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ABSTRACT

Dynamic Analysis of a Composite Moving Beam

Ganesh Chandrasekar an

Examples of beams moving relative to supports in the longitudinal direction can be found
in conveyor belts, cassette tapes, band-saw blades, spacecraft antennas and robotic arms. While it
is appropriate to model some of the above examples as isotropic, new materials such as polymer
and metal matrix composites may offer definite benefits in certain applications. In this thesis, an
attempt is made at studying the dynamic characteristics of a composite-moving beam.

The model considered is an overhang beam on simple supports oscillating in the
longitudinal direction. The lateral response of the beam is studied due to an initia lateral
deflection. The beam is made-up of laminated composite materials. Both symmetric and
unsymmetrical lay ups are considered. Since unsymmetrical lay ups introduce bending-axial
coupling, axial deformation needs to be considered also. First Order Shear Deformation theory
(FSDT) is used to formulate the problem since transverse shear deformations are important for
composite beams. When reducing laminate plate theory to corresponding beams, plane strain and
plane stress assumptions are considered. Within the plane stress approximation, two ways of
reduction from (X,y) equations to x-equations are possible. One is to set al y-related forces and
moment resultants zero; other is to keep the cross resultants non zero. Also, as a comparison,
results are obtained based on Classical Laminate Plate theory (CLPT).

The discretization in the space domain is achieved with the use of higher-order finite
elements. Since there is relative motion between the beam and supports, traditional methods of
applying essential conditions in the finite element analysis are cumbersome. Thus, the concept of
Lagrange multipliers is used to apply the essential conditions. The resulting system of coupled
ordinary differential equations in time domain is solved using Newmark's method. The use of
Lagrange multipliers result in positive indefinite inertia and stiffness matrices and thus care must
be taken in solving such system of equations.

Results are presented in terms of tip displacements of the moving beam. A parametric
study is carried out by varying the frequency of axial motion, different composite lay-ups and ply

angles.
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1. INTRODUCTION

1.1 Problem Statement

Dynamic response of beams moving relative to supports finds its practica
applicationsin the field of earthquake engineering, conveyor belts, computer tapes pulled
at high speeds along a base, band-saw blades, chain driven wheels of military tanks and
robotic arms. The response of such beams has been studied in the past when made of an
isotropic material. The focus of the present research is in formulating and solving finite
element equations for a composite-material beam moving over two supports. Two
theories namely the Classica Laminate Plate theory (CLPT) and the First Order Shear
Deformation theory (FSDT) are used in the formulation. The anaysis is carried out for
plane stress and plane strain conditions using CLPT and plane stress condition using
FSDT. The variational principle is used to obtain the finite element equations. The
displacement boundary conditions at the location of the two supports at any instant of
time are applied by introducing Lagrange multipliers. The finite element equations are
solved using Newmark's semi explicit method in the time domain. The displacement
response of the beam is studied for symmetric and unsymmetric lay-ups and also the

effect of including the transverse shear deformation using FSDT is studied..

12  Lay-up Classification of Composite Materials

Composite materials are in the process of replacing isotropic materials in many

aspects of engineering. The primary reason for such a change is the higher strength to



weight ratio that composite materials exhibit over traditional isotropic materials. Some
common polymer-matrix composite materials readily available are e-glass-epoxy,
carbon-epoxy and graphite-epoxy. Of the three, the one with the lowest strength to
weight ratio is the e-glass-epoxy composite and the one with the highest is carbon-epoxy.

Composites are broadly classified in two categories based on the lay-up geometry,
namely "symmetric" and "unsymmetric" lay-ups. They are further divided into
"balanced" and "unbalanced" lay-ups. Symmetric laminates have the same number of
layers with the same orientation located symmetrically about the mid-plane of the
laminate. Unsymmetric laminates fail to meet this criterion. If the thickness of each
laminate is equal to its counterpart and if each layer with an angle theta has a
corresponding minus theta, it is a "balanced symmetrical” lay-up. Otherwise, it is
"unbalanced symmetrical" lay-up. In the present work, the behavior of both balanced

symmetrical and balanced unsymmetrical lay-ups are studied.

1.3 Literature Review

Dynamic response of an isotropic moving beam has been studied in detail by
several authors. Buffington and Kane (1985) studied the behavior of a uniform beam
moving longitudinally at a prescribed rate over two lateral supports. Equations of motion
were formulated considering the supports as kinematic constraints imposed on an
unrestrained beam and numerical solutions were obtained by discretizing the beam via an
assumed-mode technique. Response of the beam due to severa types of longitudinal

motion was studied. Lee (1992) formulated the equations of motion of an isotropic beam



moving over multiple supports based on Hamilton's principle and solved the equations
using an assumed-mode method. The supports were considered as rollers and were
modeled as very stiff springs acting on the beam. The rollers imparted the longitudinal
motion to the beam or the beam was considered to be pulled or pushed over frictionless
supports. Sreeram and Sivaneri (1997) carried out an h-p version finite element analysis
for an isotropic moving beam. Legendre polynomials were used as shape functions
owing to their orthogonal property. Variational principle was used for the formulation of
the finite element equations and the essential conditions were applied via Lagrange
multipliers. Three types of motion were imparted to the beam as done by Buffington and
Kane and the results were compared to that of Buffington and Kane and Lee. The
difference in the motion imparted to the beam by Buffington and Kane and Lee was
pointed out. In Buffington and Kane longitudinal motion was imparted to the beam.
Lee's equations corresponded to the motion being imparted to the supports but he
erroneously assumed that the motion was imparted to the beam and tried to compare with
the results of Buffington and Kane. The beams considered by all the authors mentioned
above are isotropic in nature and undergo longitudina motion relative to a fixed
reference frame.

Sreeram and Sivaneri (1997) also concluded two important results from their
study. A parametric convergence study was made on elements with various
combinations of internal nodes and total number of elements in a beam of one-meter
length. It was concluded that four elements with three internal nodes were optimal for
their research. They had also studied different methods for solving the time-dependent

partial differential equations, namely, Wilson's theta method, Newmark's method,



Houbolt's method and Central Difference method. It is very clear from the table
presented by Sreeram (1995) in his thesis (Table 4.8.1 pg. 60) that Newmark's method
was the closest to the exact solution and hence the most efficient of the four methods
studied.

Kadivar and Mohebpour (1997) studied forced vibration of unsymmetric
composite beams under the action of moving loads. The study included the effects of
transverse shear deformation, rotary and higher-order inertia. A one-dimensional element
with 24 degrees of freedom, that included extension, bending and transverse shear
deformation was considered. The conforming beam element was based on Hermitian
interpolation function that satisfies C* continuity condition. Analysis in the time domain
was carried out using Newmark's method. The response of an isotropic beam to a moving
force was compared with the available exact solution and numerical results. The results
of unsymmetric angle ply and symmetric cross ply laminates were illustrated and
compared to an isotropic beam. The formulation was also applied to static and free
vibration analyses and results were presented. Kadivar and Mohebpour (1998) published
essentially the same paper in another journal.

The finite element formulation presented by Kadivar and Mohebpour (1997) is
very similar to the work presented by Singh, Rao and lyengar (1991). Though the
equations formulated for the stiffness and inertia matrices were not presented in the paper
by Singh et a, to be compared with, the boundary conditions and the independent
variables were comparable to their work.

Singh, et a, studied large-amplitude free vibrations of unsymmetrically laminated

beams using Von Karman large deflection theory. One-dimensional finite elements



based on classical laminate theory, first-order shear deformation theory and higher-order
shear deformation theory having 8, 10 and 12 degrees of freedom per node, respectively,
were formulated to bring out the effects of transverse shear on the large-amplitude
vibrations. Because of the presence of bending-extension coupling, the bending stiffness
of an unsymmetric laminate is direction dependent yielding different amplitudes and
gpatial deformations for the positive and negative deflection half cycles. The problem
was studied by reducing the dynamic nonlinear finite element equations to two-second
order ordinary nonlinear differential equations using converged normalized spatial
deformations in the positive and negative deflection half-cycles. The modal equations of
motion were solved using a direct numerical integration method and results were
presented for various boundary conditions, lay-ups and slenderness ratios.

Reddy (1997) presented CLPT and FSDT for laminated composite plates. He
detailed the differences in the assumptions for the two. Reddy outlines the reduction of
the plate theories to symmetrically laminated beams wherein there is no axial bending
coupling. Reddy also presented a table of natural frequencies obtained analytically
considering fixed-fixed, hinged-hinged and fixed-free boundary conditions using the
equivalent bending stiffness obtained by considering the laminate as an equivaent
isotropic case. Barbero (1998) details the principles and concepts of using micro
mechanics, macro mechanics and ply mechanics applied to multi-layered composites. A
detailed systematic procedure was presented to calcul ate the axial, bending, coupling, and
transverse snear co-efficient matrices.

Kapania and Raciti (1989) studied and developed a ssmple one-dimensional finite

element model for the nonlinear vibration of symmetrically and unsymmetrically



laminated composite beams including shear deformation. The beam element had 10
degrees of freedom at each of the two nodes. axial displacement, transverse deflection
and slope due to bending and shear, twisting angle, in-plane shear rotation, and their
derivatives. The formulation, the solution procedure and the computer programs were
evaluated by solving a series of examples on the static response, free vibration and
nonlinear vibrations of isotropic and laminated beams. For unsymmetrically laminated
beams, the nonlinear vibrations were found to have a soft-spring behavior boundary
conditions as opposed to a hard spring behavior observed in isotropic and symmetrically
laminated beams. The in-plane boundary conditions were found to affect the nonlinear
response significantly.

Shi, Lam, and Tay (1998) studied the efficient finite element modeling of
composite beams and plates using higher-order theories. They concluded that the
transverse shear strain played an important role in the behavior of composite beams,
plates and shells and that a shear correction factor is required for the analysis of
structures based on the FSDT. The need for a shear correction factor and that it is not
uniquely defined were the primary reasons for the development of Higher Order Shear
Deformation theory (HSDT). However, they had concluded that more nodal degrees of
freedom had to be used in beam elements based on HSDT compared to those based on
FSDT even in the case where the displacement variables in HSDT are the same as those
inthe FSDT.

Chen and Yang (1985) formulated a beam finite element model including the
effect of shear deformation for symmetrically laminated beams. The element consists of

two nodes with six degrees of freedom at each node: transverse deflection and slope due



to bending and shear, and a twisting angle and its derivative with respect to the beam
axis. The formulation was implemented as a program on a microcomputer and was
capable of performing stress analysis of symmetrically laminated beam structures with a
single or combined effect of bending moment, twisting moment, shear deformation and
with arbitrary loading and boundary conditions. Their program was also capable of
performing free-vibration analysis without shear deformation. For static analysis, the
program had the capability of providing both numerical data, graphical plots of the
distributions of displacements, bending and twisting moments, ply stress, and the portions
contributed by shear deformation. The program could also display the natural
frequencies of free vibration and the mode shapes.

Marur and Kant (1998) formulated a higher-order two-noded beam element with
seven degrees of freedom per node with cubical axial, quadratic transverse shear and
linear transverse normal strain components for a transient dynamic analysis of composite
and sandwich beams. The formulation was done considering each layer to be in a state of
plane stress with the advantage of not having any shear correction coefficient. A special
lumping scheme was employed for the evaluation of the diagonal mass matrix and
central-difference predictor scheme was used to solve the dynamic equilibrium equations.
Results from first-order theory were compared to the higher-order model.

Murty and Shimpi (1974) addressed vibrations of laminated beams. Governing
equations in the form of simultaneous ordinary differential equations were derived for
natural vibration analysis of laminated beams. The formulation included secondary
effects such as transverse shear and rotary inertia. An attempt was made to highlight the

influence of these secondary effects using a numerical example.



Abarcar and Cunniff (1972) obtained experimental results for the natural
frequencies and mode shapes of graphite-epoxy and boron-epoxy composite materials
having different fiber orientations with respect to cantilever beam axes. Certain elastic
constants were experimentally determined and used in a programmed numerical solution
in which rotary inertia, transverse shear, and coupled bending-torsion effects were
included. They had analyzed the experimental results for angle plies and detailed the
interaction between bending and twisting, and had compared them with their numerical
results.

Examples and results presented by Murty and Shimpi and Abarcar and Cunniff
highlight the importance of secondary effects such as transverse shear, rotary inertia and
coupling effects.

Teh and Huang (1979) presented two finite element models for the prediction of
free-vibration natural frequencies of fixed-free beams of general orthotropic nature. The
models included transverse shear deformation and rotary inertia effects. Numerica
studies showed that the convergence rate of the approximations calculated from the finite
element analysis, was dependent on the fiber orientation.

A two-noded, ten degree of freedom per node, laminated, composite thin-walled
beam finite element was developed for vibration analysis by Wu and Sun (1990). The
thin-walled element formulated was suitable for either open-section or closed-section
beams of any shape, stacking sequence, and boundary conditions. Natural frequencies of
several thin-walled composite structures were calculated and compared with full-scale

shell finite e ement results.



Gupta, Venkatesh, and Rao (1985) analyzed a finite element thin walled open-
section laminated anisotropic beam. A two-noded, 8-degree-of-freedom per node thin-
walled open-section laminated anisotropic beam finite element was developed. The
displacements of the element reference axes are expressed in terms of one-dimensiona
first order Hermite interpolation polynomial. The analysis was carried out for an
isotropic material, 0°,45%-45° and a 0°/45"-45° composite.

Madabushi and Davalos (1996) presented an analysis of laminated composite
beams, based on the FSDT which requires a shear correction. Energy equivalence
principle was used to derive a genera expression for the shear correction factor for
laminated rectangular beam with arbitrary lay-up configurations. A convenient algebraic
form of the solution was also presented and was validated against existing results for
composite beams and plates. Examples were presented to illustrate the formulation and a
parametric analysis was performed to illustrate the effect of number of layers, elastic-
modulus ratio and fiber-angle orientation on the shear correction factor for various

|aminates.

14 Need for the Present Research

Severa authors have studied dynamic effects of moving beams made of an
isotropic material. The immense potential of composite material especialy in having a
very high strength to weight ratio has increased its application in a variety of areas. With
the increase in the use of composite materials in areas such as robotics, flexible

manipulators, spacecraft antenna it has become imperative to consider modeling moving



beams as composite materials. To the best of our knowledge moving beams made of

composite materials has not been studied. This creates the need to consider a composite

beam moving over supports and learn more about its vibration characteristics.

15

Objectives

The aims of the thesis are;

(i)

(i)

(iii)

(iv)

To formulate a finite element model for a beam of composite material, for both
symmetric and unsymmetrical cases using CLPT and FSDT. The formulation
would be based on energy considerations and using the variational method. The
displacement constraints shall be applied via Lagrange Multipliers.

To solve for natural frequencies and for the time-dependent displacements using
Newmark's semi-implicit method.

To write a C program with all the above mentioned capabilities and obtain results
for sinusoidal horizontal motion imparted to the beam with specified amplitude
and frequency values.

To present a pseudo-code, which could be used to write, programs in other

languages for the above-mentioned objective.
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(i)

(i)

(iii)

(iv)

(v)
(vi)

Organization of thethesis

Chapter one deals with the problem statement, introduction to composite
materials, discussion on the previous work and objectives of the thesis.

Chapter two includes a discussion on the theoritical formulation and the reduction
from plate equations to beam equations.

Chapter three discusses the details of the finite element formulation and
formulation of the stiffness and inertia matrices

Chapter four details the numerical implementation and discusses different
techniques used for solving the problem.

Chapter five presents the results and discusses in detail the results obtained.
Chapter six presents conclusions on the present work and suggestions for future

work.

11



2. THEORITICAL FORMULATION

2.1  Coordinate system

Figure 2.1 Coordinate system for the moving beam

Consider two fixed supports C and D at a distance d apart as shown in Fig. 2.1.
Aninertia frame (X,Y) is defined such that its origin is attached to support C with the X-
axis along CD. Beam FG of length L moves relative to the supports in the X direction
and has a deflection v(X) in the Y direction. The deflection of the beam at the points in
contact with the supports C and D at a given time are zero. The horizontal motion of the
beam may be specified by prescribing Xe(t). Note that Xg is aways negative. A moving
frame (X, y) is attached to the left end F of the beam and moves along with the beam

horizontally. The transformation between the inertial and the moving framesis given by,

12



x(t) = X(t) = Xe (1)
y(t) =Y(t)

(2.1
The axia stiffness EA is considered large when compared to the latera stiffness El,. In
other words, the axial deflection u is small compared to the lateral deflection w

The finite element model is derived referring to the moving frame rather than the
inertial frame, but care has to be taken to include the inertial effects. The motion of the
support at any timeis given by

Xc(t): _XF(t)
Xp (1) = = X ¢ () + d (22)

The type of motion imparted to the beam is oscillatory sinusoidal motion as assumed by
Buffington and Kane (1985), Lee (1992) and Sreeram and Sivaneri (1997).

Figure 2.2 shows the stacking sequence of the composite beam and the naming
convention followed. The layers are conventionally named from 1 to N starting from the
bottom. This sort of a numbering is followed because during hand lay-up, the lowermost

layer isonethat islaid first.

13



Layer number
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Figure 2.2 Lay-up Geometry for a composite plate

The lateral coordinates are measured from a reference plane. The total height of

the beam is h, equal to the sum of the thickness of each individual layer. The distance of

each layer from the reference planeis given by Zx where K is the index denoting the layer

number. The quantity Z_K represents the distance of mid-plane of each layer from the

reference plane of the laminate. For a symmetric lay-up, the layers about the reference

plane are mirror images of each other. For a symmetric balanced lay-up, the thickness of

each layer located symmetrically about the reference plane, is also the same.

Figure 2.3 shows the positive directions for force and moment resultants acting on

the laminate considered as a plate. Ny, Ny and N,y are the in-plane force resultants acting

along x and y respectively. The moment resultants acting on the plate are represented as

My, My and M,y and the transverse shear forces acting on the laminate are given by Q and

Qy.

14




Figure 2.3 Nomenclature of Force and Moment resultants acting on a composite

plate [Barbero (1998)]
2.2 Beam Motion

The longitudinal motion imparted to the beam is similar to that assumed by
Buffington and Kane (1985) and Sreeram and Sivaneri (1997). It is taken to be a

sinusoidal in nature and is represented by

Xe(t)==-%x,+ Asn( Qt) (2.3

15



where X is the initial distance between the left end of the beam and support C. A isthe
amplitude and Q is the frequency of longitudinal motion of the beam. The velocity, Vg
and the acceleration a"g of the beam are obtained by differentiating the displacement
function Xg(t) with respect to time.

Ve = X, = AQCos(Qt)

N 2.4
ag = X; =—-AQ” Sn(Qt) @4
Similarly, in moving coordinates, the motion of the supports are given by
Xe = X, — ASNn(Qt
C 0 . (Qt) (2.5)
Xp = X, — ASn(Qt) +d
2.3  Isotropic Beam
The stress strain relation for a beam made of an isotropic material is given by
o, = Eg, (2.6)
where the strain in the x direction is given by
— ! 12 "
Ex SU+IWE —2w 2.7)

where u and the w are the displacements along the x and the y-axis respectively, and the
()" and ()" represent their first and second derivatives with respect to x. The variation in

the strain is obtained as
0&, =AU’ +Wow — zow" (2.8)
The variation of strain energy is given by

M = I\ﬂax&x (2.9)

Substituting the expression for stress and variation in strain in the equation for variation

of strain energy, we get
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& = [[JE( +4w? - 2w)(ar + wé w - 28 wr)av (2.10)
\%

Expanding the terms in the integral, reducing the volume integral into three single
integrals over the length, breadth and height and eliminating non-linear and higher order

term yields Eq. (2.10a)

|
M = JO’(EAu'c‘iu' +bN W W + Elw' 5w )dx, (2.10a)
where | isthe moment of inertiaand A is the area of cross section.

24  PlateBending Theories

Two theories are used for the formulation namely the Classical Laminate Plate

Theory (CLPT) and the First Order Shear Deformation Theory (FSDT).

2.4.1 Classical Laminate Plate Theory (CLPT)

The CLPT is an extension of the Classical Plate Theory to composite materials.
In the CLPT, the Kirchhoff’s hypothesis is satisfied. The assumptions are as follows
() Straight lines perpendicular to the reference surface (i.e., transverse normal)
before deformation remains straight after deformation.
(i)  Thetransverse normal does not experience elongation (i.e., they are inextensible).
(iii)  The transverse normal rotates such that it remains perpendicular to the reference
surface after deformation.
The first two assumptions imply that the transverse displacement is independent of the

transverse coordinate and the transverse normal strain & is zero. The third assumption

resultsin zero transverse shear strains, &, and &y,.

17



More to the assumptions of Kirchhoff’s hypothesis, the following assumptions
hold good for the composite laminate
(iv)  Thelayers are perfectly bonded together.
(V) The material of each layer is linearly elastic and has two planes of materia
symmetry (i.e. Orthotropic)
(vi)  Eachlayer isof uniform thickness.
(vii)  The strains and displacements are small with moderate rotations.
(viii) The transverse shear stresses on the top and bottom surfaces of the laminate are
zero.
The displacement equations are represented as follows
ux,y,zt) = u(x,y.t) + zg,(xy,1)
V(X Y2t = V(v + zg,(% Y.t
wW(X, y,zt) = w(XY,t) (2.10)
where the up,vo and wp represents the mid plane displacements independent of the
thickness and ¢ and ¢, are the rotations about the x and the y axis respectively. The
rotation of the transverse norma is in such a way that the transverse normal is
perpendicular to the mid-plane and hence the rotation can be represented as the rotation
of the w with respect to x-axiswhich is-dwy/ox. Similarly, the rotation of w with respect
to y-axis can be deduced as -dwp/dy. The wp consists of only one component, which is
the bending component since the transverse shear is not considered in the formulation of
the theory. Substituting these in Eg. (2.10), the final displacements for the CLPT can be

obtained as follows

18



ux,y,zt) = Up(xy,t) - Z%
oX
V(X,Y,zt) = V(X y,t) - 7 MWo
0x
WX, Y,zt) = W(XVY,t) (2.12)

This means that once the mid-plane displacements are known, the displacements at any
point (x,y,z) in the 3D continuum can be determined. Figure 2.4 shows the undeformed

and deformed geometries of an edge of a plate under the Kirchhoff assumption.

Figure 2.4 Undeformed and deformed geometries of an edge of a plate under

Kirchhoff’sassumption for CLPT [Reddy (1997)]
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2.4.2 First Order Shear Deformation Theory (FSDT)

The FSDT is an improvement over the CLPT. This theory considers the effect of
the transverse shear that plays an important role in the case of composite plates and
beams, which cannot be neglected. The assumptions of FSDT are the same as in that of
the CLPT but for the third Kirchhoff's assumption, which states that, the transverse
normal remain perpendicular to mid-plane. Hence in FSDT, the transverse normal is no
longer perpendicular to the mid-plane, thus introducing the transverse shear strain in the
theory. The in-extensibility of transverse normal still keeps the w independent of the
thickness coordinates. The displacement equations can be defined in the same way asin

CLPT with minor changes. The equations are as follows

ux,y,zt) = u(xy.t) + zg(xy.t)

V(X Y, zt) V(X y,t) + zg (X, y.1)

w(x,y,zt) = w(xyt) + wi(Xxyt) (2.12)
The w is split into two components the bending component wi, and the shear component
Ws. The us and the vs are made of two parts, the mid-plane displacements and rotation of
the transverse normal about x and y represented as ¢ and ¢, respectively. Figure 2.5
shows the undeformed and deformed geometries of an edge of a plate under the
assumption of the FSDT. Eq. (2.13) can be physically deduced from the figure 2.5

o = - 4y, (2.13)
1) 4

The ¥, component is taken to be dwy/dx because this is the rotation due to which
the transverse normal is no longer perpendicular to mid-plane. In the case of the CLPT,
the w was made of only one component and it was the bending component and hence

the transverse shear was taken to be zero keeping the transverse normal perpendicular to

20



the mid-plane. But in FSDT, the w is made of two parts namely the bending component
and the shear component w, and ws respectively. The rotation of the transverse normal,
leading it to be no longer perpendicular to the mid-plane, is the rotation of the shear
component with respect to the x-axis and can be represented as dwg/dx. From the figure
2.5, this component is deciphered as ). Substituting the expression for k. in the Eq.
(2.13), @ can be reduced to -dwy/ox. Similarly, @ can be reduced to -dwyoy.

Substituting these in the displacement Eq. (2.12), we get the equations final displacement

equationsfor FSDT asfollows

ux,y,zt) = uy(x,y,t) - zaaﬂ(x,y,t)
X

V(X y,zt) = Vy(Xy,t) - zaaﬂ(x,y,t)
y

w(x,y,zt) = w(xyt) + wi(Xxyt) (2.14)

Figure 2.5 Undeformed and defor med geometries of an edge of a plate under

Kirchhoff’s assumption for FSDT [Reddy (1997)]
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25  Strain Energy Formulation for Composite M oving Beam

Figure 2.6 shows an element of the undeformed beam of with length dx and in the
deformed state with length dx;. The axial and the transverse deflections are defined by u
and w along the x and y axes respectively. Three formulations namely plane strain case
using CLPT, plane stress case using CLPT and plane stress case using FSDT are

considered in the present work for the composite beam.

u+du

T’
T < - SEERE

Undeformed

Figure 2.6 Undeformed and defor med beam definition

2.5.1 Plane Strain Formulation using Classical Laminate Theory (CLPT)

In general, for an isotropic material, the strain energy is given by
U=o0c¢ (2.15)
where gisthe stress and ¢ is the strain. For a composite material, the equation is written

as

U ={o}{ 3 (2.16)
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where{a}" isarow vector of the stresses, { €} is a column vector of the strains and Uy is
the strain energy at the mid-plane. In the plane strain case using the CLPT approach, the
& and the y,, components are taken to be zero. Hence, in the stress vector the term o, has

the strain only & component. Hence the variation in total strain energy is obtained as

su = [f[ 0,0 ,av (217)

Vol

But for a composite material with k layers,

@ = |olig (2.18)
Hence, for a plane strain case, gy can be written from Eg. (2.18) as

o, =Q.¢, (2.19)
where the termsin [C_)] is the transformed reduced stiffness matrix terms and is defined by

the material property, stacking sequence and the lay-up angles. Substituting Eq. (2.19) in

Eq. (2.16) and expanding the integral,

——k
ou = [ Qy ‘e,0¢, (2.20)
\Y
The strain & is represented as
1 2
£, =U +§vv' - (2.22)

Substituting EQ. (2.21) in Eqg. (2.20), expanding, integrating over the breadth of the beam,

neglecting the higher order terms and rearranging Eqg. (2.20) can be rewritten as
— 1
& = ffJQiejw - 2w - - z3w) (2.22)

2

where ()’ denote ai ()" denote :—2 The breadth of the beam b is a constant through
X X

the length of the beam. From CLPT, the stress resultants can be written in terms of [A],
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[B] and [D] matrices where in the matrix [A] gives the extension stiffness terms, the
matrix [B] gives the bending-extension coupling terms and the matrix [D] gives the
bending stiffness terms. The [A], [B] and [D] matrix terms are obtained from the

equations given below

E ; 1,]=126 (2.23)

Substituting [A], [B] and [D] terms from Eq. (2.23) in Eqg. (2.22) and reducing the volume
integral to a line integral and taking out the breadth term, the total strain energy can be

obtained as
|

U = (A %w’z) — B, W)U + N W AW - B, (u' + %W’2)5w' + Dy, W' ") dx
0

(2.29)
The term (AU — Bisw”) is the axial force term and is denoted by N,. Neglecting the
non-linear terms, yields Eq. (2.25), the variation in total strain energy for the beam of

composite material using CLPT plane strain method.

|
QU = Df(AL ~BW)AI +NWEN ~B U + Dy 68 (2.25)
0

2.5.2 Plane Stress Formulation using Classical Laminate Plate Theory (CLPT)

The plane stress formulation in the CLPT can be addressed in two ways. The first

method is by setting all the forces and moments other than N, and My to be zeros and the
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second method is by setting only the force and moment Ny and My to be zeros which is

more practical in its approach. The following section deals with the formulation of the

CLPT using the two conditions stated above and are termed as full and partial plane

stress formulation respectively. The constitutive equations are represented in matrix form

as

[N,
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N, E
Moo B
Mg P
EMyH %16
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A

oy)

12

oy)

22
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where the superscript (0) represents the mid-plane strain terms while the (1) represents

the curvature terms.

