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ABSTRACT 

Molecular Cytogenetic Evaluation of Cell Lines and Archival Tissue  
 

Jason Scott White 
 

 
Uveal melanoma is the most common intraocular tumor in adults and often results 

in unilateral blindness and/or death.  Previous cytogenetic characterizations of this tumor 

have consistently revealed chromosomal abnormalities involving chromosomes 3, 6, and 

8; reports of other abnormalities vary in frequency.  We further defined cytogenetic 

abnormalities of this tumor using molecular cytogenetic techniques on 10 uveal 

malignant melanoma cell lines and 100 formalin-fixed paraffin-embedded (FFPE) 

tumors.   

The synthesis of comparative genomic hybridization (CGH) and spectral 

karyotyping (SKY) results revealed that chromosomal rearrangement plays a significant 

role in the generation of DNA sequence copy number abnormalities throughout the 

genome, but none of the cell lines demonstrated monosomy 3.  Centromeric fluorescence 

in situ hybridization (FISH) for chromosome 3 revealed approximately one signal per 

cell, but further evaluation with telomeric probes demonstrated multiple signals per cell, 

suggesting chromosomal rearrangement without the loss of an entire chromosome 3.  

Based on combined CGH, SKY and FISH data, we propose that chromosome 3 is more 

frequently involved in chromosomal rearrangements rather than whole-chromosome loss 

in uveal melanoma.   

CGH was similarly employed to elucidate characteristic DNA-sequence copy 

number abnormalities of FFPE archival cases of uveal melanoma, and correlate genomic



imbalance abnormalities with a prognosis.  We set out to study 100 archival uveal 

melanoma cases, each with comprehensive patient follow-up, by correlation of copy 

number imbalances with survival.  Fifty-one patients survived more than 9 years without 

evident metastasis, and the remaining 49 patients died with metastatic disease.  Viable 

probe was generated from 82 of the 100 cases, allowing correlation of CGH findings with 

patient histories for all but 18 of the cases.  Significant copy number imbalances were 

tested for univariate prognostic significance.  The most powerful predictor of prognosis 

was gain of 18q11.2, which was subsequently compared with other significant 

chromosomal regions, as well as histological and clinical factors in a multivariate 

analysis.  Multivariate analyses revealed that the gain of 18q11.2 and concomitant loss of 

1p33 was the strongest indicator of a poor prognosis.   

Our large-scale molecular cytogenetic analysis of cell lines and archival material 

contributes significantly to the characterization of uveal melanoma.  This research is 

intended to direct further gene-specific study of malignancy in uveal melanoma. 
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INTRODUCTION 

 Our understanding of cancer continues to evolve as we develop new approaches 

in the pursuit of the elusive cure for this multifaceted disease. With each passing day, 

either a new technique or a new application of an existing technique propels cancer 

research. At times it seems that the more that is discovered about cancer, the more 

questions that are encountered.  However, significant progress has been made, and will 

continue to be made, in this arena. 

Pathology is concentrated on the morphology and characteristics of tissue at the 

cellular level.  The advent of cytogenetic analyses provided insight beneath the level of 

the cell, allowing researchers access to information about the chromosome complement 

within individual cells (Fig. 1).  Classical cytogenetics provides us with a karyotype, or a 

catalogue of chromosome homologues, and allows for banding as well as copy number 

analysis.  Cytogenetics contributes immensely to cancer research, as chromosome 

abnormalities are often associated with the mechanisms underlying carcinogenesis as 

well as other disease pathways.  Application of in situ hybridization (ISH) methods to 

tumor cells yields a variety of information including numerical data and regarding inter- 

and intra-chromosomal rearrangements (Cremer et al., 1986; Lichter et al., 1988a; 

Devilee et al., 1988; Eastmond and Pinkel, 1989; Trask, 1991; Joos et al., 1994).  The 

combination of epifluorescence microscopy and in situ hybridization techniques resulted 

in fluorescence in situ hybridization (FISH), which is capable of providing chromosome 

enumeration, whole chromosome painting, marker identification and gene mapping 

(Chang and Mark, 1997).  In brief, FISH is a fairly rapid technique that involves 

localization of a labeled deoxyribonucleic acid (DNA) sequence to cellular DNA in 
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Figure 1.  Anatomy of a Nucleus.  (A) A stylized drawing of a cell showing a nucleus (gray) containing 

DNA in the form of chromosomes.  (B ) A single metaphase chromosome from within the 
nucleus.  (C) Chromosomes are comprised of tightly packed DNA in a double helical 
conformation.  (D) The DNA is made up of nucleotides, of which specific sequences form the 
exons and introns of genes. 
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whole tissue, interphase cells or metaphase chromosomes (Fig. 2) (Carpenter, 2001).  

FISH spawned comparative genomic hybridization (CGH) and spectral karyotyping 

(SKY), which represent more sophisticated applications of molecular cytogenetics 

(Kallioniemi et al., 1992; Schröck et al., 1996).  

CGH is the comparison of two genomes by hybridization, and is intended to give 

researchers the ability to locate DNA copy number anomalies with greater frequency and 

increased sensitivity as compared to conventional cytogenetic methodologies.  In CGH, 

researchers generate fluorescent probes from normal and tumor genomes, and 

simultaneously hybridize these probes to normal metaphase spreads (Thompson and 

Gray, 1993; Ried et al., 1997).  Comparison of the relative fluorescence along each 

chromosome results in a ratio profile that shows chromosomal regions of relative gain 

(e.g., amplification) and loss (e.g., deletion) in the tumor genome.  This is predicated 

upon the normal genomic probe binding uniformly to the normal chromosomes, whereas 

the tumor genomic probe will show an excess or deficit of specific chromosomes or 

portions of chromosomes, thereby revealing gains and losses of chromosomal material 

for the tumor. 

The development of CGH preceded SKY, which is in essence a genomic scan 

using 24-color FISH (Schröck et al., 1996; Macville et al., 1997; Schröck et al., 1997).  

In SKY, each of the 22 autosomes and the 2 sex chromosomes are assigned a unique 

combination of fluorochromes, which allows for identification of all 24 of the 

chromosomes in a single hybridization.  The development of ratio- labeling and 

combinatorial labeling schemes, in particular the inclusion of haptens, allowed for the 

number of differentially- labeled chromosome paints to exceed the number of 
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Figure 2.  Basic FISH Protocol.  This schematic outlines the critical steps in FISH.  (A) The first step is to 

prepare metaphase spreads or interphase nuclei on microscope slides, and age these slides for at 
least a week.  Pretreatment of the slide may or may not be necessary.  (B) Probe is generated via 
nick translation or polymerase chain reaction.  (C) This probe is placed on the slide and 
coverslipped.  (D) The slide and probe are simultaneously denatured at or near 75ºC in order for 
hybridized probe and target DNA to anneal.  (E) The hybridized slide is incubated overnight at 
or near 37ºC.  (F) On the following day, a post-hybridization wash removes excess unbound 
probe from the slide, and the probe is detected using antibody layering schemes as needed.  (G) 
A DNA counterstain is applied prior to mounting of the slide in antifade solution for 
visualization with fluorescence microscopy. 
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fluorochromes (Garini et al., 1996; Schröck et al., 1997; Tonon et al., 2000; Schröck and 

Padilla-Nash, 2000).  Although the human eye can not resolve the subtle color 

differences between some fluorochromes, a Fourier transformation of emitted 

fluorescence gives each chromosome a distinct spectrum.  Construction of the spectral 

karyotype elucidates both numerical and structural, anomalies.  This allows determination 

of an accurate karyotype of many tumor metaphase spreads, which often contain both 

subtle and complex chromosome rearrangements.  An additional feature of SKY is that 

chromosomal material that can not be karyotyped with confidence in a classical 

cytogenetic analysis (such as marker chromosomes) can be correctly identified.     

Uveal melanoma is but one of a myriad of cancers afflicting humans today.  This 

particular solid tumor is the primary intraocular tumor manifested in adults, and results in 

loss of vision and in many cases death.  Uveal melanoma is any malignant melanocytic 

tumor originating in the pigmented vascular layer of the eye including the iris, ciliary 

body and choroid (Fig. 3).  Epidemiologic studies show that those at greatest risk are 

individuals with lightly pigmented skin and/or lightly pigmented eyes (McLean and 

Gamel, 1996; Regan et al., 1999). The most frequent chromosomal abnormalities are 

found on chromosomes 3, 6, and 8; other chromosomes have been implicated with 

varying consistency (Speicher et al., 1994; Prescher et al., 1996; White et al., 1998a).  

The tumor is thought to share commonalties with other melanomas, yet maintain its own 

defined subset of causal aberrations (Griffin et al., 1988). 

In order to ascertain the chromosomal aberrations that contribute to uveal 

melanoma, we pursued 2 avenues of research.  The first was to employ CGH, SKY and
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Figure 3.  Anatomy of the Ocular Globe.  This  schematic identifies landmarks within the human eye, and 

orients the reader with regard to the regions of origin for uveal melanoma.  These regions 
include the choroid, ciliary body and the iris. 
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FISH to provide a complete molecular cytogenetic evaluation of 10 uveal melanoma cell 

lines.  The second was a comprehensive CGH analysis of 100 archival formalin-fixed 

paraffin-embedded (FFPE) uveal melanoma tissue samples. 

In the first portion of our study, we characterized 10 uveal melanoma cell lines 

(Table 1) by CGH, SKY and FISH to identify chromosome abnormalities.  

Characterization of cell lines is often employed as an initial step in characterization and 

classification of a disease, as they model the alterations in actual tumors.  Uveal 

melanoma cell lines are typically derived from enucleated tissue.  Enucleation, or 

removal of the entire globe of the eye, is a common treatment strategy.  Cells from 

enucleated tissue can be transformed, cultured in an appropriate medium, and maintained 

as immortal cell lines for subsequent characterizations (De Waard-Siebinga et al., 1995; 

Luyten et al., 1996).  Previous characterizations of uveal melanoma cell lines included 

not only classical cytogenetic analysis, but also evaluations of specific genes and their 

expression (Blom et al., 1997; Luyten et al., 1998; Chana et al., 1999).  Uveal melanoma 

cell lines have also been used to model the effects of developing or established treatments 

(Logani et al., 1995a and b).  We expected that a combination of CGH, SKY and FISH 

would increase sensitivity for detection of abnormalities, and reveal chromosomal 

regions applicable to uveal melanoma diagnosis, prognosis and treatment.  We also 

expected that the combination of these 3 techniques would ascertain the prevalence of 

monosomy 3, as it is a hallmark of uveal melanoma (Speicher et al., 1994; Prescher et al., 

1996; White et al., 1998a).   

For the second portion of our study, we analyzed 100 archival FFPE uveal 

melanoma cases by CGH.  These cases were obtained from the Armed Forces Institute of 
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Table 1. Uveal Melanoma Cell Lines Used in this Study 

Code Cell Line Tumor  Origina  Sexa Media Referenceb 

         
1 92-1 primary  choroid  F RPMI 1640 De Waard-Siebinga et al., 1995 
         
2 MEL270 primary  ciliary body  M " Chen et al., 1997 
         
3 MEL285 primary    F "  
         
4 MEL290 primary    F "  
         
5 OCM-1 primary  choroid  F Ham's F-12 Kan-Mitchell et al., 1989 
         
6 OCM-3 primary     "  
         
7 OCM-8 primary     "  
         
8 OM431 primary  choroid   " Albert et al., 1984 
         
9 OMM-1 metastatic subcutaneous metastatic 

lesion post-enucleation 
M DMEM Luyten et al., 1996 

         
10 OMM-2.3 metastatic liver metastisis of ciliary 

body tumor (MEL270) 
M RPMI 1640  

         
aBlank entries reflect data unavailable at the time of the study. 
bAll cell lines provided courtesy of Dr. Jerry Y. Niedercorn and Ms. Elizabeth Mayhew, both at the Department of 
Ophthalmology at the University of Texas Southwestern Medical Center at Dallas, in Dallas, TX.  Those that have 
establishment papers in the published literature have been cited.   

 



 9 

 
 
 
Figure 4.  Examples of Uveal Melanoma Tumors.  Four hematoxylin and eosin (H&E) stained archival 

FFPE tissue sections from different uveal melanoma tumor cases.  The darkest mass in each 
ocular globe (indicated by arrows) is the uveal melanoma tumor.   
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Pathology (AFIP) tissue archives, and comprised of 2 slide-mounted 6µm sections of 

archival FFPE tumor tissue from enucleated human eyes (Fig. 4).  Utilization of archival 

tissue allows for analysis of a larger number of cases, particularly when studying a tumor 

of low incidence that yields only a few fresh tissue samples each year.  Also, archival 

FFPE tissue allows for correlation of experimental findings with comprehensive patient 

follow-up, such as visible manifestations of the disease, tumor characterization and 

grading, patient progress after tumor excision, and survival.  Of the 100 cases, 51 

survived greater than 9 years without detectable metastasis, and the remaining 49 cases 

succumbed to metastatic disease within 9 years of diagnosis.  It was expected that the 

regions of amplification and deletion seen in the samples from each patient would be 

homologous to those seen in the cell line study, and would correlate with survival to 

allow determination of prognostic factors associated with uveal melanoma.  Tumor 

progression is thought of as a stepwise accumulation of abnormalities in critical genes, 

and it was our expectation that some chromosomal regions of gain and loss would 

correlate with malignancy and progression of uveal melanoma (Forozan et al., 1997).  

Anomalies were tested for univariate prognostic significance, and the most powerful 

predictors were compared with other histological or clinical predictors in a multivariate 

analysis.  

The amalgamation of results from the cell line and archival tumor portions of our 

study yielded extensive insight into the chromosome dosage abnormalities characteristic 

of uveal malignant melanoma.  Further, the synthesis of our results allowed us to identify 

not only predictive loci for this tumor, but also to make some speculation about the genes 



 11 

involved in development and/or progression of this tumor.  Our ultimate goal was to 

direct further gene-specific study of malignancy in uveal melanoma. 
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LITERATURE REVIEW 

CYTOGENETICS. 

 The foremost discovery in genetics was the elucidation of the double-helical 

structure of DNA by Watson, Crick, Wilkins and Franklin by X-ray diffraction (Watson 

and Crick, 1953).  At around the same time, T. C. Hsu first described the use of a 

hypotonic gradient to swell a cell, allowing for a closer glimpse of the components within 

the cell membrane (Fig. 1) (Hsu, 1952).  In his initial work, Hsu found 23 pairs of 

autosomes and a pair of sex chromosomes (Fig. 5) (Hsu, 1952).  By adapting Hsu’s 

technique, Tjio and Levan revised Hsu’s findings of 48 chromosomes, and instead found 

that humans have a 46 chromosome complement (Tjio and Levan, 1956).  A few years 

later, Hungerford and colleagues produced the first karyotype from peripheral blood 

culture (Hungerford et al., 1959). 

Chromosome banding was developed by Casperson and colleagues in 1968, 

providing a useful technique that allowed the entire genome to be analyzed at once 

(Casperson et al., 1968; Pinkel et al., 1986a and b; du Manoir et al., 1993).  Chromosome 

banding analyses are of particular import in cancer research, as chromosomal 

abnormalities can be linked with a cancer phenotype, and identification of consistent or 

recurrent chromosomal aberrations in tumors is a useful step toward identifying genes 

involved in the development or progression of the disease (Macville et al., 1997).  

However, analyses of solid tumors are complicated by low mitotic indices and low 

quality chromosomal banding, making identification of complex chromosomal 

aberrations immensely difficult by banding alone (Macville et al., 1997; Veldman et al., 

1997; Ried et al., 1997; Rothmann et al., 1998).  Hence, there is a critical need 
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Figure 5.  Anatomy of the Chromosomes.  Chromosomes are comprised of 2 arms, the p- and the q-arm, 

and the arms are connected by a centromere.  The exceptions are the acrocentric chromosomes, 
where the p-arm is actually alpha-satellite repeats.  Chromosomes can be broken into 3 groups 
based on centromere location, and irrespective of size or relative DNA content.  (A) The 
metacentric chromosomes are defined by their centrally-located centromere, and include 1, 2, 3, 
16, 19 and 20.  (B) The submetacentric chromosomes have an offset centromere that makes the 
p-arm shorter than the q-arm.  This group includes 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18 and X.  (C) 
The acrocentric chromosomes are predominantly comprised of q-arm material, but have small 
satellites above the centromere, and include 13, 14, 15, 21, 22 and Y. 
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to develop more accurate and reliable methods for determination of chromosome 

abnormalities.     

FLUORESCENCE IN SITU HYBRIDIZATION. 

In situ hybridization (ISH) was developed as a means of detecting nucleic acid 

sequences in morphologically intact samples (Gall and Pardue, 1969; John et al., 1969).  

It is based on the principle that DNA is able to denature and renature in a complementary 

fashion (Fig. 6).  In principle, two nucleic acid sequences are found to be complementary; 

(1) the probe, which is the isolated and tagged sequence that the researcher is interested 

in localizing, and (2) the target sequence, which is a length of nucleotides within the 

DNA of the sample that matches the probe sequence.  When both the sample and probe 

are denatured together, and allowed to reanneal, the probe binds to its complementary 

sequence in the target DNA.  After the DNA has reannealed, the probe can be visualized 

and its location pinpointed within the sample.   

The first applications of ISH were in 1969, when Gall and Pardue hybridized 

radioisotope- labeled ribosomal ribonucleic acid (rRNA) to tissue squashes, revealing the 

complementary ribosomal deoxyribonucleic acid (rDNA) in situ (Gall and Pardue, 1969).  

Also in 1969, John and colleagues experimented with RNA-DNA hybrids visualized by 

autoradiography (John et al., 1969).  In the earliest applications of ISH, the nucleic acid 

probe (either DNA or RNA) was labeled with a radioisotope, hybridized to its 

complementary DNA sequence in a cell or tissue sample, and visualized using 

autoradiography (Gall and Pardue, 1969; John et al., 1969).  The first non- isotopic ISH 

application involved immunofluorescence detection of the RNA-DNA hybrids by a 



 15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  6.  Denaturation/Renaturation of DNA.  DNA will denature when the ambient temperature is 

sufficiently high, and will reanneal when the temperature falls below the melting point.  It is 
this property of DNA that makes hybridization feasible.  In a basic hybridization, the probe 
will find its complementary sequence of nucleotides in the target DNA and bind to them, 
which functionally incorporates the probe into the target DNA once all of the DNA has had an 
opportunity to reanneal.  Then, the probe can be visualized and localized within the target 
DNA.  This simple property of DNA forms the basis for such techniques as ISH, FISH, CGH 
and SKY.   

 
This figure was adapted from University of Michigan Health System, 
http://seqcore.brcf.med.umich.edu/doc/educ/dnapr/pg2.html. 
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fluorescent antibody bound to the hybrids (Rudkin and Stollar, 1977).  Use of 

radioisotope labeling was superceded by applications of non- isotopic conjugated probes 

in 1980s (Bauman et al., 1980; Langer et al., 1981; Pinkel et al., 1986b).  Bauman and 

colleagues described the covalent linkage of tetramethyl rhodamine isothiocyanate 

(TRITC) to RNA, which when used simultaneously with a 3H-labeled complementary 

RNA (cRNA) allowed both fluorescence and scintillation quantitation (Bauman et al., 

1980).  Technically, this was the first application of a directly- labeled fluorescent probe.   

 FISH completed its evolution from ISH, by replacing all radioisotopes with 

fluorescence labeling (Fig. 2).  The first alternatives to labeling with radioisotopes were 

biotin- labeled UTP and dUTP, described by Langer and colleagues in 1981 (Langer et 

al., 1981).  The use of non- isotopic probes has lead to improved resolution, decreased 

preparation time and increased probe stability (Trask, 1991).   

In 1986, Pinkel and colleagues described the first fluorescent hybridizations 

employing biotinylated probes and fluorescently- labeled avidin (Pinkel et al., 1986a and 

b).  Indirectly- labeled probes are conjugated with a reporter-binding molecule (or 

hapten), whereas directly- labeled probes are conjugated with a fluorochrome (Joos et al., 

1994) (Fig. 7).  Haptens include biotin, digoxigenin, dinitrophenyl (DNP), 

aminoacetylfluorene (AAF), mercury and sulfonate (Trask, 1991; Luke and Shepelsky, 

1998).  Biotin is detected with either a fluorochrome-conjugated avidin or an anti-biotin 

antibody, while mercury is detectable with a ligand bearing a sulfhydryl group (Trask, 

1991).  Digoxigenin and the remaining haptens are detected with fluorescently- labeled 

antibodies (Trask, 1991).  The use of directly- labeled probes is a more time-efficient 

method, and generally results in less background than indirectly- labeled probe 
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Figure  7.  Comparison of Directly- and Indirectly -labeled Probes.  (A) Directly-labeled probe.  The reporter fluorochrome is directly conjugated to the dUTP, 

and visualization of the probe is possible immediately following hybridization.  (B ) The indirectly-labeled probe has a hapten-labeled dUTP 
incorporated into its sequence, in this case biotin-dUTP, and detection using antibody layering is required following hybridization.  An avidin 
reporter fluorochrome binds to each biotin-dUTP, and a biotinylated anti-avidin binds to each avidin.  A second avidin reporter fluorochrome then 
binds to the biotinylated anti-avidin.  The antibody layering process is repeated as needed to amplify the probe signal by successive addition of avidin 
reporter fluorochrome layers. 

 
This figure courtesy of Dr. Alison E. Director-Myska, AFIP. 
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applications upon visualization.  The advantage of direct incorporation of the 

fluorochrome into the probe, is that the fluorochrome is confined to the binding site.  In 

indirect applications, the dyes precipitate around the binding site and are therefore less 

specific and result in increased background noise (Demetrick, 1999).  However, increased 

sensitivity is achieved through the use of an indirectly- labeled probe, which allows for 

multiple layers of antibodies, thus increasing the signal intensity.  

 The advent of FISH narrowed the gap between cytogenetics and molecular 

genetics, and gave rise to the field of molecular cytogenetics (Macville et al., 1997).  

FISH, as used in molecular cytogenetics, is equally applicable to metaphase spreads, 

interphase nuc lei preparations, and tissue sections (Cremer et al., 1986; Lichter et al., 

1988a; Devilee et al., 1988; Eastmond and Pinkel, 1989; Trask, 1991; Joos et al., 1994).  

“Interphase cytogenetics” was a term coined by Cremer and colleagues in 1986 for the 

detection of chromosome aberrations in interphase cells (Cremer et al., 1986).  They later 

expanded this definition to include detection in non-mitotic cells at any stage of cell 

division, due to modifications made by Lichter et al., (Cremer et al., 1988; Lichter et al., 

1988a).  

Lichter and colleagues refined suppression of non- informative regions of repeat, 

found in regions such as centromeres, telomeres, heterochromatin, and other families of 

repeat sequences in the genome, thus enhancing detection of chromosome-specific 

regions of repeat (Lichter et al., 1988a).  “Chromosomal in situ suppression” (CISS), a 

term first coined in 1988, described the use of unlabeled competitor DNA to suppress of 

regions of repeat (Lichter et al., 1988a).  These regions of repeat are common on many 

chromosomes in the genome, and also are very quick to reassociate after denaturation 
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(Lichter et al., 1998a and b).  Both of these factors interfere with accurate hybridization 

between the probe and target DNA. Incorporation of human Cot-1 DNA inhibits the 

binding of repetitive sequences such as the Alu I and Kpn I repeat families (Lichter et al., 

1988a and b).  Incorporation of salmon testes DNA binds repeat sequences other than the 

two previously mentioned families of repeats, and prevents non-specific binding of the 

probe to the slide or coverslip (Lichter et al., 1988a).  Each of these are included in the 

probe cocktail for suppressive hybridization schemes.  

