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ABSTRACT

A Metamodel-Based Monte Carlo Simulation Approach for

Responsive Production Planning of Manufacturing Systems

Minqi Li

Production planning is concerned with finding a release plan of jobs into the manu-

facturing system so that its actual outputs over time match the customer demand with the

least cost. The biggest challenge of production planning lies in the difficulty to quantify the

performance of a release plan, which is the necessary basis for plan optimization. Triggered

by an input plan over a time horizon, the system outputs, work in process (WIP) and job

departures, are non-stationary bivariate time series that interact with customer demand (an-

other time series), resulting in the fulfillment/non-fulfillment of demand and in the holding

cost of both WIP and finished-goods inventory. The relationship between a release plan and

its resulting performance metrics (typically, mean/variance of the total cost and the demand

fulfill rate) is far from being adequately quantified in the existing literature of production

planning. In this dissertation, a metamodel-based Monte Carlo simulation (MCS) method

is developed to accurately capture the dynamic and stochastic behavior of a manufacturing

system, and to allow for real-time evaluation of a release plan in terms of its performance

metrics. This evaluation capability is embedded in a multi-objective optimization framework

to enable the quick search of good (or optimum) release plans. The developed method has

been applied to a scaled-down semiconductor fabrication system to demonstrate the quality

of the metamodel-based MCS evaluation and the plan optimization results.
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Chapter 1

Introduction

This dissertation is concerned with production planning in manufacturing, which can

be loosely defined as the problem of finding a release schedule of jobs into the manufacturing

system so that the actual outputs over time satisfy, as closely as possible, the predetermined

requirements [71]. The planning horizon of production activities usually ranges from one or

several months to two years, and the frequency of planning/replanning is weekly or monthly

[40].

The purpose of production planning is to find the optimal release schedule of jobs so

that the system’s overall performance can be optimized. Typically, the planning horizon is

divided into a number of time buckets (periods), and the decision variables are the quantities

of jobs released into the system for processing during each time bucket. The performance

metrics to be optimized usually include (i) the total cost (or sometimes profit), which may

consist of the holding cost for finished goods (FG) and work in process (WIP) inventories,

and (ii) the demand fulfill rate, which may be defined as the percentage of immediately

satisfied demand.

Optimizing the performance metrics with respect to (w.r.t.) the release plan is chal-

lenging, simply because it is notoriously difficult to quantify the relationships between the

performance metrics and the input decisions. A real manufacturing system is subject to

inherent uncertainty such as probabilistic processing times, machine failures, etc. The exis-

tence of such uncertainty leads to the complicated input-output relationships of the system.

Precise definitions will be given later in Chapter 3, and herein, the symbols A(t), Q(t), and
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Figure 1.1: The input-output process of a manufacturing system.

D(t) are loosely used to represent the three time series respectively: A(t) denotes the number

of jobs released for processing, Q(t) the number of jobs (i.e., WIP) in the manufacturing

system, and D(t) the number of departure of completed jobs from the system. Figure 1.1

illustrates the input-output process of a manufacturing system. The release process A(t) is

determined by the decision variables (i.e., the release plan). Triggered by the input drive

A(t), which may well vary over time, Q(t) and D(t) are the non-stationary time series for the

system’s outputs, and their evolution also depends on the initial status of the system. The

ultimate performance metrics depend on Q(t), D(t), and the customer demand D(t): The

WIP holding cost is determined by Q(t); the FG holding cost and the demand fulfill rate

depend on the interaction between the departure process D(t) and the customer demand

D(t). In industrial practice, demand is generally a non-stationary time series as well, and is

specified through the forecasting efforts exogenous to production planning.

Despite continuous research efforts, it remains a challenge to adequately quantify the

dependence of the performance metrics upon the input release for responsive production

planning, due to the triggering/interaction between the non-stationary time series: A(t),

Q(t), D(t), and D(t). To address this difficulty, a metamodel-based Monte Carlo simulation

(MCS) method is developed in this dissertation which has the following features. First, for

a given release plan, it enables the thorough evaluation of the probabilistic measures of the

system performances, which include not only the expectations (e.g., the mean cost) but also

the variances (e.g., the variance of the cost) and probabilities of interest (e.g., the demand

fulfill rate). Second, it is able to accommodate practically any demand patterns. Third, it

2



allows for a quick evaluation of a candidate plan in terms of its performance metrics, and

provides the necessary basis for plan optimization in a timely manner.

The remainder of this dissertation is organized as follows. Chapter 2 provides a re-

view of the existing literature. Chapter 3 gives an overview of the metamodel-based MCS

method for responsive production planning. Chapter 4 details the input-output metamod-

eling of a manufacturing system, and the metamodel-based MCS is discussed in Chapter 5.

Chapter 6 formulates the multi-objective optimization problem for production planning, and

presents the optimization scheme with the MCS method embedded to quickly evaluate each

candidate plan. In Chapter 7, the plan optimization approach is applied on a scaled-down

semiconductor fabrication system for demonstration. A brief summary is given in Chapter

8.
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Chapter 2

Literature Review

The existing methods of production planning can be divided into two categories, the

mathematical programming, and optimization via simulation (OvS) methods, which will be

discussed respectively in this chapter.

2.1 Mathematical Programming Methods

There is an extensive literature on mathematical programming models for production plan-

ning. We classify these works into three groups, depending on how the manufacturing

uncertainty is addressed in the models.

The first group of methods completely disregard the uncertainty involved in manufac-

turing processes, and consider system outputs (WIP or flow time) as exogenous parameters

independent of job releases into the system. The vast majority of linear and integer pro-

gramming models (e.g., [48, 12, 38, 75]) fall into this group. These models are generally

computationally tractable, but their accuracy is very much questionable, especially when

the manufacturing system is heavily utilized. In this stream of works, some stochastic pro-

gramming attempts have been made to accommodate demand uncertainty [32, 91, 41].

Recognizing the queueing effects caused by manufacturing uncertainty, substantial

research efforts have been made to incorporate into mathematical programming models the

relationships between system outputs and input releases. However, this second group of

research relies on the assumption that the system is operated in steady state, to more or

less extent. The iterative approach developed in [44, 18, 19, 43, 60] integrates a detailed

4



discrete-event simulation (DES) model with a linear programming (LP) model to account

for the dependence of system outputs upon job releases. The iterative approach starts by

setting initial values of the job lead times and feeding them into the LP model to obtain

a production plan. Then the production plan is realized by the DES model and a set of

estimated job flow times are obtained which will serve as the values of job lead times used in

the next iteration. The iterative scheme stops when the changes of the estimated flow times

between iterations are relatively small such that certain convergence rule is satisfied. The

empirical results of Hung and Leachman [44] has shown that the iterative scheme converges

rapidly in most situations but may fail to converge in some cases which required further

investigation. Irdem et al. [45] also indicates that this approach has a convergency problem

when the system is working under heavy workload.

Into the second group also falls the clearing function(CF)-based methods [7, 8, 1, 45,

46, 52, 53, 54, 2], which have drawn a lot of attention. Clearing functions are regression

models estimated from DES data seeking to capture a system’s capacity of resource, and

are included as constraints in the optimization formulation of production planning. The

common approach to estimated the CF is to derive an analytical forms based on the steady-

state queuing theory first and then estimate the unknown parameters involved via regression

[57, 8]. Asmundsson et al. [7] also suggests visually fit the piecewise linear CF based on the

data collected from simulation experiments. Built on the CF formulation, some recent efforts

have been made to take into account random demand patterns by developing stochastic

programming or chance constrained optimization methods [73, 5, 77, 6]. In the second group

of work, although non-stationary DES data are frequently collected, they only affect the

optimization results through the models (e.g., CF) or parameters fitted from them. Such

model fitting implicitly assumes stationarity of the DES data, and hence the fitted models,

which serve as given constraints for plan optimization, can at best provide a snapshot for the

system’s non-stationary behavior. The limitation of stationary approximation for generally

non-stationary manufacturing systems has been long recognized and discussed [72, 81, 69, 70].
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The third group includes a few research works to address the dynamic behavior of

system outputs in mathematical programming for production planning [78, 69, 70, 39]. Based

on transient Little’s Law [11], Riano [78] developed an approximate algorithm to establish the

transient relationships between expected WIP, departures, and job releases. This analytical

approximation, which is closely tied to production planning, can be considered as parallel to

the various approximation methods (e.g., fluid and diffusion approximations) for the transient

analysis of non-Markovian queueing systems in the general queueing literature [22, 66, 59];

The analytical approximation methods are restricted to certain unrealistic assumptions, and

are inadequate to fully accommodate many features of real manufacturing systems such as

non-Markovian interarrival/service times, server failures, re-entrant job flows, etc. Missbauer

[69] proposed a transient CF, which takes an exponential functional form; compared to its

stationary counterparts, the transient CF includes the time factor as an additional predictor.

Missbauer [70] developed a two-dimensional CF by assuming that for each workstation,

the initial WIP at the beginning of a period and the total input of products during that

period are random variables following certain joint probability distribution. However, as

indicated by the author, these two works left a lot of questions and needed to be tested

using empirical or simulation data. Haeussler and Missbauer [39] tested the performance

of CF-based approaches with additional independent predictors (e.g., the expectation and

variability of the WIP from the previous time periods) using a flexible flow shop and a

scaled-down real manufacturing system.

As a final note, all the works reviewed in this section adopt a mathematical pro-

gramming framework. In the formulation of the optimization problems, the WIP and job

departures at each workstation are treated as deterministic variables, even though they

may be considered as related to each other through some functional (stationary or non-

stationary) relationships. Hence, the interaction between workstations (caused by the fact

that the stochastic departures from an upstream station serve as the random arrivals to its

downstream station) cannot be fully captured; similarly, the interaction between departures

6



of completed jobs and customer demand, both of which are time series, cannot be suffi-

ciently described either. In these works, the performance metrics (e.g., the expected total

cost) are computed based on the deterministic characterization of individual workstations

(and systems), and may well deviate substantially from the real situations.

2.2 Optimization via Simulation (OvS) Methods

Liu et al. [64] adapted an OvS method to solve the production planning problem for a

scaled-down semiconductor fabrication system. The DES can mimic the target manufactur-

ing system with any desired details, and can naturally accommodate any customer demand

patterns. Initialized at the current status of the real system of interest, the DES can simu-

late the manufacturing and demand fulfillment process under a candidate release plan, and

obtain the system performance metrics over the planning horizon. With multiple simulation

replications, the performance metrics associated with a release plan can be estimated. Built

on DES’ evaluation ability, OvS can be performed [42]. Although accurately relating the

performance metrics to the release decision, performing DES could be very consuming. As

the complexity of system increases, this drawback becomes critical and OvS may well not

be able to generate good decisions in a reasonable amount of time.
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Chapter 3

Methodology Overview

In light of the limitations of the existing methods in the production planning liter-

ature, we developed a metamodeling-based approach: The plan optimization is eventually

solved in an OvS scheme, whereas the computationally expensive DES is replaced by the

metamodel-based MCS, which allows for an accurate and timely quantification of the input-

output relationships for manufacturing systems. The development of the metamodel-based

MCS is the key contribution of this work, and it serves as the foundation for responsive plan

optimization.

Recall the input-output process illustrated in Figure 1.1. For convenience of discus-

sion, the following notations are used:

∆t: the time interval considered as the basic time unit. All the time variables/parameters

in this work are measured in terms of the time unit ∆t.

t: the time index measured in terms of the basic time unit.

H: the length of planning horizon, with H given in terms of the basic time unit.

A(t): the input release (or arrival) process to the system which counts the number of arrivals

during the time interval (t, t+ 1].

x(t) = E[A(t)]: the first moment of the arrival process A(t).