2.5.2.1 Full Plane Stress Formulation using CLPT

The full plane stress formulation using CLPT is addressed by setting the force and

moment resultants Ny, Ny, My and M, to zero. The constitutive Eq. (2.26) reducesto

Rearranging Eq. (2.23) so as to write the zeros together in the LHS, we get
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Introducing the notations [R™], [R*], [R] and [R?] respectively, for the four partitions,

Eqg. (3.28) becomes

00
0%, O
. x® O

[Rlz]g 0 © 5 0

! G

| 2 (2.28a)

D
0
Ey()

H
U@ O
R2I3 50
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I
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O
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Hence the top part of the Eq. (2.28) yields N, and My terms and can be represented as

mD (@0
G FRIDL D« RIE v o Wl 229

I:I

From the bottom partition of EQ. (2.28), we get

© 0
[Rlz]img + [RAEY v e 0 = 1 (230
Thisyields
Rt = -[Refe. ) @31

Hence, taking inverse of [R*?], the expression for &r can be obtained in terms of & and

hence eliminating &r from the equations
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{ET} = _[Rzzl_l[Rlz]{EL}

From Eq. (2.29) and Eq. (2.30), we can now get N, and M as

ON,
0
DM X

= [Rife.}

I

Where (R = [RY] - [RYR]TR]

This[R] matrix is of size 2x2 and can be written as

We also know that the variation in virtual strain energy iswritten

(2.32)

(2.33)

(2.34)

(2.349)

|
& = bfNSE? + M + NOE + M+ NS+ MO Jox
0

(2.35)

The strain components and the virtual strain components are obtained from displacement

equations of CLPT Eq. (2.11) as

n

1
g, = ug+§w'2—zw = £ +2z0

o
|

1 2
voy+§wy —zw” = g +zel

yxy = ug + V(') + VM_ ZZ\N'Y = yig)

Oel” = duy +wow
oel) = —-w'
Oy = g = Oy,
oYY = —25w”
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where the ()’ and ()’ represents aiand 61 respectively. The non-linear term in the y, is
X y

neglected. Substituting the full plane stress condition results from Eq.(2.33) and the
variation in strain expression from Eq.(2.36), we get the equation for the virtual strain

energy as
|
& = bf(N, (AU +wadw)-M,n)dx (2.37)
0
2.5.2.2 Partial Plane Stress formulation using CLPT

The partial plane stress formulation using CLPT is approached by forcing only the
force and moment terms Ny and My, to zero. Substituting the partial plane stress condition

in the constitutive Eq. (2.27), and rearranging yields

i ©
ga’u As By By EA&2 B, B %:X(O) 0
ETA&G As B By iAze By 0 ' O

! @
D311 Bls D11 D16 'Blz D12 [ E’gx E
Bze DlZS DVS) ]

x

2

(2.38)
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oo 2222
I:II:II:II:II:IXI:II:II:II:I
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The four partitions of the matrix are represented as [S7], [, [S] and [S]

respectively.

@O
T 0 0%, 0
N B D
™, 0 & s’ H
O *O=Q il o O (2.383)
My 0O s s* EIDVS) O
p U o 0
R %y 0
0 O 0 g

y

The top part of the Eq. (2.38a) yields
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W, N, M, MO = [dE° y© £* yo0 (2.39)
where[9 = [S"] - [SH[S[S] and [SH]=[S"]" and the size of [T is 4x4.

Substituting the plane stress condition in the virtual strain energy Eq. (2.35), we get
|
= b‘!’(NXcS O 4+ NSO + MSEL  + M 5 b (2.40)

The strain displacement relationship is given again by Eq. (2.36) asin the full plane stress
formulation. Substituting the strain-displacement relation Eqg. (2.36) in Eg. (2.40), we get

the expression for variation in virtual strain energy for partial plane strain formulation as

& = b‘!’(NX(ng + waw) + NSy - MW — 2M, 3 ki (2.41)

2.5.2.3 Plane Stress Formulation using First Order Shear Deformation Theory
(FSDT)

Partial plane stress formulation is applied in the energy formulation using FSDT.
The displacement functions are represented by the Eq. (2.14). The non-linear strains are

obtained by partially differentiating the Eq. (2.14) and are represented as follows

1, .2
£ = Ut (W +wih+2wu)rang = e+ 28l
=y Lor? oy’ WY W o= ¢ @)
g, = VO+§(Wb +W 2w ) —2w = g0+ ze)
Vo = U+vg—2zw) = yO+zyl

/v/:vv’ / = yo
/\Mﬂ_,_wy)/ﬂ — (0)
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Se® = )+ WO, + w,oW,

ocd = -ow

&y =

By® = -20w

O = W (2.42)
Where the ()’ and ()’ %and a_y respectively. The non-linear terms in the strain-

displacement equations are neglected in this formulation. The constitutive equations for
FSDT are made of two parts namely in-plane equations and inter-laminar equations. The
in-plane equations are the same as in the Eq. (2.26). The inter-laminar equations are

represented as follows

@, 0 A, As0V,.0
O = 0 0 (2.43)
0 BPe Ayaen

where the 2x2 matrix is the inter-laminar shear co-efficient matrix and the terms are

given by the Eq.(2.44), which is very similar to the [A] matrix equation.
[A] = Z(Q”)ktk L i, j=45 (2.44)

The partial plane stress conditions are applied for the FSDT by forcing the force, moment

and the shear resultants Ny, My and Qy to zero. The constitutive equations reduces to

i 00
N, O Ay As By Bg EA12 B, O XO) N
%\lxy B %A‘le A B Bg | Ag By B Eyiy B
M, % _ (B, B Dy Dy i B, Dy B 2%
M0 %_19__E_Gé__956.--9@6_L__B_2§___L_)32_D o
g’ S A, As B, By i A, By B 5/0)5
/0 H %12 Bs D1, Dy i B, D0 @ H



and

0 O
g

A, AsY,,0
= K 2.45

The first equation of Eq. (2.45) can be reduced to four matrices very similar to that in the
partial plane stress formulation in the CLPT and hence would be represented by the same
symbol [§ and is given by the Eqg. (2.39). The second equation is manipulated to
eliminate K, and write the equations in terms of y,. The second equation of Eq. (2.45)
reduces to
Q, = KAy, (2.46)
where A* = K(Ags — A452/A44) and K is a representation of the shear correction factor.
Since the transverse shear strains are represented as a constant through the laminate
thickness, it follows that the transverse shear stresses will also be constant. It is well
known from elementary theory of homogeneous beams that the transverse shear stress
varies parabolically through the thickness of the beam. In composite laminated beams
and plates, the transverse shear stresses varies at least quadratically through the thickness
of the layer. This discrepancy between the actual stress state and the constant stress state
predicted by FSDT is often corrected in computing the transverse shear force resultants
i.e. the LHS of Eq. (2.46) by multiplying the shear co-efficient matrix by a parameter K
which is the shear correction co-efficient. The factor K is computed such that the strain
energy due to transverse shear stresses equals the strain energy due to the true transverse
stresses predicted by three-dimensional elasticity theory and the value for a rectangular
cross section is taken to be as 5/6.
The expression for variation in strain energy including the transverse shear terms

are represented as
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|
A = [(NIE+MIE +NGE? +M,BE + NS + MBI +QBY2 +QYI I (2.47)
0

Substituting Eq. (2.45) and EQ. (2.46) in the expression for strain energy variation in Eq.

(2.47), the expression for variation in strain energy variation using FSDT is obtained as

A = Jl'(NXch;O) + MAg) + NOY) + MO + Qxa,;xg))dx (2.48)

2.6  Kinetic Energy Formulation for Composite beams

The formulation of variation in kinetic energy is outlined in this section. The

virtual kinetic energy, oT isgiven by
or =[] pludu+vei+warjdv (2.49)
\%

where p is the mass density and the (*) represents partial derivative with respect to time.

2.6.1 Kinetic Energy Formulation for 1sotropic case

The variation in kinetic energy given by Eqg. (2.49). Since we do not have a

separate degree of freedom for v, it is dropped from Eq. (2.49) to yields

ot = [ pludu+wanjav (2.50)
\%
when JT isintroduced into Hamilton's principle, we encounter the time integral
t, t,

[oTdt = [t J’JJ p[UdU + WoW]dV (2.51)

Integrating the resultant equation by parts with respect to time and grouping all the time

boundary terms together resultsin
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_j'cST dt :IJ’ij‘{[udJ + wd/\] dt+(-- )|I:} dv (2.52)

Discarding the boundary terms which do not contribute the inertia matrix and pulling out
the virtual quantities out of the integral owing to their independence of time derivative,

yields
=T = [[[ plucu +vwani dv (253)
\%
Defining lgasin EQ. (2.54) where h is the thickness of the beam, and keeping the breadth

as a constant and reducing the volume integral yields the expression for variation in

Kinetic energy as

h/2

| 0= pdz (2.54)

-h/2
|
~oT =b J;| o[t + vvdw]dx (2.55)
2.6.2 Kinetic Energy Formulation for Plane Strain using CLPT

The kinetic energy formulation for the plane strain case using CLPT is derived
from the reduced variation in kinetic energy given by Eq. (2.50). Writing the variation of

Kinetic energy in terms of the mid-plane displacements, resultsin

ot = [[f pl(, - 2w) (&, - z3iv) + Woi]dV (2.56)

expanding the terms inside the integral yields

ot = [ pluydis, - 21,80 — 2 &, + 22 S + WSV (2.57)
\

when JT isintroduced into Hamilton's principle, we encounter the time integral
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t, t,
IcSTdt =J’dtJ’JJ’p[uodJO — 20,00 — 2W &, + Z°W W + W] dV (2.58)
t, t

Integrating the resultant equation by parts with respect to time and grouping all the time

boundary terms together resultsin
—tjc‘}Tdt - L/Uptj'{ g0, — 21,80 + 22 S - 20 3, + wdaldl + () [ v (259
t t

Discarding the boundary terms which do not contribute to the inertia matrix and pulling
out the virtual quantities out of the time integral owing to their independence of time

derivative, yields

_oT = L/U pliqBu, - ZiiodW + 220 B — 23 B, + WAV (2.60)

Defining 1o, 11 and 1, as in Eqg. (2.61) where h is the thickness of the beam and
substituting in Eq. (2.60), and taking breadth of the beam as a constant and reducing the
volume integra yields Eq. (2.62), the equation for variation in kinetic energy for plane

strain case using CLPT.

hi2 hi2 hi2
lo= [ pdz; 1= [ pzdz and 1= [pz’dz (2.61)
~hr2 “h/2 /2
|
-oT = b‘!(lol'joéuo—Ilﬂodl\/+|2W6A/—|1W5lJo+|0W(5\lv)dX (2.62)

2.6.3 Kinetic Energy Formulation for Full Plane Stress case using CLPT

The kinetic energy formulation for plane strain case and full plane stress case
using CLPT are very much similar and hence the variation in kinetic energy for full plane

stress formulation using CLPT is also represented by Eq. (2.62).
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2.6.4 Kinetic Energy Formulation for Partial Plane Stress case using CLPT

The variation in kinetic energy for partial plane stress formulation using CLPT is
shown in Eq. (2.49). The variation in kinetic energy can be written in terms of the mid-

plane displacements from Eq. (2.36) and Eq. (2.56) as

ST = I:U PL(U, = 2)(30, — ZOW') + (V, — 20" ) (&, — O ) + WAA]dV  (2.63)

Expanding the above equation gives
UpOllp — ZUAOW = 2W & +ZW WV + VoV
5T = J.HBOO 0 0 20 0%Y0 [/ (2.64)
v B oY — 280, + 220V WY + Wil
Setting the terms that are crossed to zero reduces the equation to a one-dimensional

problem. Integrating the resultant equation by parts with respect to time and grouping all

the time boundary terms together resultsin

—tjéTdt = J’JJ’ptj{ [U05U0 — ZU,OW + ZW OW — 2W A, + 22w’ + Wc‘j/v]dt +(-)
i1

21

;2 }dv

(2.65)
Discarding the boundary terms which do not contribute to the inertia matrix and pulling
out the virtual quantities out of the time integral owing to their independence of time

derivative, yields

~oT = wp[uomo — ZUBW + Z2W W - 2 8, + 220 WY + WANV (2.66)

Splitting the volume integral into integrals over the thickness, length and width; taking
out the breadth as a constant and writing the above equation in terms of o, 13 and I,
results in Eq. (2.67), the equation for variation in kinetic energy for partial plane stress

case using CLPT.
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|
b f(' 00U, — 1o + W SW — | W/ Bl + |, W' SW + | Waw)dx (2.67)
0

were lo, 11 and |, are defined in Eqg. (2.61).

2.6.5 Kinetic Energy Formulation for FSDT

The kinetic energy formulation for the plane stress case using FSDT is derived
using the same approach detailed in the partia plane stress case using CLPT. The
variation in the kinetic energy can be written in terms of the mid-plane displacements

from Eq.(2.38) and Eq.(2.56) as

- el W)(auM 2 )) + (v, - 2 ov, am)gu (260

Expanding the termsinside the integral yields
AN NN AN R B o
H—Z\M+zzwgd/vg + Vi O, + Vi, O + WO, + WOl
Eliminating the terms crossed reduces the problem to a one-dimensional problem.

Integrating the resultant equation by parts with respect to time and grouping all the time

boundary terms together resultsin

, O
Jmv (2.70)

t, It o + 2. + 2.5y y

—IéTdt L/Up 1,0U, — ZU 0w, — 20 U, + Z°VW, oW, + Z W) oWy ()
[ WbaN + WbaNs + Wstb + WsaNs

Discarding the boundary terms which do not contribute to the inertia matrix and pulling

out the virtual quantities out of the time integral owing to their independence of time

derivative, yields

1,0U, — ZioBW], — 28U, + Z°W,OW], + 22V ! Ejv @71

J.'\]/’J. WbaNb + WbaNs + WsaNb + WsaNs
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Splitting the integral into two single integrals over the thickness, length and taking out
the breadth as a constant and writing the above equation in terms of 1, I; and I, resultsin
Eq. (2.72), the expression for the variation in kinetic energy for partial plane stress case

using FSDT

| .. - -y y
f% =1 U o, — [,W AU, + |, VW0, +|Wb5\NbE1X 2.72)
0

Iwb(‘iN + 1 W OW, + 1 WO, + | W,Ow,

where Iy, I; and |, are represented asin Eq. (2.61).
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3. FINITEELEMENT FORMULATION

31 I ntroduction

The theories behind the finite element formulations namely CLPT and FSDT and
the formulation of their variation in strain energies have been explained in the previous
chapter. This chapter detail the finite element formulation built from the theories

explained in chapter two.

3.2 Finite Element For mulation

Three types of finite element formulations have been found in the literature,
namely, h-, p- and the h-p version finite element formulations. The h-version finite
element formulation emphasizes on the number of elements that are used to discritize the
domain and the accuracy of the results are a factor of the number of elements in the
model. The p-version finite element formulation emphasizes on the number of internal
nodes and the order of the shape function involved in the formulation and the accuracy
depends on the number of internal nodes in each element. The h-p version finite element
formulation is a combination of the two where both the parameters namely, the number
of elementsin the model and the number of internal nodes in each elements play arolein
the accuracy of the results. In this research, the number of elements in the beam and the
number of internal nodes are fixed and so doesn’'t fall under any of the above three
categories and shall be termed as a hybrid finite element formulation. The shape
functions for this finite element are derived using Lagrangian interpolation function and

Hermitian interpolation function. Sreeram and Sivaneri (1997) in their work had
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conducted a parametric analysis and had concluded that a beam element with three
internal nodes without slope degrees of freedom was sufficient for their formulation.
Taking their conclusions into consideration, in this finite element model, beam elements
shall be used with three internal nodes in addition to the end nodes. Shape functions were
derived for the Lagrangian interpolation function and Hermitian interpolation function.
Lagrangian interpolation function was used where a C° continuity was required and the
Hermitian interpolation function was used where a C' continuity i.e., slope continuity
was required. Typically, for axial degrees of freedom C° continuity would be used and
for transverse degrees of freedom, C* continuity would be used. As in the h-, p- and h-p
version finite element model, this model aso contains both displacement and slope
degrees of freedom for the end nodes in addition to the internal nodes containing only
displacement degrees of freedom. The reason for having only displacement degrees of
freedom for the internal nodes is that slope continuity is automatically assumed at an
internal node.

Figure 3.1 shows the basic finite element that is used for the isotropic case meant
for validation. The evolution of this element for the composite cases will be shown later.
An exploded view of a single element of the beam along with the internal nodes and the
coordinates attached to the element is shown.

The beam is divided into a number of elements. Each element contains minternal
nodes. In this research, the value of m is taken to be three as per the conclusions of

Sreeram and Sivaneri (1997).
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Figure 3.1 Typical Finite Element with three internal nodes and two end nodes
The local co-ordinate x. is fixed to the left end of the element and ranges from 0
to le, where | is the length of the element. The non-dimensional co-ordinate £ is attached
to the center of each element, i.e., at node 3 and it ranges from -1 to +1. The coordinate

transformation is given by the following equations.

o= 5l o+ 3
I
dx, = E‘*dé (3.1)

The distribution w(&) for the transverse degrees of freedom is assumed as

6

w(é) = Z aé' (3.2)

and the distribution u(¢) for the axial degrees of freedom is expressed as
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ué) = ibiq” (3.3)

where & and b are generalized coordinates which are to be determined. In general, these
equations can be written in matrix notations as

we) = ' Ha} (349)

u(&) =0 dp, } (34b)

To solve for g sand by s, we need seven and five equations respectively. To solve

for the g s, the transverse degrees of freedom and its slope, i.e., w and w at the end nodes
give:

w(-1) =w,

| '

Eew’(—l) =W,

) = (3.5)

I

l,
EW D =w
and the remaining three equations are obtained from the transverse deflection degrees of

freedom at the internal nodes as shown below:

w(-1/2) =w,
w(0) =w, (3.6)
w(l/2)=w,

Solving the above seven equations for a s and substituting in Eq. (3.4a), we get

W(¢) =H,(&) o H, (&) (3.7)
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where Hy(&), Ha(é), etc., are shape function called Hermite polynomials and are derived

from a seventh order polynomial and are given as

Ho=g (e -5 - 280 + 2e 4110 -14°)

O~

Ho =g (G -187 -38 +38° 487 -¢°)

Hy= o+ +og? -4t -0+ 28°)
H4 :1_6(?2 +9€4 _4{6

Hy =g (4287 -28° -4 + % +287)
Ho=s(-78-582 + 260 + 26 -116° -145°)
6 9 4 4 2
I
Ho= (e +38" -38° -3¢0 48 +8%) (38)
In a similar manner, the s, for the axia degrees of freedom are also solved from the

equations at the end nodes given below:

u(-1) =u,

o) = u, (3.9)

and the remaining three equations given below:

u(-1/2) =u,
u(0) =u, (3.20)
ul/2)=u,

Solving the above five equations for bjs and substituting in Eq. (3.4b), we get

ml%
UE) = M 1(E) - HE@E)D O
His H

(3.11)
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where Hy1(€),H.2(¢), etc., are shape functions caled Lagrange polynomials and are

derived from afifth order polynomial and are given as

Hp=18-182-28%+25¢

HLS:_%E_%EZ+%€3+%E4 (3.12)

3.3 Element Stiffness Matrix Formulation

The element stiffness matrices are formulated from the expressions for variation in
virtual strain energy derived in section 2.4. This section explainsin detail, the systematic
procedure for deriving the element stiffness matrix for the various theories used in this

research.

3.3.1 StiffnessMatrix Formulation for |sotropic beam

For any element, the stiffness matrix can be obtained by applying variational
approach to the total strain energy equation. The variation in strain energy for the

isotropic formulation is given by Eq. ( 2.10a). We also know that

[ul={H} @0
[au] ={oa} . O
(W ={H} [@.0
] ={5a,} HO

(3.13)

43



where

[q,[J=[1; U, Uz U, UE]
[4q,,[0=[10u, du, du, du, duf]

[a.[ = é"ﬁ Wy W, W3 W, W5 Wy 5
(3.19)

[dq, = %Nl OW;  OW,, O3 OW,, OW5 AW 5

Substituting the above equationsin U expression for isotropic case, Eq. ( 2.10a), we get

the [K] matrix

Jk]| (08
k] = EF""i ...... 0 (3.15)
da | [k../o

where the [k] matrix is partitioned into two parts namely [k, and [kw] with the off
diagonal terms of the partitioned matrix as zeros. The dimensions of the matrices are 5x5,

7X7 respectively and are given by the following equations and is arranged as shown in

Eq. (3.15).
I, , ,
[ku]=[EA{H } Xe
[EAHL
[k 1= [E{H Y 8 T,
(3.16)

where ()" and ()" represents the first and the second partia derivatives with respect to x.

3.3.2 Element Stiffness Matrix Formulation for Plane Strain case using CLPT



For any element, the stiffness matrix can be obtained by applying variational
approach to the total strain energy equation. The variation in strain energy for the plane
stress case using CLPT isgiven by Eq. (2.25).

Substituting Eq. (3.14) in Eq. (2.25) the equation for U, we get the [K] matrix.

e

K = (3.17)
d]  [kJo

The [K] matrix is partitioned into four parts namely [Ku], [Km], [kw] a@nd [kw]. The

dimension of the matrices are 5x5, 5x7, 7x5, 7x7 respectively and are given by the

following equations and is arranged as shown in Eqg. (3.16).

[k, = bfAu{H JHH B,

(k] = —bj s, J e,
(ko] =Ko ]
N; e O
(K] = bgDn{H"} [ o, + [N {H} [ Tex, O (318)
o 0

where the Ny can be written in terms of acceleration which is a function of the time

dependent displacement function.

3.3.3 Element Stiffness Matrix Formulation for Full Plane Stressusing CLPT

The stiffness matrix for a full plane stress can be formulated from the variation in

strain energy expression Eq. (2.37). Theu, du, w, dw are given by Eq. (3.14). Asinthe
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case of plane strain using CLPT, the stiffness matrix is split into four partitions
represented as [kuyu,] [Kw], [kw] @nd [kwy] @ shown in Eg. (3.17). Substituting the
constitutive equation Eqg. (2.28) into the variational strain energy expression given by Eq.

(2.37), the expressions for the stiffness matrices are obtained as
le ] ]
(k] =b‘O[Rn{HL}54L 8hx,

Kool = ‘bf Ro {H } B "CTix,
(K] =K 1"
[Kyy] = bj R, {H %} [ "eix, + ijX{H} B Tolx, (3.19)

where R;sare obtained from the [R] matrix defined in Eq. (2.34) and Ny can be written in
terms of acceleration which is a function of the time dependent displacement function

given by Eq. (2.3).

3.3.4 Element Stiffness Matrix Formulation for Partial Plane Stressusing CLPT
Figure 3.2 shows the element definition for the partia plane stress case using
CLPT. The stiffness matrix for apartia plane stress can be formulated from the variation
in strain energy expression. Unlike the plane strain and the full plane stress formulation,
the number of degrees of freedom are more. The independent variables in this
formulation are u, ¥, w and w’ where the superscript y represents partial differential of w
with respect to y. C° continuity is assumed for u, y and w’ while C* continuity is taken

for w to account for slope continuity at the end nodes.
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Figure3.2  Element definition for partial plane stressformulation using CLPT

Thus the stiffness matrix is partitioned into sixteen matrices which are symmetric about

the main diagonal. The partitions are represented as [k, ], [k, ], [k,], [k, ], [K,],
(Kl [kwvy], [ka]s [K,]5 [K,,y] With dimensions 5x5, 5x5, 5x7, 5x5, 5x5, 5x7, 5x5,

7X7, 7x5 and 5x5 respectively. The symmetric parts of the stiffness matrix are the
transpose of their counterparts. The expressions for the different partitions of the
stiffness matrix are obtained by substituting variation in the strain-displacement
relationship from Eq. (2.36) in the expression for variation in strain energy given by Eq.

(2.41) and are represented as follows
k1= b ufh, 1, B,
Tk, 1= b SfH, ot o,

[kl = —b'f slg{H } [ Caix,

k1= —2bf 514{H L'} + A i,
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[y 1 = b Sa{H} TH, (35,
[K,.] = ~b[ SufH } Tt
[K,,,1 = =20 Si{H.} (el

[K,] = B[ (N {H} T+ S{H} D,

[k, 1= 20[ S0} T, B,

K,.,]= 4bif SM{H L'} + 3 i, (3.20)

where S; s are obtained from the [§] matrix defined in Eq. (2.39) and Ny can be written in
terms of acceleration which is a function of the time dependent displacement function
given by Eqg. (2.3) The following equation shows the way in which the [K] matrix is

partitioned.

E[kuu] ko | k] Ik,
[k] _ D [kyy] [k] [Llrwy]

D
U

(3.21)
w1

3.3.5 Element Stiffness M atrix Formulation for FSDT

Figure 3.3 shows the element definition for FSDT. The stiffness matrix for FSDT

is formulated from the variational strain energy expression derived in the energy
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formulation section of FSDT Eq. (2.48). In FSDT formulation, in addition to the in-plane
shear, transverse shear is also considered. Hence the number of independent variablesis
more than that in the partial plane stress formulation using CLPT. The independent
variables are identified to be u, y; Wy, ws and w. C! conti nuity is taken for w, and ws
while C° conti nuity is assumed for u, yand wy’. This is to accommodate the rotational

degree of freedom to the nodes at the end nodes.

