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ABSTRACT 
 

Examining physiological roles of adipose derived VEGF: Consequences in substrate availability 
and endurance exercise capacity in adipocyte specific VEGF deficient mice 

 
Nicole J. Zachwieja 

 
Reducing vascular endothelial growth factor (VEGF) in adipose tissue alters adipose vascularity 
and metabolic homeostasis.  We hypothesized that this would also affect metabolic responses 
during exercise-induced stress, and that adipocyte-specific VEGF deficient (adipoVEGF-/-) mice 
would have impaired endurance capacity.  Endurance exercise capacity in adipoVEGF-/- (n=10) 
and littermate control (n=11) mice was evaluated every 4 weeks between 6 & 24 weeks of age 
using a submaximal endurance run to exhaustion at 20 m/min, 10-degree incline.  Maximal 
running speed, using incremental increases in speed at 30-second intervals, was tested at 25 
weeks of age.  Beginning at 6 weeks, and continuing with all time points, endurance run time to 
exhaustion was 30% lower in adipoVEGF-/- compared to controls (p<0.001). The age-associated 
rate of decline in endurance capacity was similar in adipoVEGF-/- vs. control mice and there was 
no difference in maximal running speed between the groups.  Following 1 hour of running at 
50% maximum running speed, adipoVEGF-/- mice displayed decreased circulating insulin, 
(p<0.001), glycerol (p<0.05), and a tendency for decreased glucose (p=0.06) compared to 
controls.  These data suggest that deficits in adipose tissue vasculature are mediated by adipose 
VEGF and that deficiency of VEGF blunts the availability of lipid-derived substrates during 
endurance exercise and affects insulin secretion and glucose metabolism.   
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Vascular endothelial growth factor (VEGF) has been classically recognized as a potent, 

positive regulator of angiogenesis in both physiological and pathological contexts (Leung et al., 

1989).  It has been suggested that VEGF action is dependent on the microenvironment, such that 

its activity and effects may be specific to the cell type from which it was produced (Olfert et al., 

2009, 2010).  Recent studies have investigated the function of adipose-derived VEGF in 

regulating metabolic homeostasis through angiogenesis.  Collectively, theses studies show that 

upregulation of VEGF in adipose tissue has beneficial metabolic effects, while deletion or 

inhibition of VEGF action (at the onset of diet induced obesity) has negative metabolic effects 

(Sun et al., 2012; Elias et al., 2012; Sung et al., 2013).  

Adipose-specific VEGF deficient (adipoVEGF-/-) mice on a high fat diet show decreased 

adipose capillarity, fat pad mass, body mass, and percentage body fat compared to controls 

(Sung et al., 2013).  This inability to deposit lipids in adipose tissue could also suggest a 

concurrent inability to sufficiently mobilize and utilize free fatty acids (FFA) as an energy 

substrate.  Taken together, these observations suggest that alteration of VEGF can influence 

energy metabolism.  This could be especially important, as VEGF has been reported to be altered 

with obesity, diabetes, and other chronic diseases (Wada et al., 2011).  At present, little is known 

about the role of adipose-derived VEGF in exercise capacity or metabolism in the context of 

exercise-induced stress.    

Data from our laboratory has shown that adipoVEGF-/- mice exhibit decreased 

endurance capacity, but no difference in maximal running speed when compared to controls, 

suggesting a difference in use of lipid-derived substrates.  CPT1 β is regarded as a rate-limiting 

enzyme of β-oxidation in skeletal muscle mitochondria (Schreurs et al., 2010).  Changes in 

CPT1β expression and β-oxidation could correlate with differences in endurance exercise 
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capacity, based on the amount of FFA made available to the muscles.  Measurement of 

circulating lipid-derived energy substrates, as well as insulin and glucose in response to a 

submaximal bout of exercise can provide insight into how alterations in adipose tissue 

vasculature regulated by VEGF may influence exercise metabolism.   

In the context of lipid-induced skeletal muscle damage, decreased β-oxidation leads to 

accumulation of lipids and hinders insulin signaling (Yu et al., 2002). However, it is also argued 

that excessive β-oxidation due to increased intramuscular lipid content can overload 

mitochondrial capacity, leading to accumulation of metabolic intermediates and ultimately a 

decrease in mitochondrial function as well as interference with insulin signaling (Koves et al., 

2008).  

Subsequently, it is unclear whether increased or decreased β-oxidation would be expected 

in adipoVEGF-/- mice.  Blunted mobilization of FFA for use by working muscle may correlate 

with a decrease in β-oxidation and/or expression of CPT1β.  However, adipoVEGF-/- mice 

exhibit increased lipid deposition in the liver, and lipid accumulation in the liver and skeletal 

muscles often coincide (Samuel et al., 2010; Sung et al., 2013).  Measurement of intramuscular 

lipid content, along with mitochondrial protein expression of CPT1β can provide insight into 

whether skeletal muscle mitochondrial function may be affected by deficiencies in adipose tissue 

vasculature regulated by VEGF, ultimately contributing to deficits in endurance exercise 

capacity.  Measurement of mitochondrial protein oxidation may provide indication of overloaded 

mitochondrial capacity leading to generation of reactive oxygen species.  Overall, there is a need 

to determine how loss of VEGF in adipose tissue can result in decreased endurance capacity. 

This project has two specific aims to identify factors that may elicit such a response. 
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Specific Aim 1 is to determine whether decreased endurance exercise capacity in 

adipoVEGF-/- mice is associated with decreased FFA substrate availability during 

endurance exercise.  It is hypothesized that adipoVEGF-/- mice will show decreased circulating 

FFA immediately following an exhaustive bout of endurance exercise, along with indications of 

greater reliance on glucose metabolism compared to littermate control mice.   

Specific Aim 2 is to determine whether adipoVEGF-/- mice exhibit decreased 

endurance capacity due to dysfunction induced by lipid deposition in skeletal muscle.  It is 

hypothesized that adipoVEGF-/- mice will show increased intramuscular triglycerides and 

subsequent skeletal muscle dysfunction when compared to controls.  

Better understanding of the role of adipose VEGF in regulating exercise metabolism will 

broaden insights on the physiological function of VEGF.  This knowledge will be important in 

developing effective therapeutic manipulations of the VEGF pathway in conjunction with 

exercise-based therapies. 
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2.1 VEGF and VEGF Receptor Function 
 
 VEGF functions to promote angiogenesis and lymphangiogenesis by regulating the 

survival, proliferation and migration of endothelial cells.  The VEGF family of proteins includes 

VEGF-A, VEGF-B, VEGF-C, VEGF-D, and VEGF-E.  Placental growth factor (PlGF) is also 

included in this grouping and shows 42% homology of amino acids with VEGF-A (Maglione et 

al., 1991; Byrne et al., 2005).  VEGF family signaling is conducted via binding to receptor 

tyrosine kinases, including VEGFR1 (Flt-1), VEGFR2 (Flk-1), and VEGFR3 (Flt-4).  Each 

contains an extracellular domain, a transmembrane region, and a tyrosine kinase domain 

(Terman et al., 1991).  Upon binding of VEGF to its receptor, receptor molecules dimerize and 

tyrosine residues become phosphorylated and activated to elicit a downstream signaling 

response.  VEGFR1 exists in both a membrane-bound and soluble form (sVEGFR1), which can 

each function to limit bioavailability of VEGF.  Although VEGFR1 possesses an affinity for 

VEGF that is 10-fold greater than VEGFR2, the tyrosine kinase function of VEGFR1 is 

significantly less active than that of VEGFR2 (Park et al., 1994).  Therefore, it is thought that the 

membrane-bound isoform of VEGFR1 can also act as a negative regulator of VEGF function by 

limiting VEGF availability to the more active VEGFR2.  Although cells that exclusively express 

VEGFR1 have been shown to participate in VEGF signaling responses, VEGFR2 is the primary 

mediator of VEGF signaling pathways in adult tissues (Gille et al., 2001).  VEGF receptors were 

originally identified on endothelial cells, but have since been identified on a nearly all cell types, 

including hematopoietic stem cells, vascular smooth muscle cells, tumor cells, and adipocytes 

(Byrne et al., 2005).          

VEGF-A (commonly, and hereafter referred to as VEGF) is thought to function mainly in 

angiogenesis.  This VEGF gene possesses eight exons, producing seven different alternatively 



 7 

spliced isoforms consisting of 121, 145, 148, 165, 183, 189, or 206 amino acids (termed 

VEGF121, etc).  Exons 1-5 are present across all isoforms, and all but VEGF148 include exon 8 

(Neufeld et al., 1999).  Alterative splicing occurs at exons 6 and 7, which code for two heparin-

binding domains.  The presence/absence of exons 6 and 7 determine how diffusible or how 

tightly bound each isoform is to the cell surface.  Isoforms possessing both exons 6 and 7 have 

the greatest affinity for the cell surface.  The most prevalent isoform and strongest stimulator of 

angiogenesis is VEGF165.  This isoform lacks only exon 6, is somewhat diffusible, and is capable 

of binding both the extracellular matrix and heparin (Park et al., 1993).  The VEGF protein is a 

42 kDa, dimeric glycoprotein playing a key role in angiogenesis-mediated physiological 

functions such as embryogenesis, wound healing, and the reproductive cycle.  Non-malignant 

disease related functions of VEGF are involved in rheumatoid arthritis, diabetes, ischemic 

retinopathies, and other conditions.  VEGF also plays a large role in supporting tumor 

development by stimulating growth of vasculature to support malignant cells (Hoeben et al., 

2004).   

The activation and downstream effects of VEGF involve many cellular pathways.  Two 

important molecules associated with well-characterized VEGF pathways include hypoxia 

inducible factor-1 (HIF-1), which plays an upstream role in VEGF activation, and nitric oxide 

(NO), a downstream target of VEGF signaling.  Tissue oxygen supply is an important regulator 

of VEGF expression.  The HIF-1 protein complex, consisting of HIF-1α and HIF-1β subunits, 

binds to the VEGF gene’s enhancer sequence.  Under conditions of appropriate oxygen supply, 

HIF-1α is degraded.  However, under hypoxic conditions, this degradation is inhibited and the 

HIF-1 complex is able to bind the VEGF enhancer sequence.  This allows for upregulation of 

VEGF, and in theory, stimulated vessel growth to facilitate increased oxygen delivery to the 
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tissue (Iyer et al., 1998).  VEGF binding to VEGFR2 initiates a signaling cascade activating 

phosphatidylinositol 3’-kinase (PI3K), which in turn activates endothelial nitric oxide synthase 

(eNOS), generating NO.  NO is a potent vasodilator and also allows for increased permeability 

of the vasculature, cellular migration, and exerts overall pro-angiogenic effects (Fulton et al., 

1999; Cooke, 2002).           

2.2 Adipose-specific VEGF 

Interestingly, a role for VEGF in metabolism has recently been identified. In an 

investigation of specific effects of VEGF in skeletal muscle, microarray analysis in muscle-

specific VEGF deficient mice showed differential expression (compared with littermate controls) 

of several genes involved in lipid metabolism and metabolic disease (Olenich SA, Audet GN, 

Szeszel-Federowicz V, Chen D, 2012).  Additionally, reduced capillarity in skeletal muscles of 

muscle-specific VEGF deficient mice leads to increased insulin resistance and maladaptation to 

exercise training (Olfert et al., 2010; Bonner et al., 2013; Gorman et al., 2014).     

Adipose tissue is highly vascularized, and capillaries within the tissue function to deliver 

oxygen, nutrients, growth factors, cytokines, stem cells, monocytes and neutrophils via the blood 

supply.  This vasculature also functions to remove waste products from the tissue and to mobilize 

fatty acids to be used as energy substrates.  In addition, it has been shown that endothelial cells 

produce growth factors and cytokines that interact with adipocytes, and vascular pericytes can 

differentiate into preadipoctyes and adipocytes (Cao, 2010).  Thus, the vasculature is an 

important component of adipose development, health, and plasticity, which greatly affects 

overall metabolic health. 

It follows that studies have investigated the specific role of adipocyte-derived VEGF in 

the context of metabolic dysfunction.  Elias et al. (2012) found that mice overexpressing VEGF 
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in adipose tissue were protected against hypoxia and obesity in response to high fat feeding.  

Obesity is described as an excess of adipose tissue in the body (Yach et al., 2006).  With the 

ability of adipose tissue to grow and expand continuously, chronic exposure to a high fat diet 

delivers a constant supply of triglycerides to this tissue, leading to obesity in most cases (Cao, 

2010).  In mice, diets containing approximately 40-60% kilocalories (kcal) from fat are 

commonly used to induce obesity, and consequently metabolic dysfunction (Surwit et al., 1988; 

Sung et al., 2013).  Adipose tissue functions as an endocrine organ, secreting adipokines (growth 

factors and cytokines produced by adipocytes) that participate in both local and systemic 

modifications (Waki & Tontonoz, 2007).  Excess adipose tissue is associated with increased 

expression of proinflammatory factors, as well as circulating FFA, which can each contribute to 

metabolic disease (Björntorp et al., 1969; Weisberg et al., 2003).  It has been proposed that the 

cause of this inflammatory response in obesity has links to oxidative stress and hypoxia (Sung et 

al., 2013).  