The most important reason for development of interphase FISH techniques, is that 

it alleviates the need for metaphase preparations, which are often limited or otherwise 

unavailable in tumor preparations (Bayani and Squire, 2002).  The use of interphase 

nuclei provides higher resolution due to the decreased condensation of nuclear DNA 

(Lawrence et al., 1988; Devilee et al., 1988; Joos et al., 1994).   

 Once the ability to detect a single probe in interphase applications had been 

refined, the detection of mulitple targets was the next logical step.  A double- labeled 

single-target FISH experiment by Cremer and colleagues marked the first multicolor 

fluorescence FISH experiment, and a double- labeled double-target FISH hybridization 

was carried out in solid tumors shortly thereafter (Cremer et al., 1988; Hopman et al., 

1988).  These experiments further demonstrated the increased resolution in interphase 

cells as compared to metaphase preparations (Hopman et al., 1988).  In 1989, Nederlof 

and colleagues were able to detect 3 hybridization targets using a third fluorochrome 

spectrally distinct from fluorescein isothiocyanate (FITC) and TRITC (Nederlof et al., 

1989).  In 1990, the same group expanded the number of hybridization sites to 4 using the 

first combinatorial labeling schemes (involving 2 fluorochromes) (Nederlof et al., 1990).  
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At that time, it was postulated that the number of spectrally-distinct fluorescent 

hybridization sites could be expanded to 7 using a combination of fluorochromes and 

conjugated haptens.  The complex hybridization of 7 probes to 7 loci was not realized 

until 2 years later (Ried et al., 1992a).   

Ried and colleagues were also able to utilize 5 distinct whole chromosome paints 

in a single hybridization to assay ploidy of 5 chromosomes critical in prenatal diagnosis 

(Ried et al., 1992b).  Also in 1992, Dauwerse et al. demonstrated that combining 2 

fluorochromes in varying ratios (ratio-labeling) allowed for the distinction of up to 7 

whole chromosome paints in a single exposure, significant because the maximum 

possible number of distinct loci was also 7 at that time (Dauwerse et al., 1992).  They 

also suggested that inclusion of a third fluorochrome in their ratio- labeling scheme would 

allow distinction of half of the chromosome complement (Dauwerse et al., 1992). FISH 

was only limited by the ability to distinguish the spectra of multiple probes in a single 

preparation.  In other words, the number of hybridization sites was only limited by the 

ability of the analysis software and the user to distinguish between different 

fluorochromes or combinations of fluorochromes (Joos et al., 1994; Garini et al., 1996).  

The evolution of multicolor FISH analyses would eventually lead to development of 

genome-labeling techniques, such as multiplex-FISH (M-FISH) and SKY, which allow 

distinction of all 22 autosomes and the sex chromosomes in a single hybridization.   

Since its inception, FISH has evolved into a technique applicable to dividing or 

non-dividing cells in either fresh or archival tissue (Trask, 1991).  FISH can be used as an 

exploratory or a confirmatory technique.  Given an appropriate hybridization scheme, 

FISH can be employed to detect inversions, translocations, deletions, dicentrics and ring 
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chromosomes (Trask, 1991).  The technique itself is generally not very time consuming, 

as detection and/or visualization can often be performed a day or two after hybridization.  

Specificity of a probe depends on base-pair composition (G-C bonds are stronger than A-

T), temperature of denaturation and hybridization, as well as the salt and formamide 

concentrations in the hybridization mixture (McNicol and Farquharson, 1997).   

There are essentially three types of probes currently widespread in use, each with 

a slightly different intended application.  The first are locus-specific probes, which, 

hybridize to a specific chromosomal locus (Tonon et al., 2000).  These probes are 

generated from plasmids, phages, cosmids, or YAC-clones (Cremer et al., 1986; Joos et 

al., 1994). The efficiency of the hybridization is proportional to the size of the probe, 

because the ability to detect a hybridization decreases as the probe size decreases (Trask, 

1991).  A gene-specific probe, one kind of locus-specific probe, is generated from an 

entire gene or a portion of a gene and hybridized to determine where it will localize (e.g. 

the location of the gene on a chromosome).   

The second type of probe is a chromosome-specific repetitive sequence probe, 

and this type of probe can be targeted to centromeres (heterochromatin containing 

alphoid repeats or alpha-satellite DNA) or telomeres (highly repetitive sequences at the 

ends of each chromosome).  These probes are typically used in chromosome enumeration 

studies, which are focused on determination of the number of copies of a given 

chromosome in a preparation (Pinkel et al., 1986b; Eastmond and Pinkel, 1989; Joos et 

al., 1994; McNicol and Farquharson, 1997; Demetrick, 1999).  Hybridization of these 

probes is typically very intense, as the areas hybridized in conserved portions of 

heterochromatin are often very compact (Trask, 1991).   
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The third type are whole chromosome probes, also known as whole chromosome 

paints, which are in actuality a group of probes all generated from a single chromosome 

that fluoresce along the length of the entire chromosome when hybridized (Pinkel et al., 

1988).  This type of FISH probe is used to identify chromosome-specific material and 

determine rearrangements associated with the probed chromosome in the genome 

(Tucker et al., 1994; Carter, 1994; Demetrick, 1999).  These genomic rearrangements can 

be symmetrical (e.g. reciprocal translocations) or asymmetrical (e.g. insertions and non-

reciprocal translocations) exchanges (Tucker et al., 1994).  Initially, flow-sorted 

chromosomes were used to generate DNA libraries, which were later used to make whole 

chromosome paints (Carter, 1994; Joos et al., 1994; Luke and Shepelsky, 1998).  Flow-

sorting remains a viable technique for isolating normal chromosomes for painting, and 

can also be used to isolate populations of aberrant chromosomes for production of 

painting probes provided the aberrant chromosomes are distinguishable from normal 

chromosomes using this technique.  Alternatively, microdissection of specific 

chromosomes is possible and allows for aberrant chromosomes to be individually 

selected and then used to generate probes (Ried et al., 1997; Bayani and Squire, 2001).  

Combination of 24 chromosome-specific paints into a single hybridization cocktail is the 

essence of spectral karyotyping, while generation of single-fluorochrome whole genome 

probes for CGH applications is an expansion upon the use of whole chromosome paints.  

Even though combinatorial and ratio- labeling schemes increased the scope and 

application of FISH, it is cumbersome to screen tumor genomes for gains, losses, and 

rearrangements with individual FISH probes (Raap, 1995; Raap, 1998).  
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COMPARATIVE GENOMIC HYBRIDIZATION. 

In 1992, Kallioniemi et al. developed a molecular cytogenetic technique capable 

of detecting and mapping relative DNA sequence copy number differences between 2 

genomes competitively hybridized to normal chromosomes (Kallioniemi et al., 1992).  In 

this technique, a copy number karyotype is generated for a tumor by comparing the DNA 

from malignant and normal cells, thereby identifying regions of gain or loss in the DNA 

along the length of each chromosome.  In actuality, the gains and losses are 

representative of global genetic variation in the test sample, and the data output is really a 

measure of genomic balance (Kallioniemi et al., 1992; Thompson and Gray, 1993; 

Houldsworth and Chaganti, 1994; Ried et al., 1997).  The inception of CGH was directly 

linked to the need for a rapid and comprehensive assessment of genetic balance where 

DNA, not cells for culture and chromosome preparation, was the only available material 

(du Manoir et al., 1993; du Manoir et al., 1995b; Raap, 1995). 

CGH is a quantitative two-color fluorescence in situ suppression hybridization 

technique useful in detecting copy number changes throughout an entire genome 

(Thompson and Gray, 1993; Ried et al., 1997).  In other words, it is essentially double-

labeled double-target FISH, wherein total genomic tumor DNA and total genomic DNA 

from normal diploid tissue are differentially labeled and then simultaneously hybridized 

to normal metaphase chromosomes. The resulting copy number ratio reveals any genomic 

imbalance between the two.  CGH is an improvement on single-color hybridizations, 

because the normal DNA is an “internal hybridization intensity control” for each location 

in the genome (Kallioniemi et al., 1994). 
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CGH has numerous advantages, most notably it elucidates gains (e.g. 

amplifications) and losses (e.g. deletions) of DNA, often undetectable via classical 

cytogenetic techniques. Classical cytogenetic analyses are hindered by the inability to 

produce large numbers of high quality tumor metaphases due to low mitotic indices, poor 

growth in culture, and the increased likelihood of bacterial and/or necrotic tissue 

contamination (Joos et al., 1994; Houldsworth and Chaganti, 1994; Isola et al., 1994).  In 

CGH, extracted genomic DNA is the only material required from the test sample, 

increasing its application to include both fresh and archival tissue (Houldsworth and 

Chaganti, 1994; Ghazvini et al., 1996).  Karyotypic analysis of solid tumors is difficult 

due to the instability of tumor cells in culture, but CGH alleviates the need for in vitro 

tumor cell culture, because, in contrast to traditional karyotyping, it only requires DNA 

and therefore reduces subpopulation selection (Joos et al., 1994).  Imbalances in a subset 

of the cells in a given sample do not interfere with the global analysis of the tumor as 

long as tumor cells account for most of the DNA (du Manoir et al., 1993; Lundsteen et 

al., 1995).  However, the effect of intratumor genetic heterogeneity on sensitivity of CGH 

is variable, as heterogeneous aberrations in a given sample are averaged while 

homogeneous aberrations are emphasized  (Kallioniemi et al., 1992; Kallioniemi et al., 

1993).  Similarly, if normal tissue accounts for more than 50% of the total DNA from the 

test sample, ratio changes may not be reliably detected (Kallioniemi et al., 1994).  

As mentioned earlier, one advantage of CGH is the construction of DNA probes 

from archival FFPE tissue; this is unique in that the vast majority of cytogenetic 

techniques require viable tissue (Isola et al., 1994; du Manoir et al., 1995b).  Utilization 

of FFPE tissue allows for analysis of a larger number of cases and for correlation of 
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experimental findings with comprehensive patient follow-up and survival data.  FFPE 

tumor analysis allows for investigation of very old samples, however, fixation methods 

may negatively affect DNA quality and yield (Isola et al., 1994).  In analysis of FFPE 

tumors, microdissection of tissue sections, using hematoxylin and eosin (H & E) stained 

slides for confirmation, has both advantages and disadvantages.  An obvious advantage is 

the selection of only tumor material, because, as mentioned earlier, normal cells “dilute” 

the CGH results (du Manoir et al., 1993; Houldsworth and Chaganti, 1994; Joos et al., 

1994).  The disadvantages of tumor microdissection lie in the small yield of DNA, 

particularly from tissue of reduced cellular density such as the eye.  This particular 

disadvantage can be overcome by polymerase chain reaction (PCR) amplification of 

relatively pure DNA.  The use of degenerate oligonucleotide primed-PCR (DOP-PCR) 

for small quantities of DNA (as little as 100pg), as first described by Telenius and 

colleagues, ensures reliable amplification of the template DNA (Fig. 8) (Telenius et al., 

1992a and b; Speicher et al., 1993; Kallioniemi et al., 1994; Joos et al., 1994).  The DOP 

primer is actually a family of primers that have a degenerate middle sequence that allows 

the primers to bind to more sites within the template DNA, and thereby results in a probe 

that more accurately represents the original genomic DNA from the microdissected 

tumor.  

The primary shortcoming of CGH, is that it does not detect balanced 

rearrangements, such as translocations, because there are no copy number gains or losses 

associated with such events.  For this same reason, point mutations and small intragenic 

rearrangements go undetected as well (Kallioniemi et al., 1994; Raap, 1995; Ried et al., 

1997).  CGH provides no insight regarding the arrangement of chromosome segments 
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Figure 8.  DOP-PCR Amplification of Genomic DNA.  The 5’ end sequence (gray) is more conserved than 

the 3’ end of the primer (white).  In between, is a variable six nucleotide sequence that 
introduces reduced stringency in to the PCR reaction.  (A) In the first PCR cycle, the DOP 
primer binds to genomic DNA, and the inherent degeneracy of the primer combined with the 
reduced stringency of a relatively low annealing temperature allows it to bind with diminished 
specificity as compared to conventional PCR primers.  The polymerase extends the sequence in 
the 3’ direction from the sequence of primer attachment.  (B) In the cycles that follow, the 
annealing temperature is still sufficiently low to allow relatively uniform amplification of all 
genomic sequences.  (C) In the subsequent cycles, the annealing temperature is increased with 
each cycle, eventually requiring that the entire length of the primer binds to the template strand. 

 
This figure was adapted from Telenius et al., 1992a. 
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involved in reported gains and losses, nor does it help explain the origin of marker 

chromosomes.  Further, the technique has no application for instances of clonal 

heterogeneity, since it only detects aberrations present in a majority of cells in a given 

sample (du Manoir et al., 1993; Raap, 1995; Ried et al., 1997; Chang and Mark, 1997).  

In such instances, abnormalities may cancel one another or be too infrequent to detect 

(Kallioniemi et al., 1994).  Since CGH only detects copy number changes relative to the 

average copy number it can not distinguish genomic changes in ploidy, as there is no 

difference in the test:reference ratio between or within specific chromosomes in these 

cases (Kallioniemi et al., 1994).  Sensitivity of detection for deletions is related to ploidy 

level as well; it is easier to detect a single copy loss in a diploid test sample than in a 

triploid or tetraploid test sample (Kallioniemi et al., 1994).  Copy number changes are 

also difficult to quantify, even if they are not the result of aneuploidy, as the fluorescent 

signal tends to spread over a region greater than the length of the amplicon.  This 

presumably results from the complex organization of the target DNA (Kallioniemi et al., 

1992).  An additional limitation is that some chromosomal aberrations will not be 

detected because they occur in regions smaller than can be resolved by CGH, which has a 

resolution of approximately 10-20Mb (Kallioniemi et al., 1992; Kallioniemi et al., 1993, 

Thompson and Gray, 1993).  Therefore, such regions are only detected when the level of 

amplification is high (5-10 fold for 1Mb region) (Thompson and Gray, 1993; 

Houldsworth and Chaganti, 1994; Raap, 1995; du Manoir 1995b; Forozan et al., 1997).  

CGH is predicated upon appropriate chromosome classification of the normal target 

metaphase, whether by the software, the user, or an interaction between the two.  

Chromosome classification is an inherent source of error, as misclassification seriously 
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affects the results, and it is also the greatest limiting factor in the processing of CGH data 

(Raap, 1995, Lundsteen et al., 1995).     

Image preparation is of paramount importance in CGH.  Homogeneity in an 

image is usually recognizable given a uniform reference paint.  Homogeneity is highest 

when hybridizing a directly- labeled probe, reduced with indirectly- labeled probe, and 

reduced again with multiple layers associated with signal amplification of an indirectly-

labeled probe (Lundsteen, 1995).  Reduced homogeneity is akin to increased granularity 

or improperly sized probe, and indicative of a poor hybridization.  The spread of the 

metaphase chromosomes, image realignment due to pixel shift between filter changes, 

and proper plane of focus all merit consideration in the processing of CGH images (du 

Manoir et al., 1995a).  Selected metaphases should be of a similar degree of 

condensation, but some CGH analysis packages compensate for variations in 

condensation by normalization through linear stretching to fit the profile (Lundsteen, 

1995; du Manoir et al., 1995b).  Criteria for a good metaphase for analysis are as follows: 

(a) hybridization is smooth and high in intensity; (b) test (green) and reference (red) 

distributions are similar among sister chromatids; (c) background is low and uniform; (d) 

binding at centromeres and other regions of repeat is minimal; and (e) chromosomes are 

of acceptable morphology providing for adequate 4’,6-diamidino-2-phenylindole (DAPI) 

banding and there are few or no overlaps (Kallioniemi et al., 1994).  A minimum of 5 to 

10 examples of each chromosome should be measured.  In our lab, the preference was for 

10 metaphases, which should yield 20 measurable examples of each chromosome.  It 

should be noted that analysis of many chromosomes is not a substitute for quality 

hybridizations (du Manoir et al., 1995a and b). 
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Fundamentally, CGH results are a comparison of green to red fluorescence 

intensities.  These intensities are integrated along the length of each chromosome for both 

chromatids, and the result is the green:red ratio profile.  Copy number gains and losses 

are determined by assigning absolute thresholds to the ratio profiles.  Thresholds are 

determined by desired sensitivity, and may be adjusted to compensate for ploidy if a 

determination using independent methods is possible (du Manoir et al., 1993; du Manoir, 

1995b).  All of the green:red ratio profiles collected across all chromosomes represent the 

copy number karyotype (ratio comparisons) for test (green) and reference (red) samples.  

The copy number karyotypes from multiple metaphases are combined to reduce noise 

from spread variation and enhance “visibility” of true copy number aberrations in a given 

test sample (Kallioniemi et al., 1994; Piper et al., 1995). 

Regions of repeat must be suppressed to accurately measure ratios in adjacent 

chromosomal regions.  Typically, these centromeric, heterochromatic and telomeric 

regions are partly suppressed with human Cot-1 DNA and salmon testes DNA, but still 

vary widely in copy number (either extremely high or low) (Kallioniemi et al., 1994; du 

Manoir et al., 1995b; Ried et al., 1997).  This variation in heterochromatin is elevated if 

the test and reference are of different donors (du Manoir et al., 1993; Kallioniemi et al., 

1994).  Similar difficulties are encountered with telomeric DNA. 

Thompson and Gray suggested that CGH be enhanced by follow-up with FISH to 

detect or confirm changes in chromosome number, translocations, inversions, or 

derivative chromosomes (Thompson and Gray, 1993).  While this remains true, a more 

sensitive and revealing analysis on a per-cell basis was made available with the 

introduction of SKY.  In consideration of all of the benefits of CGH, the most notable 
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downside to the technique is the inability to detect the chromosomal structure underlying 

the gains and losses (Houldsworth and Chaganti, 1994).  The development of SKY 

fostered the detection of most structural rearrangements, and allowed for a more 

complete molecular cytogenetic analysis of tumors when used in conjunction with CGH. 

SPECTRAL KARYOTYPING. 

FISH has become an integral technique in cancer research and other cytogenetic 

diagnoses, but the field of molecular cytogenetics benefits greatly from FISH-based 

techniques that screen the entire genome (Schröck et al., 1996; Macville et al., 1997; 

Schröck et al., 1997).  SKY is one such technique wherein the structural and numerical 

analysis of all chromosomes is made possible by a combinatorial labeling scheme and 

advances in image acquisition and analysis (Schröck et al., 1997; Schröck and Padilla-

Nash, 2000).  Unlike CGH, SKY is only applicable to fresh material capable of cell 

division (Schröck et al., 1996; Ried et al., 1997).  One of the most attractive features of 

this technique, is the ability to identify chromosomal aberrations rapidly and without any 

previous indication of the abnormalities, as the technique explores the entire genome in a 

single hybridization (Cohen et al., 1997; Rothmann et al., 1998).  In addition, the 

chromosomal composition of previously unclassified marker chromosomes is revealed 

(Rothmann et al., 1998; Bayani and Squire, 2001).  In essence, SKY is the ideal hybrid of 

the functionality of CGH and FISH; it provides a screen of an entire genome, like CGH, 

with the sensitivity of FISH for detection of structural and numerical chromosomal 

aberrations (Chang and Mark, 1997; Schröck et al., 1997).  

In particular, this technique facilitates a differential display of all human 

chromosomes in a color karyotype using 24 distinct colors, with a resolution of 1-2Mb 
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(Macville et al., 1997; Rothmann et al., 1998; Tonon et al., 2000; Bayani and Squire, 

2001).  Whole chromosome probes are generated via DOP-PCR and differentially labeled 

with various combinations of 5 fluorochromes, thus producing 24 distinctly colored 

paints (Garini et al., 1996; Schröck et al., 1997; Tonon et al., 2000; Schröck and Padilla-

Nash, 2000). Typically, 3 of the fluorochromes are directly incorporated into the probes 

via fluorochrome-labeled dNTPs (rhodamine, Texas-Red or Spectrum Orange, FITC or 

Spectrum Green, and Cy3).  The other 2 are incorporated via hapten-coinjugated dNTPs, 

typically detected with avidin Cy5 and mouse anti-dig Cy5.5, and sometimes amplified 

further by antibody layering (Garini et al., 1996; Macville et al., 1997; Tonon et al., 

2000).  Inclusion of unlabeled competitor DNA (i.e. Cot-1 and salmon testes DNA), as 

previously described for CGH and FISH, allows for suppression hybridization and 

contributes to accurate chromosome painting and resolution of chromosome 

abnormalities (Macville et al., 1997). 

As stated earlier, a specific color is assigned to each chromosome using a 

combination of these direct and indirect labels.  SKY is similar to M-FISH, in that each 

technique uses combinatorial labeling to identify chromosomes.  The use of 

combinatorial labeling allows for the number of targets to exceed the number of 

fluorochromes, particularly given the breadth of hapten-labeling and detection schemes 

(Garini et al., 1996; Macville et al., 1997; Ried et al., 1997; Garini et al., 1999).  Basic  

FISH applications are hampered by the fact that the spectra of the available 

fluorochromes overlap, and therefore it is not possible to define 24 separate probes (Ried 

et al., 1997).  However, M-FISH overcomes this by detecting each fluorochrome 

separately using a set of applicable filters, and requires separate image captures and 
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subsequent overlay prior to image analysis (Speicher et al., 1996).  On the other hand, 

SKY simultaneously excites all fluorochromes and determines the emission spectra, or 

peak intensity and wavelength, at each pixel in a single image for the entire metaphase 

spread (Schröck et al., 1996; Ried et al., 1997; Rothmann et al., 1998; Lee et al., 2001).  

Spectral imaging, the foundation for SKY, is based upon a combination of 

spectroscopy and imaging (Garini et al., 1996; Macville et al., 1997; Ried et al., 1997; 

Rothmann et al., 1998).  Spectroscopic analysis is centered around a stained histological 

specimen that when illuminated, either absorbs or reflects the light, and emits photons 

revealing the properties of the dye (Rothmann et al., 1998).  The hybridization itself is 

fairly similar to other FISH-based protocols, and only a single CCD image capture is 

required for SKY analysis.  After exposure through a triple bandpass filter, which excites 

all dyes simultaneously and blocks excitation light from the emission path, a Sagnac 

interferometer creates an optical path difference in the light emitted from the painted 

chromosomes (Fig. 9).  An interferogram is generated for every pixel during the CCD 

image capture; this is a measure of emitted spectra in terms of intensity at a given 

wavelength (Schröck et al., 1996; Garini et al., 1996; Macville et al., 1997; Ried et al., 

1997; Raap, 1998; Rothmann et al., 1998; Garini et al., 1999).  The differences in the 

captured spectra may be visualized in the display colors of the CCD image.  A Fourier 

transformation ensures that subtle changes in intensity and wavelength between similar 

spectra are assigned drastically different classification colors, or pseudo-colors, to allow 

appropriate discrimination (Schröck et al., 1996; Garini et al., 1996; Macville et al., 

1997; Ried et al., 1997; Raap, 1998; Garini et al., 1999; Bayani and Squire, 2001).   
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Multiple FISH probes can be used to query several genes at once, but the ability 

to simultaneously paint all 24 human chromosomes is a powerful tool for performing a 

global analysis of the chromosome complement of a given cell.  Independently, FISH can 

not accommodate enough spectrally distinct fluorochromes for a global analysis, and 

SKY will not distinguish submicroscopic deletions, para- or peri-centric inversions, or 

small duplications or deletions that do not alter the size or composition of the 

chromosome (Garini et al., 1996; Veldman et al., 1997; Chang and Mark, 1997).  