’—»xe ’—>E

Uy, Y3, Wo1,Wha', We,Wer' W1 Us, Y5, Wos, Wes,Wh'5 Us, Y5, Whs,Ws', Wes, Wes W5

Ug, Y5, W2, Wep, W' Uy, Y5, W2, Wep, W'

2 3 4

+1
e

A Yo

Figure3.3  Element definition for FSDT
The tiffness matrix is partitioned into twenty-five matrices, which are symmetric

about the main diagonal. The partitioned matrices are named [k, ], [k, ], [K .1,
[Kpe s [Kgols Tkals Ty 1o Tk s Ty 1o Tk, 1o Tkl Tk 1 T D Tk

(K 1 K] TRy 1 TR 1o Tk 1 TR, o 15 TR 1 TR 10 TG, T TR, 10 TR ]

with dimensions 5x5, 5x5, 5x7, 5x7, 5x5, 5x5, 5x5, 5x7, 5x7, 5x5, 5x5, 5x5, 5x7, 5x7,
5x5, 5x5, 5x5, 5x7, 5x7, 5x5, 5x5, 5x5, 5x7, 5x7, 5x5 respectively. The arrangement of

the different elements of the partitioned [k] matrix is shown in Eqg. ( 3.22).
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gkuu] [kl Koyl [ ] K, E
B [kyl [k [k ] (K] B
[k] = E L Lo [kwhwglg (3.22)
O Symm (Ko, ] [K,, 10
0 0
H k15

The symmetric parts of the matrix are the transpose of their counterparts. The
expressions for the different partitions of the stiffness matrix are obtained by substituting
variation in the strain-displacement relationship from Eq. (2.42) in the expression for

variation in strain energy given by Eq. (2.48) and are represented as follows
Ie ] ]
[k,]1=Db Sl{H } X,
‘([ 1 L 5_' L %’
lo ,
[kuy] = bI SIZ{H L } m-l Lljjxe
0

[k,] = —b'j sl fommen
[k, 1= [0]
[k,,]= —ZbE 514{H L'} + 3 i,

[k, ] = b[ SufH } th1, Tt

(K] = =B SafH} 1o,
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[Ky,1=10]

kg1 = 2] S B, B,

(K] = B[ SfH} THTeb + b N, {H} (B 3,
[Ky,] =10]

kg =20 Sl i, B

[K,.,,] = B N {H} 051 o, + b A {H} i i,

[k, 1=10]

(K1 = 4bif SM{H L'} ik . i, (321)

34 I ncremental Stiffness Matrix Formulation

The time dependent part of the stiffness matrix is contributed by the incremental
stiffness matrix. These terms have already been added to the part of the matrix
corresponding to the transverse degrees of freedom. The incremental stiffness matrix
comes into the equation through the load N whichis represented as the axial force b.F(x).
The axial force term F(x) in turn is dependent on the motion that is applied to the beam
which is time dependent.

The axia force acting on the beam, which resultsin its axial motion, is due to the
acceleration imparted to the beam. The acceleration of the beam is obtained by

differentiating Eq. (2.3) twice with respect to time. If an equivalent static beam is
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considered, this part automatically reduces to zero because the acceleration term in the
axial force term reduces to zero. The incremental stiffness matrix is obtained from the

strain energy due to axial forces corresponding to the an element and can be written as

17 2
U = —[Fw*<dx 3.22
f 2‘([ X ( )

e

writing the force in terms of the acceleration of the beam and mass per unit length and

then taking the variation, we get
N, = - aglfy(L — X)W dw'dx (3.23)
0
writing the above equation in terms of the interpolation function, we get
M, = —aEIV(L—X)@nt{H}E"'E{q }dX (3.24)

where {q} and { oq;} arethe vectors of transverse displacements and their variation. The

incremental stiffness matrix can be written from the Eq. (3.24)

I,
[ki]=-ag [y(L—x{H} [ e, (3.25)
0
The incremental stiffness matrix [ki] can be written in non-dimensional coordinates, as
k1= fyd -G s @ odH e} meome (326)
=<l 2

This incremental stiffness term has been shown as a part of the equation in the equations

for [kaw] in the plane strain case and in the full plane stress formulation using CLPT. It

makes its way through into the [k, , ] term in the partial plane stress formulation using

CLPT and in the FSDT. It also enters the formulation in the expression for [k, 1.
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which is the transverse shear component matrix in the FSDT. The term — aEL;y(L - X)

is comparable to the axial force term b.N, which has aready found its way through in the
transverse stiffness matrix component of the element stiffness matrices as mentioned

earlier.

35 Element Inertia M atrix Formulation

This section discusses the element inertia matrix formulation. The element inertia
matrices are formulated from the variation in total kinetic energy formulated in section
2.6.

3.5.1 Element Inertia Matrix Formulation for Isotropic case

The variation in kinetic energy for isotropic case is given by Eq. (2.55). The
element inertia matrix for an element is obtained by using Lagrange interpolation
function H_ with C° continuity for discretizing u and Hermitian interpolation function H
with C* continuity for w. Substituting the interpolation functions in Eq. (2.55) further

yields,

- T = @ m|{g (3.27)

where

M = Heie b (3.28)

and the individual partitions of [m] are given by
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.
[Mu] =bf16{H} (H (o
0

IE
[Mu] = B[ 16{H} TH o (3.29)
0
3.5.2 Element Inertia Matrix Formulation for Plane Strain using CLPT

The variation in kinetic energy for plane strain formulation using CLPT is given
by Eqg. (2.62). The element inergia matrix is obtained by using Lagrangian interpolation
function H_ with C° continuity for discretizing up and Hermitian interpolation function H
with C* continuity for w. Substituting the interpolation functions in Eq. (2.62), further
yields

-or = @Ev]{g (3:30)

where

dmd  [md O
E oo 0

nd  Imdf

and the individual partitions of [m] matrix are given by

m =

(3.31)

Ie
[muu] = bIIO{H L} m'leXe
0

I,
[yl = —b{H} 0 Toix,
0

[My] =[M]’



IE
[Mun] =B (1ofH} tHT* 1,{H} tH Tax (3:32)
0

3.5.3 Element Inertia Matrix Formulation for Full Plane Stress case using CLPT

The pane strain using CLPT and full plane stress formulation using CLPT has the
same number of degrees of freedom. Hence it is logical to conclude that they do not
differ in their inertia matrix formulation. Hence, the inertia matrix obtained for the plane

strain using CLPT in Eq. (3.32) is used for this formulation al so.

3.5.4 Element Inertia Matrix Formulation for Partial Plane Stress case using
CLPT

The variation in kinetic energy for partial plane stress formulation using CLPT is
given by Eq. (2.67). The element inertia matrix is obtained using Lagrangian
interpolation function H, with C° continuity for discretizing uo, y and w’ and Hermitian
interpolation function H with C* continuity for w. Substituting the interpolation functions
in EQ. (2.67), further yields

- 3T = @ m|{g (3.33)

Where

dmw] my, ] ] [y ] O

[m = B [myy] [mVW] [mwvy] E (330
2 ymm [my,] [y, ]5 |
E [mvav]Q

and the individual partitions of the [m] matrix are given by
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Ie
[Mu] =bf16{H} (H (o
0

Ie

[My] =B 1{H } [H o
0

[My] = [My ]’

Ie
[My] =0 (16{H} T 1{H} tH Ddx,
0

Ie
(M 1= D[ To{H L} H Lo (3.35)
0

|.muyJ = lmyyj = lmywj = lmywa = |yl = Myl

3.5,5 Element Inertia Matrix Formulation for FSDT

The variation in kinetic energy for partial plane stress formulation using FSDT is
given by Eq. (2.72). The element inertia matrix is obtained by using Lagrangian
interpolation function H_ with C° conti nuity for discretizing up, y and wy,’ and Hermitian
interpolation function H with C* continuity for w, and ws. Substituting the interpolation

functionsin Eq. (2.72), further yields

- 3T = @ m|{g (3.36)
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Ml [yl [ 1 [My ] [rmwg]g
[my ]l My 1 (M 1 [My ] O
O

[m\wab][m%Ws] [mNbWbY]D (3.37)
ymm (M ] [My]
(M1 H

3.
I
e =

where [m] istheinertial matrix and its components are given by

[Myy] =bzlo{HL} H ol

(M, ] =—b§ll{HJ [ ol

My =124} 1)
[Myw, 1= bli'o{H} TH LU,

[My 1= bli'o{H} TH U,

My 1= blf | o{H} THLoX, (3.39)
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3.6 Lagrange Multiplier approach

The method by which boundary conditions are applied is by dropping rows and
columns corresponding to the degrees of freedom, which are constrained.
Conventionally, the [k] matrix becomes well conditioned after dropping the rows and
columns. In the case of a moving beam, the supports do not necessarily fall on a node at
any instantaneous time and hence this approach cannot be applied. A better approach to
apply such boundary conditions is by using the Lagrange Multiplier technique. Lagrange
multipliers are very useful in solving field problems with different types of constraints.
Usually constrains are on the forces, displacements, slopes etc. As assessed by Sreeram
(1995), there is not much information available on the applicability of the Lagrange
multiplier method to essential conditions that are time-dependent or time-independent.
Lagrange multipliers are found to work well if the constrains is much less than the total
degrees of freedom in the problem definition. The primary reason for such arestriction is
that the introduction of Lagrange multipliers causes ill conditioning of the [K] matrix by
introducing zeros along the diagonal elements. Hence many numerical routines
available, fails to solve problems with constrains applied via Lagrange multipliers. As
mentioned earlier, the [K] matrix considered in this research usually results in a non-
singular and a positive definite matrix. However, due to the application of the constraints
using Lagrange multipliers, it becomes an ill-conditioned matrix. This is the primary
reason for many researchers for not using this method. In simple cases like a beam with
simply supported boundary conditions and uniformly distributed load or point loads, the
Lagrange multiplier value turns out to be the reactions at the support locations. The

traditional method of solving such problems would be to drop off the rows and columns
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corresponding to the degrees of freedom where the support falls in the [K] matrix.
Additional work is involved if support reactions are to be calculated using traditional
approach. Thisisavoided by applying Lagrange multipliers since the Lagrange variables
turns out to be the support reactions. Though there is this inherent advantage, many
researchers try avoiding the use of this method. Attempts have been made to drop the
Lagrange multiplier value from the system but this usually results in a singular matrix
and hence makes the system of equations indeterminate. Hence, it makes it mandatory to
maintain the Lagrange multiplier values if displacement constraints are applied by this
approach.

In the case of a nhon-moving beam, the Lagrange multipliers are applied to both
stiffness and inertiamatrices. But in the case of a moving beam, Lagrange multipliers are
applied only to the stiffness matrices but not to the inertia matrices. Thisisto force the
constraint conditions on the displacement alone and not on the velocities and
acceleration. Special schemes such as partial pivoting or full pivoting are required to
solve for the time-dependent variables involved in this problem. The total potential is

represented as

A =3U =0T -dW (3.39)

p
where dU, JT and W are the variation in strain energy, kinetic energy and virtual
external work done respectively. In the case of free vibrations, W is zero. Adding a

constrain using Lagrange multiplier would yield amodified potential represented as

A, = (U-oT-ow)+a() (3.40)

where the terms in the parenthesis are determined by the theory for which the Lagrange

multipliers are applied. Typically in the case of the plane strain and full plane stress
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formulation using CLPT, Lagrange multipliers are applied to the transverse

displacements w and hence, the modified potential reduces to

A, = (u-or-ow)+saw, +Aw,) (3.41)

p

In the case of partia plane stress formulation using CLPT, the constraints are applied to

the w and w” and hence the modified potential reducesto

B, = (0U-oT-OW)+3EAW, + A, +Aw

p

y
o FAw

E (3.42)

and in the case of plane stress using FSDT, the constraints are applied to the wy, ws and

the wy,” and hence the modified potential reduces to

A, = (BU-aT-dw)

p

(3.43)

y y
+5§}\1Wb|xg +A2Wb|x§ +A3Ws|x; +A4Ws|xg +A5Wb o +A6Wb

2
Xsﬁ

where the As represent the Lagrange multiplier degrees of freedom corresponding to the
two support locations xs- and xs” represented as support positions C and D in figure 2.1.
Hence, the global stiffness matrix [K] and the inertia matrix [M] for a static and moving

beam are represented by Eq. (2.44) and EQ. (2.45) respectively.

M-
[M]:%m [N['SE (3.44)
M-gl o
ME o
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where [K,], [KA'], [Ma], [M)]" are the Lagrange multiplier matrices and its transpose for
the stiffness and inertia matrices respectively. The Lagrange multiplier matrices for the

stiffness and inertia matrices are identical and is represented by different symbols just

their discrete identity.
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4. NUMERICAL IMPLEMENTATION

4.1 I ntroduction

In the previous chapter, the finite element formulation of the moving-beam
vibration problem was presented. This procedure carries out the spatial discretization of
the space-time governing equations. In this chapter, the solution procedure in the time
domain is presented. A computer program in C language is written based on an implicit
scheme to solve the second-order differential equations in the time domain. Writing a
program assures the integrity of the problem. Many standard packages available in the
market fail to address dynamic scenario presented in this research such as beams moving
over supports. Topics addressed in this chapter include solution procedure for the free-
vibration frequencies of a non-moving beam. Numerical intricacies such as numerical
integration and solution of ill-conditioned matrices are also enunciated.

4.2  Integration scheme

As seen in the previous chapter, the computation of element inertial and stiffness
matrices involves spatial integration. Many numerical integration schemes are available,
of which the Gauss quadrature scheme has proven to be very effective and accurate. This
scheme needs n unequally spaced sampling points to integrate exactly a polynomial of
order at most (2n-1). The polynomias representing the Hermite and Lagrangian
interpolation are of the order of seven and five respectively. For a uniform beam, the
highest order polynomial manifests in the inertia matrix in the form of an order of 14.

Thus, a seven-point Gauss quadrature scheme is followed in this research. Table 4.1
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presents the sampling points and their respective weights for a seven-point integration

scheme. Theintegration scheme is represented as
1 n
If(x)dx = ij f(a) (4.1
_l J:

where n is the number of sampling points, g represents the x coordinate at a sampling

point and w; the corresponding weight.

Sampling Points Weights
+0.9491079123 0.1294849661
+0.7415311855 0.2797053914
+0.4058451513 0.381300505

0.0000000000 0.4179591836

Table 4.1 Sampling points and weightsfor seven-point Gauss quadrature
integration scheme
The numerical integration of the stiffness and the inertia matrices is carried out after
changing the interval [for instance, see Eq. (3.18)] from (0,l¢) to (-1,1) by non-
dimensionalizing the independent variable.

4.3  Solvingill-conditioned system of equations

Solving ill-conditioned matrices has always been a challenging issue. In this
research, the stiffness and the inertia matrices are banded matrices banded about their
main diagonal. The boundary conditions are applied via the Lagrange-multiplier
technique. An inherent disadvantage as stated earlier in using the Lagrange method to

apply essential boundary conditions, is that the matrices, particularly the inertia matrix,
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are ill conditioned. Standard numerical schemes fail to solve equations with matrices
containing zeros along the main diagonal. Some of the standard numerical schemes
available for solving a system of linear algebraic equations are the Gauss elimination
method, Gauss Siedel method, Gauss Jordan method, Cholesky Factorization, LU
decomposition, Tridiagonal Matrix Algorithm, LDL™ algorithm, Householder
factorization, and Givens factorization. But the standard form of these schemes tend to
fail if the matrix has zero elements on the main diagonal, if the matrix is not diagonally
dominant or is ill conditioned by any other means. An alternative solution for such a
problem is to improve the condition of the matrix before trying solving it. Methods such
as partial pivoting and full pivoting are used for conditioning such matrices. In the
current research, Gauss elimination with partia pivoting with scaling applied on the pivot

elementsis found to be an effective method.

4.3.1 Pivoting

Pivoting is the switching of rows or columns in-order to make the ill-conditioned
matrix a well-conditioned matrix. The diagonal element would be the pivot for each row.
Before each row is normalized, i.e., before making the largest value of each row to be
unity by dividing the whole row by the highest value in the row, the largest available
coefficient in the column under the pivot element is determined. The rows are then
switched so that the largest element is the pivot element. This method is called partial
pivoting. If the columns aswell as the rows are searched for the largest element and then
switched, the procedure is called complete or full pivoting. Full pivoting is rarely used

because switching columns changes the order and consequently, adds significant and
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usually unjustified complexity to the program used. The pseudo code shown below gives

aschematic of how partial pivoting could be applied.

4.3.1.1 Pseudo-code to implement partial pivoting [Chapra and Canale (1998)]

p=k

big = [

Doii=k+1,n
dummy = |8k

If (dummy > big)
big = dummy
p=ii

Endif

Enddo
If (p # K)

Dojj=kn
dummy = apj
Apjj = jj
ayjj = dummy

Enddo

dummy = b,

bp= bm

b = dummy

Endif
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432 Scaling

Scaling is the process of magnifying a row of a matrix by multiplying by a
specified value. The purpose of using scaling is to minimize round-off errors. This
technique is used for those cases where some of the equations in a system have much
larger coefficients than others and such situations arise often in engineering applications
wherein the stiffness and inertia matrices are assembled for large systems.
4.3.3 GaussElimination with scaled partial pivoting

The method used to solve the system of algebraic equations in this research is
Gauss elimination with scaled partial pivoting. In this section, a pseudo-code to apply

Gauss eimination with scaled partia pivoting is presented:

Doi =1,i <= maxcol, increment i by 1
utnew{i] = 0.0
p[i] = 0.0
d[i]=0.0
Enddo
Doi = 1,i <= maxcol, increment i by 1
pli] =i
d[i] =|K[i][1]]
Doj = 1,j <= maxcol, increment j by 1
(K11 > dli])
d[i] = K[
Endif

Enddo
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Enddo

Doi =

Enddo

1,i <= maxcol-1, increment i by 1
max = |K[p[i]][i]l/d[p[i]]
maxi = i
Dok =i+ 1, k<= maxcol, increment i by 1
If(|(K[pLKI][i] 1/d[p[K]] > max)
max = (|K[p[K]][i]|/d[p[K]])
maxi = k
Endif
Enddo
tmp = p[i]
pli] = p[maxi]
p[maxi] = tmp
Doj =i+ 1,j <= maxcol, increment j by 1
pivot = K[p[jl][i]/K[p[i]][i]
QIpljl] -= pivot * Q[pli]]
Dok= i+ 1, k<= maxcol, increment k by 1
KIp[i11[K -= pivot * K[p[i]][K]
Enddo

Enddo

Qlp[40]] = Q[p[40]1/K[p[40]][40]

Doi =

maxcol - 1,1 >= 1, incrementi by 1
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Doj =i+ 1,j <= maxcol, increment j by 1
QIplil] -= KIp[i]1[il * QIPil]
Enddo
QIplil]=QIP[i]1/KIpli]][i]
Enddo
Doi = 1, i < maxcol, increment i by 1
utnew[i] = Q [p[i]]

Enddo

44  Newmark’sIntegration scheme

One of the most efficient methods of solving second order equations in time
domain, is Newmark's method. This method has been adopted after studying the results
presented by Sreeram (1995) in detail where he has concluded that Newmark's method
gives the best results compared to other methods like Wilson-6 method, Central
difference method and Hoboult's method. This Newmark's integration scheme can also
be understood to be an extension of the linear acceleration method. The following

schematic presents the essence of Newmark’s method [Bathe and Wilson (1976)].

Groae =0 +[(1— )4, + &y o |

0
o =0 AL -0 [+ G 0 (42)

where a and J are parameters that can be set to obtain stability and certain accuracy.

When a = /2 and & = 1/6, the relations shown above correspond to the linear
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acceleration method. Newmark originally proposed an unconditionally stable scheme,
the constant-average-accel eration method, in which case = 1/2 and a = 1/4. Figure 4.1

depicts the scheme.

t t+At

Figure4.1 Newmark'sscheme

In addition to the equations shown above, for solution of the displacements,
velocities, and accelerations at time t+At, the equations of motion at time t+At are also
considered. The equation of motion can be written as

MG.p + Clia * Ky = Qo (4.3)

where M, K and C are the global Inertia, Stiffness and damping matrices and Q is the load
vector. Damping is absent in the present model and thus the second term is dropped.

Thereis no external load; hence in the present work, the Q vector isinitialized to zeroes.
Mqt+At + th+At = Qt+At (43a)

From Eq. (4.38) solving for ¢, intermsof g, ., ad then substituting for ¢,,, , we

obtain the expression for ¢,,, and ¢,,, intermsof the unknown displacements q,. ,; -
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Guene = ao( et~ O ) —a,0; — G,
qt+At = qt + a'th + a7qt+At (44)
Theserelations for ¢,,, and ¢, aresubstituted into the equation of motion to solve for

.., thenusing Eq. (4.2), ¢,,, and q,,, can be calculated

4.4.1 Pseudocodefor Newmark's scheme
I nitial Calculations:

Sepl: Formthe stiffness matrix K, and the Inertia matrix M with time independent terms
Sep2: Initialize q,, d,, 4, , Set Qo to zero
Sep3: Select time step size At, parameters a and d and cal culate integration constants
52 0.50; a=0.2505+0)%  ap= U(aAtd); a, = U(aAt);
az= 1/2a - 1; as = At(1-9); a; = Ot
For each time step:

Sepd: Add the time dependent part of the K and M matrices
Sep5: Formeffective stiffnessmatrix K: K = K +a,M
Sep6: Calculate the effective loads at time t+ At

Qua = Qua + M@, +a,0, +a,)
Sep7: Solve for displacements at time t+ At

Sep8: Calculate the acceleration and velocities at time t+ At:
Geone = ao( ot — G ) —a,q, —a,0,
qt+At = qt + a'th + a7qt+At

Sep9: Loop back for the next time step calculations
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45 Boundary conditions

The boundary conditions corresponding to the severa cases considered in this
research are outlined below.

45.1 Boundary conditionsfor CLPT under Plane Strain and Full Plane Stress

The CLPT using both plane strain and full plane stress have the same degrees of
freedom namely u, and w for every node with slope continuity for w at the end nodes of
each element. The boundary conditions are:

Hinged support : u=w=0

Fixed support : u=w=w =0

45.2 Boundary conditionsfor CLPT using Partial Plane Stress

In the CLPT using partial plane stress, the degrees of freedom at anode are u, y, w
and wy’ of which, w has slope continuity at the end nodes of each element. The boundary
conditions are:

Hinged support ; u=w=w,'=0

Fixed support ; u=w=w,/=w =0

453 Boundary conditionsfor FSDT

In the FSDT, the degrees of freedom at a node are u, , Wy, Ws and wy’ of which,
W, and wg has slope continuity at the end nodes of each element. The boundary

conditions are:
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Hinged support : U= W= Ws= W' =0

Fixed support : U= Wo=Ws= W, =Ws =W, =0
4.6 Free Vibration Parameters

Matlab was used as an effective mathematical tool to calculate the eigenvalues,
natural frequencies, and the mode shape of an initially static beam. Once the stiffness and
inertia matrices are formed and the Lagrange multipliers are applied, and the global
inertia ([M]) and stiffness ([K]) matrices are obtained. The natural frequencies are
obtained as the square root of the eigenvalues of the two matrices. The mode shape is

obtained by choosing the eigenvector corresponding to the first natural frequency.
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5. RESULTSAND DISCUSSION

51 I ntroduction

In the previous chapter, the numerical implementation employed to solve the non-
moving and moving beam problem was discussed. This chapter presents results and
provides a detailed discussion on the results obtained. An attempt has been made to
validate the program by verifying results presented by other authors. Tables are presented
for natural frequencies for isotropic, symmetric and unsymmetric composites and
comparisons have been drawn. Graphs are presented for the tip-displacements of the
moving beam. Both non-moving and moving beam comparisons are studied in detail.

The main results of the present research are that of a moving beam made of
composite materials. There are no results available in the literature for a direct
verification. Instead we shall use an indirect two-step approach for validation. The first
step consists of simulating an isotropic moving for comparison with existing results. This
would validate (i) the Lagrange Multiplier approach for boundary conditions and (ii) the
time integration algorithm based on Newmark’s method. The second step consists of
generating free-vibration results for non-moving beam made of composite material. Both
symmetric and unsymmetric lay-ups are considered. Comparison with existing results
would validate that the global inertia and stiffness matrices for the composite-material

case are formed correctly.
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5.2  Validation of |sotropic Beam Results

5.2.1 Non-Moving I sotropic Beam

The C program with the CLPT plane strain case is used to run the frequency
response of both static and moving beam cases for isotropic beam so as to compare with
that presented by Sreeram (1995). Initially, a ssimply supported isotropic beam with a
uniformly distributed load is considered. The dimensions of the beam and its properties
are taken to be as those presented by Sreeram (1995), Table 4.1, pg. 36. The length of
the beam is taken to be 1.0 m, the mass per unit length as 1.0 kg/m, El to be 1.0 Nm?.
Table 5.1(a) draws a comparison between the two sets of results obtained by Sreeram
(1995) for a beam with four elements and three internal nodes and a beam It is seen that
the present results match very well with that of Sreeram’s. Table 5.1(b) shows the axial
frequencies of the beam and the exact solution.

It should be noted that Sreeram did not have any axial degrees of freedom in his
formulation and hence the axial frequencies are compared with the exact solution and are
found to be in very good comparison. The exact solution for the axial frequency of a
simply supported beam with hinged-hinged boundary condition is given by nitwheren is

the mode number.
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Mode Number Analytical Solution (Sreeram) (Present)
1 9.8693 9.8696 9.8695
2 39.478 39.478 39.4784
3 88.826 88.826 88.8264
4 157.91 157.91 157.9136
5 246.73 246.74 246.7482
6 355.3 355.36 355.3692
7 483.6 483.95 483.956
8 631.65 634.32 634.3289
9 799.43 804.24 804.2415

Table5.1(a) Frequency response for transver se degrees of freedom of a ssimply

supported non-moving isotropic beam
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Mode Number Analytical Solution (Present)
1 3.1415927 3.14159
2 6.2831854 6.28319
3 9.4247781 9.42493
4 12.5663708 13.5664
5 15.7079635 15.7194
6 18.8495562 18.89836
7 21.9911489 22.14605
8 25.1327416 25.92288
9 28.2743343 29.26807

Table 5.1(b) Frequency response for axial degrees of freedom of a simply supported

non-moving isotropic beam

The next step in comparing with Sreeram'’s results is to consider a non-moving
overhanging isotropic beam. Table 5.2(a) shows the transverse frequencies and Table
5.2(b) the axia frequencies. As pointed out earlier, Sreeram (1995) did not have any
axial degrees of freedom. So the axia frequencies are again compared with their exact

solution for their accuracy.
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Mode Number Analytical Solution (Sreeram) (Present)
1 16.246 16.246 16.24636
2 20.771 20.784 20.78467
3 117.93 117.94 117.982
4 136.07 136.29 136.3644
5 247.47 248.44 248.5557
6 386.11 386.90 387.4277
7 422.58 425.92 426.4891
8 702.44 708.78 708.2631
9 799.47 813.52 813.6126

Table5.2(a) Frequency responsefor transver se degrees of freedom of an

over hanging non-moving isotropic beam

Mode Number Analytical Solution (Present)
1 2.5133 2.5481
2 4.1888 4.29202
3 7.5398 7.65210
4 12.5663 12.5698
5 12.5663 13.0909
6 17.5929 17.89364
7 20.9439 21.55625
8 22.6194 23.3191
9 29.3215 28.9497

Table 5.2(b) Frequency response for axial degrees of freedom of an overhanging

non-moving isotropic
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Tables 5.2(a) and 5.2(b) clearly shows that the values are very close to Sreeram's
results for the transverse frequencies and those of the exact solution for the axia
frequencies and hence assures the accuracy of the program. By checking the above two
sets of results with those presented by Sreeram, it has been clearly proved that the
program for the composite beam altered to calculate the equivalent isotropic values
would work for an isotropic case.

5.2.2 Moving Isotropic Beam Comparison

As the last step towards validating the present work with Sreeram's results, the
moving beam is simulated and the results are compared. Sreeram had performed a
response anaysis of an initially deformed moving beam. The initial deformation was
assumed to be the first mode shape and the program is run with the same set of numerical
parameters as Sreeram (1995). The length of the beam is taken to be 1.0, mass per unit
length as 1.0 kg/m and El to be 1.0 Nm?. Sreeram had used a time step of 2.5E-4 for his
solution. Similar assumptions have been made in the present research in verifying with
his results. The program is run for several values of Q, the axial frequency of the moving
beams. Figures5.1-5.4 show the transverse displacement of the left end of the beam as a
function of time for Q = 20, 22, 30, 60 rad/sec, respectively. The results from Sreeram

are also superimposed in these figures. It isclearly seen that there is excellent agreement.
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I sotr opic M oving Beam Comparison

Time Step = 2.5E-4 sec xc = 0.375 - 0.05sin(20t)
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Figure.5.1 Response Analysisof an Initially Deformed I sotropic Moving Beam
I sotropic M oving Beam Comparison
Time Step = 2.5E-4 sec Xc = 0.375 - 0.05sin(22t)
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Figure5.2  Response Analysisof an Initially Deformed | sotropic M oving Beam
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Transverse Left Tip
Deflection (x
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I sotr opic M oving Beam Comparison

Time step = 2.5E-4 sec x. = 0.375 - 0.05 sin(30t)
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5.3 Validation with Non-Moving Composite Beam

In this section, the aim is to validate the formation of the global inertia and stiffness
matrices for the composite material case. Thisis done by considering non-moving beams
since there are no existing results for moving composite-material beams.

