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ABSTRACT 

Boundaries and Policing 
Space, Jurisdictions, and roles in the collection of official crime data  

 

Cynthia Barnett-Ryan 

 

The Uniform Crime Reporting (UCR) Program is a law enforcement statistical system open to unreported 

information due to its voluntary nature.  As such, there needs to be a valid and accepted means to 

estimate official reports of crime for those different levels of geography where reporting may be 

incomplete.  Current methods of imputing and modeling UCR data, which have not been updated since 

the 1960s, are based upon conceptualizations of law enforcement agencies that may no longer be valid.  

These older models do not appropriately represent the law enforcement assessment of space and place 

and its effects on discretionary recording behavior.  The number of specialized agencies that share 

jurisdiction and population with primary law enforcement agencies has increased since early data 

modeling techniques were developed around the 1960s.  This study explores the connection between 

the policing and the collection of crime data to advance our understanding of how differences among 

types of law enforcement may impact the discretionary decision to record data.  To explore this topic, I 

have divided this study into three papers touching on differing dimensions of place, scale, and 

uncertainty connected to the recording of law enforcement data. The data for these papers includes 

national UCR Program data, as well as calls for service and recorded incident data from two law 

enforcement agencies in the mid-South—Knoxville Police Department and the University of Tennessee 

Police Department. 

Firstly, this research explores the influence of agency attributes to assess their possible impact on the 

treatment of missing data.  The coefficient of variation (CV) is used to measure the internal variation of 

reported crime within various groups of agencies.  The average CVs calculated with and without 

specialized agencies are compared using a Jackknifing technique to test whether the presence of 

specialized agencies increases the internal variation within the group or not.  The comparison 

demonstrates that eliminating specialized agencies from the strata has a statistically-significant effect on 

reducing internal variation for property crimes.  For violent offenses, however, the results are more 

modest.  While the average CV for violent crime does decrease with the elimination of specialized 

agencies, the improvements are not statistically significant.  The results from this research point to a 

greater need to address the changing circumstances to incorporate the diversity of law enforcement 

agency type. 

Secondly, although there is an interest by researchers to use calls for service (CFS) as a useful proxy for 

recorded incident information by law enforcement as more of this type of data is made available in open 

data initiatives, the assumption that CFS could serve as a proxy for incident information in spatial 



 
 

analysis is not supported by the evidence.  Instead, there is some indication that law enforcement 

activities are mediated by the agency’s goals for its data, such as intelligence-led policing or fulfillment 

of Clery Act reporting, thus affecting the recording of incident information.  Using data from two 

different types of law enforcement agency within the same community, CFS and incident reports for 

property crimes in April 2014 were tested for spatial association using both the Cross-K function and the 

Co-location Quotient.  Findings from this study show there is a modest amount of detectable clustering 

of CFS for the agency that fits a model of traditional municipal law enforcement.  However, the law 

enforcement agencies serving a large university campus did not show any detectable spatial association 

for these events.  The findings suggest that in the movement towards using open data researchers will 

need to take greater care in the selection of data to understand if underlying spatial assumptions about 

the data can be supported. 

Thirdly, an increasing quantity of data is currently being made available by law enforcement agencies, 

but frequently that data is not a consistent level of areal aggregation and scale.  Factors such as the 

Modifiable Areal Unit Problem (MAUP) and the Uncertain Geographic Context Problem (UGCoP) make 

rectifying differing scales problematic.  Central to this problem are the dynamics of recording crime data 

and whether law enforcement activity—specifically the concept of the patrol officer in a boundary 

role—is a key influence that should be accounted for in crime data models. With data from a midsized, 

southern municipal police department, two dasymetric allocation techniques using street networks and 

street networks weighted by calls for service are used to test potential improvements on the scale and 

aggregation problem through the introduction of law enforcement activity into allocation models for 

recorded crime data.  Results demonstrate that the introduction of law enforcement activity—especially 

officer-initiated activity—improves the overall fit of the allocation of recorded crime into smaller 

subjurisdictional units.  In addition, there is modest evidence to advocate for the use of law 

enforcement-generated subjurisdictional units (such as a precinct or beat) as opposed to population-

based Census Tracts. These findings suggest that the production of crime statistics is subject to 

influences originating from law enforcement agency policy and the recording behavior of its officers. 

The findings of the three studies inform important discussions in the geographic community on the 

heterogeneous nature of law enforcement.  More explicitly, combining the conclusions of these three 

papers contributes to an evolving understanding of the representations of place by geographic 

information science (GISc) and criminology, and the construction of place through the roles and 

behaviors of individuals, and the increasing use of “Big Geodata”.  Future research with data collected 

from official police activities should consider the degree of uncertainty introduced by the nature of the 

activities themselves — especially considering the growing use, influence and reliance on georeferenced 

data produced by individuals not particularly informed about the nuances of geography. 
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Uncertainty in geographic representation arises because, of necessity, almost all 

representations of the world are incomplete. (Longley, et al. 2011, p. 147) 
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1.1 INTRODUCTION  
Crime data is the foundation of analysis and policy formation in contemporary law enforcement.  Yet the 

discovery and recording of crime incidents is deeply contextualized in the culture of law enforcement 

and this culture is not monolithic in its approaches towards policing or crime analysis.  It is often 

assumed that uniformity is provided by the common standards of the national statistics from the 

Uniform Crime Reporting (UCR) Program.  Indeed, its name implies that. However, the FBI cautions users 

of UCR data against simplistic comparisons between places—such as ranking—due to the numerous 

variables that can affect the discovery and collection of UCR data and thereby introduce uncertainty and 

incompatibility between sources (Federal Bureau of Investigation, 2014).  

In the light of the need for accurate and reliable statistics, especially in the current climate of public and 

professional concern about policing equity across geography, demographic and socio-economic groups, 

this research study examines the various influences on the collection of crime data across boundaries of 

jurisdictions and the boundaries between law enforcement and the communities they serve.  The study 

has the eventual objective of suggesting means to improve the use and analysis of crime statistics 

through the incorporation of ancillary information, including the imputation of missing data.  To this 

end, the research framework investigates the differing dimensions of policing adopted by law 

enforcement agencies and seeks to link the policing behavior produced by these different characteristics 

to the way official crime statistics are recorded.  If evidence of police behavior and agency patterns are 

revealed by this study to influence the way crime is reported, then information about this relationship 

may be used to improve the fit of analytical and imputation models. 

1.2 FORMAT 
The main portion of this dissertation is structured as three papers situated between this introduction 

and an end section which draws the findings and their implications together.  The first paper sets the 

stage for the need for additional exploration of policing and crime data and is titled “Missing Data in 

Uniform Crime Reporting and the Impact of Agency Type.”  The analysis examines the variability of crime 

reporting by law enforcement agencies and whether the population group (a category created by 

combining population served and whether the agency serves a municipal area or not) is sufficient to 

capture the observed variability.  In addition, the analytical approach uses a jackknifing procedure to 

test whether any detected differences are statistically significant.   Jackknifing techniques provide an 

opportunity to test whether detectable differences can be attributed to more than random variation.  

Consequently, any explained variation is a candidate for inclusion in improved models. 

