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Abstract 
 

AFAP-110 is a cSrc activator 
 

Joseph M. Baisden 
 

The cSrc oncogene directs the reorganization of the actin cytoskeleton in both normal and 
transformed cells.  Mutation of protein binding domains (SH2 and SH3) from cSrc results 
in the deregulation of the kinase and the transformation of cells, while deletion of these 
domains blocks transformation by active forms of Src.  This indicates that SH2/SH3 
binding partners for cSrc may play a crucial role in the regulation of this kinase as well as 
the fulfillment of cSrc-directed functions.  One SH2/SH3 binding partner for cSrc being 
investigated for its role in cSrc transformation is the actin filament-associated protein, 
AFAP-110.  AFAP-110 represents a potential regulator of the actin cytoskeleton, as it is 
associated with actin structures and contains an intrinsic potential to direct the 
reorganization of the cytoskeleton in a manner which resembles Src transformation.  In 
this work we addressed this potential for AFAP-110 to induce actin reorganization.  
Immunoblot and immunofluorescence analyses were used to investigate this potential.  The 
results indicate that AFAP-110 binds actin directly and can induce cytoskeletal 
reorganizations in multiple cells types.  Additionally, AFAP-110 can activate cSrc in an 
SH3 domain-dependent mechanism.  This ability is revealed upon phosphorylation by 
PKC, which induces a conformational change in AFAP-110.  Both SH3 interactions with 
cSrc and PH domain interactions with PKC are required for this result, as abrogation of 
either interaction blocks both the activation of cSrc and the reorganization by PKC.  These 
results allow us to conclude that AFAP-110 can activate cSrc in response to cellular signals.   
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Introduction 

 

AFAP-110 is a potential modulator of cytoskeletal rearrangements in response to 

cellular signals involving Src and/or PKC. 
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         The actin cytoskeleton is an important structural element of the cell which is involved in 

many cellular processes.  This framework gives the cell strength and stability which contribute to 

the ultrastructure of organs as well as to other functions of cells.  The cytoskeleton is not static in 

many cells as it must undergo reorganization in order for cells to move or divide.  One signaling 

component studied for its ability to direct cytoskeletal rearrangements is the nonreceptor tyrosine 

kinase cSrc.  cSrc is an enzyme which is tightly regulated in nontransformed cells but is often 

hyperactive in tumor cells, particularly those with increased capacity to metastasize.  Much work 

has been done at determining the mechanism whereby cSrc directs cytoskeletal rearrangements 

and subsequent increased cell migration.  One protein which has been studied for its involvement 

in this process is the actin filament associated protein 110 kDa, AFAP-110.  The research 

presented here addresses potential mechanisms whereby AFAP-110 may mediate cSrc-directed 

cytoskeletal rearrangements. 

The actin cytoskeleton serves to both anchor cells and allow cells to migrate. 

 The structural strength and stability of a cell is largely provided by the cytoskeleton.  The 

cytoskeleton is comprised of several distinct structures, including intermediate filaments, 

microtubules and actin filaments.  This network of structural proteins is mainly inside cells, but 

connections with extracellular matrix proteins provide a continuous framework on which the 

cytoskeleton is built.  These connections also anchor the cells in place, in the case of non-motile 

cells.  The actin filaments are the major cytoskeletal component in most cells, like the epithelial 

cells shown in Figure 1.  These cells have been labeled to display the actin cytoskeleton, which 

appears as filaments within the cells which are networked to other cells through extracellular 

connections to maintain the integrity of the epithelial barrier.  In cells which are required to 

move for function, the actin cytoskeleton is dynamically reorganized to provide the mechanical 
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force necessary for this movement.  This 

dynamic rearrangement is normally tightly 

controlled, and is induced via signaling pathways 

in response to extracellular clues which guide the 

cell’s movement.     

The actin cytoskeleton is dynamically 

reorganized in response to extracellular 

signals to direct cell motility. 

 Extracellular signals direct the normal 

growth and development of organs by directing 

the migration of cells to the organ and their 

further proliferation.  These signals come from a 

plethora of sources, including immune/MHC 

receptors, adhesion receptors, receptor protein 

tyrosine kinases (RPTKs), G protein-coupled receptors (GPCRs), cytokine receptors and GPI-

linked receptors.  Many of these receptors direct the reorganization of the actin cytoskeleton 

upon ligand binding to influence the cell to migrate in the direction of the signal.  This migration 

toward a gradient is a common mechanism exploited by various cell types which migrate 

including cells of the immune system as well as cells in the developing organism.   

 The receptors which transduce extracellular signals are divided into at least 6 types, all of 

which appear to facilitate ctyoskeletal rearrangements.  The immune/MHC receptors are a family 

of proteins comprised of multiple subunits which cooperate to bind an extracellular ligand and 

transduce a signal to the cytoplasm.  This family includes T and B cell antigen receptors and Fc 

Figure 1  The actin cytoskeleton in 
epithelial cells (Caco-2) provides the 
structural framework inside the cells 
(white arrows) that connects with the 
cytoskeleton of other cells at cell-cell 
junctions (gray arrows). The cytoskeleton 
also extends from the edge of the 
epithelial sheet (black arrow) to direct the 
closure of the sheet, such as in wound 
healing or organ development.
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receptors which are necessary for immune responses (Hulett and Hogarth, 1994; Weiss and 

Littman, 1994).  These immune responses require cytoskeletal rearrangements in order for proper 

functionality (Barois et al., 1998; Valitutti et al., 1995).  The adhesion receptors consist of 

several distinct classes of proteins including the integrins, cadherins, selectins, and cellular 

adhesion molecules (CAMs) (Gumbiner, 1993; Tang and Honn, 1994).  These proteins represent 

a wide variety of structurally distinct molecules which serve to provide adherence for the cell to 

the extracellular matrix (Giancotti and Ruoslahti, 1999).  This adherence depends upon the 

integrity of the actin cytoskeleton, which is affected by the adhesion receptors in a signal-

dependent fashion.  RPTKs are transmembrane proteins which bind soluble ligands like PDGF, 

EGF, FGF, CSF and a host of others (Kazlauskas, 1994).  As their name suggests, these proteins 

contain an intrinsic kinase activity which they utilize to invoke various signaling pathways and 

induce cellular responses.  Often this response includes cytoskeletal rearrangements.  The 

GPCRs are the seven transmembrane-spanning proteins which are linked to heterotrimeric G 

protein complexes (van Biesen et al., 1996).  These receptors recognize a variety of extracellular 

signaling molecules, including LPA, Thrombin, Angiotensin II, Bombesin, Bradykinin and 

Vasopressin, and induce cellular response via altering G protein complexes.  These receptors can 

also induce cytoskeletal rearrangements.  The next family of receptors are the transembrane 

cytokine receptors which are divided into two groups based on shared structural features.  These 

receptors recognize many signaling molecules including interleukins 2-7, IL-11, IL-12, IL-15, G-

CSF, GM-CSF, TNF and erythropoeitin and induce effects in part through direct interactions 

with intracellular kinases.  By activating these kinases, these receptors can induce cytoskeletal 

rearrangements.  The GPI-coupled receptors are extracellular proteins which induce cytoplasmic 

signaling (Englund, 1993).  Molecules recognized by this class include Thy-1, Ly-6, CD14, CD 
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45, CD24, CD55 and CD59.  These receptors are thought to interact with other transmembrane 

proteins, like integrins and LFA to transduce cellular signals which result in cytoskeletal 

rearrangements (Petty et al., 1997).  As the engagement of each of these types of receptors 

results in cytoskeletal rearrangements, understanding the signals involved may shed light on a 

common mechanism and greatly support the importance of this mechanism in a wide range of 

signaling pathways. 

Extracellular signals that result in cytoskeletal reorganizations utilize cSrc. 

There is evidence that family members of each of the receptors listed above interact with 

and alter the activity of cSrc family members (Thomas and Brugge, 1997).  Thus, cSrc may 

represent a component of a common mechanism employed by all of these receptors to direct 

cytoskeletal rearrangements.  To understand the potential role of cSrc in these cytoskeletal 

reorganizations, it is helpful to also understand the regulation of cSrc kinase activity.   

The cSrc oncogene is normally maintained in a repressed state and is activated to induce 

cytoskeletal reorganizations necessary to cell migration. 

 The cSrc oncogene is one of the most intensely studied proteins as it was the first 

oncogene characterized as well as the first tyrosine kinase identified (Brugge and Erikson, 1977; 

Collett et al., 1978; Levinson et al., 1978; Purchio et al., 1978).  There are at least 10 proteins in 

the Src family of tyrosine kinases, which show varied expression in tissues.  Src, Yes, Yrk and 

Fyn are ubiquitously expressed.  Lyn, Hck, Fgr, Blk, and Lck are found in hematopoietic cells; 

Lyn and Lck are also found in brain.  The Frk subfamily is found in epithelial cells.  These 

expression patterns suggest Src and family members may be important to nearly all cell types.  

cSrc is maintained in an enzymatically repressed state through a mechanism thought to largely 

involve intramolecular interactions (Brown and Cooper, 1996).  In the normal function of cells, 
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these repressive interactions are relieved upon the receipt of specific signals, resulting in the 

activation of cSrc.  This is thought to direct the reorganization of the actin cytoskeleton during 

cytokinesis and cell migration.   

 The intramolecular interactions which govern cSrc activity involve several of the 

domains of the molecule.  Src family molecules have been artificially divided into domains 

which have been named SH1 through SH4.  The SH4 domain is the amino-terminal 7 –14 

residues of the molecule and includes at least a myristoylation signal and often an additional 

palmitoylation signal, which results in the insertion of this hydrophobic moiety into lipid 

bilayers, effectively anchoring the kinase at the cell membrane.  Adjacent to this is the unique 

domain, the least conserved domain among Src family members.  The function of this domain is 

largely unknown.  Carboxy-terminal to the unique domain is the SH3 domain, which has affinity 

for proline-rich binding partners.  SH3 domains are found in various signaling proteins outside of 

the Src family as well.  Following the SH3 domain is the SH2 domain, which is involved in 

binding tyrosine-phosphorylated proteins.  Like the SH3 domain, this type of domain is also 

found in non-Src signaling proteins.  The SH1 domain is near the carboxy-terminus and is the 

catalytic portion of the molecule.  This kinase portion is well conserved among tyrosine kinases.  

The SH1 domain is followed by a carboxy-terminal tail which plays a key role in the regulation 

of the molecule.  This tail contains a tyrosine (residue 527 in chick, 530 in human) which is 

normally phosphorylated by cSrc kinase (CSK), enabling it to efficiently bind the SH2 domain of 

Src.  This also brings the SH3 domain of Src in contact with a proline-rich linker region between 

the SH3 domain and the kinase domain.  Together, these interactions result in a conformational 

change in the kinase domain which precludes the coordination of ATP, effectively inhibiting 

kinase activity.  Src is thought to overcome this repression normally by the dephosphorylation of 



 

 

 

7 
 

the carboxy-terminus by protein phosphatases.  Several different phosphatases which may be 

activated in various cell types have been shown to activate Src by this mechanism, including 

PTPα, PTPλ, RPTPε, PTP1B, SHP-1 and SHP-2 (Thomas and Brugge, 1997).  Thus, the normal 

regulation of Src is thought to proceed through a well-studied mechanism. 

 Evidence exists for the activation of Src family kinases by other mechanisms which have 

an impact on the studies presented here.  Originally, mutations in either the SH3 domain or the 

linker which it contacts within Src family kinases were shown to result in activation, indicating a 

necessary role for this interaction in the mechanism of repression (Gonfloni et al., 1997; 

Reynolds et al., 1992; Weil and Veillette, 1994; Wright et al., 1994).  Other studies have 

supported this hypothesis.  Hck has been shown to be activated by SH3 engagement.  The HIV 

protein Nef, which can transform cells and may be involved in the propagation of HIV, is an 

SH3 binding partner for Hck (Moarefi et al., 1997).  The high affinity binding between Nef and 

Hck result in the activation of Hck, presumably by relieving the conformational restraints on the 

kinase domain and allowing ATP coordination and incorporation into substrates.  Collette et al. 

also showed that Nef proteins from HIV-2 and SIV demonstrate SH3 interactions with both Src 

and Fyn, indicating this type of activation may be relevant for other Src family members 

(Collette et al., 2000).  Work with the Tip protein from Herpesvirus saimiri strain 484C supports 

this, as a similar activation effect on the Src family member Lck has been shown.  SH3 

engagement between these two proteins also results in the activation of Lck kinase activity 

(Hartley et al., 1999; Hartley et al., 2000).  Furthermore, recent work has shown that the SH2 

and SH3 domains act together in a “snap-lock” type mechanism to repress Src family kinase 

activity.  Young et al. reported this result through a series of computer modeling and genetic 

experiments, showing that the linker between the SH2 and SH3 domains was important to 



 

 

 

8 
 

repressing the kinase (Young et al., 2001).  This result further supports the idea that simple SH3 

engagement may allow for the efficient activation of the kinase.  Thus, Src family kinases may 

be activated by mechanisms involving SH3 engagement.   

The creation of knockout cSrc mice has shed light on the roles that ccSrc plays in the 

regulation of specialized actin structures.  cSrc -/- mice display osteoclast dysfunction seen 

clinically as osteopetrosis, which is correlated with the inability of these cells to form 

lamellipodia (Boyce et al., 1992; Horne et al., 1992; Schwartzberg et al., 1997; Soriano et al., 

1991). Lamellipodia are specialized actin structures which, along with filopodia, actin filaments, 

and focal adhesions, are thought to be involved in cell motility (Maidment, 1997).  Kinase 

activity may not be required for this cSrc function, since expression of kinase-inactive Src 

rescues osteoclast function (Schwartzberg et al., 1997).  An analogous situation has been shown 

in fibroblasts isolated from these knockout mice and implicates cSrc in the regulation of cell 

motility.  These fibroblasts display delayed adhesion and spreading as well as decreased rates of 

motility, traits rescued by expression of kinase inactive Src (Hall et al., 1996; Kaplan et al., 

1995).  These functions may be regulated by protein-protein interactions, as the SH2 and SH3 

domains of Src are required for rescue.  Other studies have confirmed Src’s involvement in cell 

motility directed by other signal transduction pathways.  It was demonstrated that the expression 

of dominant negative Src inhibits the locomotion mediated by the RHAMM-receptor for 

hyaluron (Hall et al., 1996).  Furthermore, cSrc has been implicated in the EGF-induced 

migration of a rat carcinoma cell line (Rodier et al., 1995) as well as endothelial cell migration 

induced by the inhibition of angiotensin II (Bell et al., 1992).  Thus, cSrc plays a crucial role in 

cytoskeletal rearrangements which are necessary for cell migration in response to extracellular 

signals. 
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Deregulated activation of Src results in characteristic cytoskeletal reorganizations. 

The vSrc oncogene encoded by the RSV genome displays a loss of regulation of Src 

kinase activity and this constitutive activation results in the transformation of cells (Thomas and 

Brugge, 1997).  This model of transformation has been used to gain understanding about the 

characteristics of cancerous transformation.  Expression of a mutated form of cSrc in which the 

regulatory tyrosine has been mutated to phenylalanine (Src527F) also results in cell 

transformation.  From these studies it was deduced that the hallmark of Src transformation is the 

reorganization of the actin cytoskeleton.  This reorganization is characterized by the loss of actin 

filaments and the formation of structures sometimes termed rosettes, which appear as actin-rich 

punctate formations.  These cells also display lamellipodia and membrane ruffles, both of which 

are involved in the movement of cells.  Together, this change in phenotype is thought to indicate 

an increased ability to move.  Figure 2 displays this phenotype, comparing non-transformed 

fibroblasts (panel A) with Src527F-transformed fibroblasts (panel B). 

Figure 2  Quiescent fibroblasts display actin filaments (panel A, 
white arrows), while transformed fibroblasts (panel B) show 
rosettes (white arrow), filopodia (gray arrows) and 
lamellipodia/membrane ruffles (black arrow).

A B
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Src activation via SH3 engagement can result in cell transformation. 

 Cell transformation in response to Src activation can be accomplished through the various 

mechanisms of Src activation.  As mentioned above, dephosphorylation of the C-terminal 

tyrosine, either through mutation or activation of cellular phosphatases, results in transformation.  

Significantly, the activation of Src family kinases through SH3 engagement can also result in cell 

transformation.  The HIV-1 protein Nef, which activates Hck through this mechanism, has been 

shown to transform fibroblasts upon co-expression with Hck (Briggs et al., 1997).   Likewise, the 

Tip protein from Herpesvirus saimiri strain 484C has been shown to activate Lck in an SH3-

dependent manner (Lund et al., 1997; Lund et al., 1999).  Additionally, Tip is required for the 

ability of this Herpesvirus to induce lymphomas in common marmosets (Duboise et al., 1998).  

As per definition, the transformation induced by each of these proteins is characterized by the 

reorganization of the actin cytoskeleton, signifying an increased potential for cell migration. 

cSrc is deregulated in many cancers, particularly metastatic tumors. 

 Examination of the role cSrc plays in several tumor types supports the capability of cSrc 

to increase cell motility.  Cell lines from metastatic colon carcinomas as well as biopsies from 

tumor metastases display increased cSrc kinase activity (Bolen et al., 1987; Cartwright et al., 

1989; Cartwright et al., 1990; Rosen et al., 1986).  Talamonti et al. demonstrated that the 

hyperactivation of cSrc in colon biopsies increased as disease state increased, with polyps of 

high malignant potential showing the smallest significant increase and distant metastases 

showing the highest (Talamonti et al., 1993).  Similarly, cSrc is also activated in breast tumor 

cell lines (Jacobs and Rubsamen, 1983; Ottenhoff-Kalff et al., 1992; Rosen et al., 1986).  cSrc is 

thought to promote breast cancer as it interacts with the Neu/HER2 receptor tyrosine kinase, the 

EGF receptor family member, which is a marker for poor prognosis (Maa et al., 1995).  In 
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support of this, cSrc potentiates EGF receptor signals and oncogenesis in cell lines.  Mao et al. 

found that cSrc hyperactivity in metastases from colon carcinomas was directed by EGFR, 

Neu/HER2 and c-Met, the hepatocyte growth factor receptor (Mao et al., 1997).  Although most 

studies have focused on cSrc in breast and colon cancers, cSrc has also been shown to be 

activated in other tumors including skin and some pediatric tumors (Barnekow et al., 1987; 

Rosen et al., 1986).   Recent work has shown that adenovirus-mediated introduction of the 

negative cSrc regulator, CSK, into colon carcinoma cells inhibited cell migration and metastasis 

in nude mice, yet did not affect tumorigenicity (Nakagawa et al., 2000).  As cSrc plays a crucial 

role in tumor metastasis, understanding the proteins and signals involved could provide insight 

valuable to the treatment of metastases. 

cSrc-mediated cytoskeletal rearrangements and subsequent promotion of tumor metastases 

involve PKC. 

One of the proteins which serves to direct cytoskeletal rearrangements and cell migration 

in response to cSrc activation is the Ca-dependent protein kinase, PKC.  The PKC family is 

divided into 3 main groups, as determined by their requirements for efficient activation and 

phosphorylation of substrate (Toker, 1998).  The classical PKC family is represented by PKC α, 

β, and γ, while the novel PKC family consists of PKC δ, ε, η and θ.  Atypical PKCs are λ/ι and 

ζ.  Classical PKCs require calcium, diacyl-glycerol and phosphatidylserine for full activation, 

while novel PKCs are not responsive to calcium and require only diacyl-glycerol and 

phosphatidylserine.  Atypical PKCs appear to require only phosphatidylserine.  Many 

experiments studying PKC have relied on phorbol esters, which mimic diacyl-glycerol, to 

activate the classical and novel PKCs.  cSrc activation has been reported to induce the activity of 

members of each of these PKC families (Qureshi et al., 1991; Zang et al., 1995).  Upon PKC 
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activation with phorbol esters, there is a depolymerization of actin filaments (Jaken et al., 1989), 

much like that seen upon cSrc activation.  Furthermore, PKC has been shown to be involved in 

cell motility and other cytoskeleton-mediated functions.  In a study involving T cells, it was 

shown that inhibition of PKC activity with staurosporine causes a decrease in T cell motility 

(Volkov et al., 1998).  PKC activation with PMA was shown in another report to be essential for 

cell spreading and migration of a colon carcinoma cell line (Rigot et al., 1998).  Similarly, 

inhibition of PKC was sufficient to impede the migration of cultured ovarian carcinoma cells 

(Szaniawska et al., 1998).  In a study of nonmetastatic breast epithelial cells, Sun et. al 

demonstrated that expression of a PKC isoform, PKCα, decreased the cells’ proliferation rate but 

increased the cells’ motility and altered the cell phenotype to one consistent with motility (Sun 

and Rotenberg, 1999).  These reports support the idea that PKC activity is essential for the 

phosphorylation-dependent cycling of cytoskeletal assembly/disassembly involved in cell 

motility.  Further work with other proteins in the cSrc signaling cascade provides more evidence 

in support.  The Ras oncogene is a downstream member of the cSrc signal cascade, and 

constitutive Ras activation results in a transformed cell morphology similar to that of cSrc.  PKC 

has been shown to be activated in Ras-transformed cells (Morris et al., 1989).  Furthermore, 

inhibition of PKC can block the transformed cell phenotype induced by Ras (Uberall et al., 

1999).  Several other studies have employed techniques to determine the role of specific PKC 

isoforms in Src transformation.  A study of colonic adenocarcinoma cells showed that activation 

of either Ras or Src can upregulate and activate PKCα, causing increased tumorigenicity in nude 

mice (Delage et al., 1993). cSrc has been implicated in the direct regulation of several PKC 

isoforms.  Several PKC isoforms have been shown to be activated by tyrosine phosphorylation 

(Konishi et al., 1997) and at least one PKC isoform can associate directly with cSrc 
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(Shanmugam et al., 1998).  In fibroblasts, cSrc activation selectively activates PKCα and PKC 

delta (Zang et al., 1995).  These data indicate that PKC isoforms are regulated in part by cSrc 

and may play a role in cSrc-mediated cytoskeletal rearrangements and tumor metastasis. 

AFAP-110 represents a potential effector protein for both cSrc and PKC-directed 

cytoskeletal rearrangements. 

 Deletion experiments with cSrc, as described above, indicate one or more of its binding 

partners may be essential for the rearrangement of the cytoskeleton.  PKC inhibition experiments 

have indicated it may play a role in cSrc-directed cytoskeletal effects through its kinase activity.  

The actin filament-associated protein, AFAP-110, is a Src binding partner and substrate with 

homology to PKC binding proteins, as described below.  AFAP-110 fits several other criteria 

which indicate it has the potential to direct actin rearrangements in response to Src or PKC.  The 

following dialogue is an in-depth description of prior research on AFAP-110, after which the 

hypothesis tested will be stated.  The chapters which follow report the data gathered in testing 

the hypothesis and the conclusions drawn.  