Therefore, the combination of SKY and FISH in a single preparation is a very useful tool 

for looking at the involvement of a specific gene in a rearrangement event, and is a 

unique refinement on employing each technique individually and attempting to 

synthesize the results (Tonon et al., 2000).  Combination of these 2 techniques allows the 

researcher to assay the involvement of a specific gene and of specific chromosomes in a 

given rearrangement using a single preparation.  SKY may also be employed as a 

screening technique for gene or chromosome involvement, perhaps best applied 

following an expression study such as serial analysis of gene expression (SAGE) or 

microarray analysis (Ried et al., 1997; Tonon et al., 2000).    

Tumors, in particular solid tumors, often have complex karyotypes with multiple 

rearrangements in the genome (Ried et al., 1997; Tonon et al., 2000).  While SKY 

remains very useful for such applications, it has the potential for misclassification, 

commonly due to fluorescence signal flaring that obscures a breakpoint or otherwise 

interferes with interpretation by the SKY software (Lee et al., 2001).  Although the 

resolution of SKY is estimated at 1-2Mb, actual resolution hinges upon the degree of 

chromatin condensation (Macville et al., 1997; Schröck et al., 1997; Bayani and Squire, 
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Figure 9.  Schematic for SKY Image Capture and Analysis.  The principle of spectral karyotyping is 

spectral imaging, which allows distinction of spectrally-overlapping fluorochromes in a SKY 
hybridization.  Emitted light is visualized through a triple bandpass filter (A), the light is then 
passes through a Sagnac interferometer (B), and the image is captured in a single exposure 
using a CCD camera (C).  The interferogram seen in (C) is the pixel-by-pixel detail of 
wavelength and intensity across the entire captured image.  (D) The interferogram is analyzed 
using Fourier transformation to determine the spectrum of the light at each pixel.  The spectra 
for the entire image can be visualized directly as an RGB image (E) similar to the image seen 
through the microscope.  Alternatively, each pixel is classified and the image is pseudocolored 
(F) to distinguish overlapping fluorochromes.   

 
This image was adapted from Schrock et al., 1996. 
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2001).  An additional drawback is the cost associated with SKY hybridization, making it 

potentially most effective as an initial screen  of a number of cells prior to a thorough 

analysis with a specific target for FISH or a comprehensive CGH analysis (Lee et al., 

2001; Bayani and Squire, 2001).  The combination of SKY with CGH allows for an 

amazingly powerful analysis to resolve structural and numerical chromosome aberrations, 

at which point the inclusion of FISH becomes useful as a confirmatory assay (Macville et 

al., 1999).   

UVEAL MELANOMA. 

Uveal melanoma is the primary intraocular tumor observed in adults, and often 

results in blindness and/or death. Epidemiological studies show an incidence of 

approximately 6 per million per year in the Caucasian population; within this population 

it is more common in lightly pigmented individuals (McLean and Gamel, 1996).  Lightly 

pigmented eyes are also demonstrated to be more susceptible to the melanoma (Regan et 

al., 1999). The clinical course of the cancer is related to the size of the tumor, the cell 

type, and the variability of the nucleolar size (Gordon et al., 1994; Prescher et al., 1996).  

Additional considerations include gender, wherein males are slightly more susceptible 

than females, and predisposing factors (McLean and Gamel, 1996).   

Previous studies have shown that oculo(dermal) melanocytosis, neurofibromatosis 

type 1, Li-Fraumeni syndrome, and familial atypical mole and melanoma (FAM-M) 

syndrome are predisposing factors (Singh et al., 1996a; Kincaid, 1998).  Due to the 

strong link between sunlight and cutaneous melanoma, researchers have also considered 

sunlight as a potential cause for uveal melanoma; the results have been ambiguous 

(Tucker et al., 1985; Egan et al., 1988; Holly et al., 1990; Dolin et al., 1994).  There have 
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been rare cases of familial uveal melanoma, thought to be inherited in an autosomal 

dominant fashion and as yet unlinked to any genetic locus or cytogenetic anomaly (Lynch 

et al., 1968; Singh et al., 1996a; Singh et al., 1996b). 

In relation of gross pathology to prognosis, the most significant feature of this 

solid tumor is the largest tumor dimension (LTD) (Hungerford, 1993; McLean and 

Gamel 1996).  Lesions are considered small if the LTD is at or below 10mm, medium if 

the LTD is 11-15mm, and large if the LTD exceeds 15mm (McLean and Gamel, 1996).  

The prognosis worsens as the tumor increases in size.  Other features, including vascular 

supply, are far less significant (Kincaid, 1998).   

Uveal melanomas may arise in the choroid, ciliary body, or the iris (Fig. 3).  The 

origin of the tumor has prognostic significance, with melanomas originating in the iris 

having the most favorable prognosis (Hungerford, 1993; Kincaid, 1998).  Iris melanomas 

are the least common, while choroidal melanomas are the most common (Hungerford, 

1993; McLean and Gamel, 1996; Kincaid, 1998; Singh et al., 2001).  Choroidal 

melanomas often rupture the Bruch’s membrane and invade the subretinal space, giving 

them a characteristic mushroom shape (McLean and Gamel, 1996; Kincaid, 1998).  

Ciliary body tumors can later invade the iris.  Clinical diagnosis may occur following 

routine examination of a asymptomatic eye, blurring or loss of vision, pain from 

inflammation, or retinal detachment and intraocular hemorrhage (McLean and Gamel, 

1996).  

Uveal melanoma tumors are generally classified based on cell type, using a 

modified version of the Callender classification system (Callender, 1931; McLean et al., 

1983; McLean and Gamel, 1996).  In this system, uveal melanomas containing 
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epithelioid cells are designated “mixed-cell type,” melanomas without epithelioid cells 

are termed “spindle-cell type,” and tumors with too much necrosis to be classified by 

cytology are designated “necrotic type.” 

Approximately 50% of patients die from hematogenous metastasis (McLean and 

Gamel, 1996).  Metastasis occurs hematogenously, due to the lack of a lymph system in 

the eye, and almost exclusively localizes to the liver.  The preferential metastasis to the 

liver is not well understood, but can no t be explained through lymphatic drainage 

pathways (McLean, 1995). 

The process of hematogenous metastasis is sequential, where each step is fully 

completed before the following step can take place.  Interruption of the metastatic process 

translates into a cure for the patient.  The stepwise process of hematogenous metastasis is 

as follows: growth and local invasion of primary site, neovascularization, vasular 

invasion, embolization, transport to the metastatic site, arrest at the metastatic site, 

extravascularization at the metastatic site, growth and neovascularization, growth of 

tumor cells in newly established metastasis, and finally re-metastasis (Fidler, 1990; 

McLean, 1993).  Survival time is primarily a function of the growth rate of tumor cells, 

because this determines the pace of the metastatic process.  The significance of lead time 

and tumor burden (also known as LTD) are thereby decreased in uveal melanoma.  Lead 

time is the length of time between metastasis and treatment, and its significance is 

decreased because metastases are often not discovered prior to removal of the eye.  The 

relevance of tumor burden on survival time is decreased, because the exponential growth 

of a tumor has a larger effect on tumor size than pronosis since the critical number of 

doubling times before metastasis can ot be estimated (McLean, 1993).  In addition, 
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patient to patient variation in tumor size decreases the strength of this prognostic 

indicator.  The mean of the diameters of the 10 largest nucleoli, measured from at least 50 

fields of the tumor, has been found to be a good predictor of survival; “the larger the 

nucleoli the lower the cure-rate and the shorter the median survival time” (McLean, 1993; 

McLean, 1995; Periera et al., 2001).  This measurement is similar, but slightly different, 

in cutaneous melanoma, where the mean of the 10 largest nuclei, rather than nucleoli, is 

of prognostic significance (Periera et al., 2001).  Survival time following metastasis is 

also dependent on the immunologic defense system of the host, which is primarily tumor-

infiltrating lymphocytes (TIL).  In most solid tumors, presence of TIL are associated with 

a better prognosis; for indeterminate reasons, the opposite is true when infiltration occurs 

in uveal melanoma (McLean, 1993; McLean, 1995; McLean and Gamel, 1996).   

The primary treatment for uveal melanoma is enucleation, or removal of the eye.  

Conservative therapies include radiation and eye-wall resection, with the intent of 

preserving the eye and maintaining vision (McLean and Gamel, 1996; Kincaid, 1998).  

Radiation therapy is done using a precisely focused particle beam or a radioactive plaque 

sutured to the sclera beneath the tumor.  Eye-wall resection can be used on medium or 

small tumors (≤15mm), but is not feasible on large tumors (>15 mm) (McLean and 

Gamel, 1996).  Survival studies are in progress to compare prognosis and survival 

following enucleation or more conservative therapies, such as radiation and resection 

(Hungerford, 1993; McLean and Gamel, 1996).  The conservative treatments are 

currently favored in smaller tumors, which researchers hope will one day result in tumor 

control and preservation of vision (Kincaid, 1998).  
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Investigations at the sub-cellular level have begun to unveil the genetics 

underlying tumor development, progression, and metastasis.  Cytogenetic evidence 

indicates that copy number abnormalities prevail within uveal melanoma (Gordon et al., 

1994; Speicher et al., 1994; Ghazvini et al., 1996).  Results from cytogenetic analyses 

suggest that the most frequent abnormalities occur in chromosomes 3, 6, and 8; 

monosomy 3 is associated with a poor prognosis (Speicher et al., 1994; Prescher et al., 

1996; White et al., 1998a).  Monosomy 3 is seen in uveal melanoma of the ciliary body, 

whereas disomy or polysomy of chromosome 3 are reported in choroidal melanoma 

(Sisley et al., 1993; McNamara et al., 1997).  Abnormalities of chromosome 6 are also 

seen in cutaneous melanoma, which suggests the cancers may share some common 

genetic alterations (Griffin et al., 1988).  Other recurrent abnormalities have been noted 

with varying consistency, including those on 7q, 9p, and 13q (Gordon et al., 1994).   

Evidence suggests a bifurcated pathway for tumor progression, wherein an 

aberration of either chromosome 3 or 6 occurs, eventually followed by alteration of 

chromosome 8 and metastasis. Chromosome 8 abnormalites are not seen unless 

accompanied by an aberration of chromosome 3 or 6 (Parella et al., 1999).   

Due to its strong link with prognosis, chromosome 3 copy number is frequently 

assayed in the uveal melanoma research community.  Monosomy 3 was first identified 

using classical cytogenetic techniques, and was generally reported in 50% of the tumors 

studied (Horsman et al., 1990; Sisley et al., 1990; Prescher et al., 1990; Horsthemke et 

al., 1992; Sisley et al., 1992; Horsman and White, 1993; Wiltsire et al., 1993; Singh et 

al., 1994; Prescher et al., 1994; Prescher et al., 1995; Prescher et al., 1996; White et al., 

1998b; Parada et al., 1999; Sisley et al., 2000; Tschentscher et al., 2001).  Similar results 
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were found by hybridization-based techniques, including analyses of chromosome 3 loss 

using FISH (Wiltshire et al., 1993; Sisley et al., 1997; Naus et al., 2002).  CGH studies 

report monosomy with similar frequency as well (Speicher et al., 1994; Gordon et al., 

1994; Prescher et al., 1996; Ghazvini et al., 1996; Tschentscher et al., 2001; Naus et al., 

2001).  Studies employing a combination of these methods offer an internal validation of 

their findings (Wiltshire et al., 1993; Prescher et al., 1996; Tschentscher et al., 2001).  

However, the comprehensive cytogenetic characterization of uveal melanoma remains 

incomplete, largely because most studies involve small sample sizes almost exclusively 

comprised of fresh material.   

The absence of chromosome 3, 6, and 8 abnormalities in some cases, suggests that 

there are additional pathways of malignant transformation (Singh et al., 1996a).  Several 

papers seem to refute or question the bifurcated model of development (White et al., 

1998b; Sisley et al., 2000; Naus et al., 2001).  This indicates that while there may be 

exclusivity with regard to the sequence in which chromosome abnormalities appear in 

some tumors, it does not hold true in every case.  Alternatives to monosomy 3 have also 

been reported recently, and are starting to receive some attention.  Decreases in copy 

number of chromosome 3 have sometimes been reported in lieu of monosomy, where 

CGH showed a tendency toward loss of a portion of the chromosome rather than 

complete loss (Gordon et al. 1994; Ghazvini et al., 1996). LOH studies have 

demonstrated losses on either arm of the chromosome rather than along the length of the 

entire chromosome (Sisley et al., 1993; White et al., 1998a; Parella et al., 1999; Myatt et 

al., 2000; Tschentscher et al., 2001).  Furthermore, isodisomy of chromosome 3, trisomy 
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3, and tetrasomy 3 have been reported in the literature (McNamara et al., 1997; White et 

al., 1998a).     
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MATERIALS and METHODS  

HUMAN PERIPHERAL BLOOD LYMPHOCYTE (HPBL) CULTURE.  

Venipuncture was performed on healthy and karyotypically normal male and 

female donors with informed consent, and 0.8ml blood was added to 10ml RPMI 1640 

media (Invitrogen Life Technologies, Carlsbad, CA) supplemented with 20% FBS 

(Sigma Co., St. Louis, MO), 100µl penicillin/streptomycin (100U/ml and 100µg/ml, 

respectively) and 1% sodium heparin (Invitrogen Life Technologies, Carlsbad, CA).  

Then, 216µl phytohemagglutinin (PHA) (Invitrogen Life Technologies, Carlsbad, CA) 

was added to each T-25 culture.  The cultures were incubated at 37°C in 5% CO2 for 72 

hours. 

UVEAL MELANOMA CELL LINES.   

Ten uveal melanoma cell lines were obtained from the Department of 

Ophthalmology, University of Texas Southwestern Medical Center at Dallas (Dallas, 

TX), and maintained in culture using standard techniques (Table 1).  The cell lines were 

derived from 8 primary uveal melanomas and 2 metastases.  

METAPHASE CHROMOSOME PREPARATIONS. 

We prepared metaphase chromosome spreads from normal, cultured human 

peripheral blood lymphocytes (HPBL) and cultured cell lines via conventional techniques 

(Tucker et al., 1994).  After 72 hours of culture, 0.1µg/ml, or 100µl, of colcemid 

(Karyomax Colcemid Solution, Invitrogen Life Technologies, Carlsbad, CA) was added 

to each culture flask.  Cultures with colcemid were incubated an additional 15 minutes, 

after which the T-25 cultures were gently agitated and transferred to 15ml conical 

centrifuge tubes, and centrifuged at 1200rpm for 8 minutes.  The supernatant was 
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aspirated, the cell pellet resuspended in 5ml of a 75mM KCl (see appendix) hypotonic 

solution pre-warmed to 37°C, and incubated for 20 minutes at 37°C.  The hypotonic 

solution was used to swell the cells, eventually causing the cells to burst and release their 

chromosomes when dropped onto slides, forming metaphase spreads. Following 

incubation, the addition of 2ml fresh Carnoy’s fixative (see appendix), and subsequent 

centrifugation for 8 minutes at 1200rpm, stopped the swelling of the cells.  The 

supernatant was again aspirated, and the cells resuspended in 5-10ml fresh fixative.  The 

cells were centrifuged, the supernatant aspirated, and the pellet resuspended.  This 

process was repeated until the cell pellet appeared to be clean and completely white upon 

visual inspection.   

At this point the cells were dropped onto slides; alternatively, the cells were 

resuspended in fixative, stored upright at 4°C and dropped onto slides within the next few 

days.  The best results were observed when slides were dropped on the same day as the 

harvest.  In order to make metaphase slide preparations, the supernatant was aspirated 

and the cells resuspended in approximately 0.5-1ml glacial acetic acid with a 200µl 

pipette after the final centrifugation.  A clean slide, swabbed with ethanol until free of 

debris, was placed over an 80°C water bath and misted with dH2O.  The pipette tip was 

loaded, and 2 adjacent drops of the cell suspension were placed onto the slide from a 

height ranging from 6 inches to 3 feet above the slide.  The slide was dried over the water 

bath, checked for quality, stored in a slide box to age for approximately 1 week.  For 

long-term storage, aged slides were kept in a slide box with desiccant, flushed with 

gaseous nitrogen, sealed in a plastic bag and kept at -20°C until needed.   
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NUCLEI PREPARATIONS. 

For FISH analysis, nuclei from the uveal melanoma cell lines and a normal male 

donor were harvested from 25ml culture flasks using the procedure for metaphase spread 

preparation, but in the absence of colcemid (Tucker et al., 1994).  Nuclei preparations 

were aged and stored in the same manner as the metaphase preparations. 

UVEAL MELANOMA TUMOR CASES .   

One hundred FFPE uveal melanoma tumors were selected at random from the 

AFIP tissue archives.  Two 6µm tissue sections per case were available for 

microdissection, and were accompanied by photocopies of corresponding H & E stained 

slides for tumor identification (Fig. 4).  Of these cases, 51 patients (23 male, 28 female) 

survived more than 9 years without evident metastasis, and the  remaining 49 patients (29 

male, 20 female) succumbed to metastatic disease.  Determination of gender was required 

for appropriate hybridization, but no other patient characteristics were revealed until 

completion of the analysis. 

MICRODISSECTION. 

 Initial approaches involved using a sterile razor blade to scrape the entire paraffin 

tissue section from the slide for DNA isolation.  It was found that the quality of the DNA 

was improved if the tumor was exclusively excised from the slide.  Microdissection is a 

useful technique for ensuring the highest possible proportion of tumor cells, with as few 

contaminating normal cells in the sample as possible (du Manoir et al., 1993; Kallioniemi 

et al., 1994).  Microdissection was performed on two 6µm tissue sections for each of 100 

uveal melanoma cases.  The accompanying H & E slides were used to locate and isolate 

the uveal melanoma tumor in the FFPE tissue section.  A sterile 20-gauge needle, a sterile 
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razor blade, or a fresh microtome blade was used in manual microdissection of the tumor 

tissue from the slide.  The tumor tissue from both tissue sections was combined in a 

single 1.7ml microcentrifuge tube for each case to ensure the availability of sufficient 

tumor DNA for DOP-PCR; this was a concern due to the variability in tumor size from 

case to case.   

DNA ISOLATION.  

Normal (reference) DNA. 

  Reference samples for the entire study were collected via venipuncture from a 

single normal male and a single normal female donor with informed consent, and the 

majority of blood was aliquoted into T-25 flasks for culture of HPBL as previously 

described.  A small volume of blood was set aside for isolation of whole genomic DNA; 

the addition of 200µl whole blood to a microcentrifuge tube yielded approximately 35µl 

purified DNA upon completion of the isolation protocol.   

 The isolation protocol began with the addition of 20µl RNase A (see appendix) 

(Roche Molecular Biochemicals, Indianapolis, IN) to 200µl whole blood, mixed by 

vortexing.  Then, 25µl 20mg/ml Proteinase K (Roche Molecular Biochemicals, 

Indianapolis, IN) and 200µl cell lysis buffer (see appendix) were added to the tube, 

vortexed thoroughly, and incubated for 10 minutes at 70°C.  Proteinase K digestion 

increased the yield of high molecular weight DNA (Isola et al., 1994).  Then, 500ml 

phenol/chloroform/isoamyl alcohol solution (PCI) (25:24:1, v/v) (Invitrogen Life 

Technologies, Carlsbad, CA) was added to the tube(s) after removal from the oven, and 

then the tube was vortexed again.  This was followed by a full speed (14,000rpm) 

centrifugation for 5 minutes in a microcentrifuge.  The upper aqueous layer was removed 
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and put into a clean microcentrifuge tube, and another 500µl PCI was added, again 

followed by vigorous vortexing.  The tube(s) was spun at full speed for another 5 

minutes.  The upper layer was again removed and placed into a clean tube. 

The following reagents were then added to this solution: 25µl 3M sodium acetate 

(Quality Biological, Inc., Gaithersburg, MD), 1.5µl 20mg/ml glycogen (Roche Molecular 

Biochemicals, Indianapolis, IN), and 100% ethanol at volume equal to 3x the volume of 

the tube.  The tube was again vortexed to ensure an evenly distributed solution, and 

incubated at -20°C for up to 2 hours.  The DNA was precipitated via full speed 

centrifugation for 5 minutes.  The supernatant was aspirated, 0.5ml 85% ethanol added to 

the pellet, and vortexed thoroughly.  Following a second 5 minute centrifugation at full 

speed, the ethanol was decanted, and the 85% ethanol wash repeated.  The resulting 

supernatant was aspirated, and the pellet of DNA in the bottom of the tube was dried in a 

lyophilizer set on high for 5 minutes.  The pellet was finally resuspended in 35µl TE 

buffer (pH 7) (see appendix) for long-term storage at -20°C.  DNA quantification was 

performed using a GeneQuant II (Pharmacia Biotech, Cambridge, England); the 260/280 

ratios and DNA concentration recorded. 

Cell Line DNA. 

 DNA was extracted from uveal melanoma cell lines maintained in culture.  The 

media was removed from the T-25 flask and set aside.  Two milliliters of 1xTrypsin-

EDTA (Mediatech, Inc., Herndon, VA) were added to the flask, and when the cells were 

fully suspended in the Trypsin-EDTA solution, the media was replaced into the flask.  

The contents of the flask were pipetted into a 15ml conical centrifuge tube, and 

centrifuged at 1500rpm for 6 minutes.  The supernatant was aspirated, and the cell pellet 



 47 

was washed twice in 10ml 1xPBS (w/o MgCl2 or CaCl2); each time the supernatant was 

aspirated.  The cell pellet was resuspended in approximately 1ml of 1xPBS (w/o MgCl2 

or CaCl2) following the second wash.  The sample was pipetted from the 15ml conical 

tube into microcentrifuge fuge tubes in 200µl aliquots.  From this point on, the DNA 

isolation procedure was identical to that described for normal HPBL DNA.   

 Tumor (test) DNA. 

 Following microdissection, as previously described, tumor DNA was extracted 

via a protocol similar to that described earlier for normal DNA.  First, 800µl Hemo-De 

(Fisher Scientific, Inc., Pittsburgh, PA) was added to each tube containing microdissected 

tumor tissue.  Following addition of Hemo-De, the tubes were vortexed, and 400µl 

ethanol were added.  The tube was vortexed again, and centrifuged at full speed for 5 

minutes.  The supernatant was decanted, and 800µl ethanol was added.  Once again, the 

tube was vortexed and centrifuged at full speed for 5 minutes.  The supernatant was 

decanted, and the pellet dried in a 55°C oven for 5 minutes.  Then, 250µl cell lysis buffer 

and 25µl 20mg/ml Proteinase K were added to the tube, and vortexed thoroughly.  The 

tube(s) was incubated overnight at 55°C in an Eppendorf Thermo Mixer (Brinkmann 

Instruments, Inc., Westbury, NY).  The remainder of the DNA isolation protocol, from 

PCI extraction through DNA quantification, was identical to that described for normal 

DNA. 

NICK TRANSLATION. 

For the cell line CGH experiments, all whole genomic probes were generated via 

nick translation of extracted DNA (Fig. 10).  Each 50µl nick translation reaction 

contained the following reagents: 1µg DNA (volume variable), 5µl 10xNT buffer (see
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Figure  10.  Probe Production via Nick Translation.  Genomic DNA is randomly nicked with Dnase I, after 

which DNA Polymerase I excises nucleotides in the 3’ to 5’ direction.  Then, the same 
polymerase will replace the patch of excised nucleotides using the available pool of dNTPs.  
Due to the decreased ratio of dTTP in the dNTP mixture, hapten- or fluorochroms -labeled 
dUTP will be preferentially incorporated.  The dUTP is labeled, but the preferential 
incorporation is not skewed enough to cause steric hindrance of the resulting labeled probe 
DNA.  