The second paper is titled “Crime and Place:  Differences in Spatial Relationship Between Calls for 

Service and Recorded Incidents for Municipal and Campus Law Enforcement.”  It compares the spatial 

association between calls for service (CFS) and recorded incident reports by offense type (e.g., crimes 

against persons, crimes against property, crimes against society) to measure the potential influence of 

calls on recorded crime data.  The recording of crime data is presumed to be related to a combination of 

the type of law enforcement agency and the style of policing used by the agency.  For example, the 

analysis of data by University of Tennessee Police Department (UTPD) is could be influenced by the 

reporting requirements of the Clery Act rather than other priorities.  The working hypothesis is that 

there is less association between CFS and incident data for UTPD because the need to record certain 

crimes is driven by the needs of the Clery Act, rather than where there might be reports of all crime.  
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The underlying assumption is that there should be a close relationship between CFS and reports that 

expresses what the needs are, and that CFS and reports should be in close alignment.  The Co-location 

Quotient is used to test this assumption. 

The third paper, “The Recording of Crime Data and Scale:  The Influence of Law Enforcement Recording 

Behavior and the Uncertain Geographic Context Problem,” investigates the recording of crime data and 

scale by focusing on the influence of law enforcement recording behavior.  An increasing amount of data 

is being made available by law enforcement, but frequently that data is not available at a comparable 

level of aggregation and scale.  Factors such as the Modifiable Areal Unit Problem (MAUP) and the 

Uncertain Geographic Context Problem (UGCoP) make rectifying data across differing scales 

problematic.  Central to this problem is the dynamics of recording crime data and whether variation in 

law enforcement activity is a key influence that should be accounted for in crime data models. Using 

data from a midsized, southern municipal police department, two dasymetric allocation techniques, one 

using street networks and the second, street networks weighted by calls for service, are used to test 

potential improvement through the introduction of law enforcement activity into allocation models for 

recorded crime data.   

The dissertation is embedded within an ongoing discussion of space and place in the disciplines of 

geography and criminology and raises elements of the handling of “Big Data”, specifically big geo-data 

within the field of crime analysis.  The findings of the three studies raise important questions for the 

geographic community on the heterogeneous nature of law enforcement.  More explicitly, combining 

the conclusions of these three papers contributes to an evolving understanding of the representations 

of place by geographic information science (GISc.) and in criminology, and the construction of place 

through the roles and behaviors of individuals, and the increasing use of “Big Geodata”.  Future research 

with data collected from official police activities should consider the degree of uncertainty introduced 

by the nature of the activities themselves — especially considering the growing use, influence and 

reliance on georeferenced data produced by individuals not particularly informed about the nuances of 

geography. Researchers should be cognizant of the diversity sometimes suppressed by apparent 

uniformity. 

1.3 PROBLEM STATEMENT  
While police practices are listed as one of the variables that can affect the collection of UCR data 

(Federal Bureau of Investigation, 2014), little has been done to investigate what the variation of those 

policing practices from jurisdiction to jurisdiction may have on crime data reported as statistics.  The 

UCR Program collects statistical information from law enforcement agencies across the nation.  Since 

1929, it has provided one of only two national measures of crime and criminality for the United States.  

UCR crime statistics are deeply immersed in the context of police activity rather than being a 

standardized reflection of the criminality of a particular place.  The fact that the data flows from the 

administrative and official work of the law enforcement agency means that the data cannot capture any 

information that law enforcement agency does not record.  Unreported crime data includes crimes that 

police are unaware of because victims do not make a report, or crimes that are handled informally by 

virtue of police discretion  (Boivin & Cordeau, 2011; Lott & Whitley, 2003; M. D. Maltz, 1977; Michael D 

Maltz & Targonski, 2003; Pepper, Petrie, & Sullivan, 2010).   



3 
 

Policing has also evolved in its approach since the beginning of the UCR Program in the 20th century.  

Moreover, the data handling methods in the UCR Program do not consider the wide diversity now 

present in policing styles in the 21st century and how that diversity affects the ability of police to 

discover crime and record crime.  In the early part of the 20th century when UCR was developed, there 

was a general professional model of policing used by most agencies that relied primarily on random 

patrols and responding to CFS.  Since the 1980’s, policing has evolved to incorporate a variety of 

approaches—both proactive and reactive—to address crime as a social problem in communities.  One of 

the particular areas of growth is in the use of crime analysis to direct policing activities rather than 

relying on the more random and reactive methods of the past (Maguire & King, 2004; Vila & Morris, 

1999; Zhao & Hassell, 2005). 

Different approaches to policing can lead to differences among agencies in terms of the emphasis of the 

crime analysis products.  For example, agencies that subscribe to zero-tolerance policing practices are 

more likely to be associated with many of the COMPSTAT-style practices, such as mapping the locations 

of certain types of lower-level crimes and directing patrols to those areas (Walsh, 2001; Walsh & Vito, 

2004; D. Weisburd, Mastrofski, Mcnally, Greenspan, & Willis, 2003).  Agencies that make policing 

decisions based more on intelligence on criminal actors (i.e., intelligence-led policing) will focus on the 

offender identities associated with known criminal problems and the linkages between the offender and 

other criminal actors and places (Ratcliffe 2008).   

In addition to impact of the different approaches to policing to crime statistics, data submitted to the 

UCR Program are also reported at the jurisdictional level with no other geographic or location 

information attached to either the offense counts or incident-level information, even  where it’s 

available (Michael D Maltz, 2009; Michael D Maltz & Targonski, 2003).  The geographically aggregate 

nature of the UCR data is unlikely to change soon.  While most crime analysis at the local level has 

become reliant on crime mapping using point data for each criminal incident, the national data, of 

necessity, remains aggregated by jurisdiction.  Even if the national UCR Program adds the capability to 

capture more precise location information beyond the jurisdiction, the information released will still 

need to include some obfuscation or masking of location to avoid violating the privacy of the individuals 

associated with the incident.  This is not unlike the approach of the Census Bureau and health agencies 

in their policies regarding the release of data under the auspices of HIPAA (Gatewood, 2001). 

Rather than focusing solely on either qualitative or quantitative methods, this study employs elements 

of both. The rationale for the application of both qualitative and quantitative models is twofold.  First, 

the qualitative assessment of analytical products produced by law enforcement agencies will allow for a 

deeper understanding of the ways that policing can ultimately affect the recording of data.  The 

incorporation of qualitative data raises questions associated with space, place and big data that are not 

immediately apparent with quantitative data.  Secondly, having a better understanding of the influence 

of the analytical priorities of the agency increases the utility of the crime data, as well as improving the 

interpretation of the data.  

Specifically, I will address the following objectives: 

• What characteristics can be used to identify peer agencies for crime reporting data given the 

current diversity of policing?  What spatial and other dimensions seem to matter and at what 

scale?   
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• Can information on the location of calls for service (CFS) improve the prediction of law 

enforcement recording of crime incident data for crime types identified as a priority through an 

assessment of analytical products? Can differences among law enforcement agency types be 

measured in the spatial properties of recorded incidents? 

• Crime statistics in UCR are a result of police activities connected to both calls-for-service (CFS) 

and officer-initiated acts.  CFS represent “demand” for police services, but what can be said 

about discretionary behavior as measured by officer-initiated activities?  Do officer-initiated 

activities exhibit the same spatial patterns as CFS?    

