HTML compatible table forms to be

displayed on the Current Results page of JC home page.

The data files generated by the processing script and sorted by the mailing script

are read through to select details of entries, which were completely successful until the

end. This means the entry code that was successfully compiled, executed and produced

the correct output shall qualify to be among the winning group. The eligibility of a

contestant to win is dependent not only on the code evaluation but also on the

requirement that the contestant fill the entry form. The status on that front is also reported

on the web as a reminder. The winner is chosen as the qualified code that generated the

smallest corresponding class file. In case of a tie, the time of submission becomes the

deciding factor.

The web page content is automatically updated every time the script gets executed

in the sequence of operations. The working scheme of web reporting task is shown in

Figure 5.6. Figure 5.7 is a sample display of how the result listing is displayed on the

Internet.

63

Figure 5.6: Scheme of Web Reporting

Figure 5.7: Sample Result Listing on Internet

WEB REPORTING UNIT

SORT BY CLASS FILE SIZE

TABULATE RESULT

DISPLAY ON WEB

DATA FILE
From

Evaluation Unit

DATA FILE
From Entry
Form Data

Current Standings for Java challenge

Current Leader is abc@xyz.com!!!

Rank Size Time Received Person Entry Form

1 Yes/No

2

3

Contest details available at http://www.csee.wvu.edu/….

64

5.5 Processing of Entry Form

The Java Challenge software project is meant to provide a forum for software

engineering and analysis of coding practices. To serve this purpose, the Entry Form has

been introduced into the scheme. The entry form is a means of collecting real time data

from contestants regarding their programming strategies and coding preferences. This

data shall be analyzed later to infer correlation between various factors involved in

programming tasks undertaken in a restrictive environment as a programming contest.

A CGI script has been designed for acceptance and processing of data from the

entry form. The entry form is available on the JC home page and contestant is required to

fill it in order to qualify in the contest and participate successfully. The form is attached

to a script that executes when the form is submitted via the Internet form. The script

captures the data filled in the form. The data gets written to appropriate data file, which is

available to the result listing script to look at. This CGI script also creates a response

page when the form is filled and submitted to acknowledge the receipt. E-mail is also sent

to the address specified in the form as intimation.

It is necessary that the e-mail address specified in the form be the one used for

sending the entry. This is required as the status of Entry Form Filled is determined by

comparing the source of the contest entry e-mail message and the e-mail address

specified in that contestant’s entry form data.

The following figure 5.8 is a representation of the functioning of the CGI script as

described above. A sample of the response page generated when the form is filled and

submitted is shown in figure 5.9.

65

Figure 5.8: CGI Script Mechanism

Figure 5.9: Sample Response Page

FORM PROCESSING UNIT

RESPONSE PAGE
GENERATION

DATA STORAGE

DATA
From Entry

Form
HTML
PAGE

DATA
FILE

Thank you for Contesting!
Thank you abc, for filling the form!
You are now eligible to contest in the Java challenge.
Remember to send the contest entry from abc@xyz.com
with the subject as (CONTEST) for successful acceptance.
Please note that entry evaluation and web posting updates happen
every quarter hour.

Visit http://www.csee.wvu.edu/… for updates!!!

66

5.6 Daemon Script Implementation

The entire process of entry acceptance, evaluation of code and posting of results

was meant to be an automated function that would not require any human intervention

except for routine administration and supervision. The mechanism used for performing

all functions at a periodic interval was creation of a daemon script. A daemon script is a

script that goes on executing infinitely unless interrupted or killed.

SCREEN is a Unix tool for window management with VT100/ANSI terminal

emulation. It is a full screen window manager that multiplexes a physical terminal

between several processes or interactive shells [25]. Screen has command line options for

customization and it also has a set of key bindings for various functions. Invoking screen

creates a window with a shell in it and enables the creation of multiple windows with

more shells, output logging, window listing, kill commands for specific windows and

switching between windows. This functionality provides a means of monitoring multiple

processes and running processes in a detached manner.

When a process is started on screen shell and detached, it is assigned a special

identification number and shall not be terminated until reattached or killed specifically.

This enables the execution of scripts or programs even when the user is logged off from

the system. Unlike with the kill command in Unix, the screen processes are never left

without a PID handle. This enables easier monitoring of the process, tracking its progress

and proper termination when desired. Screen has been used to convert the main driver

shell script of the JC software project into a daemon script so that it executes periodically

without any need for user intervention.

67

CHAPTER 6

TESTING AND TEST CASES

The success of a software project lies in its quality. When a software project

progresses beyond the implementation stage, there are a number of tasks to be performed

to ensure that the application actually does what it is meant to do. Software’s main

objective is to perform, and perform well. There are many variations in the way quality is

expressed, defined and analyzed. Different people have different perspective about the

quality of software, as, a tester’s view of quality is “compliance to requirements” and a

user’s view may be “fitness for use”.

In the earlier studies of software products, a number of software system aspects

were investigated which relate to software quality [24]. Quality has been defined as the

totality of features and characteristics of a product or service that bears on its ability to

satisfy given needs [14]. Quality criteria can be measured at various levels subjectively

and objectively. In the context of software, it is measured as the degree of correctness,

reliability, usability and other similar characteristics.

There can be a decided code of quality factors and definitions that shall be used

when trying to evaluate software. Though some of the factors cannot be efficiently

measured quantitatively, there are ways of measuring certain characteristics or

performance properties and correlating those to the subjective property under

consideration. The factors being evaluated are not always independent. They overlap and

might influence other properties. For instance, correctness and reliability influence each

68

other positively but the efficiency aspect usually has a negative impact on other factors.

There are formal methodologies of managing software quality.

Quality Criteria Definition

Product Operation

Correctness Does it do what I want?

Reliability Does it do it accurately all the time?

Efficiency Will it run on my hardware as well as it can?

Integrity Is it secure?

Usability Can I run it?

Product Revision

Maintainability Can I fix it?

Testability Can I test it?

Flexibility Can I change it?

Product Transition

Portability Will I be able to use it on another machine?

Reusability Will I be able to reuse some of the software?

Interoperability Will I be able to interface it with other system?

Table 6.1: Quality Factors and Definitions [23]

Before and during quality management of software, it needs to be thoroughly

tested to ensure that the performance is as expected. The testing and debugging phase of a

69

software project begins at the test plans that are devised to test the system and bring out

errors or anomalies in the software. The test plan includes various execution cases that

the software shall be subjected to in order that the performance can be observed and

analyzed for errors. Testing is an important phase of software development as it is here

that the capabilities and limitations of the software emerge into forefront. Thorough and

systematic testing is necessary to be able to rectify faults in the software and improve its

performance and quality.