The protection from diet-induced (42% kcal from fat) obesity and hypoxia as a result of 

increased adipose VEGF shown by Elias et al. (2012) was associated with improvements in 

insulin sensitivity and glucose tolerance.  Infiltration of anti-inflammatory macrophages into 

adipose tissue was also observed, as well as increased thermogenesis and energy expenditure 

(Elias et al., 2012).  Sun et al. (2012) reported similar findings in mice overexpressing adipose 

VEGF, including transition of white adipose tissue to a more metabolically active “brown-like 

adipose tissue” phenotype through the potent, local upregulation of PGC1α and UCP1.  

Stimulation of VEGF expression had overall positive metabolic effects when induced at the 

onset of diet-induced (60% kcal from fat) weight gain, while interfering with VEGFR2 action 
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also showed positive effects, such as improved insulin resistance, in the context of pre-existing 

obesity using an ob/ob mouse model (Sun et al., 2012). 

2.3 Adipose-specific VEGF Deficient Mice     

Sung et al. (2013) have recently characterized an adipoVEGF-/- mouse model.  This Cre-

LoxP transgenic approach used the fatty acid binding protein 4 (fabp4, also known as ap2) 

promoter to limit the transcription of Cre recombinase (Cre) to the adipocyte, where it excises 

the DNA sequence between LoxP sites surrounding the exon 3 coding region of the VEGF gene 

(Gerber et al., 1999; Nagy, 2000; He et al., 2003).  This region is required for VEGF to bind to 

its receptors.  In the presence of Cre expression, this region is excised and VEGF becomes 

inactive in adipose tissue.        

In this model, adipoVEGF-/- mice under basal diet conditions showed little to no mRNA 

and protein expression of adipocyte VEGF with no change in circulating VEGF levels, a 50% 

decline in capillarity in white and brown adipose tissue, and decreases in body mass, percentage 

body fat, and fat pad mass.  Expression of VEGFR2 was also decreased, along with decreased 

adiponectin and increased TNFα mRNA expression.  These mice displayed diminished ability 

to appropriately handle oral lipid challenge by showing greatly increased circulating FFAs 3 

hours following an oil gavage (Sung et al., 2013).  In response to a high fat diet challenge (60% 

kcal from fat), both body and fat pad mass were decreased and insulin resistance was observed.  

Importantly, circulating FFAs were decreased and liver triglycerides were increased.  Lipid 

droplets were observed in the liver around portal veins in adipoVEGF-/- mice but not in controls 

(Sung et al., 2013).  Insulin resistance has been associated with deposition of lipids in both liver 

(steatosis) and skeletal muscle, and coincident lipid accumulation in these tissues has been used 

as a determinant for insulin resistance in obese humans (Samuel et al., 2010).  Thus, although 
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increased intramuscular triglycerides were not specifically shown in the characterization of the 

adipoVEGF-/- mouse, lipid accumulation in the liver and skeletal muscles often coincide and 

result in increased morbidity.  Additionally, Sung et al. (2013) observed inflammation and 

metabolic dysfunction resulting from hypoxia and adipocyte apoptosis in response to high fat 

diet in adipoVEGF-/- mice. This group proposed that hypoxia in adipose tissue (due to lack of 

VEGF-mediated vascular growth) triggers a series of events including adipocyte apoptosis, 

followed by inflammation, ectopic lipid deposition, and lipotoxicity, which culminates in insulin 

resistance.   

2.4 Adipose VEGF and Exercise  

Although an expanding body of work describes the effects of both gain and loss of 

adipose-specific VEGF function in the context of metabolic syndrome, much less is known about 

the role of adipose VEGF in the metabolic challenges triggered by exercise.  Muscle-specific 

VEGF deficient mice have been characterized and show decreased endurance capacity and an 

inability to exhibit vascular adaptations to training, indicating an important role for myocyte-

derived VEGF in exercise adaptation (Olfert et al., 2009, 2010).  This provides additional 

evidence for tissue-specific roles of VEGF in exercise.  A small number of studies have shown 

an association between exercise training and an increase in VEGF mRNA in adipose tissue of 

mice and rats (Hatano et al., 2011; Baynard et al., 2012).  Czarkowska-Paczek et al. (2011) 

described a similar increase in adipose VEGF mRNA following exercise training, but at the same 

time reported that VEGF protein levels remained unchanged.  Therefore, there is a need to better 

characterize the association between exercise and adipocyte VEGF protein expression.  There is 

a need to better understand the effects of adipose-derived VEGF on exercise capacity, the 
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mechanisms by which observed changes might be regulated, and overall metabolic effects that 

may be mediated by adipose VEGF in the context of exercise-induced stress.                   

2.5 Exercise Metabolism 

 The utilization of substrates to provide working tissues with energy has been extensively 

studied and characterized under varying intensities and types of exercise.  In general, very short 

duration exercise (i.e. up to 20 seconds) at a high intensity uses primarily creatine phosphate, 

which donates a phosphate group to ADP to form ATP for energy.  However, high intensity 

exercise exceeding approximately five seconds begins to require the input from anaerobic 

glycolysis, and reliance on this pathway increases with up to around 45 seconds of high intensity 

exertion.  At this point, contribution from aerobic energy production systems begins to take 

effect.  By two minutes of exertion, anaerobic and aerobic pathways make an equal contribution 

(Hultman, 1973).  Prolonged bouts of exercise primarily require energy from aerobic 

metabolism.  Both lipids and carbohydrates (and less frequently, proteins) can be used as energy-

producing substrates in aerobic metabolism.  Exercise intensity governs the type of fuel to be 

oxidized, such that increasing intensity elicits greater reliance on carbohydrate metabolism.  At 

rest, fat metabolism is the primary contributor to energy production, and this steadily decreases 

as exercise intensity increases.  The “crossover concept” describes this shift from reliance on fat 

to carbohydrate metabolism with increasing exercise intensity.  Thus, fat is a significant fuel 

source for prolonged low-intensity exertion, and fat oxidation progressively increases with time 

during such a bout of exercise (Powers & Howley, 2007).  As a critical regulator of adipose 

tissue vasculature, adipocyte VEGF can in turn affect the ability for this critical energy substrate 

to be mobilized and oxidized during sustained submaximal exercise (Powers & Howley, 2007). 
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Epinephrine, norepinephrine and glucagon stimulate action of lipases, which break down 

FFAs from triglycerides in adipose tissue stores, releasing them into the bloodstream to be 

delivered to the working tissue.  Other positive regulators of lipolysis include growth hormone, 

cortisol, thyroid hormones, and leptin (Horowitz, 2003).  Insulin acts as an inhibitor of this 

process (Pascual et al., 1995).  Fatty acid binding protein, fatty acid transport protein and fatty 

acid translocase (CD36) all function to move FFAs into the muscle cell (Bonen et al., 2000). 

Intramuscular triglycerides also serve as a site of storage for lipid to be used as fuel.  Once a 

long-chain fatty acid is inside the cell, it can be activated by an acyl-CoA synthase, creating a 

long-chain fatty acyl-CoA.  Carnitine palmitoyltransferase 1 (CPT1β, the muscle isoform) moves 

the acyl-CoA across the outer mitochondrial membrane, exchanging the CoA group for carnitine 

to form a long-chain acylcarnitine.  Carnitine acylcarnitine translocase transports this molecule 

across the inner mitochondrial membrane and Carnitine palmitoyltransferase 2 (CPT2) 

exchanges the carnitine group for a CoA, again creating a long-chain fatty acyl-CoA.  Now in the 

mitochondrial matrix, this fatty acyl-CoA undergoes β–oxidation, a series of steps that cleave 2 

carbon fragments off the fatty acid chain, forming molecules of acetyl-CoA, which can then 

enter the Krebs cycle and be used for oxidative metabolism and ATP production (Schreurs et al., 

2010).  Therefore, CPT1β is considered to be a rate-limiting enzyme of the β-oxidation process 

in skeletal muscle.   

The respiratory exchange ratio (RER, also known as RQ) is used to indicate the type of 

fuel being used by the body.  RER is calculated as volume of carbon dioxide produced divided 

by the volume of oxygen consumed by an individual.  Under steady state conditions (for 

example, when the subject is not engaging in hyperventilation), RER is an appropriate estimation 

of RQ.  The oxidation of one fatty acid chain produces a ratio of carbon dioxide to oxygen that is 
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equal to 0.7, while the oxidation of glucose produces a ratio equal to 1.0.  An RER of 0.7 is said 

to indicate that one is using fat as the primary fuel source, while an RER of 1.0 indicates primary 

reliance on carbohydrates.  However, it is most realistic that a combination of fat, carbohydrate, 

and (to a small degree) protein metabolism is used during submaximal exercise.  RER values 

between 0.7 and 1.0 are common, in which increasing RER indicates increasing reliance on 

carbohydrate metabolism (Powers & Howley, 2007).  

2.6 Lipid-Induced Skeletal Muscle Dysfunction 

 Adipocyte VEGF can potentially influence fatty acid mobilization, an important factor 

allowing use of lipid-derived energy to sustain prolonged low-intensity exercise.  However, 

another important scenario to consider in the context of adipose VEGF deficiency is ectopic lipid 

deposition and the promotion of insulin resistance and mitochondrial damage.  With the inability 

to be appropriately deposited in adipose tissue, lipids tend to accumulate in the liver, and likely 

in other organs such as skeletal muscle (Sung et al., 2013).   

There are two proposed mechanisms for the cause of lipid-induced insulin resistance in 

skeletal muscle.  First, it is argued that decreased β–oxidation and thus accumulation of lipids 

leads to serine phosphorylation of insulin receptor substrate 1 (IRS-1), hindering insulin 

signaling (Yu et al., 2002).  Second, other accounts provide evidence that excessive β–oxidation 

overloads mitochondrial metabolic capacity and leads to incomplete fatty acid oxidation and an 

accumulation of metabolic intermediates can lead to mitochondrial stress, insulin resistance, and 

overall decreases in function (Koves et al., 2008).  Generation of reactive oxygen species 

(generally produced by high levels of metabolic processes) has been shown to activate serine 

kinases that phosphorylate IRS-1, a possible mechanism by which excessive β–oxidation could 

contribute to insulin resistance (Bloch-Damti & Bashan, 2005).  Detrimental effects of 
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incomplete fatty acid oxidation are further supported by the “athlete’s paradox.”  Goodpaster et 

al. (2001) provide evidence that obese, sedentary individuals display insulin resistance due to 

elevated intramuscular lipid content, while lean athletes show similarly elevated intramuscular 

triglycerides but are able to appropriately use them as a fuel source due to high oxidative 

capacity, and therefore do not experience the same negative effects.  Additionally, links have 

been shown between oxidative stress, compromised mitochondrial respiration and decreased 

exercise capacity in diabetic mice (Yokota et al., 2009).  Collectively, these findings provide 

evidence that increased lipid content and insufficient oxidative capacity in skeletal muscle can 

contribute to decreased exercise capacity due to insulin resistance and mitochondrial damage. 

2.7 Links between Adiposity, Age, Sex, and Exercise  
 

Sex differences exist in body fat distribution such that female mammals possess relatively 

more subcutaneous and fat in the lower-body region, while males tend to deposit more visceral 

fat, which is associated with increased risk of heart disease and type 2 diabetes (Chen et al., 

2012).  Studies point to estrogens, progestins, and androgens as contributors to these differences.  

Menopause-related decreases in these hormones in women are associated with increased adipose 

tissue accumulation in the abdominal region (Brown et al., 2010).  Interestingly, subcutaneous 

fat is considered to be a greater contributor of FFA delivery to skeletal muscle for energy use 

during exercise (Horowitz, 2003).   

During the aging process, general decreases in bone mineral density and skeletal muscle 

mass occur, along with increased accumulation of adipose tissue (Fontana & Klein, 2007).  It has 

been shown in humans and rodents that mutations to mitochondrial DNA occur naturally with 

age.  This leads to systemic degeneration and decreased stress tolerance, contributing to 

decreased exercise capacity (Khaidakov et al., 2003).  However, mice engaging in regular 
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endurance exercise throughout their life span are shown to be protected from age-related 

mitochondrial dysfunction (Safdar et al., 2011).     