Identification of AFAP-110 as a Src binding partner and substrate 

Upon its initial discovery, AFAP-110 was of significant interest because it formed a 

stable complex with activated forms of Src, such as vSrc or Src527F, and could be detected as a 

co-immunoprecipitating protein with anti-phosphotyrosine antibodies via western blot analysis 

(Reynolds et al., 1989a). Early studies by Reynolds et al., demonstrated that the generation of 3 

amino acid deletions within the SH2 or SH3 domains abrogated transformation potential of 

Src527F (Reynolds et al., 1989b). These same deletion constructs also failed to co-

immunoprecipitate with AFAP-110 (Kanner et al., 1991).  These data indicated that AFAP-110 

was potentially an SH2 and SH3 binding partner for Src.  Interestingly, SH3 deletion variants of 
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Src527F (Srcdl-92/527F) also failed to phosphorylate AFAP-110, while SH2 deletion variants (Srcdl-

155/527F) still retained an ability to phosphorylate AFAP-110 on tyrosine.  These data indicated 

that perhaps SH3 interactions were important for presenting AFAP-110 for phosphorylation and 

that both SH2 and SH3 binding were important for forging stable complex formation with Src. 

 MAb 4C3 revealed that AFAP-110 was associated with stress filaments and the cell 

membrane in normal CEF cells (Reynolds et al., 1989a).  In Src-transformed CEF cells, where 

the disruption of actin filament integrity is a hallmark for transformation (Felice et al., 1990; 

Reynolds et al., 1989a) and filaments are repositioned into "rosette-like" structures, AFAP-110 

maintained a co-localization with these actin filament rosettes.  These data indicated that perhaps 

AFAP-110 functioned by facilitating interactions between Src and actin filaments (Pawson, 

1995).  Previous data obtained by Hamaguchi and Hanafusa predicted that transformation-

competent forms of Src fractionated with the detergent-resistant cytoskeletal fraction, indicating 

that activated Src is closely associated with actin filaments (Hamaguchi and Hanafusa, 1987).  

Thus, AFAP-110 appeared positioned to facilitate this interaction, and Src/AFAP-110 

interactions may have been important for affecting actin filament integrity in Src-transformed 

cells. 

 Parsons and colleagues first cloned the avian isoform of AFAP-110 and reported its 

sequence (Flynn et al., 1993)(GenBank accession # L20303).  Later, a neuronal-specific isoform 

of AFAP-110, called AFAP-120, was reported to contain an additional coding sequence near the 

carboxy terminus (Flynn et al., 1995)(GenBank accession # L20302).  More recently, the 

sequence of human AFAP-110 has been identified (Bai et al., submitted)(Human: GenBank 

accession #AF188700).  Other groups have also deposited partial sequences similar to AFAP-

110 (GenBank accession #'s BB218408 and BB021778).  Evidence supplied by Bai et al. as well 
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as sequences deposited by the human genome project (http://www.ncbi.nlm.nih.gov) indicate 

that the gene for AFAP-110 is present on the distal part of the short arm of chromosome 4, at site 

4p16.1 (also, see the human genome maps provided in Nature, volume 409, 2001, chromosome 4 

map). 

AFAP-110 domain homology  

The predicted coding sequence of AFAP-110 indicates that it has a very high homology between 

species, e.g., 87% identity between chicken and human (Bai et al., submitted). A functional 

domain structure can be predicted partly from the sequences and partly from experimental data.  

Here, AFAP-110 is predicted to contain an SH3 binding motif, two SH2 binding motifs, two 

pleckstrin homology domains, a leucine zipper motif and a strong target sequence for ser/thr 

phosphorylation (Figure 3). These regions contain several hypothetical binding sites that predict 

interactions with a variety of signaling proteins and/or lipids.  The proteins of interest which will 

be detailed here are cSrc and PKC.  These data indicate that AFAP-110 functions as an adaptor 

protein, which could link a variety of signaling proteins to actin filaments.  

 

A B C D E F G H I J
Figure 3  Domain structure of AFAP-110.  Schematic representation of AFAP-110 dividing the 
sequence into regions with homology to known structural/functional motifs.  The amino-terminal 
end of the 729 residue sequence is depicted at the left.  The domains shown are (residues):  A-
unique domain (1-68), B-SH3 binding motif (69-74), C-WW binding domain (75-84), D-SH2 
binding motif (91-96), E-PH domain (153-248), F-multiple ser/thr kinase phosphorylation sites 
(250-346), G-PH domain (347-450), H-SH2 binding motif (451-455), I-leucine zipper/actin 
binding domain (511-637), J-carboxy-terminus (638-729).
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SH3 interactions between AFAP-110 and Src family kinases 

 Early studies by Ren et al. (Ren et al., 1993) and Yu et al. (Yu et al., 1992), demonstrated 

that an SH3 binding motif contained proline residues which formed the scaffolding structure of 

this motif, while surrounding hydrophobic amino acids were responsible for initiating specific 

contact with an SH3 domain (Weng et al., 1995).  AFAP-110 contains two adjacent proline-rich 

motifs that resemble a consensus SH3-binding motif (Guappone and Flynn, 1997).  Mutations 

that changed a single proline residue to alanine (AFAP71A) in the amino terminal proline-rich 

motif also abrogated the ability of the GST-SH3src fusion protein to affinity absorb AFAP71A 

from cell lysates, while mutating Pro77→Ala77 in the second putative SH3 binding motif 

(AFAP77A) had no effect on affinity absorption (Guappone and Flynn, 1997).  These data 

indicate that the amino-terminal, proline-rich SH3 binding motif was responsible for contacting 

the Src SH3 domain.  This hypothesis is also supported by the observation that mutations in the 

Src SH3 domain prevent Srcdl92/527F from either phosphorylating or binding to AFAP-110 (Flynn 

et al., 1993; Kanner et al., 1991).  Co-expression studies demonstrated that an AFAP71A mutant 

failed to form a stable complex with Src527F, indicating a role for SH3 interactions in mediating 

stable complex formation.  In addition, affinity absorption experiments using the Lyn or Fyn 

SH3 domains (GST-SH3lyn and GST-SH3fyn) demonstrated that these fusion proteins could also 

affinity absorb AFAP-110; however, the cYes SH3 domain (GST-SH3yes) failed to absorb 

cellular AFAP-110.  These data indicate a mechanism for generating specificity in signaling 

among Src family kinases via SH3 interactions.  Further experiments examined this hypothesis 

by predicting that activated cYes would also fail to interact with AFAP-110.  Interestingly, it had 

been previously demonstrated that vYes failed to form a stable complex with AFAP-110 and was 

deficient in the phosphorylation of AFAP-110 (Kanner et al., 1990).  Chimeric constructs of 
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Src527F/cYes in which the Src527F kinase domain was fused to the SH4-Unique-SH3-SH2 

domains of cYes were also unable to form a stable complex with AFAP-110.  Significantly, 

chimeric constructs in which only the SH3 domain of cYes was substituted into Src527F also 

failed to form a stable complex with AFAP-110 (Summy et al., 2000).  These data indicate that 

SH3 interactions are required for stable complex formation with AFAP-110 and that specificity 

in signaling between Src family kinases might be achieved partly through differential SH3 

binding partners.  

Src phosphorylates AFAP-110 to facilitate SH2 interactions 

 AFAP-110 is a tyrosine-phosphorylated substrate for Src527F in vitro and in vivo (Flynn et 

al., 1992; Flynn et al., 1993).  AFAP-110 contains 6 potential SH2 binding motifs which include 

a phosphotyrosine residue necessary for establishing an interaction with an SH2 domain 

(Guappone et al., 1998).  Using site-directed mutagenesis, the individual tyrosine residues were 

mutated independently or in tandem.  Affinity absorption studies and co-

expression/immunoprecipitation studies with these mutants indicated AFAP-110 has more than 

one functional SH2 binding motif -- one amino terminal and one or two carboxy terminal motifs.  

Hypothetically, having more than one SH2 binding motif could facilitate the binding of two Src 

proteins to one AFAP-110 protein, resulting in the creation of larger signaling complexes.  

Alternatively, the different SH2 binding motifs may permit transit of a single Src527F protein 

upon AFAP-110, possibly assisting in transporting Src527F to a specific subcellular localization. 

A similar hypothesis has been presented by Fincham et al. in which phosphatidylinositol 3-

kinase (PI 3-kinase) can either facilitate, or is associated with, the transport of Src527F into focal 

adhesion structures (Fincham et al., 2000). Lastly, it is possible that the multiple sites of tyrosine 
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phosphorylation may also assist in bringing activated Src in proximity to other SH2 domain-

containing proteins. 

AFAP-110 hyperphosphorylation in Src transformed cells correlates with a change in 

AFAP-110 self-association, which may be independent of tyrosine phosphorylation 

Sequence analysis of AFAP-110 indicated the presence of a leucine zipper motif, an 

alpha-helical structure of around 40 residues in length characterized by the presence of a leucine 

every seventh residue.  These structural elements have been shown to facilitate protein homo- 

and hetero-dimerization.  To determine if AFAP-110 had the potential to dimerize via this motif, 

Qian et al. used a fusion protein construct containing the leucine zipper and surrounding region 

(GST-511-637) to affinity absorb AFAP-110 from cell lysate (Qian et al., 1998).  This was 

shown to be the case, indicating AFAP-110 can self-associate.  The absorption of AFAP-110 by 

this fusion protein is decreased upon co-expression of Src527F with AFAP-110, indicating a 

change in the self-association status of AFAP-110.  The authors hypothesized that this change in 

self-association was likely due to a conformational change in AFAP-110, as a result of either 

phosphorylation or protein-protein interactions.  This hypothesis was verified using gel filtration 

analysis, whereby cellular AFAP-110 fractionated in at least three separate peaks, representing 

multimers (such as tetramers and trimers), as well as a population of monomers.  However, co-

expression of Src527F caused AFAP-110 to fractionate in a single peak that also contained bound 

Src527F (Qian et al., 1998).  Based on the molecular weight of the AFAP-110/Src527F complexes 

within this single peak, it was predicted that AFAP-110 would exist as either a dimer or a trimer, 

bound to two or one Src527F molecule, respectively.  As AFAP-110 is hyperphosphorylated on 

tyrosine, serine and threonine residues in Src-transformed cells, the role of hyperphosphorylation 

in directing this change in conformation was investigated.  Interestingly, it appears that the 
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mechanism by which Src527F affects multimerization of AFAP-110 occurs independently of 

tyrosine phosphorylation, as was indicated by similar affinity absorptions with cSrc.  GST-511-

637 fusion proteins were able to affinity absorb cellular AFAP-110 that had been co-expressed 

with cSrc (Qian et al., 1998).  The cSrc kinase maintains a low, but significantly detectable level 

of tyrosine kinase activity (Hamaguchi and Hanafusa, 1987) and is able to phosphorylate AFAP-

110 in vivo (Reynolds et al., 1989a); however, cSrc is unable to activate cellular signals that 

initiate transformation or alter actin filament integrity (Reynolds et al., 1987).  These data 

indicate that phosphorylation on tyrosine by cSrc did not alter the conformation of AFAP-110.  

However, it may have been possible that cSrc was unable to phosphorylate a specific and key 

tyrosine residue, one that may have only been phosphorylated in the presence of Src527F.  To test 

this, the AFAP5Y mutant was co-expressed with Src527F and the ability of GST-511-637 to 

affinity absorb AFAP5Y tested.  Here, it was predicted that if tyrosine phosphorylation were 

responsible for altering the conformation of AFAP-110, then AFAP5Y could be affinity absorbed 

by GST-511-637 in the presence of Src527F because it would not be phosphorylated on tyrosine.  

Conversely, if AFAP5Y could not be absorbed, then perhaps the effect on AFAP-110 

conformation was independent of tyrosine phosphorylation.  The data demonstrated that GST-

511-637 was unable to affinity absorb AFAP5Y in the presence of Src527F, while in the absence of 

Src527F GST-511-637 could affinity absorb AFAP5Y.  These data indicate that tyrosine 

phosphorylation is not responsible for affecting AFAP-110 conformation and that another 

cellular signal, directed by Src527F, may be affecting the structure of AFAP-110 and preventing 

affinity absorption by GST-511-637.  This signal may therefore involve ser/thr phosphorylation.  

These data indicate that conformational changes induced upon AFAP-110 by Src527F occur 

indirectly, possibly in response to ser/thr kinase activation downstream of Src527F.  
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Deletion of the leucine zipper results in a change in self-association and reveals AFAP-110 

has the intrinsic ability to direct cytoskeletal rearrangements 

To further examine the role of the leucine zipper in directing the self-association of 

AFAP-110, a mutant lacking the leucine zipper was constructed (AFAP-110∆lzip).  Gel filtration 

analysis of this mutant revealed that it was found as a population of dimers, similar to that seen 

upon co-expression of wild-type AFAP-110 with Src527F (Qian et al., 1998).  As this multimeric 

form of AFAP-110 had correlated with a transformed phenotype in previous experiments, this 

mutant was expressed to further evaluate this correlation.  Expression of this mutant revealed 

that the cells containing the mutant displayed a phenotype which resembled Src transformation.  

These cells displayed a decrease in actin filaments and numerous rosettes, lamellipodia and 

membrane ruffles.  Thus, AFAP-110 has the intrinsic potential to direct cytoskeletal 

rearrangements; however whether these effects are indirect via protein interactions or direct via 

interactions with actin remained untested.   

The amino-terminal PH domain of AFAP-110 may direct interactions with PKC  

The correlation of changes in both AFAP-110 self-association and serine/threonine 

phosphorylation of AFAP-110 with cytoskeletal rearrangements indicated AFAP-110 

serine/threonine phosphorylation may play an important role in AFAP-110 function.  

Examination of AFAP-110 revealed two pleckstrin homology domains, structures which are 

known to direct interactions with serine/threonine kinases.  Pleckstrin homology domains 

comprise a family of modular domains of around 100 residues found in a variety of proteins that 

have been shown to facilitate molecular interactions with either proteins or phospholipids (Shaw, 

1996).  PH domains, like most other modular binding domains, vary greatly from one protein to 

another, in respect to binding specificity and primary sequence.  The tertiary structure of PH 
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domains, however, is relatively well conserved, consisting of 7 beta strands followed by an 

alpha-helical region.  The 7 beta strands form two beta sheets which meet at one long edge, 

resembling a book which is partially opened.  The alpha helix is positioned in the opening 

between the two opposite ends of the sheets, effectively fitting in the “open book”.  Interactions, 

largely hydrophobic, between backbone and side-chain atoms stabilize the entire structure.  

Several PH domains contain an additional short alpha helix in one of the loops intervening 

between two beta strands.  The diversity of primary sequence appears to lend to the ability to 

bind other molecules with variable affinities, when comparing different PH domains.  For 

example, phospholipid binding affinities vary greatly between individual PH domains, with the 

PH domain from PLC-δ1 preferring Ins-(1,4,5)P3 and PtdIns(4,5)P2, while others like the PH 

domains from Btk and PKB prefer PtdIns(3,4,5)P3 (Gray et al., 1999; Kojima et al., 1997; 

Lemmon et al., 1995).  Similar disparities for protein binding are seen among protein binding 

partners for PH domains (Rodriguez et al., 1999).  Among the proteins which have been shown 

to bind PH domains are serine/threonine kinases PKC, etc., WD40-repeat containing proteins 

RACK1, Gβγ, others.  The large, globular structure of the PH domain may permit the 

concomitant binding of several of these binding partners as well.  This has been demonstrated for 

the WD40-repeat containing proteins (whose binding relies heavily on the alpha-helix of the PH 

domain) and PKC, which binds to an opposite face of the PH domain involving the 2nd-4th beta 

strands.  Thus the role of PH domains may be to approximate binding partners for the formation 

of signaling complexes.   

 AFAP-110 contains two potential PH domains which flank a stretch containing several 

putative sites for serine/threonine phosphorylation.  Comparison of these PH domains’ sequences 

shows that the amino-terminal PH domain shares highest homology with PH domains from β-
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spectrin and Dynamin, which are also thought to direct interactions with PKCs, while the 

carboxy-terminal PH domain shares highest homology with the Btk PH domain.  The amino-

terminal PH domain also shares homology with the PH domain from Btk, which has been 

extensively investigated for its ability to interact with PKC.  A modeling of the structure of this 

PH domain of AFAP-110 was constructed, based on the structure of the β-spectrin PH domain, 

as solved by NMR (Macias et al., 1994).  This structure and the sequence homology it was based 

upon were used to determine the residues of the PH domain of AFAP-110 which likely 

correspond to the specific structural elements conserved in PH domains.  Table 1 shows that the 

regions of homology between the amino-terminal PH domain of AFAP-110 and the PH domains 

of β-spectrin, Dynamin and Btk are highest for the first beta sheet, which includes strands 1-4.  

This sheet forms one side of the “book” structure and provides a continuous face which likely 

binds to PKC.  The sequences of Spectrin, Dynamin, and Btk are shown in this table, as these 

domains have been well studied for their ability to bind both PKC and phosphoinositides.  The 

consensus PKC binding sequence presented, however, also considers several other PH domains 

which also bind PKC.  The amino-terminal PH domain of AFAP-110 fits this consensus well, 

with 7 out of 8 residues matching.  If we include the buried hydrophobic residues indicated in 

this table with *, this number becomes 14 out of 15.  This table also considers the carboxy-

terminal PH domain of AFAP-110, which matches 4 out of 8 non-buried residues, and 10 out of 

15 total consensus residues.  A model of the amino-terminal PH domain of AFAP-110 and the 

potential binding sites for partners, including PKC, are shown in Figure 4.  This figure includes 

the PH domain of Spectrin for comparison.  Thus, it appears that one or both of the PH domains 

of AFAP-110 may direct interactions with PKC. 
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    β1    β2     β3   

Domain(source)  
Btk (1,3,4)         ESIFLKR--SQQKKKTSPLS---NFKKRLFLLT-VH-KLSYYEYDF       
β-spectrin (2,4)                                           MEGFLNRKH-EWEAHNKKASSR-SWHNVYCVIN-NQ-EMGFYKDAK   
DYNAMIN(2,4)   RKGWLTI---NNIGIMKGGS----KEYWFVLT—AE--NLSWYKDDE 
CONSENSUS     1* ++                  W+ ***Ψ*      * *Y+ 
AFAP, Nt PH  ICAFLLRKK—RFGQ-----------WTKLLCVIK-EN-KLLCYKSSK 
AFAP, Ct PH  TCGYLNVLS—NNR------------WRERWCRVK-DN-LKIFHKDRT 
 
Table 1  Alignment of the first 3 beta sheets of the PH domains of AFAP-110 with several other 

PH domains known to bind PKC and phospholipids.  Consensus sequence for this stretch is 

shown and symbols used are as follows: + indicates positively charged residues, 1 indicates 

aromatic residues, Ψ indicates hydrophobic residues, * indicates buried hydrophobic residues 

which stabilize the PH domain, as determined by NMR.  Consensus is modified from Waldron et 

al. and Yao et al..  Residues contained within beta sheets are in bold, and sheets are labeled as 

designated from the Btk structure.  Residues which are thought to be involved in phospholipid 

binding are outlined.  Sources are: 1- (Yao et al., 1997), 2-(Rodriguez et al., 1999), 3- (Yao et 

al., 1994), 4-(Baraldi et al., 1999). 
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WD40 
repeat

Inositol triphosphate

Potential binding faces of the N-
terminal PH domain of AFAP-110

PH domain of ββββ-Spectrin 
in complex with IP3

PKC

Figure 4  Model structure of the amino-terminal PH domain of AFAP-110.  Sequence alignment 
of the PH domain of AFAP-110 was used to construct this model by homology methods.  This 
was performed using the PH domain of β-Spectrin, which is included in the inset figure.  This 
structure includes Ins(3,4,5)P3, shown in yellow in complex with the β-Spectrin PH domain.  The 
basic residues which coordinate binding Ins(3,4,5)P3 are shown as stick form in blue.  The 
corresponding residues in AFAP-110 are also shown in blue.  Alpha helices are displayed in red,
beta sheets in green.  The structures were modeled using SwissPDBViewer and POVRay scenes 
were generated.  PKC, WD40 repeat-containing protein and Ins(3,4,5)P3 are included as cartoons 
to illustrate the potential for complex formation. 
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Hypothesis 

 Previous work on AFAP-110 has permitted the generation of a hypothesis that would 

implicate AFAP-110 in cytoskeletal rearrangements in response to cellular signals.  This 

hypothesis predicts that AFAP-110 can direct cytoskeletal rearrangements by an indirect 

mechanism which is dependent upon the PH domain-directed phosphorylation of AFAP-110.  

More specifically, the phosphorylation of AFAP-110 induces a conformational change in AFAP-

110.  This conformational change reveals an intrinsic ability for AFAP-110 to activate Src family 

kinases, thereby inducing cytoskeletal rearrangements in an indirect manner.  This dissertation 

begins examining this hypothesis by investigating the intrinsic ability of AFAP-110 to induce 

alterations in actin filament structures as well as its ability to bind actin filaments directly in 

Chapter 1.  The ability of AFAP-110 to direct cytoskeletal reorganization by an indirect 

mechanism involving the activation of Src is reported in Chapter 2.  Chapter 3 details the 

mechanism which reveals the ability of AFAP-110 to activate Src in response to cellular signals.  

Overall conclusions and a model to accommodate these conclusions are presented in the 

discussion following these chapters.  
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Chapter 1 

 

AFAP-110 binds actin directly and has the intrinsic ability to induce cytoskeletal 

rearrangements. 
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AFAP-110 is a binding partner for Src which is found on the actin cytoskeleton in both 
non-transformed and transformed cells.  SH2/SH3 deletion mutants of Src fail to transform 
cells and fail to form a stable complex with AFAP-110, as well.  To examine the potential 
involvement of AFAP-110 in the cytoskeletal rearrangements that are characteristic of Src 
transformation, AFAP-110 was studied for its potential to bind actin directly.  Data 
presented here indicate that AFAP-110 binds actin filaments directly through a carboxy-
terminal region with homology to known actin-binding domains.  Additionally, deletion of 
the leucine zipper motif of AFAP-110 results in a phenotype which resembles Src 
transformation.  We conclude that AFAP-110 may play a role in cytoskeletal 
reorganizations through its dual potentials to both bind actin filaments directly and induce 
cytoskeletal reorganizations. 
 



 33 

Introduction 
 As AFAP-110 was originally defined by its association with actin, early work on AFAP-

110 was aimed toward implicating it in the reorganization of the actin cytoskeleton.  

Experiments toward that end were first reported in a manuscript published in 1998 by Qian et al.  

This work included a figure of immunfluorescence data (contributed by myself) which indicated 

that the expression of a specific mutant of AFAP-110 resulted in the reorganization of the actin 

cytoskeleton of Cos-1 cells similar to that seen upon expression of Src527F (Qian et al., 1998).  