5.3.1 Validation of programsusing CLPT for Symmetric Static Beam

The first natural frequency obtained using our computer program is compared
with results available from papers and textbooks. Reddy, 1997, Table 6.2-4 presented
results for a simply supported beam with hinged-hinged boundary conditions for
unidirectional and other symmetric laminates. The non-dimensionalized natural
frequencies were given for different lay-up geometries. Reddy took the material
properties to be in the following ratio. Ei/E; = 25, Gy, = Gi3= 0.5E;, Gy3= 0.2E; and vy,

= 0.25. The material properties used for the verification in our case are as follows. These

correspond to
E1=25.0 x 10° N/m? L =1.0m
E»=1.0x 10° N/m? bx h=0.01mx 0.01m
G2 = 0.5 x 10° N/m? y=7.0x 10° kg/m®
vi2 = 0.25
w = wl’ Lo (Non-dimensionalized natural frequency)

E,h®
The program was run for the case of plane strain, full and partial plane stress and
as an equivaent isotropic material. The results are compared for different lay-up
sequences. Table 5.3 shows the comparison of the natural frequencies and the non-

dimensionalized natural frequencies of the program with that of Reddy (1997).
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First Natural Frequency
Lay-up Equivalent Isotropic
Reddy Present Plane Strain | Full Plane Stress | Partial Plane Stress
Omegabar| Omega

0/0/0/0 14.246 | 17027.226] 17026.685| 17047.289 17025.989 17025.989
90/90/90/90 2.849 3405.206 | 3405.337 | 3409.461 3405.198 3405.198
0/90/90/0 13.375 |15986.182] 15986.769| 15991.844 15986.075 15986.075
45/-45/-45/45 3.766 4501.231 | 4501.353 | 9099.974 5439.807 4615.928
(0/45/-45/90)s|  11.236 | 13429.589| 13429.012| 14206.765 13496.227 13445.891

Tableb.3 Comparison between First Natural Frequency of Reddy’sresultsand
Equivalent | sotropic, Plane Strain, Full Plane Stress and Partial Plane Stress cases

for Hinged-Hinged boundary condition

Table 5.3 shows the results presented by Reddy and that obtained from the present
research for equivalent isotropic, plane strain, full and partial plane stress boundary
conditions using CLPT for smply supported beam with hinged-hinged boundary
conditions. It is clear from the comparison of the «, values that the results presented by
Reddy are by reducing the composite material equations to an equivalent isotropic case.
The w; values are obtained from the a? values using the formula shown earlier. The
equivalent «w, values obtained in the present research stands in very good comparison
with those presented by Reddy for all lay-ups shown in Table 5.3. In the case of CLPT
using plane strain boundary conditions, the lay-ups with 0° 90° and symmetric
combination of 0° and 90° are in good comparison with those presented by Reddy. But
when the laminate is a angle ply or a combination of cross ply and angle ply, the results
do not go in good comparison. On introducing angle ply, the laminate is dominated by

in-plane shear effects, which are neglected in the equivalent isotropic cases and so does
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not compare well with plane strain results where this effect is totaly neglected. In the
case of full plane stress boundary condition, a very similar pattern as in the case of plane
strain case is seen but proves to be more effective for angle plies and combination of
cross plies and angle plies. Finally, the partial plane stress boundary condition results are
compared with Reddy’s results. It is very clear from the table that this method works
well for all the lay-ups shown in the Table 5.3 and hence we will be the only method

which will be used in the later part of this research.

5.3.2 CLPT Partial Plane Stressfor unsymmetric laminate

Results presented by Reddy (1997) are only for symmetric cases. Singh, et al.
(1991) presented results for the first natural frequency of unsymmetrically laminated
beam with various boundary conditions. The program using CLPT partia plane stress
method was validated by comparing with the results presented by Singh, et al. (1991). In
order to show that partial plane stress compares better than full plane stress formulation,
the results presented by Singh, et al. (1991) is also compared with full plane stress results
for al boundary conditions presented in table 5.4. The material properties and beam

dimensions used by Singh, et al. are asfollows:

E, = 18.74 x 10° psi L = 1.0m and slenderness ratio = 200
E,=1.6x 10° psi b x h = 0.01m x 0.005m
Gy, = 0.65x 10° psi Viz = 0.25

o= 1.424 x 10 Ib.sec?in?
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Table 5.4 shows the comparison of results presented by Singh et al. (1991) for

various boundary conditions and unsymmetric lay-ups and the results from the partial and

full plane stress formulations in the present research.

Hinged-Hinged Fixed-Fxed Fixed-Hinged
Lay-up : Plane Stress : Plane Stress : Plane Stress
Singh, et = 1 R 1o A i | rar oo oo | Fal
45/-45 10.84 10707 |[12564| 15583 555 57.79 26.47 26129 | 2805
090 43.69 43529 |43.352| 12838 12723 | 127113 69.2 68.743 |[68562
0/45-45/90 41.24 41.064 41.76 129.71 120073 | 130.325 68.55 63.002 |69.117

Table 5.4 Comparison between First Natural Frequency of Singh, et al. Results,
partial and full plane stress formulation resultsfor unsymmetric cases
The first natural frequency obtained from the partial plane stress and full plane stress
formulations are shown and are compared with results presented by Singh, et a (1991).
The partia plane stress formulation results are in very good agreement with Singh, et al
for all the end conditions. Full plane stress results compare well when the lay-up is a
combination of 0° and 90° but tend to deviate with angle plies.

It can clearly be concluded from the results from Tables 5.3 and 5.4 that partia
plane stress formulation proves to be more effective than the full plane stress formulation
in both symmetric and unsymmetric lay-ups and supports the argument to follow partial
plane stress formulation for further research.

Singh, et a (1991) had presented results for the first four natural frequenciesfor a
fixed-free beam for a 30° graphite epoxy laminate. A beam with | = 7.5in., b= 05 in.
andt=0.125in. isused. A discrepancy isfound between the results presented by Singh,
et a and results from this research. Table 5.4a shows a comparison of results presented
by Singh, et al and current research.
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Mode No. .Natural Frequency
Singh, et al Present
1 52.6018 98.571
2 330.093 561.813
3 932.414 1349.327
4 1839.79 2308.542

Table5.4(a) Comparison between natural frequencies presented by Singh, et al
and present resear ch for a fixed-free beam

5.3.3 Validation of program using FSDT

Next, the formulation based on FSDT is validated for non-moving unsymmetric
composite beams. First, Table 5.5 shows the first natural frequency of beams of different
lay-ups and different end conditions. The corresponding results from Singh, et al (1991)

arealso included in thistable.

Lay-up Hinged-Hinged Fixed-Fixed Fixed-Hinged
Singh FSDT Singh FSDT Singh FSDT
et al. et al. et al.

45/-45 10.83 10.71 55.59 55.42 26.42 26.47

0/90 43.53 43.52 128.38 127.15 127.14 127.15
0/45/-45/90 | 41.09 41.04 129.71 | 129.523 68.17 68.08

Table 5.5 Comparison between First Natural Frequency of Singh et al. results and
FSDT results
Table 5.5 clearly shows that the present results show excellent agreement with that of
Singh et a. (1991).
The purpose of the FSDT model is to include the effect of transverse shear in the
beam. The transverse shear effects are more prominent in short beams. In order to see
the effect of the slenderness ratio on the natural frequency, a symmetric angle ply lay-up

in the form of 6/-6/-6/0 is considered for three different values of denderness ratio L/h,

namely 15, 60 and 120. The angle 8 is varied from 0° to 90° in steps of 15° which
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correspond to a graphite-epoxy composite. The material properties and beam dimensions

used are as follows;

E. = 1.448 x 10" N/m? L =1.5m L/h =15 (short beam)

E, = 9.653 x 10° N/m? L =6.0m L/h =60 (slender beam)
Gy = Gy3= 4.137 x 10° N/m? L =12.0m L/h =120 (slender beam)
Ga3= 3.448 x 10° N/m? bxh=1.0mx0.1m

o = 1389.227 kg/m® Vi, = 0.3

w = w? ’Ei > (Non-dimensionalized natural frequency)
1

Table 5.6 shows the results from this study in the form of non-dimensionalized first
natural frequency for different values of L/h and 6. This table also includes analytical

and numerical results for L/h = 15 from Kadivar and Mohebpour (1998).

Lay-up Analytical CLPT FSDT (Kadivar FSDT
(Present) |and Mohebpour) (Present Research)
L/h=15 L/h =15 | L/h=60 |L/h =120

0/-0/-0/0 4.848 4871 4.8629 4.8670 6.311 6.421
15/-15/-15/15| 4.6635 4.6821 4.0082 3.9838 4.683 4.729
30/-30/-30/30| 4.0981 4.1201 2.8762 2.8513 3.098 3.112
45/-45/-45/45|  3.1843 3.2051 1.933 1.9332 2.004 2.008
60/-60/-60/60| 2.1984 2.1991 1.629 1.6291 1.675 1.678
75/-75/-75/75| 1.6815 1.7022 1.6063 1.6065 1.653 1.655
90/-90/-90/90 1.62 1.6201 1.6161 1.6161 1.664 1.667

Tableb.6 Non-dimensionalized first natural frequency of an angle ply beam
When compared to the analytical solution, the numerical results of Kadivar and
Mohebpour (1998) tend to deviate more as the 8 = 45 lay-up is approached from either
end of @ spectrum. Thisisdueto the fact that the transverse shear effects are neglected in

the analytical solution. This argument is further strengthened when the analytical
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solution is compared with the present results based on CLPT wherein there is remarkable
agreement. For L/h=15, the present result agree excellently with that of Kadivar and
Mohebpour. Further, it can be seen that as the slenderness ratio is increased from 15 to
60, the frequencies differ considerably with particularly closer to zero degree ply. When
L/h isincreased from 60 to 120 the change in results is small which signifies that shear

effects are no longer dependent on the slenderness ratio.

54  Composite Moving Beam

As stated earlier, the aim of this study is to simulate a moving beam made of
composite material. As such, this section deals with the dynamic analysis of a composite
moving beam. The moving beam is simulated for two cases. One is with CLPT using
partial plane stress approximation and the second using FSDT. The programs are run for
a graphite-epoxy beam with properties same as those presented in Section 5.3.3. A short
beam is opted for the analysis because the transverse shear effects are prominent in short
beams as shown in the non-moving beam case.

54.1 Composite Moving Beam Simulation using CLPT Partial Plane Stress case

A beam of length 1.5 m with an L/h ratio of 15 is considered for this analysis.
The beam is given a sinusoidal axial motion represented by
X(t) = -w, + ASn(Qt) (5.1)
and in the moving frame, the support motion is given by the function
X () = w, - ASnQt) (5.2)
where the amplitude of oscillation, A = 0.05m and the frequency, Q = 20 rad/sec and 60

rad/sec. The higher value of the frequency is chosen to see if the response becomes
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unstable at higher frequency as seen in the isotropic case. The stiffness values and the
dimensions used by Sreeram and Sivaneri (1997) and Buffington and Kane (1985) were
mostly unity and thus hypothetical. The value of unity chosen for the stiffness El is very
small compared to realistic values. Sreeram and Sivaneri (1997) had used a time step of
2.5 x 10™ seconds for the numerical integration in the time domain in his program. In the
present research, practical values are used for the material properties and dimensions of
the beam and which are large compared to that used by Sreeram and Sivaneri (1997).
Hence a smaller time step may need to be used for accurate results. Another fact to be
noted is that Sreeram had only transverse degrees of freedom but in the present case
interaction between axial and transverse degrees of freedom occur. These factors make it
necessary to reduce the time step to a much lower value. This value was found out by
trial and error and a value of 2.5 x 107 seconds was chosen to be the optimal value the
analysis modeled using for CLPT based on partial plane stress approximation.

The program listed in Appendix A is run for two different Q values and three
different lay-ups. The two values of Q used are Q = 20 rad/sec and 60 rad/sec. The
values of B used are 0° 45° and 90°. The lay-up architecture used is the same as that used
by Kadivar and Mohebpour (1998) and is represented as 6 /-6 /-6 /16 where 6 represents
the angle of each layer. The initial shape of the beam used corresponds to the first mode
shape for the given lay-up and materia properties. Figures 5.5 to 5.10 are plots of the
transverse tip displacement of the left end. Figures 5.11 and 5.12 are the plots of the
transverse and axial tip displacements of the right end. Figures 5.5 and 5.6 are for alay-
up with 8 = 45 degrees and Q of 20 rad/sec and 60 rad/sec, respectively. The solution is
stable for both frequencies unlike those presented by Sreeram and Sivaneri for the

isotropic case wherein the solution became unstable for the higher value of Q. As can be
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seen from these figures, the tip displacement exhibits a beat like phenomenon for both

frequencies.
CLPT
L/h=15 Lay-up = 45/-45/-45/45
% = 0.375* L — 0.05 Sin(20t)

£ g 0.015
2 & 0505 it slMHDINY, - il ol
27 0 (MR RN sl Rl
2 2= _0.005 NI T e T e ATV
S5 “0.01 T T TVENERTANT T O™
£ -0.015
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Time (sec)

Figure55  TransverseLeft Tip displacement, Q = 20 rad/sec

CLPT
L/h=15 Lay-up = 45/-45/-45/45

x. = 0.375*L — 0.05Sn(60t)

Transverse Left Tip
Displacement (m)

Time (sec)

Figure5.6  TransverseLeft Tip displacement, Q = 60 rad/sec
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Figure5.11 Transverse Right tip displacement, Q = 60 rad/sec
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Figure5.12 Axial Right tip displacement u, Q = 60 rad/sec
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When the Q value increases, the number of beats also increases correspondingly. It can
be seen that, over the time period of one second, there are three prominent beats that are
present with an Q value of 20 rad/sec while there are nine prominent beats present with
an Q of 60 rad/sec. Since the Q value in the second case is three times the value in the
first case, three times the number of beats are expected in the simulation.

Figures 5.7 and 5.8 are drawn for a lay-up with 6 = 90 degrees and Q of 20
rad/sec and 60 rad/sec respectively. These plots look very similar to that of the 8 = 45
degree case. Again abeat phenomenon is seen to exist with the same number of peaks.

Figures 5.9 and 5.10 are drawn for alay-up with 8 = 0 degrees and Q of 20 and
60 rad/sec respectively. These graphs also show a beat phenomenon but with a much
higher frequency. The reason for higher frequency is that the beam becomes stiffer with
a zero-degree lay-up. The same number of beat peaks as before are observed. The
maximum amplitude is found to be dlightly below 0.015m in all the cases.

In this problem, to avoid rigid body modes, while solving for the displacements,
the left end of the beam is fixed in the axial direction. The right tip displacements in the
transverse and axia directions are plotted for the beam with alay-up of 8= 0 degrees and
Q of 20 in Figures 5.11 and 5.12, respectively. Figure 5.11 shows that the magnitude of
the transverse tip displacement is very similar to that of the left end and a similar beat
phenomenon manifests. The axial degree of freedom plotted against time in Figure 5.12
shows that the magnitude is one order less than that of its transverse degree of freedom

counterpart.
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Figures 5.5, 5.7 and 5.9, plotted for 68 = 45, 90 and O degrees, respectively with Q
= 20 rad/sec show that the beat peaks and the troughs fall at about the same time. The
troughs are found to fall at 0.1, 0.4 and 0.7 seconds, approximately and the peaks are
found to occur at 0.25, 0.55 and 0.85 seconds, approximately. Similarly, figures 5.6, 5.7
and 5.9, plotted for 8 = 45, 90 and O degrees respectively, with Q = 60 rad/sec show that
the beat peaks and the troughs fall at about the same instant. The troughs are found to
fal at time = 0.045, 0.146, 0.25, 0.35, 0.45, 0.56, 0.67, 0.77, 0.88, 0.98 seconds,
approximately and the peaks are found to fall at 0.088, 0.19, 0.30, 0.405, 0.51, 0.615,

0.72, 0.825, 0.93 seconds, approximately.
5.4.2 Composite Moving Beam Simulation using FSDT

This section deals with the simulation of a composite beam using the FSDT
program listed in Appendix B. To compare the results obtained from CLPT, the same
lay-up architecture and properties are used here also. The time step used is 2.5 x 10’
seconds, asin the case of CLPT. Figures 5.13 —5.26 show the transverse displacement of
the left end of the beam.

Figures 5.13 to 5.16 are drawn for the transverse bending and shear components
for the case of 8 = 45° and Q values 20 and 60 rad/sec respectively. Unlike the results
presented for CLPT, a pronounced beat phenomenon is not observed in the FSDT for the
transverse bending component. But a beat phenomenon is witnessed in the shear
component of the transverse deflection with a magnitude of two orders lower than the
corresponding bending component. The number of degrees of freedom in the FSDT case
is much higher than that in the case of CLPT and hence, due to time restrictions, the

program listed in Appendix B isrun for half a second and the results are presented. Still
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we can infer that the displacements are stable for both the values of Q used. The
amplitude of the left tip isfound to vary about the initial value of 0.01m.

Figures 5.17 to 5.20 are shown for the transverse bending and shear components
for the case of & = 90° and Q values of 20 and 60 rad/sec respectively. Again, the
program is run for haf a second. Again in these cases, the beat phenomenon is
suppressed to a great extent in the transverse bending component and the maximum
amplitude of vibration of the bending component of the transverse left tip displacement
of the beam is found close to the initial value of 0.01m imparted to the beam. Again as
in the case of the 45° lay-up, the transverse shear component is found to still have a beat
phenomenon with a magnitude which is two orders lower than its bending counter part.
The beam is found to be stable even as the Q value was increased from 20 to 60 rad/sec
and asimilar behavior is seen in the two cases.

Figures 5.21 to 5.24 are drawn for the transverse bending and shear components
for a 0° lay-up and Q values of 20 and 60 rad/sec. The behavior of the beam is very
similar to those seen in the 45° and 90° cases with the beat phenomenon suppressed to a
good extent in the bending component and shear component exhibiting a beat
phenomenon with a magnitude two orders less than its bending counterpart. In order to
avoid the rigid body modes, as done in the case of the CLPT, the axia displacements at
the left end of the beam was constrained. The tip displacements at the right end of the
beam are presented for a 0° lay-up and a Q value of 60 rad/sec. Figures 5.25 to 5.27 are
plotted for the transverse bending, shear and axia displacements at the right end. Unlike
the transverse bending component at the left end, the transverse bending component at
the right end is found to exhibit a more pronounced beat phenomenon with a magnitude
half of that at the left end. The axial displacement at the right end also exhibits a beat
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phenomenon with a magnitude one order less than the corresponding transverse bending

Counterpart.
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Figure5.13 Transverse Left Tip Displacement w, FSDT and Q = 20 rad/sec
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Figure5.14 Transverse Left Tip Displacement ws, FSDT and Q = 20 rad/sec
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Figure5.15 Transverse Left Tip Displacement w,, FSDT and Q = 60 rad/sec
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Figure5.16 TransverseLeft Tip Displacement ws, FSDT and Q = 60 rad/sec
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Figure5.17 Transverse Left Tip Displacement w,, FSDT and Q = 20 rad/sec
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Figure5.18 Transverse Left Tip Displacement ws, FSDT and Q = 20 rad/sec
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Figure5.22 Transverse Left Tip Displacement ws, FSDT and Q
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Figure5.23 Transverse Left Tip Displacement w,, FSDT and Q
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Figure5.24 Transverse Left Tip Displacement ws, FSDT and Q

101



FSDT

= 0/-0/-0/0

Lay-up

L/h=15

0.375*L — 0.05Sn(60)

X

(w) wwawaor|dsig
dil by asiansuel|

05

04

0.3

0.2

01

Time (Sec)

60 rad/sec

Figure5.25 Transverse Right Tip Displacement wy,, FSDT and Q
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Figure5.26 Transverse Right Tip Displacement ws, FSDT and Q
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Figure5.27 Axial Right Tip Displacement u, FSDT and Q = 60 rad/sec
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6.1

6. CONCLUSIONSAND RECOMMENDATIONS

Contributions

Formulation of a five noded beam element with interior nodes having only
displacement degrees of freedom in the axial and transverse direction and end nodes
having both displacement and rotational degrees of freedom in the transverse
direction and only displacement degrees of freedom in the axia direction.
Development of a higher-order finite element model using Hermitian function with
C! continuity and Lagrange polynomials with C° continuity as shape functions for
solving the problem of afinite beam moving over supports.

Use of Lagrange multipliers to composite moving beams for enforcing the essential
conditions.

Formulation of finite element model based on CLPT and FSDT with reduction from
plate theories to beam theory based on plane-strain and plane-stress conditions.
Solution for the problem as a composite beam instead of reducing it to an equivalent
isotropic material.

Development of an indigenous computer code in the C language for the solution of

the composite moving beams.
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6.2

Conclusions

The implementation of Lagrange multiplier to this problem is found to be very
effective for problems with time-dependent essential conditions. A conventional finite
element approach, would require considerably more effort in that new node locations
having to be created at every time step to coincide with the support location.

Finite element formulation for CLPT using plane strain conditions are not effective,
particularly as the lay-up angle is increased from zero or decreased from 90 degrees
and hence only CLPT and FSDT using plane stress boundary conditions were are
used in the later part of the research.

Finite element formulation for CLPT using full plane stress condition proved
effective for cross ply lay-ups but not with angle plies and combination of cross and
angle plies. Whereas the partia plane stress condition proved effective for both the
Ccases.

Partial plane stress method using CLPT resulted in a beat phenomenon with the tip-
displacement oscillating about the initial displacement. The frequency of vibration of
the beam is highest with the zero-degree lay-up architecture and decreases
considerably with the increase in the lay-up angle.

FSDT using plane stress exhibits considerably reduced beat phenomenon at the left
end but exhibited a beat phenomenon at the right end. The frequency of vibration of
the beam is highest with the zero-degree lay-up architecture and decreases

considerably with the increase in the lay-up angle.
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6. The change in Q values for the composite beam affects only the number of beats in
the results and does not affect the stability of the problem whereas instability was
observed for certain Q values by Buffington and Kane (1985), Lee (1992) and

Sreeram and Sivaneri (1997), for isotropic cases.

6.3 Recommendations

1. The presence of the shear correction factor in the formulation using FSDT is an
unwanted approximation in the model. Formulations using Higher order shear
deformation theories would eliminate this approximation and would increase
effectiveness of the model.

2. Numerical results for unsymmetric lay-ups.

3. Introduction of damping in the model to analyze the dynamic behavior of the beam
with and without damping.

4. Extension of the problem from a1-D to a2-D or 3-D one.

5. Experimental verification of theoretical results.
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APPENDIX A

/**********************************************************************************************/

/*CLPT USING PLANE STRESS METHOD I1*/

/* THE ACCELERATION IS-A*OMEGA SQUARE *SIN(OMEGA*T) */

/* THIS PROGRAM IS FOR A COMPOSITE BEAM WITH SHEAR EFFECTS BEING CONSIDERED USING CLT
APPROACH */

/**********************************************************************************************/

#include <stdio.h>

# include <math.h>

# definem 10

# define TINY 1.0e-20

/**********************************************************************************************/

