
Graduate Theses, Dissertations, and Problem Reports

2000

Dynamic analysis of a composite moving beam Dynamic analysis of a composite moving beam

Ganesh Chandrasekaran
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Chandrasekaran, Ganesh, "Dynamic analysis of a composite moving beam" (2000). Graduate Theses,
Dissertations, and Problem Reports. 1096.
https://researchrepository.wvu.edu/etd/1096

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1096?utm_source=researchrepository.wvu.edu%2Fetd%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Dynamic Analysis of a Composite Moving
Beam

Ganesh Chandrasekaran

Thesis submitted to the
College of Engineering & Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the Degree of

Master of Science
 in

Mechanical Engineering

Nithi Sivaneri, Ph.D., Chair
Ever J. Barbero, Ph.D
Kenneth Means, Ph.D

Hemanth Thippeswamy, Ph.D

Department of Mechanical Engineering

Morgantown, West Virginia
2000

Keywords: Composite Materials, Moving Beams, CLPT, FSDT

ABSTRACT

Dynamic Analysis of a Composite Moving Beam

Ganesh Chandrasekaran

Examples of beams moving relative to supports in the longitudinal direction can be found

in conveyor belts, cassette tapes, band-saw blades, spacecraft antennas and robotic arms. While it

is appropriate to model some of the above examples as isotropic, new materials such as polymer

and metal matrix composites may offer definite benefits in certain applications. In this thesis, an

attempt is made at studying the dynamic characteristics of a composite-moving beam.

The model considered is an overhang beam on simple supports oscillating in the

longitudinal direction. The lateral response of the beam is studied due to an initial lateral

deflection. The beam is made-up of laminated composite materials. Both symmetric and

unsymmetrical lay ups are considered. Since unsymmetrical lay ups introduce bending-axial

coupling, axial deformation needs to be considered also. First Order Shear Deformation theory

(FSDT) is used to formulate the problem since transverse shear deformations are important for

composite beams. When reducing laminate plate theory to corresponding beams, plane strain and

plane stress assumptions are considered. Within the plane stress approximation, two ways of

reduction from (x,y) equations to x-equations are possible. One is to set all y-related forces and

moment resultants zero; other is to keep the cross resultants non zero. Also, as a comparison,

results are obtained based on Classical Laminate Plate theory (CLPT).

The discretization in the space domain is achieved with the use of higher-order finite

elements. Since there is relative motion between the beam and supports, traditional methods of

applying essential conditions in the finite element analysis are cumbersome. Thus, the concept of

Lagrange multipliers is used to apply the essential conditions. The resulting system of coupled

ordinary differential equations in time domain is solved using Newmark's method. The use of

Lagrange multipliers result in positive indefinite inertia and stiffness matrices and thus care must

be taken in solving such system of equations.

Results are presented in terms of tip displacements of the moving beam. A parametric

study is carried out by varying the frequency of axial motion, different composite lay-ups and ply

angles.

iii

ACKNOWLEDGEMENT

I express my sincere gratitude to Dr. Nithi Sivaneri for providing me with an opportunity to

work with him. I admire him as an academician and was fortunate to have him as my advisor.

The technical insight he provided into the research was remarkable. His professional guidance is

commendable and I would always be thankful for the support he rendered during the course of this

research.

Special thanks go to Drs. Ever J. Barbero, Kenneth H. Means and Hemanth Thippesamy,

my committee members, for their valuable help, advice and suggestions which aided the successful

completion of this research. I would like to express my sincere thanks to the Department of

Mechanical and Aerospace Engineering and the Department of Chemistry for having supported me

financially in the form of teaching assistantship during the course of my study at West Virginia

University. I would always be thankful to the College of Engineering & Mineral Resources for

having provided me with the computing facility without which this research would have been close

to impossible. My hearty thanks to all my friends and roommates who were a constant source of

encouragement during the course of this research.

Last, but not the least, I wish to express my sincere gratitude to my parents and sister

whose encouragement and support was one of the primary reasons for the successful completion of

this thesis. I take this opportunity to dedicate this thesis and future work to them.

iv

TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF SYMBOLS vii
LIST OF TABLES ix
LIST OF FIGURES x

1. INTRODUCTION 1
1.1 Problem Statement 1
1.2 Lay-up Classification of Composite Materials 1
1.3 Literature Review 2
1.4 Need for Present Research 9
1.5 Objectives 10
1.6 Organization of the Thesis 11

2. THEORITICAL FORMULATION 12
2.1 Coordinate System 12
2.2 Beam Motion 15
2.3 Isotropic Beams 16
2.4 Plate Bending Theories 17

2.4.1 Classical Laminate Plate Theory (CLPT) 17
2.4.2 First Order Shear Deformation Theory (FSDT) 20

2.5 Strain Energy Formulation for Composite Moving Beams 22
2.5.1 Plane Strain Formulation us ing CLPT 22
2.5.2 Plane Stress Formulation using CLPT 25

2.5.2.1 Full Plane Stress Formulation using CLPT 25
2.5.2.2 Partial Plane Stress Formulation using CLPT 28
2.5.2.3 Plane Stress Formulation using FSDT 29

2.6 Kinetic Energy Formulation for Composite Beam 32
2.6.1 Kinetic Energy Formulation for Isotropic Case 32
2.6.2 Kinetic Energy Formulation for Plane Strain using CLPT 33
2.6.3 Kinetic Energy Formulation for Full Plane Stress using

CLPT 35
2.6.4 Kinetic Energy Formulation for Partial Plane Stress using

CLPT 35
2.6.5 Kinetic Energy Formulation for FSDT 36

3. FINITE ELEMENT FORMULATION 38
3.1 Introduction 38
3.2 Finite Element Formulation 38
3.3 Element Stiffness Matrix Formulation 43

3.3.1 Element Stiffness Matrix Formulation for Isotropic Beam 43

v

3.3.2 Element Stiffness Matrix Formulation for Plane Strain
case using CLPT 44

3.3.3 Element Stiffness Matrix Formulation for Full Plane
Stress case using CLPT 45

3.3.4 Element Stiffness Matrix Formulation for Partial Plane
Stress case using CLPT 46

3.3.5 Element Stiffness Matrix Formulation for FSDT 48
3.4 Incremental Stiffness Matrix 51
3.5 Element Inertia Matrix Formulation 53

3.5.1 Element Inertia Matrix Formulation for Isotropic Beam 53
3.5.2 Element Inertia Matrix Formulation for Plane Strain

case using CLPT 54
3.5.3 Element Inertia Matrix Formulation for Full Plane Stress

case using CLPT 55
3.5.4 Element Inertia Matrix Formulation for Partial Plane

Stress case using CLPT 55
3.5.5 Element Inertia Matrix Formulation for FSDT 56

3.6 Lagrange Multiplier Approach 58

4. NUMERICAL IMPLEMENTATION 62
4.1 Introduction 62
4.2 Integration Scheme 62
4.3 Solving Ill-Conditioned System of Equations 63

4.3.1 Pivoting 64
4.3.1.1 Pseudo-code to Implement Partial Pivoting 65

4.3.2 Scaling 66
4.3.3 Gauss Elimination with Scaled Partial Pivoting 66

4.4 Newark's Integration Scheme 68
4.4.1 Pseudo-code for Newark's Scheme 70

4.5 Boundary Conditions 71
4.5.1 Boundary Conditions for CLPT using Full Plane Strain

and Plane Stress 71
4.5.2 Boundary Conditions for CLPT using Partial Plane

Stress 71
4.5.3 Boundary Conditions for FSDT 71

4.6 Free Vibration Parameters 72

5. RESULTS AND DISCUSSION 73
5.1 Introduction 73
5.2 Validation of Isotropic Beam Results 74

5.2.1 Non-Moving Isotropic Beam 74
5.2.2 Moving Isotropic Beam Comparison 78

5.3 Validation with Non-Moving Composite Beam 81
5.3.1 Validation of programs using CLPT for Symmetric

Static Beam 81
5.3.2 Validation of program using CLPT Full Plane Stress for

vi

unsymmetric cases 83
5.3.3 Validation of program using FSDT 85

5.4 Composite Moving Beam 87
5.4.1 Composite Moving Beam Simulation using CLPT

Partial Plane Stress case 87
5.4.2 Composite Moving Beam Simulation using FSDT 94

6. CONCLUSION AND RECOMMENDATIONS 104
6.1 Contributions 104
6.2 Conclusions 105
6.3 Recommendations 106

APPENDIX A 107
APPENDIX B 129
REFERENCES 156
BIBLIOGRAPHY 159

vii

LIST OF SYMBOLS

aB
L - Acceleration of the Beam

A - Area of cross section of the beam
Aij - Axial stiffness matrix
Aij

* - Shear stiffness matrices
ai, bj - generalized coordinates
b - Breadth of the beam
Bij - Bending-extension stiffness matrix
d - Distance between Supports
dx, dx 1 - Length of deformed and undeformed element
Dij - Bending stiffness matrix
E - Modulus of Elasticity
Fx - Axial force
h - Thickness of the beam
Hi, HLi - Hermitian and Lagrangian Shape Functions
I, I0, I1, I2 - Moment of inertia, normal, coupled normal-rotary and rotary

 inertia coefficients
[k] - Element Stiffness Matrix for Isotropic Material
[kxx] - Element Stiffness Matrix for Composite Material
K - Shear Correction Factor for FSDT
[K] - Global Stiffness Matrix
[Kλ] - Lagrange multiplier matrix
L - Length of the beam
le - Element length
[m] - Element Inertia Matrix for Isotropic Material
[mxx] - Element Inertia Matrix for Composite Material
[M] - Global Inertia Matrix
Mx, My, Mxy - Inplane moment resultants in xy plane
n - Layer number
Nx, Ny, Nxy - Inplane fore resultants in xy plane
Qx, Qy - Transverse shear force resultants

Qij
k - Transformed reduced stiffness matrix

{q} - Nodal displacements vector
Rij - Partitions of reduced [ABD] matrix in full plane stress

 formulation using CLPT
Rij - Elements of the reduced [R] matrix in full plane stress

 formulation using CLPT
Sij - Partitions of reduced [ABD] matrix in partial plane stress

 formulation using CLPT and FSDT
Sij - Elements of the reduced [S] matrix in partial plane stress

 formulation using CLPT and FSDT
t - Time
tk - Thickness of kth layer

viii

T - Total kinetic energy
u(ξ) - Axial distribution functions
u0, v0, w0 - Mid-plane displacements along x,y and z axis
U, U0 - Total strain energy and strain energy at the mid-plane
vB

L - Velocity of the Beam
V - Volume
wb, ws - Shear and bending components of transverse displacements
w(ξ) - Transverse distribution functions
W - Virtual work done
xe - Element longitudinal axis
XF(t) - Axial Displacement of the Moving Beam
X, Y - Global axis
Z - Thickness coordinate
Zn - Distance of the nth layer from the mid plane of a plate

Zn - Distance of the mid-surface of the nth layer from the mid plane of
 the plate

∆P - Total potential
Ω - Frequency of axial motion imparted to the beam
δ () - Variation of ()
∂ () - Partial derivative of ()
εx, εy, εz - Axial strains in x, y and z
{ε} - Strain vector for isotropic material
φx, φy - Rotation about x and y
γxy, γxz, γyz - Engineering shear strains
ρ - Density
σx - Stress in the x direction
{σ} - Stress vector for isotropic material
ξ - Non-dimensional Coordinate
()T - Transpose of ()
(•), (••) - First and Second Differential with respect to time
()’, ()’’ - First and Second Partial Derivatives with respect to x
()y, ()yy - First and Second Partial Derivatives with respect to y

ix

 LIST OF TABLES

Table 4.1 Sampling Points and Weights for Seven-Point Gauss
Quadrature Integration Scheme 63

Table 5.1(a) Frequency Response for Transverse Degrees of Freedom
for a Simply Supported Non-Moving Isotropic Beam 75

Table 5.1(b) Frequency Response for Axial Degrees of Freedom of a
Simply Supported Non-Moving Isotropic Beam 76

Table 5.2(a) Frequency Response for Transverse Degrees of Freedom
of an Overhanging Non-Moving Isotropic beam 77

Table 5.2(b) Frequency Response for Axial Degrees of Freedom of an
Overhanging Non-Moving Isotropic beam 77

Table 5.3 Comparison between First Natural Frequency of Reddy’s
results and Equivalent Isotropic, Plane Strain, Full Plane
Stress and Partial Plane Stress cases for Hinged-Hinged
boundary condition 82

Table 5.4 Table 5.4 Comparison between First Natural Frequency of
Singh, et al. Results, partial and full plane stress formulation
results for unsymmetric cases 84

Table 5.4(a) Comparison between natural frequencies presented by Singh,
et al and present research for a fixed-free beam 85

Table 5.5 Comparison between First Natural Frequency of Singh et al.
Results and FSDT 85

Table 5.6 Non dimensionalized First Natural Frequency of an angle
ply beam 86

x

LIST OF FIGURES

Figure 2.1 Coordinate System 12
Figure 2.2 Lay-up Geometry for a Composite Plate 14
Figure 2.3 Nomenclature of Forces and Moment resultants acting on a

Composite plate 15
Figure 2.4 Undeformed and Deformed Geometries of an Edge of a Plate

under the Kirchoff assumption for CLTP 19
Figure 2.5 Undeformed and Deformed Geometries of an Edge of a Plate

under the Kirchoff assumption for CLPT 21
Figure 2.6 Undeformed and deformed beam definition 22
Figure 3.1 Typical Finite Element with Three Internal Nodes and Two

End Nodes 40
Figure 3.2 Element definition for Partial Plane Stress Formulation using

 CLPT 47
Figure 3.3 Element definition for FSDT 49
Figure 4.1 Newmark’s Scheme 69
Figure 5.1 Response Analysis of an Initially Deformed Isotropic

Moving Beam Ω=20 rad/sec 79
Figure 5.2 Response Analysis of an Initially Deformed Isotropic

Moving Beam Ω=22 rad/sec 79
Figure 5.3 Response Analysis of an Initially Deformed Isotropic

Moving Beam Ω=30 rad/sec 80
Figure 5.4 Response Analysis of an Initially Deformed Isotropic

Moving Beam Ω=60 rad/sec 80
Figure 5.5 Transverse Left Tip Displacement, CLPT,

Lay-up = 45/-45/-45/45 and Ω=20 rad/sec 89
Figure 5.6 Transverse Left Tip Displacement, CLPT,

Lay-up = 45/-45/-45/45 and Ω=60 rad/sec 89
Figure 5.7 Transverse Left Tip Displacement, CLPT

Lay-up = 90/-90/-90/90 and Ω=20 rad/sec 90
Figure 5.8 Transverse Left Tip Displacement, CLPT,

Lay-up = 90/-90/-90/90 and Ω=60 rad/sec 90
Figure 5.9 Transverse Left Tip Displacement, CLPT,

Lay-up = 0/-0/-0/0 and Ω=20 rad/sec 91
Figure 5.10 Transverse Left Tip Displacement, CLPT,

Lay-up = 0/-0/-0/0 and Ω=60 rad/sec 91
Figure 5.11 Transverse Right Tip Displacement, CLPT,

Lay-up = 0/-0/-0/0 and Ω=60 rad/sec 92
Figure 5.12 Axial Right Tip Displacement, CLPT,

Lay-up = 0/-0/-0/0 and Ω=60 rad/sec 93
Figure 5.13 Transverse Left Tip Displacement wb, FSDT

Lay-up = 45/-45/-45/45 and Ω=20 rad/sec 96
Figure 5.14 Transverse Left Tip Displacement ws, FSDT,

xi

Lay-up = 45/-45/-45/45 and Ω=20 rad/sec 96
Figure 5.15 Transverse Left Tip Displacement wb, FSDT,

Lay-up = 45/-45/-45/45 and Ω=60 rad/sec 97
Figure 5.16 Transverse Left Tip Displacement ws, FSDT,

Lay-up = 45/-45/-45/45 and Ω=60 rad/sec 97
Figure 5.17 Transverse Left Tip Displacement wb, FSDT,

Lay-up = 90/-90/-90/90 and Ω=20 rad/sec 98
Figure 5.18 Transverse Left Tip Displacement ws, FSDT,

Lay-up = 90/-90/-90/90 and Ω=20 rad/sec 98
Figure 5.19 Transverse Left Tip Displacement wb, FSDT,

Lay-up = 90/-90/-90/90 and Ω=60 rad/sec 99
Figure 5.20 Transverse Left Tip Displacement ws, FSDT,
 Lay-up = 90/-90/-90/90 and Ω=60 rad/sec 99
Figure 5.21 Transverse Left Tip Displacement wb, FSDT,

Lay-up = 0/-0/-0/0 and Ω=20 rad/sec 100
Figure 5.22 Transverse Left Tip Displacement ws, FSDT,
 Lay-up = 0/-0/-0/0 and Ω=20 rad/sec 100
Figure 5.23 Transverse Left Tip Displacement wb, FSDT,

Lay-up = 0/-0/-0/0 and Ω=60 rad/sec 101
Figure 5.24 Transverse Left Tip Displacement ws, FSDT,
 Lay-up = 0/-0/-0/0 and Ω=60 rad/sec 101
Figure 5.25 Transverse Right Tip Displacement wb, FSDT,

Lay-up = 0/-0/-0/0 and Ω=60 rad/sec 102
Figure 5.26 Transverse Right Tip Displacement ws, FSDT,
 Lay-up = 0/-0/-0/0 and Ω=60 rad/sec 102
Figure 5.27 Axial Right Tip Displacement u, FSDT,
 Lay-up = 0/-0/-0/0 and Ω=60 rad/sec 103

1

1. INTRODUCTION

1.1 Problem Statement

Dynamic response of beams moving relative to supports finds its practical

applications in the field of earthquake engineering, conveyor belts, computer tapes pulled

at high speeds along a base, band-saw blades, chain driven wheels of military tanks and

robotic arms. The response of such beams has been studied in the past when made of an

isotropic material. The focus of the present research is in formulating and solving finite

element equations for a composite-material beam moving over two supports. Two

theories namely the Classical Laminate Plate theory (CLPT) and the First Order Shear

Deformation theory (FSDT) are used in the formulation. The analysis is carried out for

plane stress and plane strain conditions using CLPT and plane stress condition using

FSDT. The variational principle is used to obtain the finite element equations. The

displacement boundary conditions at the location of the two supports at any instant of

time are applied by introducing Lagrange multipliers. The finite element equations are

solved using Newmark's semi explicit method in the time domain. The displacement

response of the beam is studied for symmetric and unsymmetric lay-ups and also the

effect of including the transverse shear deformation using FSDT is studied..

1.2 Lay-up Classification of Composite Materials

Composite materials are in the process of replacing isotropic materials in many

aspects of engineering. The primary reason for such a change is the higher strength to

2

weight ratio that composite materials exhibit over traditional isotropic materials. Some

common polymer-matrix composite materials readily available are e-glass-epoxy,

carbon-epoxy and graphite-epoxy. Of the three, the one with the lowest strength to

weight ratio is the e-glass-epoxy composite and the one with the highest is carbon-epoxy.

Composites are broadly classified in two categories based on the lay-up geometry,

namely "symmetric" and "unsymmetric" lay-ups. They are further divided into

"balanced" and "unbalanced" lay-ups. Symmetric laminates have the same number of

layers with the same orientation located symmetrically about the mid-plane of the

laminate. Unsymmetric laminates fail to meet this criterion. If the thickness of each

laminate is equal to its counterpart and if each layer with an angle theta has a

corresponding minus theta, it is a "balanced symmetrical" lay-up. Otherwise, it is

"unbalanced symmetrical" lay-up. In the present work, the behavior of both balanced

symmetrical and balanced unsymmetrical lay-ups are studied.

1.3 Literature Review

Dynamic response of an isotropic moving beam has been studied in detail by

several authors. Buffington and Kane (1985) studied the behavior of a uniform beam

moving longitudinally at a prescribed rate over two lateral supports. Equations of motion

were formulated considering the supports as kinematic constraints imposed on an

unrestrained beam and numerical solutions were obtained by discretizing the beam via an

assumed-mode technique. Response of the beam due to several types of longitudinal

motion was studied. Lee (1992) formulated the equations of motion of an isotropic beam

3

moving over multiple supports based on Hamilton's principle and solved the equations

using an assumed-mode method. The supports were considered as rollers and were

modeled as very stiff springs acting on the beam. The rollers imparted the longitudinal

motion to the beam or the beam was considered to be pulled or pushed over frictionless

supports. Sreeram and Sivaneri (1997) carried out an h-p version finite element analysis

for an isotropic moving beam. Legendre polynomials were used as shape functions

owing to their orthogonal property. Variational principle was used for the formulation of

the finite element equations and the essential conditions were applied via Lagrange

multipliers. Three types of motion were imparted to the beam as done by Buffington and

Kane and the results were compared to that of Buffington and Kane and Lee. The

difference in the motion imparted to the beam by Buffington and Kane and Lee was

pointed out. In Buffington and Kane longitudinal motion was imparted to the beam.

Lee’s equations corresponded to the motion being imparted to the supports but he

erroneously assumed that the motion was imparted to the beam and tried to compare with

the results of Buffington and Kane. The beams considered by all the authors mentioned

above are isotropic in nature and undergo longitudinal motion relative to a fixed

reference frame.

Sreeram and Sivaneri (1997) also concluded two important results from their

study. A parametric convergence study was made on elements with various

combinations of internal nodes and total number of elements in a beam of one-meter

length. It was concluded that four elements with three internal nodes were optimal for

their research. They had also studied different methods for solving the time-dependent

partial differential equations, namely, Wilson's theta method, Newmark's method,

4

Houbolt's method and Central Difference method. It is very clear from the table

presented by Sreeram (1995) in his thesis (Table 4.8.1 pg. 60) that Newmark's method

was the closest to the exact solution and hence the most efficient of the four methods

studied.

Kadivar and Mohebpour (1997) studied forced vibration of unsymmetric

composite beams under the action of moving loads. The study included the effects of

transverse shear deformation, rotary and higher-order inertia. A one-dimensional element

with 24 degrees of freedom, that included extension, bending and transverse shear

deformation was considered. The conforming beam element was based on Hermitian

interpolation function that satisfies C1 continuity condition. Analysis in the time domain

was carried out using Newmark's method. The response of an isotropic beam to a moving

force was compared with the available exact solution and numerical results. The results

of unsymmetric angle ply and symmetric cross ply laminates were illustrated and

compared to an isotropic beam. The formulation was also applied to static and free

vibration analyses and results were presented. Kadivar and Mohebpour (1998) published

essentially the same paper in another journal.

The finite element formulation presented by Kadivar and Mohebpour (1997) is

very similar to the work presented by Singh, Rao and Iyengar (1991). Though the

equations formulated for the stiffness and inertia matrices were not presented in the paper

by Singh et al, to be compared with, the boundary conditions and the independent

variables were comparable to their work.

Singh, et al, studied large-amplitude free vibrations of unsymmetrically laminated

beams using Von Karman large deflection theory. One-dimensional finite elements

5

based on classical laminate theory, first-order shear deformation theory and higher-order

shear deformation theory having 8, 10 and 12 degrees of freedom per node, respectively,

were formulated to bring out the effects of transverse shear on the large-amplitude

vibrations. Because of the presence of bending-extension coupling, the bending stiffness

of an unsymmetric laminate is direction dependent yielding different amplitudes and

spatial deformations for the positive and negative deflection half cycles. The problem

was studied by reducing the dynamic nonlinear finite element equations to two-second

order ordinary nonlinear differential equations using converged normalized spatial

deformations in the positive and negative deflection half-cycles. The modal equations of

motion were solved using a direct numerical integration method and results were

presented for various boundary conditions, lay-ups and slenderness ratios.

Reddy (1997) presented CLPT and FSDT for laminated composite plates. He

detailed the differences in the assumptions for the two. Reddy outlines the reduction of

the plate theories to symmetrically laminated beams wherein there is no axial bending

coupling. Reddy also presented a table of natural frequencies obtained analytically

considering fixed-fixed, hinged-hinged and fixed-free boundary conditions using the

equivalent bending stiffness obtained by considering the laminate as an equivalent

isotropic case. Barbero (1998) details the principles and concepts of using micro

mechanics, macro mechanics and ply mechanics applied to multi-layered composites. A

detailed systematic procedure was presented to calculate the axial, bending, coupling, and

transverse shear co-efficient matrices.

Kapania and Raciti (1989) studied and developed a simple one-dimensional finite

element model for the nonlinear vibration of symmetrically and unsymmetrically

6

laminated composite beams including shear deformation. The beam element had 10

degrees of freedom at each of the two nodes: axial displacement, transverse deflection

and slope due to bending and shear, twisting angle, in-plane shear rotation, and their

derivatives. The formulation, the solution procedure and the computer programs were

evaluated by solving a series of examples on the static response, free vibration and

nonlinear vibrations of isotropic and laminated beams. For unsymmetrically laminated

beams, the nonlinear vibrations were found to have a soft-spring behavior boundary

conditions as opposed to a hard spring behavior observed in isotropic and symmetrically

laminated beams. The in-plane boundary conditions were found to affect the nonlinear

response significantly.

Shi, Lam, and Tay (1998) studied the efficient finite element modeling of

composite beams and plates using higher-order theories. They concluded that the

transverse shear strain played an important role in the behavior of composite beams,

plates and shells and that a shear correction factor is required for the analysis of

structures based on the FSDT. The need for a shear correction factor and that it is not

uniquely defined were the primary reasons for the development of Higher Order Shear

Deformation theory (HSDT). However, they had concluded that more nodal degrees of

freedom had to be used in beam elements based on HSDT compared to those based on

FSDT even in the case where the displacement variables in HSDT are the same as those

in the FSDT.

Chen and Yang (1985) formulated a beam finite element model including the

effect of shear deformation for symmetrically laminated beams. The element consists of

two nodes with six degrees of freedom at each node: transverse deflection and slope due

7

to bending and shear, and a twisting angle and its derivative with respect to the beam

axis. The formulation was implemented as a program on a microcomputer and was

capable of performing stress analysis of symmetrically laminated beam structures with a

single or combined effect of bending moment, twisting moment, shear deformation and

with arbitrary loading and boundary conditions. Their program was also capable of

performing free-vibration analysis without shear deformation. For static analysis, the

program had the capability of providing both numerical data, graphical plots of the

distributions of displacements, bending and twisting moments, ply stress, and the portions

contributed by shear deformation. The program could also display the natural

frequencies of free vibration and the mode shapes.

Marur and Kant (1998) formulated a higher-order two-noded beam element with

seven degrees of freedom per node with cubical axial, quadratic transverse shear and

linear transverse normal strain components for a transient dynamic analysis of composite

and sandwich beams. The formulation was done considering each layer to be in a state of

plane stress with the advantage of not having any shear correction coefficient. A special

lumping scheme was employed for the evaluation of the diagonal mass matrix and

central-difference predictor scheme was used to solve the dynamic equilibrium equations.

Results from first-order theory were compared to the higher-order model.

 Murty and Shimpi (1974) addressed vibrations of laminated beams. Governing

equations in the form of simultaneous ordinary differential equations were derived for

natural vibration analysis of laminated beams. The formulation included secondary

effects such as transverse shear and rotary inertia. An attempt was made to highlight the

influence of these secondary effects using a numerical example.

8

Abarcar and Cunniff (1972) obtained experimental results for the natural

frequencies and mode shapes of graphite-epoxy and boron-epoxy composite materials

having different fiber orientations with respect to cantilever beam axes. Certain elastic

constants were experimentally determined and used in a programmed numerical solution

in which rotary inertia, transverse shear, and coupled bending-torsion effects were

included. They had analyzed the experimental results for angle plies and detailed the

interaction between bending and twisting, and had compared them with their numerical

results.

Examples and results presented by Murty and Shimpi and Abarcar and Cunniff

highlight the importance of secondary effects such as transverse shear, rotary inertia and

coupling effects.

Teh and Huang (1979) presented two finite element models for the prediction of

free-vibration natural frequencies of fixed-free beams of general orthotropic nature. The

models included transverse shear deformation and rotary inertia effects. Numerical

studies showed that the convergence rate of the approximations calculated from the finite

element analysis, was dependent on the fiber orientation.

A two-noded, ten degree of freedom per node, laminated, composite thin-walled

beam finite element was developed for vibration analysis by Wu and Sun (1990). The

thin-walled element formulated was suitable for either open-section or closed-section

beams of any shape, stacking sequence, and boundary conditions. Natural frequencies of

several thin-walled composite structures were calculated and compared with full-scale

shell finite element results.

9

Gupta, Venkatesh, and Rao (1985) analyzed a finite element thin walled open-

section laminated anisotropic beam. A two-noded, 8-degree-of-freedom per node thin-

walled open-section laminated anisotropic beam finite element was developed. The

displacements of the element reference axes are expressed in terms of one-dimensional

first order Hermite interpolation polynomial. The analysis was carried out for an

isotropic material, 00,450/-450 and a 00/450/-450 composite.

Madabushi and Davalos (1996) presented an analysis of laminated composite

beams, based on the FSDT which requires a shear correction. Energy equivalence

principle was used to derive a general expression for the shear correction factor for

laminated rectangular beam with arbitrary lay-up configurations. A convenient algebraic

form of the solution was also presented and was validated against existing results for

composite beams and plates. Examples were presented to illustrate the formulation and a

parametric analysis was performed to illustrate the effect of number of layers, elastic-

modulus ratio and fiber-angle orientation on the shear correction factor for various

laminates.

1.4 Need for the Present Research

Several authors have studied dynamic effects of moving beams made of an

isotropic material. The immense potential of composite material especially in having a

very high strength to weight ratio has increased its application in a variety of areas. With

the increase in the use of composite materials in areas such as robotics, flexible

manipulators, spacecraft antenna it has become imperative to consider modeling moving

10

beams as composite materials. To the best of our knowledge moving beams made of

composite materials has not been studied. This creates the need to consider a composite

beam moving over supports and learn more about its vibration characteristics.

1.5 Objectives

The aims of the thesis are:

(i) To formulate a finite element model for a beam of composite material, for both

symmetric and unsymmetrical cases using CLPT and FSDT. The formulation

would be based on energy considerations and using the variational method. The

displacement constraints shall be applied via Lagrange Multipliers.

(ii) To solve for natural frequencies and for the time-dependent displacements using

Newmark's semi-implicit method.

(iii) To write a C program with all the above mentioned capabilities and obtain results

for sinusoidal horizontal motion imparted to the beam with specified amplitude

and frequency values.

(iv) To present a pseudo-code, which could be used to write, programs in other

languages for the above-mentioned objective.

11

1.6 Organization of the thesis

(i) Chapter one deals with the problem statement, introduction to composite

materials, discussion on the previous work and objectives of the thesis.

(ii) Chapter two includes a discussion on the theoritical formulation and the reduction

from plate equations to beam equations.

(iii) Chapter three discusses the details of the finite element formulation and

formulation of the stiffness and inertia matrices

(iv) Chapter four details the numerical implementation and discusses different

techniques used for solving the problem.

(v) Chapter five presents the results and discusses in detail the results obtained.

(vi) Chapter six presents conclusions on the present work and suggestions for future

work.

12

2. THEORITICAL FORMULATION

2.1 Coordinate system

Figure 2.1 Coordinate system for the moving beam

Consider two fixed supports C and D at a distance d apart as shown in Fig. 2.1.

An inertial frame (X,Y) is defined such that its origin is attached to support C with the X-

axis along CD. Beam FG of length L moves relative to the supports in the X direction

and has a deflection v(X) in the Y direction. The deflection of the beam at the points in

contact with the supports C and D at a given time are zero. The horizontal motion of the

beam may be specified by prescribing XF(t). Note that XF is always negative. A moving

frame (x, y) is attached to the left end F of the beam and moves along with the beam

horizontally. The transformation between the inertial and the moving frames is given by,

X, u

d

x

y Y,w

L

F GDC

13

)()(

)()()(

tYty

tXtXtx F

=
−=

 (2.1)

The axial stiffness EA is considered large when compared to the lateral stiffness EIz. In

other words, the axial deflection u is small compared to the lateral deflection w

The finite element model is derived referring to the moving frame rather than the

inertial frame, but care has to be taken to include the inertial effects. The motion of the

support at any time is given by

dtXtx

tXtx

FD

FC

+−=
−=

)()(

)()(
 (2.2)

The type of motion imparted to the beam is oscillatory sinusoidal motion as assumed by

Buffington and Kane (1985), Lee (1992) and Sreeram and Sivaneri (1997).