The mutant used consisted of a deletion variant of AFAP-110 lacking the leucine zipper motif 

(residues 553-593), AFAP-110∆lzip.  This mutant was used in this manuscript to investigate the 

potential for AFAP-110 to dimerize via this motif.  The experiments reported by Qian et al. 

indicated that AFAP-110 does indeed self-associate in part by this mechanism and that this self-

association was affected by Src activation.  FPLC analysis indicated that AFAP-110 shifted from 

a population of several multimeric forms to a single population upon co-expression of Src527F.  

This shift to a single, dimeric population was similarly noted upon expression of AFAP-110∆lzip 

(Flynn, unpublished data).  Thus, we asked if this change in self-association also correlated with 

the cytoskeletal rearrangements seen upon expression of Src527F.  AFAP-110∆lzip expressors 

indeed displayed cytoskeletal rearrangements which mimicked Src transformation.  Thus AFAP-

110 displayed the potential to direct cytoskeletal rearrangements.   

The co-localization of AFAP-110 to actin structures permitted the generation of the 

hypothesis that AFAP-110 may interact directly with actin and induce these cytoskeletal 

rearrangements directly.  Experiments designed to test this hypothesis were reported by Qian et 

al. in a manuscript published in 2000.  This manuscript described AFAP-110 as an actin-binding 

protein with the capability to induce cytoskeletal rearrangements in several cell types.  The 

following is a discussion of my contributions to this manuscript. 
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Results 

 

Sequence analysis of the carboxy-terminal region of AFAP-110 revealed homology to 

known actin-binding motifs, as shown in Table 1.  AFAP-110 contains homology to two distinct 

types of actin-binding domains in this region which were termed ABD1 and ABD3 by Taylor et 

al. (Taylor et al., 1998).  The first of these 
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domains, the ABD1, covers 15 amino acids (601-615), as shown in Table 1.  Domains of this 

type from 12 other proteins are included for comparison.    Overlapping this ABD1 region in 

AFAP-110 is the putative ABD3.  This domain consists of 4 residues which have been shown to 

be responsible for actin-binding in several proteins.  The ABD3 regions from these proteins are 

included in Table 1 for comparison to the potential ABD3 from AFAP-110.  This motif consists 

of three basic residues and a hydrophobic leucine, for all these regions except for the ABD3 of 

Villin, which contains an asparagine in place of lysine seen in the other domains.  The putative 

ABD3 from AFAP-110 fits this domain consensus exactly, as it is comprised of KLKK.  It is 

interesting to note that this ABD3 overlaps the ABD1 in AFAP-110, with the KL residues that 

end the ABD1 providing the first half of the ABD3.   

To address the potential for AFAP-110 to bind actin structures directly, several mutants 

were created which lacked portions of the carboxy-terminal region of AFAP-110.  These mutants 

were used to test the idea that these putative actin-binding domains were involved in linking 

AFAP-110 to actin.  Site-directed mutagenesis was employed to introduce stop codons into the 

coding sequence of AFAP-110 to create mutants which lacked the carboxy-terminal 176 amino 

acids (AFAP-110∆176), the carboxy-terminal 136 amino acids (AFAP-110∆136) or the carboxy-

terminal 114 amino acids (AFAP-110∆114).  The names used here have been changed from the 

published manuscript as to more accurately reflect the nature of each mutant.  Figure 1 includes a 

schematic representation of these mutants and divides the carboxy-terminal region of AFAP-110 

into three sections: the coil/turn region, the leucine zipper motif and the alpha-helical region.  As 

depicted, the mutants created covered these three regions, particularly the alpha-helical region.  

The expression and size of these mutants was verified by SDS-PAGE followed by western blot 

analysis. 
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The mutants created were expressed in C3H10T1/2 mouse fibroblasts to determine their 

ability to colocalize with actin structures.  Transfection and microscopic analysis were carried 

out as described in Material and Methods.  The first of the mutants shown, AFAP-110∆176 lacked 

the leucine zipper, the alpha-helical region and the rest of the carboxy-terminus.  This mutant 

was shown to be deficient for binding actin, as seen in Figure 2, panels D-F.  This was in contrast 

to wild-type AFAP-110, which colocalized with actin structures, as seen in Figure 2, panels A-C.  

As deletion of the leucine zipper did not appear to affect colocalization with actin structures 

(Qian et al., 1998), and the putative actin-binding domains were contained in the alpha-helical 

region, further deletions targeted this region.  Deletion of this entire region (AFAP-110∆136) 

again resulted in abrogation of colocalization with actin structures, as seen in Figure 2, panels G-

AFAP-110

AFAP-110∆ ∆ ∆ ∆ 176

AFAP-110∆ ∆ ∆ ∆ lzip

1                                                               511         553        593    616  637 729��������������
��������������
��������������1lzip

����������
����������
����������2

����������
����������1

����������
����������2

lzipAFAP-110∆ ∆ ∆ ∆ 136

������������
������������
������������1lzipAFAP-110∆ ∆ ∆ ∆ 114

Figure 1  Deletion mutants of AFAP-110.  The creation of these mutants is described in Materials and Methods.  Numbers at the 
top designate the residues in AFAP-110 which are used here in reference to deletions.  The leucine zipper motif of AFAP-110 
(residues 553-593) is labeled lzip.  The alpha helical region adjacent to the leucine zipper, here illustrated by the diagonal lines, is 
divided into two portions, labeled 1 (residues 593-615) and 2 (residues 616-637).  Both portions of this region were deleted in 
AFAP-110∆ 176 and AFAP-110∆ 136.  AFAP-110∆ 114, however, maintained the first half of this region as the protein was truncated 
at residue 615.  This alpha helical region contains both putative actin binding domains of AFAP-110 and therefore these regions 
were deleted in these mutants.  AFAP- 110∆ 114 resulted in the deletion of only the second half of the second of these actin binding 
domains, which is found in residues 614-617. 
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I.  Another deletion, encompassing the carboxy-terminal 114 residues of AFAP-110 partially 

abrogated interactions with actin structures.  This is seen in Figure 2, panels J-L, which indicates 

partial colocalization with actin filaments.  Thus, the carboxy-terminal 136 residues of AFAP-

110 appear to be involved in the interaction between AFAP-110 and actin structures. 

 Figure 2 also reveals that residues 593-616 are involved in the membrane localization of 

AFAP-110.  Wild-type AFAP-110 and AFAP-110∆114 colocalized with the cell membrane.  

AFAP-110∆176 and AFAP-110∆136 were both deficient for membrane localization, as highlighted 

with gray arrows in Figure 2.  Thus, the common region deleted from these two mutants, 

residues 593-616, are likely involved in this property of AFAP-110.   

To confirm that the carboxy-terminal region was responsible for the colocalization with 

actin structures, GFP-tagged forms of AFAP-110 were created and expressed in C3H10T1/2 

fibroblasts.  Cloning performed by Dr. Qian resulted in two forms of GFP-tagged AFAP-110 

which placed the AFAP-110 coding sequence carboxy-terminal to and in frame with the GFP 

coding sequence, resulting in the expression of fusion proteins.  These mutants were expressed 

and examined for colocalization with actin structures.  Wild-type AFAP-110 fused to GFP was 

seen to colocalize with actin (Figure 3, panels A-C), while GFP alone failed to colocalize with 

actin (Figure 3, panels D-F).  Furthermore, expression of the carboxy-terminal 219 amino-acids 

fused to GFP (GFP-Cterm) revealed colocalization with actin structures (Figure 3, panels G-I).  

This confirmed that the carboxy-terminal region is involved in the colocalization of AFAP-110 

to actin structures. 
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Figure 2  Deletions in the putative actin-binding region of AFAP-110 abrogate colocalization 
with actin filaments.  AFAP-110 and mutants were expressed in C3H10T1/2 fibroblasts, as 
described in Materials and Methods.  A, D, G and J demonstrate AFAP-110 labeling with mAb 
4C3, while B, E, H and K convey actin filaments labeled with FITC phalloidin.  The 
corresponding converged images of these panels are shown in C, F, I and L to demonstrate 
colocalization between AFAP-110 and actin, which appears yellow.  Black arrows indicate actin 
filaments and colocalization of AFAP-110 with actin filaments.  Gray arrows indicate the cell 
membrane and highlight the colocalization (or absence thereof) of AFAP-110 with the cell 
membrane.  Cells were transfected with AFAP-110 or mutants as follows:  A-C, Wild-type 
AFAP-110; D-F, AFAP-110∆176; G-I, AFAP-110∆136; J-L, AFAP-110∆114. 
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Figure 3  The carboxy-terminal 219 amino acids are sufficient for colocalization with actin 
filaments in vivo.  GFP-tagged forms of AFAP-110 (panels A and G) as well as GFP alone 
(panel D) were expressed in C3H10T1/2 fibroblasts, as described in Materials and Methods.  
Cells were labeled to visualize actin filaments (panels B, E and H).  Converged images are 
shown in panels C, F and I to illustrate colocalization, which appears yellow.  Black arrows 
highlight this colocalization.  Cells were transfected as follows:  A-C, GFP-AFAP-110; D-F, 
GFP; G-I, GFP-Cterm.
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Immediately amino-terminal to the actin-binding domains of AFAP-110 is the leucine 

zipper motif.  Both of these regions are predicted to exist as part of a long alpha-helix.  It had 

been previously noted that expression of AFAP-110∆lzip resulted in a phenotype which resembled 

Src-transformed cells (Qian et al., 1998).  Cos-1 cells expressing this mutant were reported to 

have decreased actin filaments and an increase in actin rich rosettes with which AFAP-110∆lzip 

colocalized.  These results were recapitulated here, and the expression of this mutant in other 

cells was more closely examined.  Figure 4 shows the effects of expression of AFAP-110∆lzip on 

Cos-1, C3H10T1/2 and NIH3T3 fibroblasts.  Panels A-C show that in Cos-1 cells, expression of 

AFAP-110∆lzip resulted in the repositioning of actin filaments into rosettes and AFAP-110∆lzip 

colocalized with these structures (black arrows).  Additionally, AFAP-110∆lzip colocalized with 

actin-rich structures at the cell membrane, such as filopodia, membrane ruffles and lamellipodia 

(white arrows).  Panels D-F show that similar results were seen in C3H10T1/2 cells, where actin 

filaments were repositioned into rosettes and lamellipodia were induced.  Again, AFAP-110∆lzip 

colocalized with these structures.  Identical results were noted in NIH3T3 fibroblasts, shown in 

panels G-I.  These results indicate that AFAP-110 has the intrinsic ability to induce the 

reorganization of the actin cytoskeleton, establishing it as a potential effector for cellular signals 

which direct this action.   
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Figure 4  AFAP-110∆lzip repositions actin filaments in several fibroblast cell types.  Cos-1 cells 
(panels A-C), C3H10T1/2 cells (panels D-F) and NIH3T3 cells (panels G-I) were transfected to 
express AFAP-110∆lzip (panels A, D and G), as described in Materials and Methods.  Actin is 
shown in panels B, E and H, while the converged images are shown in panels C, F and I to 
demonstrate colocalization, which appears yellow.  White labels demonstrate membrane 
ruffles/lamellipodia; black arrows label rosettes.
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Discussion 

The experiments reported here were designed to test the potential for AFAP-110 to bind 

actin structures directly and additionally confirm the potential for AFAP-110 to induce 

cytoskeletal rearrangements in other cell lines.  Table 1 reveals that AFAP-110 contains two 

potential actin-binding motifs that overlap and extend from residue 601 to residue 615.  The 

sequence homology for the first of these domains, the ABD1, was lower than that seen in most 

other ABD1 domains presented.  These domains shared a range of sequence similarities from 

60%-93%, while this domain from AFAP-110 demonstrated a range of sequence homology of 

33-47%.  This range was higher than that of the ABD1 from Tensin, which showed 20-47% 

homology with the other ABD1 regions.  Thus, the ABD1 from AFAP-110 contained higher 

sequence homology to other ABD1 regions than at least one known functional ABD1, indicating 

this region may represent a member of this class of actin-binding domains.  The second actin-

binding domain, similar to an ABD3 motif, shares complete or nearly complete homology with 

other known domains of this type.   

The result seen upon expression of AFAP-110∆114, depicted in Figure 2, panels J-L, 

allows us to address the contribution of both actin-binding domains toward interactions between 

AFAP-110 and actin.  As seen in this figure, this mutant is deficient for colocalization with actin 

compared with wild-type AFAP-110, but does retain some colocalization with actin.  This 

mutant, created by the engineering of a stop codon which truncated the protein 114 residues from 

the end, contains the entire ABD1.  The protein ends at residue 615, which is the second residue 

of the ABD3.  As this mutant maintains a complete ABD1 but an incomplete ABD3, it appears 

that both domains are involved in the interaction between AFAP-110 and actin.  As these 
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domains overlap, it seems likely that they would cooperate in binding actin, and the entire 

structure may therefore be required to maintain efficient interactions with actin. 

The ability of AFAP-110 to bind actin directly was substantiated by Dr. Qian in a series 

of in vitro experiments which tested the ability of AFAP-110 to directly bind polymerized actin.  

These experiments demonstrated that residues 511-637 of AFAP-110 co-pellet with polymerized 

actin, indicating this region can bind actin directly (Qian et al., 2000).  Additionally, it was 

confirmed that amino acids 593-637 of AFAP-110, containing both putative actin-binding 

domains, were the portion of this region responsible for the direct interaction with actin.  Thus, it 

was shown that AFAP-110 binds actin directly via a region containing homology to known actin-

binding domains. 

One interesting result seen upon the expression of the AFAP-110 mutants presented here 

involves the localization of AFAP-110 to the cell membrane.  Wild-type AFAP-110 appears to 

colocalize with the cell membrane, as seen in Figure 2, panels A-C.  This colocalization is absent 

for the deletion mutants AFAP-110∆176 and AFAP-110∆136, as seen in Figure 2, panels D-F and 

G-I, respectively.  Gray arrows in these panels highlight this result.  Colocalization to the cell 

membrane is restored for the mutant AFAP-110∆114, indicating residues 616-637 are involved in 

the localization of AFAP-110 to the cell membrane.  This colocalization may be direct or 

indirect, through the association with a binding partner located at the cell membrane.  In fact, this 

result may simply reflect the association of AFAP-110 with actin structures at the cell 

membrane.  Cells demonstrating AFAP-110 or mutants at the cell membrane consistently display 

actin structures at these sites.  This is highlighted by AFAP-110∆114, which retains some 

colocalization with actin structures and also retains membrane localization, particularly with 

actin structures at the cell membrane.  The expression of AFAP-110∆lzip supports this idea as 
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these cells show an increase in actin-rich membrane structures which are enriched for AFAP-

110∆lzip.   

The ability of AFAP-110 to bind actin directly, as shown here, combined with its ability 

to multimerize suggests AFAP-110 may function as an actin bundling or cross-linking protein.  

To better understand the implications of cross-linking, it is necessary to discuss actin dynamics.  

In eukaryotic cells, actin filaments (F-actin) are cross-linked into two types of structures by 

bundling proteins in vivo: these are the meshwork (isotropic network) and the bundle 

(Matsudaira, 1991; Wachsstock et al., 1993).  The actin bundle is a structure where individual 

actin filaments are closely packed to form parallel arrays.  This establishes similar polarity for 

the individual actin filaments, which have a growing (barbed) end and minus end.  These 

structures are therefore thought to elongate as a unit and are thought to provide force against the 

cell membrane which results in the extension or propulsion of the membrane forward (Cramer, 

1997; Matsudaira, 1991).  This is a necessary step in cell migration.  Actin filament bundles of 

this type mainly exist in two cell structures: a) membrane projections such as microvilli and cell 

motility organelles (filopodia, lamellipodia and membrane ruffles) and b) muscle sarcomeres.  In 

constrast to actin bundles, the actin meshwork is a structure in which actin filaments form an 

orthogonally oriented network.  This type of structure is found in the cell body and cell cortex 

(Matsudaira, 1991).   Meshworks are thought, like bundles, to provide force against the cell 

membrane, similarly pushing the cell membrane (Pantaloni et al., 2001).  In fact, bundle and 

network structures cooperate to form the actin-rich cell membrane structures which are necessary 

for cell migration, namely filopodia and lamellipodia/membrane ruffles (Cramer, 1997; 

Matsudaira, 1991).  Often, filopodia extend from lamelliopodia, and where these structures mix, 

actin filaments exist as bundle and network structures that are the force that allow protrusion of 
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filopodia and lamellipodia (Cramer, 1997; Matsudaira, 1991).  In consideration of these types of 

structures, AFAP-110 seems a likely candidate for actin bundling.  As shown in Table 1 and 

Figure 2, AFAP-110 contains two potential actin-binding domains.  If these structures bind actin 

independently, AFAP-110 could bundle actin filaments in a monomeric form.  However, the fact 

that these structures overlap suggests that they may cooperate to bind one actin filament.  In 

support of this, AFAP-110 appears to multimerize in cells, suggesting that the monomeric form 

of AFAP-110 may be relatively rare and that AFAP-110 may bundle actin structures by 

dimerizing.  Additionally, the multimerization of AFAP-110 is altered upon Src activation, 

indicating the bundling capacity of AFAP-110 may be altered.  AFAP-110 therefore represents a 

potential actin cross-linking protein with a regulated ability to cross-link and may serve in the 

dynamic formation of filopodia and lamellipodia.  The localization of AFAP-110 to actin-rich 

membrane structures upon Src activation (Qian et al., 1998) or deletion of the leucine zipper, as 

seen in Figure 4, supports this.   

The ability of AFAP-110∆lzip to alter actin filaments combined with the ability of AFAP-

110 to directly bind actin filaments suggests that AFAP-110 may have a direct affect on actin 

filaments which is revealed upon deletion of the leucine zipper.  This hypothesis has been 

examined by Dr. Yong Qian, and the results suggest that this is the case.  This will be discussed 

in more detail in Chapter 4.  Alternatively, deletion of the leucine zipper of AFAP-110 may 

result in the reorganization of the actin cytoskeleton by an indirect mechanism, such as the 

induction of cellular signals known to direct these rearrangements.  Chapters 2 and 3 will address 

this second hypothesis.  In reality, it appears that AFAP-110 may have both types of effects on 

actin structures, and Chapter 4 will attempt to reconcile these effects in a mechanistic study. 
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Materials and Methods 

 

Cell culture.  Cos-1 cells were maintained and transfrected as previously described (Guappone 

and Flynn, 1997).  C3H10T1/2 and NIH3T3 cells were grown as previously described (Luttrell et 

al., 1988).  Transient transfections were carried out in all three cell lines as previously decribed 

(Qian et al., 1998).  Specifically, calcium phosphate-mediated transfections were used for Cos-1 

cells, while both C3H10T1/2 and NIH3T3 cells were transfected using SuperFect, as per 

manufacturer’s instructions (Qiagen).   

 

Generation of AFAP-110 mutants.  The generation of all AFAP-110 mutants were carried out by 

Dr. Yong Qian in the following manner.  AFAP-110∆176 and AFAP-110∆lzip were generated as 

previously described (Qian et al., 1998).  AFAP-110∆136 and AFAP-110∆114 were created using 

site-directed mutagenesis to introduce stop codons into the sequence of each of these mutants.  

Sequence analysis confirmed these stop codons, as well as the absence of spurious second site 

mutations.  The predicted size of all mutants was confirmed via SDS-PAGE and western blot 

analysis with anti-AFAP-110 antibodies.  GFP-tagged forms of AFAP-110 were created by 

cloning AFAP-110 into the eGFP-C3 vector (Clontech) using EcoRI, as originally linkered onto 

the chick AFAP-110 cDNA via PCR.  PCR was also used to create EcoRI linkers surrounding 

the coding sequence for the Cterm peptide (residues 511-729), after which the product was 

inserted into the eGFP-C3 vector.  The predicted size of these fusion proteins was confirmed by 

western blot analysis as well.   
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Microscopic analysis.  Immunofluorescence analysis was performed in the following manner.  

Cells were plated on coverslips and transfected at >50% confluence to maintain a subconfluent 

culture at the time of fixation.  At this time point, cells were washed with PBS and fixed with 

3.7% formaldehyde for 30 minutes, followed by permeabalization with 0.1% Tx-100 for 4 

minutes.  In the case of cells expressing untagged forms of AFAP-110, labeling of AFAP-110 

was accomplished using mAb 4C3 followed by rabbit anti-mouse conjugated to rhodamine 

(Sigma).  FITC phalloidin (Sigma) was used to label actin filaments.  In the case of cells 

expressing GFP-tagged forms of AFAP-110, BODIPY 650/655 phalloidin (Molecular Probes) 

was used to visualize actin filaments.  Images were collected using a Zeiss LSM 510 microscope 

and scanned in grayscale.  The images presented here were recolored to consistently display 

AFAP-110 as red and actin filaments as green.   
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Chapter 2 

 

The intrinsic ability of AFAP-110 to alter actin filament integrity is linked with its 
ability to also activate cellular tyrosine kinases. 
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The actin filament-associated protein of 110 kDa (AFAP-110) is a Src binding partner that 
represents a potential modulator of actin filament integrity in response to cellular signals.  
Previous reports have demonstrated that AFAP-110 is capable of directly binding and 
altering actin filaments.  Deletion of the leucine zipper motif of AFAP-110 (AFAP-110∆∆∆∆lzip) 
has been shown to induce a phenotype which resembles Src-transformed cells, by 
repositioning actin filaments into rosettes.  This deletion also mimics a conformational 
change in AFAP-110 that is detected in Src-transformed cells.  The results presented here 
indicate that unlike AFAP-110, AFAP-110∆∆∆∆lzip is capable of activating cellular tyrosine 
kinases, including Src family members, and that AFAP-110∆∆∆∆lzip itself is 
hyperphosphorylated.  The newly tyrosine-phosphorylated protein and activated Src-
family members appear to be associated with actin-rich lamellipodia.  A point mutation 
that alters the SH3-binding motif of AFAP-110∆∆∆∆lzip prevents it from activating tyrosine 
kinases and altering actin filament integrity.  In addition, a deletion within a pleckstrin 
homology (PH) domain of AFAP-110∆∆∆∆lzip will also revert its effects upon actin filaments.  
Lastly, dominant-positive RhoAV14 will block the ability of AFAP-110∆∆∆∆lzip from inducing 
actin filament rosettes.  Thus, conformational changes in AFAP-110 enable it to activate 
cellular kinases in a mechanism requiring SH3 and/or PH domain interactions.  We 
hypothesize that cellular signals which alter AFAP-110 conformation enable it to activate 
cellular kinases, which then direct changes in actin filament integrity in a Rho-dependent 
fashion.  
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Introduction 

Activation of the Src oncogene is associated with characteristic changes in the actin 

cytoskeleton of cultured cells (Felice et al., 1990; Hamaguchi and Hanafusa, 1987; Reynolds et 

al., 1989).  These changes include a repositioning of actin filaments into rosette-like structures, 

and the formation of lamellipodia and filopodia, which are associated with increased cell motility 

and the onset of tumor metastasis in humans (Bolen et al., 1987; Boschek et al., 1981; 

Cartwright et al., 1990; Irby et al., 1999; Rosen et al., 1986; Tarone et al., 1985).  The cSrc 

proto-oncogene can be activated by dephosphorylation of Tyr527 by cellular phosphatases, or 

displacement of repressive, intramolecular interactions involving the SH2 and SH3 domains 

(Brown and Cooper, 1996).  These activation events normally occur in response to cellular 

signals, e.g., growth factors interacting with their receptors (Brown and Cooper, 1996).  These 

pathways are thought to proceed through Src, with the subsequent phosphorylation of substrates 

and activation of downstream signaling members, including Ras (He et al., 2000), pp125FAK 

(Thomas et al., 1998), Crk (Sabe et al., 1992) and pp130Cas (Xing et al., 2000).   