/* Initial Displacements given as the first mode shape normalized to 0.01m at the left end of the beam  */
/**********************************************************************************************/
main()
FILE *fp2;
int nel,elc,i,j,k,s,n,x,y,co,inter,maxi=0,tmp=0,p[ 77]={ 0} ,no=0,counter=1,yes=0;
double 1=0.0,o0mega,Rhoperarea,Rho=0.0,L B,t=0.0,tmax,tinc,X[15]={ 0.0} ,gama=0.0,HT[7]={ 0.0},
HA[5]={0.0} ,M[4][22][22]={ 0.0};
double K[4][22][22]={ 0.0} ,H2T[7]={ 0.0} ,H1A[5]={ 0.0} ,L[10]={ 0.0} ,pi=3.14159265359,p2=0.0,p1=0.0;
double c,wx,u,v,ma[10][5][5]={ 0.0} ,H1T[7]={ 0.0} ,H2A[5]={ 0.0} ;
double 10=0.0,11=0.0,12=0.0,hi[10]={ 0.0} ;
double S11[5][5]={0.0},S12[5][3]={ 0.0} ,S21[ 3][5]={ 0.0} ,S22[ 3][ 3]={ 0.0} ,Sm[5][ 5]={ O} ,S12ym[ 5] [ 3]={ 0.0},
S12ym?21[4][4]={0.0};
double muu[5][5]={ 0.0} ,muw[5][7]={ 0.0} ,mlamlam[5][5]={ 0.0} ,mww][ 7][ 7]={ 0.0} ,mwu[ 7][5]={ 0.0} ;
double kuu[5][5]={ 0.0} ,kub[5][5]={ 0.0} ;
double kuw([5][7]={ 0.0} ,kulam[5][5]={ 0.0} ,kbu[5][5]={ 0.0} ,kbb[5][5]={ 0.0} ;
double kbw[5][7]={ 0.0} ,kblam[5][5]={ 0.0} ,kwu[ 7][5]={ 0.0} ,kwb[7][5]={ 0.0} ;
double kww([7][7]={ 0.0} ,kwlam[7][5]={ 0.0} ,klamu[5][5]={ 0.0} ,klamb[5][5]={ 0.0} ;
double klamw][5][ 7]={ 0.0} ,klamlam[5][5]={ 0.0} ,ki[5][7][ 7]={ 0.0} ;
double KL[73][4]={0.0} ,sumlen1=0.0,sumlen2=0.0,z[ 2] ={ 0} ,xs1,xs2,xb=0.0,accl=0.0,w=0.0;
double KG[77][77]={0.0};
double MG[77][77]={0.0};
double b=0.0,A11=0.0,B11=0.0,D11=0.0,Nx=0.0;
/* Declarations for matrix inverse */
int ni,ii,iii=0,imax,jj,ip,indx[ m]={ 0} ;
double big=0.0, dum=0.0, sum=0.0, temp=0.0,vv[m]={ 0.0} ,di=0.0,a]m][ m]={ 0.0} ,col[m]={ 0.0},
sum1=0.0,ym[m][m]={ 0.0} ;
double det=0.0;
/* Declarations required for solving the above mentioned problem using newmarks method */
double ut[77]={ 0.0} ,dt=2.5e-7;
double ult[77]={ 0.0} ,u2t[ 77]={ 0.0} ,utnew[ 77]={ 0.0} ,ultnew[ 77]={ 0.0} ,u2tnew[ 77]={ 0.0} ;
double Q[ 77]={ 0.0} ,Qhat[ 77]={ 0.0} ,Qhatnew[ 77]={ 0.0} ,Qhatnewgauss[ 77]={ 0.0} ;
double KGhat[77][77]={ 0.0} ,K Ghatgauss[ 77][ 77]={ 0.0} ;
double MGut[77]={ 0.0} ,MGult[77]={ 0.0} M Gu2t[ 77]={ 0.0} ;
double a0=0.0,a2=0.0,a3=0.0,a6=0.0,a7=0.0,delta=0.75,a pha=0.6;
double max=0.0,d[ 77]={ 0.0} ,pivot=0.0;
/* Decalration for a composite beam */
double layerno[10]={ 0.0} ,|layerangle[ 10]={ 0.0} ,E1=0.0,E2=0.0,G12=0.0,G13=0.0,h[ 10]={ 0.0} ,hbar[ 10]={ 0.0},
new12=0.0;
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double Qbar[10][4][4]={ 0.0} ,Qmat[4][4]={ 0.0} ,A[4][4]={0.0} ,B[4][4]={ 0.0} ,D[4][4]={ 0.0} ,Delta=0.0;
double C1=0.0,S1=0.0,C2=0.0,S2=0.0,C3=0.0,S3=0.0,C4=0.0,54=0.0;
double D1=0.0,D2=0.0,D3=0.0,Dstar=0.0,D11star=0.0,Exxb=0.0,height=0.0;
/* END OF DECLARATION */
fp2 = fopen("mvtipdis’,"w");  /* Output file name mvtipdis*/
/* Initialization begins */
/* initidlizing all theusat timet =0 so asto have the tip deflection as
0.01 meters for an overhanging beam case .. using first mode as the initial shape */
/* Since, thereis coupling due to the material properties, the axial displacemenets are not zeros */
ut[0]=0.0;ut[ 1]=-6.889E-09;ut[ 2]=0.01; ut[ 3] =-0.0311038;ut[ 4] =-0.0008379;
ut[5]=-6.575E-08;ut[ 6]=-1.17E-06;ut[ 7]=0.0080576; ut[ 8] =-0.0008325; ut[ 9] =-4.944E-07;ut[ 10] =-4.441E-06;
ut[11]=0.0061358;ut[ 12]=-0.0007976;ut[ 13]=-1.607E-06; ut[ 14] =-9.528E-06; ut[ 15] =0.004284;
ut[16]=-0.000707;ut[17]=-3.65E-06;ut[ 18] =-1.587E-05;ut[ 19] =0.0025791;ut[ 20] =-0.0256127,;
ut[21]=-0.0005407;ut[ 22]=-6.785E-06; ut[ 23] =-2.296 E-05; ut[ 24] =0.0011156; ut[ 25] =-0.000268;
ut[26]=-1.101E-05;ut[ 27]=-2.891E-05;ut[28] =0.0;ut[ 29] =1.122E-12;ut[ 30] =-1.577E-05;
ut[31]=-3.021E-05;ut[ 32]=-0.0006816; ut[ 33] =4.813E-05; ut[ 34] =-2.055E-05; ut[ 35] =-3.001E-05;
ut[36]=-0.0009067;ut[ 37]=2.898E-05; ut[ 38] =4.668E-06; ut[ 39] =-2.53E-05; ut[ 40] =-2.984E-05;
ut[41]=-0.0006789;ut[ 42] =-4.123E-05; ut[ 43] =-2.998E-05; ut[ 44] =-2.827E-05;ut[ 45] =0.0;
ut[46]=6.733E-13;ut[47]=-3.41E-05;ut[ 48] =-2.237E-05;ut[ 49]=0.0011035; ut[ 50] =0.0002597;
ut[51]=-3.715E-05;ut[ 52] =-1.544E-05;ut[ 53] =0.0025462; ut[ 54] =0.0252221; ut[ 55] =0.0005257;
ut[56]=-3.914E-05;ut[ 57]=-9.26E-06; ut[ 58] =0.0042238; ut[ 59] =0.0006874; ut[ 60] =-4.022E-05;
ut[61]=-4.309E-06; ut[ 62] =0.0060442; ut[ 63] =0.0007754; ut[ 64] =-4.063E-05; ut[ 65] =-1.123E-06;
ut[66]=0.0079326;ut[67]=0.0008091; ut[ 68] =-4.07E-05; ut[ 69] =-5.754E-09;ut[ 70] =0.0098407,;
ut[71]=0.0305541; ut[ 72]=0.0008142;ut[ 73] =4.1114946; ut[ 74]=3.8158928; ut[ 75]=-0.070031,
ut[ 76]=0.0700309;
/* Input from the user */
printf("Enter the length of the beam ")
scanf("%lIf",&LB);
printf("Enter the total simulation time M)
scanf("%lf",&tmax);
printf("Enter the Omega value M)
scanf("%lf",& omega);
printf("Enter the width of the beam M)
scanf("%lf",&b);
printf("Enter the height of the beam M)
scanf("%lf",& height);
printf("Enter the Rho value in kg/cu.m ")
scanf("%lf",& Rho);
printf("Enter the E1 valuein Pa ")
scanf("%lIf" & E1);
printf("Enter the E2 valuein Pa ")
scanf("%lf" & E2);
printf("Enter the G12 value in Pa ")
scanf("%lf",& G12);
printf("Enter the new12 value M)
scanf("%lf",&new12);
printf("Enter the number of layers ");
scanf("%d",&no);
| = b*height* height* height/12.0;
for(i=1;i<=no;i++)
{
printf("Enter the the angle for ply number %d  ".i);
scanf("%lf" ,&layerangl€]i]);

for(i=1;i<=no;i++)
h[i]=height/no;
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for(i=2,hi[i-1]=-height/2.0;i<=no+1;i++)
hi[i]=hi[i-1]+(height/no);
for(i=1;i<=no;i++)
hbar[i]=hi[i]+height/(2* no);
printf("\nThe layer anglesare ");
for(i=1;i<=no;i++)
printf("\nlayerangle[%d] = %lf ",ilayerangl€]i]);
printf("\nThe layer thickness are \n");
for(i=1;i<=no;i++)
printf("\nh[%d] = %If ".i,h[i]);
printf("\nThe h[i]sare \n");
for(i=1;i<=no+1;i++)
printf("\nhi[%d] = %lIf ",ihi[i]);
printf("\nThe hbarg[i]sare \n");
for(i=1;i<=no;i++)
printf("\nhbar[%d] = %lIf ",ihbar[i]);
for(i=1;i<=no;i++)
layerangl€]i]*=pi/180.0;
a0=1.0/(alpha* dt*dt);
a2=1.0/(alpha*dt);
a3=(1.0/(2.0*alpha))-1.0;
ab=dt*(1.0-delta);
ar=delta*dt;
nel=4;
inter=3;
X[0]=0.0*LB;
X[1]=0.25*LB;
X[2]=0.5*LB;
X[3]=0.75*LB;
X[4]=1.0*LB;
gama=Rho* height*b;
for(i=1;i<=no;i++)

10+=(hi[i+1]-hi[i])* Rho;
| 2+=((hi[i+1]* hi[i+1])-(hi[i]* hi[i]))* Rho/2.0;
12+=((hi[i+1]* hi[i+1]*hi[i+1])-(hi[i] * hi[i] * hi[i]))* Rho/3.0;

printf("\nDo you want to include rotary inertia\n--type 1 for yesand O for no ");
scanf("%d",& yes);
if(yes==0)
12=0.0;
printf("\n 10= %18.16f 11=%18.16If 12=%18.16lf \n",10,11,12);
fprintf(fp2,"\n 10 = %12.10If \n ",10);
/* The composite material properties and ABD matrix calculations */
/* Begin Q matrix calculations */
Deta=1 - (newl2*newl2)*E2/EL,
Qmat[1][1]=EL/Delta;
Qmat[1][2]=new12*E2/Delta;
Qmat[2][1]=Qmat[1][2];
Qmat[2][2]=E2/Delta;
Qmat[3][3]=G12;
/* End Q matrix calculations */
/* Begin Qbar matrix calculations */
for(i=1;i<=no;i++)

Cl=cos(layerangl€][i]);
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C2=cos(layerangl€]i])* cos(layerangl€[i]);

C3=cos(layerangl€]i])* cos(layerangl€]i])* cos(layerangl€]i]);

C4=cos(layerangl€]i])* cos(layerangl€]i])* cos(layerangl €]i])* cos(layerangl €]i]);

Sl=sin(layerangl€]i]);

S2=sin(layerangl€]i])*sin(layerangl€]i]);

S3=sin(layerangl€]i])*sin(layerangle[i])* sin(layerangl €]i]);

HA=sin(layerangl€]i])*sin(layerangle[i])* sin(layerangl €]i])* sin(layerangl €]i]);

Qbar{i][1][1] = Qmat[1][1]*C4 + 2* (Qmat[1][2] + 2* Qmat[3][3])* S2* C2 + Qmat[2][2]* 4,

Qbar{i][1][2] = (Qmat[1][1] + Qmat[2][2] - 4*Qmat[3][3])* S2* C2 + Qmat[1][2]* ($A + C4);

Qbar{i][2][2] = Qmat[1][1]*$4 + 2* (Qmat[1][2] + 2* Qmat[3][3])* S2* C2 + Qmat[2][2]*C4;

Qbar{i][2][1] = Qbar[i][1][2];

Qbar{i][1][3] = (Qmat[1][1] - Qmat[1][2] -2*Qmat[3][3])* S1*C3 + (Qmat[1][2] - Qmat[2][2] +
2*Qmat[3][3])*S3*C1;

Qbar{i][2][3] = (Qmat[1][1] - Qmat[1][2] -2*Qmat[3][3])* S3*C1 + (Qmat[1][2] - Qmat[2][2] +
2*Qmat[3][3])*S1*C3;

Qbarfi][3][1] = Qbar[i][1][3];

Qbar(i][3][2] = Qbar[i][2][3];

Qbari][3][3] = (Qmat[1][1] + Qmat[2][2] - 2*Qmat[1][2] - 2*Qmat[3][3])* S2* C2 + Qmat[3][3]* (S4 + C4);

/* End Qbar matrix calculations */
for(i=1;i<=no;i++)
{
printf("\n The Qbar matrix for the layer %d is\n",i);
for(j=1;j<4;j++)
for(k=1;k<4;k++)
printf("%If ", Qbar[i][j][K]);
}
printf("\n");
}
printf("\n");

}
/* Begin A matrix calculations */

printf("\n The A matrix is\n");
for(i=1;i<4;i++)
for(j=1;j<4;j++)
for(k=1;k<=no;k++)
} Ali][j]+=Qbar[K][i][i]* h(K];
printf("%lf " A[il[i]);

}
printf("\n");
}

/* End A matrix calculations */
printf("\n The B matrix is\n");
/* Begin B matrix calculatons */
for(i=1;i<4;i++)
for(j=1;j<4;j++)
{

for(k=1;k<=no;k++)
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} B[i][j]+=Qbar[K][i][j]* h(k]* hbar[K];
printf("%lf * B[i[i]);

}
printf(*\n");
}

/* End B matrix calculations */
printf("\n The D matrix is\n");

/* Begin D matrix calculations */
for(i=1;i<4;i++)

for(j=L;j<&;j++)
for(k=1;k<=no;k++)
D] [j]+=Qbar KI[i] [j]* (h[K]* hbar[K]*hbar[K] + h[K]* [K]*h[K]/12.0);
i)rintf("%’/olf " D[i][j]);

printf("\n");
}

/* End D matrix calculations */
/* To calculate Exxb to do an isotropic equivalent moduli verification */

D1=D[2][2]*D[3][3] - D[2][3]*D[2][3];
D2 = D[1][3]*D[2][3] - D[1][2]*D[3][3];
D3 = D[1][2]*D[2][3] - D[2][2]*D[1][3];
Dstar = D[1][1]*D1 + D[1][2]*D2 + D[1][3]*D3;
Dilstar = (D[2][2]*D[3][3] - D[2][3]*D[2][3])/Dstar;
Exxb = 12.0/(height* height* height* D11star);
printf("\n The Exxb value is %lf" ,Exxb);
for(i=0;i<=nel;i++)
L[i] = (X[i+1]-X[i]);
/* Assigning S11 matrix values */
S11[1][1]=A[1][1];
S11[1][2]=A[1][3];
S11[1][3]=B[1][1];
S11[1][4]=B[1][3];
S11[2][1]=A[1][3];
S11{2][2]=A[3][3];
S11{2][3]=B[1][3];
S11{2][4]=B[3][3];
S11[3][1]=B[1][1];
S113][2]=B[1](3];
S11[3][3]=D[1][1];
S11[3][4]=D[1][3];
S11{4][1]=B[1][3];
S11{4][2]=B[3][3];
S11[4][3]=D[1][3];
S11{4][4]=D[3][3];
/* Assigning S12 matrix values */
S12[1][1]=A[1][2];
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S12[2][1]=A[2][3];
S12[3][1]=B[1][2];
S12[4][1]=B[2][3];
S12[1][2]=B[1][2];
S12[2][2]=B[2][3];
S12[3][2]=D[1][2];
S12[4][2]=D[2][3];
/* Assigning S21 matrix values */
S21[1[1]=A[1][2];
S21[1[2]=A[2][3];
S21[1][3]=B[1][2];
S21[1][4]=B[2][3];
S21[2][1]=B[1][2];
S21[2][2]=B[2][3];
S21[2][3]=D[1][2];
S21[2][4]=D[2][3];
/* Assigning S22 matrix values */
S22[1][1]=A[2][2];
S22(1][2]=B[2][2];
S22[2][1]=B[2][2];
S22[2][2]=D[2][2];
/* Matrix inverse algorithm */
ni=2;
for(i=1;i<=ni;i++)

{

for(j=1;j<=ni;j++)
{
} ali] [j]=S22[i](jl;

}
/* BEGIN LU DECOMPOSITION */

di=1.0;
for(i=1;i<=ni;i++)

big =0.0;
for(j=1;j<=ni;j++)

if((temp=fabs(a[i][j]))>big)
big=temp;

}
if(big==0.0)
printf("\n Singular matrix in LU Decomposition");
w[i]=1.0/big;
}

for(j=1;j<=ni;j++)
for(i=1;i<j;i++)
sum=ai][j];
for(k=1;k<i;k++)

_ sum-=g{i][K]*a[K][j];
ai][j]=sum;

}
big=0.0;
for(i=j;i<=ni;i++)
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sum=a[i][j];

for(k=1;k<j;k++)
sum-=a[i][K]*a[K][j];

a[i][j]=sum;

if((dum=vv[i]*fabs(sum))>=hig)
{

big=dum;
imax=i;

}
if(j!=imax)
for(k=1;k<=ni;k++)

dum=a[imax][K];
alimax][K]=alj] [K];
alj][k]=dum;

}
di=-(di);
w[imax]=vv[j];

indx[j]=imax;
if(alj][j]==0.0)
a[j][j]=0.0;
if(j'=ni)
{

dum=1.0/aj][j];
for(ij+1;i<=ni;i++)
ali] [j]*=dum;

}
/* END LU DECOMPOSITON */

for(jj=L;jj<=nisjj++)
{

for(ii=1;ii<=ni;ii++)
col[ii]=0.0;
col[jj]1=1.0;
/* BEGIN LU BACK SUBSTITUTION */
sum1=0.0;
iii=0;
for(i=1;i<=ni;i++)
{
ip=indx[i];
suml=col[ip];
col[ip]=coal[i;
if(iii)
for(j=iii;j<=i-1;j++)
sum1-=g[i][j]*col[j];
elseif (suml)
iii=i;
col[i]=sumi,;
for(i=ni;i>=1;i--)
suml=coll[i];

for(j=i+1;j<=ni;j++)
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sum1-=a[i][j]*col[j];
col[i]=suma/a[i][i];

for(ii=1;ii<=ni;ii++)
ym[ii][jj]=collii];

}
/* USING ALTERNATIVE AND SHORT CUT METHOD TO FIND OUT THE INVERSE OF
A2X 2MATRIX */
printf("\n Inverse by alternative method \n");
for(i=1;i<3;i++)

for(j=1;j<3;j++)

a[i][j1=s22[il[il;

}
ym[1][1]=a[2][2];
ym[2][2]=a[1][1];
ym[1][2]=-a[1][2];
ym[2][1]=-a[2][1];
det=a[1][1]*a[2][2]-a[ 2] [1]*a[1][2];
for(i=1;i<3;i++)

{

for(j=1;j<3;j++)

ym[i][j]/=det;
printf(" %lf " ym[il[j]);
}
printf("\n");

}
/* END OF ALTERNATIVE SHORTCUT METHOD TO FIND THE INVERSE OF A 2 X 2 MATRIX */

/* Calculate S12 * S22inv i.eym */
for(i=1;i<=4;i++)
{
for(j=1,j<=2;j++)

S12ym(i][j]=0.0;
for(k=1;k<=2;k++)

S12ym(i][j]+=S12[i][K]*ym[K][j];
}

}
/* Calculate S12ym * S21 */
for(i=1;i<=4;i++)
{
for(=1jj<=4j++)

S12ym21]i][j]=0.0;
for(k=1;k<=2;k++)

S12ym21[i][j]+=S12ym[i][K]* S21[K][j];
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printf("\n");
printf("\n Smis\n");
for(i=1;i<=4;i++)
{
for(j=1;j<=4;j++)

Smii][j]1=S11[i][j]-S12ym21[i][j];
printf("%lIf  ",Sm[i][j]);

}

printf("\n");

}
/* SM has been calculated before this step */
/* Time independent part of the programie. the k matrix calculations for every element */
n=0;

while(n<7)
if(n==0)
v = 0.949107;
wx = 0.129484;
}
if(n==1)
{
v =-0.949107;
wx = 0.129484;
}
if(n==2)
{
v =0.741531;
wx = 0.279705;
}
if(n==3)
{
v =-0.741531;
wx = 0.279705;
}
if(n==4)
v = 0.405845;
wx = 0.381830;
}
if(n==5)
v = -0.405845;
wx = 0.381830;
}
if(n==6)
{
v=0.0;
wx = 0.417959;

/* H' for the Transverse case */

H1T[0] = (1.0/9.0)*(17.0/4.0 - 10.0 *v - 237.0*v*v/4.0 + 188.0*v*v*Vv/2.0 + 55.0*v*v*v*v —
84.0*v*v*v*v*v)* (2.0/L[€elc]);

HAT[1] = (L[elc]/6.0)*(1.0/4.0 - v/2.0 - 15.0*v*Vv/4.0 + 5.0*v*v*Vv + 5.0*v*v*v*v —
6.0*v*v*v*v*v)*(2.0/L[elc)]);
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H1T[2] = (16.0/9.0)*(-1.0 + 4.0*v + 6.0*v*Vv - 16.0*v*v*v - 5.0 v*v*v*v + 12.0*v*v*v*v*v)*(2.0/L[elc]);

HAT[3] = (-12.0*v + 36.0*v*v*v - 24.0*v*v*v*v*Vv)*(2.0/L[€elc]);

H1T[4] = (16.0/9.0)*(1.0 + 4.0*v - 6.0*v*v - 16.0*v*v*v + 5.0*v*v*v*v + 12.0*v*v*v*v*v)*(2.0/L[€elc]);

H1T[5] = (1.0/9.0)*(-17.0/4.0 - 10.0*v + 237*v*Vv/4.0 + 188.0*v*v*v/2.0 - 55.0*v*v*v*v —
84.0*v*v*v*v*v)* (2.0/L[€elc]);

H1T[6] = (L[€lc]/6.0)*(1.0/4.0 + v/2.0 - 15.0*v*Vv/4.0 - 5.0*v*v*Vv + 5.0*v*v*v*v +
6.0*v*v*v*v*v)*(2.0/L[elc));

/* H" for the Transverse case */

H2T[0] = (1.0/9.0)*(-10.0 -474.0*v/4.0 + 282.0*v*v + 220.0*v*v*v —
420" v*v*v*v)*(2.0/L[elc])* (2.0/L[€elc]);

H2T[1] = (L[elc]/6.0)*(-1.0/2.0 -30.0*v/4.0 +15.0*v*v + 20.0*v*v*v —
30.0*v*v*v*v)*(2.0/L[elc])* (2.0/L[€lc]);

H2T[2] = (16.0/9.0)*(4.0 +12.0*v -48.0*v*v -20.0* v*v*v +60.0* v*v*v*Vv)* (2.0/L[elc])* (2.0/L[€elc]);

H2T[3] = (-12.0 +108.0*v*v -120.0*v*v*v*v)* (2.0/L[elc])* (2.0/L[elc]);

H2T[4] = (16.0/9.0)*(4.0 -12.0*v -48.0*v*v +20.0*v*v*v +60.0*v*v*v*v)*(2.0/L[elc])* (2.0/L[€elc]);

H2T[5] = (1.0/9.0)*(-10.0 +474.0*v/4.0 +282.0*v*v -220.0*v*v*v —
420.0*v*v*v*v)*(2.0/L[elc])* (2.0/L[€elc]);

H2T[6] = (L[€lc]/6.0)*(1.0/2.0 -30.0*v/4.0 -15.0*v*v +20.0*v*v*v
+30.0*v*v*v*v)*(2.0/L[elc])* (2.0/L[€elc]);

/* H' for the Axial case*/

H1A[0] = ((1.0/6.0)-(1.0/3.0)*v-2.0* v*v+(8.0/3.0)*v*v*Vv)*(2.0/L [elc]);

H1A[1] = ((-4.0/3.0)+(16.0/3.0)*v+4.0* v*v-(32.0/3.0)* v*v*v)* (2.0/L[€el c]);

H1A[2] = (-10.0*v+16.0*v*v*v)* (2.0/L[€elc]);

H1A[3] = ((4.0/3.0)+(16.0/3.0)*v-4.0* v*v-(32.0/3.0)* v*v*Vv)* (2.0/L[€elc]);

H1A[4] = ((-1.0/6.0)-(1.0/3.0)* v+2.0* v*v+(8.0/3.0)*v*v*Vv)* (2.0/L [elc]);

/* H" for the Axial case*/

H2A[0] = (-1.0/3.0 - 4.0*v + 8.0*v*v)*(2.0/L[€elc])*(2.0/L[€lc]);

H2A[1] = (16.0/3.0 + 8.0*v - 32.0*v*v)*(2.0/L[elc])*(2.0/L[€lc]);

H2A[2] = (-10.0 + 48.0*v*v)*(2.0/L[elc])* (2.0/L[€elc]);

H2A[3] = (16.0/3.0 - 8.0*v - 32.0*v*v)*(2.0/L[elc])*(2.0/L[€lc]);

H2A[4] = (-1.0/3.0 + 4.0*v + 8.0*v*v)*(2.0/L[elc])*(2.0/L[€lc]);

[* Transverse case */

HT[O] = (1.0/9.0)*( 17.0*v/4.0 -5.0*v*v -79.0*v*v*Vv/4.0 +47.0*v*v*v*Vv/2.0 +11.0* v*v*v*v*v —

14.0*v*v*v*vrv*ry);

HT[1] = (L[€elc]/6.0)* (v/4.0 -v*V/4.0 -5.0*v*v*V/4.0 +5.0*v*v*Vv*V/4.0 +V* V¥ v vy -v v vrvEvry);

HT[2] = (16.0/9.0)* (-v +2.0*v*V +2.0*v*Vv*V -4.0*V*V*V*V - V¥ v* v vry +2.0% V¥ v v vivFy);

HT[3] = (1.0 -6.0*v*Vv +9.0* v*v*v*v -4.0* v*v*v*v*v*y);

HT[4] = (16.0/9.0)* (v +2.0*v*V -2.0*v*Vv*Vv -4.0*V*V*V*V + V¥ V¥ v viy +2.0* vF v vFvEvry);

HT[5] = (1.0/9.0)*(-17.0*v/4.0 -5.0*v*v +79.0* v*v*v/4.0 +47.0*v*v*v*v/2.0 -11.0*v*v*v*v*vy —

14.0*v*v* v vrv*ry);

HT[6] = (L[elc]/6.0)* (v/4.0 +v*Vv/4.0 -5.0*v*v*Vv/4.0 -5.0* v¥*v*v*v/4.0 +V* V¥ V* V¥V +vF v vEiviy*y);

/* Axial case*/

HA[Q] = (1.0/6.0)*v - (1.0/6.0)*v*Vv - (2.0/3.0)*v*v*v + (2.0/3.0)*v*v*v*v;

HA[1] = (-4.0/3.0)*v + (8.0/3.0)*v*v + (4.0/3.0)*v*v*Vv - (8.0/3.0)*v*v*Vv*v;

HA[2] = 1.0 - 5.0*v*Vv + 4.0*v*v*v*v;

HA[3] = (4.0/3.0)*v + (8.0/3.0)*v*V - (4.0/3.0)*v*v*V - (8.0/3.0)*v*v*v*v;

HA[4] = (-1.0/6.0)*v - (1.0/6.0)*v*Vv + (2.0/3.0)*v*v*Vv + (2.0/3.0)*v*v*v*v;

/* k calculation */

for(i=0;i<5;i++)

for(j=0;j<5;j++)
{
kud[i][j]+=b*(L[elc])/2.0)* Sm[1][1]*wx* H1A[i]*H1A[]];
kub[i][j]+=b* (L[elc]/2.0)* Sm[1][2]*wx* H1A[i]*HA]j1;
kulam[i][j]+=(-2)*b* (L[elc]/2.0)* Sm[ 1] [4]* wx* H1A[i]*H1A[|];
kbb[i][j]+=b*(L[elc]/2.0)* Sm[2][2]*wx*HA[i]*HA[]];
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kblam[i][j]+=(-2)*b* (L[elc]/2.0)* Sm[2][4]*wx* HA[i]*H1A[j];
klamlam[i][j]+=4*b* (L[elc]/2.0)* Sm[4][4]*wx* H1A[i]*H1A[j];

}

for(i=0;i<5;i++)
for(j=0;j<7;j++)

{
kuwl[i][j]+=-b*(L[elc]/2.0)* Sm[1][3]*wx* H1A[i]*H2TI[j];
kbwl[i][j]+=-b*(L[elc]/2.0)* Sm[2] [3]*wx*HA[i]*H2T[j];

}

for(i=0;i<7;i++)
for(j=0;j<5;j++)

kwlam[i][j]+=2*b* (L[elc]/2.0)* Sm[ 3] [4]*wx* H2T[i]* H1A[j];

for(i=0;i<7;i++)
for(j=0;j<7;j++)
kww[i][j]+=b*(L[elc]/2.0)* Sm[3][3]*wx* H2T[i]*H2T[j];

}
/* Assigning the symmetric parts of the K matrix */

for(i=0;i<5;i++)
{
for(j=0;j<5;j++)

Kbul[i][j]=kub[j][i];
klamu[i][j]=kulam{j][i];
klamb[i][j]=kblam[j][i];

}

for(i=0;i<7;i++)
for(j=0;j<5;j++)

{
kwu[i][j]=kuw[j][i];

\ kwhl[i][j]=kbw([j][i];

for(i=0;i<5;i++)
for(j=0;j<7;j++)
Klamw[i][j]=kwlam[j][i];
}

/* mass matrix calculations */
/* muu calculation */
for(i=0;i<5;i++)

{
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for(j=0;j<5;j++)

muufi][j]+=b* (L[elc)/2.0)* 10*wx* HA[i]* HA[j];
milamlam[i][j]+=b* (L[elc]/2.0)* 12*wx* HA[i]* HA[j];

for(i=0;i<5;i++)

for(j=0;j<7;j++)

muw[i][j]+=(-b)* (L[ c]/2.0)* | 1*wx* HA[i]* HATIj];

for(i=0;i<7;i++)

for(j=0;j<7;j++)

mww[i][j]+=b* (L[l c]/2.0)* (10*wx* HT[i]* HT[j] +1 2*wx* HAT[i]* H1Tj]):;

for(i=0;i<7;i++)
{
for(j=0;j<5;j++)
mwul[i][j]=muw[j][i];

}

n++;

}/*end while*/

/*

/* Start of time loop */

/*

for(t=dt,counter=1;t<=tmax;t+=dt,counter++)