2.8 Summary of Background and Significance  

 VEGF is an important stimulator of tissue angiogenesis, and has been shown to be 

important in the metabolic function of adipose tissue.  Loss of adipose VEGF results in 

detrimental metabolic effects and decreased endurance exercise capacity in mice, however little 

is known about the direct role of adipose VEGF in this context.  VEGF deficiency in adipose 

tissue can potentially lead to decreased ability to mobilize and utilize FFA, an important fuel 

source during sustained submaximal exercise.  Additionally, inability to deposit FFA in adipose 

stores leads to ectopic lipid deposition.  In skeletal muscle, increased lipid deposition in the 

absence of compensatory increases in oxidative capacity leads to mitochondrial damage and 

insulin resistance.  Consequently, there is a need to clarify the role for adipocyte VEGF in 

influencing factors that can contribute to exercise intolerance. 
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ABSTRACT 
 

Reducing vascular endothelial growth factor (VEGF) in adipose tissue alters adipose vascularity 

and metabolic homeostasis.  We hypothesized that this would also affect metabolic responses 

during exercise-induced stress, and that adipocyte-specific VEGF deficient (adipoVEGF-/-) mice 

would have impaired endurance capacity.  Endurance exercise capacity in adipoVEGF-/- (n=10) 

and littermate control (n=11) mice was evaluated every 4 weeks between 6 & 24 weeks of age 

using a submaximal endurance run to exhaustion at 20 m/min, 10-degree incline.  Maximal 

running speed, using incremental increases in speed at 30-second intervals, was tested at 25 

weeks of age.  Beginning at 6 weeks, and continuing with all time points, endurance run time to 

exhaustion was 30% lower in adipoVEGF-/- compared to controls (p<0.001). The age-associated 

rate of decline in endurance capacity was similar in adipoVEGF-/- vs. control mice and there was 

no difference in maximal running speed between the groups.  Following 1 hour of running at 

50% maximum running speed, adipoVEGF-/- mice displayed decreased circulating insulin, 

(p<0.001), glycerol (p<0.05), and a tendency for decreased glucose (p=0.06) compared to 

controls.  These data suggest that deficits in adipose tissue vasculature are mediated by adipose 

VEGF and that deficiency of VEGF blunts the availability of lipid-derived substrates during 

endurance exercise and affects insulin secretion and glucose metabolism.  

Abbreviations 

adipoVEGF-/-, adipose specific VEGF deficient; BAT, brown adipose tissue; C:A, capillary to 

adipocyte ratio; C:F, capillary to muscle fiber ratio; CPT1β, carnitine palmitoyltransferase-I beta; 

Cre, cre recombinase; Fabp4, fatty acid binding protein 4; FFA, free fatty acids; PGC1α, 

peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PLT, plantaris muscle; 
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SOL, soleus muscle; UCP1, uncoupling protein 1; VEGF, vascular endothelial growth factor; 

WAT, white adipose tissue  

INTRODUCTION 
 

Vascular endothelial growth factor (VEGF) has been classically recognized as a potent, 

positive regulator of angiogenesis in both physiological and pathological contexts (Leung et al., 

1989).  It has been suggested that VEGF action is dependent on the microenvironment, such that 

its activity and effects may be specific to the cell type from which it was produced (Olfert et al., 

2009, 2010).  Recent studies have investigated the function of adipose-derived VEGF in 

regulating metabolic homeostasis through angiogenesis (Sun et al., 2012; Elias et al., 2012; Sung 

et al., 2013).   

Adipose tissue is highly vascularized, and capillaries that surround adipocytes function to 

deliver oxygen, nutrients, growth factors, cytokines, stem cells, monocytes and neutrophils via 

the blood supply.  This vasculature also functions to remove waste products from the tissue and 

to mobilize fatty acids to be used as energy substrates (Cao, 2010).  Thus, the vasculature is an 

important component of adipose development, health, and plasticity, which greatly affect overall 

metabolic health.  Studies have investigated the specific role of adipocyte-derived VEGF in the 

context of metabolic dysfunction (Sun et al., 2012; Elias et al., 2012; Sung et al., 2013).  For 

example, Elias et al. (2012) found that mice overexpressing VEGF in adipose tissue were 

protected against hypoxia and obesity in response to high fat feeding, along with displays of 

increased insulin sensitivity and glucose tolerance.  Sun et al. (2012) have reported similar 

findings in mice overexpressing adipose VEGF, including transition of white adipose tissue to a 

more metabolically active “brown-like adipose tissue” phenotype through the potent, local 

upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) 
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and uncoupling protein 1 (UCP1).  Finally, Sung et al. (2013) have recently show that adipose-

specific VEGF deficient (adipoVEGF-/-) mice on a high fat diet show decreased adipose 

capillarity, fat pad mass, body mass, and percentage body fat compared to controls. 

AdipoVEGF-/- mice also exhibit increased lipid deposition in the liver.  Lipid accumulation in 

the liver and skeletal muscles often coincide, and increased fat deposition in skeletal muscle has 

been shown to induce mitochondrial dysfunction (Koves et al., 2008; Samuel et al., 2010).  This 

inability to deposit lipids in adipose tissue could also suggest a concurrent inability to 

sufficiently mobilize and utilize free fatty acids (FFA) as an energy substrate.  Taken together, 

these observations suggest an important link between adipose VEGF and alteration of energy 

metabolism.  While a small number of studies have shown an association between exercise and 

an increase in VEGF mRNA in adipose tissue of mice and rats (Hatano et al., 2011; Baynard et 

al., 2012), little is known about the role of adipose-derived VEGF in exercise capacity and 

exercise metabolism.  

The purpose of this study was to evaluate endurance capacity and substrate utilization in 

response to exercise in adipoVEGF-/- mice compared to controls.  We hypothesize that 

adipoVEGF-/- mice will show decreased endurance running capacity compared to controls, 

owing to an inability to mobilize and utilize lipid-derived energy from adipose tissue stores 

during submaximal exercise.  To test this hypothesis, we performed submaximal endurance and 

maximal running speed testing at several time points in adipoVEGF-/- and control mice, and 

subsequently measured levels of circulating glucose, insulin, glycerol and free fatty acids (FFA) 

in response to a one-hour submaximal run.  We also examined protein expression of carnitine 

palmitoyltransferase-I β (CPT1β) in mitochondria isolated from skeletal muscle of these mice to 
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investigate potential differences in β-oxidation, as well as mitochondrial protein oxidation to 

gauge mitochondrial health. 

MATERIALS AND METHODS 
 

All experiments were approved by and conducted in accordance with the guidelines of 

the West Virginia University Institutional Animal Care and Use Committee.  All mice were kept 

on a 12-hr light/dark cycle schedule, housed between 2 and 5 to a cage and given access to a 

standard chow diet and water ad libitum, except when otherwise noted.   

Generation of adipoVEGF-/- mice: Mice expressing Cre recombinase (Cre) under control 

of the fatty acid binding protein 4 (fabp4) promoter were purchased from The Jackson 

Laboratory (stock no. 005069, Bar Harbor, ME).  This line was crossed with a VEGF LoxP line 

originally obtained from Dr. Napoleone Ferrarra (Gerber et al., 1999) to produce a line in which 

VEGF expression is “knocked down” in white and brown adipose tissue (adipoVEGF-/-).  Both 

lines are of the C57BL/6 background.  All experimental animals were homozygous for the 

presence of LoxP sites on the VEGF gene.  AdipoVEGF-/- mice possessed the fabp4/Cre 

transgene (Cre+), while littermate control mice did not express the Cre gene (Cre-) (Figures 1A 

and 1B).   

Genotyping was carried out via 2 separate PCR reactions performed on genomic DNA 

extracted from tail snips of weanlings using an all-in-one tail lysis buffer (Allele Biotechnology).  

For detection of VEGF LoxP sites, forward primer 5’-TCCGTACGACGCATTTCTAG-3’ and 

reverse primer 5’-CCTGGCCCTCAAGTACACCTT-3’ were used.  VEGF LoxP PCR products 

were amplified using 30 cycles of 94°C for 1:15, 53°C for 1:39, and 72°C for 2:50.  For 

detection of Cre, forward primer 5’-GCATTACCGGTCGATGCAACGAGTG-3’ and reverse 

primer 5’-GAACGCTAGAGCCTGTTTTGCACGTTC-3’ were used.  An internal control 
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primer set of forward 5’-ACGTACATGGCTGGGGTGTT-3’ and reverse 5’-

ACAGTTTCACCTGCCCTGAGT-3’ were also used in this reaction.  Cre PCR products were 

amplified using 35 cycles of 94°C for 0:20, 59°C for 0:30, and 72°C for 0:55 and all products 

were resolved and visualized using gel electrophoresis.   

VEGF Expression in adipoVEGF-/- Tissues: To show instance of deletion between LoxP 

sites within the VEGF gene, genomic DNA was isolated from white adipose tissue (WAT), 

brown adipose tissue (BAT) and gastrocnemius skeletal muscle using a DNeasy Blood and 

Tissue Kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions (n=4 male 

adipoVEGF-/- and 4 male control samples per tissue type).  Primer binding sites were situated 

outside of the LoxP sites, such that a PCR product could only be formed if the region between 

LoxP sites had been excised by Cre (the alternative product is too large to be amplified).  For 

detection of deletion, forward primer 5’-CTTCATGGACAGGCTTCGGT-3’ and reverse primer 

5’-GCCCATATTCCAGAGACGGG-3’ were used.  PCR products were amplified using 30 

cycles of 94°C for 0:30, 55°C for 0:45, and 72°C for 1min.  Products were resolved using gel 

electrophoresis (ethidium bromide-stained agarose gel, 1.5%) and imaged using Genesnap 

software (version 7.01) from a digital imager (G-Box Chemi16, Syngene, Cambridge, UK).  To 

analyze VEGF mRNA expression, total RNA was extracted from WAT, BAT and GA using an 

RNeasy Lipid Tissue Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s 

instructions (n=4 male adipoVEGF-/- and 4 male control samples per tissue type).  Reverse 

transcription was performed using a High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Foster City, CA).  For detection of VEGF, forward primer 5’-

GGCCTCCGAAACCATGAACT-3’ and reverse primer 5’-AGCTTCGCTGGTAGACATCC-3’ 

were used.  For an internal loading control, QuantumRNA™ 18S Internal Standards primers 
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(Ambion®, Austin, TX) were used according to the manufacturer’s instructions.  PCR products 

were amplified, resolved and imaged as described above.  Relative VEGF expression was 

determined by normalizing the optical density of the VEGF product band to that of the 18s 

product band using NIH ImageJ software (version 1.46r).           

Exercise Protocols and Body Composition Analysis: For all experiments, adipoVEGF-/- 

mice (n=10; 5 males, 5 females) mice and littermate controls (n=11; 7 males, 4 females) were 

used.  Mice were subjected to sub-maximal endurance exercise testing once every 4 weeks, 

starting at 6 weeks and continuing to 24 weeks of age.  The running speed used for sub-maximal 

endurance testing was determined based on a targeted range of percentage of maximal running 

speed correlating with a range of exercise intensity that would elicit reliance on fat metabolism.  

Running speed has been shown correlate closely with oxygen uptake in untrained mice and rats.  

Maximal treadmill running speed ranges between 35 and 45 m/min in untrained C57BL/6 mice 

(Høydal et al., 2007; Olfert et al., 2009; Malek & Olfert, 2009).  Based on this range, it was 

determined that submaximal endurance testing conducted at 20 m/min would elicit between 44% 

and 57% effort (with % effort increasing to the higher end of this range with increasing age). 

Mice were placed on a treadmill (Columbus Instruments, Exer-6M Treadmill, Columbus, OH) 

set at a 10° incline and were given a few minutes to acclimate to the new environment.  A warm-

up period was then allowed, consisting of running for 5 min at 4 m/min, 2 min at 10 m/min and 2 

min at 15 m/min.  The speed was then increased to 20 m/min and kept constant until the animal 

was unable to continue, and total time to exhaustion was recorded.  Exhaustion was defined as 

the point at which the animal could no longer get back on to the treadmill and continue running, 

despite receiving electric shock from the grid located just underneath the end of the treadmill 

belt.  At 25 and 37 weeks of age, each animal completed a maximal running capacity test.  This 
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test consisted of running at a 10° incline, beginning with a 5 min warm-up period at 4 m/min and 

then increasing speed in increments of 2 m/min every 30 sec until exhaustion.  Maximum 

running speed achieved was recorded. Body composition analysis was conducted on each animal 

24 hours prior to the endurance run test at each time point using an EchoMRI-100 analyzer 

(Houston, TX), which gave in vivo measurements (in grams) of total body fat mass and lean 

mass.     