The case study focuses on an area in Tennessee identified for the collection of data which centers on the 

metropolitan area of Knoxville.   Using data collected by law enforcement agencies with differing 

responsibilities that serve the same geographic area differences are expected to emerge that can inform 

the understanding of the impact of law enforcement actions on crime statistics.  While the results from 

these three studies will not necessarily be generalizable in a statistical-probabilistic fashion to the 

national level, they suggest a method that could be used and validated through replication by other 

investigators.  An underlying theme is the search for veracity between the data and the imputed results 

that reflects preparation for dealing with far greater volumes of data of greater variety than is 

experienced presently. The ending section of this dissertation discusses at some length some of the 

implications of space, place and diversity for future crime data processing and analysis that have 

emerged during the research. 
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2 MISSING DATA IN UNIFORM CRIME REPORTING AND THE IMPACT OF 

AGENCY TYPE 

2.1 INTRODUCTION 
In 2016, the United States Department of Justice provided $274.9 million in block funding to states for crime 

control programs (Cooper & Hyland, 2015).  This money is disbursed to the states based on a formula using 

violent crime information from the Uniform Crime Reporting (UCR) Program.  The UCR Program data are 

collected from a universe of over 18,000 law enforcement agencies representing a subset of crimes that 

come to the attention of law enforcement by either victim reports or through law enforcement actions and 

observations.  It is the only source of crime data that can be associated with a specific agency or place.  

However, reporting data to the UCR Program is strictly voluntary from a federal perspective1, which can lead 

to occasional or pervasive missing reports either for an individual month or the whole year’s data.  Because 

participation levels can and do vary from year to year, the UCR Program needs to have a method to impute 

crime data for agencies that either provide incomplete data or no data at all to publish national and state 

annual estimates of the level and trend of crime.  These estimates often form the basis for larger decisions 

related to criminal justice and other social policy as referenced by Cooper and Hyland (2015).  As such the 

methods used by the UCR Program to impute missing data are critical to the validity of these estimates and 

any resulting decisions. 

This paper will  build upon the research opened by and Lynch and Jarvis (J. P. Lynch & Jarvis, 2008) and Maltz 

and others (Michael D. Maltz & Targonski, 2002; Michael D Maltz, 2006; Michael D Maltz & Targonski, 2003, 

2004) which explores the validity of and provides possible improvements to current imputation methods by 

investigating the impact of agency type on the variability of the data.  Specifically, this paper will propose a 

method for testing the fit of classification methods used in these crime imputation models.  After providing 

background on the currently used imputation methods and laying out the theoretical concerns of missing 

data, the author will address two major issues related to the possible introduction of bias into national 

estimates for criminal offense counts through missing data.  The paper will initially detail an analysis of the 

current composition of agencies.  Also, the paper will explore the existing variation in the UCR contributing 

agency pool and test for possible improvements to the categorization of UCR contributing agencies using 

jackknifing techniques to estimate a  standard error. 

2.1.1 Sources of Variation in UCR Data 

Consistent themes in research on UCR data are variation and error and their sources.  As early as the mid-

1960s, the “dark figure” of unreported crime was a point of concern regarding the validity of the UCR data 

and what conclusions could be derived from it.  Because UCR data reflects reports taken by law enforcement 

agencies and formally recorded, any crime that does not come to the attention of a law enforcement officer 

would not be captured in the statistics from the UCR Program.   Early research by Biderman and Reiss (1967) 

focused attention on variation introduced by unreported crime (Biderman & Reiss, 1967; Boivin & Cordeau, 

2011; Messner, Beaulieu, Isles, & Mitchell, 2014; Skogan, 2009).  Following the concern of unreported crime, 

later research has delved into the factors that affect whether a victim of a crime reports it to the police.  

Research supported that the perception of how serious the crime is by the victim is the primary factor in the 

                                                           
1 There are examples of states that have mandated that law enforcement agencies report crime data to a state 
agency, but that mandate is not from the national UCR Program. 
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individual decision to report it to the police, though it may be difficult to establish broad patterns given the 

personal nature of the decision (Gove, Hughes, & Geerken, 1985; Hart & Rennison, 2003).  Little research has 

been done on any regional patterns in victim reports to the police.  Regional patterns are difficult to assess 

primarily because the National Crime Victimization Survey, the only national survey of victimization in the 

United States, cannot provide estimates for areas smaller than the four United States regions.  

However, there are areas other than unreported crime where variation and error can be introduced to UCR 

data as a function of the actions of law enforcement rather than the victim.  The premise of the UCR Program 

is to provide a consistent classification structure for law enforcement to use despite the different laws and 

statutes that exist from one location to the next.  This classification system is itself subject to interpretation 

by law enforcement and should be considered part of the overall error structure of reported crime (Nolan, 

Haas, & Napier, 2011).  For example, Rosenfeld (2007) found that violence among intimate partners and 

family tends to be “up-classified” from simple to aggravated assault because of the changing attitudes of 

police on the problem of domestic violence.  Beyond classification, the discretion of law enforcement officers 

and agencies to report reports of crime can also affect data introduced into the UCR Program (Boivin & 

Cordeau, 2011). 

After data has been recorded and classified, the handling of the data can also affect variation in UCR data.  

Given that one of the purposes of the UCR Program is to provide an accounting of rates and trends for the 

nation, regions, and states, UCR data are aggregated into larger groups of data.  The very act of aggregation 

by spatial units affects the interpretation of those aggregates; a problem also referred to as the Modifiable 

Areal Unit Problem (MAUP) in spatial analysis (Rengert & Lockwood, 2009; Wong, 2009).  Maltz and 

Targonski (2003) found that UCR data becomes less stable at smaller units of geography.  The aggregated 

data tend to follow some mathematical principles (i.e., the laws of natural numbers), while the smaller areas 

and disaggregated data do not (Hickman & Rice, 2010).   

Other agency-level factors that affect the measurement of crime and the variation in UCR data center on its 

voluntary nature.  Law enforcement agencies are not required to submit UCR data to the FBI.  This can lead to 

“holes” in the data for particular items and reports (Addington, 2004) or for periods of time (Michael D Maltz, 

2006).  To provide national, regional, and metropolitan estimates, the UCR Program imputes this missing data 

based upon a set of geographic and population-based auxiliary variables.  This approach has come under 

increasing scrutiny, however, given mounting evidence that these auxiliary variables are not adequate to 

construct reliable imputation models (Lott & Whitley, 2003; J. P. Lynch & Jarvis, 2008; Michael D Maltz, 2006; 

Tabarrok, Heaton, & Helland, 2010). 

In their (2008) article, Lynch and Jarvis analyzed the current auxiliary variable used by the UCR Program in its 

mean substitution approach to the imputation of missing agencies.  The current method of stratification is 

based on a combination of agency size as measured by population served, metropolitan status, and 

geography (Cynthia Barnett-Ryan, 2007).  When Lynch and Jarvis decomposed the variance of the crime 

reports within each of the strata, they found that there was significantly more within-group variance then 

between-group variance.  This means that the predictive power of the population group is low and would not 

be a suitable auxiliary variable for an imputation method (2008).  Given the nature of how law enforcement 

data is recorded and its close ties to the way law enforcement agencies execute their duties, more could be 

done to bring the relationship of police recording and reporting of crime into the modeling of crime data and 

imputation.  
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2.1.2 Law Enforcement Agencies  

In the United States, the more common types of police forces with primary jurisdiction are municipal police 

and county sheriff’s offices (US Department of Justice, 2012).  Police departments usually have primary 

jurisdiction over incorporated areas, while sheriffs’ offices typically serve in unincorporated areas of a county.   