The Java Challenge Software has been thoroughly tested in different contexts for

ensuring reliability and correctness of performance.

6.1 Mail Filter Testing

The first component in the JC software to be tested was the mail filter as the entire

process starts there. Mail messages were sent in different formats to the specified address

and the response was recorded. The mail filter successfully captured the right format

messages but returned the ill-formed messages as invalid entries to the challenge. Here

are the results of the tests conducted:

TEST RESULT

Subject: (CONTEST) Valid, Accepted

Subject: CONTEST Ill-formed, Rejected

Subject: contest details Invalid, Rejected

Table 6.2: Mail Filter Test Results

70

6.2 Evaluation Testing

In order to test the functioning of the evaluation process, entries were sent in at

random intervals in many different formats to be worked upon by the processing unit.

The correct output was fixed and the entry code was compared against it every time the

execution was successful. The testing procedure also included checks for the code

specifications and entry format.

While testing the processing unit, the testing of the data archiving features

happened automatically as it is a part of the processing task. The data files generated

were inspected for accurate recording of entry details. The log file generated by the script

also aided in the testing procedure. The test cases considered and the results obtained are

listed in table 6.3.

Entry Code Compile

Status

Execution

Status

Output

Match

Class contest,

Valid code Yes Yes Yes

Class Contest/Test,

Valid code No - -

Class contest,

Exception Yes No -

Class contest,

Valid code, Incorrect

output format

Yes Yes No

Table 6.3:Processing Unit Test Results

71

6.3 Security Testing

The JC software invokes the Java Security Manager during processing to take

care of system security restrictions. This feature was tested with code that was sent in the

right format but did not actually respond to the challenge question but attempted to

perform other functions that are illegal and prohibited on the system.

Sending simply java application code that tried to perform illegal operations on

execution tested the Java security features. As expected, the security manager trapped the

execution and the code failed to execute successfully. The contestant is notified that the

entry did not execute properly and there is no harm done to the system. The details in

table 5.4 give the results of one such testing session.

Entry Code Compile

Status

Execution

Status

Output

Match

Class contest,

Valid code Yes Yes Yes

Class contest,

Read from a file Yes No -

Class contest,

Write to a new file Yes No -

Class contest,

Listen to permitted port Yes Yes No

Class contest,

Illegal socket connection Yes No -

Table 6.4: Security Test Results

72

6.4 Web List Testing

The processing, and evaluation of entries was tested with a wide range of

combinations to ensure correctness. Now, it needed to be tested that the web result listing

also performed in correspondence with the rest of the system. The contents of data files

created and used by the web report scripts were examined.

The successful qualified entries were sent in random order to ensure that the

listing always sorted and stored the data properly. It was ascertained that the winning

entry was indeed the one that had the smallest class file size. While this testing was in

progress, a bug was discovered in the software. The web listing data files was storing the

size of the source code and also of the corresponding class file. It was found that the

sorting was being done on the source code size field but display on web page was based

on the class file size. Thus, an entry that had a smaller source code but larger class file

turned out to be the winning one. This bug was fixed and the system underwent another

round of extensive testing.

All care has been taken to ensure consistent and reliable performance and the Java

Challenge software is now ready for usage.

73

CHAPTER 7

DATA COLLECTION METHODOLOGY

The Java Challenge software project is a successful design and implementation of

an efficient mechanism for conducting an online programming contest. As the application

software is used for running a contest, it shall also aid in collection of appropriate data for

software engineering analysis. The entry form designed as part of the contest system acts

as the medium of data collection.

The Java Challenge Entry Form as shown in figure 7.1 collects all relevant

information about the contestant’s identity and computing methodology being

implemented in the contest entry being submitted. The entry form initially procures data

about the contestant’s contact e-mail address to be used as authentication criteria, the

academic status and major field of study. This data helps in identifying the knowledge

base of the contestant and in estimating the extent of exposure to computing techniques.

The next section of the entry form is entirely based on the coding strategy and

efforts put in by the contestant in designing the submission code. The data about the

effort being single or group shall give an indication of the relative performance levels in

both cases. The time spent is a measure of the coding capacity of the contestant party and

it also gives insight into the planning and controls mechanisms used by the programmer.

74

Figure 7.1: Java Challenge Entry Form

Java Challenge Entry Form

Full Name:

E-Mail Address:

Present Status:

Major:
 Computer Science
 Computer Engineering
 Other Engineering
 Others

Is the work an Individual Effort? Yes No

If no, how many members are in your group?
 Two
 Three or More

Main Source(s) of Assistance:
 Friends/Peers
 Books
 Internet
 Others (Please specify)

Design of Code:

Time of Coding:
 Less than One Day
 One to Three Days
 Three to Five Days
 Five to Seven Days
 Over a Week

Hours spent daily:
 Less than 2 hours 2-4 hours More than 4 hours

Sophomore
Junior
Senior
Graduate

Purely Original

SUBMIT RESET

75

All this data is archived in the form of tables. The form contents are stored as

data files that can later be analyzed for studying software-engineering features of

programming in a restrained set up as a contest. Detailed studies can be undertaken to

correlate various parameters for which data has been collected. Statistical analysis of this

kind shall aid in predicting software development trends and specifying performance

characteristics. The inferences drawn by detailed analysis of such data has great potential

in proposing ways of improving software quality and monitoring development process

for improved productivity and better efficiency.

The entry form is to be filled by any candidate who wishes to be qualified as the

contest participant. This has been made mandatory to assist in the collection of real time

data. All the work done on the data collected shall be based on the underlying assumption

that the contestant has given true details and all relevant facts. Considering the fact that

the form is user friendly and short, it is highly unlikely that anyone will give incorrect

details. Moreover, the detailed analysis of individual trends through the entire contest is a

motivation to give out correct facts as it shall finally reflect on the candidate’s capability

and relative performance.

When the contest is run, all data is archived in files and becomes available for

detailed study and statistical analysis.

76

CHPATER 8

RESULTS AND CONCLUSIONS

The literature survey and research in areas related to software development and

engineering showed that the task of creating complete software for conducting on-line

programming contest is not an often considered and seriously undertaken task by the

developing community. It brought to light various issues that need to be taken care of

when designing such software package. Issues that seemed trivial were discovered to be

actually very extensive and requiring deep study.