Oral Glucose Tolerance Test: All blood glucose measurements (TRUEtest, Walgreen 

Co.) were conducted using a small sample of tail blood.  For oral glucose tolerance testing, mice 

were trained to voluntarily consume a bolus of glucose delivered via gelatin vehicle as 

previously described (Zhang, 2011).  Briefly, glucose gelatins were prepared by mixing solutions 

of 14% gelatin (Kroger Co.) and 75% glucose (Sigma-Aldrich, St. Louis, MO) in water.  One 

well of a 24-well tissue culture plate was used as a mold for one glucose gelatin containing 0.9g 

of glucose.  The solution was allowed to set overnight at 4°C.  Mice were conditioned to 

voluntarily consume a small piece of glucose gelatin over a period of 4 days.  On the evening 

prior to the first day, each animal was singly housed and subjected to an overnight fast 

(approximately 20 hrs).  At the end of the fast, each mouse was presented with a piece of glucose 

gelatin (approximately 1/8 of one whole glucose gelatin) and was re-fed with normal chow once 

the entire piece was consumed.  For the next three days, a piece of glucose gelatin was given at 

the same time of day (without prior fasting).  Following the end of the 3-day conditioning period, 

the oral glucose tolerance test (OGTT) was performed.  For the OGTTT, mice were subjected to 

a 6 hr fast, after which basal blood glucose measurements were taken and each mouse was 

presented with gelatin containing a dosage equivalent to 3g glucose/kg body mass.  Mice were 

excluded from OGGT analysis if they did not consume the entire piece of gelatin within 2 
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minutes of presentation.  Blood glucose was measured and recorded at 15, 30, 60, 90, and 120 

mins following completion of consumption of the glucose gelatin.   

Measurement of Glucose, Insulin, FFA and Glycerol Response to Submaximal Exercise:  

Basal, 6 hr fasting blood glucose measurements were taken as described above, after which the 

mice were subjected to 60 min of running at 15 m/min (speed was decreased from 20 m/min 

used for the periodic endurance run tests in order to account for increased age at this time point) 

at a 10° incline.  Immediately following running, blood glucose was measured from tail blood 

with a glucose meter (TRUEtest, Walgreen Co.), and up to 200μl of blood was collected via 

submandibular puncture for glycerol, FFA and insulin analyses.  The sample was allowed to clot 

at room temperature for 20 mins, spun at 2,000g for 10 min at 4°C to remove the clot, and the 

serum supernatant was transferred to a new tube and stored at -80°C until further analysis.  

Insulin was measured via ELISA (Crystal Chem, Inc., Downers Grove, IL) according to the 

manufacturer’s instructions.  Glycerol and FFA were measured using a plate-based assay (Zen-

Bio, Inc., Research Triangle Park, NC) according to the manufacturer’s instructions.  Optical 

densities for these assays were determined with a microplate reader (BioRad Model 550, Global 

Medical Instrumentation Inc., Ramsey, MN).  Basal fasting serum was collected from each 

animal as described above several days prior to running and analyzed at the same time of day as 

post-exercise serum.      

Tissue Collection and Processing:  At 45 weeks of age, mice were anesthetized via 

intraparitoneal injection of a Ketamine/Xylazine cocktail (Ketaject 100mg/kg, Xylazine 5mg/kg) 

and sacrificed for collection of adipose, skeletal muscle, and various organ tissues.  Tissues were 

excised, weighed, and flash frozen in liquid nitrogen unless otherwise noted.  Portions of WAT 

(extracted from gonadal region) and BAT (interscapular region) were fixed in 10% neutral 
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buffered formalin for 72 hours at 4°C in preparation for histological analysis.  The triceps surae 

muscles from one leg of each mouse were dissected, trimmed to obtain the mid-belly portion, 

mounted in a transverse position on a cork base using OCT tissue freezing medium, and flash 

frozen in liquid nitrogen-cooled isopentane.  To obtain a subsarcolemmal mitochondrial sub-

population, quadriceps femoris muscles from each leg of male adipoVEGF-/- and control mice 

were excised, weighed, immediately placed in 1.75mL/sample freshly prepared, cold Chappell-

Perry buffer (100 mM potassium chloride, 50mM 3-(N-morpholino)propanesulfonic acid, 1mM 

ethylene glycol tetraacetic acid, 10mM magnesium sulfate, 1mM adenosine triphosphate, pH 

7.4) supplemented with a protease inhibitor cocktail (BioVision, Inc. #K271-500), and finely 

minced with scissors.  Both quadriceps muscles from each animal were used for mitochondrial 

assessment.  Each sample was disrupted with a Potter-Elvehjem homogenizer and centrifuged at 

800g for 10 min at 4°C a total of 3 times to remove debris.  The final supernatant was spun at 

10,000g for 10 min at 4°C. The pellet was rinsed, resuspended in Chappell-Perry buffer, spun 

again at 10,000g for 10 min at 4°C, rinsed with phosphate-buffered saline and resuspended in 

RIPA buffer (Sigma-Aldrich, St. Louis, MO).  Total protein concentrations were determined 

using the Lowry method according to the manufacturer’s instructions (DC™ Protein Assay, Bio-

Rad, Hercules, CA).  With the exception of adipose tissue preserved in 10% neutral buffered 

formalin, all samples were stored at -80°C until further processing.    

Histochemistry and Image Analysis: To assess adipose tissue capillarity, fixed WAT and 

BAT was processed to paraffin blocks, cut into 5μm sections, mounted on glass slides and 

stained with CD31 antibody for endothelial cell labeling (1:50, ab28364, abcam, Cambridge, 

UK).  Using light microscopy (Zeiss primo star, Zeiss, Oberkochen, Germany), images were 

taken at 40x magnification for BAT and 20x for WAT (Axiocam IC c3, Axiovision 4.8.2.0, 
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Zeiss, Oberkochen, Germany).  Up to 10 random, non-overlapping images were captured from 

each sample.  Using Matlab (Version r14), the capillary-to-adipocyte ratio (C:A) in WAT was 

determined by dividing the total number of capillaries by the total number of adipocytes in each 

image.  For BAT, capillary density for each image was determined by dividing the total number 

of capillaries counted by the area of tissue contained by that field of view.  To assess skeletal 

muscle capillarity, frozen soleus (SOL) and plantaris (PLT) muscles embedded in tissue freezing 

medium were cut into 8μm transverse cryosections and placed on glass slides.  Tissues were 

stained using the alkaline phosphatase and dipeptidylpeptidase capillary staining method 

(Mrázková et al., 1986) and imaged at 20x magnification as described above, with the exception 

that successive, non-overlapping images were taken to capture the entire area of each muscle.  

Capillary-to-fiber ratio (C:F) was determined by counting the total number of capillaries and 

dividing by the total number of muscle fibers in each image using Matlab.       

Protein Analysis:  Basal protein expression of CPT1β and protein oxidation were 

analyzed using western blotting.  Samples of isolated subsarcolemmal mitochondria in RIPA 

buffer were passed through a 27G needle 10 times. For CPT1β, 20ug of total protein were 

reduced, denatured, separated using SDS-PAGE gel electrophoresis, transferred to a 

nitrocellulose membrane, stained with Ponceau S (Boston BioProducts, Ashland, MA) and 

imaged.  Ponceau S stain was neutralized with 0.1M NaOH and the membrane was rinsed in 

deionized water and then tris-buffered saline with 0.05% Tween-20 (TBST) before blocking with 

5% non-fat dry milk (NFDM) in TBST, and exposed to primary (1:200, H-120: sc-20670, Santa 

Cruz Biotechnology, Santa Cruz, CA) and secondary (1:1000, anti-rabbit IgG HRP-linked  

#7074, Cell Signaling Technology, Danvers, MA) antibodies diluted in 1% NFDM in TBST. 

Chemiluminescent detection was carried out using ECL blotting substrate (Denville Scientific, 
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Inc., South Plainfield, NJ) and images were captured using Genesnap software (version 7.01) 

from a digital imager (G-Box Chemi16, Syngene, Cambridge, UK).  Protein expression was 

quantified using NIH ImageJ software (version 1.46r) and represented as optical density in 

arbitrary units (AU), normalized to total protein obtained from Ponceau S staining.  For analysis 

of protein oxidation, the OxyBlot™ Protein Oxidation Detection Kit (EMD Milipore, Billerica, 

MA) was used according to the manufacturer’s instructions.  Chemiluminescent detection and 

quantification of protein oxidation was carried out as described above, with the exception that 

the membrane was stripped of primary and secondary antibodies using Restore™ Western Blot 

Stripping Buffer (Pierce Biotechnology, Rockford, IL), stained with Ponceau S and imaged to 

obtain measurement of total protein after initial probing and imaging of signal indicating protein 

oxidation.           

Statistical Analyses:  All data are presented as mean ± SEM.  Statistical analyses were 

carried out using Statview Statistical Software package (v5.0.01, SAS Institute Inc., Cary, NC).  

Significance was accepted at an α of p<0.05.  When comparing adipoVEGF vs. control mice for 

VEGF expression, tissue capillarity, CPT1β expression, and oxidative damage, a student’s t test 

was used.  For examining effect of genotype and sex on tissue masses, a 2-way ANOVA was 

used.  A repeated measures ANOVA (rANOVA) was used to analyze body mass, percent body 

fat, endurance running capacity and maximal running speed, glucose tolerance, and response of 

glucose, insulin, glycerol, and FFA to exercise.  Where a main effect was observed, post hoc 

testing was performed using student’s t tests.  Student’s unpaired t tests were used to compare 

adipoVEGF-/- to control mice for a given condition or at a given time-point.  When examining 

the effect of exercise on a circulating factor (i.e. glucose, insulin, glycerol, or FFA) within the 

same grouping of mice, student’s paired t tests were used.   
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RESULTS 
 

Tissue VEGF expression and capillarity. Detection of the Cre transgene in tail snip DNA 

from adipoVEGF-/- mice was confirmed by a PCR product of 380 base pairs (Figure 1A, lane 1), 

while this product was absent in control samples (Figure 1A, lane 2).  All experimental animals 

were homozygous positive for presence of LoxP sites, indicated by a PCR product at 150 base 

pairs (Figure 1B, lane 1).  AdipoVEGF-/- mice showed a PCR product of 670 base pairs in WAT 

and BAT indicating deletion between LoxP sites in genomic DNA, while this band was absent in 

WAT and BAT from control mice and skeletal muscle of both adipoVEGF-/- and control mice 

(Figure 1C).  Presence of VEGF mRNA (corresponding to a sequence between the LoxP floxed 

region) was indicated by a PCR product at 160 base pairs (Figure 1D).  AdipoVEGF-/- mice 

showed a 50% decrease in VEGF mRNA expression in WAT, and a 90% decrease in BAT 

(p<0.01), and no difference in VEGF mRNA expression in skeletal muscle (Figure 1E).   

For tissue capillarity, adipoVEGF-/- mice showed a 40% decrease in C:A in WAT 

(p<0.01, Figure 2C), and a 40% decrease in capillary density in BAT (p<0.05, Figure 2D) 

compared to controls.  There was no difference in C:F of either PLT or SOL tissue (Figure 2E 

and 2F).         

Animal body mass, body fat, and tissue characteristics. Body mass in adipoVEGF-/- mice 

was significantly different at 24 weeks old (p<0.05, Figure 3A) and displayed a significant main 

effect for sex.  Male adipoVEGF-/- mice showed decreased body mass compared to controls at 

all time-points (p<0.05, Figure 3B), while there was no difference in body mass in female mice 

(Figure 3C).  When combining males and females, percentage body fat was significantly 

decreased in adipoVEGF-/- mice at 12 and 24 weeks old (p<0.05, Figure 3D).  In males, 

adipoVEGF-/- mice showed significantly decreased percentage body fat at 12 weeks (p<0.05, 
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Figure 3E), while the same effect was seen in females at 24 weeks (Figure 3F).  Overall, there 

was a trend towards decreased body mass and percentage body fat in adipoVEGF-/- mice 

compared to controls. 

At the time of sacrifice at 45 weeks old, control WAT tissue mass was two times greater 

(p<0.05) and control BAT tissue mass was three times greater (p<0.0001) than adipoVEGF-/- 

mice (Table 1).  A similar effect on WAT and BAT tissue mass was observed when considering 

male and female groups separately, with the exception that the increase in female control WAT 

mass was not statistically significant (Table 2).  When comparing males to females of the same 

genotype, adipoVEGF-/- and control males had a greater heart mass than their female 

counterparts (p<0.05), and control males had a greater soleus mass than control females (p<0.05, 

Table 2).  

Endurance and maximal running speed performance. When subjected to submaximal 

exercise capacity testing, adipoVEGF-/- mice showed a significant 30% decrease (rANOVA 

p<0.001) in time to exhaustion compared to controls (Figure 4A).  There was no difference in the 

age-associated rate of decline between the groups; both adipoVEGF-/- and control mice showed 

a similar 37% decline in time to exhaustion from the age of 6 to 24 wks.  There was no 

difference in maximal running speed between adipoVEGF-/- and control mice and both groups 

showed a similar age-related decline (Figure 4B). 

Response to oral glucose tolerance testing. There were no significant differences in blood 

glucose levels at any time-point during an oral glucose tolerance test (Figure 5).  