The actin filament associated protein, AFAP-110, is a tyrosine-phosphorylated substrate 

of Src and an SH2/SH3 binding partner for Src527F (Flynn et al., 1993).  AFAP-110 is also 

capable of being an SH2/SH3 binding partner for cFyn and cLyn (Flynn et al., 1993; Guappone 

and Flynn, 1997).  AFAP-110 appears to function as an adaptor molecule, linking other proteins 

to the actin cytoskeleton, potentially in multi-protein complexes.  AFAP-110 contains several 

putative protein binding domains, including SH2 and SH3 binding motifs, two pleckstrin 

homology (PH) domains, and a leucine zipper (Flynn et al., 1993).  Additionally, AFAP-110 

contains a carboxy terminal, actin-binding domain (Qian et al., 2000).  These data indicate that 
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AFAP-110 could function by serving to link Src, as well as a variety of other signaling proteins, 

to actin filaments.    

The presence of a leucine zipper motif indicated a mechanism by which AFAP-110 could 

self-associate (Qian et al., 1998).  Cellular AFAP-110 can be affinity absorbed from cell lysates 

with GST-encoded fusion proteins expressing the leucine zipper motif; however, co-expression 

of Src527F abrogated the ability of these fusion proteins to absorb cellular AFAP-110.  Gel 

filtration analysis confirmed that AFAP-110 does exist in a self-associated, multimeric complex 

as tetramers, trimers and also monomers and that the leucine zipper was necessary for 

multimerization (Flynn et al., 2001; Qian et al., 1998).  Co-expression of Src527F reduces the size 

of self-associated AFAP-110 complexes to a single population hypothesized to represent dimers 

(Qian et al., 1998).  Because there appeared to be a change in conformation of AFAP-110 in 

response to Src527F signaling that affected the leucine zipper motif, this same motif was deleted 

(AFAP-110∆lzip).  The deletion construct was expressed in cells to determine what the effect of 

loss of function of the leucine zipper motif may have upon AFAP-110 in cells.  Biochemically, 

deletion of the leucine zipper motif enabled AFAP-110∆lzip to exist as a dimer, based upon gel 

filtration analysis (Qian et al., 1998).  In cells, expression of AFAP-110∆lzip affected a significant 

change in cell morphology and actin filament integrity, repositioning actin filaments into rosette-

like structures, not unlike those seen in Src-transformed cells, and inducing lamellipodia 

formation (Qian et al., 1998; Qian et al., 2000).  Thus, AFAP-110 has an intrinsic capability to 

alter actin filament integrity, which may be revealed by cellular signals that direct changes in its 

conformation. 

In this work, we hypothesized that AFAP-110∆lzip directed changes in actin filament 

integrity either directly or indirectly.  A direct mechanism was defined as one in which AFAP-
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110 alters actin filament integrity by virtue of an ability to physically bind and remodel actin 

filaments.  An indirect mechanism was defined as one in which AFAP-110 activated cellular 

signaling pathways known to modulate actin filament integrity.  The results shown here indicate 

that AFAP-110∆lzip induces the activation of cellular tyrosine kinases, including Src-family 

members, thus repositioning actin filaments into rosettes via an indirect mechanism. These 

events are blocked by two separate genetic alterations in AFAP-110; one a mutation in the SH3-

binding motif, AFAP-110P71A/∆lzip, the second a deletion in an amino-terminal pleckstrin 

homology (PH) domain, AFAP-110∆180-226/∆lzip, both of which show no increased levels of 

tyrosine phosphorylation or Src family activation and neither of which effected actin filament 

integrity.  Co-expression of constitutively active Rho (RhoAV14) also overcomes the ability of 

AFAP-110∆lzip to alter actin filaments, indicating the effects of AFAP-110∆lzip to generate actin 

rosettes and lamellipodia are indirect.  Herein, we hypothesize that AFAP-110 has the potential 

to alter actin filaments in response to cellular signals that would alter its conformation, resulting 

in activation of cellular kinases via its ability to interact with SH3-containing and PH domain-

binding partners. 
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Results 

 

Deletion of the leucine zipper motif enables AFAP-110 to alter actin filament integrity 

   

The expression of AFAP-110∆lzip results in a cell phenotype which resembles Src-transformed 

cells, while overexpression of wild-type AFAP-110 has no effect on actin structures (Qian et al., 

1998; Qian et al., 2000).  Cells expressing AFAP-110∆lzip consistently displayed actin-rich 

rosettes in place of actin filaments, as well as actin-rich lamellipodia.  Filopodia are also detected 

in some of these cells.  Figure 1 demonstrates that GFP-tagged AFAP-110 expressed in 

C3H10T1/2 cells co-localizes with actin filaments and the cell membrane (panels A and B), 

while GFP-AFAP-110∆lzip co-localizes with and induces the formation of actin filament-rich 

rosettes (white arrowheads, panels C and D) and lamellipodia (gray arrowheads, panels C and 

D).  Lamellipodia were noted as actin-rich structures at the cell membrane of variable size.  GFP 

expressed alone in these cells will not co-localize with actin filaments or affect cytoskeletal 

structures (Qian et al., 2000).  Similar results were also detected in Cos-1 fibroblasts (data not 

shown). These data indicate that the leucine zipper plays a regulatory role for AFAP-110 and 

indicate that AFAP-110 also has an intrinsic ability to reposition actin filaments into rosettes and 

generate lamellipodia formation when the leucine zipper is no longer present.   
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Figure 1  AFAP-110∆ lz ip expression results in the disruption of actin 
filaments and formation of rosettes.  GFP-AFAP-110 (panel A)
colocalizes with actin filaments (panel B) in C3H10T1/2 cells.  
GFP-AFAP-110∆ lz ip (panel C) localizes to actin rosettes (white 
arrowheads) seen in these cells, which are not present in surrounding 
cells (panel D).  These transfected cells also exhibit increased levels 
of lamellipodia-like structures (gray arrowheads), compared to 
surrounding, non-transfected cells.  Representative images are 
shown (>100 cells examined).
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Expression of AFAP-110∆lzip directs an increase in cellular tyrosine phosphorylation   

 

As AFAP-110∆lzip induces a phenotype which resembles Src activation, we sought to determine 

if this mutant could alter actin filaments by activating cellular kinases.  Phosphoamino acid 

analysis was performed on AFAP-110 and AFAP-110∆lzip from transfected Cos-1 cells.  Figure 

2A indicates that under equal loading conditions, over-expressed AFAP-110∆lzip contains 

elevated levels of serine, threonine, and tyrosine phosphorylation, compared to over-expressed 

wild-type AFAP-110.  Phosphorylation was increased by 1.6 fold, 2.6 fold and 2.4 fold, 

respectively, as determined by scanning densitometry.  Anti-phosphotyrosine antibodies were 

used for western blot analysis of immunoprecipitated proteins to confirm the increase in tyrosine 

phosphorylation levels of AFAP-110∆lzip relative to AFAP-110 (Figure 2B).  Also, GFP-tagged 

forms of AFAP-110 demonstrated levels of phosphotyrosine similar to their untagged 

counterparts (data not shown).  These data indicate that AFAP-110∆lzip becomes 

hyperphosphorylated on serine, threonine, and tyrosine residues, relative to wild-type AFAP-

110.  
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Figure 2  AFAP-110∆lzip is hyperphosphorylated upon expression in Cos-1 
cells.  (A) Phosphoamino acid analysis (Boyle et al., 1991) of radio-labeled 
AFAP-110 and AFAP-110∆lzip immunoprecipitated from transfected Cos-1 
cells (as in Figure 1) demonstrates that AFAP-110∆lzip (right panel) is 
hyperphosphorylated compared to AFAP-110 (left panel).  ImageQuant 
analysis of spot intensity revealed 1.6 fold, 2.6 fold and 2.4 fold increases 
in serine, threonine, and tyrosine phosphorylation, respectively.  (B) 
Western blot analysis of mAb 4C3 immunoprecipitations followed by 
rabbit anti-phosphotyrosine immunoblotting AFAP-110 (lane 1), AFAP-
110 co-expressed with Src527F (lane 2) and AFAP-110∆lzip (lane 3) from 
Cos-1 cell lysate.  (C) The same western blot from B was stripped and 
reprobed with mAb 4C3 to demonstrate protein loading levels.  Lane: 1-
AFAP-110, 2- AFAP-110/Src527F, 3- AFAP-110∆lzip.  The western blot 
shown is representative of three independent experiments. 
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AFAP-110∆lzip expression activates cellular tyrosine phosphorylation  

 

The increases in tyrosine phosphorylation of AFAP-110∆lzip indicated that it may induce the 

activation of cellular kinases.  Anti-phosphotyrosine antibodies were used to determine if total 

cellular tyrosine phosphorylation was increased and to which subcellular sites tyrosine substrates 

were localized in these cells.  Figure 3 demonstrates the results obtained using 

immunofluorescence of transiently transfected C3H10T1/2 cells.  Anti-phosphotyrosine 

immuno-labeling revealed no significant change in phosphotyrosine levels in GFP-AFAP-110 

transfected cells; however, an overall increase in tyrosine phosphorylation throughout the cell, as 

well as a co-localization of phosphotyrosine-containing proteins with GFP-AFAP-110∆lzip and 

actin-rich structures at the cell membrane, was evident in GFP-AFAP-110∆lzip transfected cells 

(white arrowheads, panels D-F).  Similar results were seen in Cos-1 cells (data not shown).  It is 

noteworthy that some labeling of tyrosine-phosphorylated proteins with the anti-phosphotyrosine 

antibody was apparent along the cell membrane and in actin-rich structures in non-transfected 

cells; however, the intensity of immunolabeling was significantly lower than AFAP-110∆lzip-

expressing cells.  These structures appeared to represent lamellipodia, which are known to 

contain tyrosine-phosphorylated proteins and whose formation and extension involve Src 

activation (Boschek et al., 1981; Schwartzberg et al., 1997).  The levels of immunostaining for 

these tyrosine-phosphorylated proteins were also noticeably lower in cells expressing wild-type 

AFAP-110, which was equivalent to untransfecteded cells (Figure 3 A-C).  These results 

demonstrate an increase in cellular tyrosine-phosphorylated substrates along the cell membrane 

and within actin-rich structures in response to the expression of GFP-AFAP-110∆lzip. 
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Figure 3  AFAP-110∆lzip activates cellular tyrosine phosphorylation.  (A)  
Immunofluorescence images of transfected C3H10T1/2 cells expressing GFP-AFAP-110 
(panel A) and GFP-AFAP-110∆lzip (panel D) co-labeled with rhodamine-phalloidin (panels C 
and F) and rabbit-anti-phosphotyrosine antibodies (panels B and E).  White arrowheads in 
panels D-F indicate the co-localization of increased phosphotyrosine labeling with GFP-
AFAP-110∆lzip and F-actin at the cell membrane. Representative images are shown (>100 
cells examined). 
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AFAP-110∆lzip expression results in the specific activation of Src family kinases   

 

Specific Src family activation-state antibodies were used to determine if AFAP-110∆lzip affected 

autophosphorylation of Src family kinases, an indicator for activation of these tyrosine kinases.  

Immunofluorescence analysis of C3H10T1/2 cells expressing GFP-AFAP-110 revealed no 

significant increase in immunoreactivity compared to untransfected cells, as shown in Figure 4 

(Panels A-C).  However, co-localization of these activated Src family members with GFP-

AFAP-110∆lzip and actin-rich structures at the cell membrane was evident (white arrowheads, 

panels D-F). These cells also displayed an increase in fluorescence intensity throughout the cell 

for the anti-Src activation state antibody, compared to surrounding, non-transfected cells.  This 

result correlated well with GFP-AFAP-110∆lzip expression levels.  Similar results were seen in 

Cos-1 cells, in which the colocalization of GFP-AFAP-110∆lzip with actin and activated Src 

occurred at membrane ruffles and lamellipodia-like structures (data not shown).  Like the anti-

phosphotyrosine antibodies shown in Figure 3, this Src family activation-state antibody showed 

some labeling of protein in non-transfected cells, mostly in what appears to be perinuclear 

structures.  These results indicate that expression of GFP-AFAP-110∆lzip can direct 

autophosphorylation of one or more Src family kinases throughout the cell and specifically in 

actin-rich structures that co-localize with GFP-AFAP-110∆lzip along the cell membrane.   
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Figure 4  AFAP-110∆lzip activates Src family kinases.  Anti-phospho-Src (Y416) labeling 
(panels B and E) of Cos-1 cells expressing GFP-AFAP-110 (panel A) and GFP-AFAP-
110∆lzip (panel D) co-labeled with rhodamine-phalloidin (panels C and F).  White arrowheads 
in panels D-F indicate the co-localization of increased phospho-Src (Y416) labeling with GFP-
AFAP-110∆lzip and F-actin at a structure resembling a lamellipodium. Representative images 
are shown (>100 cells examined).
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A mutation which alters the SH3-binding motif in AFAP-110 prevents AFAP-110∆lzip from 

activating tyrosine kinases or altering actin filament integrity.   

 

Because some SH3-binding partners can activate Src-family kinases via SH3 binding (Moarefi et 

al., 1997), it was hypothesized that AFAP-110∆lzip may be able to activate Src-family kinases in a 

similar manner, as AFAP-110 is also an SH3-binding partner for cSrc, cFyn or cLyn (Flynn et 

al., 1993); (Guappone and Flynn, 1997).  To test this, AFAP-110P71A/∆lzip was created, which 

contains an additional point mutation in the SH3-binding motif that has been shown to abrogate 

SH3 interactions with Src, and also prevents Src/AFAP-110 stable complex formation 

(Guappone and Flynn, 1997).  AFAP-110P71A/∆lzip was expressed in C3H10T1/2 cells to examine 

the ability of this mutant to activate Src family kinases.  Figure 5 demonstrates that this mutant 

failed to induce an increase in cellular tyrosine phosphorylation (panels A-C).  Additionally, 

AFAP-110P71A/∆lzip failed to increase cellular immunoreactivity with Src family kinase activation-

state antibodies (panels D-F).  These cells displayed no increase in labeling by these 

phosphorylation-state antibodies, compared to non-transfected surrounding cells, unlike those 

expressing GFP-AFAP-110∆lzip (Figure 3).  AFAP-110P71A/∆lzip also failed to alter actin filaments 

or induce lamellipodia formation, while maintaining co-localization with actin filaments.  Thus, 

SH3 domain binding by AFAP-110∆lzip appears to be necessary for its ability to activate cellular 

tyrosine phosphorylation, Src family kinases and cytoskeletal rearrangements. 
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Figure 5  Abrogation of SH3 binding inhibits the cytoskeletal rearrangement and activation 
of Src family kinases by AFAP-110∆lzip.  C3H10T1/2 cells expressing AFAP-110P71A/∆lzip

(panels A and D) were labeled as above with anti-phosphotyrosine (panel B) and anti-
phospho-Src (Y416) (panel E) antibodies.  Panels C and F show normal actin filaments, 
labeled with rhodamine-phalloidin. (>100 cells examined). 
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The integrity of the PH domain of AFAP-110 is also required for AFAP-110∆lzip-directed 

increases in cellular tyrosine phosphorylation, Src family activation and cytoskeletal 

rearrangements   

 

GFP-AFAP-110∆180-226/∆lzip contains an additional deletion of 46 amino acids in the 

amino-terminal PH domain, which is predicted to disrupt the function of this domain.  Figure 6 

demonstrates the results obtained upon labeling C3H10T1/2 cells expressing GFP-AFAP-

110∆180-226/∆lzip with both anti-phosphotyrosine (panels A-C) and Src family activation state 

antibodies (panels D-F).  This mutant fails to induce cytoskeletal rearrangements, as actin 

filaments (panels C and F) are abundant and the mutant (panels A and D) colocalizes with these 

structures.  Additionally, this mutant fails to induce cellular tyrosine hyperphosphorylation 

(panel B) or Src family kinase activation (panel E), compared to surrounding, non-transfected 

cells.  Also, AFAP-110∆180-226/∆lzip had reduced levels of phosphotyrosine compared to AFAP-

110∆lzip (data not shown).  Similar results were seen in Cos-1 cells.  Thus, the amino-terminal PH 

domain of AFAP-110 also plays an important role in the ability of AFAP-110∆lzip to activate Src 

and alter actin filament integrity.   
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Figure 6  Deletion of part of the amino-terminal PH domain of AFAP-110 inhibits the 
cytoskeletal rearrangement and activation of Src family kinases by AFAP-110∆lzip.  
C3H10T1/2 cells expressing AFAP-110∆180-226/∆lzip (panels A and D) were labeled as above 
with anti-phosphotyrosine (panel B) and anti-phospho-Src (Y416) (panel E) antibodies.  
Panels C and F show normal actin filaments, labeled with rhodamine-phalloidin. (>100 cells 
examined).
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AFAP-110∆lzip alters actin filaments in a Rho-dependent fashion   

 

The GTP-binding protein, Rho, plays an important role in effecting changes in actin 

filaments downstream of Src.  Activated Rho can restore actin filament organization in Src-

transformed cells (Mayer et al., 1999), and cSrc activation requires the inactivation of Rho to 

induce actin filament dissolution (Fincham et al., 1999).  GFP-AFAP-110∆lzip was co-expressed 

in C3H10T1/2 cells with dominant positive Rho (RhoAV14) to determine if GFP-AFAP-110∆lzip 

may exert its affects on actin filaments in a Rho-dependent fashion.  Figure 7 shows that cells 

expressing AFAP-110 and RhoAV14 were consistently filled with well-developed actin filaments 

(panels A-C).  Similar results were seen in Cos-1 cells (data not shown).  Interestingly, in GFP-

AFAP-110∆lzip-expressing cells, RhoAV14 overcomes the ability of GFP-AFAP-110∆lzip to 

reposition actin filaments into rosettes (panels D-F), consistent with previous results that 

demonstrated significantly increased amounts of F-actin (Ridley and Hall, 1992).  It is 

noteworthy that GFP-AFAP-110∆lzip is more prominently represented along the cell membrane 

and within small membrane protrusions, while less well associated with stress filaments, 

compared to AFAP-110 co-expressed with RhoAV14.  These results demonstrate that the ability 

of AFAP-110∆lzip to reposition actin filaments into rosettes occurs in a Rho-dependent fashion, 

and, like Src, may require the down-regulation of Rho to complete this function.  Thus, the 

repositioning of actin filaments into rosettes and the induction of lamellipodia formation by 

AFAP-110∆lzip may proceed largely through indirect mechanisms that permit it to activate Src-

family kinases and the subsequent activation of downstream signals which ultimately alter actin 

filament organization.  
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Figure 7  RhoAV14 overcomes the ability of AFAP-110∆lzip to alter actin filaments.  
Representative immunofluorescence images of transfected C3H10T1/2 cells expressing GFP-
AFAP-110 (panel A) or GFP-AFAP-110∆lzip (panel D) and HA-tagged RhoAV14 (panels B 
and E) demonstrate abundant actin filaments (panels C and F) and both AFAP-110 constructs 
co-localize with these structures.  GFP-AFAP-110∆lzip colocalizes with actin-rich structures at 
the cell membrane, as denoted by the white arrowheads, panels D and F (>100 cells 
examined). 
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Discussion 

 

The actin-binding protein, Src binding partner and substrate AFAP-110 has been proposed to 

function as a mediator of cytoskeletal rearrangements in response to Src activation (Flynn et al., 

1993; Kanner et al., 1991).  AFAP-110 receives cellular signals, as it is hyperphosphorylated on 

serine, threonine, and tyrosine residues in Src-transformed cells (Kanner et al., 1991).  Previous 

reports have also shown that AFAP-110 binds F-actin structures directly, indicating that it could 

also directly affect actin filament integrity (Qian et al., 2000).  Additional studies demonstrated 

that AFAP-110 self-associates via a mechanism involving a carboxy-terminal leucine zipper 

motif, indicating the potential for AFAP-110 to cross-link actin filaments (Qian et al., 1998).  

Co-expression of Src527F will induce a conformational change in AFAP-110 that abrogates self-

associations through the leucine zipper motif.  Thus, AFAP-110∆lzip represents a model system or 

approximation of the conformation of AFAP-110 as detected in Src527F-transformed cells.  

Interestingly, signals generated by Src527F that affect the conformation of AFAP-110 appear to be 

the result of serine/threonine phosphorylation, rather than tyrosine phosphorylation (Qian et al., 

1998).  The changes in conformation that abrogate self-association through the leucine zipper 

will also occur in response to PMA treatment and activation of PKC, while inhibitors of PKC 

block these changes in conformation in response to Src527F or PMA (Baisden et al., in 

preparation).  These data indicate that cellular signals generated downstream of Src527F, possibly 

involving PKC, will enable a conformational change that reduces the ability of AFAP-110 to 

multimerize via its leucine zipper motif.  It is noteworthy that deletion of the leucine zipper motif 

also enables AFAP-110∆lzip to reposition actin filaments into rosettes, not unlike the effects of 

Src527F or PMA treatment on cells.  Thus, conformational changes that affect AFAP-110 in 
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response to cellular signals may enable it to direct changes in actin filament organization.  

However, because AFAP-110 both binds actin filaments directly and is a binding partner for 

signaling proteins, it was unclear whether these changes in actin filament integrity were the 

result of direct or indirect effects of AFAP-110∆lzip upon the actin-based cytoskeleton.  The data 

generated here demonstrate that AFAP-110∆lzip can direct upregulation of cellular tyrosine 

phosphorylation and the activation state of Src-family kinases, based on immunoreactivity in 

these cells using phosphorylation-specific antibodies. In addition, the changes in actin filament 

integrity that result in actin rosette formation occur in a Rho-dependent fashion, indicating that 

AFAP-110∆lzip can effect actin filament, rosette and lamellipodia formation by an indirect 

mechanism involving activation of cellular signaling cascades known to control actin filament 

dynamics. 

One possible mechanism by which AFAP-110∆lzip could activate tyrosine kinases like 

cSrc is through its ability to function as an SH2/SH3 binding partner (Flynn et al., 1993; 

Guappone et al., 1998; Guappone and Flynn, 1997; Kanner et al., 1991; Reynolds et al., 1989).  

It has been shown the SH3 binding partners, such as the HIV encoded gene product, Nef, can 

activate the Src family member Hck via SH3 binding (Briggs et al., 1997; Moarefi et al., 1997).  