Q(t): the state process of the system which counts the number of work in process (WIP)

in the system at time t.

mi(t) = E[Qi(t)]: the ith moment of the state process Q(t) (i = 1, 2).

8



m1j(t) = E[Q(t)Q(t− j)]: the first moment of Q(t)Q(t− j) (j = 1, 2, . . . , JQ), where JQ is

the highest order of the time lag needed to describe the WIP process.

D(t): the departure process from the system which counts the number of finished jobs

during the time interval (t, t+ 1].

di(t) = E[Di(t)]: the ith moment of the departure process D(t) (i = 1, 2).

d1j(t) = E[D(t)D(t− j)]: the first moment of D(t)D(t− j) (j = 1, 2, . . . , JD), where JD is

the highest order of the time lag needed to describe the departures.

eQD(t) = E[Q(t)D(t)]: the first moment of Q(t)D(t).

D(t): the demand process which counts the quantity requested by customers at the end of

time t.

The input A(t) is assumed to be completely characterized by x(t), which is a common

assumption in all the existing production planning works. For detailed justification of this

assumption, please refer to Section 1.4 of Yang and Liu [90].

The production planning task is thus to determine the release plan {x(t); t =

1, 2, . . . , H}. The outputs, {Q(t), D(t); t = 1, 2, . . . , H}, are bivariate time-series counts

described by the characteristics vector

y(t) = (m1(t),m2(t), d1(t), d2(t),m11(t), . . . ,m1JQ(t), d11(t), . . . , d1JD(t), eQD(t))>. (3.1)

The demand D(t) is a given time-series process pre-specified by forecasting methods outside

of the scope of production planning. The output processes {Q(t), D(t); t = 1, 2, . . . , H},

interact with the demand {D(t); t = 1, 2, . . . , H} and determine the system performance

over t = 1, 2, ..., H, which typically includes the total cost and demand fulfill rate.

In search of the optimal release plan, a multi-objective genetic algorithm (MOGA) is

adopted to explore the input decision space, as will be seen in Chapter 6. For each candidate

plan, its performance metrics are evaluated following the two steps shown in Figure 3.1.

9



Step (1): For an arbitrary release plan specified by {x∗(t); t = 1, 2, . . . , H}, the pre-obtained

metamodel is employed to predict the characteristics (3.1) of the output processes

{Q(t), D(t); t = 1, 2, . . . , H} over the planning horizon. The prediction can be made

in no time and with the high-fidelity of DES, since the metamodel is a mathematical

approximation estimated from DES data. As will be detailed in Chapter 4, the meta-

model takes the form of difference equations, is fitted from extensive DES data obtained

offline (prior to performing plan optimization), and is able to accurately quantify the

dependence of the output characteristics (3.1) upon the input release plan.

Metamodeling is to bridge the gap between the time-consuming DES and the need for

responsive decision making [4]. Once the configuration of a manufacturing system is

established, its DES can be developed and kept running for weeks (or even months) to

provide DES data for the estimation of the metamodel. The resulting metamodel not

only embodies the high fidelity of DES, but also allows for quick ”what-if” analysis,

and hence can be used to support responsive production optimization when the need

for decision arises.

Step (2): As pointed out in Chapter 1, the performance metrics result from the interactions

of general time-series counts {Q(t), D(t); t = 1, 2, . . . , H} and {D(t); t = 1, 2, . . . , H},

and they cannot be assessed analytically. In this work, an MCS method for time-series

counts is developed (in Chapter 5) to simulate {Q(t), D(t); t = 1, 2, . . . , H} based on

the output characteristics (3.1) obtained from Step (1), and to numerically evaluate

the performance metrics in a timely manner. This evaluation step requires the time of

fast MCS, as opposed to the time-consuming DES. 

 

 

 

 

 

Input 
A release plan  

of jobs 

Metamodel 
Outputs 

Characteristics of the 
system’s output processes 

Monte Carlo 
 

Simulation 

Objective Metrics 
(i): demand fulfill rate 
(ii): mean and standard 
deviation of cost

Figure 3.1: Evaluating a release plan’s performance.
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Hence, the two steps shown in Figure 3.1 allow for the accurate and timely evaluation

of a release plan, and hence provide the necessary basis for high-quality and responsive

optimization of production plans.
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Chapter 4

Metamodeling via Offline Discrete-Event Simulation

The metamodel in Step (1) of Figure 3.1 characterizes the time-dependent behavior of

a general manufacturing system, and is obtained by extending the metamodeling method in

Yang and Liu [90]. In [90], the metamodel is fitted from DES data to quantify the relation-

ship between x(t), the first moment of the arrivals A(t), and {m(t), d(t)}, the first-moment

measures of the output processes {Q(t), D(t)}. As noted earlier, {Q(t), D(t)} are bivariate

time-series counts, and thus their first-moment measures are not adequate to characterize

these processes. In this work, the metamodeling in [90] is extended to quantify the functional

relationships between the input x(t) and the y(t) vector, which includes the first- as well as

second-moment measures of {Q(t), D(t)} as shown in (3.1). The metamodeling methods are

described bellow, and emphasis goes to the aspects different from those in [90].

4.1 Functional Form of the Metamodel

As in Yang and Liu [90], the metamodel takes the form of difference equations, and the

characteristics vector y(t) can be expressed in general as

y(t) = F(x(t− 1), x(t− 2), ...,y(t− 1),y(t− 2), ...), (4.1)

where F is a vector function with compatible dimension of y(t). Each component function Fi

specifies the dependence of the ith element of y(t) upon a given input {x(t−1), x(t−2), . . .}

and the system’s historical outputs {y(t − 1),y(t − 2), . . .}. As in [90], Fi assumes the

12



functional form of a third-order polynomial. The metamodel (4.1) is estimated based on the

data obtained from running DES of the manufacturing system.

4.2 Sampling via Discrete-Event Simulation (DES)

To fit the metamodel (4.1) that functionally relates x(t) to y(t), extensive DES experiments

are carried out. For the DES, job arrivals are modeled by a time-varying process (e.g.,

non-stationary Poisson) which is characterized by its arrival rate x(t). Each simulation

run is performed by feeding the stochastic arrivals with a pre-specified x(t) to the system

for a simulation length of L time units (∆t), and a total of R simulation replications are

obtained. The specification of the input x(t), L and R are detailed in [90], and also provided

in Appendix B for reader’s convenience.

From the rth replication, the arrival, WIP state and departure processes {Ar(t), Qr(t),

Dr(t); t = 1, 2, . . . , L} are recorded. Based on the R replications, the input-output data for

the metamodel fitting are denoted as {(x̃(t), ỹ(t)); t = 1, 2, . . . , L} and calculated as follows:

(x̃(t), ỹ(t))t =



x̃(t)

m̃1(t)

m̃2(t)

d̃1(t)

d̃2(t)

m̃11(t)

...

m̃1JQ(t)

d̃11(t)

...

d̃1JD(t)

ẽQD(t)



= R−1
R∑
r=1



Ar(t)

Qr(t)

Qr(t)
2

Dr(t)

Dr(t)
2

Qr(t)Qr(t− 1)

...

Qr(t)Qr(t− JQ)

Dr(t)Dr(t− 1)

...

Dr(t)Dr(t− JD)

Qr(t)Dr(t)



. (4.2)
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4.3 Model Fitting and Selection

From the data (4.2), the metamodel (4.1) is fitted. The various model selection issues are

discussed in details in Section 5.2 of Yang and Liu [90] regarding the functional terms included

in F of the metamodel. The additional model selection issue involved in modeling y(t), which

includes not only the first-moment but also the second-moment measures of the output

processes, lies in the determination of the time lags, JQ and JD. As defined in Chapter 3, JQ

and JD are the highest orders of autocorrelation needed to characterize the processes Q(t)

and D(t) respectively. Given the DES data {Qr(t), Dr(t); t = 1, 2, . . . , L; r = 1, 2, . . . , R},

JQ and JD can be determined by inspecting the sample partial autocorrelation function

(SPACF) [14] of the time series.

The details of model fitting is provided in Appendix C of this work for readers’

convenience. In Appendix D, the equations of fitted metamodel are given in (D.1)-(D.9),

which describes the non-stationary behavior of a scaled-down semiconductor fabrication

system (Appendix A).

4.4 Metamodel-Based Prediction

Once the metamodel has been obtained, it can be used to predict within a second the system’s

behavior under any input rate x∗(t) over a time horizon. Specifically, suppose that we are

currently standing at time 0, where typically the system history {y(t); t ≤ 0} is available.

Using the historical outputs {y(t); t ≤ 0} as the seed values to initiate the metamodel-based

computation, the future characteristic processes {ŷ(t); t = 1, 2, . . . , H} can be recursively

predicted via the metamodel for any {x∗(t); t = 1, 2, . . . , H}.

It is worth noting that the time to complete the metamodel-based recursive com-

putation for future prediction is not sensitive at all to the complexity of the system being

investigated, since the computation is performed based on the fitted metamodel, which only

involves the basic calculations such as additions and multiplications.
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Chapter 5

Metamodel-Based Monte Carlo Simulation (MCS) for System Output

Processes

This chapter is concerned with Step (2) of Figure 3.1: For a release plan {x∗(t); t =

1, 2, . . . , H}, how to evaluate the resulting system performance, having obtained the output

characteristics {ŷ(t); t = 1, 2, . . . , H} from the metamodel prediction.

As explained in Chapter 1, the performance metrics result from the interactions of the

time series {Q(t), D(t); t = 1, 2, . . . , H} and the customer demand {D(t); t = 1, 2, . . . , H}

throughout the planing horizon, and cannot in general be evaluated analytically. Hence, an

MCS method is developed in this work to bridge {y(t); t = 1, 2, . . . , H} and the performance

metrics. The MCS is able to quickly generate time-series {Q̂(t), D̂(t); t = 1, 2, . . . , H}, whose

major characteristics match the metamodel-predicted {ŷ(t); t = 1, 2, . . . , H}. Clearly, the

MCS-simulated processes {Q̂(t), D̂(t); t = 1, 2, . . . , H} are meant to mimic real (or DES)

output processes {Q(t), D(t); t = 1, 2, . . . , H}.

In this work, a parametric approach is taken to generate {Q̂(t), D̂(t); t = 1, 2, . . . , H}

via MCS: First, a parametric model family of the output time series is identified (Section

5.1); Second, with the selected model family, the time-series model is fitted which possesses

the metamodel-predicted characteristics {ŷ(t); t = 1, 2, . . . , H} (Section 5.2.1); Third, based

on the fitted time-series model, MCS is carried out to generate {Q̂(t), D̂(t); t = 1, 2, . . . , H}

by employing certain pseudo-random generation mechanisms (Section 5.2.2).

15



5.1 Time-Series Model Identification

The model identification for the output time series is performed offline based on the DES

data obtained for metamodeling. To establish the appropriate model for the bivariate process

(Q(t), D(t))>, the first task is to identify the univariate time-series models suitable to describe

Q(t) and D(t) respectively (Section 5.1.1). Then, the univariate models are combined to

form a bivariate time-series model for the joint processes (Q(t), D(t))>, by recognizing the

correlation between Q(t) and D(t) (Section 5.1.3).

5.1.1 Candidate Models of Univariate Time Series

For convenience of discussion, denote Z(t) as a univariate time series representing an output

process (that is, Q(t) or D(t)) from the system. What family of univariate time-series

models is suitable to describe Z(t)? First, Z(t) is a counting process over time, and it takes

non-negative integer values. Second, such a process from a general queueing system (e.g.,

manufacturing systems) could be over-dispersed, equi-dispersed or under-dispersed, which

means that the variance/mean ratio of Z(t) could be greater, equal or less than 1 [27].