Figure 2.2 shows the stacking sequence of the composite beam and the naming

convention followed. The layers are conventionally named from 1 to N starting from the

bottom. This sort of a numbering is followed because during hand lay-up, the lowermost

layer is one that is laid first.

14

Figure 2.2 Lay-up Geometry for a composite plate

The lateral coordinates are measured from a reference plane. The total height of

the beam is h, equal to the sum of the thickness of each individual layer. The distance of

each layer from the reference plane is given by ZK where K is the index denoting the layer

number. The quantity ZK represents the distance of mid-plane of each layer from the

reference plane of the laminate. For a symmetric lay-up, the layers about the reference

plane are mirror images of each other. For a symmetric balanced lay-up, the thickness of

each layer located symmetrically about the reference plane, is also the same.

Figure 2.3 shows the positive directions for force and moment resultants acting on

the laminate considered as a plate. Nx, Ny and Nxy are the in-plane force resultants acting

along x and y respectively. The moment resultants acting on the plate are represented as

Mx, My and Mxy and the transverse shear forces acting on the laminate are given by Qx and

Qy.

ZK-1
ZK

ZN-1
ZN

h

ZK

k

N

2

1

Z2

Z1

Reference Plane

h/2

Layer number

15

Figure 2.3 Nomenclature of Force and Moment resultants acting on a composite

plate [Barbero (1998)]

2.2 Beam Motion

The longitudinal motion imparted to the beam is similar to that assumed by

Buffington and Kane (1985) and Sreeram and Sivaneri (1997). It is taken to be a

sinusoidal in nature and is represented by

)sin()(0 tAxtX F Ω+−= (2.3)

16

where x0 is the initial distance between the left end of the beam and support C. A is the

amplitude and Ω is the frequency of longitudinal motion of the beam. The velocity, νL
B

and the acceleration aL
B of the beam are obtained by differentiating the displacement

function XF(t) with respect to time.

)(

)(
2 tSinAXa

tCosAX

F
L
B

F
L
B

ΩΩ−==

ΩΩ==
!!

!ν
 (2.4)

Similarly, in moving coordinates, the motion of the supports are given by

dtSinAxx

tSinAxx

D

C

+Ω−=
Ω−=

)(

)(

0

0
 (2.5)

2.3 Isotropic Beam

The stress strain relation for a beam made of an isotropic material is given by

xx Eεσ = (2.6)

where the strain in the x direction is given by

wzwux ′′−′+′= 2
2
1ε (2.7)

where u and the w are the displacements along the x and the y-axis respectively, and the

()' and ()" represent their first and second derivatives with respect to x. The variation in

the strain is obtained as

wzwwux ′′−′′+′= δδδδε (2.8)

The variation of strain energy is given by

∫∫∫=
V

xxU δεσδ (2.9)

Substituting the expression for stress and variation in strain in the equation for variation

of strain energy, we get

17

()()∫∫∫ ′′−′+′′′−′+′=
V

dVwzwwuwzwuEU δδδδ 2
2
1 (2.10)

Expanding the terms in the integral, reducing the volume integral into three single

integrals over the length, breadth and height and eliminating non-linear and higher order

term yields Eq. (2.10a)

()∫ ′′′′+′′+′′=
l

ex dxwwEIwwbNuuEAU
0

δδδδ (2.10a)

where I is the moment of inertia and A is the area of cross section.

2.4 Plate Bending Theories

Two theories are used for the formulation namely the Classical Laminate Plate

Theory (CLPT) and the First Order Shear Deformation Theory (FSDT).

2.4.1 Classical Laminate Plate Theory (CLPT)

The CLPT is an extension of the Classical Plate Theory to composite materials.

In the CLPT, the Kirchhoff’s hypothesis is satisfied. The assumptions are as follows

(i) Straight lines perpendicular to the reference surface (i.e., transverse normal)

before deformation remains straight after deformation.

(ii) The transverse normal does not experience elongation (i.e., they are inextensible).

(iii) The transverse normal rotates such that it remains perpendicular to the reference

surface after deformation.

The first two assumptions imply that the transverse displacement is independent of the

transverse coordinate and the transverse normal strain εzz is zero. The third assumption

results in zero transverse shear strains, εxz and εyz.

18

More to the assumptions of Kirchhoff’s hypothesis, the following assumptions

hold good for the composite laminate

(iv) The layers are perfectly bonded together.

(v) The material of each layer is linearly elastic and has two planes of material

symmetry (i.e. Orthotropic)

(vi) Each layer is of uniform thickness.

(vii) The strains and displacements are small with moderate rotations.

(viii) The transverse shear stresses on the top and bottom surfaces of the laminate are

zero.

The displacement equations are represented as follows

),,(),,(),,,(0 tyxztyxutzyxu xφ+=

),,(),,(),,,(0 tyxztyxvtzyxv yφ+=

),,(),,,(0 tyxwtzyxw = (2.10)

where the u0,v0 and w0 represents the mid plane displacements independent of the

thickness and φx and φy are the rotations about the x and the y axis respectively. The

rotation of the transverse normal is in such a way that the transverse normal is

perpendicular to the mid-plane and hence the rotation can be represented as the rotation

of the w with respect to x-axis which is -∂w0/∂x. Similarly, the rotation of w with respect

to y-axis can be deduced as -∂w0/∂y. The w0 consists of only one component, which is

the bending component since the transverse shear is not considered in the formulation of

the theory. Substituting these in Eq. (2.10), the final displacements for the CLPT can be

obtained as follows

19

x

w
ztyxutzyxu

∂
∂

−= 0
0),,(),,,(

x

w
ztyxvtzyxv

∂
∂

−= 0
0),,(),,,(

),,(),,,(0 tyxwtzyxw = (2.11)

This means that once the mid-plane displacements are known, the displacements at any

point (x,y,z) in the 3D continuum can be determined. Figure 2.4 shows the undeformed

and deformed geometries of an edge of a plate under the Kirchhoff assumption.

Figure 2.4 Undeformed and deformed geometries of an edge of a plate under

Kirchhoff’s assumption for CLPT [Reddy (1997)]

20

2.4.2 First Order Shear Deformation Theory (FSDT)

The FSDT is an improvement over the CLPT. This theory considers the effect of

the transverse shear that plays an important role in the case of composite plates and

beams, which cannot be neglected. The assumptions of FSDT are the same as in that of

the CLPT but for the third Kirchhoff's assumption, which states that, the transverse

normal remain perpendicular to mid-plane. Hence in FSDT, the transverse normal is no

longer perpendicular to the mid-plane, thus introducing the transverse shear strain in the

theory. The in-extensibility of transverse normal still keeps the w independent of the

thickness coordinates. The displacement equations can be defined in the same way as in

CLPT with minor changes. The equations are as follows

),,(),,(),,,(0 tyxztyxutzyxu xφ+=

),,(),,(),,,(0 tyxztyxvtzyxv yφ+=

),,(),,(),,,(tyxwtyxwtzyxw sb += (2.12)

The w is split into two components the bending component wb and the shear component

ws. The us and the vs are made of two parts, the mid-plane displacements and rotation of

the transverse normal about x and y represented as φx and φy respectively. Figure 2.5

shows the undeformed and deformed geometries of an edge of a plate under the

assumption of the FSDT. Eq. (2.13) can be physically deduced from the figure 2.5

xzx x

w γφ +
∂
∂−= (2.13)

The γxz component is taken to be ∂ws/∂x because this is the rotation due to which

the transverse normal is no longer perpendicular to mid-plane. In the case of the CLPT,

the w was made of only one component and it was the bending component and hence γxz

the transverse shear was taken to be zero keeping the transverse normal perpendicular to

21

the mid-plane. But in FSDT, the w is made of two parts namely the bending component

and the shear component wb and ws respectively. The rotation of the transverse normal,

leading it to be no longer perpendicular to the mid-plane, is the rotation of the shear

component with respect to the x-axis and can be represented as ∂ws/∂x. From the figure

2.5, this component is deciphered as γxz. Substituting the expression for γxz in the Eq.

(2.13), φx can be reduced to -∂wb/∂x. Similarly, φy can be reduced to -∂ws/∂y.

Substituting these in the displacement Eq. (2.12), we get the equations final displacement

equations for FSDT as follows

),,(),,(),,,(0 tyx
x

w
ztyxutzyxu b

∂
∂

−=

),,(),,(),,,(0 tyx
y

w
ztyxvtzyxv b

∂
∂

−=

),,(),,(),,,(tyxwtyxwtzyxw sb += (2.14)

Figure 2.5 Undeformed and deformed geometries of an edge of a plate under

Kirchhoff’s assumption for FSDT [Reddy (1997)]

22

2.5 Strain Energy Formulation for Composite Moving Beam

Figure 2.6 shows an element of the undeformed beam of with length dx and in the

deformed state with length dx1. The axial and the transverse deflections are defined by u

and w along the x and y axes respectively. Three formulations namely plane strain case

using CLPT, plane stress case using CLPT and plane stress case using FSDT are

considered in the present work for the composite beam.

Figure 2.6 Undeformed and deformed beam definition

2.5.1 Plane Strain Formulation using Classical Laminate Theory (CLPT)

In general, for an isotropic material, the strain energy is given by

εσ=U (2.15)

where σ is the stress and ε is the strain. For a composite material, the equation is written

as

{ } { }εσ TU = (2.16)

y dx1

w + dw

x

w

Undeformed

dx

deformed

u+du

u

23

where {σ}T is a row vector of the stresses, {ε} is a column vector of the strains and U0 is

the strain energy at the mid-plane. In the plane strain case using the CLPT approach, the

εy and the γxy components are taken to be zero. Hence, in the stress vector the term σx has

the strain only εx component. Hence the variation in total strain energy is obtained as

∫∫∫=
Vol

xx dVU δεσδ (2.17)

But for a composite material with k layers,

 { } []{ }εσ Q= (2.18)

Hence, for a plane strain case, σx can be written from Eq. (2.18) as

 x

k

x Q εσ 11= (2.19)

where the terms in []Q is the transformed reduced stiffness matrix terms and is defined by

the material property, stacking sequence and the lay-up angles. Substituting Eq. (2.19) in

Eq. (2.16) and expanding the integral,

 ∫∫∫=
V

xx

k
QU δεεδ 11 (2.20)

The strain εx is represented as

 wzwux ′′−′+′= 2

2

1
ε (2.21)

Substituting Eq. (2.21) in Eq. (2.20), expanding, integrating over the breadth of the beam,

neglecting the higher order terms and rearranging Eq. (2.20) can be rewritten as

))(
2

1
(2

11 wzwwuwzwuQU
V

k ′′−′′+′′′−′+′= ∫∫∫ δδδδ (2.22)

where ()’ denote
x∂

∂
, ()” denote

2

2

x∂
∂

. The breadth of the beam b is a constant through

the length of the beam. From CLPT, the stress resultants can be written in terms of [A],

24

[B] and [D] matrices where in the matrix [A] gives the extension stiffness terms, the

matrix [B] gives the bending-extension coupling terms and the matrix [D] gives the

bending stiffness terms. The [A], [B] and [D] matrix terms are obtained from the

equations given below

() 6,2,1,;
1

== ∑
=

jitQA k
k

N

k
ijij

() 6,2,1,;
1

== ∑
=

jiZtQB kk
k

N

k
ijij

() 6,2,1,;
12

3
2

1

=







+= ∑

=
ji

t
ZtQD k

kk
k

N

k
ijij (2.23)

Substituting [A], [B] and [D] terms from Eq. (2.23) in Eq. (2.22) and reducing the volume

integral to a line integral and taking out the breadth term, the total strain energy can be

obtained as

dxwwDwwuBwwNuwBwuAbU x

l

))
2

1
())

2

1
(((11

2
1111

2

0

11 ′′′′+′′+′−′′+′′′−′+′= ∫ δδδδδ

 (2.24)

The term (A11u’ – B11w”) is the axial force term and is denoted by Nx. Neglecting the

non-linear terms, yields Eq. (2.25), the variation in total strain energy for the beam of

composite material using CLPT plane strain method.

∫ ′′′′+′′−′′+′′′−′=
l

x dxwwDuuBwwNuwBuAbU
0

11111111))(δδδδδ (2.25)

2.5.2 Plane Stress Formulation using Classical Laminate Plate Theory (CLPT)

The plane stress formulation in the CLPT can be addressed in two ways. The first

method is by setting all the forces and moments other than Nx and Mx to be zeros and the

25

second method is by setting only the force and moment Ny and My to be zeros which is

more practical in its approach. The following section deals with the formulation of the

CLPT using the two conditions stated above and are termed as full and partial plane

stress formulation respectively. The constitutive equations are represented in matrix form

as

























































=































)1(

)1(

)1(

)0(

)0(

)0(

662616662616

262212262212

161211161211

662616662616

262212262212

161211161211

xy

y

x

xy

y

x

xy

y

x

xy

y

x

DDDBBB

DDDBBB

DDDBBB

BBBAAA

BBBAAA

BBBAAA

M

M

M

N

N

N

γ

ε
ε

γ

ε
ε

 (2.26)

where the superscript (0) represents the mid-plane strain terms while the (1) represents

the curvature terms.

2.5.2.1 Full Plane Stress Formulation using CLPT

The full plane stress formulation using CLPT is addressed by setting the force and

moment resultants Ny, Nxy, My and Mxy to zero. The constitutive Eq. (2.26) reduces to

























































=





























)1(

)1(

)1(

)0(

)0(

)0(

662616662616

262212262212

161211161211

662616662616

262212262212

161211161211

0

0

0

0

xy

y

x

xy

y

x

x

x

DDDBBB

DDDBBB

DDDBBB

BBBAAA

BBBAAA

BBBAAA

M

N

γ

ε
ε

γ

ε
ε

 (2.27)

Rearranging Eq. (2.23) so as to write the zeros together in the LHS, we get

26

























































=





























)1(

)1(

)0(

)0(

)1(

)0(

662666261616

262226221212

662666261616

262226221212

261216121111

161216121111

0

0

0

0

xy

y

xy

y

x

x

x

x

DDBBDB

DDBBDB

BBAABA

BBAABA

DDBBDB

BBAABA

M

N

γ

ε

γ

ε
ε
ε

 (2.28)

Introducing the notations [R11], [R21], [R12] and [R22] respectively, for the four partitions,

Eq. (3.28) becomes





















































=





























)1(

)1(

)0(

)0(

)1(

)0(

2221

1211

][][

][][

0

0

0

0

xy

y

xy

y

x

x

x

x

RR

RRM

N

γ

ε

γ

ε

ε

ε

(2.28a)

Hence the top part of the Eq. (2.28) yields Nx and Mx terms and can be represented as

[] []   T
xyyxyy

x

x

x

x
RR

M

N
)1()1()0()0(21

)1(

)0(

11 γεγε
ε
ε

+








=








 (2.29)

From the bottom partition of Eq. (2.28), we get

[] []   { }0)1()1()0()0(22
)1(

)0(

12 =+








T
xyyxyy

x

x
RR γεγε

ε
ε

 (2.30)

This yields

[]{ } []{ }
LT RR εε 1222 −= (2.31)

Hence, taking inverse of [R22], the expression for εT can be obtained in terms of εL and

hence eliminating εT from the equations

27

{ } [] [] { }LT RR εε 12122 −−= (2.32)

From Eq. (2.29) and Eq. (2.30), we can now get Nx and Mx as

[] { }L
x

x
R

M

N
ε=









 (2.33)

Where [] [] [][] []121222111 RRRRR
−−= (2.34)

This [R] matrix is of size 2x2 and can be written as








=
2221

2111][
RR

RR
R (2.34a)

We also know that the variation in virtual strain energy is written

()∫ +++++=
l

xyxyxyxyyyyyxxxx dxMNMNMNbU
0

)1()0()1()0()1()0(δγδγδεδεδεδεδ

 (2.35)

The strain components and the virtual strain components are obtained from displacement

equations of CLPT Eq. (2.11) as

)1()0(2
0 2

1
xxx zwzwu εεε +=′′−′+′=

)1()0(2

0 2

1
yy

yyyy
y zzwwv εεε +=−+=

)1()0(
00 2 xyxy

yyy
xy zwzwwvu γγγ +=′−′+′+=

0=== xzyzz γγε

wwux ′+′= δδδε 0
)0(

w ′′−= δδε)1(
0

00
)0(δγδδγ == y

xy u

y
xy w′−= δδγ 2)1((2.36)

28

where the ()’ and ()y represents
x∂

∂
and

y∂
∂

 respectively. The non-linear term in the γxy is

neglected. Substituting the full plane stress condition results from Eq.(2.33) and the

variation in strain expression from Eq.(2.36), we get the equation for the virtual strain

energy as

dxwMwwuNbU
l

xx∫ ′′−′′+′=
0

0))((δδδδ (2.37)

2.5.2.2 Partial Plane Stress formulation using CLPT

The partial plane stress formulation using CLPT is approached by forcing only the

force and moment terms Ny and My to zero. Substituting the partial plane stress condition

in the constitutive Eq. (2.27), and rearranging yields























































=





























)1(

)0(

)1(

)1(

)0(

)0(

222226122612

222226122612

122666166616

121216111611

262666166616

121216111611

0

0

y

y

xy

x

xy

x

xy

x

xy

x

DBDDBB

BABBAA

DBDDBB

DBDDBB

BABBAA

BABBAA

M

M

N

N

ε

ε

γ
ε

γ
ε

 (2.38)

The four partitions of the matrix are represented as [S11], [S21], [S12] and [S22]

respectively.







































=





























)1(

)0(

)1(

)1(

)0(

)0(

2221

1211

0

0

y

y

xy

x

xy

x

xy

x

xy

x

SS

SS

M

M

N

N

ε

ε

γ
ε

γ
ε

(2.38a)

The top part of the Eq. (2.38a) yields

29

  []   T

xyxxyx
T

xyxxyx SMMNN)1()1()0()0(γεγε= (2.39)

where [S] = [S11] - [S12][S22]-1[S21] and [S21]=[S12]T and the size of [S] is 4x4.

Substituting the plane stress condition in the virtual strain energy Eq. (2.35), we get

()dxMMNNbU
l

xyxyxxxyxyxx∫ +++=
0

)1()1()0()0(δγδεδγδεδ (2.40)

The strain displacement relationship is given again by Eq. (2.36) as in the full plane stress

formulation. Substituting the strain-displacement relation Eq. (2.36) in Eq. (2.40), we get

the expression for variation in virtual strain energy for partial plane strain formulation as

()()dxwMwMNwwuNbU
l

yxyxxyx∫ ′−′′−+′′+′=
0

00 2 δδδγδδδ (2.41)

2.5.2.3 Plane Stress Formulation using First Order Shear Deformation Theory
(FSDT)

Partial plane stress formulation is applied in the energy formulation using FSDT.

The displacement functions are represented by the Eq. (2.14). The non-linear strains are

obtained by partially differentiating the Eq. (2.14) and are represented as follows

)1()0(22
0)2(

2

1
xxbsbsbx zwzwwwwu εεε +=′′+′′+′+′+′=

)1()0(22

0)2(
2

1
yy

yy
b

y
s

y
b

y
s

y
b

y
y zzwwwwwv εεε +=−+++=

)1()0(
00 2 xyxy

y
b

y
xy zwzvu γγγ +=′−′+=

)0(
xzsbsbxz wwww γγ =′=−′+′=

)0(
yz

y
s

y
b

y
s

y
byz wwww γγ ==−+=

30

ssbbx wwwwu ′′+′′+′= δδδδε 0
)0(

bx w ′′−= δδε)1(

0
)0(δγδγ =xy

′−= y
bxy wδδγ 2)1(

′= s
xz wδδγ)0((2.42)

Where the ()’ and ()y
x∂
∂

and
y∂
∂

 respectively. The non-linear terms in the strain-

displacement equations are neglected in this formulation. The constitutive equations for

FSDT are made of two parts namely in-plane equations and inter-laminar equations. The

in-plane equations are the same as in the Eq. (2.26). The inter-laminar equations are

represented as follows

















=









xz

yz

x

y

AA

AA

Q

Q

γ
γ

5545

4544 (2.43)

where the 2x2 matrix is the inter-laminar shear co-efficient matrix and the terms are

given by the Eq.(2.44), which is very similar to the [A] matrix equation.

()∑
=

==
N

k
kkij jitQA

1

* 5,4,;][(2.44)

The partial plane stress conditions are applied for the FSDT by forcing the force, moment

and the shear resultants Ny, My and Qy to zero. The constitutive equations reduces to

























































=































)1(

)0(

)1(

)1(

)0(

)0(

222226122612

222226122612

122666166616

121216111611

262666166616

121216111611

0

0

y

y

xy

x

xy

x

xy

x

xy

x

DBDDBB

BABBAA

DBDDBB

DBDDBB

BABBAA

BABBAA

M

M

N

N

ε

ε

γ
ε

γ
ε

31

and

















=









xz

yz

x AA

AA
K

Q γ
γ

5545

45440
 (2.45)

The first equation of Eq. (2.45) can be reduced to four matrices very similar to that in the

partial plane stress formulation in the CLPT and hence would be represented by the same

symbol [S] and is given by the Eq. (2.39). The second equation is manipulated to

eliminate γyz and write the equations in terms of γxz. The second equation of Eq. (2.45)

reduces to

xzx KAQ γ*= (2.46)

where A* = K(A55 – A45
2/A44) and K is a representation of the shear correction factor.

Since the transverse shear strains are represented as a constant through the laminate

thickness, it follows that the transverse shear stresses will also be constant. It is well

known from elementary theory of homogeneous beams that the transverse shear stress

varies parabolically through the thickness of the beam. In composite laminated beams

and plates, the transverse shear stresses varies at least quadratically through the thickness

of the layer. This discrepancy between the actual stress state and the constant stress state

predicted by FSDT is often corrected in computing the transverse shear force resultants

i.e. the LHS of Eq. (2.46) by multiplying the shear co-efficient matrix by a parameter K

which is the shear correction co-efficient. The factor K is computed such that the strain

energy due to transverse shear stresses equals the strain energy due to the true transverse

stresses predicted by three-dimensional elasticity theory and the value for a rectangular

cross section is taken to be as 5/6.

The expression for variation in strain energy including the transverse shear terms

are represented as

32

()∫ +++++++=
l

yzyxzxxyxyxyxyyyyyxxxx dxQQMNMNMNU
0

)0()0()1()0()1()0()1()0(δγδγδγδγδεδεδεδεδ (2.47)

Substituting Eq. (2.45) and Eq. (2.46) in the expression for strain energy variation in Eq.

(2.47), the expression for variation in strain energy variation using FSDT is obtained as

()∫ ++++=
l

xzxxyxyxyxyxxxx dxQMNMNU
0

)0()1()0()1()0(δγδγδγδεδεδ (2.48)

2.6 Kinetic Energy Formulation for Composite beams

The formulation of variation in kinetic energy is outlined in this section. The

virtual kinetic energy, δT is given by

dVwwvvuuT
V

][!!!!!! δδδρδ ++= ∫∫∫ (2.49)

where ρ is the mass density and the (!) represents partial derivative with respect to time.

2.6.1 Kinetic Energy Formulation for Isotropic case

The variation in kinetic energy given by Eq. (2.49). Since we do not have a

separate degree of freedom for v, it is dropped from Eq. (2.49) to yields

dVwwuuT
V

][!!!! δδρδ += ∫∫∫ (2.50)

when δT is introduced into Hamilton's principle, we encounter the time integral

∫ ∫ ∫∫∫ +=
2

1

2

1

][
t

t

t

t V

dVwwuudtTdt !!!! δδρδ (2.51)

Integrating the resultant equation by parts with respect to time and grouping all the time

boundary terms together results in

33

[]{ }∫ ∫∫∫ ∫ ++=−
2 2

1

2

1
)(

t

t V

t

t

t

t
dVdtwwuuTdt "!!!! δδρδ (2.52)

Discarding the boundary terms which do not contribute the inertia matrix and pulling out

the virtual quantities out of the integral owing to their independence of time derivative,

yields

[]∫∫∫ +=−
V

dVwwuuT δδρδ !!!! (2.53)

Defining I0 as in Eq. (2.54) where h is the thickness of the beam, and keeping the breadth

as a constant and reducing the volume integral yields the expression for variation in

kinetic energy as

∫
−

=
2/

2/

0

h

h

dzI ρ (2.54)

[]dxwwuuIbT
l

∫ +=−
0

0 δδδ !!!! (2.55)

2.6.2 Kinetic Energy Formulation for Plane Strain using CLPT

The kinetic energy formulation for the plane strain case using CLPT is derived

from the reduced variation in kinetic energy given by Eq. (2.50). Writing the variation of

kinetic energy in terms of the mid-plane displacements, results in

dVwwwzuwzuT
V

]))([(00 !!!!!! δδδρδ +′−′−= ∫∫∫ (2.56)

expanding the terms inside the integral yields

()dVwwwwzuwzwuzuuT
V

∫∫∫ +′′+′−′−= !!!!!!!!!! δδδδδρδ 2
0000 (2.57)

when δT is introduced into Hamilton's principle, we encounter the time integral

34

∫ ∫ ∫∫∫ +′′+′−′−=
2

1

2

1

][2
0000

t

t

t

t V

dVwwwwzuwzwuzuudtTdt !!!!!!!!!! δδδδδρδ (2.58)

Integrating the resultant equation by parts with respect to time and grouping all the time

boundary terms together results in

[] (){ }dvdtwwuwzwwzwuzuuTdt
t

t V

t

t

t

t∫ ∫∫∫ ∫ ++′−′′+′−=−
2

1

2

1

2

1
0

2
000 "!!!!!!!!!! δδδδδρδ (2.59)

Discarding the boundary terms which do not contribute to the inertia matrix and pulling

out the virtual quantities out of the time integral owing to their independence of time

derivative, yields

[]dVwwuwzwwzwuzuuT
V
∫∫∫ +′−′′+′−=− δδδδδρδ !!!!!!!!!! 0

2
000 (2.60)

Defining I0, I1 and I2 as in Eq. (2.61) where h is the thickness of the beam and

substituting in Eq. (2.60), and taking breadth of the beam as a constant and reducing the

volume integral yields Eq. (2.62), the equation for variation in kinetic energy for plane

strain case using CLPT.

∫ ∫ ∫
− − −

===
2/

2/

2/

2/

2/

2/

2
210 ;;

h

h

h

h

h

h

dzzIandzdzIdzI ρρρ (2.61)

()∫ +′−′′+′−=−
l

dxwwIuwIwwIwuIuuIbT
0

001201000 δδδδδδ !!!!!!!!!! (2.62)

2.6.3 Kinetic Energy Formulation for Full Plane Stress case using CLPT

The kinetic energy formulation for plane strain case and full plane stress case

using CLPT are very much similar and hence the variation in kinetic energy for full plane

stress formulation using CLPT is also represented by Eq. (2.62).

35

2.6.4 Kinetic Energy Formulation for Partial Plane Stress case using CLPT

The variation in kinetic energy for partial plane stress formulation using CLPT is

shown in Eq. (2.49). The variation in kinetic energy can be written in terms of the mid-

plane displacements from Eq. (2.36) and Eq. (2.56) as

dVwwwzvwzvwzuwzuT yy

V

]))(())([(0000 !!!!!!!!!! δδδδδρδ +−−+′−′−= ∫∫∫ (2.63)

Expanding the above equation gives

dV
wwwwzvwzwvz

vvwwzuwzwuzuu
T

V
yyyy∫∫∫ 











++−−

+′′+′−′−
=

!!!!!!!!

!!!!!!!!!!

δδδδ

δδδδδρ
δ

2
00

00
2

0000
 (2.64)

Setting the terms that are crossed to zero reduces the equation to a one-dimensional

problem. Integrating the resultant equation by parts with respect to time and grouping all

the time boundary terms together results in

[] (){ } dvdtwwwwzuwzwwzwuzuuTdt
t

t V

t

t

t

t

yy∫ ∫∫∫ ∫ +++′−′′+′−=−
2

1

2

1

2

1

2
0

2
000 "!!!!!!!!!!!! δδδδδδρδ

 (2.65)

Discarding the boundary terms which do not contribute to the inertia matrix and pulling

out the virtual quantities out of the time integral owing to their independence of time

derivative, yields

[]dVwwwwzuwzwwzwuzuuT
V

yy∫∫∫ ++′−′′+′−=− δδδδδδρδ !!!!!!!!!!!! 2
0

2
000 (2.66)

Splitting the volume integral into integrals over the thickness, length and width; taking

out the breadth as a constant and writing the above equation in terms of I0, I1 and I2,

results in Eq. (2.67), the equation for variation in kinetic energy for partial plane stress

case using CLPT.

36

()∫ ++′−′′+′−=−
l

yy dxwwIwwIuwIwwIwuIuuIbT
0

0201201000 δδδδδδδ !!!!!!!!!!!! (2.67)

were I0, I1 and I2 are defined in Eq. (2.61).

2.6.5 Kinetic Energy Formulation for FSDT

The kinetic energy formulation for the plane stress case using FSDT is derived

using the same approach detailed in the partial plane stress case using CLPT. The

variation in the kinetic energy can be written in terms of the mid-plane displacements

from Eq.(2.38) and Eq.(2.56) as

()() ()()
()() dv

wwww

wzvwzvwzuwzu
T

V sbsb

y
b

y
bbb∫∫∫ 








+++

−−+′−′−
=

!!!!

!!!!!!!!

δδ
δδδδ

ρδ 0000 (2.68)

Expanding the terms inside the integral yields

∫∫∫ 










+++++−

−+′+′−′−
=

V ssbssbbb
y
b

y
b

y
b

y
bbbbb

dv
wwwwwwwwwwzvwz

wvzvvwwzuwzwuzuu
T

!!!!!!!!!!!

!!!!!!!!!!!!

δδδδδδ

δδδδδδ
ρδ

2
0

000
2

0000
 (2.69)

Eliminating the terms crossed reduces the problem to a one-dimensional problem.

Integrating the resultant equation by parts with respect to time and grouping all the time

boundary terms together results in

() dv
wwwwwwww

wwzwwzuwzwuzuu
Tdt

t

t V

t

t
ssbssbbb

y
b

y
bbbbb∫ ∫∫∫ 











−





++++

+′′+′−′−
=−

2

1

2

1

22
0000 "

!!!!!!!!

!!!!!!!!!!

δδδδ
δδδδδ

ρδ (2.70)

Discarding the boundary terms which do not contribute to the inertia matrix and pulling

out the virtual quantities out of the time integral owing to their independence of time

derivative, yields

∫∫∫ 





++++

+′′+′−′−
=−

V ssbssbbb

y
b

y
bbbbb dv

wwwwwwww

wwzwwzuwzwuzuu
T

δδδδ
δδδδδ

δ
!!!!!!!!

!!!!!!!!!! 22
0000 (2.71)

37

Splitting the integral into two single integrals over the thickness, length and taking out

the breadth as a constant and writing the above equation in terms of I0, I1 and I2, results in

Eq. (2.72), the expression for the variation in kinetic energy for partial plane stress case

using FSDT

dx
wwIwwIwwIwwI

wwIwwIuwIwuIuuI
bT

l

ssbssbbb

y
b

y
bbbbb∫ 





++++

+′′+′−′−
=−

0 0000

220101000

δδδδ
δδδδδ

δ
!!!!!!!!

!!!!!!!!!!
 (2.72)

where I0, I1 and I2 are represented as in Eq. (2.61).

38

3. FINITE ELEMENT FORMULATION

3.1 Introduction

The theories behind the finite element formulations namely CLPT and FSDT and

the formulation of their variation in strain energies have been explained in the previous

chapter. This chapter detail the finite element formulation built from the theories

explained in chapter two.

3.2 Finite Element Formulation

Three types of finite element formulations have been found in the literature,

namely, h-, p- and the h-p version finite element formulations. The h-version finite

element formulation emphasizes on the number of elements that are used to discritize the

domain and the accuracy of the results are a factor of the number of elements in the

model. The p-version finite element formulation emphasizes on the number of internal

nodes and the order of the shape function involved in the formulation and the accuracy

depends on the number of internal nodes in each element. The h-p version finite element

formulation is a combination of the two where both the parameters namely, the number

of elements in the model and the number of internal nodes in each elements play a role in

the accuracy of the results. In this research, the number of elements in the beam and the

number of internal nodes are fixed and so doesn’t fall under any of the above three

categories and shall be termed as a hybrid finite element formulation. The shape

functions for this finite element are derived using Lagrangian interpolation function and

Hermitian interpolation function. Sreeram and Sivaneri (1997) in their work had

39

conducted a parametric analysis and had concluded that a beam element with three

internal nodes without slope degrees of freedom was sufficient for their formulation.