Response of circulating substrates to submaximal exercise. Combining males and 

females, no difference was observed in basal blood glucose levels.  In response to one hour of 

submaximal exercise, there was a significant drop in blood glucose in both adipoVEGF-/- and 
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control mice (p<0.01).  AdipoVEGF-/- mice exhibited a trend towards decreased post-exercise 

blood glucose compared to controls (rANOVA p=0.06, Figure 6A).  In males, post-exercise 

blood glucose was significantly decreased compared to basal in control mice (p<0.01), and a 

trend towards the same effect was observed in adipoVEGF-/- males (p=0.06, Figure 6B).  No 

differences were observed in female basal or post-exercise blood glucose (Figure 6C).  Basal 

insulin was significantly decreased in adipoVEGF-/- mice compared to controls (p<0.05), and 

was decreased in response to exercise (p<0.01) in both groups in all cases (all, male, and female 

mice, Figure 6D-E).  When combining male and female data, insulin was significantly decreased 

in adipoVEGF-/- mice compared to controls (p<0.05, Figure 6D and 6E), this did not hold true 

for female-only data (Figure 6F).  Post-exercise circulating glycerol was significantly decreased 

in all adipoVEGF-/- mice compared to controls (p<0.01, Figure 6G), and there was a trend 

towards decreased post-exercise circulating FFA in adipoVEGF-/- mice compared to controls 

(p=0.06, Figure 6H).     

Protein expression and oxidation in skeletal muscle mitochondria. There were no 

significant differences in protein expression of CPT1β or protein oxidation in subsarcolemmal 

mitochondria isolated from quadriceps femoris muscles (Figure 7).   

DISCUSSION 
 

The principle finding of this study is that adipose-specific VEGF deficient mice show 

decreased endurance running capacity without a concurrent decrease in maximal running speed.  

Following one hour of sub-maximal exertion, adipoVEGF-/- mice displayed decreased 

circulating levels of glucose, insulin, and glycerol compared to littermate controls.  These data 

suggest that deficits in adipose tissue vasculature are regulated by adipose derived VEGF, blunt 
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the availability of lipids from adipose tissue stores during endurance exercise, and affect insulin 

secretion and sensitivity.     

Basal characteristics of adipoVEGF-/- mice 

 As expected, adipoVEGF-/- mice showed decreased VEGF mRNA content in WAT and 

BAT, but no difference in non-adipose tissue (such as skeletal muscle).  The reduction of VEGF 

in adipocytes led to a decrease in adipose tissue capillarity (Figure 1).  At the time of sacrifice, 

adipoVEGF-/- WAT tissue mass was reduced two-fold, and BAT was reduced three-fold 

compared to controls (Tables 1 and 2).  At younger ages (6 weeks), no differences in percentage 

body fat were observed, but by 24 weeks, percentage body fat was significantly lower in 

adipoVEGF-/- mice.  However, the difference in body fat percentage was not nearly as dramatic 

as the difference seen in individual adipose tissue masses and did not reach statistical 

significance at many time points (Figure 3).  This discrepancy could be due to the lapse in age 

when these measurements were taken (tissue masses collected at 45 weeks old), however could 

also be affected by varied distribution of body fat between the groups.  Regardless, these data are 

in agreement with the findings of Sung et al. (2013), that adipoVEGF-/- mice show little 

difference in body mass, a small decrease in body fat percentage, and dramatic decrease in 

gonadal fat tissue mass under basal conditions.  Collectively, these data suggest that adipose-

specific VEGF deficiency reduces WAT mass at the gonadal and BAT at interscapular regions.  

Although adiposity is decreased in adipoVEGF-/- mice, adipose tissue lacking the angiogenic 

effects of VEGF is found to be hypoxic, inflammatory, metabolically dysfunctional, especially 

under conditions such as high fat feeding (Sun et al., 2012; Sung et al., 2013).  This points to 

stimulation of adipose tissue angiogenesis as a potential therapeutic intervention in metabolic 

diseases.   
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Response to endurance and maximal exercise  

AdipoVEGF-/- mice displayed decreased endurance running capacity, without a 

concurrent decrease in maximal running speed (Figure 4).  This suggests an alteration in 

substrate availability or utilization in adipoVEGF-/- mice, rather than a change in maximal 

oxygen uptake capacity.  To test this, we measured circulating glucose, insulin, glycerol and FFA 

under basal, fasted conditions and again immediately following one hour of submaximal exercise 

(Figure 6).  In control animals, the response of these metabolites to the given intensity and 

duration of exercise was physiologically appropriate, i.e. glucose and insulin fell and FFA and 

glycerol were elevated at the end of the exercise bout (Zinker et al., 1990).  In response to 

exercise, glucose displayed a trending decrease and insulin and glycerol were significantly 

decreased in adipoVEGF-/- mice.  Notably, glycerol trended downward in response to exercise 

in adipoVEGF-/- mice, but increased over this duration in control animals.  Similar results were 

seen for FFA, where there was a slight trend towards increasing FFA during exercise in 

adipoVEGF-/- mice, while FFA was significantly increased in controls over this duration (Figure 

6).  Post-exercise FFA was down in adipoVEGF-/- mice compared to controls.  Overall, these 

data suggest that adipoVEGF-/- mice were unable to mobilize lipid-derived substrate into the 

bloodstream to the same degree as littermate controls during submaximal exercise.  

We speculate that the inability to mobilize lipid-derived energy during submaximal 

exercise is due to decreased perfusion of the adipose tissue as a result of VEGF deficiency and 

reduced adipose vascularity.  This could be due to an inability to move FFA into the bloodstream 

and/or carry FFA away from the tissue once released from adipocytes. 

It is well accepted that insulin secretion is blunted during prolonged low intensity 

exercise to allow for lipolysis (Wasserman et al., 1989).  This could also explain the post-
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exercise deficit in insulin in adipoVEGF-/- mice compared to controls.  If lipid substrates are not 

made available at an appropriate rate during exercise, this may elicit a feedback loop to further 

suppress insulin secretion in order to increase lipolysis and stimulate an increase in circulating 

FFA.  Interestingly, basal fasting insulin was also decreased in adipoVEGF-/- mice compared to 

controls (Figure 6).  It is plausible that this decrease serves to raise FFA under conditions of 

comprised ability to mobilize them at rest, as well.  Quantification of HSL phosphorylation in 

adipose tissue under basal fasted conditions would aid in addressing this hypothesis, but was not 

performed in this study. Additionally, no difference was observed in OGTT handling under basal 

conditions (Figure 5).  Equivalent fasting blood glucose and handling of an OGTT, accompanied 

by an overall decrease in fasting insulin suggests an increase in skeletal muscle insulin sensitivity 

in adipoVEGF-/- mice.  These observations suggest that the skeletal muscles of adipoVEGF-/- 

mice may be adapting and becoming more efficient and insulin sensitive to make up for 

deficiencies in lipid substrate availability. 

Skeletal muscle characteristics of adipoVEGF-/- mice  

To rule out the possibility of adipose tissue modification leading to an unintended effect 

skeletal muscle capillarity, we confirmed that there was no difference in muscle capillarity in 

PLT and SOL muscle (Figure 2).  The DNA deletion band was not present and there was no 

difference in levels of VEGF mRNA expression in skeletal muscle of adipoVEGF-/- mice 

(Figure 1).  Protein expression of CPT1β in subsarcolemmal mitochondria isolated from the 

quadriceps femoris was measured in attempt to gauge differences in fatty acid oxidation between 

the groups, which could also be associated with deficits in endurance exercise capacity (Figure 

7).  Compared to littermate controls, no differences were observed in CPT1β protein expression 

in the skeletal muscle of adipoVEGF-/- mice.  Future quantification of fatty acid translocase 
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(CD36) expression may be helpful in examining differences in lipid transport into muscle cells 

and mitochondria of adipoVEGF-/- mice.  General protein oxidation was also measured to 

determine whether oxidative damage occurred within the muscles of adipoVEGF-/- mice (Figure 

6).  However, no difference was observed.  Overall, based on the present findings, it seems 

unlikely that the difference in endurance running capacity can be attributed to muscle capillarity 

and/or skeletal muscle mitochondrial dysfunction.   

Interpretation and significance    

Elevated circulating levels of VEGF have been shown in obese individuals and studies 

have investigated the prospect of inhibiting VEGF action in adipose tissue as a means of treating 

obesity (Kolonin et al., 2004; Cao, 2010; Wada et al., 2011).  However, our findings suggest an 

important role for adipose VEGF and maintenance of appropriate substrate availability during 

submaximal exertion, through the regulation of adipose tissue vasculature.  Our data support the 

notion that adipose VEGF is essential for the maintenance of adipose tissue health and metabolic 

homeostasis (Sun et al., 2012; Elias et al., 2012; Sung et al., 2013; Shimizu et al., 2014).  

Gaining a more specific and quantitative understanding of direct FFA release into circulation 

from adipose tissue and lipid uptake by working skeletal muscle in adipoVEGF-/- mice could be 

important in developing effective therapeutic manipulations of the VEGF pathway in 

conjunction with exercise-based therapies.  For example, the condition of adipose tissue in 

adipoVEGF-/- mice is similar to what is observed in human adipose tissue during obesity, such 

that it is undervascularized, hypoxic and inflammatory (Sun et al., 2011; Sung et al., 2013).  

Therefore, the notion that reductions in adipose capillarity can affect substrate availability during 

submaximal exercise could be applied to diet and exercise prescription targeted at the treatment 
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of obesity.  Additionally, this may influence considerations for anti-VEGF therapies along with 

diet and exercise prescription in cancer patients and survivors.     

In conclusion, adipose VEGF is an important regulator of adipose tissue capillarity, 

which affects metabolic function during prolonged, submaximal exercise conditions.  In 

agreement with our hypothesis, adipose VEGF plays an important role in the availability of lipid-

derived substrate availability during endurance exercise.  The body may attempt to compensate 

for dysregulation caused by deficits in adipose tissue vasculature through decreased insulin 

secretion and increased skeletal muscle insulin sensitivity and efficiency. 
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Figure 1. DNA and mRNA expression of VEGF in adipose and skeletal muscle tissue of 

adipoVEGF-/- vs. littermate control mice. PCR products from tail-snip DNA indicating 

presence (A, lane 1) and absence (A, lane 2) of the Cre transgene at 380 bp, with internal control 

shown at 109 bp.  Homozygosity for presence of VEGF LoxP sites (+/+) indicated by a product 

at 150 bp (B, lane 1), while homozygosity for absence of these sites (-/-) indicated by a 100 bp 

product (B, lane 2). Indication of deletion in genomic DNA between LoxP sites shown by 670 bp 

product in adipoVEGF-/- white adipose tissue (WAT) and brown adipose tissue (BAT) (C, lanes 

1 and 3 respectively) and absence of this product in control WAT and BAT (C, lanes 2 and 4 

respectively).  Absence of this deletion band also observed in both adipoVEGF-/- and control 

skeletal muscle (C, lanes 5 and 6 respectively).  VEGF mRNA expression in adipoVEGF-/- 

WAT and BAT (D, lanes 1 and 3 respectively) indicated by a 160 bp product. Control tissues 

include WAT and BAT from control mice (D, lanes 2 and 4 respectively), and adipoVEGF-/- 

and control skeletal muscle (D, lanes 5 and 6 respectively). 18s rRNA internal standard product 

shown at 489 bp (D, all lanes).  (E) Quantification of relative VEGF mRNA expression in 

indicated tissues of adipoVEGF-/- vs. control mice (n=4 per tissue, per group). Data presented as 

mean ± SEM, **p<0.01 comparing adipoVEGF-/- to control for a given tissue type.    
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Figure 2. Capillarity in WAT, BAT, and skeletal muscle of adipoVEGF-/- vs. littermate 

control mice. (A) Representative images shown at 20x magnification for white adipose tissue 

(WAT) and 40x for brown adipose tissue (BAT). (B) Representative images shown at 20x 

magnification for plantaris muscle (PLT). Scale bars represent 100µm. (C) Quantification of 

capillary to adipocyte ratio in WAT (adipoVEGF-/- n=5, control n=4) and (D) capillary density 

in BAT (adipoVEGF-/- n=2, control n=4). (E) Quantification of capillary to fiber ratio in PLT 

and (F) soleus muscles (SOL) (adipoVEGF-/- n=9, control n=10). Data presented as mean ± 

SEM, **p<0.01, *p<0.





Figure 3. Body mass and percent body fat of adipoVEGF-/- vs. littermate control mice. 

Body mass (A-C) and percent body fat (D-F) in adipoVEGF-/- (n=10; male n=5, female 5) and 

littermate control (n=11; male =7, female=4) mice. Data presented as mean ± SEM. Main effect 

values reported using repeated measures ANOVA. **p<0.01, *p<0.05 comparing adipoVEGF-/- 

to control for a given time-point. 
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Figure 4. Endurance and maximal exercise capacity testing in adipoVEGF-/- vs. littermate 

control mice. (A) Submaximal endurance capacity and (B) maximal running speed in male and 

female mice (adipoVEGF-/- n=10, control n=11). For endurance running, mice ran at 20m/min at 

a 10° incline until exhaustion. For maximal running speed, mice ran at a 10° incline and running 

speed was increased by 2m/min every 30 sec until exhaustion. Data presented as mean ± SEM. 