{

if (counter/10000.0 == (int)(counter/10000.0))
printf("\nLoop for timestep %12.10If" t);
accl =-omega* omega*0.05* sin(omega*t);
for(elc=0;elc<nel;elc++)
{
for(i=0,xb=0.0;i<elc;i++)
xb +=L[i];
/* For transverse case */
for(i=0;i<(4+inter);i++)

for(j=0;j<(4+inter);j++)
ki[elc][i][j]=0.0;
}
n=0;
while(n<7)
if(n==0)

v =0.949107;
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wx = 0.129484;

}
if(n==1)
v =-0.949107;
wx = 0.129484;
}
if(n==2)
v =0.741531;
wx = 0.279705;
}
if(n==3)
v =-0.741531;
wx = 0.279705;
}
if(n==4)
v = 0.405845;
wx = 0.381830;
}
if(n==5)
{
v = -0.405845;
wx = 0.381830;
}
if(n==6)
{
v=0.0;
wx = 0.417959;
}

/* CALCULATIONS FOR THE INCREMENTAL STIFFNESS MATRIX TO CONSIDER
THE INERTIAL EFFECT OF THE BEAM */
/* THIS EFFECT APPEARS AS AN ADDITIONAL MATRIX OF SIZE 7 X 7 WHICH
GETSADDED TO THE MATRIX kt */
/* To calculate the incremental stiffness matrix, we need the H1T */
H1T[0]=(1.0/9.0)*(17.0/4.0-10.0*v-237.0* v*v/4.0+188.0* v* v*Vv/2.0+55.0* v*v* v*v-
84.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[1]=(L[€lc]/6.0)* (1.0/4.0-v/2.0-15.0* v*v/4.0+5.0* v*v*v+5.0* v*v* v*v-
6.0*v*v*v*v*v)*(2.0/L[elc));
H1T[2]=(16.0/9.0)*(-1.0+4.0*v+6.0*v*v-16.0* v*v*v-
5.0*v*vrv*v+12.0* v v vrv*v)* (2.0/L[elc));
HAT[3]=(-12.0*v+36.0* v*v*v-24.0* v*v*v*v*v)*(2.0/L [elc]);
H1T[4]=(16.0/9.0)*(1.0+4.0*v-6.0* v*v-
16.0* v*v*v+5.0* v* v v*v+12.0* v v v v*v)* (2.0/L [elc]);
HA1T[5]=(1.0/9.0)*(-17.0/4.0-10.0*v+237.0* v*v/4.0+188.0* v*v*v/2.0-55.0* v* v* v* v-
84.0*v*v*v*v*v)*(2.0/L[elc)]);
H1T[6]=(L[€lc]/6.0)* (1.0/4.0+v/2.0-15.0*v*v/4.0-
5.0*v*v¥v+5.0* v* v* v v+6.0* v¥ v vi v v)* (2.0/L [elc));
for(i=0;i<(inter+4);i++)

for(j=0;j<(inter+4);j++)

ki[elc][i][j]+= (-1.0* accl* (L[elc]/2.0))* (gama* wx)* (L B-
(xb+(L[lc]/2.0)* (1.O+V)))* (HLT[i]*HTj]):;
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}

n++;
}/* end while */
}* end elc */
[*printf("\n Success before K and M assembly");*/
for(elc=0;elc<nel;elc++)
for(j=0;j<22;j++)
for(k=0;k<22;k++)
M[elc] [j][k] =0.0;
K[elc][jl[k]=0.0;
for(i=0;i<5;i++)
for(j=0;j<5;j++)
K[elc][i] ] =kuuli][j];
M{elc][i][j]=muuli][j];

for(i=0;i<5;i++)
{
for(j=5;j<10;j++)
K[elc][i][j]=kub[i][j-5];
for(i=0;i<5;i++)
{
for(j=10;j<17;j++)
K[elc][i][j]=kuw[i][j-10];
M[elc][i] [j]=muw([i][j-10];
for(i=0;i<5;i++)
for(j=17;j<22;j++)

K[elc][i][j]=kulam(i][j-17];

}
for(i=5;i<10;i++)
for(j=0;j<5;j++)

K[elc][i][j]=kbufi-S][j];

}
for(i=5;i<10;i++)

for(j=5;j<10;j++)
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K[elc][i][j]=kbb{i-5][j-5];

}
for(i=5;i<10;i++)
for(j=10;j<17;j++)

K[elc][i][j]=kbw[i-5][j-10];

}
for(i=5;i<10;i++)
for(j=17;j<22;j++)

K[elc][i][j]=kblami-5][j-17];

}
for(i=10;i<17;i++)
for(j=0;j<5;j++)
K[elc][i][j]=kwu[i-10][j];

} M(elc][i][j]=mwuli-10][j];

}
for(i=10;i<17;i++)
{
for(j=5;j<10;j++)
K[elc][i][j]=kwb[i-10][j-5];
}
for(i=10;i<17;i++)
{
for(j=10;j<17;j++)
Klelc][i][j]=kww[i-10][j-10] + ki[€lc][i-10][j-10];
M[elc][i][j]=mww[i-10][j-10];
}
for(i=10;i<17;i++)
for(j=17;j<22;j++)

K[elc][i][j]=kwlam[i-10][j-17];

}
for(i=17;i<22;i++)
for(j=0;j<5;j++)

K[elc][i][j]=klamufi-17][j];

}
for(i=17;i<22;i++)

121



{
for(j=5;<10;j++)

K[elc][i][j]=klambli-17][j-S];

}
for(i=17;i<22;i++)
for(j=10;j<17;j++)

K[elc][i][j]=klamw[i-17][j-10];

}
for(i=17;i<22;i++)
for(j=17;j<22;j++)

K[elc][i][j]=klamlami-17][j-17];
Melc](i][j]=mlamlam{i-17][j-17];

}
}*end elc */
/* Global Matrix Assembly from temporary Matrix */
for(i=0;i<77;i++)
{
for(j=0;j<77;j++)
{
KG[i][j]=0.0;
MGJi][j]=0.0;
}

}
for(elc=0;elc<nel;elc++)
{
co=17*€lc;
for(i=co;i<co+22;i++)
{

if(i==co)
X=i;

if(i==co+1)
X=i+4;

if(i==co+2)
X=i+7;

if(i==co+3)
x=i+10;

if(i==co+4)
X=i+13;

if(i==co+5)
x=i-4;

if (i==co+6)
X=i;

if(i==co+7)
X=i+3;

if(i==co+8)
X=i+6;

if(i==co+9)
X=i+9;
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if(i==co+10)
X=i-8;
if(i==co+11)
x=i-8;
if(i==co+12)
x=i-5;
if(i==co+13)
X=i-2;
if(i==co+14)
X=i+1;
if(i==co+15)
X=i+4;
if(i==co+16)
X=i+4;
if(i==co+17)
x=i-13;
if(i==co+18)
x=i-10;
if(i==co+19)
X=i-7;
if(i==co+20)
X=i-4,
if(i==co+21)
X=i;

for(j=co;j<co+22;j++)

{

if(j==co)
y=is
if(j==co+1)
y=j+4,
if(j==co+2)
y=i+7;
if(j==co+3)
y=j+10;
if(j==co+4)
y=i+13;
if(j==co+b)
y=i-4;
if(j==co+6)

if(j==co+7)
y=j+3;
if(j==co+8)
y=j+6;
if(j==co+9)
y=i+9;
if(j==co+10)
y=i-8;
if(j==co+11)
y=i-8;
if(j==co+12)
y=i-5;
if(j==co+13)
y=i-2;
if(j==co+14)
y=i+1;
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if(j==co+15)
y=j+4;
if(j==co+16)
y=j+4;
if(j==co+17)
y=j-13;
if(j==co+18)
y=j-10;
if(j==co+19)
y=i-7;
if(j==co+20)
y=i-4,
if(j==co+21)
y=i;
KG[x][y]+=K[elc][i-co][j-co];
MG[x][y]+=M[elc][i-co][j-co];
} *endj */

} 1+ endi */

} *end elc*/
/* coding for assembling the Klamda matrices and its tranpose */
for(i=0;i<2;i++)
Z[i]=0.0;
sumlen1=0;
sumlen2=0;
xsl = 0.375*LB - 0.05*sin(omega*t);
xs2 = xsl + 0.25*LB;
for(i=0;i<2;i++)

{

if(i==0)

for (elc=0;elc<nel;elc++)
{
if (xsl >=sumlenl)
sumlenl +=L[elc];
else
break;

}
sumlenl -=L[elc-1];
Z[0] = (xsl-sumlenl)*(2/L[elc-1]) - 1;

}
if(i==1)

for (elc=0;elc<nel;elct++)
{
if (xs2 >= sumlen2)
sumlen2 +=L[elc];
else
break;

}
sumlen2 -=L[elc-1];
Z[1] = (xs2-sumlen2)* (2/L[elc-1]) - 1;

}
KL[(elc-1)*17 + 2][i] = (1.0/9.0)* ( 17.0*Z[i]/4.0 -5.0*Z[i]*Z[i] -79.0*Z[i]* Z[i]*2[i]/4.0
+47.0%2Z[i]* Z[i]* 2[i]*Z[i]/2.0 +11.0*Z[i]* Z[i] *2[i]* Z[i]*[i] —
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14.0*2[i]* Z[i]* Z[i]* Z[i]* Z[i]* 2]i]);

KL[(elc-1)*17 + 3][i] = (L[elc]/6.0)* (2[i]/4.0 -Z[i]*Z[i]/4.0 -5.0* Z[i]* z[i]* Z[i]/4.0
+5.0*Z[i]*Z[i]*Z[i]* 2[i]/4.0 +2[i]* Z[i]*Z[i] *Z[i] *2[i] —
z[i]*2[i]* [ i]* Z[i]* Z[i]* z[i]);

KL[(elc-1)*17 + 7][i] = (16.0/9.0)* (-z[i] +2.0*z[i]*z[i] +2.0*Z[i]*Z[i]*[i] -4.0*Z[i]*2[i]*z[i]*z[i] —

Zi* 21> Zi]* Z[i]* 2[i] +2.0*Zi]*Zi]* Z[i]* Z[i]* Z[i]*Z[i]);

KL[(elc-1)*17 + 11][i] = (1.0 -6.0*Z[i]*Z[i] +9.0*Z[i]*Z[i]* Z[i]*Z[i] -4.0*[i]* Z[i]* Z[i]* z[i]* [i] *z[i]);
KL[(elc-1)*17 + 15][i] = (16.0/9.0)*( z[i] +2.0*Z[i]*Z[i] -2.0*Z[i]*z[i]*zi] -4.0*Z[i]*Z[i]*Z[i]*z[i] +

Z[i1*Z[i1* z[i]*2[i]* Z[i] +2.0*Z[i]*z[i]* 2[i]* Z[i]* z[i]* Z[i]);

KL[(elc-1)*17 + 19][i] = (1.0/9.0)* (-17.0*Z[i]/4.0 -5.0* Z[i]*2[i] +79.0* z[i]* z[i]*Z[i]/4.0
+47.0%Z[i]*Z[i1* Z[i]* 2[1]/2.0 -11.0* Z[i]* z[i] * 2[i]* Z[i]* Z[i] —
14.0%Z[i]* Z[i1* Z[i]* z[i]* 2[i]* Z[i]);

KL[(elc-1)*17 + 20][i] = (L[elc]/6.0)*(2[i]/4.0 +Z[i]*Z[i]/4.0 -5.0* Z[i]* Z[i]* z[i]/4.0 —
5.0%Z[i]*Z[i1* Z[i]*2[i]/4.0 +Z[i]* Z[i]* Z[i]* z[i] * 2[i]
+2[i]*2[i]* 2[i]*Z[i]* Z[i]* Z[i]);

KL[(elc-1)*17 + 4][i+2] =(1.0/6.0)*[i] - (1.0/6.0)*Z[i]*Z[i] - (2.0/3.0)*z[i]*Z[i]* Z[i] +
(2.0/3.0)*Z[i1* Z[i]* 2[i]* Z[i];

KL[(elc-1)*17 + 8][i+2] = (-4.0/3.0)*Z[i] + (8.0/3.0)*Z[i]*Z[i] + (4.0/3.0)*Z[i]*Z[i]*Z[i] —
(8.0/13.0)*Z[i1* Z[i1* 2[i]* Z[i];

KL[(elc-1)*17 + 12][i+2] = 1.0 - 5.0*Z[i]*Z[i] + 4.0*Z[i]*Z[i]* z[i]*Z[i];

KL[(elc-1)*17 + 16][i+2] = (4.0/3.0)*Z[i] + (8.0/3.0)* Z[i]*Z[i] - (4.0/3.0)*z[i]*Z[i]* Z[i] —
(8.0/13.0)*Z[i1* Z[i]* z[i]* Z[i];

KL[(elc-1)*17 + 21][i+2] = (-1.0/6.0)*Z[i] - (1.0/6.0)*Z[i]*z[i] + (2.0/3.0)*Z[i]* Z[i]*[i] +
(2.0/3.0)*Z[i1* Z[i]* z[i]* Z[i];

}Fendofi*/
for (i=0;i<73;i++)
{
for (j=73;j<77;j++)

KG[i][j] = KLIi][j-73];
MG[i][j] = 0.0; /*for amoving beam */
}

}
for (i=0;i<73;i++)
{
for(j=73;j<77;j++)

KG[j][i] = KLi][j-73];
MGI[j][i] = 0.0; /*for amoving beam */
}

}

/* SOLVING FOR THE DISPLACEMENTS USING THE INITIAL DISPLACEMENTSAS THE
CONDITION */

/* Now the global stiffness and mass matrix have been calculated.. we can proceed to solve for
the displacements at the next time step using the newmarks method */

/* step 1: Calculate the effective stiffness matrix */

/* Initidizing the KGhat matrix */

for(i=0;i<77;i++)

for(j=0;j<77;j++)

KGhat[i][j] = 0.0;

}
for(i=0;i<77;i++)
{
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for(j=0;j<77;j++)
KGhat[i][j] = KG[i][j] + a0*MGIi][jl;

}

/* The KGhat i.e. the effective stiffness matrix has been setup now */

/* step 2: Now, we have to triangularize the KGhat matrix and solve for the displacements */

/* Before that, we have to form the Rhat vector which is Qhat from the Q vector to form the
the RHS vector for every time step */

/* To calculate Qhatnew(i], we need to calculate the product of MG and Us U'sand U"s at
any time step which is calculated below */

for(i=0;i<77;i++)

MGut[i]=0.0;
MGult[i]=0.0;
MGu2t[i]=0.0;

}
for(i=0;i<77;i++)

for(j=0;j<77;j++)
{
MGut[i]+=a0*MGIi][j]* ut[j];
MGult[i]+=a2* M G[i][j]* ult[j];
MGu2t[i]+=a3*MG[i][j]* u2t[j];
}
}
/* In our case, the Qhat does not change with time, therfore, Qhat = Q */
for(i=0;i<77;i++)

Qhat[i]=0.0;

Qhatnew[i]=0.0;

Qhatnewgausg[i]=0.0;
}

for(i=0;i<77;i++)
Qhatnew[i] = Qhat[i] + MGut[i] + MGult[i] + MGu2{[i];

/* Now, we have the Qhat at new time step. Hence, we can now, solve for the utnew[i]s */
for(i=L;i<77;i++)

for(j=1,j<77j++)

K Ghatgauss[i][j]=K Ghat[i]j];

}

for(i=1;i<77;i++)
Qhatnewgausg[i]=Qhatnew(i];

/* Since, there are zeros in the main diagonal terms, we can go for gauss elimination with
scaled partial pivoting */

/* Initializing the variables used in the gauss loop */

max = 0.0;

tmp = 0.0;

pivot = 0.0;

for(i=1;i<=76;i++)
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{
utnew[i]=0.0;
p[i]=0.0;
d[i]=0.0;

}
for(i=1;i<=76;i++)

{
pli]=i;
d[i]=fabs(K Ghatgausyi][1]);
for(j=1,j<=76;j++)
if(fabs(K Ghatgaus[i][j])>d[i])
d[i] = fabs(K Ghatgaussi][j]);

}
for(i=1;i<=75;i++)
{
max=fabs(K Ghatgauss{ p[i]][i])/d[p[i]];
maxi=i;
for(k=i+1;k<=76;k++)
if((fabs(K Ghatgauss{ p[k]][i])/d[p[K]])>max)

max=(fabs(K Ghatgauss{p[K]][i])/d[p[K]]);
maxi=Kk;
}
tmp=p(i];
pli]=p[maxi];
p[maxi]=tmp;
for(j=i+1,j<=76;j++)
{
pivot = KGhatgauss|pfj]][i]/K Ghatgauss[p[i]][i];
Qhatnewgauss|p[j]]-=pivot* Qhatnewgaussip[i]];
for(k=i+1;k<=76;k++)
} K Ghatgauss] p[j]][k]-=pivot* K Ghatgauss{p[i]] [K];
}

/* Back substitution to get the displacements utnew[i]s */
Qhatnewgauss[p[ 76]] = Qhatnewgausy p[ 76]]/K Ghatgausy p[ 76]][ 76];
for(i=75;i>=1;i--)
{
for(j=i+1;j<=76;j++)
Qhatnewgauss{p[i]]-=K Ghatgauss]p[i]][{]* Qhatnewgauss{p[j]];
Qhatnewgauss|p[i]]=Qhatnewgauss] p[i]]/K Ghatgauss[p[i][i];

}
for(i=1;i<77;i++)

utnew[i] = Qhatnewgausy[pl[i]];
utnew[0]=0.0;
if(counter/1000.0 == (int)(counter/1000.0))

fprintf(fp2,"\n%12.10l1f  %If %If %lf" t,utnew|2],utnew|36],utnew[70]);
printf("\n%12.10lf  %lf" t,utnew[2]);

/* Now, having calculated the u's at timet plus dt, we have to calculate the ultdt and u2tdt */
for(i=0;i<77;i++)
{
u2tnew[i]=0.0;
ultnew[i]=0.0;
}
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for(i=0;i<77;i++)

u2tnew[i] = a0* utnew[i]-a0* ut[i]-a2* ult[i]-a3* u2t[i];
for(;i}:o;i<77;i++)

ultnew[i] = ult[i]+a6* u2t[i]+a7* u2tnew(il;

}
/* BEFORE GOING TO THE NEXT TIME STEP, ASSIGN THE NEW VALUES OF U,U' AND U" ASTHE
STARTING VALUES*/
for(i=0;i<77;i++)
{
ut[i]=utnew(i];
ult[i]=ultnew[i];
u2t[i]=u2tnew[i];

}
/* LOOP BACK FOR THE NEXT TIME STEP */
}/* end timeloop */
fclose(fp2);

printf("The file has been printed");
printf("%lf" tmax);
printf("success');

} *end main */
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APPENDIX B

/*************************************************************************************/

/* FIRST ORDER SHEAR DEFORMATION THEORY */

/* THE ACCELERATION IS-A*OMEGA SQUARE *SIN(OMEGA*T) */

/* THISPROGRAM IS FOR A COMPOSITE BEAM WITH SHEAR EFFECTS BEING CONSIDERED
USING CLPT APPROACH */

/*************************************************************************************/

# include <stdio.h>

# include <math.h>

# definem 10

# define TINY 1.0e-20

/*************************************************************************************/

/* Initial Displacements given as the first mode shape normalized to 0.01m at the left end of the beam ~ */
/*************************************************************************************/
main()
{

FILE *fp2;  /* Declaration of the File Pointer */

[* Variable declaration begins */

int nel,elc,i,j,k,s,n,x,y,co,inter,maxi=0,tmp=0,p[ 101]={ 0} ,no=0,counter=1,yes=0;

double 1=0.0,o0mega,Rhoperarea,Rho=0.0,L B,t=0.0,tmax,tinc,X[15]={ 0.0} ,gama=0.0,HT[7]={ 0.0},

HA[5]={0.0} ,M[4][29][29]={ 0.0} ;

double [4][29][29]={0.0} ,H2T[7]={ 0.0} ,H1A[5]={ 0.0} ,L[10]={ 0.0} ,pi=3.14159265359,p2=0.0,p1=0.0;

double c,wx,u,v,ma[10][5][5]={ 0.0} ,H1T[7]={ 0.0} ,H2A[5]={ 0.0} ;

double 10=0.0,11=0.0,12=0.0,hi[10]={ 0.0} ;

double S11]5][5]={ 0.0} ,S12[5][3]={ 0.0} ,S21[ 3][5]={ 0.0} ,S22[ 3][ 3]={ 0.0} ,Sm[5][5]={ 0},

S12ym[5][3]={ 0.0} ,S12ym21[4][4]={0.0};

[* Declaration for the element mass matrix */

double muu[5][5]={ 0.0} ,mub[5][5]={ 0.0} ,muwb[5][ 7]={ 0.0} ,muws[ 5] [ 7]={ 0.0} ,muwby[ 5] [5]={ 0.0} ;

double mbb[5][5]={ 0.0} ,mbwhb[5][ 7]={ 0.0} ,mbws[5][ 7]={ 0.0} ,mbwby[5][5]={ 0.0} ;

double mwbwb[7][ 7]={ 0.0} ,mwbwg[ 7][ 7]={ 0.0} ,mwbwby[ 7][5]={ 0.0} ;

double mwsws[ 7][ 7]={ 0.0} ,mwswhby[ 7][5]={ 0.0} ;

double mwbywby[5][5]={0.0};

[* Declaration for the symmetric parts of element mass matrix */

double mbu[5][5]={ 0.0} ,mwbu[ 7][5]={ 0.0} ,mwsu[ 7][5]={ 0.0} ,mwbyu[ 5][5]={ 0.0} ;

double mwbb[7][5]={ 0.0} ,mwsb[ 7][5]={ 0.0} ,mwbyb[ 5] [5]={ 0.0} ;

double mwswhb[7][7]={ 0.0} ,mwbywb[5][ 7]={ 0.0} ;

double mwbyws[5][7]={ 0.0} ;

* Declaration for the element stiffness matrix */

double kuu[5][5]={ 0.0} ,kub[5][5]={ 0.0} ,kuwb[5][7]={ 0.0} ,kuwg[ 5] [ 7]={ 0.0} ,kuwby[5][5]={ 0.0} ;

double kbb[5][5]={ 0.0} ,kbwb[5][ 7]={ 0.0} ,kbws[5][ 7]={ 0.0} ,kbwby[5][5]={ 0.0} ;

double kwbwb[7][7]={ 0.0} ,kwbwq[ 7][ 7]={ 0.0} ,kwbwhby[ 7][5]={ 0.0} ;

double kwswe[ 7][ 7]={ 0.0} ,kwswby[ 7][5]={ 0.0} ;

double kwbywby[5][5]={ 0.0} ;

double ki[5][7][7]={0.0};

[* Declaration of the symmetric parts of stiffness matrix */

double kbu[5][5]={ 0.0} ,kwbu[ 7][5]={ 0.0} ,kwsu[ 7][5]={ 0.0} ,kwbyu[ 5] [ 5] ={ 0.0} ,kwsyu[5][5]={ 0.0} ;

double kwbb[7][5]={ 0.0} ,kwsb[ 7][5]={ 0.0} ,kwbyb[5][5]={ 0.0} ,kwsyb[5][5]={ 0.0} ;

double kwswb[7][7]={ 0.0} ,kwbywb[5][ 7]={ 0.0} ,kwsywb[5][7]={ 0.0} ;

double kwbyws[5][ 7]={ 0.0} ,kwsyws[5][ 7]={ 0.0} ;

double kwsywby[5][5]={ 0.0} ;

[* Declaration for the global matrices and temporary matrices */

double KL[101][6]={ 0.0} ,sumlen1=0.0,sumlen2=0.0,z[ 2]={ 0} ,xs1,xs2,xb=0.0,accl=0.0,w=0.0;
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double KG[101][101]={ 0.0} ;

double MG[101][101]={0.0};

double b=0.0,A11=0.0,B11=0.0,D11=0.0,Nx=0.0;

[* Additional variablesrequired for FSDT */

double SCF=0.0, Qmatstar[3][3]={ 0.0}, Qstarbar[10][3][3]={ 0.0}, G23=0.0,
G13=0.0,H[3][3]={ 0.0} ,Astar=0.0;

[* Declarations for matrix inverse */

int ni,ii,iii=0,imax,jj,ip,indx[ m]={ 0} ;

double big=0.0, dum=0.0, sum=0.0, temp=0.0, vwv[m]={ 0.0} ,di=0.0,a[ m][m]={ 0.0} ,col[m]={ 0.0},
sum1=0.0,ym[m][m]={ 0.0};

double det=0.0;

[* Declarations required for solving the above mentioned problem using newmarks method */

double ut[101]={ 0.0} ,dt=2.5e-7;

double u1t[101]={ 0.0} ,u2t[101]={ 0.0} ,utnew[101]={ 0.0} ,ultnew[101]={ 0.0} ,u2tnew[ 101]={ 0.0} ;

double Q[101]={ 0.0} ,Qhat[101]={ 0.0} ,Qhatnew[101]={ 0.0} ,Qhatnewgauss 101]={ 0.0} ;

double KGhat[101][101]={ 0.0} ,K Ghatgauss[ 101][101]={ 0.0} ;

double MGut[101]={ 0.0} ,M Gu1t[101]={ 0.0} ,M Gu2t[101]={ 0.0} ;

double a0=0.0,a2=0.0,a3=0.0,a6=0.0,a7=0.0,delta=0.75,al pha=0.6;

double max=0.0,d[ 101]={ 0.0} ,pivot=0.0;

[* Decalration for a composite beam */

double layerno[10]={ 0.0} ,|layerangle[ 10]={ 0.0} ,E1=0.0,E2=0.0,G12=0.0,h[10]={ 0.0},
hbar[10]={ 0.0} ,new12=0.0;

double Qbar[10][4][4]={ 0.0} ,Qmat[4][4]={ 0.0} ,A[4][4]={0.0} ,B[4][4]={ 0.0} ,D[4][4]={ 0.0},
Delta=0.0;

double C1=0.0,51=0.0,C2=0.0,S2=0.0,C3=0.0,S3=0.0,C4=0.0,54=0.0;

double D1=0.0,02=0.0,D3=0.0,Dstar=0.0,D11star=0.0,Exxb=0.0,height=0.0;

/* END OF DECLARATION */

fp2 = fopen("mvtipdis’,"w");  /* Output file name mvtipdis*/

[* Initialization begins */

[* initializing all theusat timet =0 so asto have the tip deflection as

0.01 meters for an overhanging beam case .. using first mode asthe initial shape */