It has also been demonstrated that intramolecular interactions that keep Src or Hck in the 

repressed conformation involve the SH3 domain binding to a left-handed, polyproline type II 

helix in the linker domain (Liu and Pawson, 1994).  Nef, by virtue of its ability to function as an 

SH3 binding partner for Hck, is able to displace the intramolecular SH3 interaction of Hck and 

subsequently direct activation of the kinase.  Similarly, it is possible that within the conformation 

represented by AFAP-110∆lzip, AFAP-110 becomes a more favorable SH3-binding partner for 

Src and may activate Src-family members by a similar mechanism.  This hypothesis is supported 
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by the results which indicate that SH3 interactions are necessary for AFAP-110∆lzip to activate 

Src family kinases and induce cytoskeletal rearrangements (Figure 5).  Additionally, the ability 

of RhoAV14 to block the ability of AFAP-110∆lzip to rearrange the actin cytoskeleton (Figure 7) 

indicates that the actions of AFAP-110∆lzip on the cytoskeleton are a result of activating signaling 

cascades through Src to Rho family GTPases. 

The abrogation of hyperphosphorylation and the cytoskeletal reorganization induced in 

cells expressing AFAP-110∆lzip by the additional deletion in the PH domain indicates that this 

domain may also play a significant role in the action of AFAP-110 toward the actin cytoskeleton.  

It is possible that this loss of function occurs due to the interruption of interactions with one or 

more potential PH domain binding partners, rather than due to a change in subcellular 

localization.  This interpretation is based on the observation that GFP-AFAP-110∆180-226/∆lzip is 

detected on the cell membrane, similar to wild-type AFAP-110. The amino terminal PH domain 

is also capable of affinity absorbing several binding partners from cellular lysate, including PKC 

(Baisden et al., in preparation).  This interaction is abrogated by deletion of residues 180-226, 

thus, it is possible that this PH domain deletion may abrogate interactions with a putative binding 

partner necessary for the activation of Src normally seen upon deletion of the leucine zipper of 

AFAP-110.  Alternatively, a PH domain deletion variant may fail to permit AFAP-110 to 

approximate the subcellular localization of cSrc, or other kinases, and this may prevent 

activation of tyrosine phosphorylation.  

Interestingly, RhoAV14 was able to block the ability of AFAP-110∆lzip from inducing actin 

filament rosette formation.  However, in RhoAV14-expressing cells, we noted differences in the 

subcellular localization of AFAP-110 compared to AFAP-110∆lzip.  AFAP-110 was evenly 

associated with stress filaments and the cell membrane.  In AFAP-110∆lzip-expressing cells, this 
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mutant protein was very strongly associated with actin-rich cell membrane protrusions when co-

expressed with RhoAV14, and less associated with stress filaments.  Recent data from our lab 

indicated that AFAP-110∆lzip does exert direct effects upon actin filaments by increasing actin 

filament cross-linking, in vitro (Qian et al., in preparation).  It may be possible that AFAP-

110∆lzip also has an ability to effect actin filament cross-linking as a consequence of direct 

interactions and, thus, this capability could be amplified in the presence of RhoAV14. 

In this report, we demonstrate a potential mechanism by which AFAP-110∆lzip can 

mediate changes in actin filament integrity by activation of cellular tyrosine kinases.  These 

results indicate that AFAP-110∆lzip repositions actin filaments into rosettes by an indirect 

mechanism which activates cellular kinases in an SH3-binding and PH-binding dependent 

fashion.  We predict that upstream cellular signals can alter the conformation of AFAP-110, 

enabling it to activate cellular tyrosine kinases, such as Src-family kinases. The nature of the 

upstream cellular signals that effect AFAP-110 may involve activation of PKC family members.  

Unpublished data from our lab demonstrate that AFAP-110 is a substrate for PKC and that 

changes in conformation detected within AFAP-110 in response to Src527F signaling occur in a 

PKC-dependent fashion (Baisden et al., in preparation).  These conformational changes appear to 

effect the multimeric status of AFAP-110 and may enable it to present itself as a more favorable 

SH3-binding partner to Src-family kinases, such as cSrc or cFyn, resulting in activation of these 

signaling cascades and the concomitant changes in actin filament integrity. Ultimately, activation 

of this signaling cascade may direct activation of Rho-family GTPases which exert their effects 

upon the actin-based cytoskeleton. 
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Materials & Methods 

 

Reagents 

 

Dulbecco’s modified Eagle’s medium, Basal Medium Eagle, and Rhodamine-phalloidin were 

obtained from Sigma.  AFAP-110 antibodies 4C3 and F1 were generated and characterized as 

previously described (Qian, et al., 1999).  Anti-phosphotyrosine was purchased from BD 

Transduction Labs.  Anti-phospho-Src (Y416) was purchased from Cell Signaling 

(Massachusetts).  Anti-rabbit Alexa 633 and anti-mouse Alexa 488 were obtained from 

Molecular Probes.  Anti-HA tag antibody was purchased from Santa Cruz Biotechnology.   

 

Cell Culture 

 

Cos-1 cells were maintained and transfected as previously described (Guappone and Flynn, 

1997).  C3H10T1/2 cells were cultured as previously described (Qian et al., 2000).  Transient 

transfections of C3H10T1/2 cells were carried out using Effectene (Qiagen) as per manufacturers 

instructions.  Transient transfections of Cos-1 cells employed the CalPhos transfection kit 

(Clontech). 

 

Phosphoamino acid analysis 

 

Cos-1 cells were grown to 60% confluence in 100 mm culture dishes, and transiently transfected.  

After 48 hours, the cells were serum starved overnight.  Cells were washed twice with PBS and 
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lysed with 1 ml RIPA buffer, as previously described (Qian et al., 1998).  One and one-half µl 

monoclonal antibody 4C3 ascites was used to immunoprecipitate AFAP-110 from the lysate, 

which was isolated via SDS-PAGE.  The radioactive band was excised from the gel and 

subjected to partial acid hydrolysis and phosphoamino acid analysis (Boyle et al., 1991).  After 

running the isolated amino acids on 2D TLC, the plates were imaged using a Phosphorimager 

(Molecular Dynamics).  Spots were identified by running labeled phosphoserine, 

phosphothreonine and phosphotyrosine markers.  Relative intensity compared to background of 

radiation from spots was quantitated with ImageQuant software.   

 

Immunofluorescence 

 

C3H10T1/2 cells were transiently transfected, as above.  48 hours after transfections, the cells 

were serum-starved overnight.  Cells were fixed and permeabalized as previously described 

(Qian et al., 1998).  After washing, cells were labeled for 30 minutes.  For actin labeling, a 

1:1000 dilution of rhodamine-phalloidin was used.  Antibody concentrations used: 4C3, 

0.6µg/ml in 5%BSA; Anti-HA, 4µg/ml in 5%BSA; anti-phosphotyrosine, 2.5µg/ml in 5% BSA; 

anti-phospho-Src (Y416) labeling, 5µl/ml in 5%BSA.  Both polyclonal phospho-specific 

antibodies were visualized by incubating the cells for 30 minutes with anti-rabbit-Alexa 633 

(5µl/ml in 5%BSA) after washing off primary antibody.  Monoclonal antibody 4C3 was 

visualized using Alexa 488 anti-mouse secondary antibody (5µl/ml in 5%BSA).  Cells were 

washed and mounted on slides with Fluoromount (Fisher).  A Zeiss LSM 510 microscope was 

used to gather grayscale images, which represent confocal slices of about 2µM in thickness.  

Scale bars were generated and inserted by LSM 510 software.  
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Chapter 3 

 

AFAP-110 activates Src through SH3 interactions in response to PKC 

phosphorylation 
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The Src oncogene directs the transformation of cells to a metastatic phenotype via directed 
reorganization of the actin cytoskeleton.  This reorganization can be stimulated by 
extracellular signals including growth factor stimulation, which activates Src via receptor 
activity.  Other signaling components, like PKC, direct similar rearrangements of the actin 
cytoskeleton in response to other extracellular signals.  Here we provide evidence for a 
mechanism of activation of Src in response to PKC activation.  This mechanism requires 
AFAP-110, a Src binding partner/substrate, previously shown to undergo a conformational 
change in response to Src activation.  Phosphorylation of AFAP-110 by PKC drives this 
conformational change, which is shown to result in the activation of Src in vitro via SH3 
interactions.  Expression of active PKC is shown to activate Src in vivo, as well, and AFAP-
110 mutants deficient for interactions with either PKC or Src block this event.  These 
results provide an alternative mechanism whereby the activation of Src can be potentiated, 
in a feedback-type mechanism by PKC, or uniquely induced in the absence of stimuli 
traditionally thought to direct Src activation. 
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Introduction 

Growth factor receptors utilize intracellular signaling cascades of proteins including Src 

and PKC to direct the normal growth and maintenance of tissues.  These pathways often become 

deregulated in the case of uncontrolled cancerous growth, with tumors stimulating themselves in 

an autocrine fashion (Baserga et al., 1994; Kim and Muller, 1999; Lazar-Molnar et al., 2000).  

Other cases of uncontrolled growth show less evidence of external stimulation by the normal 

growth factor pathway and are often thought to involve the mutations of the proteins in the 

signaling cascades involved in controlling cell growth (Deman and Van Larebeke, 2001; Lazar-

Molnar et al., 2000; Loeb, 2001).  Either case results in the transformation of cells characterized 

by reorganization of the cytoskeleton and increased potential for cell migration resulting in 

metastasis.  The signaling pathways that have been investigated to understand this cytoskeletal 

reorganization have revealed roles for Src and PKC.  It has been shown that both Src and PKC 

activation can result in a similar transformed phenotype, yet no common mechanism for 

cytoskeletal reorganization has been found.  Additionally, little evidence for the mutation-

induced activation of either Src or PKC has been found, yet both are hyperactive in many 

tumors, indicating these proteins may be activated by deregulated cellular signals (Bolen et al., 

1987; Cartwright et al., 1989; Cartwright et al., 1990; Delage et al., 1993; Rosen et al., 1986). 

One protein which may provide a consensual mechanism for both Src- and PKC-

mediated cytoskeletal rearrangements is the actin filament-associated protein of 110 kDa, AFAP-

110.  AFAP-110 was originally identified as a SH2/SH3 binding partner for Src that co-localized 

with actin filaments as described previously.  AFAP-110 binds actin filaments directly and has 

the potential for forming signaling complexes on both cytoskeletal and membranous structures.  

It had been previously reported that AFAP-110 has direct affects on actin filament structural 
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integrity, perhaps through a mechanism involving actin bundling, as AFAP-110 can self-

associate via a carboxy-terminal leucine zipper (Qian submitted).  This work indicated that 

deletion of this leucine zipper resulted in a cell phenotype which resembled Src transformation.  

Chapter 2 also addressed the potential for this mutant to have indirect affects on the actin 

cytoskeleton and showed that expression of this mutant resulted in the activation of Src family 

kinases.  This activation was shown to be dependent upon the integrity of both the SH3 motif and 

amino-terminal PH domain of AFAP-110.  Another work has described AFAP-110 as a PKC 

substrate, both in vitro and in vivo (Qian submitted).  Here, we further address the potential for 

AFAP-110 to have indirect affects on cytoskeletal structures as we examine the requirement of 

both the SH3 motif and PH domain for cytoskeletal reorganization.  The data indicate that 

AFAP-110 interacts directly with PKC via the amino-terminal PH domain, and that 

phosphorylation of AFAP-110 by PKC induces a conformational change in the protein.  This 

conformational change mimics that seen upon co-expression with active Src (Qian et al., 1998) 

or upon  deletion of the leucine zipper (Flynn, unpublished data).  Additionally, this 

conformational change results in the direct activation of Src in vitro in an SH3-dependent 

mechanism.  Expression of active PKC results in the activation of Src in vivo, as well, which is 

dependent upon the integrity of both the SH3 motif and PH domain of AFAP-110.  These results 

establish a crucial role for AFAP-110 in the activation of Src via a novel pathway involving 

PKC.   
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Results 

 

The amino-terminal PH domain of AFAP-110 directs interactions between AFAP-110 and PKC.   

 

AFAP-110∆lzip expression can activate Src and this ability is dependent upon the integrity 

of the amino-terminal PH domain of AFAP-110.  As AFAP-110 is hyperphosphorylated on 

serine and threonine residues in addition to tyrosine residues in Src-transformed cells (Kanner et 

al., 1991) and PH domains are thought to facilitate interactions with ser/thr kinases (Rodriguez et 

al., 1999; Yao et al., 1997), we hypothesized that this PH domain directs interactions with ser/thr 

kinases necessary for the activation of Src.  To test this hypothesis, we addressed the potential 

for the PH domains to interact with ser/thr kinases.  Figure 1A indicates the results of a 

colorimetric kinase assay using fusion proteins representing both PH domains of AFAP-110.  

The absorbates from both PH domains appeared to contain ser/thr kinase activity, although the 

amino-terminal PH domain appeared to absorb a kinase that more efficiently phosphorylated the 

substrate.  Sequence analysis of both PH domains revealed highest homology between the 

amino-terminal PH domain and PH domains from B-spectrin and Dynamin, which have been 

shown to forge interactions with PKC (Baraldi et al., 1999; Rodriguez et al., 1999; Yao et al., 

1994; Yao et al., 1997).  The carboxy-terminal PH domain was found to share highest homology 

with the PH domain from Btk, which also directs interactions with PKC (Yao et al., 1994).  To 

determine whether either PH domain from AFAP-110 could direct interactions with PKC, 

affinity absorptions from chick brain lysate using fusion proteins representing both PH domains 

were analyzed by SDS-PAGE.  Figure 1B demonstrates by western blot analysis that 4 distinct 

proteins were detected using a pan-PKC antibody.  In this experiment, only GST-PH1,  
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Figure 1 The amino-terminal PH domain of AFAP-110 promotes direct interactions 
between AFAP-110 and PKC isoforms. (A) The PH domains of AFAP-110 affinity absorb 
serine/threonine kinase activity.  Affinity absorptions were performed as described in Materials 
and Methods using fusion proteins representing GST alone or GST fused to either the amino-
terminal or carboxy-terminal PH domain of AFAP-110, labeled GST-PH1 and GST-PH2, 
respectively.  GST-PH1∆186-226 represents a deletion mutant of the amino-terminal PH 
domain, as described in the results section.  Absorbates were subjected to a colorimetric PKA 
assay, and compared to recombinant PKA.  Values were normalized relative to negative control.  
Error bars represent standard deviation. N=3 for GST, PKA, and GST-PH1.  N=2 for GST-PH2 
and GST-PH1∆186-226.  (B) GST-PH1 affinity absorbs α pan-PKC-reactive proteins.  Affinity 
absorptions were performed as above.  Absorbates were analyzed by SDS-PAGE and western 
blotted with a pan-PKC antibody.  (C) GST-PH1 affinity abosorbs conventional PKC isoforms 
and PKCλ.  Absorbates from affinity absorptions as above were analyzed by SDS-PAGE and 
western blotted with isoform specific PKC antibodies, as listed. Lanes for each isoform blot are 
as follows: lane 1- lysate reference, lane 2- GST, lane 3- GST-PH1.  Each blot is representative 
of at least two experiments.  (D) GST-PH1 binds PKCα directly.  Fusion proteins were used to 
affinity absorb recombinant PKCα, as described in Materials and Methods.  Absobates were 
analyzed by SDS-PAGE and western blotted with a monoclonal antibody specific for PKCα.  
This blot is representative of 3 experiments.  (E)  AFAP-110 and PKC co-immunoprecipitate.
Immunoprecipitations were performed as described in Materials and Methods.  Anti-GFP
immunoprecipitation from lysate of Cos-7 cells co-expressing GFP-AFAP-110 and Flag-tagged, 
wild-type PKCα was analyzed by SDS-PAGE and probed with anti-Flag antibodies, as labeled.  
Similarly, anti-Flag immunoprecipitation from similar cell lysate was analyzed by SDS-PAGE 
and probed with anti-GFP antibodies.
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representing the amino-terminal PH domain, was able to efficiently affinity absorb PKC-

immuno-reactive proteins.  To determine which isoforms of PKC the GST-PH1 fusion protein 

could affinity absorb, additional affinity absorptions and western blots were processed using 

antibodies specific for PKC isoforms.  Figure 1C shows that antibodies specific for PKCα, β, γ, 

and λ/ι isoforms demonstrate the presence of bands in the absorbate from the amino-terminal PH 

domain.  Significantly, the absorbate was devoid of bands immunoreactive with antibodies 

against PKCδ, ε, and ζ.  Thus, the amino-terminal PH domain of AFAP-110 exhibits specificity 

for at least 4 PKC isoforms.  To determine if this interaction could be direct, purified 

recombinant PKCα was used in affinity absorptions with GST-PH1 domain fusion proteins.  An 

additional fusion protein was used in this study which consisted of a deletion mutant of the 

amino-terminal PH domain.  To create this mutant, a second Spe I restriction site was engineered 

into the cDNA encoding the GST-PH1 fusion protein by site-directed mutagenesis.  This new 

site allowed for the deletion of amino acids 180-226, as designated in the wild type protein, 

resulting in a new fusion protein termed GST-PH1∆180-226.  This region was targeted as it 

contains homology to other PH domains thought to bind PKC by this PH domain region (Yao et 

al., 1997).  Figure 1D shows that GST-PH1 is able to absorb PKCα with much higher affinity 

than GST-PH2 domain, the GST-PH1∆180-226 mutant, or the GST protein alone.  A separate 

experiment showed that the GST-PH1∆180-226 mutant also fails to affinity absorb PKC-reactive 

bands from chick brain lysate (data not shown).  These results indicate that the amino-terminal 

PH domain of AFAP-110 has the potential to form a direct interaction with the PKCα, β, γ, and 

λ/ι isoforms. 

To confirm that AFAP-110 and PKC interact in vivo, co-immunoprecipitation 

experiments were employed.  Figure 1E shows that Flag-tagged PKCα co-expressed with GFP-
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tagged AFAP-110 can be co-immunoprecipitated using anti-GFP antibodies.  Likewise, GFP-

tagged AFAP-110 can be co-immunoprecipitated with anti-Flag antibodies.  These results 

confirm that AFAP-110 and PKC interact in vivo in a mechanism involving the amino-terminal 

PH domain of AFAP-110. 

 

Abrogation of PH/PKC interactions blocks the hyperphosphorylation of AFAP-110 by PKC. 

 

The mutant used in Chapter 2 to demonstrate that the ability of AFAP-110∆lzip to activate Src was 

dependent upon the PH domain, AFAP-110∆180-226, was used here to study the effects of this 

deletion on the phosphorylation of AFAP-110 by PKC.  Here, AFAP-110∆180-226 was purified 

from cell lysate and subjected to phosphamino acid analysis.  The results are presented in Figure 

2 and indicate that this deletion decreases the incorporation of radioactive phosphate into this 

mutant on serine, threonine and tyrosine residues, in response to PMA treatment, which activates 

PKC.  The incorporation of radioactivity is compared to that for wild-type AFAP-110, similarly 

treated.  Compared to wild-type, AFAP-110∆180-226 showed decreases of 0.55 fold, 0.49 fold, and 

0.55 fold for serine, threonine and tyrosine phosphorylation, respectively.  Thus, deletion of 

residues 180-226 from the amino-terminal PH domain of AFAP-110 impedes the 

hyperphosphorylation of AFAP-110 in vivo in response to PKC activation.   
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pThr

pTyr

AFAP-110 AFAP-110∆∆∆∆180-226

pSer

pThr
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Figure 2  Deletion of residues 180-226 inhibits the hyperphosphorylation 
of AFAP-110 upon PMA treatment.  Phosphamino acid analysis of gel-
purified AFAP-110 or AFAP-110∆180-226 was performed as described in 
Materials and Methods.  Prior to this analysis, Cos-1 cells expressing the 
AFAP-110 forms were treated with 100nM PMA for 1 hour.  
Phosphoserine, phosphothreonine and phosphotyrosine are labeled as 
pSer, pThr and pTyr, respectively.

 

It is interesting that this deletion reduces the hyperphosphorylation of AFAP-110 on 

tyrosine in addition to serine and threonine residues.  This could indicate that AFAP-110 may 

require interactions with PKC, and potentially the hyperphosphorylation by PKC, in order to be 

presented as a tyrosine substrate.  This would imply that tyrosine kinases, including Src family 

kinases, may be activated here.  Alternatively, this result could simply indicate the inhibition of 

the activation of tyrosine kinases in these cells.  This would be consistent with the results 

presented in Chapter 2, which indicate that the activation of Src family kinases by AFAP-110∆lzip 

is inhibited by this deletion of residues 180-226.   
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Serine/threonine phosphorylation of AFAP-110 alters the ability of AFAP-110 to self-associate.   

 

Previous work has shown that AFAP-110 is hyperphosphorylated on serine and threonine 

residues in Src-transformed cells and that this hyperphosphorylation correlates with a 

conformational change in AFAP-110 (Qian et al., 1998).  This conformational change is 

measured by a change in the self-association of AFAP-110.  A work in submission has 

established AFAP-110 as a potential PKC substrate (Qian submitted).  Here, we sought to 

determine if PKC phosphorylation directs this conformational change.  Figure 2 indicates that the 

integrity of the PH domain is required for the hyperphosphorylation of AFAP-110 upon the 

activation of PKC.  This figure includes the results of a phosphamino acid analysis comparing 

the incorporation of radioactive phosphate into AFAP-110 and AFAP-110∆180-226 from Cos-1 

cells treated with 100 nM PMA for 1 hour after serum starvation overnight.  Comparison of these 

spots with Phosphorimager analysis software indicated that AFAP-110∆180-226 showed a 

substantially lower amount of radioactivity incorporated, with 0.55 fold, 0.49 fold and 0.55 fold 

incorporation into serine, threonine and tyrosine residues, respectively.  It had been previously 

shown that this treatment results in less than a two-fold incorporation of radioactive phosphate 

on all three residues, compared to treatment with the inactive phorbol ester or serum starvation 

alone (Qian et al., submitted).  Thus, it appears that deletion of residues 180-226 blocks the 

hyperphosphorylation of AFAP-110 in response to PKC activation.    