The Java Challenge Software Project was a well-planned and full fledged

software project. Extensive planning was done to maintain time deadlines and the product

was successfully created in reasonable time. All the phases involved in the development

were undertaken with an eye for detail and tremendous technical skill was put in the

efforts involved the entire process.

The JC software project has followed software-engineering principles to the

maximum possible extent at all stages. The design options have been extensively

researched and carefully considered for the best choice in the current situation. The

system has been created as a complete, fully automated, secure and reliable tool for

conducting on line programming contests. It makes use of state of the art technology and

uses the latest tools for resolving various issues of system security and robustness. The

software has been successfully implemented and its features extensively tested to ensure

correct performance.

77

The Java Challenge Software Project started out as a vague vision of a collective

all-inclusive package for conducting programming contests. The research work has

culminated into the transformation of the vision into a reality by successfully creating the

package for conducting programming contests via e-mail and making it available for

ready usage.

Appropriate provisions are provided for all relevant data to be collected and

archived for analysis at a later time. The coding characteristics of individual contestants

are collected and the accuracy of this data is purely a matter of honesty on the part of the

contestant. The task of analyzing the data is beyond the scope of this research work.

78

CHAPTER 9

FUTURE RECOMMENDATIONS

Future research could concentrate on extending the current package for

programming languages other than Java. Full-fledged technical support in the form of

manuals shall go a long way in aiding further enhancements. The software package has

potential to be ported to other platforms. In view of the expanding reach of the web

technology, the mode of submission can be redesigned for web based entries. This would

make the contest and the package more widely usable. Even in the current mode of entry

acceptance, enhancements are possible to validate messages that have the code and other

details along with it as the content of the e-mail message. This requires a sophisticated

means of mail filtering and file content manipulation.

The data collected during the course of running the contest is an information pool

that can be appropriately tapped for software engineering research. Criteria for Selection

of questions shall decide the direction of analysis and the conclusions that can be drawn

from it.

79

REFERENCES

1. Vliet, Hans van, Software Engineering Principles and Practice,
John Wiley& Sons, 1993.

2. Scacchi, W., “Models of Software Evolution: Life Cycle and Process”,
SEI-CM-10-1.0, Curriculum Module, Software Engineering Institute

3. http://members.tripod.com/~POTM

4. http://www.ioccc.org

5. http://www.cps.enel.ucalgary.ca

6. http://olympiads.win.tue.nl/ioi

7. http://www.uwp.edu/academic/mathematics/usaco.htm

8. http://www.acsl.org/

9. http://acm.baylor.org/

10. Grinzo, L., Dr Dobb’s Journal, May 1999, pp 121-125

11. http://www.ecs.csus.edu/pc2/

12. http://acm.gui.uva.es/problemset/computer.html

13. Naur, NATO conference, 1968

14. IEEE standard Glossary of Software Engineering Terminology, 1983

15. Tian, J., Lu, P., Palma, J., “Test Execution Based Reliability Measurement
And Modeling for Large Commercial Software”, IEEE Transactions on
Software Engineering, May 1995

16. Gutjhar, W. J., “Optimal Test Distributions for Software Failure Cost
Estimation”, IEEE Transactions on Software Engineering, March 1995

17. http://hoohoo.nsca.uiuc.edu/

18. http://www.cc.ukans.edu/~acs/docs

19. , http://pobox.com/~djb/qmail.html

80

20. Cormen, H. T., Leiserson, C. E. and Rivest, R. L., Introduction to Algorithms,
McGraw Hill, 1990

21. http://java.sun.com/docs

22. Wall, L. and Schwartz, R. L., Programming Perl, O’Reilly & Associates, Inc.

23. McCall, J. A., Richards, P. K. and Walters, G. F., “Factors in Software
Quality”, RADC-TR-77-369, USDoC, 1977

24. Boehm, “Software Quality Studies”, 1978

25. http://www.delorie.com/gnu/docs/screen/

26. Jaworski, J., Java 1.2 Unleashed: The Comprehensive Solution, Sams, 1998

27. Komarinski, M. F. and Collett, C., Linux System Administration Handbook,
Prentice Hall, 1998

28. Sobell, M. G., A Practical Guide to the Unix System, Addison-Wesley, 1995

81

Appendix A

Evaluation Scripts

82

*
This is the script processing.pl that processes the entries stored in java files. It compiles, executes
and verifies the resulting output to generate log of the contest entry results.
**
#!/usr/bin/perl
require "ctime.pl";
This is the script for processing entries S* files
system('cd /usr07/karuna/');
#system('pwd');
to generate the results file
open(RESULTS, '>student_results');
open(LOG,'>>proc.log');
open(ACCESS, '>>security_test.dat');
print LOG "Entered processing.pl\n";
for all student submissions....
foreach $file (<S*-*.java>){
 print LOG "Processing $file...\n";
 open (FILE, $file) || warn "Cannot open file!\n";
 ($dev, $ino, $mode, $nlink, $uid, $gid, $rdev, $size, $atime, $mtime, $ctime, $blksize,
 $blocks)=stat(FILE);
 # recording the submission time
 $submitted=$mtime;
 open (PROG, '>contest.java');
 while (<FILE>) {
 if (/^To:/){
 s/^To: //;
 s/\n//;
 $who=$_;
 } else {
 print PROG unless /^$/;
 }
 }
 close (PROG);

 # getting all properties of the file being evaluated
 open (PROG, '>>contest.java');
 ($dev, $ino, $mode, $nlink, $uid, $gid, $rdev, $size, $atime, $mtime, $ctime, $blksize,
 $blocks)=stat(PROG);
 close(PROG);
 print RESULTS "$size $submitted $who $file";

 # Start the evaluation: try to compile
 #print LOG "compiling...\n";
 $status=system('/projects/jcontest/Solaris_JDK_1.2.1_02/bin/javac contest.java 2> comerr.dat');
 if ($status !=0){
 system('grep -c "in a file called" comerr.dat > cerr_type.dat');
 open(ERR,'cerr_type.dat');
 while (<ERR>){
 ($errornum,$junk)=split();
 }

83

 if($errornum > 0){
 print RESULTS " -1 Noname Nexec Incorrect\n";
 $status=5;
 goto t1;
 }

 #print LOG "failed to compile...\n";
 print RESULTS " -1 Ncompile Nexec Incorrect\n";
 $status=1;
 goto t1;
 }
 open (PROG, '>>contest.class');
 ($dev, $ino, $mode, $nlink, $uid, $gid, $rdev, $size, $atime, $mtime, $ctime, $blksize,
$blocks)=stat(PROG);
 close(PROG);
 print RESULTS " $size";