Taking their conclusions into consideration, in this finite element model, beam elements

shall be used with three internal nodes in addition to the end nodes. Shape functions were

derived for the Lagrangian interpolation function and Hermitian interpolation function.

Lagrangian interpolation function was used where a C0 continuity was required and the

Hermitian interpolation function was used where a C1 continuity i.e., slope continuity

was required. Typically, for axial degrees of freedom C0 continuity would be used and

for transverse degrees of freedom, C1 continuity would be used. As in the h-, p- and h-p

version finite element model, this model also contains both displacement and slope

degrees of freedom for the end nodes in addition to the internal nodes containing only

displacement degrees of freedom. The reason for having only displacement degrees of

freedom for the internal nodes is that slope continuity is automatically assumed at an

internal node.

Figure 3.1 shows the basic finite element that is used for the isotropic case meant

for validation. The evolution of this element for the composite cases will be shown later.

An exploded view of a single element of the beam along with the internal nodes and the

coordinates attached to the element is shown.

The beam is divided into a number of elements. Each element contains m internal

nodes. In this research, the value of m is taken to be three as per the conclusions of

Sreeram and Sivaneri (1997).

40

Figure 3.1 Typical Finite Element with three internal nodes and two end nodes

The local co-ordinate xe is fixed to the left end of the element and ranges from 0

to le, where le is the length of the element. The non-dimensional co-ordinate ξ is attached

to the center of each element, i.e., at node 3 and it ranges from -1 to +1. The coordinate

transformation is given by the following equations.

()1
2

+= ξe
e

l
x

ξd
l

dx e
e 2

= (3.1)

The distribution w(ξ) for the transverse degrees of freedom is assumed as

∑
=

=
6

0

)(
i

i
iaw ξξ (3.2)

and the distribution u(ξ) for the axial degrees of freedom is expressed as

le

ξ

1 2 3 4 5

u1,w1,w1' u3, w3 u5,w5,w5'
 u2,w2 u4,w4

y,v

ξ = -1
ξ = 1

xe

x,u

41

∑
=

=
4

0

)(
j

j
ibu ξξ (3.3)

where ai and bj are generalized coordinates which are to be determined. In general, these

equations can be written in matrix notations as

()   { }ii aw ξξ = (3.4a)

()   { }
j

j bu ξξ = (3.4b)

To solve for ai s and bj s, we need seven and five equations respectively. To solve

for the ai s, the transverse degrees of freedom and its slope, i.e., w and w' at the end nodes

give:

′=′

=

′=−′

=−

5

5

1

1

)1(
2

)1(

)1(
2

)1(

ww
l

ww

ww
l

ww

e

e

 (3.5)

and the remaining three equations are obtained from the transverse deflection degrees of

freedom at the internal nodes as shown below:

4

3

2

)2/1(

)0(

)2/1(

ww

ww

ww

=
=

=−
 (3.6)

Solving the above seven equations for aI s and substituting in Eq. (3.4a), we get

 





























′

′

=

5

5

1

1

71)(.......)()(

w

w

w

w

HHw !ξξξ (3.7)

42

where H1(ξ), H2(ξ), etc., are shape function called Hermite polynomials and are derived

from a seventh order polynomial and are given as

()654
2

473
4

792
4

17
1 14115

9

1 ξξξξξξ −++−−=H

()654
4
53

4
52

4
1

4
1

2 6
ξξξξξξ −++−−= elH

()65432
3 2422

9

16 ξξξξξξ +−−++−=H

642
4 4961 ξξξ −+−=H

()65432
5 2422

9

16 ξξξξξξ ++−−+=H

()654
2

473
4

792
4

17
6 14115

9

1 ξξξξξξ −−++−−=H

()654
4
53

4
52

4
1

4
1

7 6
ξξξξξξ ++−−+= elH (3.8)

In a similar manner, the bjs, for the axial degrees of freedom are also solved from the

equations at the end nodes given below:

5

1

)1(

)1(

uu

uu

=
=−

 (3.9)

and the remaining three equations given below:

4

3

2

)2/1(

)0(

)2/1(

uu

uu

uu

=
=

=−
 (3.10)

Solving the above five equations for bis and substituting in Eq. (3.4b), we get

 












=

5

1

51)()()(

u

u

HHu LL !" ξξξ (3.11)

43

where HL1(ξ),HL2(ξ), etc., are shape functions called Lagrange polynomials and are

derived from a fifth order polynomial and are given as

4
3
23

3
22

6
1

6
1

1 ξξξξ +−−=LH

4
3
83

3
42

3
8

3
4

2 ξξξξ −++−=LH

42
3 451 ξξ +−=LH

4
3
83

3
42

3
8

3
4

4 ξξξξ −−+=LH

4
3
23

3
22

6
1

6
1

5 ξξξξ ++−−=LH (3.12)

3.3 Element Stiffness Matrix Formulation

The element stiffness matrices are formulated from the expressions for variation in

virtual strain energy derived in section 2.4. This section explains in detail, the systematic

procedure for deriving the element stiffness matrix for the various theories used in this

research.

3.3.1 Stiffness Matrix Formulation for Isotropic beam

For any element, the stiffness matrix can be obtained by applying variational

approach to the total strain energy equation. The variation in strain energy for the

isotropic formulation is given by Eq. (2.10a). We also know that

[] { }  
[] { }  
[] { }  
[] { }  Hqw

qHw

Hqu

qHu

w

w

Lu

uL

δδ

δδ

=
=
=

=

 (3.13)

44

where

   
   54321

54321

uuuuuq

uuuuuq

u

u

δδδδδδ =
=

 

  



 ′′=





 ′′=

5543211

5543211

wwwwwwwq

wwwwwwwq

w

w

δδδδδδδδ
 (3.14)

Substituting the above equations in δU expression for isotropic case, Eq. (2.10a), we get

the [k] matrix

[]
[] []

[] []















=

ww

uu

k

k

k

0

0

 (3.15)

where the [k] matrix is partitioned into two parts namely [kuu] and [kww] with the off

diagonal terms of the partitioned matrix as zeros. The dimensions of the matrices are 5x5,

7x7 respectively and are given by the following equations and is arranged as shown in

Eq. (3.15).

∫ 



 ′′=

el

eLLuu dxHHEAk
0

}{][

{ }  ∫ ′′′′=
el

eww dxHHEIk
0

][

(3.16)

where ()' and ()" represents the first and the second partial derivatives with respect to x.

3.3.2 Element Stiffness Matrix Formulation for Plane Strain case using CLPT

45

For any element, the stiffness matrix can be obtained by applying variational

approach to the total strain energy equation. The variation in strain energy for the plane

stress case using CLPT is given by Eq. (2.25).

Substituting Eq. (3.14) in Eq. (2.25) the equation for δU, we get the [k] matrix.

[]
[] []

[] [] 















=

wwwu

uwuu

kk

kk

k (3.17)

The [k] matrix is partitioned into four parts namely [kuu], [kuw], [kwu] and [kww]. The

dimension of the matrices are 5x5, 5x7, 7x5, 7x7 respectively and are given by the

following equations and is arranged as shown in Eq. (3.16).

{ }∫ 



 ′=

el

eLLuu dxHHAbk
0

11][

{ }  ∫ ′′′−=
el

eLuw dxHHBbk
0

11][

T
uwwu kk][][=

{ }   { }  











′′+′′′′= ∫ ∫

e el l

exeww dxHHNdxHHDbk
0 0

11][(3.18)

where the Nx can be written in terms of acceleration which is a function of the time

dependent displacement function.

3.3.3 Element Stiffness Matrix Formulation for Full Plane Stress using CLPT

The stiffness matrix for a full plane stress can be formulated from the variation in

strain energy expression Eq. (2.37). The u, δu, w, δw are given by Eq. (3.14). As in the

46

case of plane strain using CLPT, the stiffness matrix is split into four partitions

represented as [kuu,] [kuw], [kwu] and [kww] as shown in Eq. (3.17). Substituting the

constitutive equation Eq. (2.28) into the variational strain energy expression given by Eq.

(2.37), the expressions for the stiffness matrices are obtained as

{ }∫ 



 ′′=

el

eLLuu dxHHRbk
0

11][

{ }  ∫ ′′′−=
el

eLuw dxHHRbk
0

12][

T
uwwu kk][][=

{ }   { }  ∫ ∫ ′′+′′′′=
e el l

exeww dxHHNbdxHHRbk
0 0

22][(3.19)

where Rijs are obtained from the [R] matrix defined in Eq. (2.34) and Nx can be written in

terms of acceleration which is a function of the time dependent displacement function

given by Eq. (2.3).

3.3.4 Element Stiffness Matrix Formulation for Partial Plane Stress using CLPT

Figure 3.2 shows the element definition for the partial plane stress case using

CLPT. The stiffness matrix for a partial plane stress can be formulated from the variation

in strain energy expression. Unlike the plane strain and the full plane stress formulation,

the number of degrees of freedom are more. The independent variables in this

formulation are u, γ, w and wy where the superscript y represents partial differential of w

with respect to y. C0 continuity is assumed for u, γ and wy while C1 continuity is taken

for w to account for slope continuity at the end nodes.

47

Figure 3.2 Element definition for partial plane stress formulation using CLPT

Thus the stiffness matrix is partitioned into sixteen matrices which are symmetric about

the main diagonal. The partitions are represented as][uuk ,][γuk ,][uwk ,][yuw
k ,][γγk ,

][wkγ ,][yw
k

γ
,][wwk ,][yww

k ,][yyww
k with dimensions 5x5, 5x5, 5x7, 5x5, 5x5, 5x7, 5x5,

7x7, 7x5 and 5x5 respectively. The symmetric parts of the stiffness matrix are the

transpose of their counterparts. The expressions for the different partitions of the

stiffness matrix are obtained by substituting variation in the strain-displacement

relationship from Eq. (2.36) in the expression for variation in strain energy given by Eq.

(2.41) and are represented as follows

{ }∫ 



 ′′=

el

eLLuu dxHHSbk
0

11][

{ }  ∫ ′=
el

eLLu dxHHSbk
0

12][γ

{ }  ∫ ′′′−=
el

eLuw dxHHSbk
0

13][

{ }∫ 



 ′′−=

e

y

l

eLLuw
dxHHSbk

0

142][

ξ
xe

 u1,γ1,w1,w1',w
y
1 u3, γ3, w3, w

y
3 u5,γ5,w5,w5',w

y
5

 u2,γ2,w2,w
y
2 u4, γ4,w4,w

y
4

le

1 2 3 4 5

ξ = -1 ξ = 1

48

{ }  ∫=
el

eLL dxHHSbk
0

22][γγ

{ }  ∫ ′′−=
el

eLw dxHHSbk
0

23][γ

{ }  ∫ ′′−=
e

y

l

eLw
dxHHSbk

0

242][
γ

{ }   { }  ∫ ′′′′+′′=
el

exww dxHHSHHNbk
0

33)(][

{ } e

l

Lww
dxHHSbk

e

y ∫ 



 ′′′=

0

342][

{ }∫ 



 ′′=

e

yy

l

eLLww
dxHHSbk

0

444][(3.20)

where Sij s are obtained from the [S] matrix defined in Eq. (2.39) and Nx can be written in

terms of acceleration which is a function of the time dependent displacement function

given by Eq. (2.3) The following equation shows the way in which the [k] matrix is

partitioned.

[]

[] [] [] []
[] [] []

[] []
[]




















=

yy

y

y

y

ww

wwww

ww

uwuwuuu

k

kkSymm

kkk

kkkk

k
γγγγ

γ

 (3.21)

3.3.5 Element Stiffness Matrix Formulation for FSDT

Figure 3.3 shows the element definition for FSDT. The stiffness matrix for FSDT

is formulated from the variational strain energy expression derived in the energy

49

formulation section of FSDT Eq. (2.48). In FSDT formulation, in addition to the in-plane

shear, transverse shear is also considered. Hence the number of independent variables is

more than that in the partial plane stress formulation using CLPT. The independent

variables are identified to be u, γ, wb, ws and wb
y. C1 continuity is taken for wb and ws

while C0 continuity is assumed for u, γ and wb
y. This is to accommodate the rotational

degree of freedom to the nodes at the end nodes.

Figure 3.3 Element definition for FSDT

The stiffness matrix is partitioned into twenty-five matrices, which are symmetric

about the main diagonal. The partitioned matrices are named][uuk ,][γuk ,][buw
k ,

][suw
k ,][y

buw
k ,][ukγ ,][γγk ,][

bwkγ ,][
swkγ ,][y

bw
k

γ
,][uwb

k ,][γbwk ,][
bbwwk ,][

sbwwk ,

][y
bbww

k ,][uws
k ,][γswk ,][

bswwk ,][
sswwk ,][y

bsww
k ,][

uw y
b

k ,][
γy

bw
k ,][

b
y
b ww

k ,][
s

y
b ww

k ,][y
b

y
b ww

k

with dimensions 5x5, 5x5, 5x7, 5x7, 5x5, 5x5, 5x5, 5x7, 5x7, 5x5, 5x5, 5x5, 5x7, 5x7,

5x5, 5x5, 5x5, 5x7, 5x7, 5x5, 5x5, 5x5, 5x7, 5x7, 5x5 respectively. The arrangement of

the different elements of the partitioned [k] matrix is shown in Eq. (3.22).

le

ξ

1 2 3 4 5

ξ = -1
ξ = 1

xe

 u1,γ1,wb1,wb1', ws1,ws1',wb
y
1 u5,γ5,wb5, ws5,wb

y
5 u5,γ5,wb5,wb5', ws5,ws5',wb

y
5

 u2,γ2,wb2, ws2,wb
y
2 u2,γ2,wb2, ws2,wb

y
2

50



























=

][

][][

][][][

][][][][

][][][][][

][

y
b

y
b

y
bsss

y
bbsbbb

y
bsb

y
bsb

ww

wwww

wwwwww

www

uwuwuwuuu

k

kkSymm

kkk

kkkk

kkkkk

k

γγγγγ

γ

 (3.22)

The symmetric parts of the matrix are the transpose of their counterparts. The

expressions for the different partitions of the stiffness matrix are obtained by substituting

variation in the strain-displacement relationship from Eq. (2.42) in the expression for

variation in strain energy given by Eq. (2.48) and are represented as follows

{ } e

l

LLuu dxHHSbk
e

∫ 



 ′′=

0

11][

{ }  ∫ ′=
el

eLLu dxHHSbk
0

12][γ

{ }  ∫ ′′′−=
e

b

l

eLuw
dxHHSbk

0

13][

]0[][=
suwk

{ }∫ 



 ′′−=

e

y
b

l

eLLuw
dxHHSbk

0

142][

{ }  ∫=
el

eLL dxHHSbk
0

22][γγ

{ }  ∫ ′′−=
e

b

l

eLw dxHHSbk
0

23][γ

51

]0[][=
swkγ

{ } e

l

LLw
dxHHSbk

e

y
b ∫ 



 ′−=

0

242][
γ

{ }   { }  ∫ ∫ ′′+′′′′=
e e

bb

l l

exeww dxHHNbdxHHSbk
0 0

33][

]0[][=
sbwwk

{ }∫ 



 ′′′=

e

y
bb

l

eLww
dxHHSbk

0

342][

{ }   { }  ∫ ∫ ′′+′′=
e e

ws

l l

eexww dxHHAbdxHHNbk
0 0

*][

]0[][=y
bsww

k

{ }∫ 



 ′′=

e

y
b

y
b

l

eLLww
dxHHSbk

0

444][(3.21)

3.4 Incremental Stiffness Matrix Formulation

The time dependent part of the stiffness matrix is contributed by the incremental

stiffness matrix. These terms have already been added to the part of the matrix

corresponding to the transverse degrees of freedom. The incremental stiffness matrix

comes into the equation through the load Nx which is represented as the axial force b.F(x).

The axial force term F(x) in turn is dependent on the motion that is applied to the beam

which is time dependent.

The axial force acting on the beam, which results in its axial motion, is due to the

acceleration imparted to the beam. The acceleration of the beam is obtained by

differentiating Eq. (2.3) twice with respect to time. If an equivalent static beam is

52

considered, this part automatically reduces to zero because the acceleration term in the

axial force term reduces to zero. The incremental stiffness matrix is obtained from the

strain energy due to axial forces corresponding to the an element and can be written as

dxwFU
el

xfe ∫ ′=
0

2

2

1
 (3.22)

writing the force in terms of the acceleration of the beam and mass per unit length and

then taking the variation, we get

()∫ ′′−−=
el

L
Bfe dxwwxLaU

0

δγδ (3.23)

writing the above equation in terms of the interpolation function, we get

  { }   { }dxqHHqxLaU
el

t
L
Bfe ∫ ′′−−=

0

)(δγδ (3.24)

where {qt} and { δqt} are the vectors of transverse displacements and their variation. The

incremental stiffness matrix can be written from the Eq. (3.24)

{ }  ∫ ′′−−=
el

e
L
Bi dxHHxLak

0

)(][γ (3.25)

The incremental stiffness matrix [ki] can be written in non-dimensional coordinates, as

{ }  ∫
− 












 ++−

−
=

1

1

)()()1(
2

2
][ξξξξγ dHH

l
xL

l

a
k e

b
e

L
B

i (3.26)

This incremental stiffness term has been shown as a part of the equation in the equations

for [kww] in the plane strain case and in the full plane stress formulation using CLPT. It

makes its way through into the][
bb wwk term in the partial plane stress formulation using

CLPT and in the FSDT. It also enters the formulation in the expression for][
ss wwk ,

53

which is the transverse shear component matrix in the FSDT. The term)(xLa L
B −− γ

is comparable to the axial force term b.Nx which has already found its way through in the

transverse stiffness matrix component of the element stiffness matrices as mentioned

earlier.

3.5 Element Inertia Matrix Formulation

This section discusses the element inertia matrix formulation. The element inertia

matrices are formulated from the variation in total kinetic energy formulated in section

2.6.

3.5.1 Element Inertia Matrix Formulation for Isotropic case

The variation in kinetic energy for isotropic case is given by Eq. (2.55). The

element inertia matrix for an element is obtained by using Lagrange interpolation

function HL with C0 continuity for discretizing u and Hermitian interpolation function H

with C1 continuity for w. Substituting the interpolation functions in Eq. (2.55) further

yields.

  []{ }qmqT ##δδ =− (3.27)

where

[]
[] []

[] [] 














=

ww

uu

m

m

m

0

0

 (3.28)

and the individual partitions of [m] are given by

54

{ }  ∫=
el

eLLuu dxHHIbm
0

0][

{ }  ∫=
el

eww dxHHIbm
0

0][(3.29)

3.5.2 Element Inertia Matrix Formulation for Plane Strain using CLPT

The variation in kinetic energy for plane strain formulation using CLPT is given

by Eq. (2.62). The element inergia matrix is obtained by using Lagrangian interpolation

function HL with C0 continuity for discretizing u0 and Hermitian interpolation function H

with C1 continuity for w. Substituting the interpolation functions in Eq. (2.62), further

yields

  [] { }qMqT ##δδ =− (3.30)

where

[]
[] []

[] [] 














=

wwwu

uwuu

mm

mm

m (3.31)

and the individual partitions of [m] matrix are given by

{ }  ∫=
el

eLLuu dxHHIbm
0

0][

{ }  ∫ ′−=
el

eLuw dxHHbm
0

][

T
uwwu mm][][=

55

{ }   { }  ()∫ ′′+=
el

eww dxHHIHHIbm
0

20][(3.32)

3.5.3 Element Inertia Matrix Formulation for Full Plane Stress case using CLPT

The pane strain using CLPT and full plane stress formulation using CLPT has the

same number of degrees of freedom. Hence it is logical to conclude that they do not

differ in their inertia matrix formulation. Hence, the inertia matrix obtained for the plane

strain using CLPT in Eq. (3.32) is used for this formulation also.

3.5.4 Element Inertia Matrix Formulation for Partial Plane Stress case using
CLPT

The variation in kinetic energy for partial plane stress formulation using CLPT is

given by Eq. (2.67). The element inertia matrix is obtained using Lagrangian

interpolation function HL with C0 continuity for discretizing u0, γ and wy and Hermitian

interpolation function H with C1 continuity for w. Substituting the interpolation functions

in Eq. (2.67), further yields

  []{ }qmqT ##δδ =− (3.33)

Where

[]

[] [] [] []
[] [] []

[] []
[]




















=

yy

y

y

y

ww

wwww

ww

uwuwuuu

m

mmSymm

mmm

mmmm

m γγγγ

γ

 (3.34)

and the individual partitions of the [m] matrix are given by

56

{ }  ∫=
el

eLLuu dxHHIbm
0

0][

{ }  ∫ ′−=
el

eLuw dxHHIbm
0

1][

T
uwwu mm][][=

{ }   { }  ∫ ′′+=
el

eww dxHHIHHIbm
0

20)(][

{ }  ∫=
e

yy

l

eLLww dxHHIbm
0

2][(3.35)

[] [] [] [] [] [] 0====== yyy uwwwwwu mmmmmm γγγγγ

3.5.5 Element Inertia Matrix Formulation for FSDT

The variation in kinetic energy for partial plane stress formulation using FSDT is

given by Eq. (2.72). The element inertia matrix is obtained by using Lagrangian

interpolation function HL with C0 continuity for discretizing u0, γ and wb
y and Hermitian

interpolation function H with C1 continuity for wb and ws. Substituting the interpolation

functions in Eq. (2.72), further yields

  []{ }qmqT ##δδ =− (3.36)

57

























=

][

][][

][][][

][][][][

][][][][][

][

y

b

y

b

y

bsss

y

bbsbbb

y

bsb

y

bsb

ww

wwww

wwwwww

www

uwuwuwuuu

m

mmSymm

mmm

mmmm

mmmmm

m

γγγγγ

γ

 (3.37)

where [m] is the inertial matrix and its components are given by

{ }  ∫=
el

eLLuu dxHHIbm
0

0][

{ }  ∫ ′−=
e

b

l

eLuw dxHHIbm
0

1][

{ }   { }   e

l

ww dxHHIHHIbm
e

bb 0
0

2][+′′= ∫

{ }  ∫=
e

sb

l

eww dxHHIbm
0

0][

{ }  ∫=
e

ss

l

eww dxHHIbm
0

0][

{ }  ∫=
e

y

b

y

b

l

eww dxHHIbm
0

2][(3.38)

[] [] [] [] []

[] [] [] [] 0

0

====

=====

y

bs

y

bb

y

bs

b
y

bs

wwwwww

wuwuwu

mmmm

mmmmm

γγ

γγγγ

58

3.6 Lagrange Multiplier approach

The method by which boundary conditions are applied is by dropping rows and

columns corresponding to the degrees of freedom, which are constrained.

Conventionally, the [k] matrix becomes well conditioned after dropping the rows and

columns. In the case of a moving beam, the supports do not necessarily fall on a node at

any instantaneous time and hence this approach cannot be applied. A better approach to

apply such boundary conditions is by using the Lagrange Multiplier technique. Lagrange

multipliers are very useful in solving field problems with different types of constraints.

Usually constrains are on the forces, displacements, slopes etc. As assessed by Sreeram

(1995), there is not much information available on the applicability of the Lagrange

multiplier method to essential conditions that are time-dependent or time-independent.

Lagrange multipliers are found to work well if the constrains is much less than the total

degrees of freedom in the problem definition. The primary reason for such a restriction is

that the introduction of Lagrange multipliers causes ill conditioning of the [K] matrix by

introducing zeros along the diagonal elements. Hence many numerical routines

available, fails to solve problems with constrains applied via Lagrange multipliers. As

mentioned earlier, the [K] matrix considered in this research usually results in a non-

singular and a positive definite matrix. However, due to the application of the constraints

using Lagrange multipliers, it becomes an ill-conditioned matrix. This is the primary

reason for many researchers for not using this method. In simple cases like a beam with

simply supported boundary conditions and uniformly distributed load or point loads, the

Lagrange multiplier value turns out to be the reactions at the support locations. The

traditional method of solving such problems would be to drop off the rows and columns

59

corresponding to the degrees of freedom where the support falls in the [K] matrix.

Additional work is involved if support reactions are to be calculated using traditional

approach. This is avoided by applying Lagrange multipliers since the Lagrange variables

turns out to be the support reactions. Though there is this inherent advantage, many

researchers try avoiding the use of this method. Attempts have been made to drop the

Lagrange multiplier value from the system but this usually results in a singular matrix

and hence makes the system of equations indeterminate. Hence, it makes it mandatory to

maintain the Lagrange multiplier values if displacement constraints are applied by this

approach.

In the case of a non-moving beam, the Lagrange multipliers are applied to both

stiffness and inertia matrices. But in the case of a moving beam, Lagrange multipliers are

applied only to the stiffness matrices but not to the inertia matrices. This is to force the

constraint conditions on the displacement alone and not on the velocities and

acceleration. Special schemes such as partial pivoting or full pivoting are required to

solve for the time-dependent variables involved in this problem. The total potential is

represented as

WTUp δδδ −−=∆ (3.39)

where δU, δT and δW are the variation in strain energy, kinetic energy and virtual

external work done respectively. In the case of free vibrations, δW is zero. Adding a

constrain using Lagrange multiplier would yield a modified potential represented as

() ()"δδδδ +−−=∆ WTUp (3.40)

where the terms in the parenthesis are determined by the theory for which the Lagrange

multipliers are applied. Typically in the case of the plane strain and full plane stress

60

formulation using CLPT, Lagrange multipliers are applied to the transverse

displacements w and hence, the modified potential reduces to

() ()21 21
zs xxp wwWTU λλδδδδ ++−−=∆ (3.41)

In the case of partial plane stress formulation using CLPT, the constraints are applied to

the w and wy and hence the modified potential reduces to

() 


 ++++−−=∆
2121 3321
sszs x

y

x

y

xxp wwwwWTU λλλλδδδδ (3.42)

and in the case of plane stress using FSDT, the constraints are applied to the wb, ws and

the wb
y and hence the modified potential reduces to

()




 ++++++

−−=∆

212121 654321
sszszs x

y
bx

y
bxsxsxbxb

p

wwwwww

WTU

λλλλλλδ

δδδ
 (3.43)

where the λs represent the Lagrange multiplier degrees of freedom corresponding to the

two support locations xs
1 and xs

2 represented as support positions C and D in figure 2.1.

Hence, the global stiffness matrix [K] and the inertia matrix [M] for a static and moving

beam are represented by Eq. (2.44) and Eq. (2.45) respectively.

[] [] []
[] [] 








=

0TK

KK
K

λ

λ

[]
[] []
[] [] 








=

0λ

λ

M

MM
M (3.44)

[] [] []
[] [] 








=

0TK

KK
K

λ

λ

[] [] []
[] [] 







=
00

0M
M (3.67)

61

where [Kλ], [Kλ
T], [Mλ], [Mλ]T are the Lagrange multiplier matrices and its transpose for

the stiffness and inertia matrices respectively. The Lagrange multiplier matrices for the

stiffness and inertia matrices are identical and is represented by different symbols just

their discrete identity.

62

4. NUMERICAL IMPLEMENTATION

4.1 Introduction

In the previous chapter, the finite element formulation of the moving-beam

vibration problem was presented. This procedure carries out the spatial discretization of

the space-time governing equations. In this chapter, the solution procedure in the time

domain is presented. A computer program in C language is written based on an implicit

scheme to solve the second-order differential equations in the time domain. Writing a

program assures the integrity of the problem. Many standard packages available in the

market fail to address dynamic scenario presented in this research such as beams moving

over supports. Topics addressed in this chapter include solution procedure for the free-

vibration frequencies of a non-moving beam. Numerical intricacies such as numerical

integration and solution of ill-conditioned matrices are also enunciated.

4.2 Integration scheme

As seen in the previous chapter, the computation of element inertial and stiffness

matrices involves spatial integration. Many numerical integration schemes are available,

of which the Gauss quadrature scheme has proven to be very effective and accurate. This

scheme needs n unequally spaced sampling points to integrate exactly a polynomial of

order at most (2n-1). The polynomials representing the Hermite and Lagrangian

interpolation are of the order of seven and five respectively. For a uniform beam, the

highest order polynomial manifests in the inertia matrix in the form of an order of 14.

Thus, a seven-point Gauss quadrature scheme is followed in this research. Table 4.1

63

presents the sampling points and their respective weights for a seven-point integration

scheme. The integration scheme is represented as

∑∫
=−

=
n

j
jj afwdxxf

1

1

1

)()((4.1)

where n is the number of sampling points, aj represents the x coordinate at a sampling

point and wj the corresponding weight.

Sampling Points Weights

±0.9491079123 0.1294849661

±0.7415311855 0.2797053914

±0.4058451513 0.381300505

0.0000000000 0.4179591836

Table 4.1 Sampling points and weights for seven-point Gauss quadrature

integration scheme

The numerical integration of the stiffness and the inertia matrices is carried out after

changing the interval [for instance, see Eq. (3.18)] from (0,le) to (-1,1) by non-

dimensionalizing the independent variable.

4.3 Solving ill-conditioned system of equations

Solving ill-conditioned matrices has always been a challenging issue. In this

research, the stiffness and the inertia matrices are banded matrices banded about their

main diagonal. The boundary conditions are applied via the Lagrange-multiplier

technique. An inherent disadvantage as stated earlier in using the Lagrange method to

apply essential boundary conditions, is that the matrices, particularly the inertia matrix,

64

are ill conditioned. Standard numerical schemes fail to solve equations with matrices

containing zeros along the main diagonal. Some of the standard numerical schemes

available for solving a system of linear algebraic equations are the Gauss elimination

method, Gauss Siedel method, Gauss Jordan method, Cholesky Factorization, LU

decomposition, Tridiagonal Matrix Algorithm, LDLT algorithm, Householder

factorization, and Givens factorization. But the standard form of these schemes tend to

fail if the matrix has zero elements on the main diagonal, if the matrix is not diagonally

dominant or is ill conditioned by any other means. An alternative solution for such a

problem is to improve the condition of the matrix before trying solving it. Methods such

as partial pivoting and full pivoting are used for conditioning such matrices. In the

current research, Gauss elimination with partial pivoting with scaling applied on the pivot

elements is found to be an effective method.

4.3.1 Pivoting

Pivoting is the switching of rows or columns in-order to make the ill-conditioned

matrix a well-conditioned matrix. The diagonal element would be the pivot for each row.

Before each row is normalized, i.e., before making the largest value of each row to be

unity by dividing the whole row by the highest value in the row, the largest available

coefficient in the column under the pivot element is determined. The rows are then

switched so that the largest element is the pivot element. This method is called partial

pivoting. If the columns as well as the rows are searched for the largest element and then

switched, the procedure is called complete or full pivoting. Full pivoting is rarely used

because switching columns changes the order and consequently, adds significant and

65

usually unjustified complexity to the program used. The pseudo code shown below gives

a schematic of how partial pivoting could be applied.

4.3.1.1 Pseudo-code to implement partial pivoting [Chapra and Canale (1998)]

p = k

big = |ak,k|

Do ii = k + 1, n

dummy = |aii,k|

If (dummy > big)

big = dummy

p = ii

Endif

Enddo

If (p ≠ k)

Do jj = k, n

dummy = ap,jj

ap,jj = ak,jj

ak,jj = dummy

Enddo

dummy = bp

bp = bm

bk = dummy

Endif

66

4.3.2 Scaling

Scaling is the process of magnifying a row of a matrix by multiplying by a

specified value. The purpose of using scaling is to minimize round-off errors. This

technique is used for those cases where some of the equations in a system have much

larger coefficients than others and such situations arise often in engineering applications

wherein the stiffness and inertia matrices are assembled for large systems.