Third, the autocorrelations of Z(t) could involve positive and/or negative values. Fourth,

the selected model family is also required to render a straight-forward relationship between

its model parameters and the process characteristics ŷ(t), since the time-series model herein

serves as a vehicle to generate MCS data {Q̂(t), D̂(t); t = 1, 2, . . . , H} that possess the given

characteristics ŷ(t).

In light of the above-mentioned model requirements, we have explored the current

time-series literature [50, 51, 88, 28, 35, 68, 49, 37, 55, 56, 3, 87, 47, 25, 92, 93, 94, 61], and

adapted/adopted the existing models to obtain three non-stationary time-series models as

the potential candidates for Z(t): N-AR, N-INAR and N-SINAR models. Each of these three

models represents the non-stationary extension from its stationary counterpart by allowing

the model parameters to vary with time. All the candidates are autoregressive models, and
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can be written in the general autoregressive form:

Z(t) =
J∑
j=1

R(αj(t), Z(t− j)) + ε(t); t = 1, 2, . . . (5.1)

In (5.1), J is a positive integer representing the order of the autoregressive model, ε(t)

denotes an independently-distributed innovation, {αj(t); j = 1, 2, . . . , J ; t = 1, 2, . . .} are

time-dependent model parameters, and R represents a random operator. It is assumed

that all the random operations in R are performed independently of each other and also

independent of the innovation process {ε(t); t = 1, 2, . . .}.

The properties of these three models are summarized in Table 5.1. In the order of

increasing complexity, N-AR, N-INAR and N-SINAR models are described as follows.

Table 5.1: Summary of the three univariate time-series models.

Distribution Feasible range Able to accommodate negative Feasible range
of ε(t) of Z(t) autocorrelations? of αj(t)

N-AR Normal R Yes (− inf, inf)
N-INAR GP N No [0, 1]
N-SINAR GP Z Yes [−1, 1]

Model 1: N-AR model is extended from the classic AR models [14] to have time-varying

parameters {αj(t); j = 1, 2, . . . , J ; t = 1, 2, . . .} [33, 34, 76, 74, 20, 10]. For N-AR, the

general model (5.1) takes the specific form of

Z(t) =
J∑
j=1

αj(t)Z(t− j) + ε(t); t = 1, 2, . . . , (5.2)

where Z(t) ∈ R, and ε(t) is independently normally distributed.

Model 2: N-INAR model is extended from the integer valued autoregressive (INAR) model

[28, 50, 88] by using time-varying parameters [15, 30]. For N-INAR, the general model

(5.1) takes the specific form of

Z(t) =
J∑
j=1

αj(t) ◦ Z(t− j) + ε(t); t = 1, 2, . . . , (5.3)
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where Z(t) ∈ N. The innovation ε(t) is an independent non-negative integer-valued

random variable, and controls the dispersion behavior of Z(t) [88]. In order for N-INAR

to model over-, equi- and under-dispersed data, the following discrete distributions

could be used for ε(t): generalized Poisson (GP) [24], double Poisson [29], COM-

Poisson [80], Lerch distribution [88], or weighted Poisson [88]. In this work, GP is

adopted for ε(t) out of the following considerations: First, assuming GP for ε(t) allows

the distribution parameters of ε(t) to be straight-forwardly derived from the data

characteristics ŷ(t); Second, GP is most widely studied and used in modeling integer-

valued time series [94, 88].

The operator “◦” in (5.3) denotes the binomial thinning process [84] which is defined

as

α ◦ n =
n∑

m=1

Cm for n ≥ 0 (5.4)

where α ∈ [0, 1] is the operation parameter and Cm is a sequence of independent and

identically distributed Bernoulli random variables independent of Z(t), with P(Cm =

1) = α. Since α takes the value of αj(t) (j = 1, 2, . . . , J) in (5.3), αj(t) is restricted

to be within the range of [0, 1]; and consequently, N-INAR only allows for time series

with certain positive autocorrelation patterns [14].

Model 3: N-SINAR N-SINAR is the non-stationary extension of the signed integer-

valued autoregressive (SINAR) model introduced in [55] and [23]. For N-SINAR, the

general model (5.1) takes the specific form of

Z(t) =
J∑
j=1

F (αj(t)) ◦ Z(t− i) + ε(t), (5.5)

where Z(t) ∈ Z. The innovation ε(t) is an independent integer-valued random variable.

As with N-INAR, the GP distribution is employed for ε(t) in N-SINAR, and allows

N-SINAR to handle over-, equi- and under-dispersed data.
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The operator “F (·)◦” denotes the generalized thinning process [55]

F (α) ◦ n =

 sign(n)
∑|n|

m=1Cm if n 6= 0

0 otherwise

where α ∈ [−1, 1] is the operation parameter; sign(n) equals to 1 if n ≥ 0 and −1

if n < 0; and {Cm;m = 1, 2, . . .} are independent and identically distributed random

variables with the probability distribution given as below [23]

P(Cm = −1) =
(1− α

2

)2
, P(Cm = 0) =

1− α2

2
, P(Cm = 1) =

(1 + α

2

)2
. (5.6)

Since α takes the value of αj(t) (j = 1, 2, . . . , J) in (5.5), αj(t) is restricted to be

within the range of [−1, 1]; and thus, N-SINAR is able to accommodate both positive

and negative serial correlations due to its flexible thinning operators (5.6).

5.1.2 Model Selection for Univariate Time Series

From extensive offline DES (Section 4.2), the time-series data for an output process can be

obtained and represented as {Zr(t); t = 1, 2, . . . , L; r = 1, 2, . . . , R}. Recall that L denotes

the simulation length of each replication, and R the number of replications. Clearly, Zr(t)

could be the WIP state Qr(t) or the departure Dr(t) as denoted in Section 4.2. As discussed

in 4.3, the autoregressive order J in model (5.1) can be determined based on the data

{Zr(t); t = 1, 2, . . . , L; r = 1, 2, . . . , R}.

The remaining question yet to be answered is: How to select from the three-model

ensemble (i.e., N-AR, N-INAR, and N-SINAR) the most appropriate one to describe the

data? Both transient and steady-state data are included in {Zr(t); t = 1, 2, . . . , L; r =

1, 2, . . . , R} following the design of DES experiments in [90]. For the purpose of time-series

model selection, only the steady-state data are used for convenience. In the spirit of finding

the simplest and the most adequate model, we provide the following guidelines.
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First, the steady-state data are subjected to normality tests, such as QQ-plot [89],

Kolmogorov-Smirnov test [67] or Shapiro-Wilk test [82], to determine if N-AR is appropriate.

Although the time series are non-negative integer counts, the simplest N-AR may provide

an adequate fit, especially when the counts are large. If the data fail the normality tests,

then the integer-valued models (that is, N-INAR and N-SINAR) will be considered in the

follow-up step.

Second, as the relatively simple model, N-INAR is favored over N-SINAR unless it is

inadequate to capture the important data features. As shown in Table 5.1, N-INAR and N-

SINAR differ in terms of the feasible range of the parameters {αj(t); j = 1, 2, . . . , J}, which

lead to their different ranges of allowed autocorrelation patterns. Hence, the estimation

and inference of {αj; j = 1, 2, . . . , J} are used to guide the model selection between INAR

and SINAR. More specifically, from the stationary DES data, the sampling autocorrelation

function (SACF) can be calculated and fed to the Yule-Walker equation [16, 14] to obtain

the estimates of {αj; j = 1, 2, . . . , J}. Inferences on the Yule-Walker estimates can also be

derived, and the following hypothesis test can be performed:

H0 : αj ≥ 0; vs. Ha : αj < 0 (5.7)

for j = 1, 2, ..., J . If H0 is rejected for any j, N-SINAR will be selected; otherwise, N-

INAR will be adopted. The details for the Yule-Walker estimation and inference are given

in Appendix E.

5.1.3 Bivariate Time-Series Model

Following the model-selection procedure (Section 5.1.2), two univariate time-series models

are selected for the two processes, Q(t) and D(t), respectively, and can then be used to form

the bivariate time-series model for (Q(t), D(t))>.
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The bivariate time series (Q(t), D(t))> is modeled as:

Q(t) =

JQ∑
j=1

R(Q)(α
(Q)
j (t), Q(t− j)) + ε(Q)(t) (5.8)

D(t) =

JD∑
j=1

R(D)(α
(D)
j (t), D(t− j)) + ε(D)(t) (5.9)

where ε(t) = (ε(Q)(t), ε(D)(t))> is the innovation vector with

Var[ε(t)] =

 Var[ε(Q)(t)] Cov[ε(Q)(t), ε(D)(t)]

Cov[ε(Q)(t), ε(D)(t)] Var[ε(D)(t)]

 . (5.10)

In the bivariate model, the marginal distribution of ε(Q)(t) or ε(D)(t) is specified by the

corresponding univariate time-series model (Section 5.1.1); JQ and JD are the orders of the

univariate autoregressive models respectively; the specific forms of the random operators,

R(Q) and R(D), correspond to the selected univariate models for Q(t) and D(t) respectively.

5.2 Metamodel-Based Monte Carlo Simulation

As can be seen from Section 5.1, a bivariate time-series model family (5.8–5.9) can be selected

for the target processes (Q(t), D(t))> based on offline DES. The selected model can then be

fitted from the given characteristics ŷ(t) (Section 5.2.1). The fitted bivariate model allows

for the MCS of (Q̂(t), D̂(t))> (Section 5.2.2).

5.2.1 Time-Series Model Fitting

Denote the fitted bivariate time-series model as

Q̂(t) =

JQ∑
j=1

R(Q)(α̂
(Q)
j (t), Q̂(t− j)) + ε̂(Q)(t) (5.11)

D̂(t) =

JD∑
j=1

R(D)(α̂
(D)
j (t), D̂(t− j)) + ε̂(D)(t). (5.12)
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The fitted parameters include {α̂(Q)
j (t); j = 1, 2, . . . , JQ}, {α̂(D)

j (t); j = 1, 2, . . . , JD},

Ê[ε̂(Q)(t)], Ê[ε̂(D)(t)], V̂ar[ε̂(Q)(t)], V̂ar[ε̂(D)(t)] and Ĉov[ε̂(Q)(t), ε̂(D)(t)], which can be derived

analytically as functions of the metamodel-predicted characteristics ŷ(t). Please refer to

Appendix F for the derivation.

Hence, the bivariate process described by the fitted model possesses the same char-

acteristics as those specified by ŷ(t). Specifically,

• The marginal mean, variance, and lag-j (j = 1, 2, . . . , JQ) autocorrelations of Q̂(t) are

the same as those specified by ŷ(t); the same can be concluded for D̂(t).

• The covariance of Q̂(t) and D̂(t) is the same as that specified by ŷ(t).

5.2.2 Monte Carlo Simulation of the System Output Processes

The fitted bivariate model (5.11)–(5.12) can be used to perform MCS for the generation of

(Q̂(t), D̂(t))> time series mimicking the real WIP-state and departure processes.

The historical data {Q(t), D(t); t = 0,−1, ...,−max(JQ, JD)+1} is typically available

to serve as the seed to initiate the computations (5.11)-(5.12). With given mean vector

(Ê[ε̂(Q)(t)], Ê[ε̂(D)(t)])> and variance–covariance matrix

V̂ar[ε(t)] =

 V̂ar[ε̂(Q)(t)] Ĉov[ε̂(Q)(t), ε̂(D)(t)]

Ĉov[ε̂(Q)(t), ε̂(D)(t)] V̂ar[ε̂(D)(t)]

 , (5.13)

the bivariate innovation process (ε̂(Q)(t), ε̂(D)(t))> can be simulated. As explained in Section

5.1.1, herein a univariate innovation follows a continuous normal or discrete GP distribution.