 # try to execute
 #print LOG "executing...\n";
 print RESULTS " Ycompile";
 #capture output of run in output file
 $status=system('/projects/jcontest/Solaris_JDK_1.2.1_02/bin/java -Djava.security.manager -
Djava.security.policy=="/usr07/karuna/ALL/cs374/rwpolicy" contest 1> output 2> exerr.dat');
 #$status=system('java contest > output');
 if ($status !=0){
 system('grep -c AccessControlException exerr.dat > err_type.dat');
 open(ERR,'err_type.dat');
 while (<ERR>){

 ($errornum,$junk)=split();
 }

 print ACCESS "$who:$errornum\n";
 if($errornum > 0){

 print RESULTS " Illegal Incorrect\n";
 $status=3;
 goto t1;

 }

 #print LOG "failed to execute...\n";
 print RESULTS " Nexec Incorrect\n";
 $status=2;
 goto t1;
 }

 # compare to check if output is correct
 #print LOG "verifying output...\n";
 print RESULTS " Yexec";

 #this file comparison might be changed depending on contest question

84

 $status=system ('diff stdOutput output');
 if ($status !=0){

 #print LOG "Incorrect output...\n";
 print RESULTS " Incorrect\n";
 $status=4;
 goto t1;
 }
 #print LOG "correct...\n";
 print RESULTS " Correct\n";
 t1:close (FILE);

 print "Logging...";
 if ($status == 0) {
 print "Correct \n";
 }
 if ($status == 1) {
 print "Nocompile ";
 }
 if ($status == 2) {
 print "Noexec ";
 }
 if ($status == 3) {
 print "Illegal ";
 }
 if ($status == 4) {
 print "Incorrect ";
 }
 if ($status == 5) {
 print "Noname ";
 }
}
close (RESULTS);
close (ACCESS);
close(ERR);

for all non-student submissions....

system ('sort -n < student_results > sorted_stu_results');
#print LOG "Done with processing\n";
$date=&ctime(time);
print LOG "$date";
#($sec,$min,$hr,$mday,$mon,$yr,$wday,$yday,$isdst)=localtime(time);
#print LOG "$hr:$min:$sec;$mday,$mon,$yr:$wday,$yday,$isdst\n";
print LOG "===*===\n";
close LOG;

85

*
This is the script mailing.pl that sends e-mail notifications to contestants about the status of their
entry. It determines the result by looking at the contents of data files created by processing.pl
**
#!/usr/bin/perl
require "ctime.pl";
This is the script for sending mails to the contestants about their
###submission results
system('cd /usr07/karuna/');
system('cat sorted_stu_results >> cum_stu_results');
system('sort -n < cum_stu_results | uniq > sum_stu_results');
open (FILE, 'sorted_stu_results');
open(LOG,'>>mail.log');
sending message to everyone on the list...
print LOG "Entered mailing.pl\n";
while (<FILE>){
 #print LOG "Entered while of mailing.pl\n";
 open (MAIL, '>mail_Mesg');
 ($size, $time, $who, $file, $csize, $cs, $es, $rs)=split(' ');
 $realtime=&ctime($time);
 $realtime=~ s/\n//;
 print MAIL "To: $who\n";
 print MAIL "From: karuna\@csee.wvu.edu\n";
 print MAIL "Cc: karuna\@csee.wvu.edu\n";

 if ($cs=~ /Noname/){
 print MAIL "Subject: Did not compile: class name error!\n\n";
 print MAIL "Dear $who, The following program:\n\n";
 open(PROG, $file);
 while(<PROG>) {
 if(/^To: /)
 { }
 else
 {print MAIL;}
 }
 close (PROG);
 #print LOG "did not compile mail sent out\n";
 print MAIL "\n\n did not compile due to incorrect class
name...Please try again.";
 goto t1;
 }

 #submission did not compile...
 if ($cs=~ /Ncompile/){
 print MAIL "Subject: Did not compile!\n\n";
 print MAIL "Dear $who, The following program:\n\n";
 open(PROG, $file);
 while(<PROG>) {
 if(/^To: /)

{ }

86

 else
{print MAIL;}

 }
 close (PROG);
 #print LOG "did not compile mail sent out\n";
 print MAIL "\n\n did not compile...Please try again.";
 goto t1;
 }

 #submission has security exception...
 if ($es=~ /Illegal/){
 print MAIL "Subject: Illegal operation performed!\n\n";
 print MAIL "Dear $who, The following program:\n\n";
 open(PROG, $file);
 while(<PROG>) {
 if(/^To: /)
 { }
 else
 {print MAIL;}
 }
 close (PROG);
 print MAIL "\n\n performed illegal operation...Please see the web page for rules and try
again.";
 goto t1;
 }
 #submission did not execute...
 if ($es=~ /Nexec/){
 print MAIL "Subject: Did not execute!\n\n";
 print MAIL "Dear $who, The following program:\n\n";
 open(PROG, $file);
 while(<PROG>) {
 if(/^To: /)

{ }
 else

{print MAIL;}
 }
 close (PROG);
 #print LOG "did not execute mail sent out\n";

 print MAIL "\n\n did not execute properly...Please try again.";
 goto t1;
 }

 #submission did not give correct output...
 if ($rs=~ /Incorrect/){
 print MAIL "Subject: Incorrect output!\n\n";
 print MAIL "Dear $who, The following program:\n\n";
 open(PROG, $file);
 while(<PROG>) {
 if(/^To: /)

{ }

87

 else
{print MAIL;}

 }
 close (PROG);
 #print LOG "did not give right o/p mail sent out\n";
 open(ERR,'security.dat');
 while (<ERR>){
 ($sender,$number)=split(':');
 if(($who eq $sender) && ($number>0)){

print MAIL "\n performed an illegal operation.";
 }
 }
 close (ERR);
 print MAIL "\n\n did not produce correct output...Please try again.";
 goto t1;
 }

 # submission was all fine...
 print MAIL "Subject: Correct!!!\n\n";
 print MAIL "Dear $who, The following program:\n\n";
 open(PROG, $file); while(<PROG>) {
 if (/^To: /)
 { }
 else
 {print MAIL;}
 }
 close (PROG);
 #print LOG "all correct mail sent out\n";
 print MAIL "\n\n is correct and has qualified! Its class size is