The duties of police departments tend to be rather consistent from one location to the next — especially in 

larger metropolitan areas.  However, the duties of the sheriff may range from limited or restricted- service to 

full-service law enforcement offices.  These two types of law enforcement agencies have been in existence in 

one form or another since early United States history (Vila & Morris, 1999).  These types of agencies—

especially large metropolitan agencies—dominate the research literature (Falcone, Wells, & Weisheit, 2002).  

It is less likely to find discussions that investigate small-town agencies or specialized agencies and their 

practices (Falcone et al., 2002; Pelfrey, 2007). 

Research suggests that small-town police have a much broader array of tasks than their metropolitan 

counterparts.  This is often linked to the close ties that members of the small-town police force have with 

members of their community.  Conversely, federal law enforcement and other state law enforcement 

bureaus are often less responsive to their immediate community and are typically more influenced by their 

organizational culture.  Larger urban agencies have seen a push towards specialization (Falcone et al., 2002; 

Pelfrey, 2007).  At the same time, there has been a lack of research on the nature of specialized agencies 

(such as campus police, park police, or conservation police) that assume law enforcement responsibilities in 

areas that are also served by primary law enforcement agencies (Falcone et al., 2002; O’Connor Shelley & 

Crow, 2009; Paoline III & Sloan III, 2003; Pelfrey, 2007).  The concurrent jurisdiction of multiple agencies 

creates a complex situation for reporting crime for a specific location.     

As new types of agencies have been created, the duties of both traditional and specialized agencies have 

evolved.  Many of these agencies, such as campus police, operated initially as security forces without full law 

enforcement powers.  Since the mid-twentieth century, specialized police agencies have evolved in their 

duties to include training at state law enforcement academies and full law enforcement powers.  However, 

relatively little has been studied or written on the subject of the roles or history of these specialized agencies 

(Kelling & Moore, 1988; Marvell & Moody, 1996; Vila & Morris, 1999; Williams, Murphy, Zinn, Stewart, & 

Moore, 1990). 

In the evolution of these specialized agencies from security forces and private entities into public, 

professional law enforcement, many have come to model themselves after traditional city and county police 

and sheriffs.  These developments are primarily seen in their organizational structure that mimics the 

hierarchical management structure that is often described as para-militaristic (Kelling & Moore, 1988; Moore, 

Mark H. and Kelling, 1983; Vila & Morris, 1999; Weiss, 2011).  Specialized agencies, however, face unique 

challenges depending on the community they serve.  In addition, many agencies work within limitations set 

not only by geographic constraints but also by the type of offenses that they handle. These limitations have 

the potential to influence the type and amount of crime information recorded for the UCR Program resulting 

in potential bias and uncertainty. 

2.1.3 Agency Information in the UCR Program2 

As a starting point for the discussion of agency type and activity and their relationship to crime reporting, it 

would be useful to explain the current manner that the UCR Program describes agencies.  The UCR Program 

approaches the description of law enforcement agencies in three primary ways.  The first method would be 

                                                           
2 This analysis uses 2012 Uniform Crime Reporting Program data.  In 2013, the UCR Program implemented a major 
change in definition to forcible rape that make comparisons from one location to the next difficult. 
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based on agency function and type.  A little over 50 percent of the agencies on file with the UCR Program as 

of 2012 are described as a city police department, while approximately 14 percent represent the 

unincorporated areas of the county served by a sheriff’s department.  These two types of agency typically 

represent primary law enforcement for the population of a given area.  The additional categories of 

colleges/universities, state police, other agencies, other state agencies, and tribal agencies make up about 16 

percent of agencies that represent specialized agencies.  The remaining 17 percent are agencies that are 

“covered-by” another agency.  These are agencies that agree to have another agency report their crime 

information to the UCR Program on their behalf. (See Table 2-1). 

 

Table 2-1. Number and percentage of agencies by type and population category, 2012 

 Total 
Zero-Population 

Agencies 
Most-in-population 

Agencies All Other Agencies 

Agency Type, 2012 Count Percentage Count Percentage Count Percentage Count Percentage 

Covered-by 3,757 17.0% 1,968 35.1% 4 0.9% 1,785 11.2% 

Cities 11,630 52.7% 3 0.1% 291 62.4% 11,336 71.0% 

Counties 3,032 13.8% 123 2.2% 164 35.2% 2,745 17.2% 

Colleges/ 
Universities 

748 3.4% 748 13.3% 
                    

-    
0.0% 

                    
-    

0.0% 

Other agencies 1,134 5.1% 1,023 18.2% 7 1.5% 104 0.7% 

Other state 
agencies 

495 2.2% 495 8.8% 
                    

-    
0.0% 

                    
-    

0.0% 

State Police 1,057 4.8% 1,057 18.8% 
                    

-    
0.0% 

                    
-    

0.0% 

Tribal 195 0.9% 195 3.5% 
                    

-    
0.0% 

                    
-    

0.0% 

Total 22,048 100.0% 5,612 100.0% 466 100.0% 15,970 100.0% 

 

An additional method of classifying agencies is in broad categories based upon population characteristics or a 

“population category.”  The “population category” is used primarily within the UCR Program for managing 

data collection efforts more than how the data is presented to the public.  This concept has two primary 

groups:  zero-population agencies and most-in-population agencies, while all other agencies beyond these 

two fall into a remainder group.  Zero-population agencies are those agencies who share an overlapping area 

of geography and its inhabitants with another agency.  By UCR policy, the inhabitants of an area such as a city 

or county are primarily assigned to a city police department or a county’s sheriff’s department.  To avoid 

double-counting, the other agencies that might have concurrent jurisdiction are assigned no or “zero” 

population.  In contrast, those agencies with 100,000 or more in assigned population are operationally 

assigned the status of most-in-population (MIP).  Any remaining agencies that include medium to small 

primary law enforcement agencies fall into an All Other Agencies category.  Of zero-population agencies, 62.6 

percent are one of the specialized law enforcement groups of colleges/universities, other agencies, other 

state agencies, state police, and tribal agencies (Table 2-1).  In contrast, only a small portion of most-in-

population agencies or all other agencies fall into one of the specialized categories—namely, other agencies.   

In addition to these two schema, agencies are also assigned to a population group.  While the concepts of 

agency type and population category impact ways in which UCR data are displayed and published, it is a third 

category, population group, that serves as the basis of the current imputation method of UCR offense data 

described later in this paper.  The population group is used to categorize an agency by the size of the 



 

9 
 

population being served, whether it serves a population in an incorporated (city) or unincorporated (county) 

area, and whether it is part of a Metropolitan Statistical Area.  There is also a provision for identifying state 

police, as well.  For example, agencies in the Population Group 1A serve cities with 1,000,000 or more 

inhabitants, while Population Group 8A serves counties (unincorporated areas) that are not part of a 

metropolitan statistical area (MSA) with 10,000 or more in population (See Table 2-2).  