 
This figure courtesy of Dr. Alison E. Director-Myska, AFIP.  
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appendix), 5µl dNTP mixture (see appendix), 5µl 0.1M ß-Mercaptoethanol (see 

appendix), 2µl of either biotin-16-dUTP or digoxigenin-11-dUTP (Roche Molecular 

Biochemicals, Indianapolis, IN), with the remainder being sterile H2O.  The solution was 

vortexed, 5µl 1:1000 DNase I (see appendix) (Roche Molecular Biochemicals, 

Indianapolis, IN) and 1µl Kornberg polymerase (Roche Molecular Biochemicals, 

Indianapolis, IN) were added.  The reaction tubes were incubated for 2 hours at 15°C.  

Following the incubation, 5µl samples of each reaction were run on a 1.7% agarose gel 

(see appendix) to size the fragments.  After the labeled DNA fragments were sized by 

agarose gel electrophoresis and ethidium bromide visualization by UV (ultraviolet) 

excitation, optimal probe size was seen as a smear of DNA between 200- and 1000-bp in 

length (Fig. 11) (Kallioniemi et al., 1994; Houldsworth and Chaganti, 1994). To load the 

gel, 5µl nick translation product were added to 0.5µl loading buffer (see appendix), and 

at least 1 well was loaded with a 100bp ladder (Roche Molecular Biochemicals, 

Indianapolis, IN).  If the probe length exceeded 1000bp in length, additional DNase I was 

added, and the reaction continued at 15°C with size checks every 30 to 60 minutes.  If the 

probe was smaller than 200bp, it was discarded and a new reaction was set-up.  Once the 

probe was in the appropriate size range, 1µl 0.5M EDTA (Digene, Gaithersburg, MD) 

was added and tubes were incubated at 65°C for 10 minutes to halt the reaction; the 

probes were available for immediate use, or could be stored at -20°C until needed. 

POLYMERASE CHAIN REACTION (PCR).  

Whole genomic probes, for the tumor study, were generated through DOP-PCR, 

as first described by Telenius and colleagues (Fig. 8) (Telenius et al., 1992a and b).  

DOP-PCR, accepted as an accurate method of probe creation for CGH, results in larger
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Figure  11.  Agarose Gel Electrophoresis Comparing DNA Extracts with Nick Translation Products.  

Phenol/chloroform/isoamyl alcohol (PCI) extraction procedures were used to isolate normal 
DNA from normal male and female donors, as well as each of ten uveal melanoma cell lines.  
Whole genomic probes were generated through nick translation of extracted DNA, and 
normal DNA and tumor DNA genomic extracts were labeled with digoxigenin-11-dUTP and 
biotin-16 dUTP, respectively (Roche Molecular Biochemicals, Indianapolis, IN).  The 
resultant labeled DNA fragments were measured via agarose gel electrophoresis, visualized 
with ethidium bromide staining coupled with visualization through UV excitation, and 
determined to be between 200 and 1000 base pairs in length.  Lane 2 is the DNA molecular 
weight marker XIV 100 base pair ladder (Roche Molecular Biochemicals, Indianapolis, IN).  
Lanes 3 and 4 are normal male DNA extract and nick-translated male DNA, respectively.  
Lanes 5 and 6 are cell line extract from an uveal melanoma cell line and the nick-translated 
probe product, respectively. 
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labeled fragments than nick translation (Kallioniemi et al., 1994).  This technique, 

frequently applied when there was a small volume of the template DNA available, 

reliably amplifies quantities of DNA as small as 100pg (Speicher et al., 1993).  Hapten-

labeled dUTP was included in the DOP-PCR reaction mix to allow probes to be 

visualized indirectly (Fig. 12).  Reference and tumor DNA were labeled with 

digoxigenin-11-dUTP and biotin-16-dUTP, respectively. 

DOP-PCR primers were obtained with the sequence 5’- GAT CAA GCT NNN 

NNN ATG TGG - 3’ (Integrated DNA Technologies, Inc., Coralville, IA).  Amplification 

was performed using a GeneAmp PCR System 9700 thermocycler (PE Applied 

Biosystems, Foster City, CA).  Each 100µl DOP-PCR reaction mixture contained the 

following reagents: 10µl of a 1:25 dilution of test or reference DNA in TE Buffer, 10µl 

10x PCR Buffer II (w/o MgCl2) (Roche Applied Biosystems, Foster City, CA), 10µl 

20mM DOP Primer (see appendix), 24 µl 25mM MgCl2 (Roche Applied Biosystems, 

Foster City, CA), 5µl biotin- or dig-dNTP mixture (see appendix), 39µl sterile H2O, and 

2µl AmpliTaq Gold (see appendix) (Roche Applied Biosystems, Foster City, CA).  All 

reagents, except the DNA, can be combined into a DOP-PCR master mix (PCR MM) (see 

appendix) to simplify PCR set-up.  Conditions were as follows: 95°C for 10 minutes 

initial soak, 15 cycles of 94°C for 1 minute, 30°C for 1 minute, 72°C for 1 minute, and 

then 60 cycles of 94°C for 30 seconds, 52°C for 30 seconds, 72°C for 1 minute with a 1 

second per cycle addition to each step in the 60 cycles, and completed with a final 

extension of 72°C for 10 minutes before a hold at 4°C.  Labeled DNA fragments were 

sized by agarose gel electrophoresis and ethidium bromide visualization by UV 
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excitation.  Optimal probe size was seen as a smear of DNA between 200- and 1000-bp 

in length (Kallioniemi et al., 1994; Houldsworth and Chaganti, 1994). 

COMPARATIVE GENOMIC HYBRIDIZATION. 

In brief, slides were first pretreated in order to remove unwanted cytoplasm and 

protein from the metaphase preps.  Indirectly- labeled reference and tumor probes were 

simultaneously hybridized to the normal metaphase chromosomes.  Following a 2-night 

hybridization, the indirectly- labeled probes were detected using antibody layering 

detection procedures, and as a final step, the slides were counterstained and coverslipped 

prior to visualization via fluorescence microscopy (Fig. 13).  

Slide pretreatment for hybridization involved several steps.  Initially, slides were 

equilibrated in 2xSSC (see appendix) at room temperature.  Following a short 

equilibration period, 200µl of a 1:200 dilution of 20mg/ml RNase A stock (see appendix) 

in 2xSSC was applied to each slide, and the slides were incubated in a hybridization 

chamber at 37°C for 1 hour.  Three washes in 2xSSC for 5 minutes each, complete the 

digestion of RNA from the slide.  Then, slides were treated with a solution prepared from 

15µl 100mg/ml pepsin stock solution (see appendix) added to 50ml of pre-warmed 37°C 

0.01M HCl, and the slides incubated in a 37°C oven for 6 minutes.  After the pepsin/HCl 

treatment (see appendix), the slides were washed twice in 1xPBS (w/o MgCl2 or CaCl2) 

(see appendix) for 5 minutes, followed by a third 5-minute wash in 1xPBS/MgCl2 (see 

appendix).  Postfixation was performed in a 50ml solution of 1% formaldehyde in 

1xPBS/MgCl2 (see appendix) for 10 minutes, followed by a single 5-minute wash in 

1xPBS (w/o MgCl2 or CaCl2) prior to slide dehydration in a series of 3 ethanol dilutions 

(70%, 85%, and 100%) for 3 minutes apiece, which completes the slides. 
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Figure 12.  DNA Probe Production via PCR.  The process of PCR, simplified, is a series of DNA 

denaturation, annealing of primers, and extension of the DNA.  The primers are specific for 
sequences within the target DNA to be amplified.  When two primers bind within an 
allowable proximity, the polymerase will create complementary lengths of DNA in the 5’ to 
3’ direction.  If a labeled dUTP is incorporated in the dNTP mixture, and the ratio of dTTP is 
reduced, the dUTP will be incorporated with increased frequency without resulting in steric 
hindrance.  Repetition of the cycle many times amplifies the pool of labeled target DNA 
probe sequence. 

 
This figure courtesy of Dr. Alison E. Director-Myska, AFIP. 
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Figure  13.  A Flowchart for CGH.  This is intended as a general description of the steps for CGH, and is 

elaborated upon in Figures 14, 15, and 18.  The preparation of normal target metaphases 
occurs in parallel with the preparation and labeling of normal and tumor genomic DNA.  Both 
DNA probes are simultaneously hybridized to the pre-treated target slide, and following a 2-
night hybridization, the indirectly-labeled probes are detected.  For image processing, the 
target metaphase is captured using DAPI, FITC, and TRITC filters.  The combination of 
images captured using each filter creates a CGH overlay image suitable for analysis.   

 
This figure was adapted from Institut für Pathologie, University Hospital Charité,  
http://amba.charite.de/cgh/protocol/02/prot02.html.
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Figure 14.  A Schematic of the Process of Hybridization for CGH.  The process begins with the 
preparation of genomic DNA, wherein DNA is extracted from tumor and normal cells.  
Extracted DNA is digested (NT) or amplified (PCR) into shorter fragments, or lengths of 
nucleotides, and during that process the DNA is also labeled with a hapten.  Equimolar ratios 
of the labeled tumor (test) and normal (reference) DNA are simultaneously hybridized to a 
pre-treated slide of normal male metaphase spreads.  The hybridized area is sealed beneath a 
coverslip (dashed outline), and incubated for 2 nights.  On the third day, the slide undergoes 
post-hybridization washes to remove excess probe, and fluorescence antibody detection for 
the hapten-labeled genomic probes.  To complete the slide, the normal target metaphase 
chromosomes are counterstained with DAPI, and mounted in an antifade solution for image 
processing, which includes image capture and analysis .   
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CGH was performed as described by Kallioniemi and colleagues (Fig. 14) 

(Kallioniemi et al., 1992).  The normal and tumor probes, created via DOP-PCR, were 

combined into a single probe cocktail.  To make and precipitate the probe cocktail, 30µl 

each (tumor and reference) DOP-PCR product, 60µl human Cot-1 DNA (Invitrogen Life 

Technologies, Carlsbad, CA), 1µl salmon testes DNA (Sigma Co., St. Louis, MO), 

12.1µl 3M sodium acetate, and 400µl ice cold absolute ethanol were combined in a 

microcentrifuge tube for each case to be hybridized.  The DNA was precipitated by 

incubation at -20°C for 2 hours.  Precipitate was collected by a 30-minute centrifugation 

at 14,000rpm.  The supernatant was decanted, and the probe pellet was lyophilized for 5 

minutes.  Then, 5µl molecular grade formamide (Fisher Scientific, Inc., Pittsburgh, PA) 

was added to each pellet, vortexed, and incubated at 37°C for 30 minutes.  Afterwards, 

10µl hybridization master mix (see appendix) was added, the mixture was vortexed and 

denatured at 80°C for 5 minutes, followed by a 2-hour pre-anneal at 37°C.  One hour and 

forty minutes into the preanneal, 100µl of 70% formamide/2xSSC (FA/SSC) (see 

appendix) was added to each pretreated slide along with a 24x60mm glass coverslip.  The 

slides were immediately incubated in an 80°C oven for 1.5 minutes, and then dehydrated 

in a series of ethanol dilutions (70%, 85%, and 100%) for 3 minutes each.  The slides 

were dried, and the pre-annealed probe applied to the denatured slides.  The hybridized 

slides were then covered with a 22mm2 coverslip and sealed with Elmer’s rubber cement 

(Elmer’s Products, Inc., Columbus, OH), and incubated at 37°C for 2 nights prior to 

detection. 

On the third day, the solutions for detection were pre-warmed for 1 hour before 

the procedure was started.  Then, the rubber cement and coverslips were removed.  The 
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slides were then washed at 45°C in 50% FA/SSC (see appendix) 3 times for 5 minutes 

per wash.  This was followed by another three 5-minute washes in 0.1xSSC at 60°C, and 

then the slides were dipped in 4xSSC/0.1% Tween 20 (see appendix) pre-warmed to 

37°C.  A blocking solution of 3% bovine serum albumin (BSA) (Sigma Co., St. Louis, 

MO), pre-warmed to 37°C, was applied, and the slides were placed in a hybridization 

chamber at 37°C for 1 hour.  The slides were again dipped in 4xSSC/0.1% Tween 20 pre-

warmed to 45°C, before the first layer of antibodies was applied.  For antibody layering, 

100-200µl of a given antibody layer solution was applied to each slide, plastic coverslips 

were placed over the solution, and the slides were again placed in a hybridization 

chamber for 1 hour at 37°C, followed by three 5-minute washes in 4xSSC/0.1% Tween 

20 pre-warmed to 45°C.  This process of washing, layering, incubating was repeated for 4 

layers.  The layers were as follows: layer 1 = 1:200 avidin-conjugated FITC (Vector 

Labs, Burlingame, CA) and 1:100 mouse-anti-DIG (Sigma Co., St. Louis, MO), diluted 

in 1% BSA (see appendix); layer 2 = 1:200 biotinylated anti-avidin (Vector Labs, 

Burlingame, CA) and 1:200 rabbit anti-mouse TRITC (Sigma Co., St. Louis, MO), 

diluted in 1% BSA; layer 3 = 1:200 avidin-conjugated FITC in 1% BSA; and layer 4 = 

1:200 goat anti-rabbit TRITC (Sigma Co., St. Louis, MO).  Antibody layering was 

necessary to amplify the fluorescence signal prior to image capture and analysis. 

Following antibody detection procedures, slides were counterstained with DAPI (Sigma 

Co., St. Louis, MO) (see appendix).  Finally, a coverslip was mounted over an antifade 

solution (see appendix) to complete each of the slides.   

While some copy number alterations were obvious given the variation in green 

and red colorization in the hybridization, quantitative fluorescence analysis of digital 
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images was required for accurate CGH analysis (Raap, 1998).  Image acquisition and 

analysis were performed on a Leica Q550CW cytogenetics workstation, which included a 

LEICA DM-RXA fluorescent microscope (Fig. 15) (Leica Inc., Exton, PA), and a SenSys 

cooled CCD camera (Photometrics Ltd., Tuscon, AZ). A CCD camera was mounted on 

the microscope for image capture and import into the software.  DAPI, FITC, and TRITC 

images were acquired separately and combined to create a CGH image of each metaphase 

spread suitable for analysis in the Leica QCGH software (Fig. 16).  Each image was 

visualized using an appropriate single bandpass filter, thus there was limited overlap in 

excitation and emission spectra (Joos et al., 1994; du Manoir et al., 1995a).  Inverting the 

DAPI image approximated G-banding for accurate karyotyping of each metaphase spread 

(Fig. 17) (Trask, 1991).  Compilation of CGH ratio profiles from a minimum of 10 

metaphase spreads per cell line, allowed the generation of mean ratio profiles in the form 

of green:red (test:reference DNA) fluorescence ratios (Fig. 18). Ninety-five percent 

confidence intervals were applied to each of the collective means.  The copy number 

thresholds for gain and loss were 0.2 units above or below the midline (1.2 and 0.8).  

While significant gains and losses were observed on the sex chromosomes, information 

on the sex of the parent tumor was not available for all cell lines (Table 1).  Therefore, 

our cell line analysis considered only the autosomes. 

SPECTRAL KARYOTYPING.   

SKY was performed using the SkyPaint™ hybridization kit (Applied Spectral 

Imaging, Inc., Carlsbad, CA) and results were visualized using the SkyVision™ spectral 

imaging system (Fig. 9) (Applied Spectral Imaging, Inc., Carlsbad, CA).  Metaphase 

spreads were prepared from each of the uveal melanoma cell lines via conventional
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Figure  15.  Step-wise Process of CGH Visualization.  (A) The captured FITC and TRITC images are 

combined to form a single overlay image.  (B) This image is combined with the DAPI 
counterstain to yield a completed CGH image.  (C) The resultant image from (B) is 
karyotyped.  In the completed color karyotype, similar variations in the amount of bound test 
probe are seen in homologous chromosome pairings.  See Figure 16 for additional detail 
regarding image capture. 

 
 
 
 

A. 

B. 

C. 
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Figure 16.  Image Capture for CGH Analysis.  Each of these images is the identical normal male 

metaphase spread detected with three different fluorescent filters.  (A) The metaphase 
chromosomes counterstained with 4’,6-diamidino-2-phenylindole (DAPI) (Sigma Co., St. 
Louis, MO).  Biotinylated tumor DNA signals were detected with avidin-conjugated 
fluorescein isothiocyanate (FITC) (Vector Labs, Burlingame, CA), and digoxigenin -11-
dUTP-labelled normal DNA was visualized using tetramethylrhodamine is othiocyanate 
(TRITC) conjugated antibodies (Sigma Co., St. Louis, MO).  (B ) The FITC image, and (C) 
the TRITC image.  These three fluorescent images (A, B and C) combine to form (D) the 
completed CGH image. This newly combined image is suitable for CGH analysis; the image 
is classified and karyotyped, followed by the generation of CGH profiles to illustrate the 
amplifications and deletions present within the tumor genome.  All image acquisition was 
performed using a Leica Q550CW cytogenetics workstation which includes a Leica DM-
RXA fluorescent microscope (Leica Inc., Exton, PA) and a SenSys cooled CCD camera 
(Photometrics Ltd., Tuscon, AZ). 

C. D.

A. B.
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Figure  17.  DNA Counterstain.  (A) The counterstained metaphase spread stained with DAPI.  (B) The inversion of the DAPI counterstain yields banding 

patterns comparable to G-banding, and allows for accurate karyotyping of the metaphase spread chromosomes.  (C) For comparison purposes, a G-
banded image from a different metaphase spread. 

 
Image (C) was adapted from Genetics of Cancer Resource Center, http://www.intouchlive.com/cancergenetics/chrm-anl.html. 

A. B. C. 
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Figure 18. A Schematic for the Process of CGH Analysis.  In (A), the completed karyoptype from Figure 12 results in a (B) fluorescence ratio profile (red:green 

for reference:test), where each homologue has its own profile tracing as seen in blue.  In (C), compilation of a minimum of 10 ratio profiles comprises 
the mean ratio profile, in which 95% confidence intervals are assigned to the data.  Also shown are the gain (green) and loss (red) bars along the 
length of the ideogram, which correspond to the mean gains and losses in the test sample.  In (D), the side-by-side comparison of all sample mean 
profiles results in a QPD comparison (1) and the derivation of minimal common regions (2) from the comparison of means.   
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cytogenetic techniques as described previously.  Fresh slides were aged at room 

temperature for a week and then hybridized with SkyPaint™ probes as per the 

manufacturer’s instructions.  Selected metaphase slides were treated with 6µl pepsin 

stock solution in 50ml of 0.01M HCl for 5 minutes, washed twice in 1xPBS (w/o MgCl2 

or CaCl2) for 5 minutes, once in 1xPBS/MgCl2, and then dehydrated in a series of ethanol 

dilutions (70%, 85%, and 100%) for 2 minutes each.  The SkyPaint™ probe mixture was 

denatured by incubation at 80°C for 7 minutes followed by a pre-anneal incubation at 

37°C for 1 hour.  Pretreated slides were denatured by incubation with 100µl 70% 

FA/SSC for at 80°C for 1.5 minutes.  Ten microliters of denatured, pre-annealed probe 

was applied to the denatured, pretreated slides, a coverslip was placed atop the probe and 

sealed with rubber cement (Elmer’s Products, Inc., Columbus, OH) prior to incubation at 

37°C for 2 nights.  On the third day the rubber cement seals and coverslips were 

removed.  The slides were washed once in 50% FA/SSC at 45°C for 5 minutes, twice in 

1xSSC (see appendix) at 45°C for 5 minutes each, and finally in 4xSSC/0.1% Tween 20 

at 45°C for 2 minutes.  Eighty microliters of the manufacturer-supplied blocking reagent 

was applied, the slides were coverslipped, and incubated at 37°C for 30 minutes.  

Following the blocking step, the coverslips were removed and 80µl antibodies, supplied 

as buffer 1 (Applied Spectral Imaging, Inc., Carlsbad, CA), were applied.  Slides were 

incubated at 37°C for 45 minutes followed by 3 washes in 4xSSC/0.1% Tween 20 at 

45°C for 3 minutes each.  Eighty microliters of a second set of antibodies, supplied as 

buffer 2 (Applied Spectral Imaging, Inc., Carlsbad, CA), were applied and the slides were 

incubated at 37°C for 45 minutes.  Following this incubation, the slides were washed 3 

times in 4xSSC/0.1% Tween 20 at 45°C for 3 minutes each and once in dH2O for 2 
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minutes.  The slides were allowed to dry, 20µl of manufacturer-supplied DAPI/antifade 

solution was applied, and a coverslip was mounted over each slide. A minimum of 3 

metaphase spreads per cell line were captured and analyzed using the SpectraCube and a 

SkyVision™ workstation.  While CGH data is stored in the form of CCD images 

captured through various filters, data from a spectral image is captured in a single 

exposure and stored in three dimensions, the x and y planes and the integration of light 

intensity on a wavelength scale, hence the use of the term “cube” in SpectraCube 

(Rothmann et al., 1998).  

INTERPHASE FLUORESCENCE IN SITU HYBRIDIZATION (FISH). 

 Interphase FISH was performed on uveal melanoma cell lines, created via 

metaphase chromosome preparation techniques, using human chromosome 3-specific 

centromere (3cen) probe (Cambio Ltd., Cambridge, UK).  Application of the slide 

pretreatment protocol for CGH prior to hybridization removed any RNA, cytoplasm, or 

proteins complexed with the DNA (Kallioniemi et al., 1992).  The protocol consisted of 

treating the normal male and cell line slide preparations with RNase A, pepsin/HCl, and 

1% formaldehyde in 1xPBS/MgCl2, and lastly dehydration in a series of ethanols (70%, 

85%, and 100%), prior to denaturation and hybridization.  The hybridization protocol for 

the 3cen probes was a slight modification of the manufacturer’s instructions for 

optimization.  Pretreated slides were denatured in 70% FA/SSC at 70°C for 5 minutes, 

dehydrated in a series of ethanols and allowed to air dry on a 37°C slide warmer.  

Denaturation of 20µl of indirectly- labeled (biotinylated) 3cen probe at 75°C for 5 

minutes occurred in parallel with slide denaturation and dehydration.  The probe was 
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applied to the slide, sealed under a 22mm2 glass coverslip with Elmer’s rubber cement, 

and allowed to hybridize for 16 hours at 37°C. 

 Following hybridization, the coverslips were removed, and the slides washed 

twice in 45°C 50% FA/SSC for 5 minutes, and then twice in 45°C 0.4xSSC for 5 

minutes.  The slides were dipped in 45°C 4xSSC/0.05% Tween 20 (see appendix), 

incubated for 1 hour at 37°C with 150µl 3% non-fat dried milk (NFDM) blocking 

solution (see appendix), and then dipped in 4xSSC/0.05% Tween 20 a second time.  Each 

slide had 100-200µl of a given antibody solution layered onto it, and slides were 

incubated for 1 hour with each of 3 separate antibody layers.  The first layer of antibodies 

consisted of avidin-FITC and avidin-Rhodamine in 3% NFDM, the second layer was 

biotinylated anti-avidin, and the third layer was identical to the first.  Following each 

antibody layer, slides were washed 3 times for 5 minutes each in 45°C 

4xSSC/0.05%Tween 20.  After the final wash, slides were counterstained with DAPI, 

rinsed with dH2O for 5 minutes, and dehydrated in a series of ethanols (70%, 85%, and 

100%) for 3 minutes each.  Finally, a glass coverslip was mounted over an antifade 

solution to complete each of the slides.  Visualization of the dual-colored probe was with 

the Leica Q550CW cytogenetics workstation, as described for CGH. FITC, TRITC, and 

DAPI images were acquired separately and combined to view signal localization and 

score signal counts within the nuclei.  Two hundred nuclei per cell line were scored for 

3cen signals.  We closely adhered to the rules for analysis of signal distribution as set out 

by Herrington and colleagues, and the criteria for interphase FISH as described by 

Hopman et al. (Hopman et al., 1988; Herrington et al., 1995). 
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Interphase FISH was performed on uveal melanoma cell lines using directly-

labeled telomere probes fo r 3p (FITC) and 3q (Texas Red) (Cytocell Ltd., Banbury, 

Oxfordshire, UK).  Slide pretreatment was identical to that described for 3cen FISH.  