$csize and was received on $realtime.";
 goto t1;

 t1: print MAIL "\nSee http://www.csee.wvu.edu/~karuna/contest.html for current standings!\n";
 close (MAIL);
 system('/usr/lib/sendmail -t < mail_Mesg');
}
close(FILE);

system('rm sorted_stu_results');
#print LOG "Done with sending mails to contestants\n";
$date=&ctime(time);
print LOG "$date";
#($sec,$min,$hr,$mday,$mon,$yr,$wday,$yday,$isdst)=localtime(time);
#print LOG "$hr:$min:$sec;$mday,$mon,$yr:$wday,$yday,$isdst\n";
print LOG "===*===\n";
close LOG;

88

*
This is the script webrpt.pl that updates the result listing on the web by determining the order of
winning entries and looking at data file generated by the jcForm.pl to see if the contestant has
filled the entry form and is eligible.
**
#!/usr/bin/perl
require "ctime.pl";
This script updates the web page of current standing in the challenge
system('cd /usr07/karuna/');
system('cp /usr07/karuna/public_html/cgi-bin/names.dat /usr07/karuna/');
system('mv /usr07/karuna/S*-*.java /usr07/karuna/entries/');
open(WEB,'>result.html');
open(STU,'>stu_file');
open(LOG,'>>webrpt.log');
print LOG "Entered web_rpt.pl\n";
print WEB <<WEB_PAGE_HEADER;
<HTML>
<HEAD>
<TITLE>Student Scores</TITLE>
</HEAD>
<BODY BGCOLOR="brown" TEXT="white">
<CENTER><H2>Current Standings for Java Challenge</H2><HR></CENTER>
WEB_PAGE_HEADER

$cnt=1;
open (RESULTS, 'sum_stu_results');
#print LOG "opened ssr\t";
while (<RESULTS>){
 #print LOG "while1...\t";
 ($size, $time, $who, $file, $csize, $cs, $es, $rs)=split(/ /);
 $realtime=&ctime($time);
 $realtime=~ s/\n//;
 # separate login name from the $who value
 ($logname, $domname)=split(/@/,$who);
 #print "Separated logname:$logname\n";
 open(DATA, 'names.dat');
 while (<DATA>){
 #print LOG "while DATA\t";
 ($formname,$formmail)=split(/:/);
 ($flogname,$fdomname)=split(/@/,$formmail);
 if($logname eq $flogname){
 $grepresult=0;
 #print "$grepresult";
 goto l1;
 }
 else{
 $grepresult=1;
 }
 }
 #print LOG "b4 l1\t";

89

 l1:close DATA;
 #print "Separated flogname too...\n";
 #print "\n$flogname ::: $logname";

 if($cs=~ /Ycompile/ && $es=~ /Yexec/ && $rs=~ /Correct/){
 #print LOG "if all fine\n";
 if($cnt==1){
 #print LOG "if cnt=1 part\t";
 print STU "\n Java Challenge Winner is $who!!!\n";
 print WEB<<STR_BLOCK;
<CENTER><H2><I>Current Leader is <BLINK>$who</BLINK>!!!</I></H2></CENTER>
<TABLE BORDER=1>
<TH> Rank<TH>Size (in bytes)<TH>Time Received<TH>Person<TH>Entry Form</TH>
STR_BLOCK
 }
 if ($grepresult==0){
 #print LOG "if grepr=0\t";
 print WEB
"<TR><TD>$cnt</TD><TD>$csize</TD><TD>$realtime</TD><TD>$who</TD><TD>Yes</
TD>\n"
 }
 else{
 #print LOG "else grepr\t";
 print WEB
"<TR><TD>$cnt</TD><TD>$csize</TD><TD>$realtime</TD><TD>$who</TD><TD>No</T
D>\n"
 }
 print STU "\n$cnt $csize $realtime $who $grepresult\n";
 $cnt ++;
 #print LOG "cnt++\t";
 }
}
close (RESULTS);
print WEB<<WEB_PAGE_FOOTER;
</TABLE>

Contest details available at http://www.csee.wvu.edu/~karuna/contes
t.html\n
</BODY>
</HTML>
WEB_PAGE_FOOTER

close WEB;
close STU;
system('cp /usr07/karuna/result.html /usr07/karuna/public_html/');
system('chmod ugo+rx /usr07/karuna/public_html/result.html');
#system('rm -f /usr07/karuna/result.html');
#system('cat stu >> stu_data');
#print LOG "\nWeb page updated...\n";
$date=&ctime(time);
#($sec,$min,$hr,$mday,$mon,$yr,$wday,$yday,$isdst)=localtime(time);

90

print LOG "$date";
#print LOG "$hr:$min:$sec;$mday,$mon,$yr:$wday,$yday,$isdst\n";
print LOG "===***===\n";
close LOG;

**

91

*
This is the script jcForm.pl that processes the data filled in the entry form on the web. It archives
the data, sends a response html page and also sends e-mail confirmation of contestant eligibility.
**
#!/usr/bin/perl
#capture the data from the form:
require "cgi-lib.pl";
&ReadParse;

#send html document MIME type:
print "Content-Type:text/html\n\n";

#the acceptance web page:
print<<END_OF_MESSAGE;
<html>
<title>Acceptance Page</title>
<body><h1>Thank you for Contesting!</h1>
Thank you $in{'name'}, for filling the form!

You are now eligible to contest in the Java challenge.

Remember to send the contest entry from $in{'email'}

with the subject as (CONTEST) for successful acceptance.

Please note that entry evaluation and web posting updates happen every quarter hour.

<center>Visit
http://www.csee.wvu.edu/~karuna/
contest.html for updates!!!</center>
</body></html>
END_OF_MESSAGE

#send an e-mail to the contestant:
open (MAIL, "| /usr/lib/sendmail -oi -t");
print MAIL <<MESSAGE_TO_CONTESTANT;
To:$in{'email'}
From: karuna\@www.csee.wvu.edu
Cc: karuna\@www.csee.wvu.edu
Subject: Java Challenge Entry Form

Dear $in{'name'}:
Your entry form has been received and recorded. No matter how many entries
you send in for one contest problem, you have to fill the entry form only
ONCE! Now that you have done that, you DO NOT have to repeat that task.
Please note that the form shall have be filled again if you have make major
changes to your approach or strategy.
Remember to send your solution by $in{'email'} e-mail address!
Thanks and Happy Coding!!!

http://www.csee.wvu.edu/~karuna/contest.html
MESSAGE_TO_CONTESTANT
close MAIL;

92

#send a message to the master that a new entry has come n been replied
#to via e-mail:
open (MAIL, "| /usr/lib/sendmail -oi -t");
print MAIL <<MESSAGE_TO_MASTER;
To:karuna\@csee.wvu.edu
From: karuna\@csee.wvu.edu
Subject: Another J_C Entry Form