Table 2-2. Heterogeneity of population group by agency type, 2012 

 

Agency Type, 2012 
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Population 
Group, 
2012 

Possessions 100% - - - - - - - 100% 4  

Cities 1,000,000 or over - 100% - - - - - - 100% 10  

Cities from 500,000 through 999,999 - 100% - - - - - - 100% 25  

Cities from 250,000 through 499,999 5% 95% - - - - - - 100% 43  

Cities from 100,000 through 249,999 1% 99% - - - - - - 100% 217  

Cities from 50,000 through 99,999 1% 99% - - - - - - 100% 483  

Cities from 25,000 through 49,999 2% 98% - - - - - - 100% 908  

Cities from 10,000 through 24,999 3% 97% - - - - - - 100% 1,979  

Cities from 2,500 through 9,999 8% 92% - - - - - - 100% 4,380  

Cities under 2,500 25% 55%   10% 1% 4% 3% 3% 100% 7,295  

Non-MSA Counties 100,000 or over - - 33% - 67% - - - 100% 3  

Non-MSA Counties from 25,000 through 
99,999 

- - 
94% 

- 
6% 

- - - 
100% 

298  

Non-MSA Counties from 10,000 through 
24,999 

- - 
97% 

- 
3% 

- - - 
100% 

677  

Non-MSA Counties under 10,000 23% -  41% -  20% 2% 14% - 100% 2,418  

Non-MSA State Police 10% - - - 74% 1% 14% - 100% 97  

MSA Counties 100,000 or over - - 97% - 3% - - - 100% 168  

MSA Counties 25,000 through 99,999 - - 93% - 7% - - - 100% 500  

MSA Counties from 10,000 through 
24,999 

- - 
96% 

- 
4% 

- - - 
100% 

290  

MSA Counties under 10,000 43% -  9% -  19% 8% 21% -  100% 2,147  

MSA State Police 24% - - - 43% 3% 30% -  100% 106  

Total 17% 53% 14% 3% 5% 2% 5% 1% 100% 22,048  

NOTE:  Selected rows indicate population groups with significant heterogeneity of agency type 

How does the UCR Program handle assigning agencies with no population (zero-population agencies) in a 

schema primarily built around population?  While some population groups imply quantified population, zero-

population agencies are officially assigned to one of five categories:  cities under 2,500; Non-MSA Counties 

under 10,000, Non-MSA State Police; MSA Counties under 10,000; and MSA State Police.  The result is that 

these five categories capture much more variation in agency type when compared to others.  Table 2-2 is 

provided to show the intersection of two of these classification schema:  agency type and population group.  

The inclusion of the zero-population agencies in these population groups has resulted in a more 

heterogeneous make-up compared to the other population groups.  As will be discussed further in this paper, 
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this pattern becomes a critical issue in the choice to use population group in the imputation of missing data 

in the UCR Program. 

2.1.4 Missing Data Imputation and Other Uses of Agency Information in the UCR Program 

As has been stressed, agency characteristics feature prominently in all aspects of management of UCR data.  

These characteristics are used in the display of the data, such as the tables that are included in the annual 

publication of Crime in the United States (US Department of Justice, 2012), as well as the imputation 

techniques used by the UCR Program to account for missing data.  For publication purposes, the UCR 

Program features national and subnational estimates of the original Part I offenses.  The original Part I 

offenses are murder and nonnegligent manslaughter, rape, robbery, aggravated assault, burglary, larceny-

theft, and motor vehicle theft.  The current methods for imputing missing UCR data by the FBI follow two 

paths.  The first is applied to agencies that are viewed as incomplete or partial reporters.  If an agency has 

provided at least three months of crime data, then the reported data are pro-rated to a full twelve months of 

data without regard to seasonality.  For example, if an agency reports five months of data, an average 

number of crimes per month is calculated and then multiplied by twelve to arrive at an estimate for the year.  

For the second method, if an agency provides less than three months of crime data or no data at all, then the 

crime rate per capita for agencies of similar size within either the same state, geographic division, or region is 

multiplied by the agency’s population in order to arrive at an estimate for the year.  In essence, this is a 

population-adjusted mean substitution approach to imputation (Barnett-Ryan, 2007). 

For the offense of arson, however, the data are treated differently.  The collection of arson incidents was 

added as a permanent part of the UCR Program in 1980.  However, for many years, the collection of arson 

data was relatively spotty in comparison to the other UCR Index offenses.   Nonetheless, an analysis of 2012 

data shows that arson data have been reported by almost the same number of agencies as the other UCR 

offenses (US Department of Justice, 2012). However, the UCR Program has never produced national 

estimates of reported arsons.  This reluctance is primarily due to the concern that reported data might be 

biased and a general concern that the current imputation methods are not appropriate for producing 

national estimates of arson rates (“Arson,” 2012). 

Since the late 1950s, the field of statistics, however, has evolved in its understanding and treatment of 

missing data (Rubin, 1976).  Rather than ignoring or excluding incomplete information, modern methods of 

imputation emphasize managing the bias that can be introduced into the data when portions are missing.  

Part of that process is ensuring that there is an understanding of the reasons why the data are incomplete.  

However, the UCR Program still treats missing data as though it were the same as the reported data in both 

volume and character.  The UCR Program has never systematically studied the nature of nonresponse of law 

enforcement agencies and the potential bias that this may introduce into the estimates using the current 

procedures.   
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Table 2-3. Percentage of imputed data in national estimates for Part I crimes, 2012 

 Reported  Imputed 

Murder and Non-negligent Manslaughter 98.8 1.2 

Rape 97.0 3.0 

Robbery 98.9 1.1 

Aggravated Assault 98.0 2.0 

Burglary 97.2 2.8 

Larceny-theft 96.9 3.1 

Motor Vehicle Theft 98.0 2.0 

 

As has been established, there has been very little study of the types of missingness exhibited by UCR data or 

its statistical importance.  Based on 2012 data, the percentage of the estimated values for Part I offenses that 

are based on actual reports range from 97.2 percent for burglary to 98.9 percent for robbery and motor 

vehicle theft (See Table 2-3).  Instead, the UCR Program has traditionally described agency missingness in 

terms of the quantity of missing data.  The first group is composed of agencies that are essentially or 

completely absent from a year’s data collection—so-called unit missing.  If an agency provides less than three 

months of crime data, it is completely absent for that year and grouped with agencies that provided no 

information at all.  The second group includes the agencies that provided anywhere from three to eleven 

months of crime data to the UCR Program.  These agencies reflect a pattern of item missing rather than unit 

missing.  The reason behind the construction of these two categories of missingness in UCR is that each group 

receives a different imputation technique.  However, the description of the amount of missingness does not 

necessarily provide any explanation as to the underlying mechanism of the patterns of missingness.   

Given the scant amount of missing data from a national aggregate, the question remains why we would want 

to be concerned about potential bias in imputed data.  The problem lies in that the UCR Program also 

publishes estimates for smaller areas such as regions, geographic divisions, states, and some MSAs.  As can 

be seen in Figure 2-1, the amount of missing data by county is not evenly distributed around the country.  

There are counties have very few agencies of low population providing crime data, as well as counties that 

are completely missing.  Also, it is apparent that some of the variation in reporting is more common in some 

states rather than others—especially for states that lack state-level aggregators (i.e., state UCR Programs) 

such as Mississippi.  In addition, robust reporting and the relatively low impact of missing data has been 

established through almost 90 years of reporting history.  However, the upcoming transition of the UCR 

Program to incident-based reporting will create the need to understand past reporting and variation of 

agency reports of crime.  
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Figure 2-1.  Percent of population represented by agencies reporting complete offense data to the UCR Program 

A brief analysis of the data reveals that the MIP agencies are more often than not providing complete data.  