4.3.3 Gauss Elimination with scaled partial pivoting

The method used to solve the system of algebraic equations in this research is

Gauss elimination with scaled partial pivoting. In this section, a pseudo-code to apply

Gauss elimination with scaled partial pivoting is presented:

Do i =1,i <= maxcol, increment i by 1

utnew[i] = 0.0

p[i] = 0.0

d[i]=0.0

Enddo

Do i = 1, i <= maxcol, increment i by 1

p[i] = i

d[i]=|K[i][1]|

Do j = 1, j <= maxcol, increment j by 1

if(|K[i][j]| > d[i])

d[i] = |K[i][j]|

Endif

Enddo

67

Enddo

Do i = 1, i <= maxcol-1, increment i by 1

max = |K[p[i]][i]|/d[p[i]]

maxi = i

Do k = i + 1, k <= maxcol, increment i by 1

if(|(K[p[k]][i]|/d[p[k]] > max)

max = (|K[p[k]][i]|/d[p[k]])

maxi = k

Endif

Enddo

tmp = p[i]

p[i] = p[maxi]

p[maxi] = tmp

Do j = i + 1, j <= maxcol, increment j by 1

pivot = K[p[j]][i]/K[p[i]][i]

Q[p[j]] -= pivot * Q[p[i]]

Do k = i + 1, k <= maxcol, increment k by 1

K[p[j]][k] -= pivot * K[p[i]][k]

Enddo

Enddo

Enddo

Q[p[40]] = Q[p[40]]/K[p[40]][40]

Do i = maxcol - 1, i >= 1, increment i by 1

68

Do j = i + 1, j <= maxcol, increment j by 1

Q[p[i]] -= K[p[i]][j] * Q[p[j]]

Enddo

Q[p[i]]=Q[p[i]]/K[p[i]][i]

Enddo

Do i = 1, i < maxcol, increment i by 1

utnew[i] = Q [p[i]]

Enddo

4.4 Newmark’s Integration scheme

One of the most efficient methods of solving second order equations in time

domain, is Newmark's method. This method has been adopted after studying the results

presented by Sreeram (1995) in detail where he has concluded that Newmark's method

gives the best results compared to other methods like Wilson-θ method, Central

difference method and Hoboult's method. This Newmark's integration scheme can also

be understood to be an extension of the linear acceleration method. The following

schematic presents the essence of Newmark’s method [Bathe and Wilson (1976)].

()[] tqqqq tttttt ∆+−+= ∆+∆+ !!!!!! δδ1

2

2

1
tqqtqqq ttttttt ∆





+






−+∆+= ∆+∆+ !!!!! αα (4.2)

where α and δ are parameters that can be set to obtain stability and certain accuracy.

When α = 1/2 and δ = 1/6, the relations shown above correspond to the linear

69

acceleration method. Newmark originally proposed an unconditionally stable scheme,

the constant-average-acceleration method, in which case δ = 1/2 and α = 1/4. Figure 4.1

depicts the scheme.

ttq ∆+!!

tq!! ()ttt qq ∆++ !!!!
2
1

Figure 4.1 Newmark's scheme

In addition to the equations shown above, for solution of the displacements,

velocities, and accelerations at time t+∆t, the equations of motion at time t+∆t are also

considered. The equation of motion can be written as

tttttttt QKqqCqM ∆+∆+∆+∆+ =++ !!! (4.3)

where M, K and C are the global Inertia, Stiffness and damping matrices and Q is the load

vector. Damping is absent in the present model and thus the second term is dropped.

There is no external load; hence in the present work, the Q vector is initialized to zeroes.

tttttt QKqqM ∆+∆+∆+ =+!! (4.3a)

From Eq. (4.3a) solving for ttq ∆+!! in terms of ttq ∆+ , and then substituting for ttq ∆+!! , we

obtain the expression for ttq ∆+!! and ttq ∆+! in terms of the unknown displacements ttq ∆+ .

t t+∆t

70

() ttttttt qaqaqqaq !!!!! 320 −−−= ∆+∆+

tttttt qaqaqq ∆+∆+ ++= !!!!!! 76 (4.4)

These relations for ttq ∆+! and ttq ∆+!! are substituted into the equation of motion to solve for

ttq ∆+ then using Eq. (4.2), ttq ∆+!! and ttq ∆+! can be calculated

4.4.1 Pseudocode for Newmark's scheme

Initial Calculations:

Step1: Form the stiffness matrix K, and the Inertia matrix M with time independent terms

Step2: Initialize 000 ,, qqq !!! , set Q0 to zero

Step3: Select time step size ∆t, parameters α and δ and calculate integration constants

δ ≥ 0.50; α ≥ 0.25(0.5+δ)2; a0 = 1/(α∆t2); a2 = 1/(α∆t);

a3 = 1/2α - 1; a6 = ∆t(1-δ); a7 = δ∆t

For each time step:

Step4: Add the time dependent part of the K and M matrices

Step5: Form effective stiffness matrix MaKKK 0: +=
""

Step6: Calculate the effective loads at time t+∆t

()ttttttt qaqaqaMQQ !!!
"

320 +++= ∆+∆+

Step7: Solve for displacements at time t+∆t

Step8: Calculate the acceleration and velocities at time t+∆t:

() ttttttt qaqaqqaq !!!!! 320 −−−= ∆+∆+

tttttt qaqaqq ∆+∆+ ++= !!!!!! 76

Step9: Loop back for the next time step calculations

71

4.5 Boundary conditions

The boundary conditions corresponding to the several cases considered in this

research are outlined below.

4.5.1 Boundary conditions for CLPT under Plane Strain and Full Plane Stress

The CLPT using both plane strain and full plane stress have the same degrees of

freedom namely u, and w for every node with slope continuity for w at the end nodes of

each element. The boundary conditions are:

Hinged support : u = w = 0

Fixed support : u = w = w’ = 0

4.5.2 Boundary conditions for CLPT using Partial Plane Stress

In the CLPT using partial plane stress, the degrees of freedom at a node are u, γ, w

and wb
y of which, w has slope continuity at the end nodes of each element. The boundary

conditions are:

Hinged support : u = w = wb
y = 0

Fixed support : u = w = wb
y = w’ = 0

4.5.3 Boundary conditions for FSDT

In the FSDT, the degrees of freedom at a node are u, γ, wb, ws and wb
y of which,

wb and ws
 has slope continuity at the end nodes of each element. The boundary

conditions are:

72

Hinged support : u = wb = ws = wb
y = 0

Fixed support : u = wb = ws = wb’ = ws’ = wb
y = 0

4.6 Free Vibration Parameters

Matlab was used as an effective mathematical tool to calculate the eigenvalues,

natural frequencies, and the mode shape of an initially static beam. Once the stiffness and

inertia matrices are formed and the Lagrange multipliers are applied, and the global

inertia ([M]) and stiffness ([K]) matrices are obtained. The natural frequencies are

obtained as the square root of the eigenvalues of the two matrices. The mode shape is

obtained by choosing the eigenvector corresponding to the first natural frequency.

73

5. RESULTS AND DISCUSSION

5.1 Introduction

In the previous chapter, the numerical implementation employed to solve the non-

moving and moving beam problem was discussed. This chapter presents results and

provides a detailed discussion on the results obtained. An attempt has been made to

validate the program by verifying results presented by other authors. Tables are presented

for natural frequencies for isotropic, symmetric and unsymmetric composites and

comparisons have been drawn. Graphs are presented for the tip-displacements of the

moving beam. Both non-moving and moving beam comparisons are studied in detail.

The main results of the present research are that of a moving beam made of

composite materials. There are no results available in the literature for a direct

verification. Instead we shall use an indirect two-step approach for validation. The first

step consists of simulating an isotropic moving for comparison with existing results. This

would validate (i) the Lagrange Multiplier approach for boundary conditions and (ii) the

time integration algorithm based on Newmark’s method. The second step consists of

generating free-vibration results for non-moving beam made of composite material. Both

symmetric and unsymmetric lay-ups are considered. Comparison with existing results

would validate that the global inertia and stiffness matrices for the composite-material

case are formed correctly.

74

5.2 Validation of Isotropic Beam Results

5.2.1 Non-Moving Isotropic Beam

The C program with the CLPT plane strain case is used to run the frequency

response of both static and moving beam cases for isotropic beam so as to compare with

that presented by Sreeram (1995). Initially, a simply supported isotropic beam with a

uniformly distributed load is considered. The dimensions of the beam and its properties

are taken to be as those presented by Sreeram (1995), Table 4.1, pg. 36. The length of

the beam is taken to be 1.0 m, the mass per unit length as 1.0 kg/m, EI to be 1.0 Nm2.

Table 5.1(a) draws a comparison between the two sets of results obtained by Sreeram

(1995) for a beam with four elements and three internal nodes and a beam It is seen that

the present results match very well with that of Sreeram’s. Table 5.1(b) shows the axial

frequencies of the beam and the exact solution.

It should be noted that Sreeram did not have any axial degrees of freedom in his

formulation and hence the axial frequencies are compared with the exact solution and are

found to be in very good comparison. The exact solution for the axial frequency of a

simply supported beam with hinged-hinged boundary condition is given by nπ where n is

the mode number.

75

Mode Number Analytical Solution (Sreeram) (Present)

1 9.8693 9.8696 9.8695

2 39.478 39.478 39.4784

3 88.826 88.826 88.8264

4 157.91 157.91 157.9136

5 246.73 246.74 246.7482

6 355.3 355.36 355.3692

7 483.6 483.95 483.956

8 631.65 634.32 634.3289

9 799.43 804.24 804.2415

Table 5.1(a) Frequency response for transverse degrees of freedom of a simply

supported non-moving isotropic beam

76

Mode Number Analytical Solution (Present)

1 3.1415927 3.14159

2 6.2831854 6.28319

3 9.4247781 9.42493

4 12.5663708 13.5664

5 15.7079635 15.7194

6 18.8495562 18.89836

7 21.9911489 22.14605

8 25.1327416 25.92288

9 28.2743343 29.26807

Table 5.1(b) Frequency response for axial degrees of freedom of a simply supported

non-moving isotropic beam

The next step in comparing with Sreeram's results is to consider a non-moving

overhanging isotropic beam. Table 5.2(a) shows the transverse frequencies and Table

5.2(b) the axial frequencies. As pointed out earlier, Sreeram (1995) did not have any

axial degrees of freedom. So the axial frequencies are again compared with their exact

solution for their accuracy.

77

Mode Number Analytical Solution (Sreeram) (Present)

1 16.246 16.246 16.24636

2 20.771 20.784 20.78467

3 117.93 117.94 117.982

4 136.07 136.29 136.3644

5 247.47 248.44 248.5557

6 386.11 386.90 387.4277

7 422.58 425.92 426.4891

8 702.44 708.78 708.2631

9 799.47 813.52 813.6126

Table 5.2(a) Frequency response for transverse degrees of freedom of an

overhanging non-moving isotropic beam

 Mode Number Analytical Solution (Present)

1 2.5133 2.5481

2 4.1888 4.29202

3 7.5398 7.65210

4 12.5663 12.5698

5 12.5663 13.0909

6 17.5929 17.89364

7 20.9439 21.55625

8 22.6194 23.3191

9 29.3215 28.9497

Table 5.2(b) Frequency response for axial degrees of freedom of an overhanging

non-moving isotropic beam

78

Tables 5.2(a) and 5.2(b) clearly shows that the values are very close to Sreeram's

results for the transverse frequencies and those of the exact solution for the axial

frequencies and hence assures the accuracy of the program. By checking the above two

sets of results with those presented by Sreeram, it has been clearly proved that the

program for the composite beam altered to calculate the equivalent isotropic values

would work for an isotropic case.

5.2.2 Moving Isotropic Beam Comparison

As the last step towards validating the present work with Sreeram's results, the

moving beam is simulated and the results are compared. Sreeram had performed a

response analysis of an initially deformed moving beam. The initial deformation was

assumed to be the first mode shape and the program is run with the same set of numerical

parameters as Sreeram (1995). The length of the beam is taken to be 1.0, mass per unit

length as 1.0 kg/m and EI to be 1.0 Nm2. Sreeram had used a time step of 2.5E-4 for his

solution. Similar assumptions have been made in the present research in verifying with

his results. The program is run for several values of Ω, the axial frequency of the moving

beams. Figures 5.1–5.4 show the transverse displacement of the left end of the beam as a

function of time for Ω = 20, 22, 30, 60 rad/sec, respectively. The results from Sreeram

are also superimposed in these figures. It is clearly seen that there is excellent agreement.

79

Isotropic Moving Beam Comparison

Time Step = 2.5E-4 sec xc = 0.375 - 0.05sin(20t)

Figure. 5.1 Response Analysis of an Initially Deformed Isotropic Moving Beam

Isotropic Moving Beam Comparison

Time Step = 2.5E-4 sec xc = 0.375 - 0.05sin(22t)

Figure 5.2 Response Analysis of an Initially Deformed Isotropic Moving Beam

- 0 .2

- 0 .1

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 0 .2 0 .4 0 .6 0 .8 1 1 .2 1 .4 1 .6

T im e (s e c)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
ef

le
ct

io
n

(x
=

0
m

)

P r e s e n t s tu d y S r e e r a m 's R e s u lt s

-0 .3

-0 .2

-0 .1

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 0 .2 0 .4 0 .6 0 .8 1 1 .2 1 .4 1 .6 1 .8 2

T im e (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
ef

le
ct

io
n

(x
=

0)

P resent study S ree ram 's R esu lts

80

Isotropic Moving Beam Comparison

Time step = 2.5E-4 sec xc = 0.375 - 0.05 sin(30t)

Figure 5.3 Response Analysis of an Initially Deformed Isotropic Moving Beam

Isotropic Moving Beam Comparison

Time step = 2.5E-4 sec xc = 0.375 - 0.05 sin(60t)

Figure 5.4 Response Analysis of an Initially Deformed Isotropic Moving Beam

-0 .3
-0 .2
-0 .1

0
0.1
0.2
0.3
0.4
0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T im e (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
ef

le
ct

io
n

(x
=

0m
)

P resent study S reeram 's R esults

-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

0
0.2

0 0.02 0.04 0.06 0.08 0.1

Time (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
ef

le
ct

io
n

(x
=

0)
 m

Present study Sreeram's Results

81

5.3 Validation with Non-Moving Composite Beam

In this section, the aim is to validate the formation of the global inertia and stiffness

matrices for the composite material case. This is done by considering non-moving beams

since there are no existing results for moving composite-material beams.

5.3.1 Validation of programs using CLPT for Symmetric Static Beam

The first natural frequency obtained using our computer program is compared

with results available from papers and textbooks. Reddy, 1997, Table 6.2-4 presented

results for a simply supported beam with hinged-hinged boundary conditions for

unidirectional and other symmetric laminates. The non-dimensionalized natural

frequencies were given for different lay-up geometries. Reddy took the material

properties to be in the following ratio. E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2 and ν12

= 0.25. The material properties used for the verification in our case are as follows. These

correspond to

E1 = 25.0 x 106 N/m2 L = 1.0m

E2 = 1.0 x 106 N/m2 b x h = 0.01m x 0.01m

G12 = 0.5 x 106 N/m2 γ = 7.0 x 106 kg/m3

ν12 = 0.25

3
2

02
1

hE

I
Lωω = (Non-dimensionalized natural frequency)

The program was run for the case of plane strain, full and partial plane stress and

as an equivalent isotropic material. The results are compared for different lay-up

sequences. Table 5.3 shows the comparison of the natural frequencies and the non-

dimensionalized natural frequencies of the program with that of Reddy (1997).

82

Omega bar Omega
0/0/0/0 14.246 17027.226 17026.685 17047.289 17025.989 17025.989

90/90/90/90 2.849 3405.206 3405.337 3409.461 3405.198 3405.198
0/90/90/0 13.375 15986.182 15986.769 15991.844 15986.075 15986.075

45/-45/-45/45 3.766 4501.231 4501.353 9099.974 5439.807 4615.928
(0/45/-45/90)s 11.236 13429.589 13429.012 14206.765 13496.227 13445.891

Lay-up

First Natural Frequency

Present
Plane Strain Full Plane Stress

Equivalent Isotropic
Reddy Partial Plane Stress

Table 5.3 Comparison between First Natural Frequency of Reddy’s results and

Equivalent Isotropic, Plane Strain, Full Plane Stress and Partial Plane Stress cases

for Hinged-Hinged boundary condition

Table 5.3 shows the results presented by Reddy and that obtained from the present

research for equivalent isotropic, plane strain, full and partial plane stress boundary

conditions using CLPT for simply supported beam with hinged-hinged boundary

conditions. It is clear from the comparison of the ω1 values that the results presented by

Reddy are by reducing the composite material equations to an equivalent isotropic case.

The ω1 values are obtained from the ω1 values using the formula shown earlier. The

equivalent ω1 values obtained in the present research stands in very good comparison

with those presented by Reddy for all lay-ups shown in Table 5.3. In the case of CLPT

using plane strain boundary conditions, the lay-ups with 00, 900 and symmetric

combination of 00 and 900 are in good comparison with those presented by Reddy. But

when the laminate is a angle ply or a combination of cross ply and angle ply, the results

do not go in good comparison. On introducing angle ply, the laminate is dominated by

in-plane shear effects, which are neglected in the equivalent isotropic cases and so does

83

not compare well with plane strain results where this effect is totally neglected. In the

case of full plane stress boundary condition, a very similar pattern as in the case of plane

strain case is seen but proves to be more effective for angle plies and combination of

cross plies and angle plies. Finally, the partial plane stress boundary condition results are

compared with Reddy’s results. It is very clear from the table that this method works

well for all the lay-ups shown in the Table 5.3 and hence we will be the only method

which will be used in the later part of this research.

5.3.2 CLPT Partial Plane Stress for unsymmetric laminate

Results presented by Reddy (1997) are only for symmetric cases. Singh, et al.

(1991) presented results for the first natural frequency of unsymmetrically laminated

beam with various boundary conditions. The program using CLPT partial plane stress

method was validated by comparing with the results presented by Singh, et al. (1991). In

order to show that partial plane stress compares better than full plane stress formulation,

the results presented by Singh, et al. (1991) is also compared with full plane stress results

for all boundary conditions presented in table 5.4. The material properties and beam

dimensions used by Singh, et al. are as follows:

E1 = 18.74 x 106 psi L = 1.0m and slenderness ratio = 200

E2 = 1.6 x 106 psi b x h = 0.01m x 0.005m

G12 = 0.65 x 106 psi ν12 = 0.25

ρ= 1.424 x 10-4 lb.sec2/in2

84

Table 5.4 shows the comparison of results presented by Singh et al. (1991) for

various boundary conditions and unsymmetric lay-ups and the results from the partial and

full plane stress formulations in the present research.

Table 5.4 Comparison between First Natural Frequency of Singh, et al. Results,

partial and full plane stress formulation results for unsymmetric cases

The first natural frequency obtained from the partial plane stress and full plane stress

formulations are shown and are compared with results presented by Singh, et al (1991).

The partial plane stress formulation results are in very good agreement with Singh, et al

for all the end conditions. Full plane stress results compare well when the lay-up is a

combination of 00 and 900 but tend to deviate with angle plies.

It can clearly be concluded from the results from Tables 5.3 and 5.4 that partial

plane stress formulation proves to be more effective than the full plane stress formulation

in both symmetric and unsymmetric lay-ups and supports the argument to follow partial

plane stress formulation for further research.

Singh, et al (1991) had presented results for the first four natural frequencies for a

fixed-free beam for a 300 graphite epoxy laminate. A beam with l = 7.5 in., b = 0.5 in.

and t = 0.125 in. is used. A discrepancy is found between the results presented by Singh,

et al and results from this research. Table 5.4a shows a comparison of results presented

by Singh, et al and current research.

Plane Stress
Partial Full Partial Full Partial Full

45/-45 10.84 10.707 12.564 55.83 55.5 57.79 26.47 26.129 28.05
0/90 43.69 43.529 43.352 128.38 127.23 127.113 69.2 68.743 68.562

0/45/-45/90 41.24 41.064 41.76 129.71 129.073 130.325 68.55 68.002 69.117

Lay-up
Hinged-Hinged Fixed-Fixed Fixed-Hinged

Plane Stress Plane Stress
Singh, et al. Singh, et al. Singh, et al

85

Table 5.4(a) Comparison between natural frequencies presented by Singh, et al

and present research for a fixed-free beam

5.3.3 Validation of program using FSDT

Next, the formulation based on FSDT is validated for non-moving unsymmetric

composite beams. First, Table 5.5 shows the first natural frequency of beams of different

lay-ups and different end conditions. The corresponding results from Singh, et al (1991)

are also included in this table.

Lay-up Hinged-Hinged Fixed-Fixed Fixed-Hinged
Singh
et al.

FSDT Singh
et al.

FSDT Singh
et al.

FSDT

45/-45 10.83 10.71 55.59 55.42 26.42 26.47
0/90 43.53 43.52 128.38 127.15 127.14 127.15

0/45/-45/90 41.09 41.04 129.71 129.523 68.17 68.08

Table 5.5 Comparison between First Natural Frequency of Singh et al. results and

FSDT results

Table 5.5 clearly shows that the present results show excellent agreement with that of

Singh et al. (1991).

The purpose of the FSDT model is to include the effect of transverse shear in the

beam. The transverse shear effects are more prominent in short beams. In order to see

the effect of the slenderness ratio on the natural frequency, a symmetric angle ply lay-up

in the form of θ/-θ/-θ/θ is considered for three different values of slenderness ratio L/h,

namely 15, 60 and 120. The angle θ is varied from 00 to 900 in steps of 150 which

Singh, et al Present
1 52.6018 98.571
2 330.093 561.813
3 932.414 1349.327
4 1839.79 2308.542

Natural Frequency
Mode No.

86

correspond to a graphite-epoxy composite. The material properties and beam dimensions

used are as follows:

E1 = 1.448 x 1011 N/m2 L = 1.5m L/h = 15 (short beam)

E2 = 9.653 x 109 N/m2 L = 6.0m L/h = 60 (slender beam)

G12 = G13 = 4.137 x 109 N/m2 L = 12.0m L/h = 120 (slender beam)

G23 = 3.448 x 109 N/m2 b x h = 1.0m x 0.1m

ρ = 1389.227 kg/m3 ν12 = 0.3

2
1

2

hE
L

ρωω = (Non-dimensionalized natural frequency)

Table 5.6 shows the results from this study in the form of non-dimensionalized first

natural frequency for different values of L/h and θ. This table also includes analytical

and numerical results for L/h = 15 from Kadivar and Mohebpour (1998).

Lay-up Analytical CLPT
(Present)

FSDT (Kadivar
and Mohebpour)

FSDT
 (Present Research)

L/h = 15 L/h = 15 L/h = 60 L/h = 120
0/-0/-0/0 4.848 4.871 4.8629 4.8670 6.311 6.421

15/-15/-15/15 4.6635 4.6821 4.0082 3.9838 4.683 4.729
30/-30/-30/30 4.0981 4.1201 2.8762 2.8513 3.098 3.112
45/-45/-45/45 3.1843 3.2051 1.933 1.9332 2.004 2.008
60/-60/-60/60 2.1984 2.1991 1.629 1.6291 1.675 1.678
75/-75/-75/75 1.6815 1.7022 1.6063 1.6065 1.653 1.655
90/-90/-90/90 1.62 1.6201 1.6161 1.6161 1.664 1.667

Table 5.6 Non-dimensionalized first natural frequency of an angle ply beam

When compared to the analytical solution, the numerical results of Kadivar and

Mohebpour (1998) tend to deviate more as the θ = 45 lay-up is approached from either

end of θ spectrum. This is due to the fact that the transverse shear effects are neglected in

the analytical solution. This argument is further strengthened when the analytical

87

solution is compared with the present results based on CLPT wherein there is remarkable

agreement. For L/h=15, the present result agree excellently with that of Kadivar and

Mohebpour. Further, it can be seen that as the slenderness ratio is increased from 15 to

60, the frequencies differ considerably with particularly closer to zero degree ply. When

L/h is increased from 60 to 120 the change in results is small which signifies that shear

effects are no longer dependent on the slenderness ratio.

5.4 Composite Moving Beam

As stated earlier, the aim of this study is to simulate a moving beam made of

composite material. As such, this section deals with the dynamic analysis of a composite

moving beam. The moving beam is simulated for two cases. One is with CLPT using

partial plane stress approximation and the second using FSDT. The programs are run for

a graphite-epoxy beam with properties same as those presented in Section 5.3.3. A short

beam is opted for the analysis because the transverse shear effects are prominent in short

beams as shown in the non-moving beam case.

5.4.1 Composite Moving Beam Simulation using CLPT Partial Plane Stress case

A beam of length 1.5 m with an L/h ratio of 15 is considered for this analysis.

The beam is given a sinusoidal axial motion represented by

() ()tSinAwtX F Ω+−= 0 (5.1)

and in the moving frame, the support motion is given by the function

())(0 tSinAwtX C Ω−= (5.2)

where the amplitude of oscillation, A = 0.05m and the frequency, Ω = 20 rad/sec and 60

rad/sec. The higher value of the frequency is chosen to see if the response becomes

88

unstable at higher frequency as seen in the isotropic case. The stiffness values and the

dimensions used by Sreeram and Sivaneri (1997) and Buffington and Kane (1985) were

mostly unity and thus hypothetical. The value of unity chosen for the stiffness EI is very

small compared to realistic values. Sreeram and Sivaneri (1997) had used a time step of

2.5 x 10-4 seconds for the numerical integration in the time domain in his program. In the

present research, practical values are used for the material properties and dimensions of

the beam and which are large compared to that used by Sreeram and Sivaneri (1997).

Hence a smaller time step may need to be used for accurate results. Another fact to be

noted is that Sreeram had only transverse degrees of freedom but in the present case

interaction between axial and transverse degrees of freedom occur. These factors make it

necessary to reduce the time step to a much lower value. This value was found out by

trial and error and a value of 2.5 x 10-7 seconds was chosen to be the optimal value the

analysis modeled using for CLPT based on partial plane stress approximation.

The program listed in Appendix A is run for two different Ω values and three

different lay-ups. The two values of Ω used are Ω = 20 rad/sec and 60 rad/sec. The

values of θ used are 00 450 and 900. The lay-up architecture used is the same as that used

by Kadivar and Mohebpour (1998) and is represented as θ /-θ /-θ /θ where θ represents

the angle of each layer. The initial shape of the beam used corresponds to the first mode

shape for the given lay-up and material properties. Figures 5.5 to 5.10 are plots of the

transverse tip displacement of the left end. Figures 5.11 and 5.12 are the plots of the

transverse and axial tip displacements of the right end. Figures 5.5 and 5.6 are for a lay-

up with θ = 45 degrees and Ω of 20 rad/sec and 60 rad/sec, respectively. The solution is

stable for both frequencies unlike those presented by Sreeram and Sivaneri for the

isotropic case wherein the solution became unstable for the higher value of Ω. As can be

89

seen from these figures, the tip displacement exhibits a beat like phenomenon for both

frequencies.

CLPT

L/h = 15 Lay-up = 45/-45/-45/45

xc = 0.375*L – 0.05 Sin(20t)

Figure 5.5 Transverse Left Tip displacement, ΩΩΩΩ = 20 rad/sec

CLPT

L/h = 15 Lay-up = 45/-45/-45/45

xc = 0.375*L – 0.05Sin(60t)

Figure 5.6 Transverse Left Tip displacement, ΩΩΩΩ = 60 rad/sec

-0.015
-0.01

-0.005
0

0.005
0.01

0.015

0 0.2 0.4 0.6 0.8 1
Tim e (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

 d
is

pl
ac

em
en

t

(m
)

-0.015
-0.01

-0.005
0

0.005
0.01

0.015

0 0.2 0.4 0.6 0.8 1

Time (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
is

pl
ac

em
en

t (
m

)

90

CLPT

L/h = 15 Lay-up = 90/-90/-90/90

xc = 0.375*L – 0.05Sin(20t)

Figure 5.7 Transverse Left tip displacement, ΩΩΩΩ = 20 rad/sec

CLPT

L/h = 15 Lay-up = 90/-90/-90/90

xc = 0.375*L – 0.05Sin(60)

Figure 5.8 Transverse Left tip displacement, ΩΩΩΩ = 60 rad/sec

-0.015
-0.01

-0.005
0

0.005
0.01

0.015

0 0.2 0.4 0.6 0.8 1

Time (sec)

T
ra

ns
ve

rs
e

Le
ft

 T
ip

di
sp

la
ce

m
en

t (
m

)

-0.015
-0.01

-0.005
0

0.005
0.01

0.015

0 0.2 0.4 0.6 0.8 1
Time (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

 d
is

pl
ac

em
en

t (
m

)

91

CLPT

L/h = 15 Lay-up = 0/-0/-0/0

xc = 0.375*L – 0.05Sin(20)

Figure 5.9 Transverse Left tip displacement, ΩΩΩΩ = 20 rad/sec

CLPT

L/h = 15 Lay-up = 0/-0/-0/0

xc = 0.375*L – 0.05Sin(60)

Figure 5.10 Transverse Left tip displacement, ΩΩΩΩ = 60 rad/sec

-0 .015
-0 .01

-0 .005
0

0.005
0.01

0.015

0 0.2 0.4 0.6 0.8 1

Time (s ec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

di
sp

la
ce

m
en

t (
m

)

- 0 .0 1 5
- 0 .0 1

- 0 .0 0 5
0

0 .0 0 5
0 .0 1

0 .0 1 5

0 0 .2 0 .4 0 .6 0 .8 1

Time (s e c)

T
ra

ns
ve

rs
eL

ef
t T

ip

D
is

pl
ac

em
en

t (
m

)

92

CLPT

L/h = 15 Lay-up = 0/-0/-0/0

xc = 0.375*L – 0.05Sin(60)

Figure 5.11 Transverse Right tip displacement, ΩΩΩΩ = 60 rad/sec

CLPT

L/h = 15 Lay-up = 0/-0/-0/0

xc = 0.375*L – 0.05Sin(60)

Figure 5.12 Axial Right tip displacement u, ΩΩΩΩ = 60 rad/sec

-0.0025
-0.002

-0.0015
-0.001

-0.0005
0

0.0005
0.001

0.0015
0.002

0.0025

0 0.2 0.4 0.6 0.8 1
Time (sec)

A
xi

al
 R

ig
ht

T

ip
 D

is
pl

ac
em

en
t (

m
)

-0.015
-0.01

-0.005
0

0.005
0.01

0.015

0 0.2 0.4 0.6 0.8 1

Time (sec)

T
ra

ns
ve

rs
e

R
ig

ht
 T

ip
D

is
pl

ac
em

en
t (

m
)

93

When the Ω value increases, the number of beats also increases correspondingly. It can

be seen that, over the time period of one second, there are three prominent beats that are

present with an Ω value of 20 rad/sec while there are nine prominent beats present with

an Ω of 60 rad/sec. Since the Ω value in the second case is three times the value in the

first case, three times the number of beats are expected in the simulation.

Figures 5.7 and 5.8 are drawn for a lay-up with θ = 90 degrees and Ω of 20

rad/sec and 60 rad/sec respectively. These plots look very similar to that of the θ = 45

degree case. Again a beat phenomenon is seen to exist with the same number of peaks.

Figures 5.9 and 5.10 are drawn for a lay-up with θ = 0 degrees and Ω of 20 and

60 rad/sec respectively. These graphs also show a beat phenomenon but with a much

higher frequency. The reason for higher frequency is that the beam becomes stiffer with

a zero-degree lay-up. The same number of beat peaks as before are observed. The

maximum amplitude is found to be slightly below 0.015m in all the cases.

In this problem, to avoid rigid body modes, while solving for the displacements,

the left end of the beam is fixed in the axial direction. The right tip displacements in the

transverse and axial directions are plotted for the beam with a lay-up of θ = 0 degrees and

Ω of 20 in Figures 5.11 and 5.12, respectively. Figure 5.11 shows that the magnitude of

the transverse tip displacement is very similar to that of the left end and a similar beat

phenomenon manifests. The axial degree of freedom plotted against time in Figure 5.12

shows that the magnitude is one order less than that of its transverse degree of freedom

counterpart.

94

Figures 5.5, 5.7 and 5.9, plotted for θ = 45, 90 and 0 degrees, respectively with Ω

= 20 rad/sec show that the beat peaks and the troughs fall at about the same time. The

troughs are found to fall at 0.1, 0.4 and 0.7 seconds, approximately and the peaks are

found to occur at 0.25, 0.55 and 0.85 seconds, approximately. Similarly, figures 5.6, 5.7

and 5.9, plotted for θ = 45, 90 and 0 degrees respectively, with Ω = 60 rad/sec show that

the beat peaks and the troughs fall at about the same instant. The troughs are found to

fall at time = 0.045, 0.146, 0.25, 0.35, 0.45, 0.56, 0.67, 0.77, 0.88, 0.98 seconds,

approximately and the peaks are found to fall at 0.088, 0.19, 0.30, 0.405, 0.51, 0.615,

0.72, 0.825, 0.93 seconds, approximately.