Another entry is reported from the entry-form web-page.
e-mail has been sent to $in{'name'} at $in{'email'} as confirmation.
MESSAGE_TO_MASTER
close MAIL;

#record contents of the form in a text file:
@sources=split("\0", $in{'source'});
if ($in{'team'} eq "yes"){
open (DATA_FILE,">> data.txt");
print DATA_FILE<<DATA_RECORD;
$in{'name'}\t$in{'status'}\t$in{'major'}\tAlone\t$in{'subNum'}\t@sources\t$in{'design'}\t$in{'da
ys'}\t$in{'hours'}\n$in{'othS'}\n
DATA_RECORD
close DATA_FILE;}
else{
open(DATA_FILE,">> data.txt");
print DATA_FILE<<DATA_RECORD;
$in{'name'}\t$in{'status'}\t$in{'major'}\t$in{'group'}\t$in{'subNum'}\t@sources\t$in{'design'}\t$
in{'days'}\t$in{'hours'}\n$in{'othS'}\n
DATA_RECORD
close DATE_FILE;}

#Keep a log of contestants
open(NAME_FILE, ">> names.dat");
print NAME_FILE<<NAME_DATA;
$in{'name'}:$in{'email'}\n
NAME_DATA
close NAME_FILE;

93

*
This is the master.shscr script, the shell script that executes all the perl scripts in the right order
and also generates corresponding log files.
**
#!/usr/bin/tcsh

cd /usr07/karuna/
echo "ps" >> processing.log
perl /usr07/karuna/processing.pl 2> err_proc.log
cat err_proc.log >> processing.log
echo "ms" >> mailing.log
perl /usr07/karuna/mailing.pl 2> err_mail.log
cat err_mail.log >> mailing.log
echo "ws" >> webrpt.log
perl /usr07/karuna/webrpt.pl 2> err_web.log
cat err_web.log >> webrpt.log

**

94

Appendix B

Mail Filter and Automation Scripts

95

*
This is the .forward file that triggers the procmail filter every time a new message arrives in the
mailbox.
**

"|IFS=' ' && p=/usr/local/bin/procmail && test -f $p && exec $p -Yf- || exit 75 #karuna"

**
This is the customized procmail filter for processing e-mail messages that are received as contest
entries.
**
check if all paths are reachable
#TMPDIR=./tmp
PATH=/bin:/usr/bin:/usr/local/bin:/usr/ucb:/bin:.
MAILDIR=$HOME/Mail
DEFAULT=/var/spool/mail/karuna
LOGFILE=$HOME/.maillog
#LOCKFILE=$HOME/lockmail

:0
* ^Subject:.*\(CONTEST\)
{

:0c
| (formail -brt -I 'Subject: Re: Your Java Challenge Submission' \
-I 'From: Karuna Annavajjala <karuna@csee.wvu.edu>' ;\
cat $HOME/.goodmesg) | $SENDMAIL -t

:0c
| (formail -brt -I 'Subject: Re: A "S" Java Challenge Submission' \
-I 'From: Karuna Annavajjala <karuna@csee.wvu.edu>' \
-I 'To:Karuna Annavajjala <karuna@csee.wvu.edu>' ; \
cat $HOME/.mymesg) | $SENDMAIL -t

:0c
| formail -k -brt -X To: >/usr07/karuna/S$$-`date +%m%d%y%H%M%S`.java

:A
contest

}

:0
* ^Subject:.*\(NOCONTEST\)
{

:0c
| (formail -brt -I 'Subject: Re: Your Java Challenge Submission' \
-I 'From: Karuna Annavajjala <karuna@csee.wvu.edu>' ;\
cat $HOME/.goodmesg) | $SENDMAIL -t

:0c

96

| (formail -brt -I 'Subject: Re:A "X" Java Challenge Submission' \
-I 'From: Karuna Annavajjala <karuna@csee.wvu.edu>' \
-I 'To:Karuna Annavajjala <karuna@csee.wvu.edu>' ;\
cat $HOME/.mymesg) | $SENDMAIL -t

:0c
| formail -k -brt -X To: >/usr07/karuna/X$$-`date +%m%d%y%H%M%S`.java

:A
contest

}

:0
* ^Subject:.*CONTEST
#* ^From:.*.wvu.edu
{

:0c
| (formail -brt -I 'Subject: Re: Your Java Challenge Submission' \
-I 'From: Karuna Annavajjala < karuna@csee.wvu.edu>' ; \
cat $HOME/.badmesg) | $SENDMAIL -t

}

anything that has not been handled here will go to $DEFUALT using the LOCKFILE

97

*
This is the testbac shell script that acts as the daemon script on backus system to execute the
master shell script at regular time intervals.
**
#!/usr/bin/tcsh

while (1 == 1)
master.shscr 2> err_testbac.log
date>>testbac.log
echo "***">>testbac.log
sleep 1800
end

**
This is the syntax for the crontab file to place the script execution on the cron job list.
**
1,15,30,45 * * * * /usr07/karuna/master.shscr

**
This is a segment of procmail filter to demonstrate its usage for automation purposes. The script
execution can be triggered from the action line of the filter message.
**
check if all paths are reachable
#TMPDIR=./tmp
PATH=/bin:/usr/bin:/usr/local/bin:/usr/ucb:/bin:.
MAILDIR=$HOME/Mail
DEFAULT=/var/spool/mail/karuna
LOGFILE=$HOME/.maillog
#LOCKFILE=$HOME/lockmail

:0
* ^Subject:.*\(CONTEST\)
{

:0c
| formail -k -brt -X To: >/usr07/karuna/S$$-`date +%m%d%y%H%M%S`.java

:0c
|/usr07/karuna/master.shscr

:A
contest

}

98

Appendix C

jdk 1.2 Security Manager

(http://java.sun.com/)

99

Examples of security policy files:

grant signedBy " signer_names ", codeBase " URL" {
 permission permission_class_name " target_name ", " action ",
 signedBy " signer_names ";

 permission permission_class_name " target_name ", " action ",
 signedBy " signer_names ";
 };

grant codeBase "file:/C:/somepath/api/" { ... }

grant signedBy "sysadmin", codeBase "file:/home/sysadmin/*" {
permission java.security.SecurityPermission "Security.insertProvider.*";
permission java.security.SecurityPermission "Security.removeProvider.*";
permission java.security.SecurityPermission "Security.setProperty.*"; };

The security policy file created for Java Challenge Software:

/* AUTOMATICALLY GENERATED ON Tue Jul 06 19:26:10 EDT 1999*/
/* DO NOT EDIT */

grant codeBase "file:/usr07/karuna/-" {
 permission java.io.FilePermission "/var/temp/-", "read";
 permission java.net.NetPermission "requestPasswordAuthentication";
 permission java.net.SocketPermission "*:65000", "resolve, listen";
};

100

The Permission Classes

The permission classes represent access to system resources. The
java.security.Permission class is an abstract class and is subclassed, as
appropriate, to represent specific accesses.