Because of the role larger agencies play in multiple publications and the overall influence of the crime counts 

on national measures, the MIP agencies are given very specific attention to ensure that their data have been 

reported.  Zero-population agencies and agencies with small populations are responsible for much of the unit 

and item missing data (see Table 2-4).  In all cases, it is more likely for agencies not to provide any data (unit 

missing) rather than providing incomplete data (item missing).  Almost half of all non-reporting agencies in 

2012 were zero-population agencies.  The reasons behind this tendency towards non-reporting by zero-

population agencies may be as diverse as the agencies themselves.  Little research has been conducted to 

explain the lack of participation by specialized agencies, but it is likely connected to management practices 

valuing the contribution of crime counts by larger agencies.  However, as the UCR Program transitions to 

incident-based reporting of a broader array of offenses, the contribution of crime measures from specialized 

agencies may have a greater impact. 

A critical problem surrounding this pattern is found in the current method for imputing missing data for zero-

population agencies.  Because the missing data imputation method uses population to arrive at an estimated 

count of reported crimes, the current imputation process always estimates that no crimes were reported to 

non-reporting zero-population agencies; even though it is known that many zero-population agencies do have 

crimes reported to them.   While this process introduces bias into the national estimate of reported crimes, 

there is almost no understanding of the relative impact of this process.  The proportion of zero-population 

agencies has changed from 0.8 percent of total agencies in 1960 to 16.5 percent in 2012.  The original 

decision not to include zero-population agencies in the imputation method would have had minimal impact.  

However, the proportion of zero-population agencies has grown to the point where the UCR Program can no 
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longer ignore them.  In addition, the distribution of zero-population agencies is also not evenly divided across 

the nation.  As is illustrated in Figure 2-2, these specialized agencies appear to be more common for the 

Northeastern, South Atlantic, and Western states. 

 

Table 2-4. Reporting pattern by population category for original Part I offenses and arson, 2012 

  Reporting Patterns for original Part I Offenses, 2012 

  Missing Incomplete Complete Total 

  Count Percent Count Percent Count Percent Count Percent 

Population 
Category, 

2012 

Zero-Population Agencies 2,603 46.4 259 4.6 2,750 49.0 5,612 100.0 

"Most in Population" 
Agencies 

4 0.9 1 0.2 461 98.9 466 100.0 

All Other Agencies 3,037 19.0 807 5.1 12,126 75.9 15,970 1 
00.0 

Total 
 

5,644 25.6 1,067 4.8 15,337 69.6 22,048 100.0 

  Reporting Patterns for Arson, 2012 

  Missing Incomplete Complete Total 

  Count Percent Count Percent Count Percent Count Percent 

Population 
Category, 

2012 

Zero-Population Agencies 2,541 45.3 397 7.1 2,674  47.6 5,612 100.0 

"Most in Population" 
Agencies 

9 1.9 5  1.1 452 97.0 466 100.0 

All Other Agencies 3,291 20.6 1,025 6.4 11,654 73.0 15,970 100.0 

Total 
 

5,841 26.5 1,427 6.5 14,780 67.0 22,048 100.0 

 

 

Figure 2-2.  Specialized law enforcement agencies by county as a percent of total law enforcement agencies, 2012 
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2.1.5 Nature of Missing Data in the UCR Program 

A better understanding of the nature of the missing data and those agencies that do not report will reveal the 

potential impacts of missing data on the validity of national crime estimates produced by the UCR. Rubin 

(1976) introduced a classification method of missing data to describe both the mechanism of the missingness 

and its potential impact.  The first major category of missing data is data that are “Missing Completely at 

Random” (MCAR).  Data that are MCAR exhibit no structured pattern to the quality of missingness.   In 

essence, MCAR can be described much in the same way as a simple random sample.  Because of its random 

nature, the impact of MCAR is minimal, unbiased and can be effectively ignored.  While MCAR is the ideal 

situation when it comes to missing data, it is not often observed except in areas when it is purposefully 

introduced into the research design itself.    

A second possibility is for data to be “Missing at Random” or MAR.  Data that are MAR are not subject to the 

random process described above as MCAR.  Instead, MAR exhibits signs of systematic bias; however, the 

pattern can be associated with known information about each case.  This is roughly equivalent to a stratified 

random sample.  The key is to discover the underlying reason for, or at least a variable that seems to be 

highly correlated with, the missingness.  Once the covariate with missingness is accounted for, the potential 

bias is controllable (Rubin, 1976). 

Finally, there are situations when the data are systematically missing, but by means that are unknown.  These 

data are described as “Not Missing at Random” or NMAR.  Because it is not possible to account for the bias 

that is introduced by NMAR data, these data have the greatest potential to affect the results of analysis 

adversely.  The key to dealing with missing data is to try to transform any NMAR process to a MAR process 

through a careful exploration of the data set.  The reality is that all datasets start as NMAR until the patterns 

of missingness are analyzed to ascertain the mechanism for the missing data.  Once that mechanism can be 

described, it can be introduced into either an analytical model or an imputation model to avoid (or at least 

reduce) biasing the results. Metadata can be crucial in identifying this process. 

2.2 DISCUSSION AND RESULTS 

2.2.1 Variation within the Reporting Agencies 

The current imputation method in the UCR Program presumes that missing data are a MAR process that can 

be accounted for by population, population group, and geography.  However, there is evidence that these 

three elements do not effectively capture all the underlying correlates of missingness for UCR data (Lynch & 

Jarvis, 2008; Maltz, 2006).  Based upon the initial descriptive analysis of missing data, the type of agency—

especially zero-population agencies—appears to be related to reporting levels of UCR data.  Given the 

variation in the types of agencies within population groups capturing zero-population agencies, the variation 

and heterogeneity among zero-population agencies could interfere with the application of the mean-

substitution imputation technique (See Table 2-2). 

2.2.2 Coefficient of Variation 

To explore the amount of variation that may exist within the given categories of agency type and population 

group, the coefficient of variation (CV) was calculated using those agencies that submitted a full year of data 

for 2012.  The coefficient of variation (also known as the relative standard deviation) is arrived at by taking 

the ratio of the standard deviation to the mean.  The primary advantage of using the CV is that it is unit-less 

or standardized across different units of measurement.  As a standardized measure of dispersion, the CV can 

be used to compare the amount of variation among different variables even in situations where the 

measurements are different (Institute for Digital Research and Education, n.d.).  While, the measurements of 
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crime categories are each counts, the way in which these crimes are counted may introduce a difference in 

the underlying measurement.  Within the UCR Program, law enforcement agencies are requested to count 

only one offense per victim of any crime against person (e.g., murder and non-negligent manslaughter, rape, 

and assault).  Agencies count one offense per criminal transaction at approximately the same time or place 

(also referred to as an incident or distinct operation) for the crimes against property of robbery, burglary, 

larceny-theft, and arson.  Motor vehicle theft is counted as one offense per vehicle stolen or attempted to be 

stolen.  

Figure 2-3 and Figure 2-4 show the CV for each of the seven offenses appearing in the original Part I offenses 

collection, as well as Arson, for each of the population groups.  The most notable finding is that the 

population groups that represent the smallest agencies and zero-population agencies have the largest 

variation across all offense categories.  This finding is not necessarily surprising given the heterogeneity of 

those population groups. (See Table 2-3.)   