If both ε̂(Q)(t) and ε̂(D)(t) are normally distributed, the bivariate innovations can be easily

generated by the simulation algorithms for multivariate normal distributions [79]. If both

innovation processes follow discrete GP, the copula-based algorithm in Avramidis et al. [9]

can be used for simulation. Otherwise, if one is discrete and the other is continuous, then
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the algorithm in Channouf and L’Ecuyer [21] can be employed. The copula-based algorithms

developed by [9, 21] are given in Appendix G for readers’ convenience.
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Chapter 6

Metamodel-Based Optimization for Online Production Planning

Optimization of production planning is performed by utilizing the fast and high-

fidelity evaluation ability rendered by the metamodel-based MCS, which relates the input

release plan to the system’s performance over a planning horizon.

6.1 Problem Formulation of Production Planning

The plan optimization problem is formulated following the basic structure in the existing

production literature [64, 70, 54, 52, 8, 7]. The problem formulation also represents an

extension for generality, which is allowed by our metamodel-based methods.

Following the notations in Chapter 3, the planning horizon is denoted as (0, H] and

divided into P equal-length time buckets. The H is given in terms of the number of time

units ∆t. The time length of each bucket is set based on the practical needs, and could be

as short as one time unit. Within each bucket, the job release rate is assumed to be constant

and equals to xp with p = 1, 2, ..., P . Thus, the release plan over (0, H] can be specified by

a P × 1 vector

x = (x1, x2, ..., xP )>,

which is the vector of decision variables for plan optimization. The customer demand is a

given stochastic time series provided by forecasting efforts outside of the scope of production

planning. As in Chapter 3, the demand is denoted as {D(t); t = 1, 2, . . . , H}. Depending on

when demand is actually fulfilled in real processes, D(t) could be set as 0 at certain time

points.
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The parameters, dependent variables, and objective criteria of the optimization prob-

lem are provided below.

Parameters

wt the unit holding cost of the WIP per time unit at time t.

ht the unit holding cost of finished jobs (or products) per time unit at time t.

G0 the initial number of finished jobs or backlogged orders at time 0, the beginning of the

planning horizon.

Dependent Variables

• The output processes from the system, which have been defined in Chapter 3, are

rewritten here to stress their dependence on x:

{Q(t,x), D(t,x); t = 1, 2, . . . , H}. (6.1)

Accordingly, the characteristics of (6.1) are denoted as:

y(t,x) = (m1(t,x),m2(t,x), d1(t,x), d2(t,x),m11(t,x), . . . ,m1JQ(t,x) (6.2)

d11(t,x), . . . , d1JD(t,x), eQD(t,x))>.

whose x-free correspondence is defined in Chapter 3.

• G(t,x): The number of finished jobs at the end of the tth time unit, after the inventory

has been refilled by the newly-completed jobs and the demand (if any) has been realized

in that time unit. It is calculated as

G(t,x) = G(t− 1,x) +D(t,x)−D(t); t = 1, 2, . . . , H, (6.3)

and is a resulting time series due to the interaction of the two stochastic time series

{D(t,x); t = 1, 2, . . . , H} and {D(t); t = 1, 2, . . . , H}. In this formulation, G(t,x) is
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allowed to be a negative integer, which represents the backlogged shortage by the end

of the the tth time unit.

• I(t,x): The actual inventory of finished jobs at the end of the tth time unit, which is

given as:

I(t,x) = max{G(t,x), 0}; t = 1, 2, . . . , H. (6.4)

• B(t,x): The amount of customer demand that are realized in the tth time unit but

cannot be satisfied immediately with the existing inventory. These demands will be

backlogged and fulfilled based on first-come-first-serve.

B(t,x) =


D(t) if G(t− 1,x) +D(t,x) < 0

−min{G(t− 1,x) +D(t,x)−D(t), 0} otherwise

(6.5)

where t = 1, 2, ..., H.

Objective Criteria

The total cost associated with a release plan x can be written as:

TC(x) =
H∑
t=1

wtQ(t,x) +
H∑
t=1

htI(t,x) (6.6)

including two types of cost: (i) the WIP holding cost, and (ii) the finished-goods inventory

cost. The total cost TC(x) is a random variable dependending on the release plan x, and

it is of interest to quantify both E[TC(x)], the expected cost, and Std[TC(x)], the standard

deviation of the cost.

The backlogged shortage {B(t,x); t = 1, 2, . . . , H} can be used to obtain the demand

fulfill rate DF (x), the percentage of customer demand that can be fulfilled immediately with

existing inventory:

DF (x) =

∑H
t=1B(t,x)∑H
t=1D(t)

(6.7)
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The objectives of production planning could be to minimize E[TC(x)] and/or to maximize

E[DF (x)].

It is worth mentioning that the formulation above represents one of the possible ways

to form the optimization problem of production planning [71]. Our metamodel-based MCS

method can accommodate any formulation, depending on the practical needs.

6.2 Solving the Optimization Problem

Figure 6.1 outlines the procedure used to search for the production plans that consider

the cost and service performance. This online production planning is performed with the

two obtained offline efforts: (a) the metamodel relating a release plan x to {ŷ(t,x); t =

1, 2, . . . , H}, the characteristics of the output processes {Q(t), D(t); t = 1, 2, . . . , H}; (b) the

appropriate bivariate time-series model selected based on the offline DES data.

To consider multiple objective criteria, a multi-objective optimization algorithm such

as gamultiobj in Matlab Optimization Toolbox is adopted to search for the Pareto optimal

solutions (release plans). Such an algorithm is employed to explore the decision space of x,

and to generate candidate plans for the optimization problem, as shown in Step (v) of Figure

6.1.

Each candidate plan x is evaluated with high-fidelity and in a timely manner, through

Steps (i)-(iv). For an x, Step (i) can typically be completed within a second to obtain

{ŷ(t,x); t = 1, 2, . . . , H} over the planning horizon. Using {ŷ(t,x); t = 1, 2, . . . , H}, Step

(ii) is to obtain the fitted bivariate time-series model for (Q(t), D(t))>.

In Step (iii), MCS is performed: Based on the fitted time-series model,

{Q̂r(t), D̂r(t); t = 1, 2, . . . , H; r = 1, 2, . . . , R} is generated, with R being the number

of MCS replications; and by using the demand forecasting model, the demand series

{D̂r(t); r = 1, 2, . . . , R} is also simulated. The number of replications R required for each x

to obtain estimates of E[TC(x)], Std[TC(x)], and E[DF (x)] with desired statistical precision

is determined by a two-stage procedure [64, 90] given in Appendix H.
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In Step (iv), the performance metrics Ê[TC(x)], Ŝtd[TC(x)] and Ê[DF (x)] can be

obtained from the multiple replications of MCS data {Q̂r(t), D̂r(t); D̂r(t); t = 1, 2, . . . , H; r =

1, 2, . . . , R}.

On a computer with Inter(R) Core(TM) i7 CPU and 8G RAM, it takes 0.1 second on

average to perform one MCS replication, while one DES replication for the sample system

in Chapter 7 takes about 1 second. It is worth pointing out that the DES time depends on

the complexity of the real system of interest, whereas the MCS time per replication remains

approximately unchanged regardless of the system complexity.

 

(i) Feed the candidate plan x to the metamodel to obtain the 
characteristics of the system outputs ܡොሺݐ,   ሻ (Section 4.4)ܠ

(v) Employ a multi-objective optimization search to 
generate a candidate release plan x (or a batch of plans) 

(ii) Based on the givens (a) and (b), use ܡොሺݐ,  ሻ to determine theܠ
fitted parameters for the bivariate time-series model (Section 5.2.1)  

(iii) Use the fitted bivariate time-series model to perform Monte Carlo 
simulation (Section 5.2.2) to generate simulated outputsሼ ෠ܳሺݐ, ,ሻܠ ,ݐ෡ሺܦ  ;ሻሽܠ

and the demand process can be simulated as well  

(iv) Based on the simulated system outputs and demand, obtain the 
estimated objective criteria: E෡ሾܶܥሺܠሻሿ, Std෢ ሾܶܥሺܠሻሿ, E෡ሾܵܮሺܠሻሿ    

Online 
production 

optimization 

Givens obtained from offline efforts:  
(a) the fitted metamodel for the system (Section 4); (b) the identified bivariate 
time-series model for the output processes {Q(t), D(t)} (Section 5.1) 

Meet stopping criteria? 
No 

Yes 

Stop and return 
good release plans

Figure 6.1: Online optimization for production planning.
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Chapter 7

Empirical Results

For the purpose of demonstration, the developed method has been applied to solve

the production planning problem for a scaled-down semiconductor wafer fabrication system,

which was developed in Kayton et al. [58] and detailed in Appendix A. The system con-

sists of 9 workstations, and involves re-entrant flows, machine failures and batch processing,

which are the main features of a real semiconductor fabrication system. One type of job is

considered and the job arrivals follow Poisson distribution with time-varying arrival rates

specified by a release plan. Each job has 14 processing steps and needs to visit some work-

stations more than once. The raw processing time (not including the waiting time) for a job

is expected to be 12.9 hours, and the basic time unit ∆t is set as 2 hours.

The production planning problem formulated in Section 6.1 is specified as follows for

this case. The length of the planning horizon H is set as 672 time units (eight weeks) and

divided into eight equal-length time buckets with each one being 84 time units (one week)

long. The cost parameters are assumed to be time-independent and set as: wt = 1 and

ht = 2, following the similar cost ratio used in [63, 90]. The initial number of finished jobs

G0 equals to zero. The customer demand {D(t); t = 1, 2, . . . , H} is a forecasted time series,

which in this case is modeled as an AR-GARCH process, a widely-used time-series model for

demand forecasting [36, 83, 85, 86]. The simulation algorithm for an AR-GARCH is given

in Appendix I. In this study, four AR-GARCH processes of demand are considered, with the

expected values and realization times of demand following respectively the four scenarios in

Figure 7.1. In Scenario 1, the expected weekly demand increases steadily over the planning
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(a) Scenarios 1 and 2
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(b) Scenarios 3 and 4

Figure 7.1: Expected demand over the planning horizon of 672 time units (i.e., 8 weeks):
“◦” corresponds to Scenarios 1 or 3; “∗” corresponds to Scenarios 2 or 4.

horizon, and the customer demand is realized once a week; Scenario 2 also follows the general

increasing pattern, but allows the demand to be realized twice a week. Scenarios 3 and 4 also

correspond to different frequencies of demand realization (as Scenarios 1 and 2 do); their

expected demands are fluctuating over the time. The values of expected weekly demand

for each scenario are given later in Table 7.2. It is worth noting that in Scenarios 3 and 4,

the average demand rate in the 4th week exceeds the system capacity, the maximum rate of

production.

7.1 Offline Simulation and Modeling Efforts

Based on the DES data obtained offline, the metamodel was fitted and evaluated (Chapter

4) with the autoregressive order JQ and JD both determined as 2. First, DES was carried out

to collect the estimation data set (EDS) to fit the metamodel. Following the experimental

design strategies in [90], the input arrival rate function x(t) is specified as in Figure 7.2a for

the EDS. The x(t) is a piecewise constant function with 5 distinct levels corresponding to

five system utilizations: [0.71, 0.50, 0.92, 0.61, 0.82]. The length of a DES replication was

set as L = 1260 time units with a total of R = 75000 replications. The collected EDS takes
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(c) VDS 2

Figure 7.2: Input arrival rate functions for the estimation data set (EDS) and two validation
data sets (VDS).

the form of (4.2) and is used to fit the metamodel following Section 5.1 of [90]. The fitted

metamodel is given in (D.1)–(D.9) of Appendix D.