5.4.2 Composite Moving Beam Simulation using FSDT

This section deals with the simulation of a composite beam using the FSDT

program listed in Appendix B. To compare the results obtained from CLPT, the same

lay-up architecture and properties are used here also. The time step used is 2.5 x 10-7

seconds, as in the case of CLPT. Figures 5.13 – 5.26 show the transverse displacement of

the left end of the beam.

Figures 5.13 to 5.16 are drawn for the transverse bending and shear components

for the case of θ = 450 and Ω values 20 and 60 rad/sec respectively. Unlike the results

presented for CLPT, a pronounced beat phenomenon is not observed in the FSDT for the

transverse bending component. But a beat phenomenon is witnessed in the shear

component of the transverse deflection with a magnitude of two orders lower than the

corresponding bending component. The number of degrees of freedom in the FSDT case

is much higher than that in the case of CLPT and hence, due to time restrictions, the

program listed in Appendix B is run for half a second and the results are presented. Still

95

we can infer that the displacements are stable for both the values of Ω used. The

amplitude of the left tip is found to vary about the initial value of 0.01m.

Figures 5.17 to 5.20 are shown for the transverse bending and shear components

for the case of θ = 900 and Ω values of 20 and 60 rad/sec respectively. Again, the

program is run for half a second. Again in these cases, the beat phenomenon is

suppressed to a great extent in the transverse bending component and the maximum

amplitude of vibration of the bending component of the transverse left tip displacement

of the beam is found close to the initial value of 0.01m imparted to the beam. Again as

in the case of the 450 lay-up, the transverse shear component is found to still have a beat

phenomenon with a magnitude which is two orders lower than its bending counter part.

The beam is found to be stable even as the Ω value was increased from 20 to 60 rad/sec

and a similar behavior is seen in the two cases.

Figures 5.21 to 5.24 are drawn for the transverse bending and shear components

for a 00 lay-up and Ω values of 20 and 60 rad/sec. The behavior of the beam is very

similar to those seen in the 450 and 900 cases with the beat phenomenon suppressed to a

good extent in the bending component and shear component exhibiting a beat

phenomenon with a magnitude two orders less than its bending counterpart. In order to

avoid the rigid body modes, as done in the case of the CLPT, the axial displacements at

the left end of the beam was constrained. The tip displacements at the right end of the

beam are presented for a 00 lay-up and a Ω value of 60 rad/sec. Figures 5.25 to 5.27 are

plotted for the transverse bending, shear and axial displacements at the right end. Unlike

the transverse bending component at the left end, the transverse bending component at

the right end is found to exhibit a more pronounced beat phenomenon with a magnitude

half of that at the left end. The axial displacement at the right end also exhibits a beat

96

phenomenon with a magnitude one order less than the corresponding transverse bending

counterpart.

FSDT

L/h = 15 Lay-up = 45/-45/-45/45

xc = 0.375*L – 0.05Sin(20)

Figure 5.13 Transverse Left Tip Displacement wb, FSDT and ΩΩΩΩ = 20 rad/sec

FSDT

L/h = 15 Lay-up = 45/-45/-45/45

xc = 0.375*L – 0.05Sin(20)

Figure 5.14 Transverse Left Tip Displacement ws,, FSDT and ΩΩΩΩ = 20 rad/sec

-0.015
-0.01

-0.005
0

0.005
0.01

0.015

0 0.1 0.2 0.3 0.4 0.5
Time (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D

is
pl

ac
em

en
t (

m
)

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0 0.1 0.2 0.3 0.4 0.5
Time (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
is

pl
ac

em
en

t (
m

)

.

97

FSDT

L/h = 15 Lay-up = 45/-45/-45/45

xc = 0.375*L – 0.05Sin(60)

Figure 5.15 Transverse Left Tip Displacement wb, FSDT and ΩΩΩΩ = 60 rad/sec

FSDT

L/h = 15 Lay-up = 45/-45/-45/45

xc = 0.375*L – 0.05Sin(60)

Figure 5.16 Transverse Left Tip Displacement ws, FSDT and ΩΩΩΩ = 60 rad/sec

-0.015
-0.01

-0.005
0

0.005
0.01

0.015

0 0.1 0.2 0.3 0.4 0.5
Tim e (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
is

pl
ac

em
en

t (
m

)

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0 0.1 0.2 0.3 0.4 0.5
Time (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
is

pl
ac

em
en

t (
m

)

.

98

FSDT

L/h = 15 Lay-up = 90/-90/-90/90

xc = 0.375*L – 0.05Sin(20)

Figure 5.17 Transverse Left Tip Displacement wb, FSDT and ΩΩΩΩ = 20 rad/sec

FSDT

L/h = 15 Lay-up = 90/-90/-90/90

xc = 0.375*L – 0.05Sin(20)

Figure 5.18 Transverse Left Tip Displacement ws, FSDT and ΩΩΩΩ = 20 rad/sec

-0 .0 1 5

-0 .0 1

-0 .0 0 5

0

0 .0 0 5

0 .0 1

0 .0 1 5

0 0 .1 0 .2 0 .3 0 .4 0 .5
T im e (s e c)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
is

pl
ac

em
en

t (
m

)

-0.00025

-0.00015

-0.00005

0.00005

0.00015

0.00025

0 0.1 0.2 0.3 0.4 0.5

Time (sec)

T
ra

n
sv

er
se

 L
ef

t
T

ip
D

is
p

la
ce

m
en

t
(m

)

99

FSDT

L/h = 15 Lay-up = 90/-90/-90/90

xc = 0.375*L – 0.05Sin(60)

Figure 5.19 Transverse Left Tip Displacement wb, FSDT and ΩΩΩΩ = 60 rad/sec

FSDT

L/h = 15 Lay-up = 90/-90/-90/90

xc = 0.375*L – 0.05Sin(60)

Figure 5.20 Transverse Left Tip Displacement ws, FSDT and ΩΩΩΩ = 60 rad/sec

-0.015
-0.01

-0.005
0

0.005
0.01

0.015

0 0.1 0.2 0.3 0.4 0.5

Tim e (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
is

pl
ac

em
en

t (
m

)

-0.00025
-0.0002

-0.00015
-0.0001

-0.00005
0

0.00005
0.0001

0.00015
0.0002

0.00025

0 0.1 0.2 0.3 0.4 0.5

Time (sec)

T
ra

n
sv

er
se

 L
ef

t
T

ip
 D

is
p

la
ce

m
en

t
(m

)

100

FSDT

L/h = 15 Lay-up = 0/-0/-0/0

xc = 0.375*L – 0.05Sin(20)

Figure 5.21 Transverse Left Tip Displacement wb, FSDT and ΩΩΩΩ = 20 rad/sec

FSDT

L/h = 15 Lay-up = 0/-0/-0/0

xc = 0.375*L – 0.05Sin(20)

Figure 5.22 Transverse Left Tip Displacement ws, FSDT and ΩΩΩΩ = 20 rad/sec

-0.015
-0.01

-0.005
0

0.005
0.01

0.015

0 0.1 0.2 0.3 0.4 0.5
Tim e (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
is

pl
ac

em
en

t (
m

)

-0.002
-0.0015
-0.001

-0.0005
0

0.0005
0.001

0.0015
0.002

0 0.1 0.2 0.3 0.4 0.5
Time (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
is

pl
ac

em
en

t (
m

)

101

FSDT

L/h = 15 Lay-up = 0/-0/-0/0

xc = 0.375*L – 0.05Sin(60)

Figure 5.23 Transverse Left Tip Displacement wb, FSDT and ΩΩΩΩ = 60 rad/sec

FSDT

L/h = 15 Lay-up = 0/-0/-0/0

xc = 0.375*L – 0.05Sin(60)

Figure 5.24 Transverse Left Tip Displacement ws, FSDT and ΩΩΩΩ = 60 rad/sec

-0.015
-0.01

-0.005
0

0.005
0.01

0.015

0 0.1 0.2 0.3 0.4 0.5
Time (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D

is
pl

ac
em

en
t (

m
)

-0.002
-0.0015
-0.001

-0.0005
0

0.0005
0.001

0.0015
0.002

0 0.1 0.2 0.3 0.4 0.5
Time (sec)

T
ra

ns
ve

rs
e

Le
ft

T
ip

D
is

pl
ac

em
en

t (
m

)

102

FSDT

L/h = 15 Lay-up = 0/-0/-0/0

xc = 0.375*L – 0.05Sin(60)

Figure 5.25 Transverse Right Tip Displacement wb, FSDT and ΩΩΩΩ = 60 rad/sec

FSDT

L/h = 15 Lay-up = 0/-0/-0/0

xc = 0.375*L – 0.05Sin(60)

Figure 5.26 Transverse Right Tip Displacement ws, FSDT and ΩΩΩΩ = 60 rad/sec

-0.025

-0.015

-0.005

0.005

0.015

0.025

0 0.1 0.2 0.3 0.4 0.5
Time (Sec)

T
ra

ns
ve

rs
e

R
ig

ht
 T

ip
D

is
pl

ac
em

en
t (

m
)

-0.008
-0.006
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008

0 0.1 0.2 0.3 0.4 0.5
Time (Sec)

T
ra

ns
ve

rs
e

R
ig

ht
 T

ip
D

is
pl

ac
em

en
t (

m
)

103

FSDT

L/h = 15 Lay-up = 0/-0/-0/0

xc = 0.375*L – Sin(60)

Figure 5.27 Axial Right Tip Displacement u, FSDT and ΩΩΩΩ = 60 rad/sec

-0.0025
-0.002

-0.0015
-0.001

-0.0005
0

0.0005
0.001

0.0015
0.002

0.0025

0 0.1 0.2 0.3 0.4 0.5
Time (Sec)

A
xi

al
 R

ig
ht

 T
ip

D
is

pl
ac

em
en

t (
m

)

104

6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Contributions

1. Formulation of a five noded beam element with interior nodes having only

displacement degrees of freedom in the axial and transverse direction and end nodes

having both displacement and rotational degrees of freedom in the transverse

direction and only displacement degrees of freedom in the axial direction.

2. Development of a higher-order finite element model using Hermitian function with

C1 continuity and Lagrange polynomials with C0 continuity as shape functions for

solving the problem of a finite beam moving over supports.

3. Use of Lagrange multipliers to composite moving beams for enforcing the essential

conditions.

4. Formulation of finite element model based on CLPT and FSDT with reduction from

plate theories to beam theory based on plane-strain and plane-stress conditions.

5. Solution for the problem as a composite beam instead of reducing it to an equivalent

isotropic material.

6. Development of an indigenous computer code in the C language for the solution of

the composite moving beams.

105

6.2 Conclusions

1. The implementation of Lagrange multiplier to this problem is found to be very

effective for problems with time-dependent essential conditions. A conventional finite

element approach, would require considerably more effort in that new node locations

having to be created at every time step to coincide with the support location.

2. Finite element formulation for CLPT using plane strain conditions are not effective,

particularly as the lay-up angle is increased from zero or decreased from 90 degrees

and hence only CLPT and FSDT using plane stress boundary conditions were are

used in the later part of the research.

3. Finite element formulation for CLPT using full plane stress condition proved

effective for cross ply lay-ups but not with angle plies and combination of cross and

angle plies. Whereas the partial plane stress condition proved effective for both the

cases.

4. Partial plane stress method using CLPT resulted in a beat phenomenon with the tip-

displacement oscillating about the initial displacement. The frequency of vibration of

the beam is highest with the zero-degree lay-up architecture and decreases

considerably with the increase in the lay-up angle.

5. FSDT using plane stress exhibits considerably reduced beat phenomenon at the left

end but exhibited a beat phenomenon at the right end. The frequency of vibration of

the beam is highest with the zero-degree lay-up architecture and decreases

considerably with the increase in the lay-up angle.

106

6. The change in Ω values for the composite beam affects only the number of beats in

the results and does not affect the stability of the problem whereas instability was

observed for certain Ω values by Buffington and Kane (1985), Lee (1992) and

Sreeram and Sivaneri (1997), for isotropic cases.

6.3 Recommendations

1. The presence of the shear correction factor in the formulation using FSDT is an

unwanted approximation in the model. Formulations using Higher order shear

deformation theories would eliminate this approximation and would increase

effectiveness of the model.

2. Numerical results for unsymmetric lay-ups.

3. Introduction of damping in the model to analyze the dynamic behavior of the beam

with and without damping.

4. Extension of the problem from a 1-D to a 2-D or 3-D one.

5. Experimental verification of theoretical results.

107

APPENDIX A

/**/
/*CLPT USING PLANE STRESS METHOD II*/
/* THE ACCELERATION IS -A*OMEGA SQUARE *SIN(OMEGA*T) */
/* THIS PROGRAM IS FOR A COMPOSITE BEAM WITH SHEAR EFFECTS BEING CONSIDERED USING CLT
 APPROACH */
/**/
include <stdio.h>
include <math.h>
define m 10
define TINY 1.0e-20
/**/
/* Initial Displacements given as the first mode shape normalized to 0.01m at the left end of the beam */
/**/
main()

FILE *fp2;
int nel,elc,i,j,k,s,n,x,y,co,inter,maxi=0,tmp=0,p[77]={0},no=0,counter=1,yes=0;
double I=0.0,omega,Rhoperarea,Rho=0.0,LB,t=0.0,tmax,tinc,X[15]={0.0},gama=0.0,HT[7]={0.0},

HA[5]={0.0},M[4][22][22]={0.0};
double K[4][22][22]={0.0},H2T[7]={0.0},H1A[5]={0.0},L[10]={0.0},pi=3.14159265359,p2=0.0,p1=0.0;
double c,wx,u,v,ma[10][5][5]={0.0},H1T[7]={0.0},H2A[5]={0.0};
double I0=0.0,I1=0.0,I2=0.0,hi[10]={0.0};
double S11[5][5]={0.0},S12[5][3]={0.0},S21[3][5]={0.0},S22[3][3]={0.0},Sm[5][5]={0},S12ym[5][3]={0.0},

S12ym21[4][4]={0.0};
double muu[5][5]={0.0},muw[5][7]={0.0},mlamlam[5][5]={0.0},mww[7][7]={0.0},mwu[7][5]={0.0};
double kuu[5][5]={0.0},kub[5][5]={0.0};
double kuw[5][7]={0.0},kulam[5][5]={0.0},kbu[5][5]={0.0},kbb[5][5]={0.0};
double kbw[5][7]={0.0},kblam[5][5]={0.0},kwu[7][5]={0.0},kwb[7][5]={0.0};
double kww[7][7]={0.0},kwlam[7][5]={0.0},klamu[5][5]={0.0},klamb[5][5]={0.0};
double klamw[5][7]={0.0},klamlam[5][5]={0.0},ki[5][7][7]={0.0};
double KL[73][4]={0.0},sumlen1=0.0,sumlen2=0.0,z[2]={0},xs1,xs2,xb=0.0,accl=0.0,w=0.0;
double KG[77][77]={0.0};
double MG[77][77]={0.0};
double b=0.0,A11=0.0,B11=0.0,D11=0.0,Nx=0.0;
/* Declarations for matrix inverse */
int ni,ii,iii=0,imax,jj,ip,indx[m]={0};
double big=0.0, dum=0.0, sum=0.0, temp=0.0,vv[m]={0.0},di=0.0,a[m][m]={0.0},col[m]={0.0},

sum1=0.0,ym[m][m]={0.0};
double det=0.0;
/* Declarations required for solving the above mentioned problem using newmarks method */
double ut[77]={0.0},dt=2.5e-7;
double u1t[77]={0.0},u2t[77]={0.0},utnew[77]={0.0},u1tnew[77]={0.0},u2tnew[77]={0.0};
double Q[77]={0.0},Qhat[77]={0.0},Qhatnew[77]={0.0},Qhatnewgauss[77]={0.0};
double KGhat[77][77]={0.0},KGhatgauss[77][77]={0.0};
double MGut[77]={0.0},MGu1t[77]={0.0},MGu2t[77]={0.0};
double a0=0.0,a2=0.0,a3=0.0,a6=0.0,a7=0.0,delta=0.75,alpha=0.6;
double max=0.0,d[77]={0.0},pivot=0.0;
/* Decalration for a composite beam */
double layerno[10]={0.0},layerangle[10]={0.0},E1=0.0,E2=0.0,G12=0.0,G13=0.0,h[10]={0.0},hbar[10]={0.0},

new12=0.0;

108

double Qbar[10][4][4]={0.0},Qmat[4][4]={0.0},A[4][4]={0.0},B[4][4]={0.0},D[4][4]={0.0},Delta=0.0;
double C1=0.0,S1=0.0,C2=0.0,S2=0.0,C3=0.0,S3=0.0,C4=0.0,S4=0.0;
double D1=0.0,D2=0.0,D3=0.0,Dstar=0.0,D11star=0.0,Exxb=0.0,height=0.0;
/* END OF DECLARATION */
fp2 = fopen("mvtipdis","w"); /* Output file name mvtipdis */
/* Initialization begins */
/* initializing all the us at time t = 0 so as to have the tip deflection as
 0.01 meters for an overhanging beam case .. using first mode as the initial shape */
/* Since, there is coupling due to the material properties, the axial displacemenets are not zeros */
ut[0]=0.0;ut[1]=-6.889E-09;ut[2]=0.01;ut[3]=-0.0311038;ut[4]=-0.0008379;
ut[5]=-6.575E-08;ut[6]=-1.17E-06;ut[7]=0.0080576;ut[8]=-0.0008325;ut[9]=-4.944E-07;ut[10]=-4.441E-06;
ut[11]=0.0061358;ut[12]=-0.0007976;ut[13]=-1.607E-06;ut[14]=-9.528E-06;ut[15]=0.004284;
ut[16]=-0.000707;ut[17]=-3.65E-06;ut[18]=-1.587E-05;ut[19]=0.0025791;ut[20]=-0.0256127;
ut[21]=-0.0005407;ut[22]=-6.785E-06;ut[23]=-2.296E-05;ut[24]=0.0011156;ut[25]=-0.000268;
ut[26]=-1.101E-05;ut[27]=-2.891E-05;ut[28]=0.0;ut[29]=1.122E-12;ut[30]=-1.577E-05;
ut[31]=-3.021E-05;ut[32]=-0.0006816;ut[33]=4.813E-05;ut[34]=-2.055E-05;ut[35]=-3.001E-05;
ut[36]=-0.0009067;ut[37]=2.898E-05;ut[38]=4.668E-06;ut[39]=-2.53E-05;ut[40]=-2.984E-05;
ut[41]=-0.0006789;ut[42]=-4.123E-05;ut[43]=-2.998E-05;ut[44]=-2.827E-05;ut[45]=0.0;
ut[46]=6.733E-13;ut[47]=-3.41E-05;ut[48]=-2.237E-05;ut[49]=0.0011035;ut[50]=0.0002597;
ut[51]=-3.715E-05;ut[52]=-1.544E-05;ut[53]=0.0025462;ut[54]=0.0252221;ut[55]=0.0005257;
ut[56]=-3.914E-05;ut[57]=-9.26E-06;ut[58]=0.0042238;ut[59]=0.0006874;ut[60]=-4.022E-05;
ut[61]=-4.309E-06;ut[62]=0.0060442;ut[63]=0.0007754;ut[64]=-4.063E-05;ut[65]=-1.123E-06;
ut[66]=0.0079326;ut[67]=0.0008091;ut[68]=-4.07E-05;ut[69]=-5.754E-09;ut[70]=0.0098407;
ut[71]=0.0305541;ut[72]=0.0008142;ut[73]=4.1114946;ut[74]=3.8158928;ut[75]=-0.070031;
ut[76]=0.0700309;
/* Input from the user */
printf("Enter the length of the beam :");
scanf("%lf",&LB);
printf("Enter the total simulation time :");
scanf("%lf",&tmax);
printf("Enter the Omega value :");
scanf("%lf",&omega);
printf("Enter the width of the beam :");
scanf("%lf",&b);
printf("Enter the height of the beam :");
scanf("%lf",&height);
printf("Enter the Rho value in kg/cu.m :");
scanf("%lf",&Rho);
printf("Enter the E1 value in Pa :");
scanf("%lf",&E1);
printf("Enter the E2 value in Pa :");
scanf("%lf",&E2);
printf("Enter the G12 value in Pa :");
scanf("%lf",&G12);
printf("Enter the new12 value :");
scanf("%lf",&new12);
printf("Enter the number of layers ");
scanf("%d",&no);
I = b*height*height*height/12.0;
for(i=1;i<=no;i++)

{
printf("Enter the the angle for ply number %d ",i);
scanf("%lf",&layerangle[i]);

}
for(i=1;i<=no;i++)

h[i]=height/no;

109

for(i=2,hi[i-1]=-height/2.0;i<=no+1;i++)
hi[i]=hi[i-1]+(height/no);

for(i=1;i<=no;i++)
hbar[i]=hi[i]+height/(2*no);

printf("\nThe layer angles are ");
for(i=1;i<=no;i++)

printf("\nlayerangle[%d] = %lf ",i,layerangle[i]);
printf("\nThe layer thickness are \n");
for(i=1;i<=no;i++)

printf("\nh[%d] = %lf ",i,h[i]);
printf("\nThe h[i]s are \n");
for(i=1;i<=no+1;i++)

printf("\nhi[%d] = %lf ",i,hi[i]);
printf("\nThe hbars[i]s are \n");
for(i=1;i<=no;i++)

printf("\nhbar[%d] = %lf ",i,hbar[i]);
for(i=1;i<=no;i++)

layerangle[i]*=pi/180.0;
a0=1.0/(alpha*dt*dt);
a2=1.0/(alpha*dt);
a3=(1.0/(2.0*alpha))-1.0;
a6=dt*(1.0-delta);
a7=delta*dt;
nel=4;
inter=3;
X[0]=0.0*LB;
X[1]=0.25*LB;
X[2]=0.5*LB;
X[3]=0.75*LB;
X[4]=1.0*LB;
gama=Rho*height*b;
for(i=1;i<=no;i++)

{
I0+=(hi[i+1]-hi[i])*Rho;
I1+=((hi[i+1]*hi[i+1])-(hi[i]*hi[i]))*Rho/2.0;
I2+=((hi[i+1]*hi[i+1]*hi[i+1])-(hi[i]*hi[i]*hi[i]))*Rho/3.0;

}
printf("\nDo you want to include rotary inertia\n--type 1 for yes and 0 for no ");
scanf("%d",&yes);
if(yes==0)

I2=0.0;
printf("\n I0= %18.16f I1=%18.16lf I2=%18.16lf \n",I0,I1,I2);
fprintf(fp2,"\n I0 = %12.10lf \n ",I0);
/* The composite material properties and ABD matrix calculations */
/* Begin Q matrix calculations */
Delta = 1 - (new12*new12)*E2/E1;
Qmat[1][1]=E1/Delta;
Qmat[1][2]=new12*E2/Delta;
Qmat[2][1]=Qmat[1][2];
Qmat[2][2]=E2/Delta;
Qmat[3][3]=G12;
/* End Q matrix calculations */
/* Begin Qbar matrix calculations */
for(i=1;i<=no;i++)

{
C1=cos(layerangle[i]);

110

C2=cos(layerangle[i])*cos(layerangle[i]);
C3=cos(layerangle[i])*cos(layerangle[i])*cos(layerangle[i]);
C4=cos(layerangle[i])*cos(layerangle[i])*cos(layerangle[i])*cos(layerangle[i]);
S1=sin(layerangle[i]);
S2=sin(layerangle[i])*sin(layerangle[i]);
S3=sin(layerangle[i])*sin(layerangle[i])*sin(layerangle[i]);
S4=sin(layerangle[i])*sin(layerangle[i])*sin(layerangle[i])*sin(layerangle[i]);
Qbar[i][1][1] = Qmat[1][1]*C4 + 2*(Qmat[1][2] + 2*Qmat[3][3])*S2*C2 + Qmat[2][2]*S4;
Qbar[i][1][2] = (Qmat[1][1] + Qmat[2][2] - 4*Qmat[3][3])*S2*C2 + Qmat[1][2]*(S4 + C4);
Qbar[i][2][2] = Qmat[1][1]*S4 + 2*(Qmat[1][2] + 2*Qmat[3][3])*S2*C2 + Qmat[2][2]*C4;
Qbar[i][2][1] = Qbar[i][1][2];
Qbar[i][1][3] = (Qmat[1][1] - Qmat[1][2] -2*Qmat[3][3])*S1*C3 + (Qmat[1][2] - Qmat[2][2] +

 2*Qmat[3][3])*S3*C1;
Qbar[i][2][3] = (Qmat[1][1] - Qmat[1][2] -2*Qmat[3][3])*S3*C1 + (Qmat[1][2] - Qmat[2][2] +

 2*Qmat[3][3])*S1*C3;
Qbar[i][3][1] = Qbar[i][1][3];
Qbar[i][3][2] = Qbar[i][2][3];
Qbar[i][3][3] = (Qmat[1][1] + Qmat[2][2] - 2*Qmat[1][2] - 2*Qmat[3][3])*S2*C2 + Qmat[3][3]*(S4 + C4);

}
/* End Qbar matrix calculations */
for(i=1;i<=no;i++)

{
printf("\n The Qbar matrix for the layer %d is \n ",i);
for(j=1;j<4;j++)

{
for(k=1;k<4;k++)

{
printf("%lf ",Qbar[i][j][k]);

}
printf("\n");

}
printf("\n");

}
/* Begin A matrix calculations */
printf("\n The A matrix is \n");
for(i=1;i<4;i++)

{
for(j=1;j<4;j++)

{
for(k=1;k<=no;k++)

{
A[i][j]+=Qbar[k][i][j]*h[k];

}
printf("%lf ",A[i][j]);
}
printf("\n");

}

/* End A matrix calculations */
printf("\n The B matrix is \n");
/* Begin B matrix calculatons */
for(i=1;i<4;i++)

{
for(j=1;j<4;j++)

{
for(k=1;k<=no;k++)

111

{
B[i][j]+=Qbar[k][i][j]*h[k]*hbar[k];

}
printf("%lf ",B[i][j]);
}
printf("\n");

}

/* End B matrix calculations */
printf("\n The D matrix is \n");
/* Begin D matrix calculations */
for(i=1;i<4;i++)

{
for(j=1;j<4;j++)

{
for(k=1;k<=no;k++)

{
D[i][j]+=Qbar[k][i][j]*(h[k]*hbar[k]*hbar[k] + h[k]*h[k]*h[k]/12.0);

}
printf("%lf ",D[i][j]);
}
printf("\n");

}

/* End D matrix calculations */

/* To calculate Exxb to do an isotropic equivalent moduli verification */

D1 = D[2][2]*D[3][3] - D[2][3]*D[2][3];
D2 = D[1][3]*D[2][3] - D[1][2]*D[3][3];
D3 = D[1][2]*D[2][3] - D[2][2]*D[1][3];
Dstar = D[1][1]*D1 + D[1][2]*D2 + D[1][3]*D3;
D11star = (D[2][2]*D[3][3] - D[2][3]*D[2][3])/Dstar;
Exxb = 12.0/(height*height*height*D11star);
printf("\n The Exxb value is %lf",Exxb);
for(i=0;i<=nel;i++)

L[i] = (X[i+1]-X[i]);
/* Assigning S11 matrix values */
S11[1][1]=A[1][1];
S11[1][2]=A[1][3];
S11[1][3]=B[1][1];
S11[1][4]=B[1][3];
S11[2][1]=A[1][3];
S11[2][2]=A[3][3];
S11[2][3]=B[1][3];
S11[2][4]=B[3][3];
S11[3][1]=B[1][1];
S11[3][2]=B[1][3];
S11[3][3]=D[1][1];
S11[3][4]=D[1][3];
S11[4][1]=B[1][3];
S11[4][2]=B[3][3];
S11[4][3]=D[1][3];
S11[4][4]=D[3][3];
/* Assigning S12 matrix values */
S12[1][1]=A[1][2];

112

S12[2][1]=A[2][3];
S12[3][1]=B[1][2];
S12[4][1]=B[2][3];
S12[1][2]=B[1][2];
S12[2][2]=B[2][3];
S12[3][2]=D[1][2];
S12[4][2]=D[2][3];
/* Assigning S21 matrix values */
S21[1][1]=A[1][2];
S21[1][2]=A[2][3];
S21[1][3]=B[1][2];
S21[1][4]=B[2][3];
S21[2][1]=B[1][2];
S21[2][2]=B[2][3];
S21[2][3]=D[1][2];
S21[2][4]=D[2][3];
/* Assigning S22 matrix values */
S22[1][1]=A[2][2];
S22[1][2]=B[2][2];
S22[2][1]=B[2][2];
S22[2][2]=D[2][2];
/* Matrix inverse algorithm */
ni=2;
for(i=1;i<=ni;i++)

{
for(j=1;j<=ni;j++)

{
a[i][j]=S22[i][j];

}
}

/* BEGIN LU DECOMPOSITION */
di=1.0;
for(i=1;i<=ni;i++)

{
big = 0.0;
for(j=1;j<=ni;j++)

{
if((temp=fabs(a[i][j]))>big)

big=temp;
}

if(big==0.0)
printf("\n Singular matrix in LU Decomposition");

vv[i]=1.0/big;
}

for(j=1;j<=ni;j++)
{

for(i=1;i<j;i++)
{

sum=a[i][j];
for(k=1;k<i;k++)

sum-=a[i][k]*a[k][j];
a[i][j]=sum;

}
big=0.0;
for(i=j;i<=ni;i++)

{

113

sum=a[i][j];
for(k=1;k<j;k++)

sum-=a[i][k]*a[k][j];
a[i][j]=sum;
if((dum=vv[i]*fabs(sum))>=big)

{
big=dum;
imax=i;

}
}

if(j!=imax)
{

for(k=1;k<=ni;k++)
{

dum=a[imax][k];
a[imax][k]=a[j][k];
a[j][k]=dum;

}
di=-(di);
vv[imax]=vv[j];

}
indx[j]=imax;
if(a[j][j]==0.0)

a[j][j]=0.0;
if(j!=ni)

{
dum=1.0/a[j][j];
for(i=j+1;i<=ni;i++)

a[i][j]*=dum;
}

}
/* END LU DECOMPOSITON */
for(jj=1;jj<=ni;jj++)

{
for(ii=1;ii<=ni;ii++)

col[ii]=0.0;
col[jj]=1.0;
/* BEGIN LU BACK SUBSTITUTION */
sum1=0.0;
iii=0;
for(i=1;i<=ni;i++)

{
ip=indx[i];
sum1=col[ip];
col[ip]=col[i];
if(iii)

for(j=iii;j<=i-1;j++)
sum1-=a[i][j]*col[j];

else if (sum1)
iii=i;

col[i]=sum1;
}

for(i=ni;i>=1;i--)
{

sum1=col[i];
for(j=i+1;j<=ni;j++)

114

sum1-=a[i][j]*col[j];
col[i]=sum1/a[i][i];

}
for(ii=1;ii<=ni;ii++)

ym[ii][jj]=col[ii];
}

/* USING ALTERNATIVE AND SHORT CUT METHOD TO FIND OUT THE INVERSE OF
 A 2 X 2 MATRIX */
printf("\n Inverse by alternative method \n ");
for(i=1;i<3;i++)

{
for(j=1;j<3;j++)

{
a[i][j]=S22[i][j];

}
}

ym[1][1]=a[2][2];
ym[2][2]=a[1][1];
ym[1][2]=-a[1][2];
ym[2][1]=-a[2][1];
det=a[1][1]*a[2][2]-a[2][1]*a[1][2];
for(i=1;i<3;i++)

{
for(j=1;j<3;j++)

{
ym[i][j]/=det;
printf(" %lf ",ym[i][j]);

}
printf("\n");

}
/* END OF ALTERNATIVE SHORTCUT METHOD TO FIND THE INVERSE OF A 2 X 2 MATRIX */

/* Calculate S12 * S22inv i.e.ym */
for(i=1;i<=4;i++)

{
for(j=1;j<=2;j++)

{
S12ym[i][j]=0.0;
for(k=1;k<=2;k++)

{
S12ym[i][j]+=S12[i][k]*ym[k][j];

}
}

}
/* Calculate S12ym * S21 */
for(i=1;i<=4;i++)

{
for(j=1;j<=4;j++)

{
S12ym21[i][j]=0.0;
for(k=1;k<=2;k++)

{
S12ym21[i][j]+=S12ym[i][k]*S21[k][j];