 

Figure 2-3. Coefficients of variation within violent offenses, 2012 
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Figure 2-4. Coefficients of variation within property offenses, 2012 

These findings raise the question of how to best subdivide the law enforcement agencies that report data to 

the UCR Program, and whether accounting for the zero-population status may account for additional factors 

for the process of missing offense reports.  A simple comparison of measurable variation between a 

stratification schema with the zero-population agencies and without may provide some indication of the 

possible impact of introducing population category into the model. While the “unit-less” quality of the CV has 

its strengths, there is no obvious statistical test to assess whether any measurable improvement in the CV is 

more appropriately attributed to random variation in the variable.  Parametric statistics that would address 

measures of central tendency rely upon theory and known distributions to inform a decision of whether 

differences are “statistically significant.” Being nonparametric, the CV does not have a theoretical distribution 

to provide this insight.  Also, the UCR dataset does not have the benefit of a structured sampling strategy that 

is usually part of the underlying assumptions tied to parametric statistics.  For these reasons, this paper will 

explore the benefits of using a resampling method, jackknifing, to decide on the significance of the 

differences in the CV.  This paper will also extend the use of the CV by calculating the average CV across a 

vector of CV values.   

2.2.3 Jackknifing 

Bootstrapping, jackknifing and other resampling methods “allow us to quantify uncertainty by calculating 

standard errors and confidence intervals and performing significance tests” (Hesterberg, et al. 2003, p.18-4).  

This paper will use a jackknife variance estimator to introduce a method to calculate a  standard error.  First 

introduced by Quenouille (1949, 1956), the jackknife was further exploited by Tukey (1958) as a method to 

remove bias from the estimator of variance and interval estimation (Boos & Osborne, 2013).  The jackknifed 
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standard error is a standard error estimated "computed from a sample of size N of vectors; each vector 

computed from a computer-generated random sample" (Boos & Osborne, 2013, p. 2).  Boos and Osborne 

provide an easy to replicate set of R code to encourage the use of the “leave 1 out” jackknife to calculate the 

standard error (2013).  The jackknifed standard error allows for a determination of whether any measurable 

reduction in variation could be statistically significant. 

Central to this paper is the idea of a stratum of “like” agencies used to calculate the per capita rate used in 

the imputation missing agency data and whether the model captures the MAR process.  Current UCR 

practices for imputation focus initially on the agency population group and state.  When the geographic 

extent of the state does not have another similar agency for calculating a per capita rate for mean 

substitution, the per capita rate is based upon agencies within a larger geographic area.  Initially, one of nine 

geographic divisions is used or then finally expanded to the larger area of one of the four geographic regions.  

All three levels of geography will be explored in this paper to assess the impact of geography on the overall 

variation of the data. 

Within each of the three geographic levels, the average will be calculated for each vector of CVs of crime 

offense values based upon two different stratification methods.  The first stratification method replicates the 

current process in UCR where only the population group and geography are represented.  The second 

stratification method will remove zero-population agencies for comparison.  Finally, the jackknifed standard 

error will be calculated for each of these vectors to establish a 95 percent confidence interval around each 

average CV value. (See Table 2-5 for counts in each vector based on stratification method.) 

2.2.4 Results 

The first stratification method assessed includes a combination of state and population groups to arrive at a 

set of strata that has minimal internal variation within each group.  For 48 of the 50 states, UCR data is 

aggregated by state agencies responsible for compiling crime data in a state repository across a common 

standard.  The state UCR Programs then forwards state crime information to the FBI’s national UCR Program 

applying the national standards.  For this reason, the state is the smallest geographic area used in this 

research and has the benefit of incorporating any significant spatial autocorrelation that might exist among 

agencies within this smaller geographic area based upon the aggregated reporting units.  The resulting 

comparison between the vector with zero-population agencies and the vector without those agencies shows 

that there are overall improvements in the calculated average CV and a reduction of variation around those 

CVs once specialized (i.e., zero-population) agencies are removed.  However, it is only with the property 

crimes of burglary, larceny-theft, and motor vehicle theft that have statistically significant decreases in 

average CV in the vector without specialized agencies (see Figure 2-5).  While this result is promising, there is 

an equal concern that there are many strata that only have one or two values.  For the original seven Part I 

crimes, 22.8 percent of the strata have one or two values (for example, there is only one agency in the state 

of Alaska that has between 250,000 and 499,999 inhabitants), and 23.1 percent of the strata have only one or 

two values for offense reports of arson.  When a stratum only contained one value, the CV would be 

missing(See Table 2-5 in the appendix for a summary).
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Figure 2-5. Difference in mean coefficient of variation based in strata based on state and population group using 95 percent confidence interval 
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Figure 2-6. Difference in mean coefficient of variation in strata based on region and population group using 95 percent confidence interval 
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Figure 2-7. Difference in mean coefficient of variation in strata based on division and population group using 95 percent confidence interval 
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To address the issue of the small N in each of the strata based upon state, an alternative approach might be to use 

the four geographic regions used by the Federal statistical agencies (e.g., Northeast, Midwest, South, and West).  

Expanding out to the region increases the number of agencies in each of the strata. Under this regional approach, 

only 7.0 percent of the strata contain one or two values for the offense reports of the original Part I, just 4.3 percent 

of the strata contain one or two values for the offense reports of arson.  The average CV is reduced with the 

elimination of the specialized agencies.  However, the increased variation dilutes the measured improvement in 

overall fit within the strata by reducing the possible spatial effects.  There is no statistically significant decrease to the 

CV based on the elimination of specialized agencies for any of the offense categories (see Figure 2-6). 

As a possible compromise to increase the number of values in each stratum while also maintaining some captured 

spatial effect, the last comparison is based upon the geographic division.  Much like region, the division is a consistent 

grouping of states used across all federal statistical areas.  Each of the four regions is subdivided into two to three 

divisions for a total of nine divisions across the 50 states.  The comparison of average CV using this stratification 

method replicates the results as the stratification method based upon state.  Overall, there is a measurable 

improvement and reduction of variation across all offenses.  However, it is only for the property crimes of burglary, 

larceny-theft, and motor vehicle theft that have statistically-significant improvements to the amount of variation 

within each stratum (see Figure 2-7).  The strata created by this intermediate level of geography appears to strike a 

balance between a small enough geographic unit to capture similar experiences of crime while allowing for sufficient 

strata size. 

2.2.5 Conclusion 

The goal of this paper was two-fold.  The first objective was to explore the impact of zero-population agencies on the 

variation within the population-based groups of law enforcement agencies. To accomplish the first objective, the 

second of this research was to introduce a possible new methodology for the comparison of UCR data using 

jackknifing techniques to produce jackknifed standard errors.  The results of the analysis support the continued 

exploration of zero-population agencies and their crime-reporting characteristics—especially as it relates to property 

crimes.  In addition, the jackknifing technique allowed for more refined conclusions to be drawn from those results by 

allowing both substantive and statistical significance to be assessed. 

As has been discussed previously, there is strong evidence that the UCR-defined population groups have too much 

internal variation for measures of central tendency to reliably represent the whole.  This research supports those 

assertions for population groups that capture most zero-population agencies.  The UCR Program assigns those zero-

population agencies to groups that contain the smallest populations.  In general, the population groups with the 

smallest populations have most diversity in agency type.  The members of these groups could include small municipal 

police departments, as well as campus police from colleges and universities, state agencies (such as a Department of 

Natural Resources), or transport police.  Conversely, the results also point to the issue of variation being less 

problematic for population groups that are more homogeneous by agency type, such as those representing large 

metropolitan areas.  The issue is less that population groups are not enough for representing the average crime 

experience of a group of agencies, rather that population groups may be improved upon if the confounding effects of 

zero-population agencies are accounted. 