As in Chapter 2, affinity absorptions with a fusion protein that encodes the carboxy-

terminal sequences (GST-511-637) were used to determine whether AFAP-110 has undergone a 

conformational change.  Here, GST-511-637 was used to affinity absorb cellular AFAP-110 as a  
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Figure 3  Serine/threonine phosphorylation by PKC alters the ability of AFAP-110 to 
self-associate.  Affinity absorptions were carried out as described in Materials and 
Methods using fusion proteins representing GST alone or GST fused to the carboxy-
terminal 127 amino acids of AFAP-110, named GST-Cterm.  Cos-1 cell lysates were 
prepared from transiently transfected cells.  Absorbates were analyzed by 8% SDS-
PAGE and western blotted with the monoclonal antibody 4C3 to visualize transfected 
AFAP-110.  (A) PMA treatment decreases the ability of GST-Cterm to affinity 
absorb AFAP-110.  Lane 1 is a GST affinity absorption from AFAP-110 lysate.  
Lanes 2-8 are GST-Cterm affinity absorptions from lysate as follows: lane 2-AFAP-
110, lane 3-AFAP-1105Y, lane 4-AFAP-110/Src527F, lane 5-AFAP-1105Y/Src527F, lane 
6-AFAP-110/100nM PMA-15 minutes, lane 7-AFAP-110/100nM PMA-30 minutes, 
lane 8-AFAP-110/100nM PMA-60 minutes.  Data are representative of 3 
experiments.  (B) Steady-state levels of protein expression from lysates used in A.  
Transfected Cos-1 lysate used in A were analyzed by SDS-PAGE and blotted with 
mAb 4C3 to quantitate AFAP-110 expression levels.  Lanes as labeled are: lane 1-
AFAP-110, lane 2-AFAP-1105Y, lane 3-AFAP-110/Src527F, lane 4-AFAP-
1105Y/Src527F, lane 5-AFAP-110/100nM PMA-15 minutes, lane 6-AFAP-110/100nM 
PMA-30 minutes, lane 7-AFAP-110/100nM PMA-60 minutes.  (C) 
Bisindolylmaleimide blocks the loss of affinity absorption of AFAP-110 by GST-
Cterm seen upon Src activation.  GST-Cterm affinity absorptions from lysate as 
follows: lane 1-AFAP-1105Y, lane 2-AFAP-1105Y/Src527F, lane 3-AFAP-1105Y/Src527F

treated with 6 µM bisindolylmaleimide for 6 hours prior to lysis.  (D) Steady-state 
levels of protein expression from lysates used in A.  Cos-1 lysate used in A were 
analyzed on SDS-PAGE and blotted with antibody 4C3 for AFAP-110 expression 
levels.  Lanes are labeled the same as in C. 
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means of addressing the idea that PKC phosphorylation of AFAP-110 downstream of Src527F was 

affecting the structure of AFAP-110.  Figure 3A confirms that GST-511-637 can affinity absorb 

cellular AFAP-110 and that co-expression of Src527F with AFAP-110 abrogates affinity 

absorption with GST-511-637. To determine whether tyrosine phosphorylation by Src527F was 

responsible for decreasing the affinity absorption of cellular AFAP-110 with GST-511-637, a 

mutant form of AFAP-110 was used that had all 5 tyrosines which are the sites for 

phosphorylation by Src527F mutated to phenylalanines (AFAP-1105Y) (Guappone et al., 1998).  

GST-511-637 was able to affinity absorb AFAP5Y; however, co-expression of cellular AFAP5Y 

with Src527F decreased the affinity absorption by GST-511-637 (Figure 2A).  These data indicate 

that tyrosine phosphorylation of AFAP-110 is unlikely to be responsible for affecting a 

conformational change upon AFAP-110.  Furthermore, these data suggest that Src527F binding is 

also not responsible for effecting this conformational change, as Src527F will not form a stable 

complex with AFAP5Y (Guappone et al., 1998). 

AFAP-110 is also a strong substrate for ser/thr phosphorylation in response to Src527F 

expression (Kanner et al., 1991).  In addition, AFAP-110 contains several strong consensus 

sequences for PKC phosphorylation (Flynn et al., 1993).  To determine if PMA-activatable 

ser/thr kinases (which includes PKC) were responsible for altering the conformation of AFAP-

110, Cos-1 cells over-expressing AFAP-110 were treated with 100nM PMA.  Affinity absorption 

with GST-511-637 demonstrated a reduction in affinity absorption in a time-dependent fashion 

(Figure 3A).  Figure 3B shows that equivalent amounts of AFAP-110 within the lysates were 

used for these affinity absorptions.  These data indicate that a PMA activatable ser/thr kinase 

may be capable of affecting the conformation of AFAP-110 and precluding affinity absorption 

by GST-511-637.  This change in self-association is also coincident with an increase in the 
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phosphorylation of AFAP-110 on serine and threonine residues in these cells (Qian submitted).  

It has been demonstrated that some PMA activatable PKC isoforms, such as PKCα, are also 

activated by Src527F (Delage et al., 1993).  These data indicate that perhaps a classical PKC 

isoform, such as α, was responsible for effecting the conformation of AFAP-110 and decreasing 

affinity absorption with GST-511-637. To further test this hypothesis, cells expressing AFAP-

1105Y and Src527F were treated with the specific PKC inhibitor bisindolylmaleimide I (6 µM for 6 

hours) in an effort to block PKC activity.  Figure 3C demonstrates that treatment with 

bisindolylmaleimide I will enable GST-511-637 to affinity absorb AFAP-110 from cell lysates 

that were treated with either PMA (100 nM for 1 hour) or were co-expressed with Src527F.  

Figure 3D shows that similar amounts of lysate were used for this experiment.  These data 

indicate that changes in conformation of AFAP-110 occur in response to Src527F signaling or 

PMA treatment and appear to be directed by PKC activation.  Thus, we hypothesized that a 

ser/thr phosphorylation event, directed by either Src527F or PMA and likely from PKC, could be 

responsible for affecting AFAP-110 conformation.   

 

PKC-phosphorylated AFAP-110 activates Src in vitro in an SH3-dependent fashion.   

 

The activation of Src by an AFAP-110 mutant (AFAP-110∆lzip) was previously reported 

to require the SH3-binding motif of AFAP-110, prompting the hypothesis that Src may be 

activated by AFAP-110 in SH3 domain-dependent fashion.  In addition, AFAP-110∆lzip exhibits 

the conformational change seen upon both Src and PKC activation.  Thus it was logical to ask if 

AFAP-110 could activate Src, and do so in a PKC phosphorylation-dependent manner in 

response to this conformational change.  To test this potential, in vitro kinase assays with 
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purified recombinant AFAP-110 were performed by Dr. Mingyao Liu.  These results, to be 

included with this work in a manuscript being prepared currently, indicate that PKC 

phosphorylation of recombinant purified AFAP-110 induces the activation of cSrc in vitro.  This 

experiment involves the incubation of the recombinant protein with cSrc which has been 

immunoprecipitated from cellular lysate, and thus is in the repressed state for catalytic activity.  

The ability of recombinant AFAP-110 to activate cSrc also required the integrity of the SH3 

domain, as recombinant AFAP-11071A, a mutant which fails to interact with Src, failed to 

activate cSrc upon phosphorylation by PKC.  Thus, AFAP-110 may activate Src directly upon 

phosphorylation by PKC, thereby prompting us to examine the potential for PKC to activate Src.   

 

Expression of active PKC results in the activation of Src in vivo. 

 

To determine the validity of the in vitro results, we first asked if the activation of PKC in 

cells results in the activation of Src.  Immunofluorescence labeling of cells with phospho-specific 

antibodies indicates that this is the case, as seen in Figure 4.  C3H10T1/2 cells were transfected 

with Flag-tagged myristoylated PKCα, a constitutively active form of the enzyme previously 

shown to direct cytoskeletal rearrangements.  This form of PKC has been shown to maintain 

constitutive kinase activity by virtue of its membrane association (Bazzi and Nelsestuen, 1988). 

Labeling these cells with anti-phosphotyrosine antibodies indicates an increased 

immunoreactivity with the antibody (Figure 4, panel A).  Thus, cellular proteins are 

hyperphosphorylated on tyrosine residues in response to PKC activation.  This 

hyperphosphorylation is seen only in cells expressing Flag-myrPKC, which also display a 

reorganization of the actin cytoskeleton, compared to non-transfected cells (Figure 4, panel C).  
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Similar results are seen upon labeling with antibodies reactive with active Src family kinases.  

Figure 4, panel D shows the results seen upon labeling similar cells with anti-SrcP(Y416), which 

indicate an increase in Src family kinase activity compared to non-transfected surrounding cells.  

Again, these cells display a reorganization of the cytoskeleton (Figure 4, panel F).  These results 

substantiate the hypothesis that Src is activated in response to PKC activation. 

 

Figure 4  Expression of active PKC results in tyrosine hyperphosphorylation and Src 
family kinases.  C3H10T1/2 cells co-expressing myristoylated, Flag-tagged PKCα were 
labeled with anti-Flag (panel B and E) and anti-phosphotyrosine (Panel A) or anti-
SrcP(Y416) (Panel D).  Actin was visualized with rhodamine phalloidin (panels C and F). 
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The activation of Src in response to PKC activation requires both the PH domain-mediated 

interactions between PKC and AFAP-110 as well as SH3 interactions between AFAP-110 and 

Src.   

 

As the proposed mechanism of Src activation by PKC involves AFAP-110, GFP-tagged 

forms of AFAP-110 were employed to examine the potential requirement for AFAP-110 in 

PKC-directed Src activation as well as cytoskeletal rearrangements.  The evidence presented so 

far indicate that both SH3 binding between AFAP-110 and Src and PH domain-directed 

phosphorylation of AFAP-110 by PKC may be necessary for the direct activation of Src by 

AFAP-110.  We used AFAP-110 mutants deficient in both interactions to test this mechanism in 

cells.  C3H10T1/2 cells were cotransfected with these forms of AFAP-110 and myristoylated, 

Flag-tagged PKCα.  Co-expression of GFP-AFAP-110 and Flag-myrPKCα resulted in the 

hyperphosphorylation of cellular proteins on tyrosine, as seen in Figure 6, panel A.  These cells 

also displayed an increase in Src family kinase activation, as well (Figure 5, panel A).  

Cytoskeletal rearrangements were noted upon examination of GFP-AFAP-110 (Figure 5, panel C 

and Figure 6, panel C) in these cells, which consistently co-localizes with these rearranged actin 

structures.  GFP-AFAP-11071A, shown above to block the activation of Src by AFAP-110 in 

vitro, co-expressed with Flag-myrPKCα blocks the increased tyrosine phosphorylation of 

cellular proteins (Figure 6, panel D) and the increased activity of Src family kinases (Figure 5, 

panel D) in C3H10T1/2 cells.  Likewise, cytoskeletal rearrangements were blocked, as GFP-

11071A colocalized with actin filaments (Figure 5, panel F and Figure 6, panel F).  These cells 

also displayed levels of lamellipodia, filopodia and ruffles comparable to non-transfected cells.  

Therefore, SH3 interactions between AFAP-110 and Src are required for the activation of Src in  
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Figure 5.  The activation of Src family kinases by PKC requires the integrity of both the 
SH3 binding motif and PH domain of AFAP-110.  C3H10T1/2 cells co-expressing GFP-
AFAP-110 (Panel C) and myristoylated, Flag-tagged PKCα were labeled with anti-Flag 
(panel B ) and anti-phospho-Src(Y416) (Panel A).  Cells co-expressing GFP-AFAP-
11071A (Panel F) and myristoylated, Flag-tagged PKCα were similarly labeled to visualize 
PKC (Panels E) and anti-phospho-Src(Y416) (Panel D).  Additionally, cells expressing 
GFP-AFAP-110∆180-226 (Panels I) with Flag-myrPKCα (Panels H).  These cells were also 
labeled with anti-phosphotyrosine (Panel G).  Representative images are shown.
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response to PKC.  GFP-AFAP-110∆180-226 co-expressed with Flag-myrPKCα also blocks both the 

increased tyrosine phosphorylation of cellular proteins (Figure 6, panel G) and the increased 

activity of Src family kinases (Figure 5, panel G).  Additionally, the expression of this mutant 

blocks cytoskeletal rearrangements normally seen upon expression of active PKC.  Figure 5, 

panel I and Figure 6, panel I indicate the colocalization of GFP-AFAP-110∆180-226 with copious 

actin filaments.  Normal levels of lamellipodia, filopodia and membrane ruffles are noted in 

these cells, as well.  Thus, the PH domain-dependent phosphorylation of AFAP-110 and 

subsequent conformational change may be necessary for both the activation of Src as well as 

cytoskeletal rearrangements by PKC.  
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Figure 6  The activation of Src family kinases by PKC requires the integrity of both the 
SH3 binding motif and PH domain of AFAP-110.  C3H10T1/2 cells co-expressing GFP-
AFAP-110 (Panel C) and myristoylated, Flag-tagged PKCα were labeled with anti-Flag 
(panel B) and anti-SrcP(Y416) (Panel A).  Cells co-expressing GFP-AFAP-11071A (Panel 
F) and myristoylated, Flag-tagged PKCα were similarly labeled to visualize PKC (Panels 
E) and anti-SrcP(Y416) (Panel D).  Additionally, cells expressing GFP-AFAP-110∆180-226

(Panels I) with Flag-myrPKCα (Panels H).  These cells were also labeled with anti-
SrcP(Y416) (Panel G).  Representative images are shown. 
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Discussion 

AFAP-110 appears to be a PKC binding partner, through interactions involving the 

amino-terminal PH domain of AFAP-110.  Careful examination of this PH domain has revealed 

homology to other PH domains which have been shown to interact with PKC.  Although PH 

domains generally share low levels of sequence homology, they share a well conserved tertiary 

structure which can be useful for alignment of the key structural elements.  This is helpful, as 

these domains are generally 100 amino acids in length and contain 7 beta strands and 1 or 2 

alpha helices with intervening sequences of variable lengths (Shaw, 1996).  As shown in the 

introduction, a model of the amino-terminal PH domain based on β-Spectrin (Macias et al., 

1994), with which it shares highest homology, has allowed for the comparison of this domain 

with PKC-binding PH domains.  Based on several PH domains which bind PKC, including those 

from Btk, Dynamin, β-Spectrin as well as others, a consensus has been generated (Waldron et 

al., 1999; Yao et al., 1997).  The amino-terminal PH domain fits this consensus well, with 

similar residues in 7 of the 8 consensus positions.  The carboxy-terminal PH domain, which is 

shown in Figure 1 to be deficient for interactions with PKC, shares only 4 of these consensus 

positions.  Similar to the experiments reported involving PKC and the PH domain from Btk, 

deletion of a specific portion of the amino-terminal PH domain results in the decreased ability of 

the fusion protein to affinity absorb PKC.  This mutant fusion protein retains a portion of the β1 

and β2 sheets of the PH domain, structures which contain the consensus thought to be 

responsible for PKC binding in the case of the Btk PH domain (Yao et al., 1997).  Thus, the 

interaction between the amino-terminal PH domain of AFAP-110 and PKC may require 

sequences in addition to the consensus.  Alternatively, the deletion of residues 180-226, carboxy-
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terminal to the consensus, may disrupt the tertiary structure of the PH domain so that it is 

incapable of binding PKC although it retains the sequence necessary for this activity. 

The amino-terminal PH domain is capable of affinity absorbing the members of the classical 

family of PKCs, PKCα, β and γ, as well as the atypical PKCλ/ι.  To the authors’ knowledge, the 

interaction between PKCλ/ι and AFAP-110 represents a novel result that diverges from previous 

reports, which have not demonstrated an interaction between PH domains and atypical PKC’s 

λ/ι.  These reports have shown that PH domains do show preference for closely related PKC 

isoforms, even among the PKC families.  For instance, the PH domain of PKD shows a much 

higher affinity for PKCε than PKCη, both members of the novel PKC family (Waldron et al., 

1999).  Likewise, the PH domain from Btk will affinity absorb PKCε but not PKCη or θ, all 

related members of the novel PKC family (Yao et al., 1994).  Thus, the amino-terminal PH 

domain from AFAP-110 is consistent with other PH domains in its ability to discriminate 

between PKC family members.  The significance of this discrimination may be revealed by 

examining the function of PKC isoforms.  The PKC isoforms shown here to interact with AFAP-

110 are thought to be involved in cytoskeletal rearrangements.  PKCα has been well established 

as an important factor in cytoskeletal rearrangements in various cell types, including lung 

epithelial cells (Dwyer-Nield et al., 1996), fibroblasts (Lin et al., 1996), glioma cells (Douglas et 

al., 1997), smooth muscle cells (Haller et al., 1995; Wang et al., 1997), endometrial 

adenocarcinoma cells (Carter et al., 1998), and breast cells (Sun and Rotenberg, 1999).  The 

other members of the classical PKC family (PKCβ and γ) have not been studied in the same 

detail; however most of the aforementioned studies which inhibit PKCα activity employ 

inhibitors which block the entire classical PKC family.  PKCλ/ι has not been specifically shown 

to affect cytoskeletal rearrangements; however inhibition of the entire atypical PKC family (λ/ι 
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and ζ) can block Ras-mediated cytoskeletal change in fibroblasts (Uberall et al., 1999).  Thus the 

PKC isoforms which appear to be capable of interacting with AFAP-110 are also involved in 

cytoskeletal rearrangements. 

The mechanism whereby PKC directs cytoskeletal rearrangements is not well understood.  

Most previous studies have investigated actin-binding proteins which are PKC substrates for 

direct effects on actin structures.  Here, we uniquely show that PKC phosphorylation of the 

actin-binding protein AFAP-110 results in the activation of Src, providing an indirect means of 

facilitating cytoskeletal rearrangements.  This activation of Src requires SH3 interactions 

between AFAP-110 and Src.  This method of activation of Src is not without precedent.  Two 

viral proteins, the Nef protein produced by HIV, and the Tip protein from Herpesvirus saimiri 

strain 484C, activate Src directly by engaging the SH3 domain and relieving the intramolecular 

constraints which repress kinase activity (Briggs et al., 1997; Moarefi et al., 1997); (Lund et al., 

1997).  Young, et al. have recently reported that the SH2 and SH3 intramolecular interactions 

which repress Src activity act as a “snap lock” in an all-or-nothing type of inhibition, supporting 

the idea that SH3 engagement alone would suffice to activate Src (Young et al., 2001).  Thus it is 

feasible that AFAP-110 would activate Src in a similar manner. 

 Other reports have indicated the potential for Src to be activated upon the activation of 

PKC.  Phorbol ester treatment of Swiss 3T3 fibroblasts reportedly activated Src three fold, a 

result which was blocked by PKC inhibition with bisindolylmaleimide I (Rodriguez-Fernandez 

and Rozengurt, 1996).  Likewise, the activation of Src upon treatment of Swill 3T3 cells with 

bombesin or PDGF was partially dependent upon PKC activity (Salazar and Rozengurt, 1999).  

In another cell system, cultured mast cells showed increased Src activity upon over-expression of 
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PKCδ (Song et al., 1998).  These reports provide some evidence for the activation of Src by 

PKC.   

The specific results presented here indicate AFAP-110 is a PKC binding partner and that 

the PH-domain directed phosphorylation of AFAP-110 by PKC results in the direct activation of 

Src by SH3 interactions between AFAP-110 and Src.  These results outline a unique mechanism 

for the activation of a potent oncogene by pathways heretofore thought to function downstream 

of this oncogene.  The activation of Src by RTK’s in response to extracellular stimuli has been 

accepted to play a role in the etiology of several types of cancer.  This alternate mechanism 

would provide for the activation of Src by tumorigenic stimuli which proceed via activation of 

PKC, which has been well characterized for its tumor promoting potential.  As AFAP-110 is 

expressed in many cell types including fibroblast, epithelial and endothelial cells as well as cells 

of hematopoietic lineage (Flynn et al., 1995), and exists on both motility-associated structures 

and the cell membrane in both quiescent and transformed cells (Qian et al., 1998), it is situated to 

transmit signals which would result in the activation of Src by the mechanism proposed here.   
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Materials and Methods 

 

Reagents and proteins  

 

Dulbecco’s modified Eagle’s medium (DMEM) and Basal Medium Eagle (BME) were obtained 

from Sigma.  Recombinant PKCα was purchased from Calbiochem. Phorbol 12-myristate 13-

acetate (PMA), bisindolylmaleimide, and 4α-phorbol 12,13-didecanoate (4α-PDD) were 

obtained from Sigma.  PKC isoform antibodies were obtained from the Transduction 

Laboratories’ PKC sampler kit, with the exception of the PKCζ antibody, which was purchased 

from Calbiochem.  The polyclonal pan-PKC antibody used was from Calbiochem (Ab-1).  

AFAP-110 antibodies 4C3 and F1 were generated and characterized as previously described 

(Flynn et al., 1993; Kanner et al., 1989).  Phosphatidylserine, rhodamine-phalloidin and diolein 

were purchased from Sigma.  Recombinant AFAP-110 and rAFAP-11071A were purified after 

production as a GST bacterial fusion protein, using the PreScission Protease system (Amersham 

Pharmacia) as previously described (Qian et al., 2000).  

 

Phosphamino acid analysis  

 

Cos-1 cells were transiently transfected and grown for 60 hours.  Prior to lysis, cells were serum 

starved overnight and incubated with 10mCi 32P orthophosphate, then stimulated with 100 nM 

PMA for 15 minutes.  Cells were washed twice with PBS and lysed with 1 ml RIPA buffer.  1.5 

µl monoclonal antibody 4C3 was used to immunoprecipitate AFAP-110 from the lysate, which 

was isolated via SDS-PAGE.  The radioactive band was excised from the gel and subjected to 
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partial acid hydrolysis and phosphamino acid analysis (Boyle et al., 1991).  After running the 

isolated amino acids on 2D TLC, the plates were imaged using a Phosphorimager (Molecular 

Dynamics).  Spots were identified by running labeled phosphoserine, phosphothreonine, and 

phosphotyrosine markers.  Relative intensity compared to background of radiation from spots 

was quantitated with ImageQuant software.   

 

Affinity absorption assays  

 

Fusion proteins were generated, quantified and employed in absorptions as described previously 

(Qian et al., 1998).  For western blot analysis, the absorbates were analyzed by SDS-PAGE.  For 

experiments involving serine/threonine kinase assays, the absorbates were washed 5 times with 

MTPBS (4.38 g NaCl, 1.14 g Na2HPO4, 0.24 NaH2Po4 in 500 ml H2O, pH 7.3) + 1% Triton, then 

four times with TBS.  The absorbate/bead slurry was subjected to a colorimetric PKA assay 

(Pierce) as per protocol.  For Fig. 1A-C, 20 µg fusion protein and 250 µg of day 18 chick embryo 

brain lysate was used.  For Fig. 1D, 20 µg fusion protein and 500 ng recombinant PKCα were 

used. 

 

Co-immunoprecipitation assays  

 

Anti-Flag antibody was used to immunoprecipitate Flag-tagged wild-type PKCα from Cos-7 cell 

lysate.  Immunoprecipitate was subjected to SDS-PAGE and transferred proteins were labeled on 

PVDF with anti-GFP antibody.   
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Cell culture 

 

Cos-1 cells were maintained and transfected as previously described (Guappone and Flynn, 

1997).  C3H10T1/2 cells were cultured as previously described (Qian et al., 2000).   

 

Immunofluorescence 

 

Transient transfections of C3H10T1/2 cells were carried out using Effectene (Qiagen) as per.  

Cells were fixed and permeabalized as previously described (Qian et al., 1998).  For cells 

transfected with Flag-tagged PKCα, rhodamine phalloidin (1:1000) and anti-Flag ab were used.  