Tandem hybridization of the telomere-3 probes followed the manufacturer’s instructions, 

except for the substitution of a 22mm2 glass coverslip.  Codenaturation of the probe and 

slide on a Vysis Hybrite block (Vysis Inc., Downer’s Grove, IL), sealed together under a 

22mm2 glass coverslip, preceeded overnight hybridization in a humidified chamber at 

37°C.  Slides were treated using the manufacturer’s post-hybridization protocol, stained 

with DAPI and mounted with antifade as described above.  Again, 200 nuclei per cell line 

were scored for 3p and 3q signals, and published criteria for interphase FISH and 

guidelines for analysis of signal distribution were adopted (Hopman et al., 1988; 

Herrington et al., 1995).  Image capture was identical to that described for the 3cen 

hybridization. 

Hardware requirements for FISH analysis are similar to those described for other 

molecular cytogenetic techniques.  For our purposes, the hardware requirements 

described for CGH digital imaging microscopy were sufficient.  Hybridized slides were 

scored using a Leica Q550CW cytogenetics workstation, which includes a LEICA DM-

RXA fluorescent microscope (Leica Inc., Exton, PA), and a SenSys cooled CCD camera 

(Photometrics Ltd., Tuscon, AZ).  Use of a CCD camera is the most sensitive method for 

obtaining high quality digital fluorescence images (Joos et al., 1994).  

STATISTICAL ANALYSES . 

Extensive quantitative manipulations of the data from the cell line study were 

necessary in order to compare the results from CGH, SKY and FISH analyses.  In the 



 67 

tumor study, statistical analyses were used in order to isolate regions of prognostic 

significance.   

Cell Line CGH Analysis. 

To effectively malipulate the CGH data from the cell line study, a pixel 

quantification of net area under each ratio profile curve was applied using a Visual Basic 

v. 6.0 (Microsoft Corp., Redmond, WA) program created for Image Pro Plus v. 4.5 

(Media Cybernetics, Silver Spring, MD) for each of the chromosomes in a given cell line.  

The intent was to extrapolate the extent of genomic imbalance represented by each of the 

profiles contributing to the mean.  In other words, analyses were made to determine the 

quantity of shift from the midline of the profile represented in the CGH data given the 

addition or subtraction of the amount of chromosomal material shown to be gained or lost 

for a given chromosome.  Analysis of individual profiles rather than the mean profiles 

was determined to be the most accurate approach, similar to an approach previously 

applied to pseudodiploid and pseudotriploid test samples (Rosenberg et al., 1997). The 

following formula was applied to calculate relative balance (RB) represented in each 

individual chromosome profile in all metaphase spreads analyzed for each cell line:   

CGH RB = (NA/PL x 1/len1) + 1 

For a given chromosome, NA was the number of pixels under ratio profile to the right of 

the midline minus the number of pixels under the ratio profile to the left of the midline, 

PL was the vertical profile pixel length, in pixels, and len1 was the distance, in pixels, 

representing a unit change in copy number on the x-axis of the ratio profile.  CGH RB, 

the extrapolated ratio value used as a measure of balance, was determined for a specific 
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chromosome in any given cell for each of the cell lines.  This allowed a quantification of 

the expected amount of genomic imbalance relative to the copy number ratio. 

Cell Line SKY Analysis. 

A pixel quantification of each of the 24 chromosome classification colors in SKY 

was applied using a Visual Basic v. 6.0 (Microsoft Corp., Redmond, WA) program 

written for Image Pro Plus v. 4.5 (Media Cybernetics, Silver Spring, MD).  This 

quantification was performed for each of the available spreads from the 10 cell lines, and 

normalized against representative whole chromosomes from within the same spread.  The 

relative chromosome equivalent (RCE) feature was calculated for each of the 22 

autosomes from the SKY classification images according to the formula: 

SKY RCE = PT/PN 

For a metaphase spread, PT was the number of pixels designated for a given 

chromosome throughout the SKY classification image, and PN was the number of pixels 

assigned to all cytogenetically normal chromosomes of the same classification divided by 

the number of normal chromosomes counted.  This internal normalization resulted in 

determination of relative chromosome equivalents for each cell line.  Using this method, 

the relative amount of genomic imbalance could be compared between chromosomes 

from a given cell line, but SKY RCE remained an absolute measure of chromosomal 

material and therefore was directly comparable with the FISH results.   

A relative genomic balance for the SKY data (SKY RB) was calculated for each 

of the 22 autosomes by dividing the individual chromosome SKY RCE values by the 

mean SKY RCE (comparable to CGH midline) for all chromosome types.  The SKY 

data, an absolute measure in its original form, becomes transformed into a ratio and was 
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thereby compensated for ploidy but not aneusomy.  SKY RCE and SKY RB results for 

OCM-3 were not reported due to hardware failure while archiving SKY data. 

Cell Line FISH Analysis. 

A FISH relative chromosome equivalent (FISH RCE) feature was calculated for 

chromosome 3 in each cell line, as the sum of all 3cen, 3p and 3q hybridization signals 

(200 nuclei scored for each) divided by the total number of signals (divided by 600).  

This was essentially a combined average for the individual signal means.  FISH RCE 

remained an absolute measure of chromosome 3 copy number, and was most readily 

compared with the SKY RCE.  Since there was no available compensation for genomic 

ploidy, because FISH revealed only chromosome 3 copy number, determination of FISH 

RB was not reasonable.  

Tumor CGH Analysis. 

Minimal common regions were generated from mean ratio profiles of 82 archival 

FFPE tumor specimens analyzed by CGH, for those chromosomal regions evidencing 

gains or losses in greater than 30% and less than 70% of the cases.  Minimal common 

regions were further subdivided by gender, for accurate analysis of copy number 

imabalnces on the sex chromosomes, and survival, to determine which chromosomal 

regions were potentially of value in prognosis.   

CGH data for individual cases was recorded as normal (1), gain (2), loss (0), or 

both (0 and 2) at each minor band for all 24 chromosomes in the mean ratio profiles.  

Minor band data was collated for each major band, and major bands were initially 

scanned for significant gains or losses with a two-tailed t-test.  Only those chromosomal 

regions shown to be significant in the analysis of major bands were then analyzed at the 
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level of the minor band, also with a two-tailed t-test.  Individual minor bands with 

univariate significance following that analysis were compared with cell type, tumor size, 

mean of the ten largest nucleoli, and survival in a Cox Regression analysis, to determine 

which chromosomal regions correlate most strongly with prognosis.  Univariate Kaplan-

Meier cause specific survival curves were generated for those regions determined to have 

prognostic significance in the Cox Regression analysis.  Multivariate predictors of 

prognosis were also explored, as first described by McLean and colleagues, and 

multivariate Kaplan-Meier cause specific survival curves were also generated (McLean et 

al., 1977). 
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RESULTS 

UVEAL MELANOMA CELL LINES. 

Comparative Genomic Hybridization. 

Mean profiles for all 10 cell lines were compared (Fig. 19).  Copy number 

abnormalities identified in greater than 50% of the mean ratio profiles comprise the 

minimal common regions, which were pinpointed based upon the most recent 

chromosome ideogram and genome mapping data available (Fig. 20).  

Many of these abnormalities aligned with previously published findings, 

including CGH and classical cytogenetic data (Tables 2 and 3).  Minimal common 

regions were used to identify genes likely to be involved in uveal melanoma (Table 4).  

Many of these genes have either been previously linked to uveal melanoma or its 

predisposing factors and/or are involved in cell-cycle control. 

Gains and losses often consisted of large portions of chromosomes, and in some 

cases involved whole chromosomes.  Whole chromosome gains were observed in 

individual cell lines: chromosome 7 (OMM-1), chromosome 8 (MEL270) and 

chromosome 17 (OCM-3).  Whole chromosome gains were observed in 3 cell lines for 

chromosomes 20 (OCM-3, OCM-8, and OMM-1) and 22 (OCM-3, OCM-8, and OMM-

2.3).  The greatest gains of chromosome 3 were evidenced in OCM-1, OM431, and 

OMM-2.3.  Only OCM-1 and OM431 had gains that included the centromere.  Other 

significant p- and q-arm gains were seen in OCM-3 and OCM-8.  A whole chromosome 

loss was observed in one instance on chromosome 4 (OCM-3).   

The frequent involvement of chromosomes 3, 6 and 8 in copy number imbalances 

was apparent (Figs. 19 and 20).  There were multiple consistent gains along chromosome
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Figure  19.  Quantitative Comparison Data for Genomic Imbalances in Ten Cell Lines.  The gain threshold was set at a 1.2 copy number ratio, and the loss threshold 

was set at a 0.8 copy number ratio.  Light gray bars to the right of the ideogram represent gains in a specific chromosomal region for each cell line, and 
dark gray bars to the left of each ideogram represent regions of loss in the cell line genome.  The gain and loss bars are paired by cell line, starting with 
the pair closest to the ideogram, and then flanking outward. A scale with the numeric code for each cell line, as designated in Table 1, is provided above 
each ideogram: 1 = 92-1, 2 = MEL270, 3 = MEL285, 4 = MEL290, 5 = OCM-1, 6 = OCM-3, 7 = OCM-8, 8 = OM431, 9 = OMM1, and 10 = OMM2.3.  
Only autosomes are considered in our analysis. 
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Figure  20.  Minimal Common Regions of Gain and Loss Distilled from CGH Mean Profile Data of Ten Uveal Melanoma Cell Lines.  The light gray bars to the 

right of the ideogram represent gain, and dark gray bars to the left of the ideogram represent regions of loss, common among at least 50% of the cell 
lines.  These minimal common regions may denote chromosomal regions related to the development and progression of uveal melanoma.  Only 
autosomes are considered in our analysis. 
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Table 2.  A Comparison of Gains Seen in Ten Uveal Melanoma Cell Lines Compared with Previously Reported 

Chromosomal Abnormalities in Uveal Melanoma. 
      

Gains Observed in the Current 
Studya Cell Linesb Gains Reported by CGHa Reference 

Gains Reported by 
Classical Cytogeneticsa Reference 

         

1q21.1 - q21.2 (60%) 1,2,3,6,7,8 1q (9.1%) Speicher et al., 1994    
1q21.2 (60%) 1,3,4,6,7,8       

         

3p13 - p14.1 (50%) 2,5,6,7,10       
         

6p21.2 - p21.3 (50%) 1,2,7,9,10 6p (45.5%) Speicher et al., 1994 6p (46.3%) White et al., 1998b 
   6p (57%) Ghazvini et al., 1996 6p (25%) Wiltshire et al., 1993 
   6p (42%) " 6p12 - 6pter (25%) " 
   6p (40%) Gordon et al., 1994    
   6p21 - pter (54.5%) Speicher et al., 1994    
         

7p13 - p15.2 (50%) 2,3,6,7,9       
         

7q11.21 - q11.23 (50%) 1,3,4,9,10 7q (70%) Gordon et al., 1994    
7q21.2 - q21.3 (60%) 1,2,3,7,8,9       
7q21.3 - q22.1 (60%) 1,2,5,7,8,9       
7q22.1 - q31.1 (70%) 1,2,5,6,7,8,9       
7q31.1 - q31.3 (50%) 2,5,7,8,9       
7q31.3 - q33 (60%) 2,5,6,7,8,9       
7q34 - q35 (50%) 1,5,6,8,9       

         

8q24.1 - q24.2 (60%) 1,2,4,5,8,10 8q (54.5%) Speicher et al., 1994 8q (48.1%) White et al., 1998b 
8q24.2 - q24.3 (60%) 1,2,5,6,8,10 8q (100%, fresh) Ghazvini et al., 1996 8 (25%) Wiltshire et al., 1993 

8q24.3 (60%) 1,2,5,8,10 8q (57%, fixed) " 8q (50%) " 
   8q (100%) Gordon et al., 1994 8q13.1 - 8qter (25%) " 
   8q24 - qter (63.6%) Speicher et al., 1994    
         

11p14 - p15.1 (50%) 3,4,5,7,8 11p (9.1%) "    
aThe percentage in parentheses is the frequency of occurrence for a given gain. 
bSee cell line key. 
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Table 2 (cont’d).  A Comparison of Gains Seen in Ten Uveal Melanoma Cell Lines Compared with Previously Reported 
Chromosomal Abnormalities in Uveal Melanoma. 

Gains Observed in the Current 
Studya Cell Linesb Gains Reported by CGHa Reference Gains Reported by 

Classical Cytogeneticsa 
Reference 

         

17q11.1 - q11.2 (50%) 3,4,5,6,8 17 (18.2%) Speicher et al., 1994    
17q21.3 - q22 (50%) 1,5,6,7,8       
17q22 - q24 (80%) 1,2,5,6,7,8,9,10       

17q24 (70%) 1,2,5,6,8,9,10       
17q24 - q25 (60%) 1,2,6,8,9,10       

         

19p13.3 - q12 (50%) 1,3,6,7,10       
19q12 - q13.1 (60%) 1,3,6,7,8,10       

19q13.1 - q13.2 (50%) 3,6,7,8,10       
         

20p11.1 - q11.1 (50%) 1,3,6,7,9 20 (14%) Ghazvini et al., 1996    
20q11.1 - q11.2 (70%) 1,3,5,6,7,9,10       

         

20q11.2 - q13.1 (60%) 3,5,6,7,9,10       
20q13.1 - q13.3 (50%) 3,5,6,7,9       

         

22q11.1 - q11.2 (80%) 1,2,4,5,6,7,8,10 22 (9.1%) Speicher et al., 1994    
22q11.2 - q12.1 (90%) 1,2,4,5,6,7,8,9,10 22q (9.1%, fresh) Ghazvini et al., 1996    

22q13.2 (50%) 1,6,7,8,10 22q (42%, fixed) "    
22q13.3 - qter (50%) 1,6,7,8,10       

         

aThe percentage in parentheses is the frequency of occurrence for a given gain. 
bSee cell line key. 
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Table 3.  A Comparison of Losses Seen in Ten Uveal Melanoma Cell Lines Compared with Previously Reported Chromosomal 
Abnormalities in Uveal Melanoma. 

Losses Observed in the 
Current Studya Cell Linesb Losses Reported by CGHa Reference 

Losses Reported by 
Classical Cytogeneticsa Reference 

         

2q37.3 - qter (50%) 2,5,8,9,10       
         

3p26 - pter (50%) 3,4,6,7,8 3 (45.5%) Speicher et al., 1994 3 (80%) White et al., 1998a 
   3 (57%, fresh) Ghazvini et al., 1996 3 (50%) White et al., 1998b 
   3 (85%, fixed) " 3 (100%) Wiltshire et al., 1993 
   3 (70%) Gordon et al., 1994    
   3 (57%) Prescher et al., 1996    
         

4q35 - 4qter (90%) 1,2,3,4,6,7,8,9,10 4q (14%) Ghazvini et al., 1996    
         

5p15.3 - pter (50%) 2,4,6,7,10       
         

6q14 - q21 (50%) 1,2,6,7,10 6q (45.5%) Speicher et al., 1994 6q (46.3%) White et al., 1998b 
6q21 - q22.2 (60%) 1,2,3,6,7,10 6q (42%, fresh) Ghazvini et al., 1996 6q (25%) Wiltshire et al., 1993 

6q22.2 - q23.3 (60%) 1,2,6,7,9,10 6q (28%, fixed) " 6q12 - 6qter (25%) " 
6q23.3 - q25.2 (70%) 1,2,3,6,7,9,10       
6q25.2 - q26 (60%) 1,2,3,7,9,10       
6q26 - q27 (70%) 1,2,3,7,8,9,10       
6q27 - qter (90%) 1,2,3,4,5,7,8,9,10       

         

7q36 - qter (60%) 2,3,4,7,8,10       
         

8p23.3 - pter (50%) 3,4,6,7,10 8p (28%) " 8p (25%) Wiltshire et al., 1993 
         

9p23 - p24 (50%) 6,7,8,9,10 9p21 - pter (27.3%) Speicher et al., 1994 9p (25%) " 
9p24 - pter (90%) 1,2,4,5,6,7,8,9,10 “ “ “ 9p23 - 9pter (25%) " 

         

10p15.1 - pter (70%) 2,3,4,6,7,8,10       
10q26.2 - qter (60%) 2,4,7,8,9,10       

         

11q25 - qter (80%) 1,2,5,6,7,8,9,10 11q23 - qter, (18.2%) "    
   11q (42%) Ghazvini et al., 1996    
         

aThe percentage in parentheses is the frequency of occurrence for a given loss. 
bSee cell line key. 
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Table 3 (cont’d).  A Comparison of Losses Seen in Ten Uveal Melanoma Cell Lines Compared with Previously Reported 
Chromosomal Abnormalities in Uveal Melanoma. 

Losses Observed in the 
Current Studya 

Cell Linesb Losses Reported by CGHa Reference Losses Reported by 
Classical Cytogeneticsa 

Reference 

         

12p13.3 - pter (80%) 1,2,3,4,6,7,8,10 12p (9.1%) Speicher et al., 1994    
         

13q34 - qter (50%) 2,4,6,7,8       
         

14q32.3 - qter (60%) 2,3,5,7,8,9       
         

16q24 - qter (50%) 2,7,8,9,10 16q (18.2%) "    
         

18p11.31 - pter (80%) 2,3,4,6,7,8,9,10       
18q23 - qter (70%) 1,2,4,7,8,9,10       

         

21q22.3 - qter (50%) 2,7,8,9,10       
         

aThe percentage in parentheses is the frequency of occurrence for a given loss. 
bSee cell line key. 
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Table 4.  A Correlation of Copy Number Abnormalities in Ten Uveal Melanoma Cell Lines and Genes Associated with Uveal 
Melanoma or its Predisposing Factors. 

Gain/Loss Observed in 
Current Studya Cell Linesb Gene Locusc Function  Sourcec,d 

        

+1q21.1 - 1q21.2 (60%) 1,2,3,6,7,8 TNFSF6 1q23 tumor necrosis factor ligand  OMIM 
+1q21.2 (60%) 1,3,4,6,7,8      
        

-2q31 - q32 (20%) 9,10 alpha4 integrin 
subunit gene, 

CAT gene 

2q31 - q32 transcriptional regulator of alpha4 integrin 
subunit gene in metastasis, alpha4 promoter 
fused to CAT gene 

 Larouche et al., 1998 

        

+6p21.2 - p21.3 (50%) 1,2,7,9,10 HLA-G 6p21.3 histocompatability antigen  OMIM  
        

-6q14 - q21 (50%) 1,2,6,7,10 ? 6q12 - q21 putative tumor suppressor gene  Copeman, 1992 
        

-6q21 - q22.2 (60%) 1,2,3,6,7,10 AIM1 6q21 absent in melanoma  OMIM  
        

+7q21.2 - q21.3 (60%) 1,2,3,7,8,9 MDR1 7q21.1 - q21.2 produces P-gp pump protein, causes drug 
resistance in cancer cells  

 Dunne et al., 1998 

        

+8q24.1 - q24.2 (60%) 1,2,4,5,8,10 c-myc 8q24 oncogene  Blom et al., 1997 
+8q24.2 - q24.3 (60%) 1,2,5,6,8,10 " " "  Chana et al.,1999 
+8q24.3 (50%) 1,2,5,8,10      
        

-9p23 - p24 (50%) 6,7,8,9,10 CDKN2 (p16) 9p21 tumor suppressor, involved in FAM-M and 
Li-Fraumeni 

 Singh et al., 1996a 

-9p24 - pter (90%) 1,2,4,5,6,7,8,9,10 FCM critical 
region 

9p13 - p22 familial cutaneous melanoma critical region  Houlston and Damato, 1999 

       Merbs and Sidransky, 1999 
       Singh et al., 1996b 
   CMM2 9p21 cutaneous malignant melanoma, also 

involved in FAM-M 
 OMIM 

   TYRP1 9p23 tyrosinase-related protein 1  OMIM  
        

aThe percentage in parentheses is the frequency of occurrence for a given abnormality. 
bSee cell line key. 
cLoci without an OMIM reference were pinpointed using the International RH Mapping Consortium - GeneMap ’99 at http://www.ncbi.nlm.nih.gov/genemap99.  
A number of these loci are not identical to those identified in the current study.  The International RH Mapping Consortium recognizes the presence of 
positional discrepancies in the published map.  Therefore, we have chosen to list these loci due to their linkage with uveal melanoma and their general 
proximity to the copy number abnormalities identified in this study. 

dAll references to OMIM refer to Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/Omim/ and were collected by doing a keyword search of 
“uveal melanoma” and “melanoma.” 
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Table 4 (cont’d).  A Correlation of Copy Number Abnormalities in Ten Uveal Melanoma Cell Lines and Genes Associated 
with Uveal Melanoma or its Predisposing Factors. 