To evaluate the prediction accuracy of the fitted metamodel, two validation data

sets (VDS) were collected by running 70000 replications via DES using the input arrival rate

functions shown in Figures 7.2b and 7.2c, respectively. For VDS 1, x(t) is a piecewise constant

function which allows the system to be temporarily overloaded. For VDS 2, x(t) is a sine

wave function with the highest and lowest arrival rates correspond to system utilizations

of 0.9 and 0.6 respectively. These two VDS are designed to test the metamodel’s ability

to predict both transient and steady-state behavior of the system. The characteristics of

system outputs estimated from the VDS serve as the “true” values and are compared with

the metamodel-predicted results. As pointed out in Section 4.4, the system’s future outputs

can be recursively computed by feeding the arrival rate (of a VDS) to the metamodel, and

obtained within a second. The comparison results are shown in Figures D.1–D.2 of Appendix

D. Evidently, the metamodel prediction, which is represented by the solid curves, is able to

accurately track the “true” values, which are plotted as the dashed curves.

After obtaining the offline DES data, the N-AR and N-INAR were identified as the

univariate time-series models for Q(t,x) and D(t,x) respectively following Section 5.1. The

fitted metamodel and identified time-series models serve as the givens to online production

optimization, as shown previously in Figure 6.1.
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7.2 Evaluation of Release Plans

For online production optimization, a candidate plan needs to be evaluated following Steps

(i)-(iv) of Figure 6.1, by employing the metamodel-based MCS method. Herein, the eval-

uation quality of the MCS is assessed in comparison with the extensive DES results. An

extremely large number of DES replications were performed for each release plan to eval-

uate the performance metrics with very high precision; the DES estimates are considered

as “true” values for the performance metrics and used to assess the accuracy of the MCS

estimates.

Table 7.1 provides, for a release plan, the estimates of expected total cost E[TC(x)],

standard deviation of total cost Std[TC(x)] and expected demand fulfill rate E[DF (x)],

obtained via the MCS method and DES respectively. The deviations of the MCS estimates

from the DES ones are also given in the table. A total of 12 release plans are considered,

which are derived from the four demand scenarios (Figure 7.1). For instance, the first plan

in Table 7.1 is denoted as “Scenario 1×1.05”, which means that the expected number of jobs

weekly released under this plan equals to 1.05 times the expected weekly demand of Scenario

1. Judging from the relative deviations in Table 7.1, it is clear that the MCS method is able

to provide highly accurate estimates for the performance metrics of interest.

Table 7.1: Evaluation quality of the metamodel-based Monte Carlo Simulation (MCS).

Ê[TC(x)] Ŝtd[TC(x)] Ê[DF (x)]
Release plan x MCS DES Deviation MCS DES Deviation MCS DES Deviation
Scenario 1×1.05 95, 369 95, 037 0.35% 35, 597 33, 211 7.18% 92.77% 93.59% −0.88%
Scenario 1×1 74, 153 74, 666 −0.69% 31, 667 30, 522 3.75% 85.30% 86.70% −1.61%
Scenario 1×0.95 60, 643 59, 546 1.84% 27, 895 26, 182 6.54% 77.55% 77.26% 0.38%
Scenario 2×1.05 65, 306 66, 453 −1.73% 36, 318 35, 188 3.21% 85.11% 86.86% −2.01%
Scenario 2×1 48, 940 47, 960 2.04% 31, 963 30, 565 4.57% 74.49% 75.04% −0.73%
Scenario 2×0.95 37, 458 37, 699 −0.64% 26, 123 25, 977 0.56% 64.59% 65.31% −1.10%
Scenario 3×1.05 84, 354 83, 820 0.64% 33, 202 31, 448 5.58% 87.18% 87.94% −0.86%
Scenario 3×1 65, 319 65, 962 −0.97% 28, 937 28, 423 1.81% 77.65% 78.55% −1.15%
Scenario 3×0.95 52, 677 52, 654 0.04% 23, 989 23, 284 3.03% 68.77% 69.10% −0.48%
Scenario 4×1.05 55, 488 55, 512 −0.04% 32, 933 33, 523 −1.76% 77.69% 77.90% −0.27%
Scenario 4×1 41, 550 42, 347 −1.88% 28, 066 28, 754 −2.39% 66.24% 66.71% −0.70%
Scenario 4×0.95 31, 093 30, 569 1.71% 21, 804 21, 840 −0.16% 54.91% 54.01% 1.67%
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7.3 Optimization Results

In this case, the production planning is considered as a two-objective optimization problem

which seeks to minimize the expected total cost E[TC(x)] and maximize the expected de-

mand fulfill rate E[DF (x)] simultaneously. As a multi-objective optimization problem with

conflicting objectives, the goal is to find a set of non-dominated solutions that are as close as

possible to the Pareto-optimal front and that are as diverse as possible [26] to allow decision

makers to weigh the trade-offs.

As mentioned earlier, the MOGA function “gamultiobj” provided by Matlab is

adopted to perform a search in the decision space of x. The “gamultiobj” function em-

ploys the Elitism Non-Dominated Sorting GA (NSGA-II) algorithm, which is widely used

for multi-objective optimization problems [26]. The user-specified parameters for the algo-

rithm include: population size, maximum number of generations, stopping criteria, mutation

function, elite count, and initial population. In our work, the population size and maximum

number of generations are set as 75 and 8, respectively. The initial population has the same

size as the population size, and is generated by combining a fractional factorial design and

the default space-filling design in “gamultiobj” to provide a good coverage of the x space. To

be specific, a 28−2
V fractional factorial design is first conducted to generate 64 design points

in the x space, the additional 11 design points are determined using the Matlab default

design. The higher and lower levels used in the fractional factorial design correspond to

system utilization 95% and 55% respectively. All other parameters are left as their default

values in Matlab.

The production plan optimization was performed for the four demand scenarios (Fig-

ure 7.1) respectively. For each demand scenario, a number of non-dominated solutions were

obtained, and each solution’s performance pair (Ê[TC(x)], Ê[DF (x)]) is plotted in Figure

7.3. The obtained four Pareto fronts of non-dominated solutions provide similar coverage of

the performance region: The expected total cost ranges from 12, 879 to 194, 925, while the

demand fulfill rate spans from 18.82% to 99.91%. Such Pareto fronts are able to provide
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Figure 7.3: Performance metrics of the non-dominated solutions obtained from the multi-
objective optimization for each demand scenarios: “◦” corresponds to Scenarios 1 or 3; “∗”
corresponds to Scenarios 2 or 4.

decision makers relatively complete information regarding the trade-offs between cost and

customer satisfaction.

As shown in Figure 7.3 (a) or (b), the Pareto front depicted by the stars (for Scenarios

2 or 4) is slightly higher than that represented by the circles (for Scenarios 1 or 3): With

the same cost, a higher demand fulfill rate can be achieved for Scenarios 2 (or 4), compared

to Scenarios 1 (or 3). This is mainly because that the plan optimization is able to match

the job outputs with the more frequently-realized (biweekly) customer demand in Scenarios

2 (or 4), leading to lower finished-goods inventory than the cases (Scenarios 1 or 3) where

demand is realized weekly.

Table 7.2 provides for each demand scenario, two non-dominated solutions (repre-

sented by eight-element row vectors in the table) whose demand fulfill rates are respectively

around 95% and 99%, the high levels that are usually of interest. For comparison purpose,

the release plan that keeps the system running at 95% utilization over the planning hori-

zon is also given in Table 7.2, with the expected number of jobs released each week being

(120, 120, 120, 120, 120, 120, 120, 120) during the period; this release plan leads to very high

demand fulfill rate and very high cost, as expected. The selected solutions (that is, the
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row vectors in Table 7.2 representing the expected number of weekly-released jobs over the

eight-week horizon) are compared with the expected weekly demand under their correspond-

ing demand scenarios. It appears that to achieve a demand fulfill rate of about 95%, these

solutions tend to follow the same general trend of customer demand (increasing for Scenarios

1 and 2, and fluctuating for Scenarios 3 and 4), but almost always over-produce a little in

each week. This pattern becomes less obvious in the solutions leading to a demand fulfill

rate of about 99%, which is achieved by more pronounced over-production at substantially

higher total cost.

Table 7.2: Selected non-dominated solutions obtained from multi-objective optimiza-
tion for each demand scenario.

Expected weekly demand of Scenarios 1 and 2
69 76 82 88 95 101 107 113

Expected number of jobs released each week Ê[TC(x)] Ê[DF (x)]
76 79 84 92 108 103 109 117 97, 697 93.88%

Scenario 1 101 90 78 118 100 114 112 105 153, 978 99.15%
120 120 120 120 120 120 120 120 259, 128 100.00%
88 81 85 96 110 104 111 106 90, 548 93.96%

Scenario 2 90 86 106 119 120 113 116 116 141, 450 99.10%
120 120 120 120 120 120 120 120 229, 177 100.00%

Expected weekly demand of Scenarios 3 and 4
76 95 113 139 107 88 69 88

Average number of jobs released each week Ê[TC(x)] Ê[DF (x)]
88 118 115 119 109 110 76 83 112, 235 94.85%

Scenario 3 116 117 119 120 112 117 96 119 159, 374 99.24%
120 120 120 120 120 120 120 120 178, 017 99.51%
101 118 114 114 111 114 86 96 98, 539 94.33%

Scenario 4 117 120 120 115 115 120 99 102 132, 431 98.24%
120 120 120 120 120 120 120 120 146, 337 98.77%
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Chapter 8

Summary and Discussion

This dissertation developed a metamodel-based Monte Carlo simulation (MCS)

method to address a fundamental issue for optimization of production planning: the quan-

tification of the relationships between a release plan of jobs and its resulting performance

metrics (e.g., the total cost involved and customer demand fulfill rate), which serves as the

basis to find an optimum or good release plan leading to a best system performance. Such

relationships result from an input release plan triggering the manufacturing system’s non-

stationary time-series outputs (WIP and job departures), and subsequently from the output

processes interacting with the customer demand, another general time series. The existing

approaches are inadequate to capture such relationships for responsive decision making: An-

alytical methods lack the high fidelity to real systems, while discrete-event simulation (DES)

is typically too computationally intensive to run in real time. The MCS method is able to

overcome the lack of fidelity of analytical methods and the computational burden of DES,

allows for an accurate and quick evaluation of a release plan in terms of its performance

metrics, which include not only the expectations (e.g., the mean cost) but also the variances

(e.g., the variance of the cost) and probabilities of interest (e.g., the demand fulfill rate). The

evaluation time requested by the MCS is independent of the complexity of the real systems

being investigated.

The real-time “what if” analysis rendered by the MCS method provides the necessary

basis for the optimization of production planning in a timely manner. The MCS-based

multi-objective optimization problem was solved for the production planning of a scaled-
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down semiconductor fabrication system. The evaluation quality of the MCS is demonstrated

by comparing the MCS estimates with those given by DES. The non-dominated solutions

obtained from the multi-objective optimization allow decision makers to weigh the trade-offs

between conflicting objectives such as minimizing the expected total cost and maximizing

the demand fulfill rate.

Currently, the material requirement planning (MRP) is the most widely used pro-

duction planning systems used in manufacturing industry. It can be embedded into an

optimization loop to find optimal plan that minimizes the total cost. MRP is usually flawed

by ignoring the uncertainty in the manufacturing system and using fixed job lead time dis-

regarding the system congestion information. Comparing to MRP, the proposed approach

is able to fully capture the stochastic behaviour of the system and integrate with a MOGA

algorithm to find good release plans that consider the cost and customer service performance

simultaneously. Before the proposed approach can be used in manufacturing industry, there

are mainly three issues need to be solved in future research.