}
}

}

115

printf("\n");
printf("\n Sm is \n");
for(i=1;i<=4;i++)

{
for(j=1;j<=4;j++)

{
Sm[i][j]=S11[i][j]-S12ym21[i][j];
printf("%lf ",Sm[i][j]);

}
printf("\n");

}
/* SM has been calculated before this step */
/* Time independent part of the program ie. the k matrix calculations for every element */
n = 0;
while(n<7)

{
if(n==0)

{
v = 0.949107;
wx = 0.129484;

}
if(n==1)

{
v = -0.949107;
wx = 0.129484;

}
if(n==2)

{
v = 0.741531;
wx = 0.279705;

}
if(n==3)

{
v = -0.741531;
wx = 0.279705;

}
if(n==4)

{
v = 0.405845;
wx = 0.381830;

}
if(n==5)

{
v = -0.405845;
wx = 0.381830;

}
if(n==6)

{
v = 0.0;
wx = 0.417959;

}
/* H' for the Transverse case */
H1T[0] = (1.0/9.0)*(17.0/4.0 - 10.0 *v - 237.0*v*v/4.0 + 188.0*v*v*v/2.0 + 55.0*v*v*v*v –

84.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[1] = (L[elc]/6.0)*(1.0/4.0 - v/2.0 - 15.0*v*v/4.0 + 5.0*v*v*v + 5.0*v*v*v*v –

6.0*v*v*v*v*v)*(2.0/L[elc]);

116

H1T[2] = (16.0/9.0)*(-1.0 + 4.0*v + 6.0*v*v - 16.0*v*v*v - 5.0*v*v*v*v + 12.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[3] = (-12.0*v + 36.0*v*v*v - 24.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[4] = (16.0/9.0)*(1.0 + 4.0*v - 6.0*v*v - 16.0*v*v*v + 5.0*v*v*v*v + 12.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[5] = (1.0/9.0)*(-17.0/4.0 - 10.0*v + 237*v*v/4.0 + 188.0*v*v*v/2.0 - 55.0*v*v*v*v –

84.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[6] = (L[elc]/6.0)*(1.0/4.0 + v/2.0 - 15.0*v*v/4.0 - 5.0*v*v*v + 5.0*v*v*v*v +

6.0*v*v*v*v*v)*(2.0/L[elc]);
/* H'' for the Transverse case */
H2T[0] = (1.0/9.0)*(-10.0 -474.0*v/4.0 + 282.0*v*v + 220.0*v*v*v –

420*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
H2T[1] = (L[elc]/6.0)*(-1.0/2.0 -30.0*v/4.0 +15.0*v*v + 20.0*v*v*v –

30.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
H2T[2] = (16.0/9.0)*(4.0 +12.0*v -48.0*v*v -20.0*v*v*v +60.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
H2T[3] = (-12.0 +108.0*v*v -120.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
H2T[4] = (16.0/9.0)*(4.0 -12.0*v -48.0*v*v +20.0*v*v*v +60.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
H2T[5] = (1.0/9.0)*(-10.0 +474.0*v/4.0 +282.0*v*v -220.0*v*v*v –

420.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
H2T[6] = (L[elc]/6.0)*(1.0/2.0 -30.0*v/4.0 -15.0*v*v +20.0*v*v*v

+30.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
/* H' for the Axial case */
H1A[0] = ((1.0/6.0)-(1.0/3.0)*v-2.0*v*v+(8.0/3.0)*v*v*v)*(2.0/L[elc]);
H1A[1] = ((-4.0/3.0)+(16.0/3.0)*v+4.0*v*v-(32.0/3.0)*v*v*v)*(2.0/L[elc]);
H1A[2] = (-10.0*v+16.0*v*v*v)*(2.0/L[elc]);
H1A[3] = ((4.0/3.0)+(16.0/3.0)*v-4.0*v*v-(32.0/3.0)*v*v*v)*(2.0/L[elc]);
H1A[4] = ((-1.0/6.0)-(1.0/3.0)*v+2.0*v*v+(8.0/3.0)*v*v*v)*(2.0/L[elc]);
/* H'' for the Axial case */
H2A[0] = (-1.0/3.0 - 4.0*v + 8.0*v*v)*(2.0/L[elc])*(2.0/L[elc]);
H2A[1] = (16.0/3.0 + 8.0*v - 32.0*v*v)*(2.0/L[elc])*(2.0/L[elc]);
H2A[2] = (-10.0 + 48.0*v*v)*(2.0/L[elc])*(2.0/L[elc]);
H2A[3] = (16.0/3.0 - 8.0*v - 32.0*v*v)*(2.0/L[elc])*(2.0/L[elc]);
H2A[4] = (-1.0/3.0 + 4.0*v + 8.0*v*v)*(2.0/L[elc])*(2.0/L[elc]);
/* Transverse case */
HT[0] = (1.0/9.0)*(17.0*v/4.0 -5.0*v*v -79.0*v*v*v/4.0 +47.0*v*v*v*v/2.0 +11.0*v*v*v*v*v –

 14.0*v*v*v*v*v*v);
HT[1] = (L[elc]/6.0)*(v/4.0 -v*v/4.0 -5.0*v*v*v/4.0 +5.0*v*v*v*v/4.0 +v*v*v*v*v -v*v*v*v*v*v);
HT[2] = (16.0/9.0)*(-v +2.0*v*v +2.0*v*v*v -4.0*v*v*v*v - v*v*v*v*v +2.0*v*v*v*v*v*v);
HT[3] = (1.0 -6.0*v*v +9.0*v*v*v*v -4.0*v*v*v*v*v*v);
HT[4] = (16.0/9.0)*(v +2.0*v*v -2.0*v*v*v -4.0*v*v*v*v + v*v*v*v*v +2.0*v*v*v*v*v*v);
HT[5] = (1.0/9.0)*(-17.0*v/4.0 -5.0*v*v +79.0*v*v*v/4.0 +47.0*v*v*v*v/2.0 -11.0*v*v*v*v*v –

 14.0*v*v*v*v*v*v);
HT[6] = (L[elc]/6.0)*(v/4.0 +v*v/4.0 -5.0*v*v*v/4.0 -5.0*v*v*v*v/4.0 +v*v*v*v*v +v*v*v*v*v*v);
/* Axial case */
HA[0] = (1.0/6.0)*v - (1.0/6.0)*v*v - (2.0/3.0)*v*v*v + (2.0/3.0)*v*v*v*v;
HA[1] = (-4.0/3.0)*v + (8.0/3.0)*v*v + (4.0/3.0)*v*v*v - (8.0/3.0)*v*v*v*v;
HA[2] = 1.0 - 5.0*v*v + 4.0*v*v*v*v;
HA[3] = (4.0/3.0)*v + (8.0/3.0)*v*v - (4.0/3.0)*v*v*v - (8.0/3.0)*v*v*v*v;
HA[4] = (-1.0/6.0)*v - (1.0/6.0)*v*v + (2.0/3.0)*v*v*v + (2.0/3.0)*v*v*v*v;
/* k calculation */
for(i=0;i<5;i++)

{
for(j=0;j<5;j++)

{
kuu[i][j]+=b*(L[elc]/2.0)*Sm[1][1]*wx*H1A[i]*H1A[j];
kub[i][j]+=b*(L[elc]/2.0)*Sm[1][2]*wx*H1A[i]*HA[j];
kulam[i][j]+=(-2)*b*(L[elc]/2.0)*Sm[1][4]*wx*H1A[i]*H1A[j];
kbb[i][j]+=b*(L[elc]/2.0)*Sm[2][2]*wx*HA[i]*HA[j];

117

kblam[i][j]+=(-2)*b*(L[elc]/2.0)*Sm[2][4]*wx*HA[i]*H1A[j];
klamlam[i][j]+=4*b*(L[elc]/2.0)*Sm[4][4]*wx*H1A[i]*H1A[j];

}
}

for(i=0;i<5;i++)
{

for(j=0;j<7;j++)
{

kuw[i][j]+=-b*(L[elc]/2.0)*Sm[1][3]*wx*H1A[i]*H2T[j];
kbw[i][j]+=-b*(L[elc]/2.0)*Sm[2][3]*wx*HA[i]*H2T[j];

}
}

for(i=0;i<7;i++)
{

for(j=0;j<5;j++)
{

kwlam[i][j]+=2*b*(L[elc]/2.0)*Sm[3][4]*wx*H2T[i]*H1A[j];
}

}
for(i=0;i<7;i++)

{
for(j=0;j<7;j++)

{
kww[i][j]+=b*(L[elc]/2.0)*Sm[3][3]*wx*H2T[i]*H2T[j];

}
}

/* Assigning the symmetric parts of the K matrix */
for(i=0;i<5;i++)

{
for(j=0;j<5;j++)

{
kbu[i][j]=kub[j][i];
klamu[i][j]=kulam[j][i];
klamb[i][j]=kblam[j][i];

}
}

for(i=0;i<7;i++)
{

for(j=0;j<5;j++)
{

kwu[i][j]=kuw[j][i];
kwb[i][j]=kbw[j][i];

}
}

for(i=0;i<5;i++)
{

for(j=0;j<7;j++)
{

klamw[i][j]=kwlam[j][i];
}

}

/* mass matrix calculations */
/* muu calculation */
for(i=0;i<5;i++)

{

118

for(j=0;j<5;j++)
{

muu[i][j]+=b*(L[elc]/2.0)*I0*wx*HA[i]*HA[j];
mlamlam[i][j]+=b*(L[elc]/2.0)*I2*wx*HA[i]*HA[j];

}
}

for(i=0;i<5;i++)
{

for(j=0;j<7;j++)
{

muw[i][j]+=(-b)*(L[elc]/2.0)*I1*wx*HA[i]*H1T[j];
}

}
for(i=0;i<7;i++)

{
for(j=0;j<7;j++)

{
mww[i][j]+=b*(L[elc]/2.0)*(I0*wx*HT[i]*HT[j]+I2*wx*H1T[i]*H1T[j]);

}
}

for(i=0;i<7;i++)
{

for(j=0;j<5;j++)
{

mwu[i][j]=muw[j][i];
}

}

n++;
}/*end while*/

/* ---*/
/* Start of time loop */
/* ---*/
for(t=dt,counter=1;t<=tmax;t+=dt,counter++)

{
if(counter/10000.0 == (int)(counter/10000.0))

printf("\nLoop for timestep %12.10lf",t);
accl =-omega*omega*0.05* sin(omega*t);
for(elc=0;elc<nel;elc++)

{
for(i=0,xb=0.0;i<elc;i++)

xb += L[i];
/* For transverse case */
for(i=0;i<(4+inter);i++)

{
for(j=0;j<(4+inter);j++)

{
ki[elc][i][j]=0.0;

}
}

n = 0;
while(n<7)

{
if(n==0)

{
v = 0.949107;

119

wx = 0.129484;
}

if(n==1)
{

v = -0.949107;
wx = 0.129484;

}
if(n==2)

{
v = 0.741531;
wx = 0.279705;

}
if(n==3)

{
v = -0.741531;
wx = 0.279705;

}
if(n==4)

{
v = 0.405845;
wx = 0.381830;

}
if(n==5)

{
v = -0.405845;
wx = 0.381830;

}
if(n==6)

{
v = 0.0;
wx = 0.417959;

}
/* CALCULATIONS FOR THE INCREMENTAL STIFFNESS MATRIX TO CONSIDER
 THE INERTIAL EFFECT OF THE BEAM */
/* THIS EFFECT APPEARS AS AN ADDITIONAL MATRIX OF SIZE 7 X 7 WHICH
 GETS ADDED TO THE MATRIX kt */
/* To calculate the incremental stiffness matrix, we need the H1T */
H1T[0]=(1.0/9.0)*(17.0/4.0-10.0*v-237.0*v*v/4.0+188.0*v*v*v/2.0+55.0*v*v*v*v-

 84.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[1]=(L[elc]/6.0)*(1.0/4.0-v/2.0-15.0*v*v/4.0+5.0*v*v*v+5.0*v*v*v*v-

 6.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[2]=(16.0/9.0)*(-1.0+4.0*v+6.0*v*v-16.0*v*v*v-

 5.0*v*v*v*v+12.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[3]=(-12.0*v+36.0*v*v*v-24.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[4]=(16.0/9.0)*(1.0+4.0*v-6.0*v*v-

 16.0*v*v*v+5.0*v*v*v*v+12.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[5]=(1.0/9.0)*(-17.0/4.0-10.0*v+237.0*v*v/4.0+188.0*v*v*v/2.0-55.0*v*v*v*v-

 84.0*v*v*v*v*v)*(2.0/L[elc]);
H1T[6]=(L[elc]/6.0)*(1.0/4.0+v/2.0-15.0*v*v/4.0-

 5.0*v*v*v+5.0*v*v*v*v+6.0*v*v*v*v*v)*(2.0/L[elc]);
for(i=0;i<(inter+4);i++)

{
for(j=0;j<(inter+4);j++)

{
ki[elc][i][j]+= (-1.0*accl*(L[elc]/2.0))*(gama*wx)*(LB-

 (xb+(L[elc]/2.0)*(1.0+v)))*(H1T[i]*H1T[j]);

120

 }
}

n++;
}/* end while */

}/* end elc */
/*printf("\n Success before K and M assembly");*/
for(elc=0;elc<nel;elc++)

{
for(j=0;j<22;j++)

{
for(k=0;k<22;k++)

{
M[elc][j][k]=0.0;
K[elc][j][k]=0.0;

}
}

for(i=0;i<5;i++)
{

for(j=0;j<5;j++)
{

K[elc][i][j]=kuu[i][j];
M[elc][i][j]=muu[i][j];

}
}

for(i=0;i<5;i++)
{

for(j=5;j<10;j++)
{

K[elc][i][j]=kub[i][j-5];
}

}
for(i=0;i<5;i++)

{
for(j=10;j<17;j++)

{
K[elc][i][j]=kuw[i][j-10];
M[elc][i][j]=muw[i][j-10];

}
}

for(i=0;i<5;i++)
{

for(j=17;j<22;j++)
{

K[elc][i][j]=kulam[i][j-17];
}

}
for(i=5;i<10;i++)

{
for(j=0;j<5;j++)

{
K[elc][i][j]=kbu[i-5][j];

}
}

for(i=5;i<10;i++)
{

for(j=5;j<10;j++)

121

{
K[elc][i][j]=kbb[i-5][j-5];

}
}

for(i=5;i<10;i++)
{

for(j=10;j<17;j++)
{

K[elc][i][j]=kbw[i-5][j-10];
}

}
for(i=5;i<10;i++)

{
for(j=17;j<22;j++)

{
K[elc][i][j]=kblam[i-5][j-17];

}
}

for(i=10;i<17;i++)
{

for(j=0;j<5;j++)
{

K[elc][i][j]=kwu[i-10][j];
M[elc][i][j]=mwu[i-10][j];

}
}

for(i=10;i<17;i++)
{

for(j=5;j<10;j++)
{

K[elc][i][j]=kwb[i-10][j-5];
}

}
for(i=10;i<17;i++)

{
for(j=10;j<17;j++)

{
K[elc][i][j]=kww[i-10][j-10] + ki[elc][i-10][j-10];
M[elc][i][j]=mww[i-10][j-10];

}
}

for(i=10;i<17;i++)
{

for(j=17;j<22;j++)
{

K[elc][i][j]=kwlam[i-10][j-17];
}

}
for(i=17;i<22;i++)

{
for(j=0;j<5;j++)

{
K[elc][i][j]=klamu[i-17][j];

}
}

for(i=17;i<22;i++)

122

{
for(j=5;j<10;j++)

{
K[elc][i][j]=klamb[i-17][j-5];

}
}

for(i=17;i<22;i++)
{

for(j=10;j<17;j++)
{

K[elc][i][j]=klamw[i-17][j-10];
}

}
for(i=17;i<22;i++)

{
for(j=17;j<22;j++)

{
K[elc][i][j]=klamlam[i-17][j-17];
M[elc][i][j]=mlamlam[i-17][j-17];

}
}

}/*end elc */
/* Global Matrix Assembly from temporary Matrix */
for(i=0;i<77;i++)

{
for(j=0;j<77;j++)

{
KG[i][j]=0.0;
MG[i][j]=0.0;

}
}

for(elc=0;elc<nel;elc++)
{

co=17*elc;
for(i=co;i<co+22;i++)

{
if(i==co)

x=i;
if(i==co+1)

x=i+4;
if(i==co+2)

x=i+7;
if(i==co+3)

x=i+10;
if(i==co+4)

x=i+13;
if(i==co+5)

x=i-4;
if (i==co+6)

x=i;
if(i==co+7)

x=i+3;
if(i==co+8)

x=i+6;
if(i==co+9)

x=i+9;

123

if(i==co+10)
x=i-8;

 if(i==co+11)
x=i-8;

if(i==co+12)
x=i-5;

if(i==co+13)
x=i-2;

if(i==co+14)
x=i+1;

if(i==co+15)
x=i+4;

if(i==co+16)
x=i+4;

if(i==co+17)
x=i-13;

if(i==co+18)
x=i-10;

if(i==co+19)
x=i-7;

if(i==co+20)
x=i-4;

if(i==co+21)
x=i;

for(j=co;j<co+22;j++)
{

if(j==co)
y=j;

if(j==co+1)
y=j+4;

if(j==co+2)
y=j+7;

if(j==co+3)
y=j+10;

if(j==co+4)
y=j+13;

if(j==co+5)
y=j-4;

if(j==co+6)
y=j;

if(j==co+7)
y=j+3;

if(j==co+8)
y=j+6;

if(j==co+9)
y=j+9;

if(j==co+10)
y=j-8;

 if(j==co+11)
y=j-8;

if(j==co+12)
y=j-5;

if(j==co+13)
y=j-2;

if(j==co+14)
y=j+1;

124

if(j==co+15)
y=j+4;

if(j==co+16)
y=j+4;

if(j==co+17)
y=j-13;

if(j==co+18)
y=j-10;

if(j==co+19)
y=j-7;

if(j==co+20)
y=j-4;

if(j==co+21)
y=j;

KG[x][y]+=K[elc][i-co][j-co];
MG[x][y]+=M[elc][i-co][j-co];

 } /*end j */
} /* end i */

} /*end elc */
/* coding for assembling the Klamda matrices and its tranpose */
for(i=0;i<2;i++)

z[i]=0.0;
sumlen1=0;
sumlen2=0;
xs1 = 0.375*LB - 0.05*sin(omega*t);
xs2 = xs1 + 0.25*LB;
for(i=0;i<2;i++)

{
if(i==0)

{
for (elc=0;elc<nel;elc++)

{
if (xs1 >= sumlen1)

sumlen1 +=L[elc];
else

break;
}

sumlen1 -=L[elc-1];
z[0] = (xs1-sumlen1)*(2/L[elc-1]) - 1;

}
if(i==1)

{
for (elc=0;elc<nel;elc++)

{
if (xs2 >= sumlen2)

sumlen2 +=L[elc];
else

break;
}

sumlen2 -=L[elc-1];
z[1] = (xs2-sumlen2)*(2/L[elc-1]) - 1;

}
KL[(elc-1)*17 + 2][i] = (1.0/9.0)*(17.0*z[i]/4.0 -5.0*z[i]*z[i] -79.0*z[i]*z[i]*z[i]/4.0

+47.0*z[i]*z[i]*z[i]*z[i]/2.0 +11.0*z[i]*z[i]*z[i]*z[i]*z[i] –

125

14.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);
KL[(elc-1)*17 + 3][i] = (L[elc]/6.0)*(z[i]/4.0 -z[i]*z[i]/4.0 -5.0*z[i]*z[i]*z[i]/4.0

+5.0*z[i]*z[i]*z[i]*z[i]/4.0 +z[i]*z[i]*z[i]*z[i]*z[i] –
z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*17 + 7][i] = (16.0/9.0)*(-z[i] +2.0*z[i]*z[i] +2.0*z[i]*z[i]*z[i] -4.0*z[i]*z[i]*z[i]*z[i] –
z[i]*z[i]*z[i]*z[i]*z[i] +2.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*17 + 11][i] = (1.0 -6.0*z[i]*z[i] +9.0*z[i]*z[i]*z[i]*z[i] -4.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);
KL[(elc-1)*17 + 15][i] = (16.0/9.0)*(z[i] +2.0*z[i]*z[i] -2.0*z[i]*z[i]*z[i] -4.0*z[i]*z[i]*z[i]*z[i] +

z[i]*z[i]*z[i]*z[i]*z[i] +2.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);
KL[(elc-1)*17 + 19][i] = (1.0/9.0)*(-17.0*z[i]/4.0 -5.0*z[i]*z[i] +79.0*z[i]*z[i]*z[i]/4.0

+47.0*z[i]*z[i]*z[i]*z[i]/2.0 -11.0*z[i]*z[i]*z[i]*z[i]*z[i] –
14.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*17 + 20][i] = (L[elc]/6.0)*(z[i]/4.0 +z[i]*z[i]/4.0 -5.0*z[i]*z[i]*z[i]/4.0 –
5.0*z[i]*z[i]*z[i]*z[i]/4.0 +z[i]*z[i]*z[i]*z[i]*z[i]
+z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*17 + 4][i+2] =(1.0/6.0)*z[i] - (1.0/6.0)*z[i]*z[i] - (2.0/3.0)*z[i]*z[i]*z[i] +
(2.0/3.0)*z[i]*z[i]*z[i]*z[i];

KL[(elc-1)*17 + 8][i+2] = (-4.0/3.0)*z[i] + (8.0/3.0)*z[i]*z[i] + (4.0/3.0)*z[i]*z[i]*z[i] –
(8.0/3.0)*z[i]*z[i]*z[i]*z[i];

KL[(elc-1)*17 + 12][i+2] = 1.0 - 5.0*z[i]*z[i] + 4.0*z[i]*z[i]*z[i]*z[i];
KL[(elc-1)*17 + 16][i+2] = (4.0/3.0)*z[i] + (8.0/3.0)*z[i]*z[i] - (4.0/3.0)*z[i]*z[i]*z[i] –

(8.0/3.0)*z[i]*z[i]*z[i]*z[i];
KL[(elc-1)*17 + 21][i+2] = (-1.0/6.0)*z[i] - (1.0/6.0)*z[i]*z[i] + (2.0/3.0)*z[i]*z[i]*z[i] +

(2.0/3.0)*z[i]*z[i]*z[i]*z[i];
} /* end of i */

for (i=0;i<73;i++)
{

for (j=73;j<77;j++)
{

KG[i][j] = KL[i][j-73];
MG[i][j] = 0.0; /*for a moving beam */

}
}

for (i=0;i<73;i++)
{

for(j=73;j<77;j++)
{

KG[j][i] = KL[i][j-73];
MG[j][i] = 0.0; /*for a moving beam */

}
}

/* SOLVING FOR THE DISPLACEMENTS USING THE INITIAL DISPLACEMENTS AS THE
 CONDITION */
/* Now the global stiffness and mass matrix have been calculated.. we can proceed to solve for
 the displacements at the next time step using the newmarks method */
/* step 1: Calculate the effective stiffness matrix */
/* Initializing the KGhat matrix */
for(i=0;i<77;i++)

{
for(j=0;j<77;j++)

{
KGhat[i][j] = 0.0;

}
}

for(i=0;i<77;i++)
{

126

for(j=0;j<77;j++)
{

KGhat[i][j] = KG[i][j] + a0*MG[i][j];
}

}

 /* The KGhat i.e. the effective stiffness matrix has been setup now */
/* step 2: Now, we have to triangularize the KGhat matrix and solve for the displacements */
/* Before that, we have to form the Rhat vector which is Qhat from the Q vector to form the
 the RHS vector for every time step */
/* To calculate Qhatnew[i], we need to calculate the product of MG and Us U's and U''s at
 any time step which is calculated below */
for(i=0;i<77;i++)

{
MGut[i]=0.0;
MGu1t[i]=0.0;
MGu2t[i]=0.0;

}
for(i=0;i<77;i++)

{
for(j=0;j<77;j++)

{
MGut[i]+=a0*MG[i][j]*ut[j];
MGu1t[i]+=a2*MG[i][j]*u1t[j];
MGu2t[i]+=a3*MG[i][j]*u2t[j];

}
}

/* In our case, the Qhat does not change with time, therfore, Qhat = Q */
for(i=0;i<77;i++)

{
Qhat[i]=0.0;
Qhatnew[i]=0.0;
Qhatnewgauss[i]=0.0;

}

for(i=0;i<77;i++)
{

Qhatnew[i] = Qhat[i] + MGut[i] + MGu1t[i] + MGu2t[i];
}

/* Now, we have the Qhat at new time step. Hence, we can now, solve for the utnew[i]s */
for(i=1;i<77;i++)

{
for(j=1;j<77;j++)

{
KGhatgauss[i][j]=KGhat[i][j];

}
}

for(i=1;i<77;i++)
Qhatnewgauss[i]=Qhatnew[i];

/* Since, there are zeros in the main diagonal terms, we can go for gauss elimination with
 scaled partial pivoting */
/* Initializing the variables used in the gauss loop */
max = 0.0;
tmp = 0.0;
pivot = 0.0;
for(i=1;i<=76;i++)

127

{
utnew[i]=0.0;
p[i]=0.0;
d[i]=0.0;

}
for(i=1;i<=76;i++)

{
p[i]=i;
d[i]=fabs(KGhatgauss[i][1]);
for(j=1;j<=76;j++)

if(fabs(KGhatgauss[i][j])>d[i])
d[i] = fabs(KGhatgauss[i][j]);

}
for(i=1;i<=75;i++)

{
max=fabs(KGhatgauss[p[i]][i])/d[p[i]];
maxi=i;
for(k=i+1;k<=76;k++)

if((fabs(KGhatgauss[p[k]][i])/d[p[k]])>max)
{

max=(fabs(KGhatgauss[p[k]][i])/d[p[k]]);
maxi=k;

}
tmp=p[i];
p[i]=p[maxi];
p[maxi]=tmp;
for(j=i+1;j<=76;j++)

{
pivot = KGhatgauss[p[j]][i]/KGhatgauss[p[i]][i];
Qhatnewgauss[p[j]]-=pivot*Qhatnewgauss[p[i]];
for(k=i+1;k<=76;k++)

KGhatgauss[p[j]][k]-=pivot*KGhatgauss[p[i]][k];
}

}
/* Back substitution to get the displacements utnew[i]s */
Qhatnewgauss[p[76]] = Qhatnewgauss[p[76]]/KGhatgauss[p[76]][76];
for(i=75;i>=1;i--)

{
for(j=i+1;j<=76;j++)

Qhatnewgauss[p[i]]-=KGhatgauss[p[i]][j]*Qhatnewgauss[p[j]];
Qhatnewgauss[p[i]]=Qhatnewgauss[p[i]]/KGhatgauss[p[i]][i];

}
for(i=1;i<77;i++)

utnew[i] = Qhatnewgauss[p[i]];
utnew[0]=0.0;
if(counter/1000.0 == (int)(counter/1000.0))

{
fprintf(fp2,"\n%12.10lf %lf %lf %lf",t,utnew[2],utnew[36],utnew[70]);
printf("\n%12.10lf %lf",t,utnew[2]);

}
/* Now, having calculated the u's at time t plus dt, we have to calculate the u1tdt and u2tdt */
for(i=0;i<77;i++)

{
u2tnew[i]=0.0;
u1tnew[i]=0.0;

}

128

for(i=0;i<77;i++)
{

u2tnew[i] = a0*utnew[i]-a0*ut[i]-a2*u1t[i]-a3*u2t[i];
}

for(i=0;i<77;i++)
{

u1tnew[i] = u1t[i]+a6*u2t[i]+a7*u2tnew[i];
}

/* BEFORE GOING TO THE NEXT TIME STEP, ASSIGN THE NEW VALUES OF U,U' AND U'' AS THE
 STARTING VALUES */
for(i=0;i<77;i++)

{
ut[i]=utnew[i];
u1t[i]=u1tnew[i];
u2t[i]=u2tnew[i];

}
/* LOOP BACK FOR THE NEXT TIME STEP */

}/* end time loop */
fclose(fp2);

printf("The file has been printed");
printf("%lf",tmax);
printf("success");

} /*end main */

129

APPENDIX B

/***/
/* FIRST ORDER SHEAR DEFORMATION THEORY */
/* THE ACCELERATION IS -A*OMEGA SQUARE *SIN(OMEGA*T) */
/* THIS PROGRAM IS FOR A COMPOSITE BEAM WITH SHEAR EFFECTS BEING CONSIDERED
 USING CLPT APPROACH */
/***/
include <stdio.h>
include <math.h>
define m 10
define TINY 1.0e-20
/***/
/* Initial Displacements given as the first mode shape normalized to 0.01m at the left end of the beam */
/***/
main()
{
 FILE *fp2; /* Declaration of the File Pointer */
 /* Variable declaration begins */
 int nel,elc,i,j,k,s,n,x,y,co,inter,maxi=0,tmp=0,p[101]={0},no=0,counter=1,yes=0;
 double I=0.0,omega,Rhoperarea,Rho=0.0,LB,t=0.0,tmax,tinc,X[15]={0.0},gama=0.0,HT[7]={0.0},
 HA[5]={0.0},M[4][29][29]={0.0};
 double [4][29][29]={0.0},H2T[7]={0.0},H1A[5]={0.0},L[10]={0.0},pi=3.14159265359,p2=0.0,p1=0.0;
 double c,wx,u,v,ma[10][5][5]={0.0},H1T[7]={0.0},H2A[5]={0.0};
 double I0=0.0,I1=0.0,I2=0.0,hi[10]={0.0};
 double S11[5][5]={0.0},S12[5][3]={0.0},S21[3][5]={0.0},S22[3][3]={0.0},Sm[5][5]={0},
 S12ym[5][3]={0.0},S12ym21[4][4]={0.0};
 /* Declaration for the element mass matrix */
 double muu[5][5]={0.0},mub[5][5]={0.0},muwb[5][7]={0.0},muws[5][7]={0.0},muwby[5][5]={0.0};
 double mbb[5][5]={0.0},mbwb[5][7]={0.0},mbws[5][7]={0.0},mbwby[5][5]={0.0};
 double mwbwb[7][7]={0.0},mwbws[7][7]={0.0},mwbwby[7][5]={0.0};
 double mwsws[7][7]={0.0},mwswby[7][5]={0.0};
 double mwbywby[5][5]={0.0};
 /* Declaration for the symmetric parts of element mass matrix */
 double mbu[5][5]={0.0},mwbu[7][5]={0.0},mwsu[7][5]={0.0},mwbyu[5][5]={0.0};
 double mwbb[7][5]={0.0},mwsb[7][5]={0.0},mwbyb[5][5]={0.0};
 double mwswb[7][7]={0.0},mwbywb[5][7]={0.0};
 double mwbyws[5][7]={0.0};
 /* Declaration for the element stiffness matrix */
 double kuu[5][5]={0.0},kub[5][5]={0.0},kuwb[5][7]={0.0},kuws[5][7]={0.0},kuwby[5][5]={0.0};
 double kbb[5][5]={0.0},kbwb[5][7]={0.0},kbws[5][7]={0.0},kbwby[5][5]={0.0};
 double kwbwb[7][7]={0.0},kwbws[7][7]={0.0},kwbwby[7][5]={0.0};
 double kwsws[7][7]={0.0},kwswby[7][5]={0.0};
 double kwbywby[5][5]={0.0};
 double ki[5][7][7]={0.0};
 /* Declaration of the symmetric parts of stiffness matrix */
 double kbu[5][5]={0.0},kwbu[7][5]={0.0},kwsu[7][5]={0.0},kwbyu[5][5]={0.0},kwsyu[5][5]={0.0};
 double kwbb[7][5]={0.0},kwsb[7][5]={0.0},kwbyb[5][5]={0.0},kwsyb[5][5]={0.0};
 double kwswb[7][7]={0.0},kwbywb[5][7]={0.0},kwsywb[5][7]={0.0};
 double kwbyws[5][7]={0.0},kwsyws[5][7]={0.0};
 double kwsywby[5][5]={0.0};
 /* Declaration for the global matrices and temporary matrices */
 double KL[101][6]={0.0},sumlen1=0.0,sumlen2=0.0,z[2]={0},xs1,xs2,xb=0.0,accl=0.0,w=0.0;