Gain/Loss Observed in 
Current Studya 

Cell Linesb Gene Locusc Function  Sourcec,d 

        

-10q26.2 qter (60%) 2,4,7,8,9,10 DMBT1 10q25.3 - q26.1 deleted in malignant brain tumors  OMIM  
        

+11p14 - p15.1 (50%) 3,4,5,7,8 HRAS 11p15.5 v-Ha-Ras oncogene  Singh et al., 1996a 
   " " "  OMIM 
        

-11q25 - qter (80%) 1,2,5,6,7,8,9,10 tyrosinase 11q13.5 - q14.1 melanoma associated antigen  Luyten et al., 1998 
        

-12p13.3 - pter (80%) 1,2,3,4,6,7,8,10 KRAS 12p12.1 v-Ki-Ras 2 oncogene  Singh et al., 1996a 
   " " "  OMIM  
        

-13q34 - qter (50%) 2,4,6,7,8 BRCA2 13q12.2 - q12.3 breast cancer susceptibility locus  Houlston and Damato, 1999 
        

-16q24 - qter (50%) 2,7,8,9,10 MC1R 16q24.3 melanocortin 1 receptor  OMIM  
        

-17p13 - pter (30%) 2,9,10 p53 17p13.1 tumor suppressor, involved in  
Li-Fraumeni 

 Singh et al., 1996a 

+17q11.1 - q11.2 (50%) 3,4,5,6,8 NF1 17q11.2 neurofibro matosis   OMIM  
+17q21.3 - q22 (50%) 1,5,6,7,8 BRCA1 17q21 breast cancer  OMIM 
+17q22 - q24 (80%) 1,2,5,6,7,8,9,10 PRKCA 17q22 - q23.2 protein kinase C  OMIM  
        

+19p13.3 - q12 (50%) 1,3,6,7,10 STK11 19p13.3 serine/threonine protein kinase II  OMIM  
+19q12 - q13.1 (60%) 1,3,6,7,8,10 MEL 19p13.2 - cen oncogene MEL, Ras-associated protein  OMIM  
+19q13.1 - q13.2 (50%) 3,6,7,8,10 MIA 19q13.32 - 

q13.33 
melanoma inhibitory activity  OMIM  

        

+22q11.2 - q12.1 (90%) 1,2,4,5,6,7,8,9,10 EWSR1 22q12 Ewing sarcoma breakpoint  OMIM  
   LFS 22q12.1 Li-Fraumeni  OMIM  
   NF2 22q12.2 neurofibromatosis   OMIM  

        

aThe percentage in parentheses is the frequency of occurrence for a given abnormality. 
bSee cell line key. 
cLoci without an OMIM reference were pinpointed using the International RH Mapping Consortium - GeneMap ’99 at 
http://www.ncbi.nlm.nih.gov/genemap99.  A number of these loci are not identical to those identified in the current study.  The International RH Mapping 
Consortium recognizes the presence of positional discrepancies in the published map.  Therefore, we have chosen to list these loci due to their linkage with 
uveal melanoma and their general proximity to the copy number abnormalities identified in this study. 

dAll references to OMIM refer to Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/Omim/ and were collected by doing a keyword search of 
“uveal melanoma” and “melanoma.” 
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3 as a whole.  Gains were also seen on 6p and distal 8q, while consistent losses were 

found on 6q (Fig. 16).  A thorough evaluation of chromosomes 3, 6, and 8 was critical 

because they are frequently reported as aberrant in uveal melanoma.  The cell line 

MEL285 approached monosomy 3, as a prominent loss extended from the p-terminus to 

3q21, but the remainder of the chromosome traced the normal midline of the CGH 

profile.  Loss of distal 3p was seen in the quantitative comparison data (QCD) (Fig. 19) 

for MEL290, OCM3, OCM8, and OM431.  Several cell lines exhibited tendencies toward 

loss of portions of chromosome 3, including 92-1, MEL290, OCM-3, OCM-8, and 

OM431.  These tendencies did not exceed the threshold for loss.  The trend seen in 92-1 

was toward a loss of 3q, whilst the others were for loss of 3p.  The p-arm of chromosome 

6 was gained in 92-1, MEL270, OMM-1, and OMM-2.3, while 6q was lost in 92-1, 

MEL270, MEL285, OCM-3, OCM-8, OMM-1, and OMM-2.3.  Three cell lines showed 

loss on both 6q and distal 3p (MEL285, OCM-3, and OM431).  A focal gain at 8q24 was 

also seen in 5 of the 10 cell lines (92-1, MEL290, OCM-1, OCM-3, and OM431).  The 

entire chromosome 8 was gained in MEL270, while only 8q was gained in OMM-2.3. 

Spectral Karyotyping. 

SKY identified numerical and structural aberrations on a per-cell basis in each of 

the cell lines.  For our SKY analysis, a total of 2,334 chromosome structures were 

analyzed, with the percent of aberrations ranging from 0% for the Y chromosome to 

62.96% for chromosome 1 (Table 5).  Chromosomes 1, 3, 8 and X contained aberrations 

in all of the cell lines. Chromosomes 1, 3, 7, 12, 17 and 20 were aberrant more than 50% 

of the time collectively across all cell lines.  Frequent structural and numerical 

aberrations were tabulated as those that occurred across 3 or more cell lines (Table 5).  
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The high frequency of these aberrations suggests that chromosomes 1, 3, 7, 12, 17 and 20 

may contain genes of significance in the establishment and/or progression of uveal 

malignant melanoma.  Chromosomes 1, 3, 8, 17, 19, 20, and 22 were often involved in 

numerical aberrations (Table 5).  Complex aberrations involving more than 2 

chromosomes were seen frequently in MEL290, OCM-1, OCM-3, and OCM-8 (Fig. 21). 

Partially deleted, or truncated, copies of chromosome 3 were seen in OCM-3, 

OCM-8, and OM431.  There were multiple copies of marker chromosomes in OCM-1 

and OM431 that SKY classified as chromosome 3 material.  Additional copies of 6p were 

found in MEL270 and OCM-8, and additional copies of 8q were found in OCM-3 and 

OCM-8.  There were no (3;6) or (3;8) rearrangements in any of the cell lines. 

Five chromosomal aberrations were observed across multiple cell lines (Fig. 22).  

The most prevalent abnormalities were +der(1)t(1;10)(q10;q10) (92-1, OCM-8, OM431, 

OCM-3, and MEL285) and +der(2)t(2;12)(p10;q10) (92-1, OCM-8, OM431, OCM-3, 

and OCM-1), each evidenced in 5 cell lines.  Other interactions, including 

+der(20)t(X;20)(?;q?) (OCM-8, OCM-3, OCM-1, and OMM-2.3) and the persistent 

reciprocal t(3;10)(p25;q25) (OCM-8, OM431, OMM-2.3, and MEL270), were each seen 

in four cell lines.  Three distinct rearrangements were seen between chromosomes 3 and 

7, but poor banding quality prevented clarification beyond +der(3)t(3;7)(?;?) or 

+der(7)t(3;7)(?;?) for these non-reciprocal translocations.  These rearrangements between 

chromosomes 3 and 7 were seen in OCM-8, OM431, OCM-1, and OMM-1.  Note that 

the cell line OCM-8 was the only line evidencing some form of all five of these 

interactions. 
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Table 5.  Summary of Aberrations Identified by SKY in Ten Uveal Melanoma Cell 

Lines 

Chromoso
me 

Range Percent 
Aberrationsa 

Mean Percent 
Aberrations 

Lines with 
Aberrations Structural Aberrationsb Frequent Aberrationsb,c,d 

      

1 25 - 100 62.96 10 t, dic, del, ins, mr 

der(1;10) [5]  
t(1;2) [3] 

der(1;7) [3] 
der(1;16) [3] 

      

2 0 – 100 49.29 7 t, dic, del, ins, mr der(2;12) [5] 
      

3 16.67 - 66.67 51.43 10 t, dic, del, ins, mr der(3;7)/t(3;7) [5] 
t(3;10) [4] 

      

4 0 - 52.63 22.73 7 t, del  
      

5 0 - 88.89 42.54 7 t, del, i dup(5p) [3] 
      

6 0 - 66.67 37.84 8 t, del, i  
      

7 0 - 90.63 59.90 9 t , dic, del, mr t(7;17) [3] 
      

8 8.33 - 75 47.17 10 t, del, i, mr der(8;11) [3] 
      

9 0 - 66.67 25.24 6 t   
      

10 0 - 80 44.74 8 t, ins, del  
      

11 0 - 75 43.65 7 t, ins, del  
      

12 0 - 85.71 61.81 8 t, ins, del dup(12p) [3] 
dup(12q) [3] 

      

13 0 - 50 22.99 7 t   
      

14 0 - 50 12.64 4 t, mr, R  
      

15 0 - 66.67 27.45 4 t, mr  
      

16 0 - 72.73 49.59 8 t, mr  der(16;17) [3] 
      

17 0 - 100 57.81 8 t, mr  
      

18 0 - 46.67 14.94 3 t, mr  
      

19 0 - 75 30.36 7 t, mr  
      

20 0 - 100 57.45 6 t, mr der(20;X) [4] 
      

21 0 - 100 15.15 8 t   
      

22 0 - 57.89 18.10 5 t, i  
      

X 11.11 - 100 46.51 10 t, del  
      

Y 0 – NDe  0 0   
a The range of percent aberrations is determined by the number of aberrant copies of a given chromosome in all SKY spreads for a 

cell line compared to the number of normal copies of that same chromosome in that same cell line 
b del = deletion, der = derivative, dic = dicentric, dup = duplication, i = isochromosome, ins = insertion, mr = multiple rearrangement, 

R = Robertsonian translocation, t = translocation.  All nomenclature, except “mr,” according to ISCN 1995. 
c The number in brackets is the number of cell lines in which the particular aberration was identified. 
d Redundancies in the data set have been eliminated. 
e The notation “ND” indicates that there were no observations, normal or aberrant, for that chromosome.  There was no data in 92-1, 

MEL270, MEL285, MEL290, OCM-1, OCM-3, OM431, and OMM1 for chromosome Y. 
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Figure 21.  Complex Aberrations Detected by Spectral Karyotyping.  SKY employs 24 distinctly labeled chromosome -specific probes, thus allowing for the 

identification of all the chromosomes involved in complex rearrangements.  SKY was performed on 10 uveal melanoma cell lines and revealed 
complex chromosomal rearrangements in 4 of the lines: (A) MEL290, (B) OCM-1, (C) OCM-3 and (D) OCM-8. 
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Figure 22.  Chromosome Rearrangements Seen Across Ten Uveal Melanoma Cell Lines.  (A) A 

+der(1)t(1;10)(q10;q10) was seen in 92-1, OCM-3, OCM-8, OM431 and MEL285.  (B ) A 
+der(2)t(2;12)(p10;q10) was seen in 92-1, OCM-1, OCM-3, OCM-8 and OM431.  Note that 
these interactions were observed in 5 cell lines each.  (C) The cell lines OCM -1, OCM-3, 
OCM-8 and OMM2.3 all evidenced a +der(20)t(X;20)(?,q?).  (D) Four cell lines (MEL270, 
OCM-8, OM431 and OMM2.3) exhibited the reciprocal t(3;10)(p25;q25).  (E) Additional 
interactions involving chromosome 3, all between chromosomes 3 and 7, were seen as 2 
distinct +der(3)t(3;7)(?,?) and a +der(7)t(3;7)(?;?) that were not elucidated by banding 
analyses.  These interactions all occurred in OCM -1, OCM-8, OM431 and OMM1.  Note that 
the only cell line containing some form of all five of these interactions was OCM-8.  
Interactions observed in multiple cell lines, such as these, are likely linked to the 
development of their associated cell line, and warrant further study.  These interactions are 
also likely associated with copy number abnormalities in the genome, which lead to 
enhanced or diminished gene products during development. 
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Interphase Fluorescence in situ Hybridization. 

Locus-specific FISH probes for 3p, 3q, and 3cen allowed further study of 

chromosome 3 in the cell lines (Table 6).  Two hundred nuclei were scored at random for 

each probe and each cell line.  In the diploid control, 86% of the normal male nuclei 

analyzed had 2 signals for 3cen.  Our cell lines were heterogeneous in chromosome 3 

complement according to centromeric-FISH, showing 0 to 6 copies of 3cen (Table 6), 

and averaging 0.99 to 1.53 copies per cell.  The percentage of 3cen loss (0 or 1 copies 

present) was highest in MEL285 (72.5%) and lowest in OCM-1 (49.5%).  The dominant 

population in each cell line had one 3cen hybridization signal per nucleus (ranging from 

34% of cells for 92-1 to 45.5% of cells for MEL285).  Meanwhile, gain of signal (≥ 2 

copies) ranged from 2.5% (OMM-1) to 19% (OCM-3) by centromeric-FISH.   

Results for the telomere probes of the diploid control showed that 93% of cells 

had 2 signals for both 3p and 3q.  However, we saw a broad range of signals for 3p (0 to 

10 copies) and 3q (0 to 12) in individual cells across all cell lines (Table 6).  In contrast to 

the FISH findings for 3cen, no more than 16% of nuclei had one 3p signal and no more 

than 4% had one 3q signal (both seen in MEL290).  Four cell lines had at least two 3p 

and/or two 3q signals in every cell scored (Table 6). 

Comparison of Techniques. 

A quantitative analysis was used to determine the relationship between CGH, 

SKY and FISH.  Measurements of relative balance were generated from pixel 

quantification in CGH and SKY to show the association between the 2 techniques for all 

chromosomes (Fig. 23).  Regression analysis of this data revealed significant association 
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Table 6. Chromosome 3 FISH Signals for Ten Uveal Melanoma Cell Lines 

Cell Line 3cen ± SE 3cen Rangea 3p ± SE 3p Range a 3q ± SE 3q Range a FISH RCEb ± SE 
        

Control 2.04 ± 0.03 0 - 4 1.99 ± 0.02 1 - 3 1.96 ± 0.02 0 - 3 1.99 ± 0.01 
        

92-1 1.23 ± 0.07 0 - 4 4.14 ± 0.05 2 - 6 3.76 ± 0.04 2 - 5 3.05 ± 0.06 
        

MEL270 1.12 ± 0.07 0 - 3 3.10 ± 0.07 0 - 6 3.21 ± 0.06 0 - 7 2.48 ± 0.05 
        

MEL285 1.06 ± 0.06 0 - 3 2.41 ± 0.06 0 - 6 3.08 ± 0.05 0 - 8 2.18 ± 0.05 
        

MEL290 1.53 ± 0.07 0 - 4 2.03 ± 0.06 0 - 6 2.26 ± 0.04 1 - 5 1.94 ± 0.04 
        

OCM-1 1.50 ± 0.06 0 - 4 4.90 ± 0.07 1 - 10 5.45 ± 0.07 3 - 11 3.95 ± 0.08 
        

OCM-3 1.50 ± 0.08 0 - 5 2.96 ± 0.06 0 - 7 4.37 ± 0.08 0 - 9 2.94 ± 0.06 
        

OCM-8 1.21 ± 0.07 0 - 6 3.29 ± 0.06 2 - 7 4.64 ± 0.09 2 - 12 3.05 ± 0.07 
        

OM431 1.31 ± 0.07 0 - 6 3.98 ± 0.04 2 - 6 5.51 ± 0.07 0 - 11 3.60 ± 0.08 
        

OMM1 0.99 ± 0.06 0 - 3 3.03 ± 0.04 1 - 6 3.04 ± 0.05 0 - 7 2.35 ± 0.05 
        

OMM2.3 1.13 ± 0.06 0 - 5 4.34 ± 0.07 2 - 9 4.22 ± 0.07 2 - 9 3.23 ± 0.07 
a The range provided for 3p, 3q, and 3cen is the span of total hybridization signals observed in each of 

the cell lines and the control.   
b FISH RCE was calculated by averaging the values in the 3cen, 3p and 3q columns for each cell line. 
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between CGH RB and SKY RB for all 22 autosomes across the 9 analyzable cell lines (R 

= 0.6146, p = 6.513 x 10-21).  Correlation of CGH and SKY was also seen visually, 

wherein gain and loss in the CGH profile mirrored specific numerical and structural 

aberrations in SKY (Fig. 24, note chromosomes 3, 6 and 8).  

Of particular interest, were the CGH and SKY correlations in chromosomes 3, 6 

and 8, as well as SKY and FISH correlations for chromosome 3 (Fig. 25 and Table 7).  

Correlation of SKY RCE and FISH RCE for chromosome 3 demonstrated good 

agreement between the two measurements of copy number (R = 0.7370, p = 0.0235) (Fig. 

25A), and further correlation of FISH and SKY was also evident visually in the cell line 

OCM-1 (Fig. 26).  The CGH RB:SKY RB comparison for chromosome 3 also showed 

significant correlation (R = 0.6775, p = 0.0449) (Fig. 25B).  Correlations for chromosome 

6 (R = 0.6825, p = 0.0428) and chromosome 8 (R = 0.8242, p = 0.0063) were both 

significant (Figs. 25C and D). 

TUMOR STUDY. 

Comparative Genomic Hybridization. 

Eighty-two of the 100 cases (46 male, 36 female) were successfully extracted, 

labeled via DOP-PCR, hybridized, and analyzed.  Probe constructs from the remaining 18 

DNA isolates were unsuccessful in yielding results, due to a failure to either amplify or 

hybridize appropriately.  

Results for all 82 tumors were evaluated by comparison of the mean ratio profiles; 

numerous consistencies were found throughout the data and used to derive the minimal 

common regions as a means of simplifying the data set (Figs. 27, 28 and 29).  These 
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Figure 23.  Overall Comparison of Calculated CGH RB and SKY RB Values for the 22 Autosomes in Nine 

Cell Lines. OCM-3 was excluded fro m this analysis due to inadequate SKY data. The equation 
for the regression line is provided in the upper left hand corner with the R2-value and p-value 
immediately below. The y-axis reflects the transformation of internally normalized SKY data 
into SKY RB values, which converts them from an absolute measure of copy number to a more 
relative measure comparable to CGH. Transformed CGH data (CGH RB) is plotted on the x-
axis. Deviation from the regression line is partially explainable by the inherent difference 
between the two techniques, as CGH is a genomic average from a pooling of cells and SKY 
analysis is performed on per-cell basis with results taken from a few metaphase spreads. 
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Figure 24.  Visual Comparison of CGH and SKY.  (A) These examples show how the numerical 
aberrations in SKY (right) correspond to whole chromosome amplification in CGH (left).  
Balanced structural aberrations such as the t(3;10) in OMM2.3 essentially result in a 
numerical aberration leading to additional complete copies of chromosome 3.  Addition of an 
entire chromosome, as seen in chromosome 7 from OMM1 (a pseudodiploid cell line), also 
result in amplification along the length of the CGH ratio profile.  (B) These examples 
demonstrate correlation between CGH mean ratio profiles and unbalanced structural 
aberrations in SKY.  The presence of a normal chromosome 1, a 1q, and a der(1;10q) result 
in gain of 1q and loss of 1p in CGH of MEL285.  The der(1;10q) adds additional 10q 
material mirrored by the relative loss of 10p and gain of 10q in CGH.  In the next example 
the gain of 6p and loss of 6q in CGH are mirrored by the 2 normal chromosomes 6 (left) and 
an iso(6p) (right) in SKY.  Two normal chromosomes 8 (first 2) accompanied by 2 copies of 
8q (second 2) as seen in SKY, result in a relative deficit of 8p and a gain of 8q by CGH in 
OMM2.3.  In the final example, SKY reveals 2 normal copies each of chromosomes 12 and 
17, and 2 copies of a der(12q;17q) that explain the amplification of 17q and loss of 12p seen 
in the CGH profile of cell line 92-1. 
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Figure  25.  Comparisons of FISH, SKY and CGH Results for Chromosomes 3, 6, and 8, the Three 

Chromosomes Most Frequently Implicated in Uveal Melanoma.  These plots, with 
trendlines, resulted from the analysis of 9 cell lines, as the cell line OCM -3 was not available 
for analysis due to a hardware failure during archiving of the data.  The regression equations, 
R2-values, and p-values for each correlation are provided in the upper left-hand corer of each 
plot.  (A) This plot depicts the correlation of SKY RCE and FISH RCE for chromosome 3.  
Copy number values are read directly from the axes for each technique.  (B) This plot 
represents the correlation calculated between SKY RB and CGH RB values for chromosome 
3.  Similar correlations between SKY RB and CGH RB are shown for chromosomes 6 (C) 
and 8 (D). 
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Table 7. Comparison of CGH, SKY and FISH in Relative Balance (RB) and Relative 

Chromosome Equivalents (RCE) for Chromosomes 3, 6 and 8 

 Chromosome 3 Chromosome 6 Chromosome 8 

Cell Line CGH RB  SKY RB   SKY RCE FISH RCE CGH RB   SKY RB   CGH RB   SKY RB   

92-1 1.03 ± 0.06 1.02 ± 0.11 3.66 ± 0.58 3.05 ± 0.06 1.03 ± 0.03 1.00 ± 0.05 1.40 ± 0.06 1.65 ± 0.08 

MEL270 1.29 ± 0.05 1.15 ± 0.03 3.57 ± 0.14 2.48 ± 0.05 1.16 ± 0.03 0.86 ± 0.09 1.62 ± 0.05 1.53 ± 0.06 

MEL285 0.88 ± 0.04 0.87 ± 0.10 2.30 ± 0.25 2.18 ± 0.05 0.86 ± 0.03 0.49 ± 0.08 1.08 ± 0.03 1.06 ± 0.10 

MEL290 0.93 ± 0.03 0.99 ± 0.06 1.99 ± 0.12 1.94 ± 0.04 0.95 ± 0.02 0.99 ± 0.05 1.05 ± 0.02 0.92 ± 0.03 

OCM-1 1.25 ± 0.03 0.97 ± 0.04 3.45 ± 0.13 3.95 ± 0.08 0.99 ± 0.02 0.56 ± 0.01 1.12 ± 0.02 1.08 ± 0.02 

OCM-3 1.20 ± 0.04 NDa NDa 2.94 ± 0.06 0.96 ± 0.02 NDa 1.17 ± 0.06 NDa 

OCM-8 1.14 ± 0.04 0.98 ± 0.06 3.05 ± 0.15 3.05 ± 0.07 0.92 ± 0.02 0.87 ± 0.05 1.12 ± 0.05 1.27 ± 0.03 

OM431 1.28 ± 0.05 1.35 ± 0.07 4.52 ± 0.26 3.60 ± 0.08 1.04 ± 0.02 0.98 ± 0.09 1.25 ± 0.05 1.05 ± 0.11 

OMM1 1.19 ± 0.08 1.30 ± 0.03 2.97 ± 0.06 2.35 ± 0.05 1.16 ± 0.07  0.67 ± NDa 1.13 ± 0.04 0.93 ± 0.15 

OMM2.3 1.29 ± 0.05 1.58 ± 0.06 4.56 ± 0.17 3.23 ± 0.07 0.91 ± 0.02 0.68 ± 0.08 1.35 ± 0.06 1.44 ± 0.15 

a  ND indicates “No Data.” OCM-3 was the cell line eliminated from the SKY analysis.  This value is also given as the 
standard error for chromosome 6 in OMM1, because there was only one spread bearing a chromosome 6 for that cell 
line. 
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Figure 26.  Visual Comparison of FISH and SKY. During the scoring of telomere probes (3p = green, 3q = 

red) in interphase FISH of OCM-1, we happened upon a metaphase spread that was particularly 
illustrative regarding the amount and the arrangement of chromosome 3 telomere material.  (A)  
A digital image of the metaphase spread, where the yellow, red, and blue arrows indicate the 3 
aberrant chromosomes.  (B) All of the chromosome 3 material in the metaphase spread is 
grouped following image processing.  (C) Inversion of the DAPI images for the chromosomes 
in (B) revealed a banding pattern that allowed accurate determination that these examples from 
FISH and SKY (D) were equivalent.  Analysis reveals there are 2 normal copies of 
chromosome 3, a third potentially abnormal copy, a der(3p;7) (yellow arrow), a der(3q;7) (red 
arrow), and a truncated copy of 3q (blue arrow). 
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regions were those copy number abnormalities identified in greater than 30% but  fewer 

than 70% of all tumor cases.  Any copy number abnormality seen in less than 30% of the 

cases is likely not a strong indicator of prognosis.  Conversely, those abnormalities 

present in greater than 70% of the cases are not of prognostic significance, since they are 

likely commonalities among all cases of uveal melanoma rather than predictive of 

outcome.   

Within the minimal common regions, differential gain and loss was observed 

between male and female cases on the sex chromosomes (Figs. 28 and 29).  The data was 

further subdivided into minimal common regions for those who survived 9 years or more 

post-diagnosis, and those that succumbed to the disease in that time frame (Figs. 30 and 

31).  Additionally, the sex chromosomes were evaluated independently for male and 

female subsets within the live and dead cohorts (Fig. 32). The 25 male patients who 

succumbed to the disease evidenced a +Xq21 not seen in the 21 male patients who 

survived beyond 9 years post-diagnosis, but no difference was seen on the X 

chromosome in the female cases (Fig. 32). 

Statistical comparison of the live and dead data sets revealed six chromosomal 

regions that correlated strongly with a poor prognosis; five evidenced gain (18q11.2, 

6q16, 21q11.2, 9q12 and 3q12), and one showed a loss (1p33).  Overall, the strongest 

correlation with prognosis was associated with gain of 18q11.2 (p = 0.0037) (Fig. 33).  