First, The proposed approach only deals with single-product system. In order to

handle multi-product system, the metamodel must be extended to handle more complex

system input-output relationships. To be specific, the metamodel inputs should include the

release rates of each type of products (jobs), and the metamodel outputs should include the

characteristics of the WIP and departure processes of each type of products, as well as the

interactions between different types of products. Thus the number of regression coefficients

in this extended metamodel will be huge and there may exist potential problem lies in the

model selection and fitting process.

Second, the proposed approach doesn’t consider the component parts needed for each

unit of product. An potential improvement on the current approach is to take into account

the bill of materials (BOM), and integrate the inventory, purchase and cost of component

parts of each type of products into the production planning framework.
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Third, once there is a change on the manufacturing system, a new metamodel need

to be fit by collecting extensive offline DES data, which will keep the DES model running for

weeks or even months. However, if there are frequently minor changes on the system, such

as adding a machine in a workstation or adjusting the mean time to repair for an unreliable

machine, it is hard to make the decision on whether to fit a new metamodel to accommodate

these changes.
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Appendix A

Configuration of the Example System

The example system considered in the empirical study is a scaled-down semiconductor

fabrication system developed by Kayton et al. [58]. It consists of 9 workstations, and includes

the major features of real semiconductor fabrication system [58] such as re-entrant flows,

machine failures, and batch processing. One type of jobs is considered in this work with

job processing sequence shown in Figure A.1. Each job has 14 processing steps, and needs

to visit workstation 1, 4 and 6 multiple times. The inter-arrival times of jobs are assumed

to follow exponential distribution with arrival rate specified by the job release plan. Table

A.1 gives the specific configuration of each of the 9 workstations. The first three rows of the

table specify for each station the number of machines, batch processing size, and whether

the machines are subject to random failures. Lognormal distribution is assumed for all the

processing times (PT), and Weibull is adopted for all the times to failure (TTF) and times

to repair (TTR). For each station, the means and standard deviations (Stdev) of PT, TTF

and TTR are also provided in Table A.1.

Table A.1: Configuration of workstations.

Station Index 1 2 3 4 5 6 7 8 9
Number of Machines 1 1 1 2 1 1 1 1 1
Batch Size (Min/Max) 2/4 2/4 1 1 1 1 1 1 1
Failure No No Yes No Yes Yes Yes Yes No
Mean of PT (minutes) 80 220 80 40 25 22 40 50 50
Stdev of PT(minutes) 7 16 7 4 2 2.4 4 4 5
Mean of TTF (minutes) – – 720 – 1100 1170 720 1333 –
Stdev of TTF (minutes) – – 720 – 1100 1170 720 1333 –
Mean of TTR (minutes) – – 108.3 – 117.4 126.4 108.3 180.5 –
Stdev of TTR (minutes) – – 73.6 – 79.7 85.8 73.6 122.6 –
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Station 1 Station 2 Station 3 Station 1 Station 2 Station 4 Station 5 Station 6

Station 4 Station 6 Station 7 Station 8 Station 4 Station 9

Figure A.1: Job processing sequence.
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Appendix B

Design of Experiments for Estimating Metamodel

Assume that a discrete-event simulation (DES) model is available for the investigated

system. In this part we discuss how to collect sample data via simulation experiments

to fit the metamodel. For a simulation period with a length of L time units (∆t), each

simulation replication is obtained by running the DES model under an arrival rate function

x(t). Multiple replications, say R replications, of the simulation runs need to be collected

for the sample data. The arrival rate function x(t), the simulation length L and the number

of replications R are determined following the design of experiments (DOE) procedures in

Yang and Liu [90] and given bellow.

Since simulation data during both steady state and transient period of the system

need to be collected for the model fitting, a piecewise constant form with K distinct constant

levels {x1,x2,...xK} is adopted for the arrival rate function x(t). Before we specify the levels of

x(t), the concepts of capacity and utilization are introduced as follows. The system capacity

η is defined as the maximum arrival rate the system can handle with long term stability; the

system utilization under the arrival rate xm equals to xm/η which describes the fraction of

busy time in the long run. Usually, the utilization is in the range of (0, 1) and the system

behaviour under high utilization receives more concern than that under the low utilization

in the real world. The utilization range of interest is denoted as [ρL, ρH ] which is specified

by users and the corresponding range of the x(t) is denoted as:

[xL, xH ] = [ρLη, ρHη] (B.1)
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As mentioned by Yang et al. [90], K = 5 is recommended for x(t) and the steady state

behaviour of the system can be captured by spreading the 5 distinct levels evenly across the

range of [xL, xH ]. In order to examine the interaction effects between x(t) and y(t), it is also

recommended that the 5 arrival rates are sequenced such that the difference between two

successive levels of arrival rates is maximized.

Considering that the metamodel is required to capture both steady state and transient

behaviour of the system, the total simulation length L should be determined in a manner

such that the length of the steady state period is close to that of the transient period for the

sample data. Let ltr be the length of the time that an initially empty system needs to reach

the steady state under the arrival rate xL+(xL + xH)/2, which can be estimated through

the simulation experiments following the methods in Law and Kelton [62]. In light of the

discussion above, the period length during each level of x(t) is determined to be 2ltr and the

total simulation length L for each replication would be given as 10ltr.

As the arrival rate function x(t) and the simulation length L have been specified,

we follow the two-step procedure used in [90] to determine the number of replications R as

follows. First an initial number of replications R0 are generated and the estimated m1(t) are

denoted as m̂
(0)
1 (t). Let

σ̂(0)
max = max

t=1,2,...,L
σ̂(m̂

(0)
1 (t))

be the maximum sample standard deviation of m̂
(0)
1 (t) over (0, L] resulted from the R0

replications. Then the required number of replications R can be estimated as:

R = d(σ̂(0)
max)

2/(m̂
(0)
1 (tmax)× γ%)2e

where tmax is the time that achieves σ̂
(0)
max and γ% is the desired precision. Hence at the

second step, R − R0 additional replications are carried out such that the desired precision

γ% can be reached.
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Appendix C

Model Fitting and Selection of Metamodel

Based on the DES sample data, the model (4.1) is estimated and rewritten as

ŷ(t) = F̂(θ; x̂(t), x̂(t− 1), ..., ŷ(t− 1), ŷ(t− 2), ...) + e(t) (C.1)

where θ = {θ1,θ2, ...,θJQ+JD+5} and e(t) = {e1(t), e2(t), ..., eJQ+JD+5(t)} denote the pa-

rameters to be estimated and the disturbance for function {Fi; i = 1, 2, ..., JQ + JD + 5}

respectively. The e(t) are added into the model to take into account the random errors

involved in the estimation of the x̂(t) and ŷ(t). Following the transient queuing analysis in

[90], we assume that each Fi takes the form of polynomial containing the main and inter-

action effects of the historical input and outputs. To be specific, each Fi in (C.1) takes the

form of:

yi(t) =

V1∑
j1=0

V1−j1∑
j2=0

· · ·
V1−

∑V2−1
l=1 jl∑

jV2=0

V1−
∑V2

l=1 jl∑
h=1

bij1j2···jV2hy
j1
1 (t− 1)yj22 (t− 1) · · · yjV2V2

(t− 1)xh(t− 1)

(C.2)

for i = 1, 2, ..., V2, where V1 is the highest order of the polynomial terms and V2 is the

dimension of y(t). In this work, V1 is set to be 2 based on the authors’ empirical experience

and V2 equals to JQ + JD + 5. The model (C.2) at this point is the most complicated one

and usually contains insignificant terms, thus the backward stepwise elimination procedure

adopted by [90] will be used for each Fi to obtain a reduced model with a better fit. At each
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step of the elimination, the candidate model are fitted to the sample data {x̂(t), ŷ(t), t =

1, 2, ..., L} by the least square methods [65].
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Appendix D

Estimation and Evaluation of Metamodel

m̂1(t) = m1(t− 1)− d1(t− 1) + x(t− 1) (D.1)

d̂1(t) = 0.0179 + 0.0434m1(t− 1) + 0.4561d1(t− 1)− 0.0066m2(t− 1) (D.2)

+ 0.0071m12(t− 1)− 0.1449d11(t− 1)− 0.0093m1(t− 1)d2(t− 1)

− 0.0034m1(t− 1)d11(t− 1) + 0.4666d1(t− 1)2 + 0.0072d1(t− 1)m2(t− 1)

− 0.0082d1(t− 1)m11(t− 1) + 0.0004m2(t− 1)d11(t− 1) + 0.0741d2(t− 1)x(t− 1)

− 0.0909d12(t− 1)x(t− 1)− 0.0307x(t− 1)2

m̂2(t) = 0.5662− 0.1149m1(t− 1)− 0.7456d1(t− 1) + 1.0536m2(t− 1) (D.3)

− 0.1939m11(t− 1) + 0.1469m12(t− 1)− 2.0810eQD(t− 1) + 2.7935x(t− 1)

+ 0.0119m1(t− 1)2 + 1.8148m1(t− 1)x(t− 1) + 1.0695d1(t− 1)d2(t− 1)

− 1.2257d1(t− 1)x(t− 1) + 0.0024m2(t− 1)eQD(t− 1)− 0.0026m12(t− 1)eQD(t− 1)

− 0.5545d11(t− 1)x(t− 1) + 1.3218x(t− 1)2
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d̂2(t) = 0.0875 + 0.0278m1(t− 1) + 0.7497d1(t− 1) + 0.0304m1d1(t− 1) (D.4)

− 0.0155m1(t− 1)d1(t− 1)− 0.0215m1(t− 1)d11(t− 1) + 0.3201d1(t− 1)2

+ 0.2443d1(t− 1)d2(t− 1) + 0.1496d2(t− 1)x(t− 1)− 0.1550d12(t− 1)x(t− 1)

− 0.1007x(t− 1)2

m̂11(t) = 0.1792− 0.0852m1(t− 1) + 0.2214d1(t− 1) + 1.0823m2(t− 1) (D.5)

− 0.1283m11(t− 1) + 0.0465m12(t− 1)− 0.9557eQD(t− 1) + 0.0044m1(t− 1)2

0.9168m1(t− 1)x(t− 1)− 0.00003m12(t− 1)eQD(t− 1) + 0.3236x(t− 1)2

m̂12(t) = 0.4224− 0.0820m1(t− 1)− 0.0424d1(t− 1) + 0.1221m2(t− 1) (D.6)

− 0.1556d2(t− 1) + 0.8277m11(t− 1) + 0.0438m12(t− 1)− 0.3298d11(t− 1)

− 0.8196eQD(t− 1)− 0.3403x(t− 1) + 0.0024m1(t− 1)d12(t− 1)

+ 1.0271m1(t− 1)x(t− 1)− 0.3062d1(t− 1)d12(t− 1) + 0.0124d1(t− 1)eQD(t− 1)

− 0.0018m2(t− 1)2 + 0.0035m2(t− 1)m11(t− 1) + 0.2436d2(t− 1)x(t− 1)

− 0.0017m11(t− 1)2 − 0.0001m12(t− 1)eQD(t− 1)− 0.5429x(t− 1)2
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d̂11(t) = − 0.0916− 0.0294m1(t− 1) + 0.4253d1(t− 1)− 0.0015m2(t− 1) (D.7)

+ 0.0886eQD(t− 1) + 0.0330m1(t− 1)d1(t− 1)− 0.0101m1(t− 1)d2(t− 1)

+ 0.1408d1(t− 1)x(t− 1) + 0.0080m2(t− 1)x(t− 1) + 0.1928d2(t− 1)d11(t− 1)

− 0.0153m11(t− 1)x(t− 1) + 0.0083m12(t− 1)x(t− 1)− 0.0173d12(t− 1)eQD(t− 1)