[* Since, there is coupling due to the material properties, the axial displacemenets are not zeros */
ut[0]=0.00E+00; ut[ 1]=-9.86E-18;ut[ 2] =1.00E-02; ut[ 3] =-3.62E-02; ut[ 4] =6.49E-04; ut[ 5] =5.77E-06;
ut[6]=-3.52E-17;ut[ 7]=-6.91E-05;ut[ 8] =1.76E-16;ut[ 9] =7.86E-03;ut[ 10] =1.33E-03;
ut[11]=-1.56E-16;ut[12]=-1.29E-04;ut[ 13]=1.79E-16;ut[ 14] =5.95E-03;ut[ 15]=8.41E-04;
ut[16]=-1.24E-16;ut[ 17]=-1.71E-04;ut[ 18] =8.16E-17;ut[ 19]=4.29E-03;ut[ 20]=7.25E-04;
ut[21]=1.40E-16;ut[ 22]=-1.90E-04;ut[ 23] =5.06E-18;ut[ 24] =2.86E-03; ut[ 25] =-2.10E-02;
ut[26]=1.92E-04;ut[ 27]=-3.02E-08;ut[ 28] =7.82E-17;ut[ 29] =-1.82E-04;ut[ 30] =-7.95E-17;
ut[31]=1.67E-03;ut[ 32]=2.88E-04;ut[ 33] =-5.27E-16; ut[ 34] =-1.44E-04;ut[ 35] =-9.27E-17,;
ut[36]=7.17E-04;ut[ 37]=9.42E-05;ut[ 38] =-6.49E-17;ut[ 39] =-7.53E-05; ut[40] =-8.25E-23;
ut[41]=-5.49E-16;ut[42] =5.82E-16;ut[43] =4.82E-16; ut[ 44] =-4.55E-06;ut[45] =-1.95E-17;
ut[46]=-4.76E-04;ut[47]=-5.72E-03;ut[ 48] =-3.44E-05; ut[ 49] =-7.05E-09; ut[ 50] =8.11E-17;
ut[51]=3.91E-05;ut[ 52] =-6.40E-17;ut[ 53] =-7.14E-04;ut[ 54] =- 1.13E-04;ut[ 55] =5.86 E- 16;
ut[56]=5.49E-05;ut[57]=-1.86E-18;ut[ 58] =-7.15E-04;ut[ 59] =- 1.10E-04;ut[ 60] =3.14E- 16;
ut[61]=4.21E-05;ut[62]=7.07E-17;ut[63] =-4.76E-04;ut[ 64] =-7.29E-05; ut[ 65] =-1.46E-17;
ut[66]=-1.15E-17;ut[67]=-1.79E-20;ut[ 68] =-1.39E-17;ut[ 69]=9.53E-03;ut[ 70] =-1.02E-06;
ut[71]=4.44E-08;ut[ 72]=-2.86E-17;ut[ 73] =1.14E-05;ut[ 74]=-2.23E-17;ut[ 75] =5.96 E-04;
ut[ 76]=9.95E-05;ut[ 77]=-2.55E-18;ut[ 78] =1.80E-05;ut[ 79] =-1.55E-17;ut[ 80] =1.19E-03;
ut[81]=1.70E-04;ut[82]=4.47E-17;ut[ 83] =2.06 E-05; ut[ 84] =-2.83E-18;ut[ 85]=1.79E-03;
ut[86]=3.00E-04;ut[87]=-7.22E-18;ut[ 88] =2.10E-05;ut[ 89] =-6.10E-19;ut[ 90] =2.38E-03;
ut[91]=9.53E-03;ut[ 92] =1.55E-04;ut[ 93] =-1.39E-06; ut[ 94] =-4.85E-18;ut[ 95] =-1.21E-16;
ut[96]=-3.27E-02;ut[97]=8.01E-03;ut[ 98] =-4.64E- 18;ut[ 99] =5.63E-06; ut[ 100] =-3.34E-03;
/* Input from the user */

printf(" Enter the length of the beam M);

scanf("%lf",& LB);
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printf("Enter the total simulation time ™);
scanf("%lf",&tmax);

printf("Enter the Omega value )
scanf("%lf",& omega);
printf("Enter the width of the beam ");

scanf("%lf",&b);

printf("Enter the height of the beam
scanf("%lf",& height);

printf("Enter the Rho value in kg/cu.m
scanf("%lf",& Rho);

printf("Enter the E1 valuein Pa )
scanf("%lf",& E1);
printf("Enter the E2 value in Pa )

scanf("%lf",& E2);

printf("Enter the G12 valuein Pa
scanf("%lf",& G12);

printf("Enter the G23 valuein Pa
scanf("%lf",& G23);

printf("Enter the G13 valuein Pa
scanf("%lf",& G13);

printf("Enter the Shear Correction Factor SCF  :");
scanf("%lf",& SCF);

printf("Enter the new12 value
scanf("%lf" & newl2);

printf("Enter the number of layers ");
scanf("%d",&no);

| = b*height* height* height/12.0;
for(i=1;i<=no;i++)

{
printf("Enter the the angle for ply number %d
scanf("%lf",&layerangl€]i]);

}
for(i=1;i<=no;i++)

h[i]=height/no;
for(i=2,hi[i-1]=-height/2.0;i<=no+1;i++)

hi[i]=hi[i-1]+(height/no);
for(i=1;i<=no;i++)

hbar[i]=hi[i]+height/(2* no);
printf("\nThe layer anglesare ");
for(i=1;i<=no;i++)

printf("\nlayerangle[%d] = %lf ",i,layerangl€]i]);
printf("\nThe layer thickness are\n");

for(i=1;i<=no;i++)
printf("\nh[%d] = %lIf "i,h[i]);
printf("\nThe h[i]sare \n");
for(i=1;i<=no+1;i++)

printf("\nhi[%d] = %lf ",i,hi[i]);
printf("\nThe hbardi]s are \n");
for(i=1;i<=no;i++)

printf("\nhbar[%d] = %If ",ihbar[i]);
for(i=1;i<=no;i++)

layerangl€]i]*=pi/180.0;
a0=1.0/(alpha* dt*dt);
a2=1.0/(alpha*dt);
a3=(1.0/(2.0*alpha))-1.0;
ab=dt* (1.0-delta);
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ar=delta*dt;

nel=4;

inter=3;
X[0]=0.0*LB;
X[1]=0.25*LB;
X[2]=0.5*LB;
X[3]=0.75*LB;
X[4]=1.0*LB;
gama=Rho* height*b;
for(i=1;i<=no;i++)

10+=(hi[i+1]-hi[i])*Rho;
11+=((hi[i+2]*hi[i+1])-(hi[i]*hi[i]))* Rho/2.0;
12+=((hi[i+1]*hi[i+1]*hi[i+1])-(hi[i]*hi[i]*hi[i]))* Rho/3.0;
}
printf("\nDo you want to include rotary inertia\n--type 1 for yesand O for no ");
scanf("%d",& yes);
if(yes==0)
12=0.0;
printf("\n 10= %18.16f 11=%18.16lf 12=%18.16lf \n",10,11,12);
fprintf(fp2,"\n 10 = %12.10If \n ",10);
[* The composite material properties and ABD matrix calculations */
/* Begin Q matrix calculations */
Delta=1 - (newl2*newl1l2)*E2/EL,
Qmat[1][1]=EL/Delta;
Qmat[1][2]=new12* E2/Delta;
Qmat[2][1]=Qmat[1][2];
Qmat[2][2]=E2/Délta;
Qmat[3][3]=G12;
Qmatstar[1][1]=G23;
Qmatstar[2][2]=G13;
Qmatstar[1][2]=0.0;
Qmatstar[2][1]=0.0;
/* End Q matrix calculations */
/* Begin Qbar matrix calculations */
for(i=1;i<=no;i++)
{
Cl1=cos(layerangl€]i]);
C2=cos(layerangl€[i])* cos(layerangl€]i]);
C3=cos(layerangl€[i])* cos(layerangl €]i])* cos(layerangl €]i]);
C4=cos(layerangl€]i])* cos(layerangl€]i])* cos(layerangl €]i])* cos(layerangl €]i]);
Sl=sin(layerangl€]i]);
S2=sin(layerangl€]i])*sin(layerangl€]i]);
S3=sin(layerangl€]i])*sin(layerangl€]i])*sin(layerangl€][i]);
SA=sin(layerangl€]i])*sin(layerangle[i])*sin(layerangle]i])* sin(layerangl €]i]);

Qbar(i][1][1] = Qmat[1][1]*C4 + 2*(Qmat[1][2] + 2*Qmat[3][3])* S2* C2 + Qmat[2][2]* S4;

Qbar(i][1][2] = (Qmat[1][1] + Qmat[2][2] - 4*Qmat[3][3])* S2*C2 + Qmat[1][2]*(SA + C4);

Qbar(i][2][2] = Qmat[1][1]*S4 + 2*(Qmat[1][2] + 2*Qmat[3][3])* S2*C2 + Qmat[2][2]*C4;

Qbar(i][2][1] = Qbar[i][1][2];

Qbar(i][1][3] = (Qmat[1][1] - Qmat[1][2] -2* Qmat[3][3])*S1*C3 + (Qmat[1][2] - Qmat[2][2] +
2* Qmat[3][3])* S3* C1;

Qbar(i][2][3] = (Qmat[1][1] - Qmat[1][2] -2* Qmat[3][3])*S3* C1 + (Qmat[1][2] - Qmat[2][2] +
2* Qmat[3][3])* S1*C3;

Qbar(i][3][1] = Qbar[i][1][3];
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Qbar(i][3][2] = Qbar[i][2][3];

Qbar(i][3][3] = (Qmat[1][1] + Qmat[2][2] - 2*Qmat[1][2] - 2*Qmat[3][3])* S2*C2 +
Qmat[3][3]*($4 + C4);

Qstarbar[i][1][1] = Qmatstar[1][1]*C2 + Qmatstar[2][2]* S2;

Qstarbar[i][1][2] = (Qmatstar[2][2]-Qmatstar[1][1])* S1*C1;

Qstarbar[i][2][2] = Qmatstar[1][1]*S2 + Qmatstar[2][2]* C2;

Qstarbar[i][2][1] = Qstarbar[i][1][2];

/* End Qbar matrix calculations */
for(i=1;i<=no;i++)

printf("\n The Qbar matrix for the layer %d is\n",i);
for(j=1;j<&;j++)

for(k=1;k<4;k++)
printf("%If ", Qbar[i][j1[K]);
pri ritf("\n");
pri r}m‘("\n");
printf("\n The Qbarstar matrix for the layer %d is\n",i);
for(j=1;j<3;j++)
{ for(k=1;k<3;k++)
printf("%lf " ,Qstarbar[i1[j1[K]);
pri ritf("\n");
pri r}ltf("\n");

}
/* Begin A matrix calculations */

printf("\n The A matrix is\n");
for(i=1;i<4;i++)
{
for(j=1;j<4;j++)
{
for(k=1;k<=no;k++)
} A[i][j]+=Qbar[K][i]{i]*h[K];
printf("%lf " Afi][j]);
}
printf("\n");
/* End A matrix calculations */
printf("\n The B matrix is\n");
/* Begin B matrix calculatons */
for(i=1;i<4;i++)
for(j=1;j<4;j++)
for(k=1;k<=no;k++)

BIi][j]+=Qbar{K][i][j]* h[k]* hbar[k];
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}
printf("%lf " B[i][j]);
}
printf("\n");

/* End B matrix calculations */
printf("\n The D matrix is\n");

/* Begin D matrix calculations */
for(i=1;i<4;i++)

for(j=1;j<4;j++)
for(k=1;k<=no;k++)
D] [j]+=Qbar[KI[i][i]* (h[KI* hbar K] *hbar{Kk] + h[KI*h[K]*h[K]/12.0);
priritf("%lf *D[i][j1);
pri r}ltf("\n");

/* End D matrix calculations */
[* Begin Transverse shear stiffness matrix H*/
printf("\n The H matrix is\n");
for(i=1;i<3;i++)
{
for(j=1;j<3;j++)
{
for(k=1;k<=no;k++)

} HI[i][j]+=Qstarbar[K][i][j]* h(k];
printf("%lf " H[i[i]);

}

printf("\n");
}
[* To calculate Exxb to do an isotropic equivalent moduli verification */
D1 = D[2][2]*D[3][3] - D[2][3]*D[2][3];
D2 = D[1][3]*D[2][3] - D[1][2]*D[3][3];
D3 = D[1][2]*D[2][3] - D[2][2]* D[1][3];
Dstar = D[1][1]*D1 + D[1][2]*D2 + D[1][3]*D3;
Diistar = (D[2][2]*D[3][3] - D[2][3]*D[2][3])/Dstar;
Exxb = 12.0/(height* height* height* D11star);
printf("\n The Exxb value is %lIf " ,Exxb);
for(i=0;i<=nel;i++)
L[i] = (X[i+1]-X[i]);
fprintf(fp2,"\nThe results are for %lft with inertia dt = 0.00025\n" ,omega);
/* Assigning S11 matrix values*/
S11[1][1]=A[1][1];
S11[1][2]=A[1][3];
S11{1][3]=B[1][1];
S11[1][4]=B[1][3];
S11{2][1]=A[1][3];
S11{2][2]=A[3][3];
S11{2][3]=B[1][3];
S11[2][4]=B[3][3];
S11[3][1]=B[1][1];
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S11[3][2]=B[1][3];
S11[3][3]=D[1][1],
S11[3][4]=D[1][3];
S11[4][1]=B[1][3];
S11[4][2]=B[3][3];
S11[4][3]=D[1][3];
S11[4][4]=D[3][3];
[* Assigning S12 matrix values */
S12[1][1]=A[1][2];
S12[2][1]=A[2][3];
S12[3][1]=B[1][2];
S12[4][1]=B[2][3];
S12[1][2]=B[1][2];
S12[2][2]=B[2][3];
S12[3][2]=D[1][2];
[* Assigning S21 matrix values */
S21[1][1]=A[1][2];
S21[1][2]=A[2][3];
S21[1][3]=B[1][2];
S21[1][4]=B[2][3];
S21[2][1]=B[1][2];
S21[2][2]=B[2][3];
S21[2][3]=D[1][2];
S21[2][4]=D[2][3];
[* Assigning S22 matrix values */
S22[1][1]=A[2][2];
S22[1][2]=B[2][2];
S22[2][1]=B[2][2];
S22[2][2]=D[2][2];
[* Calculating the Astar term */
Astar = SCF*(H[2][2]-(H[1][2]*H[1][2])/H[1][1]);
[* Matrix inverse algorithm */
ni=2;
for(i=1;i<=ni;i++)

{

for(j=L;j<=ni;j++)

{
} a[illi1=s22{il[il;

}
/* BEGIN LU DECOMPOSITION */
di=1.0;
for(i=1;i<=ni;i++)
{
big = 0.0;
for(j=L;j<=ni;j++)

if((temp=fabs(a[i](]))>hig)
big=temp;

}
if(big==0.0)
printf("\n Singular matrix in LU Decomposition");
wIi]=1.0/big;

for(j=1;j<=ni;j++)

{
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for(i=1;i<j;i++)
{
sum=a[i][j];
for(k=1;k<i;k++)
_sum-=a[i][K]*a[K][j];
ai][j]=sum;

}
big=0.0;
for(i=j;i<=ni;i++)
{
sum=a[i][j];
for(k=1;k<j;k++)
sum-=a{i][K]*a[K][j];
ai][j]=sum;
if((dum=vv[i]*fabs(sum))>=hig)
{

big=dum;
imax=i;

}
if(j!=imax)
for(k=1;k<=ni;k++)

dum=a[imax][K];
alimax][K]=alj] [K];
a[j][K]=dum;

}
di=-(di);
w[imax]=vv[j];

indx[j]=imax;

if(alj][i]==0.0)
gj][i1=0.0;
if(j!=ni)

dum=1.0/&[j][j];
for(igj+1;i<=ni;i++)
ai][j]*=dum;

/* END LU DECOMPOSITON */
for(jj=L;jj<=ni;jj++)
{

for(ii=1;ii<=ni;ii++)
col[ii]=0.0;
col[jj]=1.0;
/* BEGIN LU BACK SUBSTITUTION */
sum1=0.0;
iii=0;
for(i=1;i<=ni;i++)
{
ip=indx[i];
suml=col[ip];
col[ip]=cal[i];
if(iii)

136



for(j=iii;j<=i-1;j++)
sum1-=g[i][j]*col[j];
elseif (suml)
iii=i;
col[i]=sum;
}

for(i=ni;i>=1;i--)

suml=colli];
for(j=i+1;j<=ni;j++)
sum1-=g[i][j]*col[j];
col[i]=suml/di][i];
for(}ii=1;ii<=ni jii+)
ym{ii][jj]=col[ii];

[*for(i=1;i<=ni;i++)

for(j=1;j<=ni;j++)
printf(" %12.8If " ,ym[i][j]);
printf("\n");
3l
I* The inverse of the matrix has been found */
/* USING ALTERNATIVE AND SHORT CUT METHOD TO FIND OUT THE INVERSE OF
A2X 2MATRIX */
printf("\n Inverse by alternative method \n ");
for(i=1;i<3;i++)
{
for(j=1;j<3;j++)

{
} a[illi1=s22{il[il;

}
ym[1][1]=a[2][2];
ym[2][2]=a[1][1];
ym[1][2]=-a[1][2];
ym[2][1]=-a[2][1];
det=a[1][1]*a[2][2]-a[2][1]*&[1][2];

for(i=1;i<3;i++)
for(j=1;j<3;j++)
A 581yl
pri r}ltf("\n");

}
/* END OF ALTERNATIVE SHORTCUT METHOD TO FIND
THE INVERSE OF A 2 X 2 MATRIX */
[* Calculate S12 * S22inv i.eym */
for(i=1;i<=4;i++)
{
for(j=1;j<=2;j++)

S12ym([i][j]=0.0;
for(k=1;k<=2;k++)
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S12ym[i][j]+=S12[i][K]*ym[K][j];

}

}
[* Calculate S12ym * S21 */
for(i=1;i<=4;i++)
{
for(=Lj<=4j++)

S12ym21[i][j]=0.0;
for(k=1:k<=2;k++)

S12ym21[i][j]+=S12ym[i][K]* S21[K][j];

}
}
printf("\n");
printf("\n Smis\n");
for(i=1;i<=4;i++)
{
for(=L;j<=4;j++)
{
Smii][j]=S11[i][j]-S12ym21[i][j];
printf("%lf ", Sm[i][j1);

}
printf("\n");
}
/* SM has been calculated before this step */

[* Time independent part of the program ie. the k matrix calculations for every element */
n=0,

while(n<7)
if(n==0)
v =0.949107;
wx = 0.129484;
}
if(n==1)
v =-0.949107;
wx = 0.129484;
}
if(n==2)
v =0.741531,;
wx = 0.279705;
}
if(n==3)
v =-0.741531;
wx = 0.279705;
}
if(n==4)
v = 0.405845;
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wx = 0.381830;

}
if(n==5)
v = -0.405845;
wx = 0.381830;
}
if(n==6)
{
v=0.0;
wx = 0.417959;

/* H' for the Transverse case */

HAT[O] = (1.0/9.0)*(17.0/4.0 - 10.0 *v - 237.0*v*Vv/4.0 + 188.0*v*v*Vv/2.0 + 55.0*v*v*v*v —
84.0*v*v*v*v*v)* (2.0/L[€elc]);

H1T[1] = (L[€lc]/6.0)*(1.0/4.0 - v/2.0 - 15.0*v*v/4.0 + 5.0*v*v*v + 5.0*v*v*v*v —
6.0*v*v*v*v*v)* (2.0/L[€elc]);

H1T[2] = (16.0/9.0)*(-1.0 + 4.0*v + 6.0*v*V - 16.0*v*Vv*v - 5.0*v*v*v*v +
12.0*v*v*v*v*v)* (2.0/L[€elc));

HAT[3] = (-12.0*v + 36.0*v*v*V - 24.0*v*v*v*v*v)* (2.0/L[€elc]);

HAT[4] = (16.0/9.0)*(1.0 + 4.0*v - 6.0*v*V - 16.0*v*Vv*Vv + 5,0*v*v*v*y +
12.0*v*v*v*v*v)* (2.0/L[€elc));

HAT[5] = (1.0/9.0)*(-17.0/4.0 - 10.0*v + 237*v*v/4.0 + 188.0*v*v*Vv/2.0 - 55.0*v*v*v*v —
84.0*v*v*v*v*v)*(2.0/L[elc));

HAT[6] = (L[elc]/6.0)*(1.0/4.0 + v/2.0 - 15.0*v*V/4.0 - 5.0*v*v*V + 5.0*v*v*v*v +
6.0* v*v*v*v*v)* (2.0/L[€elc]);

/* H" for the Transverse case */

H2T[0] = (1.0/9.0)*(-10.0 -474.0*v/4.0 + 282.0*v*v + 220.0*v*v*v —
420*v*v*v*v)*(2.0/L[elc])* (2.0/L[€elc]);

H2T[1] = (L[€lc]/6.0)*(-1.0/2.0 -30.0*v/4.0 +15.0*v*v + 20.0*v*v*v —
30.0*v*v*v*v)* (2.0/L[elc])* (2.0/L[elc)]);

H2T[2] = (16.0/9.0)* (4.0 +12.0*v -48.0*v*v -20.0*v*v*v
+60.0*v*v*v*Vv)* (2.0/L[elc])* (2.0/L[elc));

H2T[3] = (-12.0 +108.0*v*v -120.0* v*v*v*v)*(2.0/L[elc])* (2.0/L[€elc]);

H2T[4] = (16.0/9.0)* (4.0 -12.0*v -48.0*v*v +20.0*v*v*v
+60.0*v*v*v*v)*(2.0/L[elc])* (2.0/L[elc));

H2T[5] = (1.0/9.0)*(-10.0 +474.0*v/4.0 +282.0*v*v -220.0* v*v*v —
420.0*v*v*v*v)*(2.0/L[elc])* (2.0/L[elq]);

H2T[6] = (L[€lc]/6.0)*(1.0/2.0 -30.0*v/4.0 -15.0*v*v +20.0* v*v*v
+30.0*v*v*v*v)* (2.0/L[elc])* (2.0/L[elc));

/* H' for the Axial case */

H1A[Q] = ((1.0/6.0)-(1.0/3.0)*v-2.0* v*v+(8.0/3.0)* v*v*Vv)* (2.0/L[€elc]);
H1A[1] = ((-4.0/3.0)+(16.0/3.0)* v+4.0* v*v-(32.0/3.0)* v*v*v)* (2.0/L[€el c]);
H1A[2] = (-10.0*v+16.0*v*v*Vv)*(2.0/L[€elc]);

H1A[3] = ((4.0/3.0)+(16.0/3.0)*v-4.0* v*v-(32.0/3.0)* v*v*Vv)* (2.0/L[€elc]);
H1A[4] = ((-1.0/6.0)-(1.0/3.0)*v+2.0* v*v+(8.0/3.0)* v*v*v)* (2.0/L[€elc]);

/* H" for the Axial case */

H2A[0] = (-1.0/3.0 - 4.0*v + 8.0*v*v)*(2.0/L[elc])* (2.0/L[€elc]);
H2A[1] = (16.0/3.0 + 8.0*v - 32.0*v*v)*(2.0/L[elc])*(2.0/L[€elc]);
H2A[2] = (-10.0 + 48.0*v*v)*(2.0/L[€elc])* (2.0/L[€lc]);

H2A[3] = (16.0/3.0 - 8.0*v - 32.0*v*v)*(2.0/L[elc])*(2.0/L[€lc]);
H2A[4] = (-1.0/3.0 + 4.0*v + 8.0*v*v)*(2.0/L[elc])* (2.0/L[€lc]);
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/* Transverse case */

HT[O] = (1.0/9.0)*( 17.0*v/4.0 -5.0*v*v -79.0*v*v*Vv/4.0 +47.0*v*v*v*v/2.0 +11.0* v*v*v*v*v
-14.0*v*v* v vEv*y);

HT[1] = (L[elc]/6.0)* (v/4.0 -v*v/4.0 -5.0*v*v*Vv/4.0 +5.0* v*v*v*Vv/4.0 +v*v*v*viv —
VEVFVEVEVFY);

HT[2] = (16.0/9.0)*(-v +2.0*v*Vv +2.0* v*v*V -4.0*V*V*V*V - V*V*v*v*y +2.0* v v viviv*y),

HT[3] = (1.0 -6.0*v*Vv +9.0*v*v*v*v -4.0* v*v*v*v*v*V);

HT[4] = (16.0/9.0)*( v +2.0*v*Vv -2.0*v*Vv*V -4.0* V*V*V*V + V¥ V*vivry +2.0% v vFvEviv*y);

HT[5] = (1.0/9.0)* (-17.0*v/4.0 -5.0*v*v +79.0*v*v*Vv/4.0 +47.0*v*v*v*Vv/2.0 -11.0* v*v*v*v*y -
14.0*v*v*v*v*v*y);

HT[6] = (L[elc]/6.0)* (v/4.0 +v*Vv/4.0 -5.0*v*v*V/4.0 -5.0*v*v*v*Vv/4.0 +v* v v*v*y
HEVEVEVEVEY);

/* Axial case*/

HA[OQ] = (1.0/6.0)*v - (1.0/6.0)*v*Vv - (2.0/3.0)*v*v*v + (2.0/3.0)* v*v*v*v;
HA[1] = (-4.0/3.0)*v + (8.0/3.0)*v*Vv + (4.0/3.0)*v*Vv*Vv - (8.0/3.0)* v*v*Vv*v;
HA[2] = 1.0 - 5.0*v*v + 4.0*v*v*v*y;

HA[3] = (4.0/3.0)*v + (8.0/3.0)*v*v - (4.0/3.0)*v*v*v - (8.0/3.0)* v*v*v*v;
HA[4] = (-1.0/6.0)*v - (1.0/6.0)*v*v + (2.0/3.0)*v*v*v + (2.0/3.0)* v*v*Vv*v;

/* k calculation */
for(i=0;i<5;i++)
{
for(j=0;j<5jj++)
{
[* Stiffness matrix */
kuu[i][j]+=b*(L[elc]/2.0)* Sm[1][1]*wx* H1A[i]*H1A[]];
kub[i][j]+=b*(L[elc]/2.0)* Sm[1][2]*wx* H1A[i]*HA]j];
kuwby[i][j]+=(-2.0)*b* (L[elc]/2.0)* Sm[1][4]*wx* H1A[i]*H1A[j];
kbb[i][j]+=b*(L[elc]/2.0)* Sm[2][2]*wx*HA[i]*HAJj1;
kbwby[i][j]+=(-2.0)*b* (L[€elc]/2.0)* Sm[2][4]*wx*HA[i]*H1A[j];
kwbywby[i][j]+=4.0*b* (L [elc]/2.0)* Sm[4][4]*wx* H1A[i]*H1A[j];
[* Mass matrix */
muu[i][j]+=b*(L[elc]/2.0)*I0*wx*HA[i1*HA[j];
mub[i][j]=0.0;
muwby/[i][j]=0.0;
mbb[i][j]=0.0;
mbwby[i][j]=0.0;
mwbywby[i][j]+=b*(L[elc]/2.0)*12*wx*HA[i]*HA[j];
}

for(i=0;i<5;i++)

for(j=0;j<7;j++)

{
[* Stiffness matrix */
kuwb[i][j]+=(-b)* (L[elc]/2.0)* Sm[ 1] [ 3]* wx* H1A[i]*H2TIj];
kbwhbl[i][j]+=(-b)* (L[elc]/2.0)* Sm[ 2] [3]* wx* HA[i]*H2T[j1;
/* Mass matrix */
muwb[i][j]+=(-b)* (L[elc]/2.0)* I 1*wx*HA[i|*H1T[j];
mbwb[i][j]=0.0;