Gain of 18q11.2 and concomitant loss of 1p33 was the strongest multivariate predictor of 

prognosis (p = 0.0028) (Fig. 34). 
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Figure 27.  Minimal Common Regions of Gain and Loss Distilled from CGH Mean Profile Data of 82 FFPE Uveal Melanoma Cases.  The light gray bars to the 

right of the ideogram represent gain, and dark gray bars to the left of the ideogram represent regions of loss, common between more than 30% and 
less than 70% of the archival cases. These minimal common regions may denote chromosomal regions related to the development and progression of 
uveal melanoma.  Minimal common regions for the sex chromosomes are provided in Figs. 28, 29 and 32. 
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Figure 28.  Quantitative Comparison Data and Minimal Common Regions for the Sex Chromosomes of the 

Male Archival Cases.  (A) The QPD for the X chromosome is shown above the minimal 
common regions for that chromosome.  Regions of gain and loss, possibly those having 
prognostic significance, are shown in the minimal common regions.  (B ) The QPD and the 
minimal common regions are shown for the Y chromosome. 
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Figure 29.  Quantitative Comparison Data and Minimal Common Regions for the Sex Chromosomes of the 

Female Archival Cases.  (A) The QPD for the X chromosome is shown above the minimal 
common regions for that chromosome.  In greater than 92% of the cases, the entire X 
chromosome was lost, eliminating it from having any prognostic significance.  (B) The QPD 
and the minimal common regions reveal no gains or losses, as expected, in the female cases. 
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Figure 30.  Minimal Common Regions of Gain and Loss Distilled from CGH Mean Profile Data of 51 FFPE Uveal Melanoma Cases, Representing Those 

Patients that Survived Beyond 9 Years Post-diagnosis.  The light gray bars to the right of the ideogram represent gain, and dark gray bars to the left 
of the ideogram represent regions of loss, common among more than 30% and less than 70% of the archival cases. These minimal common regions 
may denote chromosomal regions related to a more favorable prognosis in uveal melanoma.  Minimal common regions for the sex chromosomes are 
provided in Figs. 28, 29 and 32. 
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Figure 31.  Minimal Common Regions of Gain and Loss Distilled from CGH Mean Profile Data of 49 FFPE Uveal Melanoma Cases, Representing Those 

Patients that Succumbed to Hematogenous Metastasis.  The light gray bars to the right of the ideogram represent gain, and dark gray bars to the left 
of the ideogram represent regions of loss, common between more than 30% and less than 70% of the archival cases. These minimal common regions 
may denote chromosomal regions related to a poor prognosis in uveal melanoma.  Minimal common regions for the sex chromosomes are provided 
in Figs. 28, 29 and 32. 



 99 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32.  Minimal Common Regions for the Sex Chromosomes, Separated by Gender and Survival.  (A) The sex chromosomes for males that survived beyond 

9 years with uveal melanoma (23 cases) are compared with the male cases that succumbed to hematogenous metastasis (29 cases).  (B) The X 
chromosome is compared for the female cases that survived beyond 9 years (28 cases) and those females that succumbed to the disease within that 
time period (20 cases). 
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Figure  33.  Univariate Kaplan-Meier Cause Specific Survival Correlation Curve.  This comparative plot 

shows the two-fold negative effect on survival that is conferred by the gain of 18q11.2.  This 
plot was generated from results comprised of all 82 FFPE archival cases in our CGH analysis. 



 101 

 
Figure 34. Multivariate Kaplan-Meier Cause Specific Survival Correlation Curve.  This comparative plot 

shows the cumulative negative effect on survival that is conferred by the gain of 18q11.2 and 
concomitant loss of 1p33.  This plot was generated from results comprised of all 82 FFPE 
archival cases in our CGH analysis. 
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DISCUSSION 

Chromosomal rearrangements, both numerical and structural, are often correlated 

with morphology, tumor stage, and the aggressive potential of the tumor; therefore, such 

aberrations are often of prognostic value (Rothmann et al., 1998).  Some of the 

chromosomal rearrangements associated with uveal melanoma have been identified, but 

often without being linked to a particular cellular function.  Furthermore, the majority of 

studies thus far have looked at relatively small populations, and employed cytogenetic 

techniques with fairly low resolution.  There remains a need for large-scale profiling of 

the genomic changes in uveal melanoma, using higher resolution methodologies, in order 

to increase and better define the catalogue of cytogenetic aberrations associated with the 

disease.  Complete cytogenetic characterization of uveal melanoma is a critical step 

toward gene-specific investigation of malignancy. 

To that end, we fully characterized 10 uveal melanoma cell lines and 82 archival 

FFPE tumors using molecular cytogenetic techniques.  In our cell line study, CGH 

revealed genomic imbalances, and SKY provided insight into numerical and structural 

abnormalities that contribute to these imbalances in the genome.  The tandem application 

of CGH and SKY, and the associated synthesis of the results, allowed for a 

comprehensive analysis of chromosomal abnormalities in the genome and insight into the 

mechanisms of chromosomal aberrations that have accumulated during clonal divergence 

(Veldman et al., 1997; Macville et al., 1999).  We applied a third technique, FISH, to our 

cell lines to assay three specific loci as a practical means of chromosome 3 enumeration.  

In our archival tissue study, a thorough evaluation of 82 primary uveal melanoma tumors, 

culled from the tissue archives of the AFIP, revealed the specific genomic imbalances 
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associated with each tumor, and helped determine regions predictive of prognosis.  These 

2 studies helped to more fully understand the underlying cytogenetic events of uveal 

melanoma development and progression.   

CELL LINE STUDY. 

Our research demonstrated that synthesis of CGH and SKY techniques develops 

an integrated data set comprised of numerical and structural alterations.  Utilizing this 

approach, copy number aberrations were localized in chromosomal regions of the 10 cell 

lines.  These specific regions are likely to contain genes differentially expressed in uveal 

melanoma. 

CGH provided a comparison of the cell line genomes through evaluation of mean 

profile data (Fig. 19), and revealed commonalties in the data set, recorded as minimal 

common regions (Fig. 20).  These regions are either gained or lost in 50% or more of the 

cell lines, and are likely of significance in uveal melanoma.  It is thought that within these 

regions are the genes that, when their copy number is altered, contribute to the 

establishment and/or progression of uveal melanoma. 

The definitive numerical and structural composition of individual cell line 

genomes was revealed by SKY, and evidence of rearrangement was present within the 

chromosome complement of each cell that was analyzed.  Reconciliation of multiple 

single cell analyses in our SKY results provided an adequate representation of the 

genome of each cell line.  Comparison of SKY results between the cell lines identified 

five common chromosomal abnormalities, each seen in a minimum of four cell lines (Fig. 

22).  The prevalence of these aberrations suggests that they are of import to uveal 

melanoma development or progression.  Our comprehensive SKY analysis revealed 
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extensive numerical changes and structural rearrangements in each cell line, which 

resulted in aneuploidy, instances of mosaicism, aneusomy and partial chromosome 

amplifications and deletions. 

Before we could interpret our findings from CGH and SKY, we needed to 

determine the correlation between the two techniques.  However, there was a caveat to 

our interpretation of the CGH and SKY results.  A known limitation of CGH is the 

inability to elucidate structural information, as only numerical data are gleaned from the 

compilation and analysis of mean ratio profiles.  Similarly, SKY can not be expected to 

reveal all permutations of structural and numerical rearrangement in a cell line, as the 

analysis is based on a few analyzable metaphase spreads.  With that in mind, we were 

able to isolate multiple visual examples where CGH and SKY showed agreement 

regarding chromosomal aberrations within a given cell line (Fig. 23).  SKY results 

strongly demonstrate that the gains and losses identified by CGH are not exclusively due 

to numerical chromosome aberrations.  Instead, it is clear that structural rearrangement of 

the genome also significantly contributes to amplification and deletion of DNA 

sequences.  Complementation between SKY and CGH data is exemplified in the 

formation of an isochromosome 6p and concomitant loss of a 6q in MEL270, which 

yielded four copies of 6p and only 2 copies of the 6q arm (Fig. 24).  This was mirrored in 

the CGH results that show a gain of 6p and loss of 6q for that cell line.  Also shown in 

Figure 24, are additional examples in which genomic imbalances detected by CGH are 

mirrored in the SKY analysis from the same cell lines. 

An additional feature of SKY, is its ability to resolve complex chromosomal 

rearrangements (Fig. 21).  While these more complex rearrangements also affect copy 
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number, it is not possible to resolve this by a simple visual inspection of results.  

Therefore, we developed mathematical calculations of genomic balance for CGH and 

SKY that could be statistically correlated.  This quantitative approach for comparing 

techniques also served as an independent confirmation of the visual correlation seen 

between CGH and SKY.   

While visual confirmation of the link between CGH and SKY was intriguing, 

demonstration of statistical correlation between the 2 techniques would lend credence to 

our observations.  Unfortunately, SKY results for OCM-3 were compromised in the data 

recovery process, and were omitted from statistical analysis.  Comparison of the relative 

balance for the 9 remaining cell lines, analyzed by both CGH and SKY, showed 

significant correlation across the entire genome, as determined by the associated R2- and 

p-values (Fig. 23).  Additionally, chromosome-specific correlations were drawn from 

CGH and SKY results for the chromosomes previously reported as having prognostic 

value for uveal melanoma (Fig. 25B-D and Table 7).  The strength of these quantitative 

comparisons confirmed our visual correlations between the two independent in situ 

hybridization techniques, and validated our molecular cytogenetic characterizations of the 

cell line genomes. 

The correlation established between CGH and SKY permitted further 

interpretation of the data sets.  Several chromosomes (6, 7, 17q and 20q) that showed 

imbalance of large continuous sections by CGH in at least half of the cell lines were also 

involved in frequent numerical or structural aberrations revealed by SKY (Fig. 20 and 

Table 5). The involvement of chromosomes 6 and 7 in uveal melanoma is well 

documented in the literature (Gordon et al., 1994; Speicher et al., 1994; Ghazvini et al., 
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1996; White et al., 1998b).  Our CGH and SKY results show copy number alteration 

events on other chromosomes similar to those in the literature (Tables 2 and 3) (Wiltshire 

et al., 1993; Gordon et al., 1994; Speicher et al., 1994; Ghazvini et al., 1996; Prescher et 

al., 1996; White et al., 1998a and b).  It should be noted that both CGH and SKY 

identified alterations of 17q and 20q, neither of which has been previously implicated in 

uveal melanoma.  We suggest that these chromosomes warrant further study to determine 

their significance.  The comparison of our data with the published literature suggests our 

demonstrated lack of monosomy 3 by CGH or SKY is most noteworthy and requires 

explanation. 

Application of FISH in a confirmatory capacity following CGH or SKY is a very 

powerful application of the technique (Macville et al., 1999).  We used human 

chromosome 3-specific centromere and telomere FISH probes on interphase preparations 

of all 10 cell lines to confirm our CGH and SKY results for chromosome 3.  Our 3cen 

hybridizations seemed to indicate loss of chromosome 3, as the dominant population in 

each cell line had a single 3cen hybridization signal per nucleus, but the range spanned 

from 0 to 6 signals.  In contrast, the number of telomere probe hybridization signals 

ranged from 0 to 12 signals, with a tendency for 3 or more signals per telomere in each 

nucleus.  These results indicated a high degree of heterogeneity in the cell lines, and 

vastly different chromosome 3 complements than our diploid control (Table 6).  

Heterogeneity was also observed in cell line karyotypes from our SKY analyses.  The 

lack of a major clone in the cell line populations, coupled with the high degree of 

heterogeneity observed by SKY and FISH, is suggestive of mosaicism in these cell lines.  

The signal variation and enhanced copy numbers for the centromere and telomere probes, 
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suggested the presence of enhanced copies of portions of chromosome 3.  This is also 

shown in the CGH profiles for each cell line, and the numerous rearrangements bearing 

chromosome 3 material in our SKY analyses (Figs. 19 and 22E).  The distribution of 

chromosome 3 material observed in SKY and the partial chromosome 3 gains in CGH, 

when considered alongside the FISH results, point toward rearrangement as playing a key 

role in chromosome 3 involvement.  Visual confirmation of the role of rearrangement 

came from a comparison between FISH and SKY findings that show enhanced copy 

number for chromosome 3 and define specific rearrangements associated with OCM-1 

(Fig. 26).  Further, chromosome-specific correlations show that chromosome 3 

rearrangement contributes to copy number enhancement (Fig. 25A and B).  Ideally, all 

three probes (3cen, 3p and 3q) would have been simultaneously hybridized to determine 

the precise assortment of each signal.  This would have provided more insight into the 

precise mechanism(s) of rearrangement, and also definitively pinpointed mosaicism, but 

the hybridization was not technically feasible. 

Although monosomy 3 has been heavily reported as a hallmark for uveal 

melanoma, our findings for chromosome 3, confirmed using FISH following independent 

CGH and SKY analyses, clearly indicate there was no loss of a whole chromosome 3 in 

these cell lines.  In contrast to our methodologies, the majority of uveal melanoma 

analysis published in the literature is derived from classical cytogenetic evaluations 

(Horsman et al., 1990; Sisley et al., 1990; Prescher et al., 1990; Horsthemke et al., 1992; 

Sisley et al., 1992; Horsman and White, 1993; Wiltsire et al., 1993; Singh et al., 1994; 

Prescher et al., 1994; Prescher et al., 1995; Prescher et al., 1996; White et al., 1998b; 

Parada et al., 1999; Sisley et al., 2000; Tschentscher et al., 2001).  However, other 
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studies have used molecular cytogenetic methods in their determination of monosomy 3, 

which indicates that our findings are not linked to our methodologies (Ghazvini et al., 

1996; Prescher et al., 1996; McNamara et al., 1997; Sisley et al., 1997; Tschentscher et 

al., 2001).  The absence of chromosome 3, 6, and 8 abnormalities in some cases, suggests 

there are additional pathways of malignant transformation (Singh et al., 1996a).  Thus, 

there were indications that there could be alternate explanations for our findings on 

chromosome 3. 

The search for alternative explanations for our lack of monosomy 3, led to an 

examination of cell line origin.  Monosomy 3 is frequently reported in tumors of the 

ciliary body, whereas a normal or polysomic complement of chromosome 3 is typically 

reported in choroidal melanoma (Sisley et al., 1993; McNamara et al., 1997).  Our 

information regarding cell line origin is incomplete (Table 1), but available information 

shows only one cell line (MEL270) was established from a ciliary body tumor.  A second 

cell line (OMM2.3) was established from a metatstasis of the same primary tumor.  

Neither MEL270 nor OMM-2.3 evidenced any loss on chromosome 3 by CGH, while 

OMM-2.3 actually demonstrated significant gains on chromosome 3.  In fact, only one 

cell line (MEL285) demonstrated a considerable loss of chromosome 3 material, and 

three other lines (MEL290, OCM-3 and OCM-8) lost only distal 3p material (Fig. 19).  

The origin of these four cell lines was indeterminate, which effectively prevented further 

correlation between CGH results and cell line origin.  SKY results revealed truncated or 

partially deleted copies of chromosome 3 in at least three of our cell lines (OCM-3, 

OCM-8 and OM431), in addition to normal copies of chromosome 3.  The retention of 

abnormal copies of chromosome 3 precludes the designation of monosomy to any of 
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these cell lines.  Further, FISH results indicate different mean signal counts for each 

probe within a cell line, which is not congruent with a determination of monosomy 

(Table 6).   

Additional investigation regarding the original karyotype, specifically a closer 

look at chromosome 3, demonstrated strong parallels between our findings and those 

published at the time of establishment.  Although establishment karyotypes were only 

available for a subset of the cell lines, this investigation was warranted because our cell 

lines were of an indeterminate number of passages, and verification of our findings 

strengthened any conclusions regarding chromosome 3.  The published karyotype for 

OCM-1 includes add(3)(q12) and +del(3)(q13q23) (Luyten et al., 1996).  The majority of 

chromosome 3 was demonstrated to be gained in OCM-1 via CGH, with the exception of 

3q13-q23 and distal 3p (Fig. 19).  Also, multiple truncated copies of chromosome 3 were 

found in our SKY results for OCM-1.  The karyotype for OMM-1 indicated a +3[50%] at 

the time of establishment, but our CGH results revealed only a 3p gain, and SKY 

revealed an apparent trisomy 3 or possibly an isochromosome 3p (Luyten et al., 1996).  

Meanwhile, the cell line 92-1 had no known chromosome 3 abnormalities at the time the 

cell line was established (DeWaard-Siebinga et al, 1995).  There was evidence of a very 

small focal 3q13.3 gain in 92-1, and no losses reported along the length of the 

chromosome (Fig. 19).  Our findings for chromosome 3 demonstrate minimal divergence 

from the original karyotype for these 3 cell lines, and the strength of our quantitative 

analyses suggests the same would hold true for the remainder of the cell lines (Figs. 23 

and 25). 
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No explanation for the lack of monosomy 3 was found in the cell line origin, and 

there were no indications were that our cell lines had significantly diverged while in 

culture.  Based on the strength of the correlations determined for our three techniques, we 

sought to reevaluate the literature to elucidate possible discrepancies in data 

interpretation between our study and others.  Some published reports in the literature, 

based upon CGH analyses, have noted a “decreased copy number” for chromosome 3 in 

lieu of monosomy.  These results provide evidence of a copy number below 1, but the 

profile does not cross the loss threshold (Gordon et al., 1994; Ghazvini et al., 1996).  

Others have alluded to two tumor suppressor loci, one on the p- and a second on the q-

arm of the chromosome, which result in focal deletions on chromosome 3 instead of 

whole chromosome loss (Sisley et al., 1993; White et al., 1998a; Parella et al., 1999; 

Myatt et al., 2000; Tschentscher et al., 2001).  In one LOH study, two purported tumor 

suppressor loci were defined in terms of the smallest region of overlap (SRO), one within 

band 3p25 and the other on the q-arm between 3q24-q26 (Tschentscher et al., 2001).  A 

second study implicated only 3p24.3 by LOH (Sisley et al., 1993).  Two more LOH 

studies demonstrated isodisomy of chromosome 3, which may lead to functional 

monosomy (White et al., 1996; White et al., 1998a).  Comparison of results from CGH 

and LOH studies typically results in a high degree of concordance (Ried et al., 1997).  

Therefore, the alignment of our findings with those of LOH studies is not surprising.  

Elsewhere in the literature, a GTG-banding study reported loss of 3p13 (Blasi et al., 

1999).  A later study by Naus and colleagues, who also applied CGH, SKY and FISH to 

characterize uveal melanoma, failed to find monosomy 3 but were able to define 3q13-

q21 as a region of loss (Naus et al., 2001).  The findings of Blasi et al. (1999) and Naus 
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et al. (2001) suggest a region near band 3q13 may potentially harbor a tumor suppressor 

gene. Other findings in the literature, including trisomy 3 and even tetrasomy 3 as 

reported by McNamara and colleagues, are supportive of our CGH, SKY and FISH 

results that indicate gains on chromosome 3 (Figs. 16, 22 and 23, Tables 6 and 7) 

(McNamara et al., 1997).  This review of the literature revealed indications that there are 

explanations for the involvement of chromosome 3 other than whole chromosome loss.   

Another finding of note was the consistent involvement of several specific 

chromosomes in structural rearrangements as seen by SKY, which suggests a redundant 

mechanism for this occurrence (Fig. 22, Table 5).  Our cell lines were shown to have 

minimally diverged in culture, therefore cell culture artifacts only account for a small 

proportion of these findings.  Each of the five common chromosomal interactions 

observed across multiple cell lines, which include several chromosome 3 interactions, 

involved chromosomes with deletions in one or both telomeric regions of the 

chromosome (Figs. 19 and 22).  Other telomeric deletions in specific cell lines were 

related to increased structural rearrangement of those same chromosomes in SKY 

analysis, and these deletions on the distal p- or q-arms were consistent with the 

rearrangement observed in the SKY karyotypes.  In general, chromosomes shown to 

evidence telomeric deletion in the minimal common regions, also revealed higher 

frequencies of structural rearrangements by SKY (Fig. 20 and Table 5).  This suggests 

that telomeric loss may facilitate structural rearrangement, but further study would be 

required to accurately determine the significance of this finding in the uveal melanoma 

cell lines. 
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CGH and SKY represent distinct approaches that reveal complementary 

information on cytogenetic features of uveal melanoma.  Utilizing a combination of 

CGH, FISH and SKY we confirmed the absence of monosomy 3 in these ten cell lines, 

and demonstrated alternative manifestations of chromosome 3 in this tumor.  Our 

findings do not refute the occurrence of monosomy 3 reported by others, but instead we 

postulate that frequent rearrangement of chromosome 3 may have an equally important 

contribution in the mechanisms driving uveal melanoma.  The portion of the study that 

followed, a study of archival tissue by CGH, was expected to enhance resolution of the 

critical chromosomal regions throughout the genome and ultimately aid in the 

determination of specific gene involvement in uveal melanoma. 

TUMOR STUDY. 

Classification of tumors based on histopathology and tumor grading is subjective 

and qualitative, based on a two-dimensional image analysis (Rothmann et al., 1998). 

Classical cytogenetic studies, while useful in elucidating structural abnormalities, are 

time consuming and require fresh tissue.  Furthermore, classical cytogenetic analysis is 

compromised when dealing with solid tumor preparations due to low mitotic indices, 

poor growth in culture, etc. (Joos et al., 1994; Houldsworth and Chaganti, 1994; Isola et 

al., 1994; Macville et al., 1997; Veldman et al., 1997; Ried et al., 1997; Rothmann et al., 

1998).  Techniques such as CGH are expected to yield more information.  Our large-scale 

CGH study, aimed at determining a set of prognostic indicators in uveal melanoma, 

identified specific regions of gain and loss (Figs. 27, 28 and 29).  These regions were 

initially derived irrespective of the survival correlation portion of the study, thus 

indicating regions that may contain genes leading to development of uveal melanoma.  
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The CGH data was further subdivided based upon survival correlation (Figs. 30, 

31 and 32).  Regions containing genes associated with malignancy were revealed in the 

survival correlation and associated minimal common regions, and are presumed to be 

indicators of prognosis.  Statistical analyses confirmed 6 regions of import with regard to 

survival. Of these, the most potent predictor of prognosis identified in this study was 

18q11.2 (Fig. 33).  Multivariate analyses revealed that gain of 18q11.2 combined with the 

loss of 1p33 had the most drastic effect on prognosis (Fig. 34).   

Application of a Bonferroni correction obfuscates the statistical significance of 

our findings.  This includes both conservative and rigorous applications of this correction.  

This is likely attributable to a relatively small sample size, further subdivided for survival 

correlation analysis, for such an application.  

There is evidence that suggests gender may be involved in uveal melanoma 

susceptibility, as males are slightly more susceptible than females (McLean and Gamel, 

1996).  CGH results revealed very different regions of gain and loss on the X 

chromosome in a comparison of male and female cases (Figs. 28 and 29).  The minimal 

common regions revealed that +Xq21 is unique to male patients who succumbed to uveal 

malignant melanoma (Figs. 28, 29 and 32).  This region was not statistically significantly 

different in the analysis, because of the reduction of the sample size required to 

simultaneously analyze survival and gender (Fig. 32), but may warrant further study. 

Due to the high frequency with which chromosome 3 loss is reported in uveal 

melanoma, data interpretation of CGH becomes critical in evaluation of chromosome 3.  