− 0.0261eQD(t− 1)x(t− 1) + x(t− 1)2

d̂12(t) = − 0.1667 + 0.0103m1(t− 1) + 0.2946d1(t− 1)− 0.0116m2(t− 1) (D.8)

+ 0.0105m12(t− 1) + 0.0699eQD(t− 1)− 0.0050m1(t− 1)d2(t− 1)

+ 0.0081m1(t− 1)x(t− 1) + 0.0051d1(t− 1)m2(t− 1)− 0.0062d1(t− 1)m12(t− 1)

+ 0.4627d1(t− 1)d12(t− 1) + 0.0011m12(t− 1)d12(t− 1)− 1.4809d11(t− 1)2

+ 3.3272d11(t− 1)d12(t− 1)− 0.0605d11(t− 1)x(t− 1)− 1.7835d12(t− 1)2

− 0.0285d12(t− 1)eQD(t− 1)

êQD(t) =− 0.6245 + 0.1760m1(t− 1) + 0.0134m12(t− 1)− 2.4162d12(t− 1) (D.9)

− 0.2578m1(t− 1)d1(t− 1) + 0.8689m1(t− 1)d11(t− 1)− 0.4930m1(t− 1)d12(t− 1)

− 0.1511m1(t− 1)x(t− 1) + 6.2565d1(t− 1)x(t− 1)− 0.0275m11(t− 1)d11(t− 1)

+ 0.0217m12(t− 1)d11(t− 1)− 9.5731d11(t− 1)x(t− 1) + 0.7797eQD(t− 1)

− 0.1312d12(t− 1)eQD(t− 1) + 6.1842d12(t− 1)x(t− 1) + 0.9478d212

− 0.6269x(t− 1)2
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Figure D.1: Evaluation of the fitted metamodel using VDS 1: dashed curves denote the
“true” values and solid curves represent the metamodel-predicted results.
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Figure D.2: Evaluation of the fitted metamodel using VDS 2: dashed curves denote the
“true” values and solid curves represent the metamodel-predicted results.
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Appendix E

Yule-Walker Estimator of Autoregressive Processes

Let Z(t) be an autoregressive process representing one of the two stationary processes

from steady-state simulation: WIP Q(t) and departures D(t). The stationary process Z(t)

can be written in the autoregressive form

Z(t) =
J∑
j=1

αjZ(t− j) + ε(t); t = 1, 2, . . . , N,

where J denotes the autoregressive order, {αj; j = 1, 2, . . . , J} the autoregressive coefficients,

ε(t) the innovation term, and N the number of observations.

The model selection in Section 5.1.2 between N-INAR and N-SINAR is made by

performing the following hypothesis test

H0 : αj ≥ 0; vs. Ha : αj < 0 (E.1)

for j = 1, 2, . . . , J . If H0 is rejected for any j, then N-SINAR will be selected; otherwise,

N-INAR will be adopted. Yule-Walker estimation and inference are performed in this work

to test the hypothesis (E.1), based on the steady-state DES data {Zr(t); t = 1, 2..., N ; r =

1, 2, ..., R}, where R is the number of replications. Let

Z̃(t) =
1

R

R∑
r=1

Zr(t).
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By central limit theorem, Z̃(t) approximately follows normal distribution with

E[Z̃(t)] = E[Z(t)], Var[Z̃(t)] =
1

R
Var[Z(t)],

Cov[Z̃(t+ j), Z̃(t)] = 1
R

Cov[Z(t+ j), Z(t)], Corr[Z̃(t+ j), Z̃(t)] = Corr[Z(t+ j), Z(t)]

when R is large. Hence, Z̃(t) can be modeled by a AR(J) process

Z̃(t) =
J∑
j=1

αjZ̃(t− j) + ε(t); t = 1, 2, . . . , N

where ε(t) is the i.i.d normally-distributed innovation term with Var[ε(t)] = σ2. Denote

γ0 = Var[Z̃(t)], Cov[Z̃(t+ j), Z̃(t)] = γj,

the Yule-Walker equation [14, 16] is written as

Γα = γ, (E.2)

where

Γ =



γ0 γ1 γ2 · · · γJ−1

γ1 γ0 γ1 · · · γJ−2
...

...
... · · · ...

γJ−1 γJ−2 γJ−3 · · · γ0


, α =



α1

α2

...

αJ


, γ =



γ1

γ2
...

γJ


.

Replacing {γ0, γ1, ..., γJ} by the sample estimates {γ̂0, γ̂1, ..., γ̂J} in (E.2), α and σ2 can be

estimated as

α̂ = Γ̂−1γ̂, σ̂2 = γ̂0 − α̂>γ̂.

Since Z(t) and Z̃(t) have the same autocorrelation structure, it can be shown that these

two processes have the same Yule-Walker estimates for α [88, 55]. The hypothesis (E.1) is

performed based on Z̃(t).
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When the sample size N is large, the Yule-Walker estimator α̂ of Z̃(t) follows asymp-

totic normal distribution [16, 17]

α̂ ∼ N (α, N−1σ2Γ−1),

and

α̂j − αj√
ŵjj/N

∼ N (0, 1)

where ŵjj denotes the jth diagonal element of σ̂2Γ̂−1. Denote Φ as the the cumulative

distribution function of the standard normal distribution. For the hypothesis test (E.1)

with significance level δ, if
α̂j√
ŵjj/N

is less than Φ−1(δ), H0 will be rejected; otherwise, H0 is

considered acceptable.
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Appendix F

Model Fitting of Bivariate Time Series

For the bivariate output process (Q(t), D(t))> driven by an arrival process, the fitted

metamodel is able to predict its characteristics

ŷ(t) = (m̂1(t), m̂2(t), d̂1(t), d̂2(t), m̂11(t), . . . , m̂1JQ(t), d̂11(t), . . . , d̂1JD(t), êQD(t))>. (F.1)

Based on ŷ(t), how to fit a bivariate time-series model for (Q(t), D(t))>, with the identified

time-series model family (Section 5.1.3)?

F.1 Properties of Autoregressive Models

The general form of the candidate autoregressive models (5.1) identified for output processes

is re-written below for convenience

Z(t) =
J∑
j=1

R(αj(t), Z(t− j)) + ε(t); t = 1, 2, . . . . (F.2)

As discussed in Section 5.1.1, the random operator R can be scalar multiplication, bino-

mial thinning “◦” or generalized thinning “F (·)◦”, corresponding to N-AR, N-INAR and

N-SINAR model respectively. A time series Z(t) following any of the three models has the
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following properties [14][28][88][55]:

E[R(αj(t), Z(t− j))] = αj(t)E[Z(t− j)] (F.3)

E[R(αj(t), Z(t− j))2] = (αj(t))
2E[(Z(t− j))2] + fR(αj(t),E[Z(t− j)]) (F.4)

Var[R(αj(t), Z(t− j))] = (αj(t))
2Var[Z(t− j)] + fR(αj(t),E(Z(t− j))) (F.5)

E[R(αj(t), Z(t− j)),R(αi(t), Z(t− i))] = αj(t)αi(t)E[Z(t− j)Z(t− i)] (F.6)

Cov[R(αj(t), Z(t− j)),R(αi(t), Z(t− i))] = αj(t)αi(t)Cov[Z(t− j), Z(t− i)].(F.7)

The form of fR(·) in (F.4) and (F.5) is model-dependent: For N-AR, fR(αj(t),E[Z(t −

j)]) = 0; for N-INAR, fR(αj(t),E[Z − j]) = αj(t)(1 − αj(t))E[Z(t − j)]; and for N-SINAR,

fR(αj(t),E[Z(t− j)]) = (1− αj(t)2)E[Z(t− j)].

Based on (F.3)–(F.7), some properties of the time series Z(t) and the innovation

process ε(t) can be derived as follows. Specifically, we have

Cov(Z(t), Z(t− j)) =
J∑
i=1

Cov[R(αi(t), Z(t− i)), Z(t− j)] + Cov[ε(t), Z(t− j)] (F.8)

=
J∑
i=1

αi(t)Cov[Z(t− i), Z(t− j)]. (F.9)

Step (F.8) is obtained by respectively expressing Z(t) and Z(t − j) in terms of (F.2). Step

(F.9) employs the property (F.7) and the assumption that Z(t− j) is independent of ε(t).

By taking expectation and variance on both sides of (F.2) and using the properties

(F.3) and (F.5), the mean and variance of ε(t) can be expressed in terms of the characteristics
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of Z(t) as follows:

E[ε(t)] = E[Z(t)]−
J∑
i=1

αi(t)E[Z(t− i)] (F.10)

Var[ε(t)] = Var[Z(t)]−
J∑
i=1

α2
i (t)Var[Z(t− i)]−

J∑
i=1

fR(αi(t),E[Z(t− i)])

−2
J−1∑
i=1

J∑
j=i+1

αi(t)αj(t)Cov[Z(t− i), Z(t− j)]. (F.11)

As will be seen below, the properties (F.9)–(F.11) enable the derivation from the metamodel-

predicted characteristics (F.1) to the fitted parameters that specify the bivariate time-series

model.

F.2 Fitting the Bivariate Time-Series Model

The following expectations, variances and covariances can be easily obtained from the meta-

model prediction (F.1):

Ê[Q̂(t)] = m̂1(t) (F.12)

V̂ar[Q̂(t)] = m̂2(t)− (m̂1(t))
2 (F.13)

Ĉov[Q̂(t), Q̂(t− j)] = m̂1j(t)− m̂1(t)m̂1(t− j) for j = 1, 2, ..., JQ (F.14)

Ê[D̂(t)] = d̂1(t) (F.15)

V̂ar[D̂(t)] = d̂2(t)− (d̂1(t))
2 (F.16)

Ĉov[D̂(t), D̂(t− j)] = d̂1j(t)− d̂1(t)d̂1(t− j) for j = 1, 2, ..., JD (F.17)

Ĉov[Q̂(t), D̂(t)] = êQD(t)− m̂1(t)d̂1(t) (F.18)

with t = 1, 2, . . . , H.
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Following the procedures in [14, 88], we use (F.12)–(F.18) to derive as follows the

fitted model parameters for the bivariate time series: {α̂(D)
j (t); j = 1, 2, . . . , JD}, Ê[ε̂(Q)(t)],

Ê[ε̂(D)(t)], V̂ar[ε̂(Q)(t)], V̂ar[ε̂(D)(t)], and Ĉov[ε̂(Q)(t), ε̂(D)(t)].

By employing (F.9), {α̂(Q)
j (t); j = 1, 2, . . . , JQ}, Ê[ε̂(Q)(t)] and V̂ar[ε̂(Q)(t)] are derived

as follows:

α̂(Q)(t) =



α̂
(Q)
1 (t)

α̂
(Q)
2 (t)

...

α̂
(Q)
JQ

(t)


= (Â(Q)(t))−1b̂(Q)(t), (F.19)

where Â(Q)(t) is a JQ × JQ matrix with the element in the ith row and jth column being:

Â(Q)(t)ij = Ĉov[Q̂(t−min(i, j)), Q̂(t−min(i, j)− |i− j|)], 0 < i, j ≤ JQ,

and

b̂(Q)(t) =



Ĉov[Q̂(t), Q̂(t− 1)]

Ĉov[Q̂(t), Q̂(t− 2)]

...

Ĉov[Q̂(t), Q̂(t− JQ)]


.