}

for(i=0;i<7;i++)
{
for(j=0;j<5;j++)
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[* Stiffness Matrix */
kwbwby[i][j]+=2.0*b* (L[€lc]/2.0)* Sm[3][4]*wx*H2T[i]*H1A[]];
/* Mass Matrix */
mwbwby[i][j]=0.0;
}

for(i=0;i<7;i++)

for(j=0;j<7;j++)
{

[* Stiffness Matrix */
kwbwhbl[i][j]+=b* (L[elc]/2.0)* Sm[3][3]* wx* H2T[i]*H2TIj];
kwswg[i][j]+=b*(L[€lc]/2.0)* Astar* wx* H1T[i]*H1T[j];
/* Mass Matrix */
mwswd[i][j]+=b* (L[elc]/2.0)*I0*wx*HT[i]*HT[j];
mwbwb[i][j]+=b*(L[elc]/2.0)*10*wx*HT[i]*HTI[j] +

b* (L[elc]/2.0)* 12*wx*HAT[i]*H1T[j];
}
}

/* Symmetric parts on the upper triangle of K matrix and zero parts of k matrix*/
for(i=0;i<5;i++)
{
for(j=0;j<7j++)
{
/* Stiffness Matrix */
kuwq[i][j]=0.0;
kbwdi][j]=0.0;
kwswby[j][i]=0.0;
/* Mass Matrix */
muwg[i][j]=0.0;
mbwg[i][j]=0.0;
mwswhby[j][i]1=0.0;
}
}
for(i=0;i<7;i++)
for(j=0;j<7;j++)
{
[* Stiffness Matrix */
kwbws[i][j]=0.0;
/* Mass Matrix */
mwbwg[i][j]+=b* (L[elc]/2.0)* [0*wx*HT[i]*HTI[j];
}

/*****************************************************/

[* Assigning the symmetric parts of the K & M matrix */

/*****************************************************/

for(i=0;i<5;i++)

for(j=0;j<5;j++)
{
/* Stiffness Matrix */
kbu[i][j]=kubfj][i];
kwbyul[i][j]=kuwby[j][i];
kwhybl[i][j]=kbwby[j][i];
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/* Mass Matrix */

mbuli][j]=mub[jI[il;

mwbyu[i][j]=muwby[j][i];
} mwbybli][j]=mbwby[j][i];

for(i=0;i<7;i++)

for(j=0;j<5;j++)

{
[* Stiffness Matrix */
kwbul[i][j]=kuwbl[j][i];
kwhbb[i][j]=kbwbl[j][i];
/* Mass Matrix */
mwhbuli][j]=muwb(j][i];
mwbbli] [j]=mbwblj][i];

}

for(i=0;i<5;i++)

for(j=0;j<7;j++)

{ [* Stiffness Matrix */
kwbywbl[i][j]=kwbwby([j][i];
kwbywsli] [j]=kwswby[j][i];
/* Mass Matrix */
mwbywb[i][j]=mwbwby([j][i];
mwbyws[i][j]J=mwswby([j][i];

}
}
for(i=0;i<7;i++)
{

for(j=0;j<5;j++)

{ [* Stiffness Matrix */
kwsufi] [j]=kuws{j][i];
kwsb[i][j]=kbws{j][i];
/* Mass Matrix */
mwsu[i] [j]=muws{j][i];

} mwsbi] [j]=mbws{j][i];

for(i=0;i<7;i++)

for(j=0;j<7;j++)
{
[* Stiffness Matrix */
kwswh[i][j]=kwbws][j][i];
/* Mass Matrix */
mwswhi] [j]=mwbwsi][j];
}
}
n++;
}*end while*/
/*

* Start of time loop */
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/*
for(t=dt,counter=1;t<=tmax;t+=dt,counter++)

*/

if (counter/10000.0 == (int)(counter/10000.0))
printf("\nLoop for timestep %12.101f" t);

accl =-omega* omega* 0.05* sin(omega*t);

for(elc=0;elc<nel;elc++)

for(i=0,xb=0.0;i<elc;i++)
xb +=L[i];
[* For transverse case */
for(i=0;i<(4+inter);i++)
for(j=0;j<(4+inter);j++)

ki[elc][i]{j]=0.0;

}
n=0;
while(n<7)
if(n==0)
{
v =0.949107,
wx = 0.129484;
}
if(n==1)
{
v =-0.949107;
wx = 0.129484;
}
if(n==2)
{
v =0.741531,;
wx = 0.279705;
}
if(n==3)
v =-0.741531;
wx = 0.279705;
}
if(n==4)
v = 0.405845;
wx = 0.381830;
}
if(n==5)
v = -0.405845;
wx = 0.381830;
}
if(n==6)
{
v =0.0;
wx = 0.417959;
}
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/* CALCULATIONS FOR THE INCREMENTAL STIFFNESS MATRIX TO CONSIDER
THE INERTIAL EFFECT OF THE BEAM */

/* THISEFFECT APPEARS AS AN ADDITIONAL MATRIX OF SIZE 7 X 7 WHICH
GETS ADDED TO THE MATRIX kt */

/* To calculate the incremental stiffness matrix, we need the H1T */

}

n++;

H1T[0]=(1.0/9.0)*(17.0/4.0-10.0*v-237.0*v*v/4.0+188.0* v*v*v/2.0+55.0* v*v* v*v-
84.0*v*v*v*v*v)*(2.0/L[elc]);

H1T[1]=(L[€lc]/6.0)* (1.0/4.0-v/2.0-15.0* v*v/4.0+5.0* v*v*v+5.0* v*v* v*v-
6.0*v*v*v*v*v)*(2.0/L[elc));

H1T[2]=(16.0/9.0)* (-1.0+4.0* v+6.0* v*v-16.0* v*v*v-
5.0*v*v*v*v+12.0*v* v v*v*v)* (2.0/L[€elc]);

HAT[3]=(-12.0*v+36.0* v*v*v-24.0* v*v*v*v*v)* (2.0/L[elc]);

H1T[4]=(16.0/9.0)* (1.0+4.0*v-6.0*v*v-6.0* v*v*v
+5.0*v* v v*v+12.0* v* v v vrv)* (2.0/L[€elc]);

H1T[5]=(1.0/9.0)* (-17.0/4.0-10.0*v+237.0*v*v/4.0+188.0* v* v*Vv/2.0-
55.0*v*v*v*v-84.0* v* v v*v*v)* (2.0/L[elc]);

H1T[6]=(L[€lc]/6.0)*(1.0/4.0+v/2.0-15.0*v*Vv/4.0-
5.0*v*v*v+5.0* v¥ v v*v+6.0* v¥ v vF v v)* (2.0/L[elc]);

for(i=0;i<(inter+4);i++)

for(j=0;j<(inter+4);j++)
ki[elc][i][j]+= (-1.0*accl* (L[€lc]/2.0))* (gama* wx)* (L B-
(xb+(L[elc]/2.0)* (1.0+V)))* (HAT[i]*HAT[j]);

}* end while */
}H* end elc*/
*printf("\n Success before K and M assembly");*/

for(elc=0;el

c<nel;elct++)

for(j=0;j<29;j++)

for(k=0;k<29;k++)

M[elc][j][K]=0.0;
K[elc][j1[k]=0.0;

for(i=0;i<5;i++)

for(j=0;j<5;j++)

K[elc][i][j]=kuufi][j];
Melc][i] [j]=muul[i]{i];

for(i=0;i<5;i++)

}

for(j=5;j<10;j++)

K[elc][i] j]=kubl][j-5};
Melc]{i] ] =mubfi][j-5];

for(i=0;i<5;i++)
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{
for(j=10;j<17;j++)

K[elc][i][j]=kuwb[i][j-10];

| M{elc]{i][j]=muwnbli][j-10];

for(i=0;i<5;i++)
for(j=17;j<24;j++)
Kelc][i][j]=kuws]i][j-17];
MIelc][i] [j]=muws[i][j-17];

for(i=0;i<5;i++)
{
for(j=24;j<29;j++)

K[elc][i][j]=kuwbyli][j-24];
M[elc][i][j]=muwby[i][j-24];
}
for(i=5;i<10;i++)
{
for(j=0;j<5;j++)

K[elc][i][j]=kbuli-5][j];
M{elc][i][j]=mbul(i-S][j];

}
for(i=5;i<10;i++)
{
for(j=5;j<10;j++)
K[elc][i][j]=kbb[i-5] j-5];
M(elc][i][j]=mbbli-5][j-5];
}
for(i=5;i<10;i++)
for(j=10;j<17;j++)
{
K[elc][i][j]=Kbwb[i-5][j-10];
M[elc][i][j]=mbwhbli-5][j-10];
}
for(i=5;i<10;i++)
for(j=17;j<24;j++)
{
K[elc][i] j]=Kbws{i-5][j-17];
MIelc][i][j]=mbws]i-5][j-17];

}
for(i=5;i<10;i++)

145



{
for(j=24;j<29;j++)

K[elc][i] j]=Kbwbyli-5] j-24];
M[elc][i][j]=mbwhby[i-5][j-24];
}
for(i=10;i<17;i++)
for(j=0;j<5;j++)
K[elc][i][j]=kwbu[i-10][j];
MIelc][i][j]=mwbul[i-10][j];
}
for(i=10;i<17;i++)
for(j=5;j<10;j++)
{
K [elc][i][j]=kwbb[i-10][j-5];

M(elc](i][j]=mwbb[i-10][j-5];

}
for(i=10;i<17;i++)
{
for(j=10;j<17;j++)

K[elc][i][j]=kwbwb[i-10][j-10] + ki[elc][i-10][j-10];
M[elc][i][j]=mwbwbli-10][j-10];

}
for(i=10;i<17;i++)
{
for(j=17;j<24;j++)
K[elc][i][j]=kwbws]i-10][j-17];
M(elc][i][j]=mwbws]i-10][j-17];

}
for(i=10;i<17;i++)
{
for(j=24;j<29;j++)
Klelc][i][j]=kwbwby[i-10][j-24];
M{elc][i] [j]=mwbwby[i-10][j-24];
}
for(i=17;i<24;i++)
for(j=0;j<5;j++)
{

K[elc][i][j]=kwsui-17](j];
M{elc][il[j]=mwsuli-17][j];

}
for(i=17;i<24;i++)
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for(j=5;j<10;j++)

K [elc][i][j]=kwsb{i-17][j-5];
Melc]{i] j]=mwsb[i-17][j-5];

}
for(i=17;i<24;i++)
{
for(j=10;j<17;j++)

K[elc][i][j]=kwswb[i-17][j-10];
M(elc][i][j]=mwswbli-17][j-10];

}
for(i=17;i<24;i++)
for(j=17;j<24;j++)

Klelc][il[j]=kwsws{i-17)[j-17] + ki[elc][i-17](j-17];
Melc] il ] =mwsws(i-17][j-17];

}
for(i=17;i<24;i++)
{
for(j=24,j<29;j++)

K elc][il[j]=kwswby[i-17][j-24];
Melc][i][j]=mwswhby[i-17][j-24];

}
for(i=24;i<29;i++)
{
for(j=0;j<5;j++)
K[elc][i][j]=kwbyul[i-24][j];
M{elc][i][j]=mwbyul[i-24][j];

}
for(i=24;i<29;i++)
{
for(j=5;j<10;j++)

K([elc][i][j]=kwbyb[i-24][j-5];
Melc][i][j]=mwhbyhbli-24][j-5];

}
for(i=24;i<29;i++)
{
for(j=10;j<17;j++)
K[elc][i][j]=kwbywb[i-24][j-10];
M[elc][i][j]=mwbywb[i-24][j-10];

}
for(i=24;i<29;i++)
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for(j=17;j<24;j++)
{

K [elc][i][j] =kwbyws[i-24][j-17];
Melc] i1 =mwhbyws[i-24][j-17];

}
for(i=24;i<29;i++)
for(j=24;j<29;j++)
{

K[elc][i][j]=kwbywby[i-24][j-24];
M(elc][i][j]=mwbywby[i-24][j-24];

}*end elc */
[* Global Matrix Assembly from temporary Matrix */
for(i=0;i<101;i++)

for(j=0;j<101;j++)
{

KGIi][j]=0.0;
MG[i][j]=0.0;
}

}
for(elc=0;elc<nel;elct++)
{
co=22*€lc;
for(i=co;i<co+29;i++)
{
if(i==co)
X=i;
if(i==co+1)
X=i+6;
if(i==co+2)
x=i+10;
if(i==co+3)
x=i+14;
if(i==co+4)
X=i+18;
if(i==co+5)
X=i-4;
if(i==co+6)
X=i+2;
if(i==co+7)
X=i+6;
if(i==co+8)
x=i+10;
if(i==co+9)
x=i+14;
if(i==co+10)
X=i-8;
if(i==co+11)
X=i-8;
if(i==co+12)
X=i-3;

148



if(i==co+13)
X=i+1;
if(i==co+14)
X=i+5;
if(i==co+15)
X=i+9;
if(i==co+16)
X=i+9;
if(i==co+17)
x=i-13;
if(i==co+18)
X=i-13;
if(i==co+19)

X=i-9;

if(i==co+20)

X=i-5;

if(i==co+21)

x=i-1;

if(i==co+22)
X=i+4;
if(i==co+23)
X=i+4;
if(i==co+24)
x=i-18;
if(i==co+25)
x=i-14;
if(i==co+26)
x=i-10;
if(i==co+27)

X=i-6;

if(i==co+28)

X=i;

for(j=co;j<co+29;j++)

{

if(j==co)
y3i;
if(j==co+1)
y=j+6;
if(j==co+2)
y=j+10;
if(j==co+3)
y=i+14;
if(j==co+4)
y=j+18;
if(j==co+b)
y=i-4;
if(j==co+6)
y=i+2;
if(j==co+7)
y=j+6;
if(j==co+8)
y=j+10;
if(j==co+9)
y=j+14;
if(j==co+10)
y=i-8;
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if(j==co+11)
y=i-8;
if(j==co+12)
y=i-3;
if(j==co+13)
y=i+L,
if(j==co+14)
y=i+5;
if(j==co+15)
y=i+9;
if(j==co+16)
y=i+9;
if(j==co+17)
y=i-13;
if(j==co+18)
y=i-13;
if(j==co+19)
y=i-9;
if(j==co+20)
y=i-5;
if(j==co+21)
y=i-1L
if(j==co+22)
y=i+4;
if(j==co+23)
y=i+4,
if(j==co+24)
y=i-18;
if(j==co+25)
y=i-14;
if(j==co+26)
y=i-10;
if(j==co+27)
y=i-6;
if(j==co+28)
y=i;
KG[x][y]+=K[elc][i-co][j-co];
MG[x][y]+=M[elc][i-co][j-co];
} Fendj */
}Fendi*/
} *end elc*/
/* coding for assembling the Klamda matrices and its tranpose */
for(i=0;i<101;i++)

for(j=0;j<6;j++)

KL[i][j]=0.0;

for(i=0;i<2;i++)

Z[i]1=0.0;
sumlen1=0;
sumlen2=0;
xsl = 0.375*LB - 0.05*sin(omega*t);
xs2 = xsl + 0.25*LB;
for(i=0;i<2;i++)
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if(i==0)
for (elc=0;elc<nel;elct++)
{
if (xs1 >=sumlenl)
sumlenl +=L[elc];
else
break;
}

sumlenl -=L[elc-1];
Z[Q] = (xsl-sumlenl)*(2/L[elc-1]) — 1

}
if(i==1)

for (elc=0;elc<nel;elct++)
{
if (xs2 >=sumlen2)
sumlen2 +=L[elc];
else
break;

}
sumlen2 -=L[elc-1];
Z[1] = (xs2-sumlen2)* (2/L[elc-1]) - 1;

}

KL[(elc-1)*26 + 2][i] = (1.0/9.0)* ( 17.0*Z[i]/4.0 -5.0*Z[i]*Z[i] -79.0*Z[i]*Z[i]*2[i]/4.0
+47.0%2[i]* Z[i]*Z[i]* Z[i]/2.0 +11.0*Z[i]*Z[i] *2[i] *2[i]*[i] —
14.0*Z[i]*Z[i]* Z[i]*Z[i]* 2[i]*Z[i]);

KL[(elc-1)*26 + 3][i] = (L[€lc]/6.0)* (z[i]/4.0 -z[i]*Z[i]/4.0 -5.0*Z[i] *Z[i]*2[i]/4.0
+5.0%2Z[i]* Z[i]* Z[i] *Z[i]/4.0 +2[i]*Z[i]* Z[i]* Z[i]*2[i] —
z[i]*z[i]* [ i]* Z[i]* 2[i]* Z[i]);

KL[(elc-1)*26 + 9][i] = (16.0/9.0)* (-z[i] +2.0*Z[i]*Z[i] +2.0*2[i]*2[i]*z[i] -4.0*Z[i]*Z[i]*Z[i]*2]i]

- Zi*Zi]* Zi1* Zi]* 2] +2.0Z[i]* Z[i]* Z[i]* Z[i]* Z[i]* Z[i]);

KL[(elc-1)*26 + 14][i] = (1.0 -6.0*Z[i]*2[i] +9.0*2[i]*z[i]*Z[i]*Z[i] -
4.0*2Z[i]* i * Zi]* Z[i* 2] * 2i]);

KL[(elc-1)*26 + 19][i] = (16.0/9.0)*( z[i] +2.0*2[i]*z[i] -2.0*2[i]*Z[i]*2[i] -4.0*Z[i]*2[i]*[i]*Z[i]
+ Z[i* i * Z[i]* 2] * 2] +2.0%2Z[i]* Z[i]* Z[i]* 2[i]* 2[i]* Zi]);

KL[(elc-1)*26 + 24][i] = (1.0/9.0)* (-17.0*Z[i]/4.0 -5.0* Z[i]*Z[i] +79.0*Z[i]*Z[i]*Z[i]/4.0
+47.0%2[i]* Z[i]*Z[i]*Z[i]/2.0 -11.0* Z[i]* Z[i]*Z[i] *2[i]* Z[i] -
14.0*Z[i]*Z[i]* Z[i]*Z[i] * Z[i]* i)

KL[(elc-1)*26 + 25][i] = (L[€lc]/6.0)* (2[i]/4.0 +2[i]*Z[i]/4.0 -5.0* Z[i]* Z[i]*[i]/4.0 -
5.0*2[i]*Z[i]*Z[i]* Z[i}/4.0 +2[i]*Z[i]*Z[i]*Z[i]*i]
+2[i]*Z[i]*z[i]* Z[i]* 2[i]*Z[i]);

KL[(elc-1)*26 + 6][i+4] =(1.0/6.0)*2]i] - (LO/6.0)*Z[i]*2]i] - (2.0/3.0)*Z[i]*2[i]*z[i] +
(2.013.0)*2[i]*Z[i]*Z[i]* il

KL[(elc-1)*26 + 11][i+4] = (-4.0/3.0)*Z[i] + (8.0/3.0)* Z[i]*2[i] + (4.0/3.0)*Z[i]*2[i]*Z[i] -
(8.0/3.0)*Z[i]*Z[i]*Z[i]*2[i];

KL[(elc-1)*26 + 16][i+4] = 1.0 - 5.0%Z[i]*Z[i] + 4.0*Z[i]*Z[i]*Z[i]*Z]i];

KL[(elc-1)*26 + 21][i+4] = (4.0/3.0)*2[i] + (8.0/3.0)*Z[i]*Z[i] - (4.0/3.0)*Z[i]*Z[i]*2[i] -

(8.0/3.0)*Z[i]*Z[i]*Z[i]*2]i];
KL[(elc-1)*26 + 28][i+4] = (-1.0/6.0)*Z[i] - (1.0/6.0)*Z[i]*Z[i] + (2.0/3.0)*Z[i]*2[i]*z]i] +
(2.013.0)*Z[i]*Z[i]*Z[i]*2]i];
KL[(elc-1)*26 + 4][i+2] = (1.0/9.0)*( 17.0*2[i]/4.0 -5.0*Z[i]*Z[i] -79.0*2[i]*Z[i]*Z[i]/4.0
+47.0%2[i]* 2[i]*Z[i]*Z[i]/2.0 +11.0*Z[i]*2Z[i] *Z[i]*Z[i]*2[i] —
14.0*Z[i]*Z[i]* Z[i]*Z[i]*Z[i]* Z[i1);
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KL[(elc-1)*26 + 5][i+2] = (L[€lc]/6.0)* (z][i]/4.0 -2[i]*Z[i]/4.0 -5.0* Z[i]*Z[i]*Z[i]/4.0
+5.0* Z[i]*Z[i]* Z[i]* Z[i]/4.0 +2[i]* Z[i]* Z[i]*2[i]* [i] —
z[i]*z[i]* Z[i]*Z[i]* z[i]*Z[i]);

KL[(elc-1)*26 + 10][i+2] = (16.0/9.0)* (-2[i] +2.0*Z[i]*Z[i] +2.0*Z[i]*Z[i]*Z[i]
4.0*Z[i*Z[i1* Z[i]*[i] - Z[i]*Z[i]* Z[i]* 2[i]* 2]
+2.0*Z[i1*Z[i]* Z[i]* 2[i]* 2[i]* 2i]):

KL[(elc-1)*26 + 15][i+2] = (1.0 -6.0*Z[i]*Z[i] +9.0*z[i]*z[i]*[i]*z]i] -
4.0%2[i1*Z[i]* Z[i]* Z[i]* Z[i]* i]);

KL[(elc-1)*26 + 20][i+2] = (16.0/9.0)*( Z[i] +2.0*Z[i]*Z[i] -2.0*Z[i]*Z[i]*Z[i] -
4.0%2Z[i1*Z[i)* Z[i]*2[i] + Zi*2i]* 2i]* 2i]* 2]

2.0 Z[i1* Z[i]* ] * 2li]* 2[i]* 2li]):;

KL[(elc-1)*26 + 26][i+2] = (1.0/9.0)* (-17.0*Z[i]/4.0 -5.0* Z[i] *Z[i] +79.0*Z[i]*Z]i]*Z]i]/4.0

+47.0*Z[i]* Z[i]* Z[i]* 2[i]/2.0 -11.0* Z[i]* Z[i]* Z[i]* Z[i] * [i] —
14.0*Z[i]*2[i]*Z[i]* Z[i]*Z[i]* 2[i]);

KL[(elc-1)*26 + 27][i+2] = (L[€lc]/6.0)* (z[i]/4.0 +Z[i]*Z[i]/4.0 -5.0* Z[i]*Z[i]* Z[i]/4.0 —
5.0%2[i]*z[i]*Z[i]*[i]/4.0 +z[i]*2[i]*[i] *[i] *z[i]
+z[i]*z[i]* Z[i]* Z[i]*z[i]* 2[i]);

} /* end of i */

for (i=0;i<95;i++)
for (j=95;j<101;j++)
{

KG[i][j] = KL[i][j-95];
MG]i][j] = 0.0; /*for amoving beam */

}
}
for (i=0;i<95;i++)
{

for(j=95;j<101;j++)

KG[j][i] = KLIi][j-95];
MG[j][i] = 0.0; /*for a moving beam */
} }
/* SOLVING FOR THE DISPLACEMENTS USING THE INITIAL DISPLACEMENTS AS
THE CONDITION */
/* Now the global stiffness and mass matrix have been calculated.. we can proceed to solve for
the displacements at the next time step using the newmarks method */
/* step 1: Calculate the effective stiffness matrix */
/* Initializing the KGhat matrix */
for(i=0;i<101;i++)

for(j=0;j<101;j++)
KGhat[i][j] = 0.0;
forgi:O;i<101;i++)
{ for(j=0;j<101;j++)
KGhat[i][j] = KG[i][j] + a0*MG[i][j];

}
[* The KGhat i.e. the effective stiffness matrix has been setup now */

152



/* step 2: Now, we have to triangularize the KGhat matrix and solve for the displacements */
/* Before that, we have to form the Rhat vector which is Qhat from the Q vector to form the
the RHS vector for every time step */
/* To calculate Qhatnew(i], we need to calculate the product of MG and Us U'sand U"s at any
time step which is calculated below */
for(i=0;i<101;i++)
{
MGut[i]=0.0;
MGult[i]=0.0;
MGu2t[i]=0.0;

}
for(i=0;i<10L;i++)

for(j=0;j<10L;j++)
{
M Gut[i]+=a0* M G[i][j]* ut[j];
MGult[i]+=a2* MG[i][j]* ult[j];
MGu2t[i]+=a3*MG[i][j]* u2t[j];
}

/* In our case, the Qhat does not change with time, therfore, Qhat = Q */
for(i=0;i<101;i++)

{
Qhat[i]=0.0;
Qhatnew[i]=0.0;
Qhatnewgausg[i]=0.0;
}
for(i=0;i<101;i++)
{
Qhatnew[i] = Qhat[i] + MGut[i] + MGult[i] + MGu2t[i];
}

/* Now, we have the Qhat at new time step. Hence, we can now, solve for the utnew[i]s */
for(i=1;i<101;i++)
{
for(j=1;j<101;j++)

K Ghatgauss]i][j]=K Ghat[i]j];

}
for(i=1;i<101;i++)
Qhatnewgaussi]=Qhatnew(i];
/* Since, there are zeros in the main diagonal terms, we can go for gauss elimination with
scaled partial pivoting */
/* Initializing the variables used in the gauss loop */
max = 0.0;
tmp =0.0;
pivot = 0.0;
for(i=1;i<=100;i++)
{
utnew[i]=0.0;
p[i]=0.0;
d[i]=0.0;

}
for(i=1;i<=100;i++)

{
plil=i;
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d[i]=fabs(K Ghatgausd[i][1]);
for(j=1;j<=100;j++)
if (fabs(K Ghatgausd[i][j])>d[i])
d[i] = fabs(K Ghatgausd]i][j]);

}
for(i=1;i<=99;i++)

max=fabs(K Ghatgauss[p[i]][i])/d[p[i]];

maxIi=l,

for(k=i+1;k<=100;k++)
if((zabdKGhﬂgwﬂp[k]][i])/d[p[k]])>ma><)

max=(fabs(K Ghatgauss{p[K]][i])/d[p[K]]);
maxi=Kk;
b
tmp=p[i];
pli]=p[maxi];
p[maxi]=tmp;
for(j=i+1;j<=100;j++)

pivot = KGhatgauss[ p[j]][i]/K Ghatgauss p[i]][i];
Qhatnewgauss| p[j]]-=pivot* Qhatnewgauss p{i]];
for(k=i+1;k<=100;k++)
} K Ghatgauss] p[j]][k]-=pivot* KGhatgauss[ p[i]][K];
}

/* Back substitution to get the displacements utnew[i]s */
Qhatnewgauss[p[100]] = Qhatnewgauss] p[ 100]]/K Ghatgauss[ p[ 100]][100];
for(i=99;i>=1;i--)
{
for(j=i+1;j<=100;j++)
Qhatnewgauss|p[i]]-=K Ghatgauss[p[i]][j]* Qhatnewgauss[ p[j]];
Qhatnewgauss| p[i]]=Qhatnewgauss| p[i]]/K Ghatgauss{ p[i]] i];

for(i=1;i<101;i++)

utnew[i] = Qhatnewgausy[pl[i]];
utnew[0]=0.0;
printf("\n%212.10lf  %lf" t,utnew[2]);
if(counter/1000.0 == (int)(counter/1000.0))

fprintf(fp2,"\n%12.10I1f  %If %If %lf" t,utnew[2],utnew[46],utnew[89]);
printf("\n %12.10If %l f ", 1, uthew[2)]);
fflush(fp2);

/* Now, having calculated the u's at timet plus dt, we have to calculate the ultdt
and u2tdt */
for(i=0;i<101;i++)
{
u2tnew[i]=0.0;
ultnew[i]=0.0;

}
for(i=0;i<101;i++)
{
u2tnew([i] = a0* utnew[i]-a0* ut[i]-a2* ult[i]-a3* u2t[i];

}
for(i=0;i<101;i++)
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{
ultnewl[i] = ult[i]+a6* u2t[i]+ar*u2tnew[i];

/* BEFORE GOING TO THE NEXT TIME STEP, ASSIGN THE NEW VALUES OF U,U'
AND U" ASTHE STARTING VALUES */
for(i=0;i<101;i++)
{
utfi]=utnewli];
ult[i]=ultnew[i];
u2t[i]=u2tnew(i];

}
/* LOOP BACK FOR THE NEXT TIME STEP */
}/* end time loop */
fclose(fp2);
printf(" The file has been printed");
}/* end main*/
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