A closer look at the published literature revealed some inconsistencies.  In some reports, 

CGH research has noted a decrease in copy number of chromosome 3 instead of whole 
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chromosome loss (Gordon et al., 1994; Ghazvini et al., 1996).  In such instances, the 

ratio profile indicates a copy number ratio below 1, but does not exceed the loss threshold 

in all cases.  These results indicate a tendency toward loss, rather than monosomy 3 as 

reported (Gordon et al., 1994; Ghazvini et al., 1996).  Chromosome 3 findings in 

previously published uveal melanoma studies have revealed contributions of 

chromosome 3 other than monosomy.  LOH studies have demonstrated loss on either the 

p- or q-arm of the chromosome, but not complete loss along the length of the 

chromosome (White et al., 1996; White et al., 1998a; Parella et al., 1999).  Other LOH 

studies have localized various regions of loss to 3p24.3, 3p13, 3p22 (TGFbetaR2 gene 

locus), 3p25, and 3q24-q26 (Sisley et al., 1993; Blasi et al., 1999; Myatt et al., 2000; 

Tschentscher et al., 2001).  

We did not find any instances where the entire CGH ratio profile exceeded the 

threshold for loss.  All partial chromosome losses, or tendencies toward loss, were 

recorded on interstitial portions of the p- and q-arms.  Any observations in the most 

proximal and most distal bands of chromosome 3 were not included in this segment of 

the analysis, due in large part to the variability in hybridization near the centromere or 

telomere.  The observed regions of interstitial loss fall within 3p13-p25 and 3q12-q28.  

Findings in other studies, particularly involving LOH of chromosome 3, align with our 

findings.  

A drawback to large-scale CGH is the potential to mask critical chromosomal 

regions present in a low frequency within a given sample or within a collection of 

samples, and a similar drawback is realized in the distillation of minimal common 

regions.  However, correlation of CGH with patient follow-up, using a variety of 
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established prognostic factors, has more utility.  Using this approach, we have found six 

regions shown to be of significance to prognosis, including 18q11.2, 6q16, 21q11.2, 

9q12, 3q12, and 1p33.  We also identified a region on the X chromosome that seemed to 

correlate with a poor prognosis in males, but was not confirmed as statistically 

significant.  All seven of these regions warrant further study.   
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SUMMARY 

 Our complete characterization of 10 cell lines, and analysis of copy number 

imbalances in 82 archival specimens, represents the most extensive and comprehensive 

cytogenetic characterization of uveal melanoma to date.  In our cell lines, we catalogued 

numerous numerical and structural chromosomal aberrations.  Many of these aberrations 

were suggested by the genomic imbalances revealed in the study of cell line and archival 

material.  Chromosomes 1, 3, 7, 12, 17 and 20 were most frequently involved in 

numerical or structural aberrations in our SKY analysis, and CGH confirmed substantial 

genomic imbalance on each of these chromosomes, suggesting an integral role for these 

chromosomes in uveal melanoma.  We were able to determine the involvement of 

chromosome 3 in our cell lines, and confirmed that rearrangement of that chromosome is 

more prevalent than whole chromosome loss in our samples.  Our tumor study identified 

several chromosomal regions associated with prognosis, including 18q11.2, 6q16, 

21q11.2, 9q12, 3q12, and 1p33.  Together, our studies are aimed at directing further 

gene-specific study of malignancy in uveal melanoma. 
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Cell Culture  

 
RPMI 1640  

1 package powdered RPMI 1640 media (Invitrogen Life Technologies, Carlsbad, CA) 
2g NaHCO3 
1000ml sterile or autoclaved dH2O 
 
Add powdered media and approximately 900ml sterile/autoclaved dH2O to 1000ml volumetric flask.  Add 
2g NaHCO3, and add a stir bar.  When dissolved, pH to 0.2-0.3 below final desired pH (7.0-7.4).  Remove 
stir bar, and add remainder of dH2O to reach 1000ml.  Using suction filtration, divide flask into two 500ml 
sterile bottles.  Incomplete media can be stored at -20ºC until needed. 
 
To complete media (each 500ml bottle): 
50ml FBS (Sigma Co., St. Louis, MO) 
5ml NEAA (Sigma Co., St. Louis, MO) 
5ml HEPES Buffer (Sigma Co., St. Louis, MO) 
0.5ml gentamicin (Invitrogen Life Technologies, Carlsbad, CA) 
0.5-1ml Fungizone (Invitrogen Life Technologies, Carlsbad, CA) 
1-2ml penicillin/streptomycin (100U/ml and 100µg/ml, respectively) (Invitrogen Life Technologies, 
Carlsbad, CA) 
 
Store completed media at 4ºC in the dark. 
 
DMEM  

1 bottle powdered DMEM media (Sigma Co., St. Louis, MO) 
3.7g NaHCO3 
1000ml sterile or autoclaved dH2O 
 
Add powdered media and approximately 900ml sterile/autoclaved dH2O to 1000ml volumetric flask.  Add 
3.7g NaHCO3, and add a stir bar.  When dissolved, pH to 0.2-0.3 below final desired pH (7.0±0.3).  
Remove stir bar, and add remainder of dH2O to reach 1000ml. Using suction filtration, divide flask into 
two 500ml sterile bottles.  Incomplete media can be stored at -20ºC until needed. 
 
To complete media (each 500ml bottle): 
50ml FBS  
5ml NEAA  
5ml HEPES Buffer  
0.5ml gentamycin  
0.5-1ml Fungizone 
1-2ml penicillin/streptomycin 
 
Store completed media at 4ºC in the dark. 
 
Ham’s F-12  

1 package powdered Ham’s F-12 media (Invitrogen Life Technologies, Carlsbad, CA) 
1.176g NaHCO3 
1000ml sterile or autoclaved dH2O 
 
Add powdered media and approximately 900ml sterile/autoclaved dH2O to 1000ml volumetric flask.  Add 
1.176g NaHCO3, and add a stir bar.  When dissolved, pH to 0.2-0.3 below final desired pH (7.6-7.9).  
Remove stir bar, and add remainder of dH2O to reach 1000ml. Using suction filtration, divide flask into 
two 500ml sterile bottles.  Incomplete media can be stored at -20ºC until needed. 
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To complete media (each 500ml bottle): 
50ml FBS 
5ml NEAA 
5ml HEPES Buffer 
0.5ml gentamycin 
0.5-1ml Fungizone 
1-2ml penicillin/streptomycin 
 
Store completed media at 4ºC in the dark. 
 
Metaphase Chromosome Preparation 
 
Carnoy’s Fixative 
75ml absolute methanol, HPLC grade (Fisher Scientific, Inc., Pittsburgh, PA) 
25ml glacial acetic acid, tracemetal grade (Fisher Scientific, Pittsburgh, PA) 
 
Make 3:1 mixture as needed.  Use only when fresh (first day). 
 
75mM KCl 
5.6g KCl 
1000ml dH2O 
 
Dissolve KCl in dH2O.  Store at room temperature. 
 
DNA Isolation 
 
100mM Tris/Cl pH 8.5 
2.21g Tris -HCl (Sigma Co., St. Louis, MO) 
4.36g Trizma Base (Sigma Co., St. Louis, MO) 
 
Add Tris -HCL, Trizma base and ~450ml dH2O to a 500ml volumetric flask with a magnetic stir bar.  After 
contents are completely dissolved, remove stir bar and fill flask the remainder of the way to the 500ml 
mark with dH2O.  Adjust pH to 8.5 and autoclave. Store at room temperature. 
 
Cell Lysis Buffer  
20ml 100mM Tris -HCl pH 8.5 
2ml 0.5M EDTA pH 8.0 (Digene, Gaithersburg, MD) 
4ml 10% SDS  (Fisher Scientific, Pittsburgh, PA) 
8ml 5M NaCl  
165ml dH2O 
 
Makes 199ml. Store at room temperature. 
 
TE Buffer pH 7.0 
5ml 1M Tris -HCl pH 7.0 (Quality Biological, Inc., Gaithersburg, MD) 
1ml 0.5M EDTA pH 8.0 
494ml dH2O 
 
Adjust to pH 7.0 and autoclave.  Store at room temperature. 
 

RNase A  

100mg RNase A, lyophilized (Roche Molecular Biochemicals, Indianapolis, IN) 
5ml sterile H20 (DNase free, RNase free) 
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To dissolve, boil for 15 minutes, and then cool to room temperature.  Aliquot 20mg/ml solution, and store 
at -20°C. See also “Pretreatment of Slides for CGH, SKY and FISH.” 
 
Nick Translation 

 
NT Buffer 

500 µl 0.5M Tris HCl, pH 8.0 (Quality Biological, Inc., Gaithersburg, MD) 
100µl 50mM MgCl2  
50µl 0.5mg/ml BSA (Sigma Co., St. Louis, MO) 
350µl sterile H20 (DNase free, RNase free) (Sigma Co., St. Louis, MO) 
 
Makes 1ml.  Aliquot and store at -20°C. 
 
DNase I (1mg/ml) 
10mg DNase I (Roche Molecular Biochemicals, Indianapolis, IN) 
1.5ml 0.15M NaCl (Quality Biological, Inc., Gaithersburg, MD)  
5ml 50% Glycerol (Fisher Scientific, Pittsburgh, PA) 
10ml sterile H20 (DNase free, RNase free) 
 
Aliquot and store at -20°C.  Make 1:1000 dilution for use in nick translation reactions. 
 
dNTP Mixture 
5µl each of 100mM dATP, dCTP, and dGTP (Promega, Madison, WI) 
1µl of 100mM dTTP (Promega, Madison, WI) 
984µl sterile H20 (DNase free, RNase free) 
 
Makes 0.5mM dATP/dCTP/dGTP and 0.05mM dTTP.  Aliquot and store at -20°C.   
 
0.1M β-Mercaptoethanol 
34.7µl of 99% (14.4M) solution (Sigma Co., St. Louis, MO) 
Sterile H20 (DNase free, RNase free) to make 5ml 
 
Aliquot and store at -20°C. 
 
50µl Nick Translation Reaction 
xµl (1µg) DNA (volume variable) 
5µl 10xNT Buffer 
5µl dNTP mixture 
5µl 0.1M ß-Mercaptoethanol 
2µl biotin- or digoxigenin-11-dUTP 
33-xµl sterile H2O (DNase free, RNase free) 
 
DOP-PCR 

 
DOP-PCR Primer 
Resuspend DOP-PCR CGH primer, 5’- GAT CAA GCT NNN NNN ATG TGG - 3’ (Integrated DNA 
Technologies, Inc., Coralville, IA) in 1223.7µl sterile H2O (DNase free, RNase free) to make 100mM 
primer stock. 
 
Dilute primer stock 1:5 in sterile H2O (DNase free, RNase free) to make 20mM primer. 
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Biotin- or dig-dNTP Mixture 
3.04µl dATP 
3.04µl dCTP 
3.04µl dGTP 
1.26µl dTTP 
25µl biotin- or dig-dUTP (Roche Molecular Biochemicals, Indianapolis, IN) 
117µl sterile H2O (DNase free, RNase free) 
 
Makes 152µl dNTP mix.  Make fresh as needed. 
 
DOP-PCR Polymerase 
250U AmpliTaq Gold Polymerase stock, 5U/µl (Roche Applied Biosystems, Foster City, CA) 
50µl sterile H2O (DNase free, RNase free)  
 
Make 1:1 dilution (2.5U/µl) of AmpliTaq Gold Polymerase before use, by adding 50µl sterile H2O to 50µl 
AmpliTaq Gold stock. 
 
DOP-PCR Master Mix (MM) 
10µl 10xBuffer II (Roche Applied Biosystems, Foster City, CA) 
10µl 20mM DOP Primer (Integrated DNA Technologies, Inc., Coralville, IA) 
24µl 25mM MgCl2 (Roche Applied Biosystems, Foster City, CA) 
5µl biotin- or dig-dUTP mixture 
39µl sterile H2O (DNase free, RNase free) 
2µl AmpliTaq Gold Polymerase 
 
Makes 90µl MM, which is enough for a single DOP-PCR reaction.  Scale as needed, allowing for a single 
extra reaction in case of error.  Make fresh as needed and keep on ice. 
 
100µl DOP-PCR Reaction 
10µl DNA 
90µl DOP-PCR MM 
 
Reaction Conditions:  
95°C for 10 minutes, initial soak  
15 cycles:  

94°C for 1 minute 
30°C for 1 minute 
72°C for 1 minute 

60 cycles (with a 1 second per cycle addition to each step in the 60 cycles):  
94°C for 30 seconds 
52°C for 30 seconds 
72°C for 1 minute 

Final extension of 72°C for 10 minutes  
Hold at 4°C. 
 
Electrophoresis 
 
1.7% Agarose Gel 
0.85g low melting point agarose powder (Invitrogen Life Technologies, Carlsbad, CA) 
50ml 1x TBE buffer (Invitrogen Life Technologies, Carlsbad, CA) 
 
Microwave (boil) until dissolved.  Cool to ~65°C in a water bath and mix in 2.5ml of a 10mg/ml ethidium 
bromide solution.  Pour gel or store at 4°C in the dark.   
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Gel-Loading Buffer III (6x) 
0.025g bromophenol blue (Sigma Co., St. Louis, MO) 
0.025g xylene cyanol (Sigma Co., St. Louis, MO) 
3ml glycerol 
6.95ml dH2O 
 
Final solution is 0.25% bromophenol blue, 0.25% xylene cyanol, and 30% glycerol in dH2O.  Store at 4°C. 
 
Pretreatment for CGH, SKY and FISH 

 
2xSSC 
10ml 20xSSC (Fisher Scientific, Pittsburgh, PA) 
90ml dH2O 
 
Store at room temperature. 
 
1xPBS 
10ml 10xPBS (w/o MgCl2 or CaCl2) (Invitrogen Life Technologies, Carlsbad, CA) 
90ml dH2O 
 
Store at room temperature. 
 
1M MgCl2 

203.3g MgCl2•6H20 (Fisher Scientific, Pittsburgh, PA) 
1000ml dH2O 
 
Add MgCl2•6H20 and ~800ml dH2O to a 1000ml volumetric flask with a stir bar.  Remove stir bar and fill 
flask to 1000ml.  Aliquot and autoclave.  Store at room temperature.    
 
1x PBS/MgCl2 
50ml 1M MgCl2 
950ml 1xPBS (w/o MgCl2 or CaCl2) 
 
Store at room temperature. 
 
RNase A  

100mg RNase A, lyophilized (Roche Molecular Biochemicals, Indianapolis, IN) 
5ml sterile H20 (DNase free, RNase free) 
 
To dissolve, boil for 15 minutes, and then cool to room temperature.  Aliquot 20mg/ml solution, and store 
at -20°C. Make 1:200 dilution in 2xSSC for slide pretreatment. 
 
Pepsin stock solution  

100mg pepsin (Sigma Co., St. Louis, MO) 
1ml sterile H20 (DNase free, RNase free) 
 
Dissolve, keep on ice.  Make 50µl aliquots of 100mg/ml stock solution, and store at -20°C. 
 
0.01M HCl 
1ml 1M HCl (Fisher Scientific, Pittsburgh, PA) 
99ml dH2O 
 
Store at room temperature. 
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Pepsin/HCl 

15µl pepsin stock solution 
100ml 0.01M HCl 
 
Make fresh as needed with HCl pre-warmed to 37°C. 
 
1% Formaldehyde in 1xPBS/MgCl2 
2.7ml of 37% Formaldehyde solution (Fisher Scientific, Pittsburgh, PA) 
100ml 1xPBS/MgCl2 
 
Store at room temperature. 
 
Hybridization for CGH, SKY and FISH 

 
Master Mix (MM) 
1g dextran sulfate sodium salt (Biotech grade) (Fisher Scientific, Pittsburgh, PA)  
5ml 2xSSC 
 
Dissolve dextran sulfate in 2xSSC at 70°C for several hours.  Once dissolved, cool to room temperature and 
adjust to pH 7.0.  Aliquot, store at -20°C. 
 
70% FA/SSC for CGH slide denaturation 
7ml formamide, molecular grade (Fisher Scientific, Pittsburgh, PA) 
1ml 20xSSC  
2ml sterile H20 (DNase free, RNase free) 
 
Adjust to pH 7.2-7.3. Store at -20°C. 
 
70% FA/SSC for FISH slide denaturation 
35ml formamide, molecular grade 
5ml 20xSSC 
10ml sterile H2O (DNase free, RNase free) 
 
Adjust to pH 7.0.  Store at 4°C for up to 3 weeks. 
 
Probe Precipitation for CGH 
30µl each (tumor and reference) DOP-PCR product 
60µl human Cot-1 DNA (Invitrogen Life Technologies, Carlsbad, CA) 
1µl salmon testes DNA (Sigma Co., St. Louis, MO) 
12.1µl 3M sodium acetate 
400µl absolute ethanol, ice cold 
 
Detection for CGH, SKY and FISH 

 
50% FA/SSC 
30ml 20xSSC 
120ml dH2O 
150ml formamide, molecular grade 
 
Make one day before needed.  Adjust to pH ~7.25. 
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4xSSC/0.1% Tween 20 for CGH 
100ml 20xSSC 
400ml dH2O 
0.5ml Tween 20 (Sigma Co., St. Louis, MO) 
 
Store at room temperature. 
 
4xSSC/0.05%Tween 20 for FISH 
100ml 20xSSC 
400ml dH2O 
0.25ml Tween 20 
 
Store at room temperature. 
 
1xSSC for SKY 
25ml 20xSSC 
Add 475ml dH2O to make 500ml 
 
0.1xSSC 
2.5ml 20xSSC 
Add dH2O (~497.5ml) to make 500ml 
 
0.4xSSC 
10ml 20xSSC 
Add dH2O (490ml) to make 500ml 
 
Store at room temperature. 
 
3% BSA for CGH 
0.3g bovine serum albumin (BSA) powder (Sigma Co., St. Louis, MO) 
10ml 4xSSC/0.1%Tween 20 
 
Dissolve BSA in 4xSSC/Tween 20 to make 3% blocking solution.  Store at 4°C. 
 
1% BSA for Antibody Layering in CGH 
Dilute 3% BSA 2:1 in 4xSSC/0.1%Tween 20  
 
Used in antibody dilution for detection layers in CGH.  Store at 4°C. 
 
3% NFDM for FISH  
1 bottle lyophilized NFDM (Sigma Co., St. Louis, MO) 
100ml dH2O 
0.2% sodium azide 
 
Reconstitute NFDM in dH2O.  Add 200µl sodium azide as a preservative.  Makes 3% blocking solution. 
Also used in antibody dilution for detection layers in FISH.  Store at 4°C. 
 
Antibody Layers for CGH 

1) avidin-FITC (1:200), mouse anti-dig (1:100), in 1% BSA 
2) anti-avidin (1:200), rabbit anti-mouse TRITC (1:200), in 1% BSA 
3) avidin-FITC (1:200), in 1% BSA 
4) goat anti-rabbit TRITC (1:200), in 1% BSA 
 
1% BSA is dilution of 3% BSA blocking solution for CGH.  Prepare 200µl of each layer per slide.  Make 
fresh.  
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Antibody Layers for FISH 

1) avidin-FITC (1:400), avidin-Rhodamine (1:400), in 3% NFDM 
2) anti-avidin (1:100), in 3% NFDM 
3) avidin-FITC (1:400), avidin-Rhodamine (1:400), in 3% NFDM 
 
3% NFDM is also used in blocking layer for FISH.  Prepare 200µl of each layer per slide.  Make fresh. 
 
DAPI 

2mg DAPI (Roche Molecular Biochemicals, Indianapolis, IN) 
10ml 2xSSC 
 
Dissolve DAPI in 2xSSC to make 2mg/ml DAPI stock solution.  Working solution is 80ng/ml.  To make 
working solution, add 4µl DAPI stock solution to 50ml 2xSSC. 
 
0.5M carbonate buffer 

6.2g Na2CO3·H2O or 5.3g Na2 CO3 (Sigma Co., St. Louis, MO) 

autoclaved dH2O to complete 100ml 
 
Dissolve to make 100ml of 0.5M Na2CO3. 
 
0.5M bicarbonate buffer 
4.2g NaHCO3 (Sigma Co., St. Louis, MO) 
autoclaved dH2O to complete 100ml  
 
Dissolve to make 100ml of 0.5M NaHCO3. 
 
0.5M carbonate-bicarbonate buffer 
10ml 0.5M Na2CO3  
90ml 0.5M  NaHCO3  
 
Adjust to pH 9.0. Store at room temperature. 
 
Antifade  

100mg phenylenediamine dihydrochloride (Sigma Co., St. Louis, MO) 
10ml 1xPBS (w/o MgCl2 or CaCl2) 
90ml glycerol 
 
Dissolve phenylenediamine dihydrochloride in 1xPBS, and sterile filter solution.  Adjust pH to 8.0 with 
0.5M carbonate-bicarbonate buffer (pH 9.0), and add 90ml glycerol for a total volume of approximately 
110ml.  Store at -20ºC in the dark (may be useful to wrap bottle in aluminum foil to avoid degradation 
when using it at room temperature). 
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MOLECULAR CYTOGENETICS 
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Figure 35. Image Capture for CGH Analysis from an Archival Uveal Melanoma Case.  Each of these 

images is the identical normal male metaphase spread detected with three different fluorescent 
filters.  (A) The metaphase chromosomes counterstained with DAPI.  Biotinylated tumor DNA 
and dig-11-dUTP-labelled normal DNA signals were detected with avidin-conjugated 
fluorescein isothiocyanate (FITC) and tetramethylrhodamine isothiocyanate (TRITC) 
conjugated antibodies.  (B) The FITC image, and (C) The TRITC image.  These three 
fluorescent images (A, B and C) combine to form the completed CGH image seen in (D). This 
newly combined image is suitable for CGH analysis; the image is classified and karyotyped, 
followed by the generation of CGH profiles to illustrate the amplifications and deletions 
present within the tumor genome.   

A. 

C. 

B. 

D. 
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Figure 36.  An Example of CGH Profile Data.  The Leica image analysis software (Leica Inc., Exton, PA) generates 95% confidence intervals for mean CGH 

profile data once each metaphase has been appropriately karyotyped.  This profile data is from case 39, a male patient.  A minimum of ten metaphase 
spreads were collated to generate the mean data for each of the cases.  Using the profiles from each of the spreads that combine to form the mean for 
each case, the software is able to calculate these confidence intervals for the mean profile data.  The color chromosome image to the left of each 
ideogram (from Fig. 35D) was generated using the combination of all three fluorescent filters seen in Figs. 35A, B, and C.  It should be noted that in 
the case data represented above, the profile data for the chromosomes have relatively narrow confidence intervals, which lends credence to the values 
of the mean.  Simplified, the less variation (width) in the confidence interval, the greater certainty that can be assigned to the relative copy numbers 
in the data.  This kind of data is generated for the mean profile data for the data set of each case during analysis. 



 142 

 
 
Figure 37.  Interphase FISH Control Using Centromere Probe for Chromosome 3.  (A) The isolated 

nucleus is counterstained with DAPI.  (B) The FITC and (C) the TRITC images represent the 
dual-color fluorescence visualization of the centromere probe, ensuring distinction of the 
signal from the background.  (D) The overlay shows 2 yellow signals that confirm the 2 
signals visualized are in fact the centromere probe and not background noise.  The overlay 
also confirms that the control nucleus in this image is in fact normal. 

 
 
 
 
 
 
 

A. 

C. D. 

B. 
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Figure 38.  Interphase FISH Control Using Telomere Probes for 3p and 3q.  (A) The 3p probes are 

visualized with FITC.  (B) The 3q probes are visualized with TRITC.  (C) The overlay of 
FITC and TRITC probes on a DAPI counterstain confirms 2 signals per cell for the control 
nuclei. 

A. 

C. 

B. 
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Figure 39.  Telomere Probe Signals (3p and 3q) in Uveal Melanoma Cell Lines.  Examples from the cell 

line (A) MEL270; (B) MEL285 ; (C) MEL290; (D) OCM-1; (E) OCM-3. 
 

A. B. 

C. 

D. E. 
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