130

 double KG[101][101]={0.0};
 double MG[101][101]={0.0};
 double b=0.0,A11=0.0,B11=0.0,D11=0.0,Nx=0.0;
 /* Additional variables required for FSDT */
 double SCF=0.0, Qmatstar[3][3]={0.0}, Qstarbar[10][3][3]={0.0}, G23=0.0,
 G13=0.0,H[3][3]={0.0},Astar=0.0;
 /* Declarations for matrix inverse */
 int ni,ii,iii=0,imax,jj,ip,indx[m]={0};
 double big=0.0, dum=0.0, sum=0.0, temp=0.0, vv[m]={0.0},di=0.0,a[m][m]={0.0},col[m]={0.0},
 sum1=0.0,ym[m][m]={0.0};
 double det=0.0;
 /* Declarations required for solving the above mentioned problem using newmarks method */
 double ut[101]={0.0},dt=2.5e-7;
 double u1t[101]={0.0},u2t[101]={0.0},utnew[101]={0.0},u1tnew[101]={0.0},u2tnew[101]={0.0};
 double Q[101]={0.0},Qhat[101]={0.0},Qhatnew[101]={0.0},Qhatnewgauss[101]={0.0};
 double KGhat[101][101]={0.0},KGhatgauss[101][101]={0.0};
 double MGut[101]={0.0},MGu1t[101]={0.0},MGu2t[101]={0.0};
 double a0=0.0,a2=0.0,a3=0.0,a6=0.0,a7=0.0,delta=0.75,alpha=0.6;
 double max=0.0,d[101]={0.0},pivot=0.0;
 /* Decalration for a composite beam */
 double layerno[10]={0.0},layerangle[10]={0.0},E1=0.0,E2=0.0,G12=0.0,h[10]={0.0},
 hbar[10]={0.0},new12=0.0;
 double Qbar[10][4][4]={0.0},Qmat[4][4]={0.0},A[4][4]={0.0},B[4][4]={0.0},D[4][4]={0.0},
 Delta=0.0;
 double C1=0.0,S1=0.0,C2=0.0,S2=0.0,C3=0.0,S3=0.0,C4=0.0,S4=0.0;
 double D1=0.0,D2=0.0,D3=0.0,Dstar=0.0,D11star=0.0,Exxb=0.0,height=0.0;
 /* END OF DECLARATION */

 fp2 = fopen("mvtipdis","w"); /* Output file name mvtipdis */
 /* Initialization begins */
 /* initializing all the us at time t = 0 so as to have the tip deflection as
 0.01 meters for an overhanging beam case .. using first mode as the initial shape */
 /* Since, there is coupling due to the material properties, the axial displacemenets are not zeros */
 ut[0]=0.00E+00;ut[1]=-9.86E-18;ut[2]=1.00E-02;ut[3]=-3.62E-02;ut[4]=6.49E-04;ut[5]=5.77E-06;
 ut[6]=-3.52E-17;ut[7]=-6.91E-05;ut[8]=1.76E-16;ut[9]=7.86E-03;ut[10]=1.33E-03;
 ut[11]=-1.56E-16;ut[12]=-1.29E-04;ut[13]=1.79E-16;ut[14]=5.95E-03;ut[15]=8.41E-04;
 ut[16]=-1.24E-16;ut[17]=-1.71E-04;ut[18]=8.16E-17;ut[19]=4.29E-03;ut[20]=7.25E-04;
 ut[21]=1.40E-16;ut[22]=-1.90E-04;ut[23]=5.06E-18;ut[24]=2.86E-03;ut[25]=-2.10E-02;
 ut[26]=1.92E-04;ut[27]=-3.02E-08;ut[28]=7.82E-17;ut[29]=-1.82E-04;ut[30]=-7.95E-17;
 ut[31]=1.67E-03;ut[32]=2.88E-04;ut[33]=-5.27E-16;ut[34]=-1.44E-04;ut[35]=-9.27E-17;
 ut[36]=7.17E-04;ut[37]=9.42E-05;ut[38]=-6.49E-17;ut[39]=-7.53E-05;ut[40]=-8.25E-23;
 ut[41]=-5.49E-16;ut[42]=5.82E-16;ut[43]=4.82E-16;ut[44]=-4.55E-06;ut[45]=-1.95E-17;
 ut[46]=-4.76E-04;ut[47]=-5.72E-03;ut[48]=-3.44E-05;ut[49]=-7.05E-09;ut[50]=8.11E-17;
 ut[51]=3.91E-05;ut[52]=-6.40E-17;ut[53]=-7.14E-04;ut[54]=-1.13E-04;ut[55]=5.86E-16;
 ut[56]=5.49E-05;ut[57]=-1.86E-18;ut[58]=-7.15E-04;ut[59]=-1.10E-04;ut[60]=3.14E-16;
 ut[61]=4.21E-05;ut[62]=7.07E-17;ut[63]=-4.76E-04;ut[64]=-7.29E-05;ut[65]=-1.46E-17;
 ut[66]=-1.15E-17;ut[67]=-1.79E-20;ut[68]=-1.39E-17;ut[69]=9.53E-03;ut[70]=-1.02E-06;
 ut[71]=4.44E-08;ut[72]=-2.86E-17;ut[73]=1.14E-05;ut[74]=-2.23E-17;ut[75]=5.96E-04;
 ut[76]=9.95E-05;ut[77]=-2.55E-18;ut[78]=1.80E-05;ut[79]=-1.55E-17;ut[80]=1.19E-03;
 ut[81]=1.70E-04;ut[82]=4.47E-17;ut[83]=2.06E-05;ut[84]=-2.83E-18;ut[85]=1.79E-03;
 ut[86]=3.00E-04;ut[87]=-7.22E-18;ut[88]=2.10E-05;ut[89]=-6.10E-19;ut[90]=2.38E-03;
 ut[91]=9.53E-03;ut[92]=1.55E-04;ut[93]=-1.39E-06;ut[94]=-4.85E-18;ut[95]=-1.21E-16;
 ut[96]=-3.27E-02;ut[97]=8.01E-03;ut[98]=-4.64E-18;ut[99]=5.63E-06;ut[100]=-3.34E-03;
 /* Input from the user */
 printf("Enter the length of the beam :");
 scanf("%lf",&LB);

131

 printf("Enter the total simulation time :");
 scanf("%lf",&tmax);
 printf("Enter the Omega value :");
 scanf("%lf",&omega);
 printf("Enter the width of the beam :");
 scanf("%lf",&b);
 printf("Enter the height of the beam :");
 scanf("%lf",&height);
 printf("Enter the Rho value in kg/cu.m :");
 scanf("%lf",&Rho);
 printf("Enter the E1 value in Pa :");
 scanf("%lf",&E1);
 printf("Enter the E2 value in Pa :");
 scanf("%lf",&E2);
 printf("Enter the G12 value in Pa :");
 scanf("%lf",&G12);
 printf("Enter the G23 value in Pa :");
 scanf("%lf",&G23);
 printf("Enter the G13 value in Pa :");
 scanf("%lf",&G13);
 printf("Enter the Shear Correction Factor SCF :");
 scanf("%lf",&SCF);
 printf("Enter the new12 value :");
 scanf("%lf",&new12);
 printf("Enter the number of layers ");
 scanf("%d",&no);
 I = b*height*height*height/12.0;
 for(i=1;i<=no;i++)
 {
 printf("Enter the the angle for ply number %d ",i);
 scanf("%lf",&layerangle[i]);
 }
 for(i=1;i<=no;i++)
 h[i]=height/no;
 for(i=2,hi[i-1]=-height/2.0;i<=no+1;i++)
 hi[i]=hi[i-1]+(height/no);
 for(i=1;i<=no;i++)
 hbar[i]=hi[i]+height/(2*no);
 printf("\nThe layer angles are ");
 for(i=1;i<=no;i++)
 printf("\nlayerangle[%d] = %lf ",i,layerangle[i]);
 printf("\nThe layer thickness are \n");
 for(i=1;i<=no;i++)
 printf("\nh[%d] = %lf ",i,h[i]);
 printf("\nThe h[i]s are \n");
 for(i=1;i<=no+1;i++)
 printf("\nhi[%d] = %lf ",i,hi[i]);
 printf("\nThe hbars[i]s are \n");
 for(i=1;i<=no;i++)
 printf("\nhbar[%d] = %lf ",i,hbar[i]);
 for(i=1;i<=no;i++)
 layerangle[i]*=pi/180.0;
 a0=1.0/(alpha*dt*dt);
 a2=1.0/(alpha*dt);
 a3=(1.0/(2.0*alpha))-1.0;
 a6=dt*(1.0-delta);

132

 a7=delta*dt;
 nel=4;
 inter=3;
 X[0]=0.0*LB;
 X[1]=0.25*LB;
 X[2]=0.5*LB;
 X[3]=0.75*LB;
 X[4]=1.0*LB;
 gama=Rho*height*b;
 for(i=1;i<=no;i++)
 {
 I0+=(hi[i+1]-hi[i])*Rho;
 I1+=((hi[i+1]*hi[i+1])-(hi[i]*hi[i]))*Rho/2.0;
 I2+=((hi[i+1]*hi[i+1]*hi[i+1])-(hi[i]*hi[i]*hi[i]))*Rho/3.0;
 }
 printf("\nDo you want to include rotary inertia\n--type 1 for yes and 0 for no ");
 scanf("%d",&yes);
 if(yes==0)
 I2=0.0;
 printf("\n I0= %18.16f I1=%18.16lf I2=%18.16lf \n",I0,I1,I2);
 fprintf(fp2,"\n I0 = %12.10lf \n ",I0);
 /* The composite material properties and ABD matrix calculations */
 /* Begin Q matrix calculations */
 Delta = 1 - (new12*new12)*E2/E1;
 Qmat[1][1]=E1/Delta;
 Qmat[1][2]=new12*E2/Delta;
 Qmat[2][1]=Qmat[1][2];
 Qmat[2][2]=E2/Delta;
 Qmat[3][3]=G12;
 Qmatstar[1][1]=G23;
 Qmatstar[2][2]=G13;
 Qmatstar[1][2]=0.0;
 Qmatstar[2][1]=0.0;
 /* End Q matrix calculations */
 /* Begin Qbar matrix calculations */
 for(i=1;i<=no;i++)
 {
 C1=cos(layerangle[i]);
 C2=cos(layerangle[i])*cos(layerangle[i]);
 C3=cos(layerangle[i])*cos(layerangle[i])*cos(layerangle[i]);
 C4=cos(layerangle[i])*cos(layerangle[i])*cos(layerangle[i])*cos(layerangle[i]);
 S1=sin(layerangle[i]);
 S2=sin(layerangle[i])*sin(layerangle[i]);
 S3=sin(layerangle[i])*sin(layerangle[i])*sin(layerangle[i]);
 S4=sin(layerangle[i])*sin(layerangle[i])*sin(layerangle[i])*sin(layerangle[i]);

 Qbar[i][1][1] = Qmat[1][1]*C4 + 2*(Qmat[1][2] + 2*Qmat[3][3])*S2*C2 + Qmat[2][2]*S4;
 Qbar[i][1][2] = (Qmat[1][1] + Qmat[2][2] - 4*Qmat[3][3])*S2*C2 + Qmat[1][2]*(S4 + C4);
 Qbar[i][2][2] = Qmat[1][1]*S4 + 2*(Qmat[1][2] + 2*Qmat[3][3])*S2*C2 + Qmat[2][2]*C4;
 Qbar[i][2][1] = Qbar[i][1][2];
 Qbar[i][1][3] = (Qmat[1][1] - Qmat[1][2] -2*Qmat[3][3])*S1*C3 + (Qmat[1][2] - Qmat[2][2] +
 2*Qmat[3][3])*S3*C1;
 Qbar[i][2][3] = (Qmat[1][1] - Qmat[1][2] -2*Qmat[3][3])*S3*C1 + (Qmat[1][2] - Qmat[2][2] +
 2*Qmat[3][3])*S1*C3;
 Qbar[i][3][1] = Qbar[i][1][3];

133

 Qbar[i][3][2] = Qbar[i][2][3];
 Qbar[i][3][3] = (Qmat[1][1] + Qmat[2][2] - 2*Qmat[1][2] - 2*Qmat[3][3])*S2*C2 +
 Qmat[3][3]*(S4 + C4);
 Qstarbar[i][1][1] = Qmatstar[1][1]*C2 + Qmatstar[2][2]*S2;
 Qstarbar[i][1][2] = (Qmatstar[2][2]-Qmatstar[1][1])*S1*C1;
 Qstarbar[i][2][2] = Qmatstar[1][1]*S2 + Qmatstar[2][2]*C2;
 Qstarbar[i][2][1] = Qstarbar[i][1][2];
 }
 /* End Qbar matrix calculations */
 for(i=1;i<=no;i++)
 {
 printf("\n The Qbar matrix for the layer %d is \n ",i);
 for(j=1;j<4;j++)
 {
 for(k=1;k<4;k++)
 {
 printf("%lf ",Qbar[i][j][k]);
 }
 printf("\n");
 }
 printf("\n");
 printf("\n The Qbarstar matrix for the layer %d is \n ",i);
 for(j=1;j<3;j++)
 {
 for(k=1;k<3;k++)
 {
 printf("%lf ",Qstarbar[i][j][k]);
 }
 printf("\n");
 }
 printf("\n");
 }
 /* Begin A matrix calculations */
 printf("\n The A matrix is \n");
 for(i=1;i<4;i++)
 {
 for(j=1;j<4;j++)
 {
 for(k=1;k<=no;k++)
 {
 A[i][j]+=Qbar[k][i][j]*h[k];
 }
 printf("%lf ",A[i][j]);
 }
 printf("\n");
 }
 /* End A matrix calculations */
 printf("\n The B matrix is \n");
 /* Begin B matrix calculatons */
 for(i=1;i<4;i++)
 {
 for(j=1;j<4;j++)
 {
 for(k=1;k<=no;k++)
 {
 B[i][j]+=Qbar[k][i][j]*h[k]*hbar[k];

134

 }
 printf("%lf ",B[i][j]);
 }
 printf("\n");
 }
 /* End B matrix calculations */
 printf("\n The D matrix is \n");
 /* Begin D matrix calculations */
 for(i=1;i<4;i++)
 {
 for(j=1;j<4;j++)
 {
 for(k=1;k<=no;k++)
 {
 D[i][j]+=Qbar[k][i][j]*(h[k]*hbar[k]*hbar[k] + h[k]*h[k]*h[k]/12.0);
 }
 printf("%lf ",D[i][j]);
 }
 printf("\n");
 }
 /* End D matrix calculations */
 /* Begin Transverse shear stiffness matrix H*/
 printf("\n The H matrix is \n");
 for(i=1;i<3;i++)
 {
 for(j=1;j<3;j++)
 {
 for(k=1;k<=no;k++)
 {
 H[i][j]+=Qstarbar[k][i][j]*h[k];
 }
 printf("%lf ",H[i][j]);
 }
 printf("\n");
 }
 /* To calculate Exxb to do an isotropic equivalent moduli verification */
 D1 = D[2][2]*D[3][3] - D[2][3]*D[2][3];
 D2 = D[1][3]*D[2][3] - D[1][2]*D[3][3];
 D3 = D[1][2]*D[2][3] - D[2][2]*D[1][3];
 Dstar = D[1][1]*D1 + D[1][2]*D2 + D[1][3]*D3;
 D11star = (D[2][2]*D[3][3] - D[2][3]*D[2][3])/Dstar;
 Exxb = 12.0/(height*height*height*D11star);
 printf("\n The Exxb value is %lf ",Exxb);
 for(i=0;i<=nel;i++)
 L[i] = (X[i+1]-X[i]);
 fprintf(fp2,"\nThe results are for %lft with inertia dt = 0.00025\n",omega);
 /* Assigning S11 matrix values */
 S11[1][1]=A[1][1];
 S11[1][2]=A[1][3];
 S11[1][3]=B[1][1];
 S11[1][4]=B[1][3];
 S11[2][1]=A[1][3];
 S11[2][2]=A[3][3];
 S11[2][3]=B[1][3];
 S11[2][4]=B[3][3];
 S11[3][1]=B[1][1];

135

 S11[3][2]=B[1][3];
 S11[3][3]=D[1][1];
 S11[3][4]=D[1][3];
 S11[4][1]=B[1][3];
 S11[4][2]=B[3][3];
 S11[4][3]=D[1][3];
 S11[4][4]=D[3][3];
 /* Assigning S12 matrix values */
 S12[1][1]=A[1][2];
 S12[2][1]=A[2][3];
 S12[3][1]=B[1][2];
 S12[4][1]=B[2][3];
 S12[1][2]=B[1][2];
 S12[2][2]=B[2][3];
 S12[3][2]=D[1][2];
 /* Assigning S21 matrix values */
 S21[1][1]=A[1][2];
 S21[1][2]=A[2][3];
 S21[1][3]=B[1][2];
 S21[1][4]=B[2][3];
 S21[2][1]=B[1][2];
 S21[2][2]=B[2][3];
 S21[2][3]=D[1][2];
 S21[2][4]=D[2][3];
 /* Assigning S22 matrix values */
 S22[1][1]=A[2][2];
 S22[1][2]=B[2][2];
 S22[2][1]=B[2][2];
 S22[2][2]=D[2][2];
 /* Calculating the Astar term */
 Astar = SCF*(H[2][2]-(H[1][2]*H[1][2])/H[1][1]);
 /* Matrix inverse algorithm */
 ni=2;
 for(i=1;i<=ni;i++)
 {
 for(j=1;j<=ni;j++)
 {
 a[i][j]=S22[i][j];
 }
 }
 /* BEGIN LU DECOMPOSITION */
 di=1.0;
 for(i=1;i<=ni;i++)
 {
 big = 0.0;
 for(j=1;j<=ni;j++)
 {
 if((temp=fabs(a[i][j]))>big)
 big=temp;
 }
 if(big==0.0)
 printf("\n Singular matrix in LU Decomposition");
 vv[i]=1.0/big;
 }
 for(j=1;j<=ni;j++)
 {

136

 for(i=1;i<j;i++)
 {
 sum=a[i][j];
 for(k=1;k<i;k++)
 sum-=a[i][k]*a[k][j];
 a[i][j]=sum;
 }
 big=0.0;
 for(i=j;i<=ni;i++)
 {
 sum=a[i][j];
 for(k=1;k<j;k++)
 sum-=a[i][k]*a[k][j];
 a[i][j]=sum;
 if((dum=vv[i]*fabs(sum))>=big)
 {
 big=dum;
 imax=i;
 }
 }
 if(j!=imax)
 {
 for(k=1;k<=ni;k++)
 {
 dum=a[imax][k];
 a[imax][k]=a[j][k];
 a[j][k]=dum;
 }
 di=-(di);
 vv[imax]=vv[j];
 }
 indx[j]=imax;
 if(a[j][j]==0.0)
 a[j][j]=0.0;
 if(j!=ni)
 {
 dum=1.0/a[j][j];
 for(i=j+1;i<=ni;i++)
 a[i][j]*=dum;
 }
 }
 /* END LU DECOMPOSITON */
 for(jj=1;jj<=ni;jj++)
 {
 for(ii=1;ii<=ni;ii++)
 col[ii]=0.0;
 col[jj]=1.0;
 /* BEGIN LU BACK SUBSTITUTION */
 sum1=0.0;
 iii=0;
 for(i=1;i<=ni;i++)
 {
 ip=indx[i];
 sum1=col[ip];
 col[ip]=col[i];
 if(iii)

137

 for(j=iii;j<=i-1;j++)
 sum1-=a[i][j]*col[j];
 else if (sum1)
 iii=i;
 col[i]=sum1;
 }
 for(i=ni;i>=1;i--)
 {
 sum1=col[i];
 for(j=i+1;j<=ni;j++)
 sum1-=a[i][j]*col[j];
 col[i]=sum1/a[i][i];
 }
 for(ii=1;ii<=ni;ii++)
 ym[ii][jj]=col[ii];
 }
 /*for(i=1;i<=ni;i++)
 {
 for(j=1;j<=ni;j++)
 printf(" %12.8lf " ,ym[i][j]);
 printf("\n");
 }*/
 /* The inverse of the matrix has been found */
 /* USING ALTERNATIVE AND SHORT CUT METHOD TO FIND OUT THE INVERSE OF
 A 2 X 2 MATRIX */
 printf("\n Inverse by alternative method \n ");
 for(i=1;i<3;i++)
 {
 for(j=1;j<3;j++)
 {
 a[i][j]=S22[i][j];
 }
 }
 ym[1][1]=a[2][2];
 ym[2][2]=a[1][1];
 ym[1][2]=-a[1][2];
 ym[2][1]=-a[2][1];
 det=a[1][1]*a[2][2]-a[2][1]*a[1][2];
 for(i=1;i<3;i++)
 {
 for(j=1;j<3;j++)
 {
 ym[i][j]/=det;
 printf(" %lf ",ym[i][j]);
 }
 printf("\n");
 }
 /* END OF ALTERNATIVE SHORTCUT METHOD TO FIND
 THE INVERSE OF A 2 X 2 MATRIX */
 /* Calculate S12 * S22inv i.e.ym */
 for(i=1;i<=4;i++)
 {
 for(j=1;j<=2;j++)
 {
 S12ym[i][j]=0.0;
 for(k=1;k<=2;k++)

138

 {
 S12ym[i][j]+=S12[i][k]*ym[k][j];
 }
 }
 }
 /* Calculate S12ym * S21 */
 for(i=1;i<=4;i++)
 {
 for(j=1;j<=4;j++)
 {
 S12ym21[i][j]=0.0;
 for(k=1;k<=2;k++)
 {
 S12ym21[i][j]+=S12ym[i][k]*S21[k][j];
 }
 }
 }
 printf("\n");
 printf("\n Sm is \n");
 for(i=1;i<=4;i++)
 {
 for(j=1;j<=4;j++)
 {
 Sm[i][j]=S11[i][j]-S12ym21[i][j];
 printf("%lf ",Sm[i][j]);
 }
 printf("\n");
 }
 /* SM has been calculated before this step */
 /* Time independent part of the program ie. the k matrix calculations for every element */
 n = 0;
 while(n<7)
 {
 if(n==0)
 {
 v = 0.949107;
 wx = 0.129484;
 }
 if(n==1)
 {
 v = -0.949107;
 wx = 0.129484;
 }
 if(n==2)
 {
 v = 0.741531;
 wx = 0.279705;
 }
 if(n==3)
 {
 v = -0.741531;
 wx = 0.279705;
 }
 if(n==4)
 {
 v = 0.405845;

139

 wx = 0.381830;
 }
 if(n==5)
 {
 v = -0.405845;
 wx = 0.381830;
 }
 if(n==6)
 {
 v = 0.0;
 wx = 0.417959;
 }
 /* H' for the Transverse case */
 H1T[0] = (1.0/9.0)*(17.0/4.0 - 10.0 *v - 237.0*v*v/4.0 + 188.0*v*v*v/2.0 + 55.0*v*v*v*v –
 84.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[1] = (L[elc]/6.0)*(1.0/4.0 - v/2.0 - 15.0*v*v/4.0 + 5.0*v*v*v + 5.0*v*v*v*v –
 6.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[2] = (16.0/9.0)*(-1.0 + 4.0*v + 6.0*v*v - 16.0*v*v*v - 5.0*v*v*v*v +
 12.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[3] = (-12.0*v + 36.0*v*v*v - 24.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[4] = (16.0/9.0)*(1.0 + 4.0*v - 6.0*v*v - 16.0*v*v*v + 5.0*v*v*v*v +
 12.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[5] = (1.0/9.0)*(-17.0/4.0 - 10.0*v + 237*v*v/4.0 + 188.0*v*v*v/2.0 - 55.0*v*v*v*v –
 84.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[6] = (L[elc]/6.0)*(1.0/4.0 + v/2.0 - 15.0*v*v/4.0 - 5.0*v*v*v + 5.0*v*v*v*v +
 6.0*v*v*v*v*v)*(2.0/L[elc]);

 /* H'' for the Transverse case */
 H2T[0] = (1.0/9.0)*(-10.0 -474.0*v/4.0 + 282.0*v*v + 220.0*v*v*v –
 420*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
 H2T[1] = (L[elc]/6.0)*(-1.0/2.0 -30.0*v/4.0 +15.0*v*v + 20.0*v*v*v –
 30.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
 H2T[2] = (16.0/9.0)*(4.0 +12.0*v -48.0*v*v -20.0*v*v*v
 +60.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
 H2T[3] = (-12.0 +108.0*v*v -120.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
 H2T[4] = (16.0/9.0)*(4.0 -12.0*v -48.0*v*v +20.0*v*v*v
 +60.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
 H2T[5] = (1.0/9.0)*(-10.0 +474.0*v/4.0 +282.0*v*v -220.0*v*v*v –
 420.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);
 H2T[6] = (L[elc]/6.0)*(1.0/2.0 -30.0*v/4.0 -15.0*v*v +20.0*v*v*v
 +30.0*v*v*v*v)*(2.0/L[elc])*(2.0/L[elc]);

 /* H' for the Axial case */
 H1A[0] = ((1.0/6.0)-(1.0/3.0)*v-2.0*v*v+(8.0/3.0)*v*v*v)*(2.0/L[elc]);
 H1A[1] = ((-4.0/3.0)+(16.0/3.0)*v+4.0*v*v-(32.0/3.0)*v*v*v)*(2.0/L[elc]);
 H1A[2] = (-10.0*v+16.0*v*v*v)*(2.0/L[elc]);
 H1A[3] = ((4.0/3.0)+(16.0/3.0)*v-4.0*v*v-(32.0/3.0)*v*v*v)*(2.0/L[elc]);
 H1A[4] = ((-1.0/6.0)-(1.0/3.0)*v+2.0*v*v+(8.0/3.0)*v*v*v)*(2.0/L[elc]);

 /* H'' for the Axial case */
 H2A[0] = (-1.0/3.0 - 4.0*v + 8.0*v*v)*(2.0/L[elc])*(2.0/L[elc]);
 H2A[1] = (16.0/3.0 + 8.0*v - 32.0*v*v)*(2.0/L[elc])*(2.0/L[elc]);
 H2A[2] = (-10.0 + 48.0*v*v)*(2.0/L[elc])*(2.0/L[elc]);
 H2A[3] = (16.0/3.0 - 8.0*v - 32.0*v*v)*(2.0/L[elc])*(2.0/L[elc]);
 H2A[4] = (-1.0/3.0 + 4.0*v + 8.0*v*v)*(2.0/L[elc])*(2.0/L[elc]);

140

 /* Transverse case */
 HT[0] = (1.0/9.0)*(17.0*v/4.0 -5.0*v*v -79.0*v*v*v/4.0 +47.0*v*v*v*v/2.0 +11.0*v*v*v*v*v
 -14.0*v*v*v*v*v*v);
 HT[1] = (L[elc]/6.0)*(v/4.0 -v*v/4.0 -5.0*v*v*v/4.0 +5.0*v*v*v*v/4.0 +v*v*v*v*v –
 v*v*v*v*v*v);
 HT[2] = (16.0/9.0)*(-v +2.0*v*v +2.0*v*v*v -4.0*v*v*v*v - v*v*v*v*v +2.0*v*v*v*v*v*v);
 HT[3] = (1.0 -6.0*v*v +9.0*v*v*v*v -4.0*v*v*v*v*v*v);
 HT[4] = (16.0/9.0)*(v +2.0*v*v -2.0*v*v*v -4.0*v*v*v*v + v*v*v*v*v +2.0*v*v*v*v*v*v);
 HT[5] = (1.0/9.0)*(-17.0*v/4.0 -5.0*v*v +79.0*v*v*v/4.0 +47.0*v*v*v*v/2.0 -11.0*v*v*v*v*v -
 14.0*v*v*v*v*v*v);
 HT[6] = (L[elc]/6.0)*(v/4.0 +v*v/4.0 -5.0*v*v*v/4.0 -5.0*v*v*v*v/4.0 +v*v*v*v*v
 +v*v*v*v*v*v);

 /* Axial case */
 HA[0] = (1.0/6.0)*v - (1.0/6.0)*v*v - (2.0/3.0)*v*v*v + (2.0/3.0)*v*v*v*v;
 HA[1] = (-4.0/3.0)*v + (8.0/3.0)*v*v + (4.0/3.0)*v*v*v - (8.0/3.0)*v*v*v*v;
 HA[2] = 1.0 - 5.0*v*v + 4.0*v*v*v*v;
 HA[3] = (4.0/3.0)*v + (8.0/3.0)*v*v - (4.0/3.0)*v*v*v - (8.0/3.0)*v*v*v*v;
 HA[4] = (-1.0/6.0)*v - (1.0/6.0)*v*v + (2.0/3.0)*v*v*v + (2.0/3.0)*v*v*v*v;

 /* k calculation */
 for(i=0;i<5;i++)
 {
 for(j=0;j<5;j++)
 {
 /* Stiffness matrix */
 kuu[i][j]+=b*(L[elc]/2.0)*Sm[1][1]*wx*H1A[i]*H1A[j];
 kub[i][j]+=b*(L[elc]/2.0)*Sm[1][2]*wx*H1A[i]*HA[j];
 kuwby[i][j]+=(-2.0)*b*(L[elc]/2.0)*Sm[1][4]*wx*H1A[i]*H1A[j];
 kbb[i][j]+=b*(L[elc]/2.0)*Sm[2][2]*wx*HA[i]*HA[j];
 kbwby[i][j]+=(-2.0)*b*(L[elc]/2.0)*Sm[2][4]*wx*HA[i]*H1A[j];
 kwbywby[i][j]+=4.0*b*(L[elc]/2.0)*Sm[4][4]*wx*H1A[i]*H1A[j];
 /* Mass matrix */
 muu[i][j]+=b*(L[elc]/2.0)*I0*wx*HA[i]*HA[j];
 mub[i][j]=0.0;
 muwby[i][j]=0.0;
 mbb[i][j]=0.0;
 mbwby[i][j]=0.0;
 mwbywby[i][j]+=b*(L[elc]/2.0)*I2*wx*HA[i]*HA[j];
 }
 }
 for(i=0;i<5;i++)
 {
 for(j=0;j<7;j++)
 {
 /* Stiffness matrix */
 kuwb[i][j]+=(-b)*(L[elc]/2.0)*Sm[1][3]*wx*H1A[i]*H2T[j];
 kbwb[i][j]+=(-b)*(L[elc]/2.0)*Sm[2][3]*wx*HA[i]*H2T[j];
 /* Mass matrix */
 muwb[i][j]+=(-b)*(L[elc]/2.0)*I1*wx*HA[i]*H1T[j];
 mbwb[i][j]=0.0;
 }
 }
 for(i=0;i<7;i++)
 {
 for(j=0;j<5;j++)

141

 {
 /* Stiffness Matrix */
 kwbwby[i][j]+=2.0*b*(L[elc]/2.0)*Sm[3][4]*wx*H2T[i]*H1A[j];
 /* Mass Matrix */
 mwbwby[i][j]=0.0;
 }
 }
 for(i=0;i<7;i++)
 {
 for(j=0;j<7;j++)
 {
 /* Stiffness Matrix */
 kwbwb[i][j]+=b*(L[elc]/2.0)*Sm[3][3]*wx*H2T[i]*H2T[j];
 kwsws[i][j]+=b*(L[elc]/2.0)*Astar*wx*H1T[i]*H1T[j];
 /* Mass Matrix */
 mwsws[i][j]+=b*(L[elc]/2.0)*I0*wx*HT[i]*HT[j];
 mwbwb[i][j]+=b*(L[elc]/2.0)*I0*wx*HT[i]*HT[j] +
 b*(L[elc]/2.0)*I2*wx*H1T[i]*H1T[j];
 }
 }
 /* Symmetric parts on the upper triangle of K matrix and zero parts of k matrix*/
 for(i=0;i<5;i++)
 {
 for(j=0;j<7;j++)
 {
 /* Stiffness Matrix */
 kuws[i][j]=0.0;
 kbws[i][j]=0.0;
 kwswby[j][i]=0.0;
 /* Mass Matrix */
 muws[i][j]=0.0;
 mbws[i][j]=0.0;
 mwswby[j][i]=0.0;
 }
 }
 for(i=0;i<7;i++)
 {
 for(j=0;j<7;j++)
 {
 /* Stiffness Matrix */
 kwbws[i][j]=0.0;
 /* Mass Matrix */
 mwbws[i][j]+=b*(L[elc]/2.0)*I0*wx*HT[i]*HT[j];
 }
 }
 /***/
 /* Assigning the symmetric parts of the K & M matrix */
 /***/
 for(i=0;i<5;i++)
 {
 for(j=0;j<5;j++)
 {
 /* Stiffness Matrix */
 kbu[i][j]=kub[j][i];
 kwbyu[i][j]=kuwby[j][i];
 kwbyb[i][j]=kbwby[j][i];