Anti-mouse Alexa 488 was used to visualize the anti-Flag ab.  Anti-ptyr and antiSrc(pY416) 

were used in separate experiments to label tyrosine-phosphorylated proteins and active Src 

family kinases, respectively.  These polyclonal antibodies were visualized with anti-rabbit Alexa 

633.  For cells co-transfected with Flag-tagged PKCα and GFP-tagged forms of AFAP-110, anti-

Flag, anti-ptyr and antiSrc(pY416) were used as above.  In this instance, anti-mouse TRITC was 

used to visualize anti-Flag antibody, while phospho-specific antibodies were labeled as above.  

Cells were washed and mounted on slides with Fluoromount (Fisher).  A Zeiss LSM 510 

microscope was used to gather images.  Scale bars were generated and inserted by LSM 510 

software.  For all figures, representative cells are shown (>100 cells examined per image shown). 
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 The work presented here addresses one role of AFAP-110 in cytoskeletal rearrangements.  

Overall, the results indicate that AFAP-110 can activate cSrc in response to cellular signals, 

thereby inducing cytoskeletal rearrangements in an indirect manner.  This is summarized in 

Figure 1. 

 

 The mechanism employed by AFAP-110 to activate cSrc appears to proceed through one 

intrinsic quality of AFAP-110, in this case the ability of AFAP-110 to engage the SH3 domain of 

cSrc.  This interaction results in the activation of cSrc, presumably by interfering with and 

relieving the repressive intramolecular interactions involving the SH3 domain of cSrc.  In 

support of this potential, deletion or mutation of the SH3 domain from cSrc results in activation 

(Gonfloni et al., 1997; Reynolds et al., 1992; Weil and Veillette, 1994; Wright et al., 1994).  As 

discussed earlier, the potential for the activation of Src family kinases by SH3 engagement is not 

without precedent.  The HIV Nef protein and Herpesvirus Tip protein have been shown to 

activate Src family members in this fashion (Collette et al., 2000; Hartley et al., 1999; Moarefi et 

Extracellular signals

Active PKC

Inactive cSrc

Phospho-AFAP-110

Actin reorganization

Figure 1  Proposed pathway by which AFAP-110 is involved 
in cytoskeletal rearrangements in an indirect manner.
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al., 1997).  Both of these proteins transform cells, and the Tip protein is a requirement for the 

induction of tumors by the Herpesvirus (Duboise et al., 1998).  As many viral proteins are 

thought to adapt cellular mechanisms to suit their own needs, its seems likely that a cellular Src 

activator of this class would exist.  Furthermore, logic would dictate that this activator would 

function in this capacity only upon the receipt of specific signals, as Src is normally maintained 

in a tightly repressed state.  AFAP-110 fits both of these criteria, as it appears to activate cSrc via 

SH3 interactions and this ability is revealed upon phosphorylation by PKC.  This 

phosphorylation correlates with a conformational change in AFAP-110, as measured by a change 

in self-association.  Thus, AFAP-110 is altered in response to this specific signal, which could 

permit AFAP-110 to activate cSrc via SH3 interactions.   

The potential for PKC activation to induce the activation of cSrc is supported by previous 

reports.  The activation of PKC by bombesin or phorbol ester resulted in the increased activity of 

Src in two separate reports (Rodriguez-Fernandez and Rozengurt, 1996; Salazar and Rozengurt, 

1999).  This mechanism may be utilized by cellular signals to activate both PKC and cSrc.  The 

end result is the activation of both kinases and the reorganization of cytoskeletal structures.  

These kinases appear to signal in both directions, as cSrc activation results in PKC activation 

(Qureshi et al., 1991; Zang et al., 1995).  As AFAP-110 is required for the activation of Src by 

PKC, it is positioned to provide a crucial, bi-directional signaling link between these two 

kinases.  This idea is supported by careful consideration of the adapter nature of AFAP-110 and 

the proteins it may bind to bring together into complex. 

The potential for AFAP-110 to fill the role of a cSrc activator is substantiated by 

consideration of the subcellular localization of Src, PKC and AFAP-110.  PKC is recruited to the 

cell membrane upon its activation, where cSrc is anchored by myristoylation.  AFAP-110 also 
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appears enriched at the cell membrane upon PKC activation, indicating it is positioned to 

efficiently activate Src in response to phosphorylation by PKC.  One result of the activation of 

both of these proteins is the formation of actin-rich structures at the cell membrane, namely 

lamellipodia, membrane ruffles and filopodia.  In both Src and PKC-transformed cells, AFAP-

110 is consistently enriched in these structures.  As AFAP-110 is also hyperphosphorylated in 

these cells by PKC, it seems likely that AFAP-110 would be hyperphosphorylated at the sites 

where it is enriched and where PKC is activated, namely the cell membrane.   

 The ability of AFAP-110 to bind both Src and PKC directly suggests the possibility of 

the formation of a large signaling complex.  As all three proteins are enriched at the cell 

membrane upon the activation of either Src or PKC, the likelihood that this complex would form 

is increased in this event.  The presence of additional binding motifs in AFAP-110 indicates 

other proteins may enjoin this complex as well.  One such protein is the receptor for activated C 

kinase, RACK1.  This protein was identified as a PKC binding partner which bound to and 

stabilized active PKC at the cell membrane (Ron et al., 1994).  RACK1 is maintained at the cell 

membrane by a myristoylation signal, much like Src.  Work along two veins indicates that 

RACK1 would likely participate in this signaling complex involving AFAP-110, Src and PKC.  

Firstly, RACK1 has been shown to bind PH domains, including those from Dynamin and β-

Spectrin, which share homology with the amino-terminal PH domain from AFAP-110 

(Rodriguez et al., 1999).  RACK1 appears to bind PH domain through one or more of its WD40 

repeats, protein binding modules characterized by a tryptophan and adjacent aspartate every 40 

residues.  Work with other PH domains that bind WD40 repeat-containing proteins has allowed 

for the generation of a consensus binding sequence, which covers a large portion of the carboxy-

terminal region of the PH domain.  This consensus is included in Appendix V, which also 
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compares the PH domain of AFAP-110.  Both PH domains fit this consensus well, indicating the 

potential for binding WD40 repeat-containing proteins, including RACK1.  The second area of 

work reported in the literature impacting the potential formation of AFAP-110-directed signaling 

complexes involves RACK1 and Src.  Although RACK1 was identified as a binding partner for 

PKC, recent work has demonstrated that RACK1 also binds Src directly (Chang et al., 1998).  

This interaction inhibits Src kinase activity, and over-expression of RACK1 in cells decreases 

their rate of growth, thought to be due to Src inhibition.  More recently, it was found that PKC 

activation enhances the interaction between Src and RACK1 (Chang et al., 2001).  As activated 

PKC is bound to RACK1, this strongly supports the idea that a signaling complex consisting of 

Src and PKC could form.  To investigate the potential for AFAP-110 to participate in this 

complex, affinity absorptions with fusion proteins representing the amino-terminal PH domain 

were used to affinity absorb RACK1 from chick brain lysate.  The result, shown in Appendix V, 

indicates RACK1 is affinity absorbed by this fusion protein.  It is unlikely that this result is due 

to the absorption of PKC, with the presumption that RACK1 associated with PKC would be a 

false positive result for direct interactions.  This is because all reports of the PKC/RACK1 

interaction have indicated an inability to co-immunoprecipitate RACK1 with anti-PKC 

antibodies (Ron et al., 1999).  It is possible, however, that other proteins besides PKC could 

bridge the PH domain of AFAP-110 and RACK1 in this assay.  Anti-RACK1 antibodies 

revealed that AFAP-110 can be co-immunoprecipitated from cell lysate, as well.  This is 

included in appendix V.  It seems likely, therefore, that large signaling complexes may form 

consisting of at least RACK1, Src, PKC and AFAP-110.  There may be other proteins involved 

in these complexes, as well.  The presence of these proteins at the cell membrane indicates this 
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type of complex could play necessary roles in multiple cellular functions, including the 

reorganization of the actin cytoskeleton as addressed here.   

Evidence exists for the role of AFAP-110 in the formation of actin-rich cell membrane 

structures in cell types other than cultured fibroblasts, as well.  AFAP-110 is found in lysate from 

multiple tissue types, including breast, colon, and epithelial tissues.  Epithelial cells grown in 

culture reach a state of confluency and arrest their growth, to maintain a continuous sheet, 

analogous to epithelial sheets found in organisms.  At the cell-cell junctions, multiple proteins 

are involved in maintaining the integrity of the sheet and signaling for the cell to arrest its growth 

upon contacting another cell.  Actin is found here and is thought to be involved in connecting the 

cytoskeletal structures between cells to provide an overall strength to the epithelial sheet.  

Interestingly, AFAP-110 is found on the actin filaments in these cells, but is absent from the 

actin-rich cell-cell borders (Appendix VI).  Additionally, during subconfluent stages or upon the 

activation of PKC with PMA in confluent sheets, AFAP-110 is found in actin-rich structures at 

the cell membrane.  These structures represent lamellipodia, membrane ruffles and filopodia.  

Published results have indicated PKC plays a role in the migration of epithelial cells in several 

capacities, including the induction of motility structures and the internalization of structures 

which anchor the cells to one another, preventing cell migration (Ng et al., 1999; Sun and 

Rotenberg, 1999).  As AFAP-110 appears at cell-cell borders upon the activation of PKC, it 

seems plausible that AFAP-110 may play a role in the alteration of actin-rich membrane 

structures in epithelial cells.   

AFAP-110 can bind actin filaments directly and can multimerize.  Therefore it represents 

a potential actin bundling protein.  Changes in the self-association of AFAP-110 in response to 

PKC phosphorylation, included in Appendix IV, indicate that AFAP-110’s ability to bundle actin 
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filaments could be regulated by this signal.  This appears to be the case, as shown in a 

manuscript submitted by Dr. Yong Qian indicating an increase in direct bundling of actin 

filaments by microscopic analysis.  In this work, PKC phosphorylation of AFAP-110 resulted in 

the dramatic increase of the bundling of actin filaments polymerized in vitro.  Experiments 

aimed at dissecting the self-association of AFAP-110 and the mechanism of the regulation of this 

property are described in Appendix IV.  These data indicate that AFAP-110 self-association is 

directed by complex interactions involving at least two separate sites of interaction.  Further 

work is necessary to determine if this property of AFAP-110 is responsible for the activation of 

Src in addition to its role in direct cytoskeletal effects.   

 In summary, this dissertation describes AFAP-110 as a potential activator for cSrc in 

response to cellular signals, namely PKC phosphorylation.  This result is unique, as this 

represents the first example of a cellular protein shown to function in such a fashion.  The 

existence of this type of a signaling pathway as this would allow for the activation of cSrc in 

response to signals not previously known to induce this result.  As the PH domain of AFAP-110 

is required for this function, this domain provides a potential target for the abrogation of 

interactions necessary for the potentiation of this signal.  This could prove useful in the inhibition 

of cell migration, particularly in the treatment of metastatic disease.     
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Microscopic analysis using the Zeiss LSM510 
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 As much of my work has necessitated the use of microscopy, I have become accustomed 

to using this machine, located in the Anatomy department.  This machine provides excellent 

resolution for image analysis down to a scale of around 20 µM.  The discussion that follows 

relates much of the information and ideas I have gathered which have helped me in performing 

microscopic analysis. 

 There are several factors which influence the quality of images gathered upon 

microscopy.  These include: (1) the quality of labeling, (2) the choice of secondary antibodies, 

and (3) the ability to gather quality representative images from the sample.  As all of these issues 

are important and deficiency in any area can significantly decrease data quality, I will address 

each of these issues separately. 

 The quality of labeling is governed largely by the ability to create a large signal to noise 

ratio.  The signal is the specific labeling of the protein of interest, while the noise is the non-

specific background labeling of unwanted proteins.  Some background can come from 

autofluorescence of proteins, but this is generally extremely difficult to detect and therefore does 

not add to detectable noise.  The most efficient way to generate signal without the possibility of 

generating noise is to use a fluorescent tag of your protein of interest, such as GFP or DsRed.  

These are proteins identified from jellyfish and sea anemones, respectively which have been 

optimized genetically by companies (ClonTech) for fluorescence.  The use of any antibody, 

however, generates background noise, but this can be minimized.  One way to minimize this 

noise is to optimize antibody concentrations using a series of dilutions to determine which 

antibody concentration is optimal.  Another way is to block background staining with other, 

“sticky” blocking agents such as milk or BSA.  I commonly use 5% BSA as a vehicle for my 
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antibody staining.  Additionally, maintaining optimal protein expression levels in the case of 

transient transfections is important to maintaining a high signal.  

 Most labeling involves the use of antibodies, and the concentration of antibody used is 

the single most important factor for obtaining an adequate signal to noise ratio.  This has to be 

determined for each antibody used individually, and is best done in control experiments before 

setting up investigative experiments.  Much time and frustration can be avoided by this following 

this path.  The cell type being used also influences the antibody concentration needed, as well as 

the type of protein being examined (endogenous vs. transient expression).  Included in Table 1 

are the antibody concentrations I have optimized and used for each cell type and protein type I 

have examined by fluorescence microscopy.  These concentrations should be viewed as a 

guidebook for ranges of concentrations to use, as antibody affinity can change with storage or 

between different lots.   

 When labeling more than one protein, as is commonly done, the secondary antibodies 

chosen can greatly influence the results obtained.  As the Zeiss microscope uses lasers to 

specifically excite certain wavelengths and optical filters to specifically gather certain 

wavelengths, it limits its detection of fluorescence to signals only within those wavelengths.  

This allows us to efficiently separate the signals generated in most cases.  However, when one 

signal from a labeled protein extends into the detection range of a signal from another labeled 

protein, false data can be returned.  This commonly happens with this microscope, but can be 

avoided.  The reason this happens is because of the spectral properties of the fluorochromes 

being used.  In the figure included here, I have attempted to explain this phenomenon and show 

how the optical filters of the microscope are set up to elimnate this.  The emission and excitation 

spectra of some of the fluorochromes we commonly use are shown.  FITC is shown in green, and 
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is typical of fluorescein and its derivatives.  This specific fluorochrome is the source of most 

problems associated with bleed through of signal to the TRITC spectra, shown in orange.  This is 

due to the emission of energy by FITC at wavelengths overlapping the TRITC emission spectra, 

resulting in a false signal in the detection of the TRITC signal.  The most effective way to 

eliminate this is by ensuring the use of the BP 585-615 filter, instead of the BP 550-615 filter, 

which covers more of the TRITC emission spectra but also includes more of the emission spectra 

from FITC.   Additionally, the concentrations of the antibodies used can be adjusted to increase 

the TRITC signal and decrease the FITC signal, resulting in an increase in the ratio of desired 

signal to bleed through signal from FITC.  The problem of bleed through and false signal is not 

as troublesome from the TRITC channel to the Far Red channel (Cy5, BODIPY 650, Alexa 633).  

The reason appears to be the detection width of the emission spectra for the Far Red channel 

(boxed area, Figure 1) compared to that of TRITC.  This results in a greater ratio of desired 

signal to bleed through, but if the signal for TRITC is too great (as seen occasionally with 

rhodamine-phalloidin labeling) it may cause bleed through.  This can be largely counteracted by 

decreasing the fluorescence intensity of the TRITC signal, which can be accomplished by 

decreasing the laser output for the laser which excites this fluorochrome (HeNe 543).  Overall, 

when labeling more than one protein great care must be taken to optimize antibody 

concentrations before data can be retrieved with confidence, particularly when three labels are 

used.   
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 The technique of gathering images is the most difficult to address in this format as it is a 

complex process with multiple variables.  I will attempt to convey the tricks and techniques I 

have learned.  In preface, the Zeiss LSM510 is a wonderfully cantankerous machine.  Some days 

she will perform flawlessly and other days she will need restarted several times and still 

misbehave.  The problems you will see include, but are not limited to: freeze-ups during image 

storing, multiple error messages, incompliance with commands and sluggishness.  Sometimes it 

is best to simply return another day if multiple problems arise resulting in a major conflict 

between the user and the machine.   

 Upon placing the slide upon the stage, the first challenge is to locate cells looking 

through the eyepieces.  This is sometimes more difficult than it should be.  When labeling actin 

with either FITC or TRITC, the best way is to use that particular channel and focus up and down 

Wavelength (nM)

LSM wavelength filter: BP 485-535    BP 585-615 LP 650

Figure 1  The use of filters which restrict the detection of light outside their designated
wavelengths prevents the bleed through of signal from one fluorochrome to another.  The
emission spectra of the fluorochromes used are shown as solid lines (FITC shown as green,
TRITC shown as orange, and Bodipy 650 shown as dark red) while their excitation spectra are
shown as dotted lines.  Note the filtersets designated (boxed regions) allows for the optimal
detection of each fluorochrome’s emission while excluding emission from the others.
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while moving the stage slightly.  Look for a signal and try to focus on it.  When using other 

labels which prove difficult to find by this method, it is helpful to use brightfield and first focus 

on the edge of the coverslip.  Then move the stage to center the slide while searching for cells.  

Switch to fluorescence and if your labeling is adequate, the cells will be seen.  One tip to 

remember is that even though the machine is labeled for it and the people running the facility 

will tell you otherwise, you cannot see the Far Red spectra through the eyepieces.  It is nice 

however, upon laser scanning, which I’ll discuss now.   

 After locating the cells they must be imaged by the computer to retain the data gathered.  

This process is daunting but simply follows the principle above relying on an adequate signal to 

noise ratio.  Optimizing the signal to noise ratio in the image gathered, however depends solely 

on operator skill and experience.  I will attempt to relay my experience here.   

 Setting up the microscope/computer to gather images involves turning on the correct 

lasers and implementing the correct settings/configurations for the fluorochromes used in the cell 

labeling.  Understanding the excitation/emission spectra section above will direct the choices 

made here.  Note that when using both FITC and TRITC, the BP 585-615 filter should always be 

used rather than the BP 550-615 filter, to minimize bleed through.   

 Once the correct configurations have been chosen the image must be gathered.  Ideally 

this is a process which involves rapidly identifying the region to be scanned and focusing the 

image.  The quicker this is done the better, as some fluorochromes bleach rapidly, causing a loss 

of signal.  This also involves adjusting several settings to optimize the signal to noise ratio, as 

seen upon scanning.  These settings include the pinhole, detector gain and the amplification gain.  

Adjustment of the amplification offset has proven of no help in adjusting image quality.  The 

first setting to be considered is the pinhole.  This is what gives the confocal microscope much of 
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its resolving power by limiting the thickness of the area being focused on and imaged.  For a 

further explanation of this concept see the Zeiss manual accompanying the machine.  Adjusting 

the pinhole changes the thickness of the slice (optical slice) of sample being scanned.  By 

adjusting this thickness, you can reduce background noise as well as noise from within the cell 

you are examining.  These usually do not interfere with imaging, but when the signal is low or 

the cell is thick, they can be.  The pinhole should be checked after setting the configurations and 

adjusted to the settings desired.  For the 63x lens, I generally start with a pinhole setting which 

gives an optical slice of around 2 microns.  This is about the normal thickness of a cultured 

fibroblast and therefore most of the signal should be included.  The pinhole must be set for each 

channel (signal from individual fluorochrome) used.  After setting the pinhole, the gains need to 

be optimized for imaging.  This is easily accomplished by using the “Find” button on the scan 

control panel.  This quickly scans the image and automatically optimizes the signal to noise ratio.  

I find that adjusting the detector gain up after this is usually necessary for best resolution.  Only 

the detector gain should be adjusted, unless the signal is weak.  If this is the case and you are 

certain the cell is in focus, increasing the amplification gain may help slightly.  At this point the 

resolution can be increased by adjusting the number of pixels being scanned as well as the time 

spent on each pixel.  This is accomplished on the scan control panel, as well.  Increasing the 

number of pixels being scanned increased image resolution and I use 1054x1054 pixels most 

often.  There is a setting higher than this, but this gives a much larger files size with no 

appreciable increase in resolution.  Adjusting the scan time also increases the resolution , and I 

usually use a scan time which gives an overall image scan time of 1 minute when finally 

scanning an image to save.  Additionally, the number of times a pixel is scanned can be 

increased, resulting in a decrease in background noise.  I most often use 2 for this setting.  After 
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changing these settings and scanning at the minimal time setting, if there is still poor image 

quality, there are a few things left to consider.  If the image is bright but blurry or part of it is out 

of focus, the focus should be adjusted manually while continually scanning.  If part of it remains 

out of focus, this part can be eliminated by adjusting the pinhole to reduce the optical slice.  This 

is useful with cells that are thicker than average.  I have found the lower limit of size on optical 

slice which still returns a quality image is around 0.5 microns, with a strong signal.  If the image 

contains several structures which are desired, yet cannot be focused on simultaneously, the use of 

the Z stack function is very powerful.  This involves reducing the optical slice and focusing to 

the upper and lower limits of the cell and marking these points with buttons in the Z stack control 

panel.  Adjustment of the number of slices to be gathered (usually between 5 and 10) and 

implementation of the scan will return a series of scans representing individual planes from the 

cell.  Unwanted slices can be eliminated and the wanted slices can be used to create a flattened 

image of all planes in focus with the 3D processing control panel.  This can additionally be used 

to create 3D images of the cell, either as rotating views or stereoscopic images.   

 When dealing with imaging cells, different techniques are helpful.  When examining 

slides with many of the desired cells to image, it is easy to simply start with the 63x objective 

and find the desired cells.  These usually include labeling endogenous proteins or transfected Cos 

cells.  However, when looking for the rare cell, such as in transfection of other fibroblasts, it is 

sometimes easier to start with a lower magnification, such as 20x and look for the desired cell.  

Upon finding and centering the cell, switch to 63x and add water, as this is a water immersion 

lens.   
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Table 1- antibody concentrations used for immunofluorescence labeling.  Antibody type is either 

monoclonal (m) or polyclonal (p). 

Antibody concentrations are given as mg/ml. 

Cell Type/protein 

type 

Antibody (type) Concentration or (dilution) 

Cos-1/endogenous Phalloidin 1:1000-1:250 

 F1 1:200 

Cos-1/transfected F1 1:2000 

 4C3 1:2000 

 Sigma anti-Flag 1:1000 

C3H10T1/2, 

NIH3T3 

HS68 

F1 endogenous 1:1000 

 4C3 1:2000 

 Flag 1:1000 

 HA tag 1:500 

 Ptyr 1:100 

 P416 1:100 
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Appendix II 
 
 

AFAP-110 clones generated 
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                       150                    250         347    450           511   553     593   637        723 
 
 
Mutants constructed by Joe B. 
 
Vector-eGFP-c3  AFAP-110 cloned in by EcoRI from KS+(by Yong). 
  
GFP-AFAP-110∆Spe- Van91I drop on from CMV-1AFAP-110∆Spe. 
Bp             558         697 
 
Residue             180         226 
 
 
GFP-AFAP-110∆382-593 SpeI-HindIII drop in from CMV-1 AFAP-110∆382-593.   
Bp       1161   1797             
 
Residue               381   594   
 
GFP-AFAP-110∆Spe/∆lzip Van91I drop on from CMV-1AFAP-110∆Spe into GFP-AFAP-110∆lzip. 
Bp             558         697            1667   1797 
 
Residue             180         226             550 594   
 
 
GFP-AFAP-110∆Spe/∆84- Van91I drop in of ∆Spe fragment into GFP-AFAP-110∆84. 
Bp             558         697            1667    
 
Residue             180         226             550  
 
GFP-PH BglII fragment drop in from CMV-1-AFAP-110g462a/g757c into GFP in frame. 
 