Main effect values reported using repeated measures ANOVA. No significant main effect or 

interaction for sex was observed for endurance running. *p<0.05 comparing adipoVEGF-/- to 

control at a given time-point. 
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Figure 5. Oral glucose tolerance in 42-wk-old adipoVEGF-/- vs. littermate control mice.  

Blood glucose over the duration of an oral glucose tolerance test in male and female mice 

(adipoVEGF-/- n=10, control n=11). Data presented as mean ± SEM. Main effect values reported 

using repeated measures ANOVA. No significant main effect or interaction for sex was 

observed. 
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Figure 6. Submaximal exercise effect on circulating substrates in 44-wk-old adipoVEGF-/- 

vs. littermate control mice. Circulating basal (fasted) and post-exercise glucose (A-C) in 

adipoVEGF-/- (n=10; male n=5, female n=5) and littermate control (n=11; male n=7, female 

n=4) mice. (D-F) Insulin in males and females combined, male only and female only mice. (G) 

glycerol and (H) free fatty acids (FFA) in male and female mice. Exercise consisted of running at 

15m/min a 10° incline for 1 hr, following a 6 hr fast. Blood glucose measurements taken from 

whole blood; insulin, glycerol, FFA measurements from serum. Data presented as mean ± SEM. 

Main effect values reported using repeated measures ANOVA. For glycerol and FFA, no 

significant main effect or interaction for sex was observed, therefore male and female findings 

are reported as combined data. **p<0.01, *p<0.05 comparing adipoVEGF-/- to control for a 

given condition. ##p<0.01, #p<0.05 comparing basal to post-exercise for a given genotype. 
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Figure 7. CPT1β expression and protein oxidation in adipoVEGF-/- vs. littermate control 

mice. (A) Subsarcolemmal mitochondrial protein isolated from quadriceps femoris muscles of 

male adipoVEGF-/- (n=4) and control mice (n=4) under basal conditions probed for CPT1β, 

shown at 75 KDa. Ponceau S stained membrane shows equally loaded total protein in each lane.  

Even numbered lanes represent adipoVEGF-/- and odd numbered lanes represent control mice. 

(B) Quantification of CPT1β normalized to total protein. (C) Membrane showing protein 

oxidation using Oxyblot. Lanes 2,4,5, and 7 represent adipoVEGF-/- (n=4) and lanes 1,3, and 6 

represent control mice (n=3). (D) Quantification of protein oxidation normalized to total protein. 

Data presented as mean ± SEM.      
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The principle finding of this work is that adipose-specific VEGF deficient mice show 

decreased endurance running capacity without a concurrent decrease in maximal running speed.  

Following one hour of sub-maximal exertion, adipoVEGF-/- mice displayed decreased 

circulating levels of glucose, insulin, and glycerol compared to controls.  These data suggest that 

rarefaction of adipose tissue vasculature (mediated by deficits in VEGF), and/or loss of adipose 

VEGF itself, blunt the availability of lipid-derived substrates from adipocyte stores during 

endurance exercise.  This ultimately impairs endurance exercise capacity, yet decreases insulin 

secretion and improves insulin sensitivity.     

4.1 General findings: Body and tissue mass, capillarity, and effects of age and sex  

 At the time of sacrifice, adipoVEGF-/- mice had half as much gonadal WAT, and one-

third as much interscapular BAT (Chapter 3, Tables 1 and 2).  Overall, there was a trend towards 

decreased percentage body fat and body mass in adipoVEGF-/- mice but these differences 

observed at up to 24 weeks of age were not nearly as dramatic as the difference seen in 

individual tissue masses and did not reach statistical significance at many time points (Chapter 3, 

Figure 3).  The discrepancy between adipose tissue mass and body composition data could be 

due to the gap in age when these measurements were taken; adipose tissue masses were collected 

at 45 weeks old, whereas percentage body fat was collected between 6 and 24 weeks old.  

Unfortunately, no body composition assessment was made at the time of sacrifice.  Regardless, 

these data are in agreement with the findings of Sung et al. (2013), that adipoVEGF-/- mice show 

little difference in body mass, a small decrease in body fat percentage, and dramatic decrease in 

gonadal fat tissue mass under basal conditions, even at younger ages (12-16 weeks).  

Additionally, unpublished supplementary data from our laboratory show that while high fat (HF) 

feeding induced increased body mass in both adipoVEGF-/- and control mice compared to their 
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normal chow (NC) fed counterparts (comparisons HF to NC within the same genotype group), 

differences in body mass with respect to genotype were small and did not reach statistical 

significance, regardless of diet (Appendix, Figure S1).  However, in this same set of animals, 

BAT tissue mass was significantly reduced (approximately 3-fold) in both male and female 

adipoVEGF-/- mice compared to controls under both the HF and NC diet conditions (Appendix, 

Tables S1-S3).  The reduction in BAT tissue mass was more dramatic under the HF condition.  

Overall reductions in adipoVEGF-/- WAT compared to controls under both HF and NC 

conditions were observed in males only, however these data were variable and not statistically 

significant.  Notably, these animals were 19 weeks old at the time of sacrifice, but the effects 

seen BAT tissue mass are similar to those observed in 45-week-old mice (NC).  This suggests 

that deficiency in adipose VEGF (affecting tissue capillarity) seems to have a more profound 

effect of tissue mass reduction in BAT, compared to WAT.  This may also occur independently 

from effects of age.                

Regarding the effect of age and sex in our studies, many of our experiments were 

conducted at an older age (approximately 40-45 weeks old).  On one hand, there was the 

potential for effects of age to exacerbate some of our findings in already-challenged  

adipoVEGF-/- mice (i.e. exercise capacity, altered substrate availability and protein oxidation), 

however it is also possible that inevitable age-related dysfunction in both groups became a 

confounding factor.  Regarding sex, there were no statistical differences observed in gonadal 

adipose tissue mass between males and females (Chapter 3, Tables 1 and 2).  This could also be 

explained by the age of the animals at the time of sacrifice (42 weeks); although males tend to 

deposit more visceral fat, females experience menopause-related decreases estrogens, progestins, 

and androgens, which are associated with increased adipose tissue accumulation in the 
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abdominal region, perhaps causing them to “catch up” to males in older age (Brown et al., 2010; 

Chen et al., 2012).  While males tended to have a greater body mass than females, there was no 

main effect for sex observed for percentage body fat between 6 and 24 weeks old. 

A discrepancy also exists in our BAT findings, such that VEGF mRNA expression was 

decreased by 90% in adipoVEGF-/- BAT, compared to only a 50% reduction in WAT (Chapter 

3, Figure 1).  However, reduction in adipoVEGF-/- BAT tissue capillarity was only about 40%, 

similar to the reduction seen in WAT (Chapter 3, Figure 2).  This suggests that there may be a 

compensatory mechanism acting to help maintain BAT tissue vasculature to a greater degree 

than in WAT.  Overall, the molecular regulation of angiogenesis involves an intricate balance 

between positive and negative regulatory proteins (Olfert & Birot, 2011).  An overall increase in 

BAT capillarity could be due to local upregulation of positive angiogenic factors other than 

VEGF (such as fibroblast growth factor and matrix metalloproteinases), acting independently 

from or in combination with a downregulation of anti-angiogenic factors (such as 

thrombospondin-1 and -2 and endostatin).  BAT, as opposed to WAT, could be targeted for this 

compensation due to its high degree of metabolic activity and role in maintaining 

thermoregulation.  Notably, a recent study found that BAT vascularity, specifically, plays a role 

in metabolism.  Shimizu et al. (2014) report impaired insulin sensitivity and dysregulation of 

blood glucose adipoVEGF-/- mice.  Associated downregulation of mitochondrial metabolic 

genes and increased appearance of large lipid droplets were observed in BAT, with an overall 

shift in BAT towards a “whitened” phenotype. With BAT-specific redelivery of VEGF, a BAT-

like phenotype was recovered, along with improvements in systemic metabolic function.  

Capillary rarefaction also occurred in both BAT and WAT as a result of obesity and 

mitochondrial ROS production and instance of mitophagy markers were observed in BAT in the 
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obese state (Shimizu et al., 2014).  Overall, these findings suggest that maintenance of BAT 

vasculature is critical for sustaining systemic metabolic homeostasis, and point to BAT as a 

specific target for future investigations of the role of VEGF and adipose tissue capillarity in 

metabolism.  

4.2 Specific aim 1  

Specific Aim 1 was to determine whether decreased endurance exercise capacity in 

adipoVEGF-/- mice is associated with decreased FFA substrate availability during endurance 

exercise.  It was hypothesized that adipoVEGF-/- mice would show decreased circulating FFA 

immediately following an exhaustive bout of endurance exercise, along with indications of 

greater reliance on glucose metabolism.  Our preliminary findings indicated that adipoVEGF-/- 

mice displayed decreased endurance running capacity, without a concurrent decrease in maximal 

running speed (Chapter 3, Figure 4).  This suggested an alteration in substrate utilization, rather 

than a change in maximal oxygen uptake capacity, in adipoVEGF-/- mice.  In order to explain 

this finding, we measured circulating glucose, insulin, glycerol and FFA under basal fasted 

conditions, and again immediately following one hour of submaximal exercise.  We found that 

adipoVEGF-/- mice displayed decreased circulating levels of glucose, insulin, and glycerol 

compared to controls following 1 hr of submaximal exertion, and that basal fasting insulin was 

also significantly decreased (Chapter 3, Figure 6).  

Decreased circulating glycerol following submaximal exercise in adipoVEGF-/- mice 

suggests that glycerol and/or FFAs are not being sufficiently mobilized from adipose tissue 

stores for use by the working skeletal muscle during such an exercise bout.  We propose that this 

inability to mobilize lipid-derived energy during submaximal exercise is due to decreased 

perfusion of the adipose tissue as a result of VEGF deficiency and the ensuing capillary 
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rarefaction.  Alternatively, these data could also suggest a novel function for VEGF, where loss 

of adipocyte VEGF (via a direct mechanism) impairs the ability to move FFA into the 

bloodstream and/or carry FFA away from the tissue once released.  

Insulin secretion is known to be blunted during prolonged low intensity exercise to allow 

for lipolysis (Wasserman et al., 1989).  This could also explain both the basal and post-exercise 

deficits in insulin in adipoVEGF-/- mice compared to controls.  If lipid substrates are not made 

appropriately available at rest or during exercise, this may elicit a feedback loop to further 

suppress insulin secretion in attempt to bring circulating FFA to required levels.  It is possible 

that such a compensatory mechanism may be sufficient at rest, explaining why no difference was 

observed in basal fasting glycerol or FFA, but insufficient under conditions of exercise-induced 

stress, explaining the decrease in glycerol in adipoVEGF-/- mice following exercise.  

Additionally, we saw no difference in glucose handling during an oral glucose tolerance test 

under basal conditions (Chapter 3, Figure 5).  This was accompanied by a decrease in basal 

fasting insulin in adipoVEGF-/- mice compared to controls.  Equivalent fasting blood glucose 

and handling of an OGTT, coupled with an overall decrease in fasting insulin suggests an 

increase in skeletal muscle insulin sensitivity in adipoVEGF-/- mice.  Circulating blood glucose 

was significantly decreased in response to submaximal exercise in adipoVEGF-/- mice, however 

glucose uptake by skeletal muscle during exercise is not insulin dependent (Hayashi et al., 1997).  

This suggests a reliance on glucose uptake for energy during submaximal exercise to compensate 

for diminished availability of lipid-derived substrates.  Overall, these observations suggest that 

the skeletal muscles of adipoVEGF-/- mice may be adapting and becoming more insulin 

sensitive and efficient to make up for deficiencies in lipid substrate availability.  Without such 

compensation, the deficit in endurance running capacity observed could have been even greater 
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in magnitude.  Measurement of GLUT4, pyruvate, glycolytic enzymes, fatty acid translocase 

(CD36), CPT1β, and citrate synthase levels and/or activities immediately following endurance 

exercise would help to gain insight to the relative efficiency of skeletal muscle in adipoVEGF-/- 

mice compared to controls.  

Our findings suggest that the maintenance of adipose tissue capillarity regulated by 

adipocyte VEGF is important in sustaining physiologic metabolic homeostasis, especially when 

exposed to a stressor.  Studies examining the role of adipose-derived VEGF in the context of 

high fat feeding and obesity confirm its importance in the maintenance of overall metabolic 

health (Sun et al., 2012; Elias et al., 2012; Sung et al., 2013; Shimizu et al., 2014).  Here, we 

demonstrate the consequences of submaximal exercise stress under conditions of adipose-

specific VEGF deficiency, and show that the body may attempt to compensate for the loss of 

VEGF through decreased insulin secretion and increased skeletal muscle insulin sensitivity.  This 

suggests a novel role for VEGF in influencing carbohydrate and lipid metabolism.   