As an example of a permission, the following code can be used to produce a
permission to read the file named "abc" in the /tmp directory:

 perm = new java.io.FilePermission("/tmp/abc", "read");

New permissions are subclassed either from the Permission class or one of its
subclasses, such as java.security.BasicPermission. Subclassed permissions (other
than BasicPermission) generally belong to their own packages. Thus,
FilePermission is found in the java.io package.

A crucial abstract method that needs to be implemented for each new class of
permission is the implies method. Basically, "a implies b" means that if one is
granted permission "a", one is naturally granted permission "b". This is important
when making access control decisions.

Associated with the abstract class java.security.Permission are the abstract class
named java.security.PermissionCollection and the final class
java.security.Permissions.

Class java.security.PermissionCollection represents a collection (i.e., a set that
allows duplicates) of Permission objects for a single category (such as file
permissions), for ease of grouping. In cases where permissions can be added to
the PermissionCollection object in any order, such as for file permissions, it is
crucial that the PermissionCollection object ensure that the correct semantics are
followed when the implies function is called.

Class java.security.Permissions represents a collection of collections of
Permission objects, or in other words, a super collection of heterogeneous
permissions.

Applications are free to add new categories of permissions that the system
supports. How to add such application-specific permissions is discussed later in
this document.

Now we describe the syntax and semantics of all built-in permissions.

C.1.1 java.security.Permission

This abstract class is the ancestor of all permissions. It defines the essential
functionalities required for all permissions.

Each permission instance is typically generated by passing one or more string
parameters to the constructor. In a common case with two parameters, the first
parameter is usually "the name of the target" (such as the name of a file for which

101

the permission is aimed), and the second parameter is the action (such as "read"
action on a file). Generally, a set of actions can be specified together as a comma-
separated composite string.

C.1.2 java.security.PermissionCollection

This class holds a homogeneous collection of permissions. In other words, each
instance of the class holds only permissions of the same type.

C.1.3 java.security.Permissions

This class is designed to hold a heterogeneous collection of permissions.
Basically, it is a collection of java.security.PermissionCollection objects.

C.1.4 java.security.UnresolvedPermission

Recall that the internal state of a security policy is normally expressed by the
permission objects that are associated with each code source. Given the dynamic
nature of Java technology, however, it is possible that when the policy is
initialized the actual code that implements a particular permission class has not
yet been loaded and defined in the Java application environment. For example, a
referenced permission class may be in a JAR file that will later be loaded.

The UnresolvedPermission class is used to hold such "unresolved" permissions.
Similarly, the class java.security.UnresolvedPermissionCollection stores a
collection of UnresolvedPermission permissions.

During access control checking on a permission of a type that was previously
unresolved, but whose class has since been loaded, the unresolved permission is
"resolved" and the appropriate access control decision is made. That is, a new
object of the appropriate class type is instantiated, if possible, based on the
information in the UnresolvedPermission. This new object replaces the
UnresolvedPermission, which is removed.

If the permission is still unresolvable at this time, the permission is considered
invalid, as if it is never granted in a security policy.

C.1.5 java.io.FilePermission

The targets for this class can be specified in the following ways, where directory
and file names are strings that cannot contain white spaces.
file
directory (same as directory/)
directory/file
directory/* (all files in this directory)
* (all files in the current directory)
directory/- (all files in the file system under this directory)
- (all files in the file system under the current directory)
"<<ALL FILES>>" (all files in the file system)

Note that "<<ALL FILES>>" is a special string denoting all files in the system.

102

The actions are: read, write , delete, and execute. Therefore, the following are valid
code samples for creating file permissions:
import java.io.FilePermission;

FilePermission p = new FilePermission("myfile", "read,write");
FilePermission p = new FilePermission("/home/gong/", "read");
FilePermission p = new FilePermission("/tmp/mytmp",
"read,delete");
FilePermission p = new FilePermission("/bin/*", "execute");
FilePermission p = new FilePermission("*", "read");
FilePermission p = new FilePermission("/-", "read,execute");
FilePermission p = new FilePermission("-", "read,execute");
FilePermission p = new FilePermission("<<ALL FILES>>", "read");

The implies method in this class correctly interprets the file system. For
example, FilePermission("/-", "read,execute") implies
FilePermission("/home/gong/public_html/index.html", "read"), and
FilePermission("bin/*", "execute") implies FilePermission("bin/emacs19.31",
"execute").
Note: Most of these strings are given in platform-dependent
format.

It is necessary that the strings be given in platform-dependent format until there is
a universal file description language. Note also that the use of meta symbols such
as "*" and "-" prevents the use of specific file names. Also note that a target name
that specifies just a directory, with a "read" action, as in
FilePermission p = new FilePermission("/home/gong/", "read");

means you are only giving permission to list the files in that directory, not read
any of them. To allow read access to files, you must specify either an explicit file
name, or an "*" or "-", as in
FilePermission p = new FilePermission("/home/gong/myfile",
"read");
FilePermission p = new FilePermission("/home/gong/*", "read");
FilePermission p = new FilePermission("/home/gong/-", "read");

And finally, note that code always automatically has permission to read files from
its same (URL) location, and subdirectories of that location; it does not need
explicit permission to do so.

C.1.6 java.net.SocketPermission

This class represents access to a network via sockets. The target for this class can
be given as "hostname:port_range", where hostname can be given in the following
ways:
hostname (a single host)
IP address (a single host)
localhost (the local machine)
"" (equivalent to "localhost")
hostname.domain (a single host within the domain)
hostname.subdomain.domain
*.domain (all hosts in the domain)

103

*.subdomain.domain
* (all hosts)

That is, the host is expressed as a DNS name, as a numerical IP address, as
"localhost" (for the local machine) or as "" (which is equivalent to specifying
"localhost").

The wildcard "*" may be included once in a DNS name host specification. If it is
included, it must be in the leftmost position, as in "*.sun.com".

The port_range can be given as follows:
N (a single port)
N- (all ports numbered N and above)
-N (all ports numbered N and below)
N1-N2 (all ports between N1 and N2, inclusive)

Here N, N1, and N2 are non-negative integers ranging from 0 to 65535 (2^16-1).