Bp   462  757 
 
Residue   149  245 
 
 
GFP-STK BglII fragment drop in from CMV-1-AFAP-110g757c into GFP in frame. 
Bp     757  1161 
 
Residue     247  381 
 
GFP-PHSTK BglII fragment drop in from CMV-1-AFAP-110g462a into GFP in frame. 
Bp   462    1161 
 
Residue   149    381 
 
GFP-PHEND SpeI-HindIII fragment drop in from GFP-AFAP-110 into GFP-PH in frame. 
Bp   462     
 
Residue   149     

PH1 PH2               42    lzip    44 
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                       150                250                   347    450           511   553     593   637         
 
 
Mutants constructed by Joe B. 
 
Vector-CMV-1  AFAP-110 cloned in by Kpn-Xba from KS+ (cloned in at EcoRI) with some KS+ MCS sequence. 
  
AFAP-110∆Spe- created using site-directed mutagenesis.- same primers as for GEX-2T fusion protein, then Spe 
deletion. 
Bp             558         697 
 
Residue             180         226 
 
 
AFAP-110∆382-593 simple Bgl II digestion. 
Bp       1161   1797             
 
Residue               381   594   
 
AFAP-110∆Spe/∆382-593- KpnI-BglII-XbaI in wt AFAP-110-CMV-1. 
Bp             558         697   1161   1797 
 
Residue             180         226   381   594   
 
AFAP-110∆Spe/∆lzip- ClaI drop in of ∆Spe fragment into AFAP-110∆lzip. 
Bp             558         697            1667   1797 
 
Residue             180         226             550 594   
 
AFAP-110 g462a    Gives a new BglII site- mutagenesis 
 
Bp   g462a 
 
Residue   148             
 
AFAP-110 g757c    Gives a new BglII site- mutagenesis 
 
Bp              g757c 
 
Residue              246 
 
AFAP-110 g462a/g757c    Gives 2 new BglII sites- Used KpnI-SpeI-BfrI three part ligation to join fragments from 
above. 
 
Bp              g757c 
 
Residue              246 
 

PH1 PH2               42    lzip    44 
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AFAP-110∆PH- created by HindII-BglII-EcoRV in AFAP-110 g462a/g757c 
Bp   462  757 
 
Residue   148  246 
 
AFAP-110∆STK- created by KpnI-BglII-ClaI in AFAP-110 g757c 
Bp     757  1161 
 
Residue     246  382 
 
 
AFAP-110∆Spe/∆84- ClaI drop in of ∆Spe fragment into AFAP-110∆84. 
Bp             558         697            1667    
 
Residue             180         226             550  
 
Additionally- 
CMV-AFAP-110∆Spe with Src527F in CMV-1 via HindIII-XbaI drop in of spe into cmv-Src 
CMV-AFAP-110∆lzip with Src527F in CMV-1 via HindIII-XbaI drop in of spe into cmv-Src 
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Appendix III 

 
PH domain modeling 
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 During the course of the DNA/protein modeling course offered by the School of 

Pharmacy, I generated a model of the amino-terminal PH domain of AFAP-110.  I chose to use 

homology modeling, as the structure was a rather large one, contained many regions with 

unpredictable tertiary structure, and several PH domain structures have been solved previously 

by NMR.  As this PH domain demonstrated highest homology with the PH domain from β-

Spectrin and this domain structure had been solved, this domain was used as a template.  I used 

the modeling programs on the UNIX machines in the modeling laboratory to first align the 

sequences and then generate a preliminary structure.  This structure was minimized for total 

energy and errors/incompatibilities were fixed by hand.  This process was tedious and I found it 

to be limited in usefulness for the time and effort involved.  Additionally, the final result after 

energy minimization was significantly different than other PH domain structures.  This may have 

been due to errors in alignment, or problems at any of the other steps along the way.   

 In my search to overcome these problems, I began to use SwissPDBViewer, a software 

package found at the SwissProt site.  This program allowed for the easy generation of a model of 

the amino-terminal PH domain based on the PH domain of β-Spectrin.  

Problems/incompatibilities were fixed easily and the resultant model appeared to follow the 

conserved structure of PH domains.  This program also allowed for the generation of POV-Ray 

scenes of the model, giving high resolution images, as included here.   
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Figure 1  Model of the amino-terminal PH domain of AFAP-110.  This model displays the 

backbone atoms as ribbon structures.  Blue ribbons indicate beta strands, while red ribbons 

indicate the alpha helix.  Ball and stick cartoons of the side-chain atoms of several residues 

thought to be involved in PKC binding are included, as well.  These are color-coded: blue=basic, 

white=hydrophobid, yellow=aromatic. 
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Figure 2  Model of the amino-terminal PH domain of AFAP-110.  This is the same model shown 

in Figure 1, rotated to show the face thought to be involved in binding to WD40 repeat-

containing proteins, such as RACK1.  Again, blue ribbons are beta strands and the red ribbon is 

the alpha helix.  Side chain atoms are included which may be involved in RACK1 binding: 

blue=basic, red=acidic, white=aromatic, yellow= hydrophobic. 
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Figure 3  The model of the PH domain, in a view similar to that in Figure 1.  This view includes 

the surface of the structure, calculated according to known atomic radii.  This surface is partially 

transparent to allow the visualization of the cartoon beneath.  The surface is color coded to 

display charge; blue is more negative and red is more positive.   
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Appendix IV 

 

AFAP-110 multimerizes via interactions between the PH domain and carboxy-

terminus in addition to leucine zipper-directed carboxy-terminal interactions. 
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Previous reports have indicated that the carboxy-terminal region of AFAP-110 including 

the leucine zipper can direct the self-association of AFAP-110.  Studies aimed at determining the 

region of AFAP-110 which binds this carboxy-terminus have revealed two separate sites capable 

of interacting with this region.  As seen in figure 1A, the carboxy-terminus can interact directly 

with the carboxy-terminus of another molecule of AFAP-110 and with the amino-terminal PH 

domain of AFAP-110.  Figure 1A includes western blot analysis of affinity absorptions of a 

GFP-tagged protein representing the carboxy-terminal 218 residues of AFAP-110 fused to GFP 

(GFP-Cterm).  Fusion proteins representing either the amino-terminal PH domain (GST-PH) or 

residues 511-637 (GST-511-637), which includes the leucine zipper motif, were capable of 

affinity absorbing GFP-Cterm from Cos-1 cell lysate.  

 Mutants of the amino-terminal PH domain were expressed as GST-fusion proteins to 

determine the region responsible for interaction with the carboxy-terminus.  Figure 1B shows 

that deletion of residues 180-226 from this domain abrogates the affinity absorption of AFAP-

110 from Cos-1 cell lysate.  Additional experiments have confirmed this result using purified 

recombinant AFAP-110 (data not shown).  This figure additionally shows that either deletion of 

residues 226-240 or mutation of residue 240 from tryptophan to alanine has no affect on the 

absorption of AFAP-110.  In addition, a fusion protein representing the carboxy-terminal PH 

domain fails to affinity absorb AFAP-110.  Thus the interaction between the amino-terminal PH 

domain and the carboxy-terminus depends on the integrity of residues 180-226 within the PH 

domain. 
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In order to determine the residues of the carboxy-terminus necessary for the 

homodimerization of this region, mutants of this region were used in affinity absorptions and are 

shown in Figure 1C.  Deletion of the leucine zipper (residues 554-594) and adjacent carboxy-

terminal sequences (residues 595-637) abrogates the absorption of AFAP-110 from Cos-1 lysate 

(GST-511-554).  Furthermore, deletion of the leucine zipper alone or residues 595-637 alone 

does not abrogate the absorption of AFAP-110 even though the leucine zipper alone is sufficient 

Figure 1  Affinity absorptions indicate two sites of self-association of AFAP-
110.  Affinity absorptions were performed as described in Materials and 
Methods.  (A)  Absorptions of GFP-Cterm from Cos-7 lysate using GST-511-
637 (lane 1), GST-PH (lane 2) or GST (lane 3).  (B)  Absorptions of 
recombinant AFAP-110 using GST-PH (lane 1), GST-PH∆180-226 (lane 2), 
GST-PH∆226-240 (lane 3), GST-PH240A (lane 4), GST-PH2, representing the 
carboxy-terminal PH domain (lane 5) or GST (lane 6).  (C)  Absorptions of 
GFP-Cterm from Cos-7 lysate using GST-511-554 (lane 1), GST-511-637(lane 
2) or GST (lane 3).
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for absorption of AFAP-110 (data not shown).  Thus the carboxy-terminal/carboxy-terminal 

interaction depends upon residues 554-637.  These data indicate that the mechanism of self-

association of AFAP-110 involves two sites of interaction. 

 

PKC phosphorylation of AFAP-110 directs changes in self-association of AFAP-110 

 

AFAP-110 was recently 

found to be a PKC binding 

partner and substrate, as shown 

in Chapter 3.  Additionally, the 

self-association of AFAP-110 

was also shown to be altered in 

response to PKC activation 

downstream of Src activation.  

To determine if this is a direct 

consequence of PKC 

phosphorylation, recombinant 

purified AFAP-110∆176 was 

phosphorylated by PKC in vitro 

and subjected to affinity 

absorptions with the fusion 

proteins used above.  This 

mutant, as described in Chapter 

Figure 2  Affinity absorptions indicate PKC phosphorylation-
dependent self-association of AFAP-110.  Affinity absorptions 
were performed as described in Materials and Methods.  (A) 
Absorptions of recombinant AFAP-110∆176 using GST-511-637 
as follows: AFAP-110∆176 (lane 3), and AFAP-110∆176

phosphorylated with PKC, as described in Materials and 
Methods (lane 4).  Affinity absorption of AFAP-110∆176 with 
GST is included (lane 5).  Protein loading levels are shown 
from lysate as: AFAP-110∆176 (lane 1) and PKC phosphorylated 
AFAP-110∆176 (lane 2).  (B)  Absorptions from Cos-7 lysate 
using GST-511-637 as follows: AFAP-110 (lane 1, AFAP-110 
co-expressed with Src527F (lane 2), AFAP-110∆176 (lane 3), 
and AFAP-110∆176 co-expressed with Src527F (lane 4).  
Affinity absorption of AFAP-110∆176 with GST is included 
(lane 5).  
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1, lacks both the leucine zipper and adjacent, carboxy-terminal region.  Therefore this mutant is 

likely unable to form interactions between carboxy-termini.  The affinity absorption of this 

mutant with GST-511-637 therefore relies solely on interactions with the amino-terminal PH 

domain.  Figure 2A indicates that phosphorylation of recombinant purified AFAP-110∆176 by 

PKC reduces the ability of GST-511-637 to affinity absorb this mutant, compared to the non-

phosphorylated mutant.  Thus the interaction between the amino-terminal PH domain and the 

carboxy-terminal region is regulated by PKC phosphorylation.  Affinity absorption of the same 

mutant from Cos-1 lysate supports this result, as this mutant undergoes a change in self-

association when co-expressed with Src527F (data not shown).  Additionally, the abrogation of the 

PH domain/carboxy terminal interaction reveals that the carboxy-terminal/carboxy-terminal 

interaction is not affected by Src527F co-expression.  Figure 2B shows affinity absorptions from 

lysate of Cos-1 cells expressing AFAP-110∆180-226, the mutant deficient for PH domain/carboxy-

terminal interaction.  Absorptions with GST-511-637 therefore rely on carboxy-

terminal/carboxy-terminal interactions.  In this instance, AFAP-110∆180-226 co-expressed with 

Src527F is affinity absorbed with a similar efficiency as this mutant expressed alone.  Both appear 

to be absorbed with a similar efficiency as wild-type AFAP-110 co-expressed with Src.  This is 

consistent with the hypothesis that AFAP-110∆180-226 is reduced to a dimeric state by virtue of the 

abrogated PH domain/carboxy-terminal interaction.  Together, these results indicate the PH 

domain/carboxy-terminal interactions are regulated by cellular signals, in contrast to carboxy-

terminal/carboxy-terminal interactions.   

 

PKC phosphorylation of the PH domain and adjacent region alter the affinity of these fusion 

proteins for AFAP-110 
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 As PKC phosphorylation altered the PH domain/carboxy-terminal interaction but failed 

to alter the interaction between carboxy-termini, it was surmised that phosphorylation of the PH 

domain or surrounding region may be responsible for this effect.  Indeed, this amino-terminal PH 

domain contains two serine residues which fit the PKC consensus phosphorylation sequence.  

Furthermore, the adjacent carboxy-terminal region contains multiple sites which also fit this 

consensus and has thus been termed the serine/threonine kinase interaction (STK) domain.  

Fusion proteins were used to examine the effects of PKC phosphorylation of this region on PH 

domain/AFAP-110 interactions.  GST-PH, which represents the amino-terminal PH domain, and 

GST-PHSTK, which represents this PH domain and adjacent carboxy-terminal region (residues 

248-347) were phosphorylated in vitro with recombinant PKCα.  These phosphorylated fusion 

proteins were used to affinity absorb recombinant purified AFAP-110 and were compared to 

affinity absorptions 

with non-

phosphorylated 

forms of the same 

fusion proteins.  

The results are seen 

in Figure 3.  PKC 

phosphorylation 

appears to have 

opposite effects on 

the abilities of 

Figure 3  PKC phosphorylation of PH domain-containing fusion 
proteins alter their affinity for AFAP-110.  Affinity absorptions 
and PKC phosphorylations were performed as described in 
Materials and Methods.  (A)  Absorptions of recombinant 
purified AFAP-110 were performed using the following:  GST 
(lane 1), GST-PH (lane 2), GST-PHSTK (lane 3), PKC 
phosphorylated GST-PH (lane 4), PKC phosphorylated GST-
PHSTK (lane 5).  mAb 4C3 revealed the presence of AFAP-
110, and subsequent reprobing with anti-PKCα revealed the 
presence of recombinant PKCα.
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these proteins to affinity absorb AFAP-110.  GST-PH appears to have an increased affinity for 

AFAP-110 upon phosphorylation, while GST-PHSTK has a decreased affinity for AFAP-110 

upon phosphorylation.  One possible explanation for this result is that interactions between the 

PH domain and the STK region may occur and display an increased affinity upon PKC 

phosphorylation.  This may exclude the carboxy-terminal region, which would result in a change 

in self-association similar to that seen here.  Additionally, this would also predict that the 

phosphorylated PH domain alone would exhibit an increased affinity for AFAP-110, as seen 

here.   This would presumably occur by virtue of interactions between this phosphorylated GST-

PH fusion protein with the STK region of the AFAP-110 molecule being affinity absorbed.   

 Possible other explanations for this result include competition for binding sites with PKC, 

which was included in this assay to phosphorylate the fusion proteins.  To examine this 

possibility, the membrane was reprobed with antibodies to visualize PKC in the absorbate.  The 

results indicated that equal amounts of PKC were present in both GST-PH and GST-PHSTK 

absorbates (Figure 3).  Thus, it seems unlikely that PKC would be competing with AFAP-110 for 

affinity absorption in one but not both of these.   

 Future work on the self-association of AFAP-110 needs to address several issues. Firstly, 

the results presented here need to be recapitulated to confirm them (Figures 2 and 3, 

specifically).  To further address the idea that PH/carboxy-terminal interactions are regulated by 

PKC phosphorylation and carboxy-terminal/carboxy-terminal interactions are not, an experiment 

using PKC to phosphorylate GST-PH and GST-PHSTK should also include GST-511-637.  The 

idea that the PH domain and STK region interact needs to be examined.  Two attempts have been 

made to affinity absorb GFP-STK, representing the STK region fused to GFP, with GST-PH.  

The results indicated GFP-STK was absorbed.  This result should be confirmed, including the 
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PH domain mutants to ask which portion of the PH domain contacts the STK region.  

Additionally, the GST-PH and GST-PHSTK fusion proteins could be phosphorylated by PKC in 

vitro and subjected to tryptic analysis to determine if the resultant radioactive spots correspond to 

those seen in wild-type AFAP-110 upon phosphorylation by PKC.  As one or more of the 

potential sites in the STK region are likely phosphorylated, experiments with the mutant form of 

AFAP-110 lacking this region may aid in these studies.  Preliminary results with this mutant 

indicate deletion of this region may block the ability of PKC to induce the change in self-

association as well as cytoskeletal reorganizations.  These results should be confirmed.   
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Appendix V 

 

The amino-terminal PH domain of AFAP-110 may direct interactions with 

RACK1 
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PH domains have been shown to interact with proteins which contain WD40 repeats, 

such as Gβγ and RACK1.  RACK1 is the receptor for activated C kinase, which has been shown 

recently to interact with Src in addition to PKC, as described in the discussion section.  Both PH 

domains from AFAP-110 share homology with PH domains which bind these proteins within the 

portion of the PH domain thought to coordinate this interaction.  Table 1 demonstrates this 

homology, and presents a consensus for this binding.  As in the case of PH/PKC interactions as 

detailed in the introduction, this consensus also indicates the conserved hydrophobic residues 

thought to stabilize the structure, as identified from solved PH domain structures.    

   β7             Alpha helix 

PH Domain  
 
Bark GKQFVLQCDSDPELVQWKKELRDAYREAQQLVQ 
Ras-GRF QKSLELRTDDSKDCDEWVAAIARASYKILATQH 
OSBP AQTYHLKASSEVERQRWVTALELAKAKAVKMLA 
Rac B VIERTFHVDSPDEREEWMRAIQMVANSLKQRAP 
B-SPECTRINh GSEWLFHGKDEEEMLSWLQGVSTAINESQSIRV 
B-Spectrinm DNEYLFQAKDDEEMNTWIQAISSAISSDKHDTS 
B-Spectrind GALFLLQAHDDTEMSQWVTSLKAQSDSTAVAAS 
IRS-1 DEHFAIAADSEAEQDSWYQALLQLHNRAKAHHD 
DYN YRQLELACETQEEVDSWKASFDRAGVYPERVGD 
PLC G   LKTLSLQATSEDEVNMWIKGLTWLMEDTLQAPT 
CONSENSUS    *Ψ* Ψ S---*  *Ψ Ψ*  Ψ 
AFAP, Nt PH ADALVLAVQSKEQAEQWLKVIKDVCSNCTGTVD 
AFAP, Ct PH QEVAVLEASSSEDMGRWIGMLLAETGSSTDPGA 
 
Table 1  Alignment of the potential WD40 repeat domain binding region of the PH domains of 
AFAP-110 with several other PH domains known to bind these domains.  A consensus sequence 
for this stretch is shown and symbols used are as follows: Ψ indicates hydrophobic residues, - 
indicates negatively charged residues, and * indicates buried hydrophobic residues which 
stabilize the PH domain, as determined by NMR.  Consensus is modified from Touhara et al. and 
identifies positions common to 5 or more of the sequences shown.  Residues contained within 
beta sheets are in bold.  Sequences and alignments are from Touhara et al., and NCBI structure 
database information. 
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 To test the potential interaction between the PH domains of AFAP-110 and RACK1, 
affinity absorptions with these domains were performed.  Figure 1 includes these absorptions, 
which indicate the amino-terminal PH domain can affinity absorb RACK1 from chick brain 
lysate.  The carboxy-terminal PH domain failed to absorb RACK1.  This experiment was 
repeated, and indicated identical results.  Co-immunoprecipitations using anti-RACK1 were 
performed, and SDS-PAGE/western blot analysis indicated that AFAP-110 was co-
immunoprecipitated, shown in Figure 1B.  This blot was stripped and reprobed and indicated that 
PKC-reactive bands were absent, using a pan-PKC antibody.  This is in agreement with previous 
reports, which have indicated an inability to co-immunoprecipitate PKC using RACK1 
antibodies.  Additionally, Figure 1B shows that the interaction between AFAP-110 and RACK1 
appears to be unaffected by treatment with 100nM PMA for 1 hour.  This experiment was 
performed, however, in NIH3T3 fibroblasts, which appear to be unresponsive to this treatment in 
respect toward cytoskeletal rearrangements.  These results indicate a potential interaction 
between AFAP-110 and RACK1, a protein involved in the regulation of both Src and PKC. 
 

Figure 1  AFAP-110 may interact with RACK1 through the amino-terminal
PH domain.  (A)  Absorptions of RACK1 from chick brain lysate using GST
(lane 2) or GST-PH (lane 3).  Lane 1 was loaded with 5µg lysate.  (B)  Co-
immunoprecipitations of AFAP-110, as visualized with mAb 4C3, with anti-
RACK1 antibodies.  Immunoprecipitation was from NIH3T3 cells (lane 1) and
NIH3T3 cells treated with 100nM PMA for 1 hour (lane 2).
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Appendix VI 

 

AFAP-110 localization in epithelial cells 
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To examine the localization of AFAP-110 in epithelial cells, Caco-2, MDCK, and A431 

cells were examined.  The results shown here indicate that AFAP-110 is colocalized with actin 

filaments inside Caco-2 cells which are confluent, but fails to colocalize with actin at cell/cell 

junctions.  These junctions are thought to maintain the integrity of the epithelial sheet and 

prevent cell migration from the sheet.  AFAP-110 is found in actin-rich structures at the cell 

membrane in cells which are not touching other cells or in portions of cells which are not 

abutting other cells, as seen in Figure 1.  Similar results were seen in A431 cells and MDCK 

cells.  Additionally, treatment of confluent cells with 100 nM PMA for 1 hour to activate PKC 

results in the detachment of the cells from one another and AFAP-110 is found in actin-rich 

membrane structures (data not shown).  This indicates AFAP-110 may be involved in the 

destabilization of cell/cell junctions which are necessary for epithelial cell migration.  

Transfection experiments with GFP-tagged forms of AFAP-110 supports this.  GFP-AFAP-110 

expressed in Caco-2 cells, shown in Figure 2, colocalizes with actin filaments within these cells, 

but fails to colocalize with actin structures at cell/cell junctions.  In contrast, GFP-AFAP-110∆lzip 

is found in actin-rich structures at the cell membrane.  As this mutant activates cSrc, it seems 

likely that AFAP-110 could be involved in the regulation of cell/cell junctions. 
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Actin AFAP-110

Figure 1  AFAP-110 is absent from cell/cell junctions in Caco-2 
epithelial cells.  Caco-2 cells were fixed and stained with BODIPY-
Phalloidin to visualize actin and ab F1 to visualize endogenous 
AFAP-110.  Actin at cell/cell junctions are highlighted with arrows.
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Actin GFP-AFAP-110

Actin GFP-AFAP-110∆lzip

Figure 2  AFAP-110∆lzip is localized at the cell membrane in Caco-2 cells.  Caco-2 cells 
were transfected using Effectene (Qiagen).  Cells were grown to confluence and actin was 
visualized with BODIPY-Phalloidin.
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