4.3 Specific aim 2  

Specific Aim 2 was to determine whether adipoVEGF-/- mice exhibit decreased 

endurance capacity due to dysfunction induced by lipid deposition in skeletal muscle.  It was 

hypothesized that adipoVEGF-/- mice would show increased intramuscular triglycerides and 

subsequent skeletal muscle dysfunction when compared to controls.  To investigate this, we 

attempted to measure intramuscular triglycerides with oil red o staining, along with measurement 

of CPT1β protein expression and general protein oxidation in skeletal muscle mitochondria.  

Overall, no differences were observed between the groups for any of these measurements.  

To rule out the possibility of adipose tissue modification leading to an unintended effect 

skeletal muscle capillarity, we confirmed that there was no difference in muscle capillarity in 
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PLT and SOL muscles (Chapter 3, Figure 2).  Additionally, there was no difference in levels of 

VEGF mRNA expression in skeletal muscle of adipoVEGF-/- mice (Chapter 3, Figure 1), 

confirming the specificity of VEGF deletion to the adipose tissue.  

Oil red o staining was attempted on 8μm transverse cryosections of the triceps surae 

muscles collected under basal conditions from these animals.  However, there were several 

problems that occurred during this process.  The quality of the cryosections was compromised 

such that there was folding-over of the tissue around the edges of the sections, as well as 

“bubbling” of the tissue in the middle of the sections; the tissue was not laying completely flat 

against the slide in many cases, making it difficult, if not impossible, to accurately assess muscle 

fat content.  Moreover, after completing the oil red o staining protocol described by Goodpaster 

et al. (2000), accumulation of red dye and non-specific staining was observed around the edges 

of the muscle sections.  Additionally, there were vast areas of unstained tissue in the middle of 

all tissue sections (Appendix, Figure S3A). These observations were not consistent with the 

speckling of red staining seen within the muscle fibers in example images by Goodpaster et al. 

(2000).  As a positive control, cryosections of BAT and db/db soleus (SOL) muscle were stained 

at the same time as experimental sections (Appendix, Figure S3B).  BAT staining was 

successful, showing consistent dark red staining within these high-lipid containing cells.  The 

db/db SOL showed some positive staining, consistent with the expectation that a high 

intramuscular lipid content would be observed in these muscles.  However, some dye clumping 

and non-specific staining was also observed in this control muscle tissue, again complicating the 

interpretation of muscle fat content.  Overall, to the best of our knowledge, there was no instance 

of specific and/or positive oil red o staining in either adipoVEGF-/- or control samples.  
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However, to confirm this, the oil red o staining protocol used should be further optimized and 

repeated on a newly sectioned set of muscles.    

Protein expression of CPT1β in subsarcolemmal mitochondria isolated from quadriceps 

femoris muscles was measured (Chapter 3, Figure 7) in attempt to gauge differences in fatty acid 

oxidation between the groups, which may have been associated with differences endurance 

exercise capacity.  A change in CPT1β expression could have several implications.  First, as 

mentioned in regards to specific aim 1, upregulation or downregulation of CPT1β could simply 

correlate to magnitude of fatty acid oxidation affected by FFA made available to the muscles.  

However, regarding specific aim 2, there are two theories surrounding lipid-induced skeletal 

muscle damage and levels of β-oxidation.  First, it is contended that decreased β–oxidation 

causes accumulation of lipids and hinders insulin signaling (Yu et al., 2002).  On the other hand, 

there is evidence that excessive β–oxidation overloads mitochondrial metabolic capacity and 

leads to incomplete fatty acid oxidation and an accumulation of metabolic intermediates, causing 

mitochondrial stress, protein oxidation, and decrease in function (Koves et al., 2008).  In our 

mouse model, no differences were observed in CPT1β protein expression in adipoVEGF-/- mice 

compared to controls.  To further investigate the current findings, CPT1β could be measured in 

younger animals, from tissue extracted immediately following exercise, and/or in samples from 

the more oxidative soleus muscle.  The intermyofibrillar population could also be included in the 

mitochondrial extraction protocol to achieve a more complete analysis.  

General protein oxidation was also measured to investigate oxidative damage within the 

muscles of adipoVEGF-/- mice (Figure 6).  The fact that no difference was observed between the 

two groups of mice suggests that loss of adipocyte VEGF may not influence oxidative stress.  

However, these experiments should also be repeated using mitochondria isolated from the more 
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oxidative soleus muscle, including the intermyofibrillar population.  Samples from younger 

animals could also be examined, as protein oxidation due to older age could have been a 

confounding variable in this experiment. 

Overall, based on our present findings, it seems unlikely that the difference observed in 

endurance running capacity can be attributed directly to increased intramuscular lipid content or 

mitochondrial dysfunction.   

4.4 Additional future work and concerns    

It will be important to expand the current findings in order to gain a more specific and 

quantitative understanding of FFA release into circulation directly from the adipose tissue and 

lipid uptake by working skeletal muscle.  Quantification of HSL phosphorylation in adipose 

tissue under basal fasted conditions would aid in addressing this.  Additionally, adipose 

triglyceride lipase (ATGL) could be measured.  ATGL is a recently characterized protein with 

triglyceride-specific lipase activity, is regulated by insulin, and thought to be an important 

contributor to adipocyte lipolysis (Kershaw et al., 2006).  Levels of CD36 expression could also 

be quantified to assess transport of FFA into the muscle cells and mitochondria.  Examining 

muscle glycogen content, as FFA availability is known to affect glycogen depletion, could also 

provide important information (Costill et al., 1977).  Availability of glycerol and FFA affected 

by adipose tissue vascularity may impact muscle glycogen synthesis and/or glycogen depletion 

during exercise in this model. 

Regarding exercise protocols, additional work to support the findings of this study need 

to include measurement of RER during the entire duration of a prolonged bout of endurance 

running.  Additionally, conducting endurance testing using swimming instead of treadmill 

running might help to achieve a more stringent “forced exercise” protocol without dependence 
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on the use of electrical shock.  A concern associated with treadmill running is that determination 

of the point of exhaustion for each animal can become subjective when some animals exhibit 

better running behavior that others.  In some cases, an animal will become conditioned to avoid 

the electric shock at the end of the belt (by positioning the exposed skin of their feet between the 

bars the shock grid such that the metal only touches their fur and they don’t feel the shock) and 

may refuse to run despite not having reached a state of complete exhaustion.  With a swimming 

protocol, the innate fear of drowning should allow for better determination of when true 

exhaustion occurs and therefore differences in exercise capacity may be more accurately 

observed.  

It could be valuable to repeat the present experiments using a mouse model possessing a 

different promoter to drive adipose-specific VEGF deletion.  With a 50% decrease in VEGF 

mRNA expression in WAT, and concurrent 40% decrease in capillarity in WAT in our 

adipoVEGF-/- model, it is possible that our findings, especially those pertaining to post-exercise 

circulating glycerol and FFA could be exacerbated and gain higher statistical significance in a 

model with a greater knockdown efficiency and consequently a more dramatic reduction in 

adipose tissue vascularization.  It has been indicated that the adiponectin promoter may be more 

efficient for this type of model (Lee et al., 2013). 

Finally, concerns have been raised regarding the running speeds used during submaximal 

endurance testing and the 1 hr run prior to serum sampling and how these speeds correlate with 

oxygen uptake and reliance on fat usage during these exercise bouts.  As stated in the Methods 

section of Chapter 3, based on previously published data, running speed correlates closely with 

oxygen uptake in untrained mice and rats, and maximal treadmill running speed ranges between 

35 and 45 m/min in untrained C57BL/6 mice (Høydal et al., 2007; Olfert et al., 2009; Malek & 
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Olfert, 2009).  Based on these data and a running speed of 20 m/min, the percent effort at which 

endurance running tests were conducted ranged from 44% to 57%, and should not have exceeded 

43% of maximal running speed for the 1-hour run prior to serum sampling (conducted at 15 

m/min). 

Maximal running speed testing was completed specifically in the experimental 

adipoVEGF-/- and littermate control mice at two age points (25 and 37 weeks) following the last 

endurance running test.  No difference was observed in maximal running speed, confirming that 

percent effort should have been similar between the groups at the same running speed during the 

endurance tests.  Additionally, we are also able to compare complied unpublished data on 

maximal running speeds attained from over 100 mice from various lines at various ages to create 

a linear regression (Appendix, Figure S2A) that allows us to estimate maximal running speed at a 

given age (speed attained declines with age).  Based on these data, our mice completed the fist 

endurance run test at approximately 50% effort (6 weeks old).  Percent effort only reached about 

57% with increasing age by 24 weeks old (Appendix, Figure S2B).  These estimations are 

consistent with the estimation based on the published work of Høydal et al. (2007) and Malek & 

Olfert (2009).  The “crossover concept” describes a shift from reliance on fat to carbohydrate 

metabolism with increasing exercise intensity.  Exercising at approximately 40% aerobic power 

elicits about 50% reliance on fat usage, while 60% aerobic power correlates with about 40% 

reliance on fat usage (Brooks & Mercier, 1994).  Since our animals generally did not exceed 

57% effort during endurance runs in this study, we believe our mice were exercising at an 

intensity correlating with greater reliance on fat as an energy substrate.  While it would be ideal 

to actually measure oxygen uptake during each endurance test, the use of maximal running speed 

has been shown to be a good surrogate that correlates with VO2 max in rodents. 
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4.5 Translational Significance  

Better understanding the purpose of adipose VEGF in exercise will lead to an increased 

overall understanding of its physiological function.  This understanding will be important in 

developing effective therapeutic manipulations of the VEGF pathway in conjunction with 

exercise-based therapies.  Elevated circulating levels of VEGF have been shown in obese 

individuals and studies have investigated the prospect of inhibiting VEGF action in adipose 

tissue as a means of adipocyte ablation to treat obesity (Kolonin et al., 2004; Cao, 2010; Wada et 

al., 2011).  However, this notion is countered by recent evidence from Sung et al. (2013) and 

Shimizu et al. (2014), which emphasizes the importance of maintained adipose tissue capillarity 

in sustaining overall metabolic health, and our data, which further suggest a role in maintenance 

of appropriate substrate availability during submaximal exertion.  Furthermore, the condition of 

adipose tissue in adipoVEGF-/- mice is similar to what is observed in human adipose tissue 

during obesity, such that it is undervascularized, hypoxic and inflammatory (Sun et al., 2011; 

Sung et al., 2013).  Therefore, the notion that reductions in adipose capillarity can affect 

substrate availability during submaximal exercise could be applied to diet and exercise 

prescription targeted at the treatment of obesity.  This could also influence considerations for 

anti-VEGF therapies along with diet and exercise prescription in cancer patients and survivors.  

Finally, indications of improved skeletal muscle efficiency and insulin sensitivity in  

adipoVEGF-/- mice were observed in our experiments, possibly as a compensatory mechanism 

for deficits in availability of lipid derived substrates.  If these findings are confirmed, they may 

provide headway for the manipulation of the VEGF protein and/or pathway in the development 

of treatments to combat diabetes.      

4.6 Conclusion 
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In conclusion, adipose VEGF is an important regulator of adipose tissue vascularity, 

which is essential for proper metabolic function during prolonged, submaximal exercise 

conditions.  In agreement with our first hypothesis (specific aim 1) adipose VEGF plays an 

important role in the availability of lipid-derived substrate availability during endurance exercise.  

In contrast with our second hypothesis, (specific aim 2) it does not appear that this deprivation of 

adipose-specific VEGF leads to direct evidence of skeletal muscle dysfunction.  However, we 

cannot exclude the possibility that adaptations improving skeletal muscle efficiency may also be 

occurring in order to compensate for the deficiency caused by a decrease in lipid-derived 

substrate availability.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 71 

REFERENCES 

Baynard T, Vieira-Potter VJ, Valentine RJ & Woods J a (2012). Exercise training effects on 
inflammatory gene expression in white adipose tissue of young mice. Mediators Inflamm 
2012, 767953. 

Björntorp P, Bergman H & Varnauskas E (1969). Plasma free fatty acid turnover rate in obesity. 
Acta Med Scand 185, 351–356. 

Bloch-Damti A & Bashan N (2005). Proposed mechanisms for the induction of insulin resistance 
by oxidative stress. Antioxid Redox Signal 7, 1553–1567. 

Bonen A, Luiken JJ, Arumugam Y, Glatz JF & Tandon NN (2000). Acute regulation of fatty 
acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem 275, 
14501–14508. 