The actions on sockets are accept, connect, listen, and resolve (which is
basically DNS lookup). Note that implicitly, the action "resolve" is implied by
"accept", "connect", and "listen" -- i.e., those who can listen or accept incoming
connections from or initiate out-going connections to a host should be able to look
up the name of the remote host.

Below are some examples of socket permissions.
import java.net.SocketPermission;

SocketPermission p = new
SocketPermission("java.sun.com","accept");
p = new SocketPermission("204.160.241.99","accept");
p = new SocketPermission("*.com","connect");
p = new SocketPermission("*.sun.com:80","accept");
p = new SocketPermission("*.sun.com:-1023","accept");
p = new SocketPermission("*.sun.com:1024-","connect");
p = new SocketPermission("java.sun.com:8000-9000",
 "connect,accept");
p = new SocketPermission("localhost:1024-",
 "accept,connect,listen");

Note that SocketPermission("java.sun.com:80,8080","accept") and
SocketPermission("java.sun.com,javasun.sun.com","accept") are not valid socket
permissions.

Moreover, because listen is an action that applies only to ports on the local host,
whereas accept is an action that applies to ports on both the local and remote host,
both actions are necessary.

C.1.7 java.security.BasicPermission

The BasicPermission class extends the Permission class. It can be used as the base
class for permissions that want to follow the same naming convention as
BasicPermission (see below).

104

The name for a BasicPermission is the name of the given permission (for example,
"exitVM", "setFactory", "queuePrintJob", etc). The naming convention follows
the hierarchical property naming convention. An asterisk may appear at the end of
the name, following a ".", or by itself, to signify a wildcard match. For example:
"java.*" or "*" is valid, "*java" or "a*b" is not valid.

The action string (inherited from Permission) is unused.Thus, BasicPermission is
commonly used as the base class for "named" permissions (ones that contain a
name but no actions list; you either have the named permission or you don't.)
Subclasses may implement actions on top of BasicPermission, if desired.

Some of the BasicPermission subclasses are java.lang.RuntimePermission,
java.security.SecurityPermission, java.util.PropertyPermission, and
java.net.NetPermission.

C.1.8 java.util.PropertyPermission

The targets for this class are basically the names of Java properties as set in
various property files. Examples are the "java.home" and "os.name" properties.
Targets can be specified as "*" (any property), "a.*" (any property whose name
has a prefix "a."), "a.b.*", and so on. Note that the wildcard can occur only once
and can only be at the rightmost position.

This is one of the BasicPermission subclasses that implements actions on top of
BasicPermission. The actions are read and write. Their meaning is defined as
follows: "read" permission allows the getProperty method in java.lang.System
to be called to get the property value, and "write" permission allows the
setProperty method to be called to set the property value.

C.1.9 java.lang.RuntimePermission

The target for a RuntimePermission can be represented by any string, and there is
no action associated with the targets. For example, RuntimePermission("exitVM")
denotes the permission to exit the Java Virtual Machine.

The target names are:
createClassLoader
getClassLoader
setContextClassLoader
setSecurityManager
createSecurityManager
exitVM
setFactory
setIO
modifyThread
stopThread
modifyThreadGroup
getProtectionDomain
readFileDescriptor
writeFileDescriptor
loadLibrary.{library name}

105

accessClassInPackage.{package name}
defineClassInPackage.{package name}

accessDeclaredMembers.{class name}
queuePrintJob

C.1.10 java.awt.AWTPermission

This is in the same spirit as the RuntimePermission; it's a permission without
actions. The targets for this class are:

accessClipboard
accessEventQueue
listenToAllAWTEvents
showWindowWithoutWarningBanner

C.1.11 java.net.NetPermission

This class contains the following targets and no actions:
requestPasswordAuthentication
setDefaultAuthenticator
specifyStreamHandler

C.1.12 java.lang.reflect.ReflectPermission

This is the Permission class for reflective operations. A ReflectPermission is a
named permission (like RuntimePermission) and has no actions. The only name
currently defined is

suppressAccessChecks

which allows suppressing the standard Java programming language access checks
-- for public, default (package) access, protected, and private members --
performed by reflected objects at their point of use.

C.1.13 java.io.SerializablePermission

This class contains the following targets and no actions:
enableSubclassImplementation
enableSubstitution

C.1.14 java.security.SecurityPermission

SecurityPermissions control access to security-related objects, such as Security,
Policy, Provider, Signer, and Identity objects. This class contains the following
targets and no actions:

getPolicy
setPolicy
getProperty.{key}
setProperty.{key}
insertProvider.{provider name}
removeProvider.{provider name}
setSystemScope
setIdentityPublicKey
setIdentityInfo
printIdentity
addIdentityCertificate

106

removeIdentityCertificate
clearProviderProperties.{provider name}

putProviderProperty.{provider name}
removeProviderProperty.{provider name}
getSignerPrivateKey
setSignerKeyPair

C.1.15 java.security.AllPermission

This permission implies all permissions. Note that AllPermission also implies
new permissions that are defined in the future.

Clearly much caution is necessary when considering granting this permission. These
features of the jdk1.2 security model can be implemented by appropriate use of
available tools of development.

107

KARUNA ANNAVAJJALA

E-mail: a_karuna@hotmail.com

EDUCATION

Master of Science in Computer Science
West Virginia University, WV. (August 1999)
GPA: 3.8/4.0

Bachelor of Science in Civil Engineering
Osmania University, India. (July 1997)
GPA: 3.8/4.0

Diploma in RDBMS
Frontier Institute of Information Technology, India (April 1997)

COMPUTER SKILLS

Operating Systems MS DOS, UNIX, Windows 95/98, Windows NT, MAC OS, Sun Solaris,
Linux (Redhat 5.x), Irix (Silicon Graphics), VAX/VMS

Platforms IBM/PC Compatibles, IBM/DEC Workstations, MACHINTOSH
Languages C, C++, Java, ADA, FORTRAN, PASCAL, BASIC, VB Script, HTML,

PL/SQL, Perl, Unix Shell Scripting, Scheme
RDBMS ORACLE 7.x

WORK EXPERIENCE

Teaching Assistant in the department of Computer Science
West Virginia University, Morgantown (June 1998 to June 1999)

Teaching Assistant for Organic Chemistry Laboratory.
West Virginia University, Morgantown (Aug 1997 to May 1998)

Further details and references available upon request

	Java Challenge Software Project
	Recommended Citation

	Microsoft Word - thesis_lib.doc