Then, based on (F.10)–(F.11), we have

Ê[ε̂(Q)(t)] = Ê[Q̂(t)]−
JQ∑
i=1

α̂
(Q)
i (t)Ê[Q̂(t− i)] (F.20)
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V̂ar[ε̂(Q)(t)] = V̂ar[Q̂(t)]−
JQ∑
i=1

(α̂
(Q)
i (t))2V̂ar[Q̂(t− i)]

−
JQ∑
i=1

fR(Q)(α̂
(Q)
i (t), Ê[Q̂(t− i)])

− 2

JQ∑
i=1

JQ∑
j>i

α̂
(Q)
i (t)α̂

(Q)
j (t)Ĉov[Q̂(t− i), Q̂(t− j)]

(F.21)

The remaining parameter to be estimated is Ĉov[ε̂(Q)(t), ε̂(D)(t)], which leads to the

specified Ĉov[Q̂(t), D̂(t)] given by (F.18). Assume JQ ≥ JD without loss of generality. The

fitted bivariate model can be written asQ̂(t)

D̂(t)

 =

JQ∑
i=1

R(Q)(α̂
(Q)
i (t), Q̂(t− i))

R(D)(α̂
(D)
i (t), D̂(t− i))

+

ε̂(Q)(t)

ε̂(D)(t)

 (F.22)

where α̂
(D)
i (t) = 0 for i > JD. Denote

Σ̂
(QD)

(t) = V̂ar


Q̂(t)

D̂(t)


 , Σ̂

(QD)
(t1, t2) = Ĉov


Q̂(t1)

D̂(t1)

 ,

Q̂(t2)

D̂(t2)


 ; t1 6= t2,

Σ̂
(ε̂)

(t) = V̂ar


ε̂(Q)(t)

ε̂(D)(t)


 , Λ̂i(t) =

α̂(Q)
i (t) 0

0 α̂
(D)
i (t)

 .
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Based on the properties (F.4)–(F.5), it can be shown that

V̂ar


R(Q)(α̂

(Q)
i (t), Q̂(t− i))

R(D)(α̂
(D)
i (t), D̂(t− i))


 = Λ̂i(t)Σ̂

(QD)
(t− i)Λ̂i(t)

>

+

fR(Q)(α̂
(Q)
i (t), Ê[Q̂(t− i)]) 0

0 fR(D)(α̂
(D)
i (t), Ê[D̂(t− i)])

 .

(F.23)

Taking the variance on both sides of (F.22) and using (F.7), (F.23) and Lemma 2.1 in Du

and Li [28], we have

Σ̂
(ε̂)

(t) = −
JQ∑
i=1

Λ̂i(t)Σ̂
(QD)

(t− i)Λ̂i(t)
> −

JQ∑
i=1

JQ∑
j>i

Λ̂i(t)Σ̂
(QD)

(t− i, t− j)Λ̂j(t)
>

−
JQ∑
i=1

JQ∑
j>i

Λ̂j(t)Σ̂
(QD)

(t− j, t− i)Λ̂i(t)
> + Σ̂

(QD)
(t)

−
JQ∑
i=1

fR(Q)(α̂
(Q)
i (t), Ê[Q̂(t− i)]) 0

0 fR(D)(α̂
(D)
i (t), Ê[D̂(t− i)]).

 (F.24)

Notice that α̂
(D)
i (t) = 0 for i > JD, and Ĉov[ε̂(Q)(t), ε̂(D)(t)] is the off-diagonal element of

Σ̂
(ε̂)

(t) in (F.24) and can be written as

Ĉov[ε̂(Q)(t), ε̂(D)(t)] = Ĉov[Q̂(t), Ẑ(t)]−
JD∑
i=1

α̂
(Q)
i (t)Ĉov[Q̂(t− i), D̂(t− i)]α̂(D)

i (t)

−
JD∑
i=1

JD∑
j>i

α̂
(Q)
i (t)Ĉov[Q̂(t− i), D̂(t− j)]α̂(D)

j (t)

−
JD∑
i=1

JD∑
j>i

α̂
(Q)
j (t)Ĉov[Q̂(t− j), D̂(t− i)]α̂(D)

i (t). (F.25)
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In (F.25), Ĉov[Q̂(t), D̂(t)] is a metamodel-predicted characteristics, and the remaining terms

need to be estimated are

Ĉov[Q̂(t), D̂(t− i)], Ĉov[Q̂(t− i), D̂(t)], t = 1, 2, ..., H, i = 1, 2, ..., JD. (F.26)

Using the properties (F.3)-(F.7), and the facts that Q̂(t − j) is independent of ε̂(Q)(t) in

(5.11) and D̂(t− j) is independent of ε̂(D)(t) in (5.12), the following results can be obtained:

Ĉov[Q̂(t), D̂(t− i)] = Ĉov[

JQ∑
j=1

R(Q)(α̂
(Q)
j (t), Q̂(t− j)) + ε̂(Q)(t), D̂(t− i)]

=

JQ∑
j=1

α̂
(Q)
j (t)Ĉov[Q̂(t− j), D̂(t− i)] (F.27)

Ĉov[Q̂(t− i), D̂(t)] = Ĉov[Q̂(t− i),
JD∑
j=1

R(D)
j (α̂

(D)
j (t), D̂(t− j)) + ε̂(D)(t)]

=

JD∑
j=1

α̂
(D)
j (t)Ĉov[Q̂(t− i), D̂(t− j)]. (F.28)

The values of {Ĉov[Q̂(−i), D̂(−j)]; i, j = 0, 1, 2, ...,max{JQ, JD} − 1} can be typically ob-

tained from the historical data to serve as the seed to initiate the computation in (F.27) and

(F.28). And Ĉov[ε̂(Q)(t), ε̂(D)(t)] can be obtained by plugging (F.26) and (F.18) into (F.25).
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Appendix G

Generation of Bivariate Innovations

For readers’ convenience, the copula-based algorithms in Channouf and L’Ecuyer [21]

and Avramidis et al. [9] are provided here for the generation of the bivariate innovation

process (ε̂(Q)(t), ε̂(D)(t))>. The characteristics of (ε̂(Q)(t), ε̂(D)(t))> are estimated and give

as: Ê[ε̂(Q)(t)], Ê[ε̂(D)(t)], V̂ar[ε̂(Q)(t)], V̂ar[ε̂(D)(t)] and Ĉov[ε̂(Q)(t), ε̂(D)(t)]. The marginal

cumulative distribution functions (CDF) for ε̂(Q)(t) and ε̂(D)(t))> are specified as FQ and

FD, respectively. In this work, the CDF could be normal or generalized Poisson (GP) as

discussed in Section 5.1.1, and herein we consider the case where at least one of FQ and FD

follows GP.

In the notations below, the time index t is omitted for clarity. Let u = (u(Q), u(D))>

be a bivariate normal random variable with

E[u] = 0, Cov[u] =

1 ϕ

ϕ 1

 .

Define ε̂ as

ε̂ = (ε̂(Q), ε̂(D))> = (F−1Q (Φ(u(Q))), F−1D (Φ(u(D))))>

The Φ denotes the CDF of stand normal distribution. The covariance between ε̂(Q) and ε̂(D)

is given as:

Cov[ε̂(Q), ε̂(D)] = E[ε̂(Q)ε̂(D)]− E[ε̂(Q)]E[ε̂(D)]
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where

E[ε̂(Q)ε̂(D)] =

∫ ∞
−∞

∫ ∞
−∞

F−1Q (Φ(u(Q)))F−1D (Φ(u(D)))φϕ(u(Q), u(D))du(Q)du(D). (G.1)

In (G.1), φϕ(u(Q), u(D)) denotes the probability density function of u. Obviously, the value

of E[ε̂(Q)ε̂(D)] depends on the choice of ϕ. Hence at this point, the problem of generating ε̂

with given characteristics turns into the covariance matching problem: Find the value of ϕ

such that

E[ε̂(Q)ε̂(D)] = Ĉov[ε̂(Q), ε̂(D)] + Ê[ε̂(Q)]Ê[ε̂(D)]. (G.2)

To solve the covariance matching problem in (G.2), the integral of E[ε̂(Q)ε̂(D)] in (G.1) is

first transformed into a sum of terms, and then a certain numerical algorithm is employed

to find ϕ̂ that solves (G.2) approximately [21] and [9].

Given the FQ, FD and Ĉov[ε̂(Q), ε̂(D)], the algorithm for generating samples of bivariate

random variables {ε̂i; i = 1, 2, ..., N} are summarized as follow:

Step 1 : Use the the formula (19) in Avramidis et al. [9] if both ε̂(Q) and ε̂(D) follow

GP distribution, or (11) in Channouf and L’Ecuyer [21] if one of them follows normal

distribution, to find ϕ̂ that solves (G.2) via numerical search (e.g. Newton-Raphson

method).

Step 2 : Generate independent bivariate standard normal variables {ui = (u
(Q)
i , u

(D)
i )>, i =

1, 2, ..., N}, where each ui satisfies:

E[ui] = 0, Cov[ui] =

1 ϕ̂

ϕ̂ 1

 .

Many softwares (e.g. Matlab, R) provide efficient algorithms to complete this step.
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Step 3 : For each i, obtain ε̂i = (ε̂
(Q)
i , ε̂

(D)
i )> by

ε̂
(Q)
i = F−1Q (Φ(z

(Q)
i )), ε̂(D) = F−1D (Φ(z

(D)
i )).
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Appendix H

Two-Stage Procedure for Sample Size Determination

For a candidate release plan x, how to determine the number of Monte Carlo sim-

ulation (MCS) replications R needed to obtain high-quality estimates of the performance

metrics: the expected total cost E[TC(x)] and the demand fulfill rate E[DF (x)]? Denote

a performance metric as M(x) in general, where M(x) can be TC(x) or DF (x). In this

work, the two-stage procedure [64, 90] is implemented to determine the value of R so that a

desired precision can be achieved for Ê[M(x)], that is,

Ŝtd
[
Ê[M(x)]

]
Ê[M(x)]

< γ%

where Ŝtd
[
Ê[M(x)]

]
is the estimated standard deviation of Ê[M(x)], and γ% the target

precision level. At the first stage, an initial number of replications R0 are generated. Denote

Ê0[M(x)] as the estimated mean of M(x) and Ŝtd0

[
Ê0[M(x)]

]
as the estimated standard

deviation of Ê0[M(x)] from the R0 replications. Then the number of replications R that is

likely to achieve the target precision level γ% is estimated as

R = dŜtd0

[
Ê0[M(x)]

]
/
(

Ê0[M(x)]× γ%
)
e.

At the second stage, R−R0 additional replications are generated and the data collected at

both stages are used to estimate the performance metrics.
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Appendix I

Simulating Demand Process

The demand process D(t) is written as:

D(t) = E[D(t)] + v(t), t = 1, 2, ..., H

where E[D(t)] is pre-given, and v(t) is a stochastic process representing the deviation of D(t)

from its mean E[D(t)]. Denote the demand realization times as

{τ1, τ2, ..., τU}; 1 ≤ τ1 < τ2 < ... < τU ≤ H,

with U being the number of demand realizations over the planning horizon. E[D(t)] and v(t)

are set as 0 at the time points when no demand is realized, that is

E[D(t)] = 0, v(t) = 0, t /∈ {τ1, τ2, ..., τU}.

In this work, v(τi) is modeled by a AR-GARCH process [13, 31], which is widely used in

modeling and forecasting demand [36, 83, 85, 86]. The AR-GARCH model is given as

v(τi) = ξv(τi−1) + ε(τi)σ(τi) (I.1)

σ(τi)
2 = φ0 + φ1(ε(τi−1)σ(τi−1))

2 + ψσ(τi−1)
2 (I.2)
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where ε(τi) is Gaussian white noise with unit variance, and ξ, φ0, φ1 and ψ are given model

parameters, which determines the variance of the demand process. The demand process can

be simulated by (I.1) and (I.2).
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