Bonner JS, Lantier L, Hasenour CM, James FD, Bracy DP & Wasserman DH (2013). Muscle-
specific vascular endothelial growth factor deletion induces muscle capillary rarefaction 
creating muscle insulin resistance. Diabetes 62, 572–580. 

Brooks GA & Mercier J (1994). Balance of carbohydrate and lipid utilization during exercise: 
the “crossover” concept. J Appl Physiol 76, 2253–2261. 

Brown LM, Gent L, Davis K & Clegg DJ (2010). Metabolic impact of sex hormones on obesity. 
Brain Res 1350, 77–85. 

Byrne AM, Bouchier-Hayes DJ & Harmey JH (2005). Angiogenic and cell survival functions of 
vascular endothelial growth factor (VEGF). J Cell Mol Med 9, 777–794. 

Cao Y (2010). Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic 
diseases. Nat Rev Drug Discov 9, 107–115. 

Chen X, McClusky R, Chen J, Beaven SW, Tontonoz P, Arnold AP & Reue K (2012). The 
number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet 8, 
e1002709. 

Cooke JP (2002). Nitric Oxide and Angiogenesis. Circulation 105, 2133–2135. 

Costill DL, Coyle E, Dalsky G, Evans W, Fink W & Hoopes D (1977). Effects of elevated 
plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol 43, 695–
699. 

Elias I, Franckhauser S, Ferré T, Vilà L, Tafuro S, Muñoz S, Roca C, Ramos D, Pujol A, Riu E, 
Ruberte J & Bosch F (2012). Adipose tissue overexpression of vascular endothelial growth 
factor protects against diet-induced obesity and insulin resistance. Diabetes 61, 1801–1813. 



 72 

Fontana L & Klein S (2007). Aging, adiposity, and calorie restriction. JAMA 297, 986–994. 

Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A 
& Sessa WC (1999). Regulation of endothelium-derived nitric oxide production by the 
protein kinase Akt. Nature 399, 597–601. 

Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, 
Aguet M & Ferrara N (1999). VEGF is required for growth and survival in neonatal mice. 
Development 126, 1149–1159. 

Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zioncheck TF, Pelletier N & Ferrara N (2001). 
Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR 
(VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth 
factor mutants. J Biol Chem 276, 3222–3230. 

Goodpaster BH, Theriault R, Watkins SC & Kelley DE (2000). Intramuscular lipid content is 
increased in obesity and decreased by weight loss. Metabolism 49, 467–472. 

Gorman JL, Liu STK, Slopack D, Shariati K, Hasanee A, Olenich S, Olfert IM & Haas TL 
(2014). Angiotensin II evokes angiogenic signals within skeletal muscle through co-
ordinated effects on skeletal myocytes and endothelial cells. PLoS One 9, e85537. 

Hatano D, Ogasawara J, Endoh S, Sakurai T, Nomura S, Kizaki T, Ohno H, Komabayashi T & 
Izawa T (2011). Effect of exercise training on the density of endothelial cells in the white 
adipose tissue of rats. Scand J Med Sci Sports 21, e115–21. 

Hayashi T, Wojtaszewski JF & Goodyear LJ (1997). Exercise regulation of glucose transport in 
skeletal muscle. Am J Physiol 273, E1039–51. 

He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM & Evans RM 
(2003). Adipose-specific peroxisome proliferator-activated receptor gamma knockout 
causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 100, 
15712–15717. 

Hoeben ANN, Landuyt B, Highley MS, Wildiers H, Oosterom ATVAN & Bruijn EADE (2004). 
Vascular Endothelial Growth Factor and Angiogenesis. Pharmacol Rev 56, 549–580. 

Horowitz JF (2003). Fatty acid mobilization from adipose tissue during exercise. Trends 
Endocrinol Metab 14, 386–392. 

Høydal MA, Wisløff U, Kemi OJ & Ellingsen O (2007). Running speed and maximal oxygen 
uptake in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev 
Rehabil 14, 753–760. 

Hultman E (1973). Energy metabolism in human muscle. J Physiol 231, 56P. 



 73 

Iyer N V, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, 
Lawler AM, Yu AY & Semenza GL (1998). Cellular and developmental control of O2 
homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12, 149–162. 

Kershaw EE, Hamm JK, Verhagen LAW, Peroni O, Katic M & Flier JS (2006). Adipose 
triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. 
Diabetes 55, 148–157. 

Khaidakov M, Heflich RH, Manjanatha MG, Myers MB & Aidoo A (2003). Accumulation of 
point mutations in mitochondrial DNA of aging mice. Mutat Res 526, 1–7. 

Kolonin MG, Saha PK, Chan L, Pasqualini R & Arap W (2004). Reversal of obesity by targeted 
ablation of adipose tissue. Nat Med 10, 625–632. 

Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck 
JRB, Newgard CB, Lopaschuk GD & Muoio DM (2008). Mitochondrial overload and 
incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 
7, 45–56. 

Lee KY, Russell SJ, Ussar S, Boucher J, Vernochet C, Mori M a, Smyth G, Rourk M, Cederquist 
C, Rosen ED, Kahn BB & Kahn CR (2013). Lessons on conditional gene targeting in mouse 
adipose tissue. Diabetes 62, 864–874. 

Leung DW, Cachianes G, Kuang WJ, Goeddel D V & Ferrara N (1989). Vascular endothelial 
growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309. 

Maglione D, Guerriero V, Viglietto G, Delli-Bovi P & Persico MG (1991). Isolation of a human 
placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl 
Acad Sci U S A 88, 9267–9271. 

Malek MH & Olfert IM (2009). Global deletion of thrombospondin-1 increases cardiac and 
skeletal muscle capillarity and exercise capacity in mice. Exp Physiol 94, 749–760. 

Nagy a (2000). Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–
109. 

Neufeld G, Cohen T, Gengrinovitch S & Poltorak Z (1999). Vascular endothelial growth factor 
(VEGF) and its receptors. FASEB J 13, 9–22. 

Olenich SA, Audet GN, Szeszel-Federowicz V, Chen D & Olfert IM (2012). Novel functional 
relationships between VEGF and energy metabolism identified by microarray analysis. Exp 
Biol. 

Olfert IM & Birot O (2011). Importance of anti-angiogenic factors in the regulation of skeletal 
muscle angiogenesis. Microcirculation 18, 316–330. 



 74 

Olfert IM, Howlett RA, Tang K, Dalton ND, Gu Y, Peterson KL, Wagner PD & Breen EC 
(2009). Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice. J 
Physiol 587, 1755–1767. 

Olfert IM, Howlett R a, Wagner PD & Breen EC (2010). Myocyte vascular endothelial growth 
factor is required for exercise-induced skeletal muscle angiogenesis. Am J Physiol Regul 
Integr Comp Physiol 299, R1059–67. 

Park JE, Chen HH, Winer J, Houck KA & Ferrara N (1994). Placenta growth factor. Potentiation 
of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity 
binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269, 25646–25654. 

Park JE, Keller GA & Ferrara N (1993). The vascular endothelial growth factor (VEGF) 
isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of 
extracellular matrix-bound VEGF. Mol Biol Cell 4, 1317–1326. 

Pascual M, Larralde J & Martínez JA (1995). Insulin-like growth factor I (IGF-I) affects plasma 
lipid profile and inhibits the lipolytic action of growth hormone (GH) in isolated adipocytes. 
Life Sci 57, 1213–1218. 

Powers SK & Howley ET (2007). Exercise Physiology: Theory and Application to Fitness and 
Performance, 6th edn.ed. Barrosse E. McGraw-Hill Companies, New York. 

Safdar A, Bourgeois JM, Ogborn DI, Little JP, Hettinga BP, Akhtar M, Thompson JE, Melov S, 
Mocellin NJ, Kujoth GC, Prolla TA & Tarnopolsky MA (2011). Endurance exercise rescues 
progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. 
Proc Natl Acad Sci U S A 108, 4135–4140. 

Samuel VT, Petersen KF & Shulman GI (2010). Lipid-induced insulin resistance: unravelling the 
mechanism. Lancet 375, 2267–2277. 

Schreurs M, Kuipers F & van der Leij FR (2010). Regulatory enzymes of mitochondrial beta-
oxidation as targets for treatment of the metabolic syndrome. Obes Rev 11, 380–388. 

Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S, Maruyama 
S & Walsh K (2014). Vascular rarefaction mediates whitening of brown fat in obesity. J 
Clin Invest 124, 2099–2112. 

Sun K, Kusminski CM & Scherer PE (2011). Adipose tissue remodeling and obesity. J Clin 
Invest 121, 2094–2101. 

Sun K, Wernstedt I, Kusminski CM, Carolina A, Wang Z V, Pollard JW, Brekken RA & Scherer 
PE (2012). Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad 
Sci 109, 5874–5879. 



 75 

Sung H-K, Doh K-O, Son JE, Park JG, Bae Y, Choi S, Nelson SML, Cowling R, Nagy K, 
Michael IP, Koh GY, Adamson SL, Pawson T & Nagy A (2013). Adipose vascular 
endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell 
Metab 17, 61–72. 

Surwit RS, Kuhn CM, Cochrane C, McCubbin JA & Feinglos MN (1988). Diet-induced type II 
diabetes in C57BL/6J mice. Diabetes 37, 1163–1167. 

Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL & Shows TB (1991). 
Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6, 
1677–1683. 

Wada H, Ura S, Kitaoka S, Satoh-Asahara N, Horie T, Ono K, Takaya T, Takanabe-Mori R, 
Akao M, Abe M, Morimoto T, Murayama T, Yokode M, Fujita M, Shimatsu A & 
Hasegawa K (2011). Distinct characteristics of circulating vascular endothelial growth 
factor-a and C levels in human subjects. PLoS One 6, e29351. 

Waki H & Tontonoz P (2007). Endocrine functions of adipose tissue. Annu Rev Pathol 2, 31–56. 

Wasserman DH, Lacy DB, Goldstein RE, Williams PE & Cherrington AD (1989). Exercise-
induced fall in insulin and increase in fat metabolism during prolonged muscular work. 
Diabetes 38, 484–490. 

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL & Ferrante AW (2003). Obesity is 
associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 1796–1808. 

Yach D, Stuckler D & Brownell KD (2006). Epidemiologic and economic consequences of the 
global epidemics of obesity and diabetes. Nat Med 12, 62–66. 

Yokota T, Kinugawa S, Hirabayashi K, Matsushima S, Inoue N, Ohta Y, Hamaguchi S, Sobirin 
MA, Ono T, Suga T, Kuroda S, Tanaka S, Terasaki F, Okita K & Tsutsui H (2009). 
Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise 
capacity in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 297, H1069–77. 

Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, 
Cooney GJ, Atcheson B, White MF, Kraegen EW & Shulman GI (2002). Mechanism by 
which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated 
phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277, 50230–50236. 

 

 

 



 76 

  

 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

 

 

 



 77 

 

  
 
 
 

 
 
 
 
 



 78 

 
 
 
 
 

 
 
 



 79 

 
 
 
 
 

 
 
 
 



 80 

 
 
 



 81 

Figure S1. Body mass of adipoVEGF-/- vs. littermate control mice on a high fat and normal 

chow diet. Breakdown (A) of n per group by diet, genotype, and sex. Body mass (B-D) on a high 

fat (HF) or normal chow (NC) diet between 6 and 19 wks old in adipoVEGF-/- and littermate 

control mice. Data presented as mean±SEM. Main effect values reported using repeated 

measures ANOVA. *p<0.05 comparing HF to NC within the adipoVEGF-/- group, #p<0.05 

comparing HF to NC within the littermate control group. 
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Figure S2. Use of predicted maximal running speed to determine submaximal effort for 

endurance testing in adipoVEGF-/- and littermate control mice. (A) Maximal running speed 

achieved at various ages in various lines of mice. Linear regression represents the age-associated 

rate of decline in performance. (B) The linear regression shown in panel A was used to 

extrapolate an estimated maximal running speed for all mice (adipoVEGF-/- and littermate 

controls treated equally) for each age at which endurance running testing was conducted. The 

estimated maximal running speed correlating with a given age was used to calculate the 

percentage maximal running speed at which the endurance test was conducted, based on the 

speed used for that test (20m/min for tests between 6 and 24 wks and 15 m/min for 1hr run at 44 

wks old).   
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Figure S3. Attempted oil red o staining in experimental and control tissues. (A) 

Representative images of oil red o staining attempted on gastrocnemius muscle (GA) 

cryosections from experimental animals.  Absence of staining in the middle, and clumped dye 

with non-specific staining around edges was consistently seen in both adipoVEGF-/- and 

littermate control tissues. Muscles were collected under basal conditions at 45 weeks old. (B) 

Staining on control tissue cryosections including db/db soleus muscle (SOL) and brown adipose 

tissue (BAT). BAT staining was successful; SOL staining also showed some specificity, but dye 

clumping and non-specific staining also occurred.      
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