142

 /* Mass Matrix */
 mbu[i][j]=mub[j][i];
 mwbyu[i][j]=muwby[j][i];
 mwbyb[i][j]=mbwby[j][i];
 }
 }
 for(i=0;i<7;i++)
 {
 for(j=0;j<5;j++)
 {
 /* Stiffness Matrix */
 kwbu[i][j]=kuwb[j][i];
 kwbb[i][j]=kbwb[j][i];
 /* Mass Matrix */
 mwbu[i][j]=muwb[j][i];
 mwbb[i][j]=mbwb[j][i];
 }
 }
 for(i=0;i<5;i++)
 {
 for(j=0;j<7;j++)
 {
 /* Stiffness Matrix */
 kwbywb[i][j]=kwbwby[j][i];
 kwbyws[i][j]=kwswby[j][i];
 /* Mass Matrix */
 mwbywb[i][j]=mwbwby[j][i];
 mwbyws[i][j]=mwswby[j][i];
 }
 }
 for(i=0;i<7;i++)
 {
 for(j=0;j<5;j++)
 {
 /* Stiffness Matrix */
 kwsu[i][j]=kuws[j][i];
 kwsb[i][j]=kbws[j][i];
 /* Mass Matrix */
 mwsu[i][j]=muws[j][i];
 mwsb[i][j]=mbws[j][i];
 }
 }
 for(i=0;i<7;i++)
 {
 for(j=0;j<7;j++)
 {
 /* Stiffness Matrix */
 kwswb[i][j]=kwbws[j][i];
 /* Mass Matrix */
 mwswb[i][j]=mwbws[i][j];
 }
 }
 n++;
 }/*end while*/
 /*---*/
 /* Start of time loop */

143

 /* ---*/
 for(t=dt,counter=1;t<=tmax;t+=dt,counter++)
 {
 if(counter/10000.0 == (int)(counter/10000.0))
 printf("\nLoop for timestep %12.10lf",t);
 accl =-omega*omega*0.05* sin(omega*t);
 for(elc=0;elc<nel;elc++)
 {
 for(i=0,xb=0.0;i<elc;i++)
 xb += L[i];
 /* For transverse case */
 for(i=0;i<(4+inter);i++)
 {
 for(j=0;j<(4+inter);j++)
 {
 ki[elc][i][j]=0.0;
 }
 }
 n = 0;
 while(n<7)
 {
 if(n==0)
 {
 v = 0.949107;
 wx = 0.129484;
 }
 if(n==1)
 {
 v = -0.949107;
 wx = 0.129484;
 }
 if(n==2)
 {
 v = 0.741531;
 wx = 0.279705;
 }
 if(n==3)
 {
 v = -0.741531;
 wx = 0.279705;
 }
 if(n==4)
 {
 v = 0.405845;
 wx = 0.381830;
 }
 if(n==5)
 {
 v = -0.405845;
 wx = 0.381830;
 }
 if(n==6)
 {
 v = 0.0;
 wx = 0.417959;
 }

144

 /* CALCULATIONS FOR THE INCREMENTAL STIFFNESS MATRIX TO CONSIDER
 THE INERTIAL EFFECT OF THE BEAM */
 /* THIS EFFECT APPEARS AS AN ADDITIONAL MATRIX OF SIZE 7 X 7 WHICH
 GETS ADDED TO THE MATRIX kt */
 /* To calculate the incremental stiffness matrix, we need the H1T */
 H1T[0]=(1.0/9.0)*(17.0/4.0-10.0*v-237.0*v*v/4.0+188.0*v*v*v/2.0+55.0*v*v*v*v-
 84.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[1]=(L[elc]/6.0)*(1.0/4.0-v/2.0-15.0*v*v/4.0+5.0*v*v*v+5.0*v*v*v*v-
 6.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[2]=(16.0/9.0)*(-1.0+4.0*v+6.0*v*v-16.0*v*v*v-
 5.0*v*v*v*v+12.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[3]=(-12.0*v+36.0*v*v*v-24.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[4]=(16.0/9.0)*(1.0+4.0*v-6.0*v*v-6.0*v*v*v
 +5.0*v*v*v*v+12.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[5]=(1.0/9.0)*(-17.0/4.0-10.0*v+237.0*v*v/4.0+188.0*v*v*v/2.0-
 55.0*v*v*v*v-84.0*v*v*v*v*v)*(2.0/L[elc]);
 H1T[6]=(L[elc]/6.0)*(1.0/4.0+v/2.0-15.0*v*v/4.0-
 5.0*v*v*v+5.0*v*v*v*v+6.0*v*v*v*v*v)*(2.0/L[elc]);
 for(i=0;i<(inter+4);i++)
 {
 for(j=0;j<(inter+4);j++)
 ki[elc][i][j]+= (-1.0*accl*(L[elc]/2.0))*(gama*wx)*(LB-
 (xb+(L[elc]/2.0)*(1.0+v)))*(H1T[i]*H1T[j]);
 }
 }
 n++;
 }/* end while */
 }/* end elc */
 /*printf("\n Success before K and M assembly");*/
 for(elc=0;elc<nel;elc++)
 {
 for(j=0;j<29;j++)
 {
 for(k=0;k<29;k++)
 {
 M[elc][j][k]=0.0;
 K[elc][j][k]=0.0;
 }
 }
 for(i=0;i<5;i++)
 {
 for(j=0;j<5;j++)
 {
 K[elc][i][j]=kuu[i][j];
 M[elc][i][j]=muu[i][j];
 }
 }
 for(i=0;i<5;i++)
 {
 for(j=5;j<10;j++)
 {
 K[elc][i][j]=kub[i][j-5];
 M[elc][i][j]=mub[i][j-5];
 }
 }
 for(i=0;i<5;i++)

145

 {
 for(j=10;j<17;j++)
 {
 K[elc][i][j]=kuwb[i][j-10];
 M[elc][i][j]=muwb[i][j-10];
 }
 }
 for(i=0;i<5;i++)
 {
 for(j=17;j<24;j++)
 {
 K[elc][i][j]=kuws[i][j-17];
 M[elc][i][j]=muws[i][j-17];
 }
 }
 for(i=0;i<5;i++)
 {
 for(j=24;j<29;j++)
 {
 K[elc][i][j]=kuwby[i][j-24];
 M[elc][i][j]=muwby[i][j-24];
 }
 }
 for(i=5;i<10;i++)
 {
 for(j=0;j<5;j++)
 {
 K[elc][i][j]=kbu[i-5][j];
 M[elc][i][j]=mbu[i-5][j];
 }
 }
 for(i=5;i<10;i++)
 {
 for(j=5;j<10;j++)
 {
 K[elc][i][j]=kbb[i-5][j-5];
 M[elc][i][j]=mbb[i-5][j-5];
 }
 }
 for(i=5;i<10;i++)
 {
 for(j=10;j<17;j++)
 {
 K[elc][i][j]=kbwb[i-5][j-10];
 M[elc][i][j]=mbwb[i-5][j-10];
 }
 }
 for(i=5;i<10;i++)
 {
 for(j=17;j<24;j++)
 {
 K[elc][i][j]=kbws[i-5][j-17];
 M[elc][i][j]=mbws[i-5][j-17];
 }
 }
 for(i=5;i<10;i++)

146

 {
 for(j=24;j<29;j++)
 {
 K[elc][i][j]=kbwby[i-5][j-24];
 M[elc][i][j]=mbwby[i-5][j-24];
 }
 }
 for(i=10;i<17;i++)
 {
 for(j=0;j<5;j++)
 {
 K[elc][i][j]=kwbu[i-10][j];
 M[elc][i][j]=mwbu[i-10][j];
 }
 }
 for(i=10;i<17;i++)
 {
 for(j=5;j<10;j++)
 {
 K[elc][i][j]=kwbb[i-10][j-5];
 M[elc][i][j]=mwbb[i-10][j-5];
 }
 }
 for(i=10;i<17;i++)
 {
 for(j=10;j<17;j++)
 {
 K[elc][i][j]=kwbwb[i-10][j-10] + ki[elc][i-10][j-10];
 M[elc][i][j]=mwbwb[i-10][j-10];
 }
 }
 for(i=10;i<17;i++)
 {
 for(j=17;j<24;j++)
 {
 K[elc][i][j]=kwbws[i-10][j-17];
 M[elc][i][j]=mwbws[i-10][j-17];
 }
 }
 for(i=10;i<17;i++)
 {
 for(j=24;j<29;j++)
 {
 K[elc][i][j]=kwbwby[i-10][j-24];
 M[elc][i][j]=mwbwby[i-10][j-24];
 }
 }
 for(i=17;i<24;i++)
 {
 for(j=0;j<5;j++)
 {
 K[elc][i][j]=kwsu[i-17][j];
 M[elc][i][j]=mwsu[i-17][j];
 }
 }
 for(i=17;i<24;i++)

147

 {
 for(j=5;j<10;j++)
 {
 K[elc][i][j]=kwsb[i-17][j-5];
 M[elc][i][j]=mwsb[i-17][j-5];
 }
 }
 for(i=17;i<24;i++)
 {

 for(j=10;j<17;j++)
 {
 K[elc][i][j]=kwswb[i-17][j-10];
 M[elc][i][j]=mwswb[i-17][j-10];
 }

 }
 for(i=17;i<24;i++)
 {

 for(j=17;j<24;j++)
 {

 K[elc][i][j]=kwsws[i-17][j-17] + ki[elc][i-17][j-17];
 M[elc][i][j]=mwsws[i-17][j-17];

 }
}

 for(i=17;i<24;i++)
{
 for(j=24;j<29;j++)
 {

 K[elc][i][j]=kwswby[i-17][j-24];
 M[elc][i][j]=mwswby[i-17][j-24];

 }
}

 for(i=24;i<29;i++)
{
 for(j=0;j<5;j++)
 {

 K[elc][i][j]=kwbyu[i-24][j];
 M[elc][i][j]=mwbyu[i-24][j];
}

}
 for(i=24;i<29;i++)

{
 for(j=5;j<10;j++)

{
 K[elc][i][j]=kwbyb[i-24][j-5];
 M[elc][i][j]=mwbyb[i-24][j-5];
}

}
 for(i=24;i<29;i++)

{
 for(j=10;j<17;j++)

{
 K[elc][i][j]=kwbywb[i-24][j-10];
 M[elc][i][j]=mwbywb[i-24][j-10];
}

}
 for(i=24;i<29;i++)

148

{
 for(j=17;j<24;j++)

{
 K[elc][i][j]=kwbyws[i-24][j-17];
 M[elc][i][j]=mwbyws[i-24][j-17];
}

}
 for(i=24;i<29;i++)

{
 for(j=24;j<29;j++)

{
 K[elc][i][j]=kwbywby[i-24][j-24];
 M[elc][i][j]=mwbywby[i-24][j-24];
}

}
}/*end elc */

 /* Global Matrix Assembly from temporary Matrix */
 for(i=0;i<101;i++)
 {

for(j=0;j<101;j++)
 {
 KG[i][j]=0.0;
 MG[i][j]=0.0;
 }

 }
 for(elc=0;elc<nel;elc++)
 {

 co=22*elc;
 for(i=co;i<co+29;i++)
 {

if(i==co)
 x=i;
if(i==co+1)
 x=i+6;
if(i==co+2)
 x=i+10;
if(i==co+3)
 x=i+14;
if(i==co+4)
 x=i+18;
if(i==co+5)
 x=i-4;
if(i==co+6)
 x=i+2;
if(i==co+7)
 x=i+6;
if(i==co+8)
 x=i+10;
if(i==co+9)
 x=i+14;
if(i==co+10)
 x=i-8;
if(i==co+11)
 x=i-8;
if(i==co+12)
 x=i-3;

149

if(i==co+13)
 x=i+1;
if(i==co+14)
 x=i+5;
if(i==co+15)
 x=i+9;
if(i==co+16)
 x=i+9;
if(i==co+17)
 x=i-13;
if(i==co+18)
 x=i-13;
if(i==co+19)
 x=i-9;
if(i==co+20)
 x=i-5;
if(i==co+21)
 x=i-1;
if(i==co+22)
 x=i+4;
if(i==co+23)
 x=i+4;
if(i==co+24)
 x=i-18;
if(i==co+25)
 x=i-14;
if(i==co+26)
 x=i-10;
if(i==co+27)
 x=i-6;
if(i==co+28)
 x=i;
 for(j=co;j<co+29;j++)
 {

if(j==co)
 y=j;
if(j==co+1)
 y=j+6;
if(j==co+2)
 y=j+10;
if(j==co+3)
 y=j+14;
if(j==co+4)
 y=j+18;
if(j==co+5)
 y=j-4;
if(j==co+6)
 y=j+2;
if(j==co+7)
 y=j+6;
if(j==co+8)
 y=j+10;
if(j==co+9)
 y=j+14;
if(j==co+10)
 y=j-8;

150

 if(j==co+11)
 y=j-8;
if(j==co+12)
 y=j-3;
if(j==co+13)
 y=j+1;
if(j==co+14)
 y=j+5;
if(j==co+15)
 y=j+9;
if(j==co+16)
 y=j+9;
if(j==co+17)
 y=j-13;
if(j==co+18)
 y=j-13;
if(j==co+19)
 y=j-9;
if(j==co+20)
 y=j-5;
if(j==co+21)
 y=j-1;
if(j==co+22)
 y=j+4;
if(j==co+23)
 y=j+4;
if(j==co+24)
 y=j-18;
if(j==co+25)
 y=j-14;
if(j==co+26)
 y=j-10;
if(j==co+27)
 y=j-6;
if(j==co+28)
 y=j;
KG[x][y]+=K[elc][i-co][j-co];
MG[x][y]+=M[elc][i-co][j-co];

 } /*end j */
 } /* end i */

 } /*end elc */
/* coding for assembling the Klamda matrices and its tranpose */
for(i=0;i<101;i++)
 {
 for(j=0;j<6;j++)

{
 KL[i][j]=0.0;
}

 }
for(i=0;i<2;i++)
 z[i]=0.0;
sumlen1=0;
sumlen2=0;
xs1 = 0.375*LB - 0.05*sin(omega*t);
xs2 = xs1 + 0.25*LB;
for(i=0;i<2;i++)

151

 {
 if(i==0)

{
 for (elc=0;elc<nel;elc++)
 {

 if (xs1 >= sumlen1)
sumlen1 +=L[elc];

 else
break;

 }

 sumlen1 -=L[elc-1];
 z[0] = (xs1-sumlen1)*(2/L[elc-1]) – 1
}

 if(i==1)
{
 for (elc=0;elc<nel;elc++)
 {

if (xs2 >= sumlen2)
 sumlen2 +=L[elc];
else
 break;

 }
 sumlen2 -=L[elc-1];
 z[1] = (xs2-sumlen2)*(2/L[elc-1]) - 1;
}

KL[(elc-1)*26 + 2][i] = (1.0/9.0)*(17.0*z[i]/4.0 -5.0*z[i]*z[i] -79.0*z[i]*z[i]*z[i]/4.0
 +47.0*z[i]*z[i]*z[i]*z[i]/2.0 +11.0*z[i]*z[i]*z[i]*z[i]*z[i] –
 14.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 3][i] = (L[elc]/6.0)*(z[i]/4.0 -z[i]*z[i]/4.0 -5.0*z[i]*z[i]*z[i]/4.0
 +5.0*z[i]*z[i]*z[i]*z[i]/4.0 +z[i]*z[i]*z[i]*z[i]*z[i] –
 z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 9][i] = (16.0/9.0)*(-z[i] +2.0*z[i]*z[i] +2.0*z[i]*z[i]*z[i] -4.0*z[i]*z[i]*z[i]*z[i]
 - z[i]*z[i]*z[i]*z[i]*z[i] +2.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 14][i] = (1.0 -6.0*z[i]*z[i] +9.0*z[i]*z[i]*z[i]*z[i] –
 4.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 19][i] = (16.0/9.0)*(z[i] +2.0*z[i]*z[i] -2.0*z[i]*z[i]*z[i] -4.0*z[i]*z[i]*z[i]*z[i]
 + z[i]*z[i]*z[i]*z[i]*z[i] +2.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 24][i] = (1.0/9.0)*(-17.0*z[i]/4.0 -5.0*z[i]*z[i] +79.0*z[i]*z[i]*z[i]/4.0
 +47.0*z[i]*z[i]*z[i]*z[i]/2.0 -11.0*z[i]*z[i]*z[i]*z[i]*z[i] –
 14.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 25][i] = (L[elc]/6.0)*(z[i]/4.0 +z[i]*z[i]/4.0 -5.0*z[i]*z[i]*z[i]/4.0 –
 5.0*z[i]*z[i]*z[i]*z[i]/4.0 +z[i]*z[i]*z[i]*z[i]*z[i]
 +z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 6][i+4] =(1.0/6.0)*z[i] - (1.0/6.0)*z[i]*z[i] - (2.0/3.0)*z[i]*z[i]*z[i] +
 (2.0/3.0)*z[i]*z[i]*z[i]*z[i];

KL[(elc-1)*26 + 11][i+4] = (-4.0/3.0)*z[i] + (8.0/3.0)*z[i]*z[i] + (4.0/3.0)*z[i]*z[i]*z[i] –
 (8.0/3.0)*z[i]*z[i]*z[i]*z[i];

KL[(elc-1)*26 + 16][i+4] = 1.0 - 5.0*z[i]*z[i] + 4.0*z[i]*z[i]*z[i]*z[i];
KL[(elc-1)*26 + 21][i+4] = (4.0/3.0)*z[i] + (8.0/3.0)*z[i]*z[i] - (4.0/3.0)*z[i]*z[i]*z[i] –

 (8.0/3.0)*z[i]*z[i]*z[i]*z[i];
KL[(elc-1)*26 + 28][i+4] = (-1.0/6.0)*z[i] - (1.0/6.0)*z[i]*z[i] + (2.0/3.0)*z[i]*z[i]*z[i] +

 (2.0/3.0)*z[i]*z[i]*z[i]*z[i];
KL[(elc-1)*26 + 4][i+2] = (1.0/9.0)*(17.0*z[i]/4.0 -5.0*z[i]*z[i] -79.0*z[i]*z[i]*z[i]/4.0

 +47.0*z[i]*z[i]*z[i]*z[i]/2.0 +11.0*z[i]*z[i]*z[i]*z[i]*z[i] –
 14.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

152

KL[(elc-1)*26 + 5][i+2] = (L[elc]/6.0)*(z[i]/4.0 -z[i]*z[i]/4.0 -5.0*z[i]*z[i]*z[i]/4.0
 +5.0*z[i]*z[i]*z[i]*z[i]/4.0 +z[i]*z[i]*z[i]*z[i]*z[i] –
 z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 10][i+2] = (16.0/9.0)*(-z[i] +2.0*z[i]*z[i] +2.0*z[i]*z[i]*z[i] –
 4.0*z[i]*z[i]*z[i]*z[i] - z[i]*z[i]*z[i]*z[i]*z[i]
 +2.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 15][i+2] = (1.0 -6.0*z[i]*z[i] +9.0*z[i]*z[i]*z[i]*z[i] –
 4.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 20][i+2] = (16.0/9.0)*(z[i] +2.0*z[i]*z[i] -2.0*z[i]*z[i]*z[i] –
 4.0*z[i]*z[i]*z[i]*z[i] + z[i]*z[i]*z[i]*z[i]*z[i]
 +2.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 26][i+2] = (1.0/9.0)*(-17.0*z[i]/4.0 -5.0*z[i]*z[i] +79.0*z[i]*z[i]*z[i]/4.0
 +47.0*z[i]*z[i]*z[i]*z[i]/2.0 -11.0*z[i]*z[i]*z[i]*z[i]*z[i] –
 14.0*z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

KL[(elc-1)*26 + 27][i+2] = (L[elc]/6.0)*(z[i]/4.0 +z[i]*z[i]/4.0 -5.0*z[i]*z[i]*z[i]/4.0 –
 5.0*z[i]*z[i]*z[i]*z[i]/4.0 +z[i]*z[i]*z[i]*z[i]*z[i]
 +z[i]*z[i]*z[i]*z[i]*z[i]*z[i]);

} /* end of i */

 for (i=0;i<95;i++)
{
 for (j=95;j<101;j++)
 {

KG[i][j] = KL[i][j-95];
MG[i][j] = 0.0; /*for a moving beam */

 }
}

 for (i=0;i<95;i++)
{
 for(j=95;j<101;j++)
 {

KG[j][i] = KL[i][j-95];
MG[j][i] = 0.0; /*for a moving beam */

 }
}
/* SOLVING FOR THE DISPLACEMENTS USING THE INITIAL DISPLACEMENTS AS

 THE CONDITION */
/* Now the global stiffness and mass matrix have been calculated.. we can proceed to solve for

 the displacements at the next time step using the newmarks method */
/* step 1: Calculate the effective stiffness matrix */

 /* Initializing the KGhat matrix */
for(i=0;i<101;i++)
 {
 for(j=0;j<101;j++)

{
 KGhat[i][j] = 0.0;
}

 }
for(i=0;i<101;i++)
 {
 for(j=0;j<101;j++)

{
 KGhat[i][j] = KG[i][j] + a0*MG[i][j];
}

 }
 /* The KGhat i.e. the effective stiffness matrix has been setup now */

153

/* step 2: Now, we have to triangularize the KGhat matrix and solve for the displacements */
/* Before that, we have to form the Rhat vector which is Qhat from the Q vector to form the
 the RHS vector for every time step */

 /* To calculate Qhatnew[i], we need to calculate the product of MG and Us U's and U''s at any
 time step which is calculated below */
for(i=0;i<101;i++)
 {
 MGut[i]=0.0;
 MGu1t[i]=0.0;
 MGu2t[i]=0.0;
 }
for(i=0;i<101;i++)
 {
 for(j=0;j<101;j++)

{
 MGut[i]+=a0*MG[i][j]*ut[j];
 MGu1t[i]+=a2*MG[i][j]*u1t[j];
 MGu2t[i]+=a3*MG[i][j]*u2t[j];
}

 }
/* In our case, the Qhat does not change with time, therfore, Qhat = Q */
for(i=0;i<101;i++)
 {

Qhat[i]=0.0;
Qhatnew[i]=0.0;
Qhatnewgauss[i]=0.0;

 }
for(i=0;i<101;i++)
 {

Qhatnew[i] = Qhat[i] + MGut[i] + MGu1t[i] + MGu2t[i];
 }
/* Now, we have the Qhat at new time step. Hence, we can now, solve for the utnew[i]s */
for(i=1;i<101;i++)
 {
 for(j=1;j<101;j++)

{
 KGhatgauss[i][j]=KGhat[i][j];
}

 }
for(i=1;i<101;i++)
 Qhatnewgauss[i]=Qhatnew[i];
/* Since, there are zeros in the main diagonal terms, we can go for gauss elimination with
 scaled partial pivoting */
/* Initializing the variables used in the gauss loop */
max = 0.0;
tmp = 0.0;
pivot = 0.0;
for(i=1;i<=100;i++)
 {
 utnew[i]=0.0;
 p[i]=0.0;
 d[i]=0.0;
 }
for(i=1;i<=100;i++)
 {
 p[i]=i;

154

 d[i]=fabs(KGhatgauss[i][1]);
 for(j=1;j<=100;j++)

if(fabs(KGhatgauss[i][j])>d[i])
 d[i] = fabs(KGhatgauss[i][j]);

 }
for(i=1;i<=99;i++)
 {
 max=fabs(KGhatgauss[p[i]][i])/d[p[i]];
 maxi=i;
 for(k=i+1;k<=100;k++)

if((fabs(KGhatgauss[p[k]][i])/d[p[k]])>max)
 {

max=(fabs(KGhatgauss[p[k]][i])/d[p[k]]);
maxi=k;

 }
 tmp=p[i];
 p[i]=p[maxi];
 p[maxi]=tmp;
 for(j=i+1;j<=100;j++)

{
 pivot = KGhatgauss[p[j]][i]/KGhatgauss[p[i]][i];
 Qhatnewgauss[p[j]]-=pivot*Qhatnewgauss[p[i]];
 for(k=i+1;k<=100;k++)
 KGhatgauss[p[j]][k]-=pivot*KGhatgauss[p[i]][k];
}

 }
/* Back substitution to get the displacements utnew[i]s */
Qhatnewgauss[p[100]] = Qhatnewgauss[p[100]]/KGhatgauss[p[100]][100];
for(i=99;i>=1;i--)
 {
 for(j=i+1;j<=100;j++)

Qhatnewgauss[p[i]]-=KGhatgauss[p[i]][j]*Qhatnewgauss[p[j]];
 Qhatnewgauss[p[i]]=Qhatnewgauss[p[i]]/KGhatgauss[p[i]][i];
 }
 for(i=1;i<101;i++)

utnew[i] = Qhatnewgauss[p[i]];
 utnew[0]=0.0;
 printf("\n%12.10lf %lf",t,utnew[2]);
 if(counter/1000.0 == (int)(counter/1000.0))

{
 fprintf(fp2,"\n%12.10lf %lf %lf %lf",t,utnew[2],utnew[46],utnew[89]);
 printf("\n %12.10lf %lf ", t, utnew[2]);
 fflush(fp2);
}

 /* Now, having calculated the u's at time t plus dt, we have to calculate the u1tdt
 and u2tdt */

 for(i=0;i<101;i++)
{
 u2tnew[i]=0.0;
 u1tnew[i]=0.0;
}

 for(i=0;i<101;i++)
{
 u2tnew[i] = a0*utnew[i]-a0*ut[i]-a2*u1t[i]-a3*u2t[i];
}

 for(i=0;i<101;i++)

155

{
 u1tnew[i] = u1t[i]+a6*u2t[i]+a7*u2tnew[i];
}

 /* BEFORE GOING TO THE NEXT TIME STEP, ASSIGN THE NEW VALUES OF U,U'
 AND U'' AS THE STARTING VALUES */

 for(i=0;i<101;i++)
{
 ut[i]=utnew[i];
 u1t[i]=u1tnew[i];
 u2t[i]=u2tnew[i];
}

 /* LOOP BACK FOR THE NEXT TIME STEP */
 }/* end time loop */

 fclose(fp2);
 printf("The file has been printed");
}/* end main*/

156

REFERENCES

Abarcar, R.B. and Cunniff, P.F., 1972, “The Vibration of Cantilever Beams of

Fiber Reinforced Material,” Journal of Composite Materials, Vol. 6 (October 1972), pp.

504-517.

Barbero, E.J., 1998, “Introduction to Composite Materials Design,” Taylor and

Francis, Philadelphia.

Bathe, K.J. and Wilson, E.L., 1976, “Numerical Methods in Finite Element

Analysis,” Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Buffington, K.W. and Kane, T.R., 1985, “Dynamics of a Beam Moving Over

Supports,” International Journal of Solids and Structures, Vol. 21, No. 7, pp. 617-643.

Chapra, C.S. and Canale, R.P., 1998, “Numerical Methods for Engineers,” 3rd

Edition, McGraw-Hill Companies, Inc., New York.

Chen, A.T and Yang, T.Y., 1985, “Static and Dynamic Formulation of a

Symmetrically Laminated Beam Finite Element for a Microcomputer,” Journal of

Composite Materials, Vol. 19, pp. 459-475.

Gupta, R.K., Venkatesh, A and Rao, K.P., 1985, “Finite Element Analysis of

Laminated Anisotropic thin-Walled Open –Section Beams,” Composite Structures, Vol.

3, pp.19-31.

Kadivar, M.H. and Mophebpour, S.R., 1997, “Forced Vibration of Unsymmetric

Laminated Composite Beams under the action of Moving Loads,” Journal of composites

Science and Technology, Vol. 58, No. 10, pp. 1675-1684.

Kadivar, M.H. and Mohebpour, S.R., 1998, “Finite Element Dynamic Analysis of

Unsymmetric Composite Laminated Beams with Shear Effect and Rotary Inertia under

157

the action of Moving Loads,” Finite elements in Analysis and Design, Vol. 29, pp. 259-

273.

Kapania, R.K. and Raciti, S., 1989, “Nonlinear Vibrations of Unsymmetrically

Laminated Beams,” AIAA Journal, Vol. 27, No. 2, pp. 201-210.

Lee H.-P., 1992, “Dynamics of a Beam Moving over Multiple Supports,”

International Journal of Solids and Structures, Vol. 30, No. 2, pp. 199-209.

Madabhusi, P.R. and Davalos, J.F., 1996, “Static Shear Correction Factor for

Laminated Rectangular Beams,” Composites:, Part B 27B, pp. 285-293.

Marur, R.S., and Kant, T., 1998, “Transient Dynamics of Laminated Beams: an

Evaluation with Higher-Order Refined Theories,” Journal of Composite Structures, Vol.

41, pp. 1-7.

Murty, A.V.K., and Shimpi, R.P., 1974, “Vibrations of Laminated Beams,”

Journal of Sound and Vibrations, Vol. 36, No. 2, pp. 273-284.

Reddy, J.N., 1997, “Mechanics of Laminated Composite Plates,” CRC Press,

New Jersey.

Shi, G., Lam, K.Y., and Tay, T.E., 1998, “On efficient finite element modeling of

composite beams and plates using higher-order theories and accurate composite beam

element,” Composite Structures, Vol. 41, No. 2, pp. 159-165.

Singh, G., Rao, G.V., and Iyengar N.G.R., 1991, “Analysis of Nonlinear

Vibrations of Unsymmetrically Laminated Composite Beams,” AIAA Journal, Vol. 29,

No. 10, pp. 1727-1735.

Sreeram, T.R., 1995, “Dynamic analysis of a Moving Beam using h-p Version

Finite Element Method with Essential Conditions Applied Via Lagrange Multipliers,”

158

Master’s Thesis, Department of Mechanical and Aerospace Engineering, West Virginia

University, Morgantown, West Virginia.

Sreeram, T.R. and Sivaneri, N.T., 1997, “FE-Analysis of a Moving Beam using

Lagrangian Multiplier Method,” International Journal of Solids and Structures, Vol. 35,

No. 28-29, pp. 3675-3694.

Teh, K.K. and Huang, C.C., 1979, “The Vibrations of Generally Orthotropic

Beams, A Finite Element Approach,” Journal of Sound and Vibration, Vol. 62, No. 2, pp.

195-206.

Wu X.X. and Sun. C.T., 1990, “Vibration Analysis of Laminated Composite

Thin-Walled Beams Using Finite Elements,” AIAA Journal, Vol.29, No.1, pp.736-742.

159

BIBILIOGRAPHY

Celik, I.B., 1996, “Introduction to Numerical Methods for Engineers,” West

Virginia University. (Text book distributed by the instructor)

Chandrupatla, T.R. and Belegundu D.A., 1997, “Introduction to Finite Elements

in Engineering,” Second Edition, Prentice-Hall of India Private Ltd., New Delhi, India.

Hildebrand, F.B.,1987, “Introduction to Numerical Analysis,” Dover Publications,

Inc., New York.

Strang, Gilbert 1986, “Introduction to Applied Mathematics,” Wellesley-

Cambridge Press, Massachusetts.

Whitney, M.J., 1987, “Structural Analysis of Laminated Anisotropic Plates,”

Technomic Publishing Co., Inc., Lancaster, Basel.

William H. Press et. al, 1992, “Numerical Recipes in C-The art of Scientific

Computing", second Edition, Cambridge University Press, London.

Zienkiewicz O.C and Taylor, R.L., 1989, “The Finite Element Method,”

International Edition, Vol I and II, McGraw-Hill Book Company, New Delhi, India.

	Dynamic analysis of a composite moving beam
	Recommended Citation

	Ganesh Chandrasekaran
	Master of Science
	Nithi Sivaneri, Ph.D., Chair
	Ever J. Barbero, Ph.D
	Kenneth Means, Ph.D

	Department of Mechanical Engineering
	Dynamic Analysis of a Composite Moving

	ABSTRACT
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF SYMBOLS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	THEORITICAL FORMULATION
	FINITE ELEMENT FORMULATION
	NUMERICAL IMPLEMENTATION
	RESULTS AND DISCUSSION
	CONCLUSIONS AND RECOMMENDATIONS
	APPENDIX A
	APPENDIX B
	REFERENCES
	BIBILIOGRAPHY