A deeper look at the results of the analysis also reveals that zero-population agencies also have the most measurable 

influence on property crime rates for burglary, larceny-theft, and motor vehicle theft.  Small agencies, campus police, 

and other specialized law enforcement agencies may respond disproportionately to more reports of property crime 

when compared to larger agencies.  There is some early evidence that smaller and specialized police agencies are 

more likely to refer serious violent offenses to larger agencies, such as the Sheriff’s office, which may have more 
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personnel to deal with those serious offenses.  While these anecdotal reasons may ultimately explain these results, 

there is not a body of research that specifically addresses the differences among these types of law enforcement 

agencies.  Until more is known about zero-population agencies and their specialized nature, it will be difficult to 

account for their impact on crime data. 

Finally, the jackknifing technique to calculate  standard errors of the mean CV appears to address the stochastic 

nature of UCR data.  Most research within the field of criminology would ignore the inherent uncertainty in the UCR 

data that can be attributed to random variation.  Because it is not based on a random sample, it was thought it was 

either unnecessary to account for the random variation in the data or that there was no clear path to develop those 

measures given the unknown distribution of the data.  Jackknifing provides a method to produce the variances and 

standard errors necessary to determine if measurable differences are likely to be attributed to random variation.  The 

specific case of this research prevented assigning too much meaning to a measurable improvement in average CV for 

violent offenses.  In addition to the ability to test differences between stratification methods, the measure of the 

jackknifed standard error provides insight into the amount of variation in a measure such as CV.  The results of this 

analysis showed that the removal of zero-population agencies from stratification methods reduce the variation in 

average CV across all offenses.  This finding means that measures of central tendency calculated within each stratum 

are more precise. 

For future research, the results of this study support the need to focus on the variation within UCR data for both 

statistical and substantive reasons.  Statistically, the risk of Type I error has been high for analyses using UCR data 

because researchers have left the idea of statistical significance unaddressed.  Jackknifing and other resampling 

techniques show clear promise that should be replicated to understand how and when to apply these methods.  Also, 

future research will need to concentrate on the changing dimensions of law enforcement and the impact on the data 

collected.  Just as this article seeks to build upon the findings of Lynch and Jarvis (2008), other research is called for to 

look further into the differences among the various types of agencies and their policing activities.  It is no longer 

justified to view all law enforcement through one lens given that there is an increasing diversification of law 

enforcement agencies and increasing specialization within each agency.   
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2.3 APPENDIX 
Table 2-5.  Number of Agencies within each stratum by stratification technique 

  Geography 

Specialized 
Agencies 
included? N Mean Median Mode Minimum Maximum 

      Valid Missing           

O
ri

gi
n

al
 s

ev
en

 P
ar

t 
I State Yes 624 1 24.6 9 1 1             489  

No 596 0 21.1 7 1 1             489  

Region Yes 71 1 216.0 88 1a 1          1,718  

No 66 0 190.7 74 1a 1          1,169  

Division Yes 147 1 104.3 39 2a 1             812  

No 138 0 91.2 35 4 1             812  

A
rs

o
n

 

State Yes 611 14 24.2 9 1 1             489  

No 583 13 20.8 7 1 1             489  

Region Yes 69 3 214.2 88 4 1          1,631  

No 63 3 192.2 84 4 1          1,085  

Division Yes 144 4 102.6 39 4 1             741  

No 135 3 89.7 35 4 1             741  

 
a Multiple modes exist.  The lowest value is displayed     
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3 CRIME AND PLACE:  DIFFERENCES IN SPATIAL RELATIONSHIP BETWEEN 

CALLS FOR SERVICE AND RECORDED INCIDENTS FOR MUNICIPAL AND 

CAMPUS LAW ENFORCEMENT 

3.1 INTRODUCTION 
In this current era of open data, law enforcement agencies are encouraged to release more types and 

amounts of data collected typically through day-to-day operational activities to increase transparency 

and accountability.  The alternative data sources provided through open data initiatives are tempting 

sources for the exploration of critical research topics.  While purposeful data collections employing 

rigorous data collection techniques and methodologies have always been seen as the gold standard for 

research, researchers across many disciplines begin to consider nontraditional sources of information in 

efforts to explore and test concepts when fewer resources, such as personnel or monetary support, are 

available to support  purposeful data collection (Currie, Paris, Pasquetto, & Pierre, 2016; Fryer Jr., 2016; 

Janssen, Charalabidis, & Zuiderwijk, 2012; Molloy, 2011; Reichman, O J； Jones, M.B.; Schildhauer, 

2011).  The challenge laid out for researchers—as also articulated by James Lynch in his 2017 American 

Society of Criminology Presidential Address (Lynch 2017)—is to understand the possibilities and 

limitations of these open data.   

The most commonly available open data in criminal justice comes from administrative data that are a 

product of the work of law enforcement officers and executives.  A variety of administrative data are 

available from law enforcement including accidents/crashes, citations, arrests, workforce, incidents and 

calls for service.  Many law enforcement agencies have begun to participate in open data initiatives to 

allow for easier access by the public to their raw administrative data.  The Police Data Initiative is one 

such example that has 130 law enforcement agencies participating from around the country 

contributing access to a total of 351 datasets (Police Data Initiative n.d. accessed on 5/5/2018).   

The sheer volume of open data from law enforcement sources has led to increased interest in the 

possibilities of secondary analysis of existing digital information to explore criminal Justice concepts.  

While most crime statistics are also a product of administrative data collected through policing activities, 

they are usually not available until a formal process of compilation, editing and review is complete.  

Statistical data, such as Uniform Crime Reporting (UCR) data, are usually derived from official incident 

reports recorded by law enforcement agents and agencies.  While also a product of policing work, these 

incident reports require some initial vetting on the part of law enforcement administrators to assign 

information into uniform criminal justice and statutory categories—much like the process of coding in a 

content analysis or other types of qualitative analysis—referred to as “classification” (US Department of 

Justice, 2013a, 2013b).  Alternatively, calls for service (CFS) are generated by officer and public-initiated 

requests. These data are typically recorded in a system used to manage dispatch of law enforcement 

officers to a particular location.  CFS records include both the location and time of the call along with a 

basic description of the event.  CFS data can be quickly and easily generated by law enforcement 

agencies and is a rich source for the analysis of temporal and spatial crime patterns when the recorded 

incident UCR information takes longer to produce or sometimes lacks in geographic specificity. 
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However, if the goal for using CFS is to provide a proxy data source for the traditionally-used recorded 

incident data, little research has been done to test the extent to which CFS could stand in for recorded 

incidents—especially considering that these data sets are collected with differing goals.  Recent 

examples of research utilizing CFS data include measuring fear of crime, collective efficacy, or other 

concepts closely tied to measuring police presence or the request for police presence (Alpert, 

Macdonald, & Dunham, 2005; Boivin & Cordeau, 2011; Conley & Stein, 2014; Junior & Muniz, 2005; 

Klinger & Bridges, 1997; Levitt, 1998; Nesbary, 1998; Renauer, 2012; Telep, Mitchell, & Weisburd, 2014).  

However, there remains an underlying question of whether CFS data have the potential to reveal more 

information related to recorded crime or could serve as a reasonable proxy given the differences 

between the two datasets.   

CFS data are reflective of the self-reported nature of the information provided and a record does not 

necessarily reflect the situation as observed or investigated by law enforcement on arrival. These data 

are primarily collected for operating a computer-aided dispatch system.  The key pieces of information 

are location, time, and a brief explanation or request to be used to manage the process of sending law 

enforcement to respond to a request for service by a member of the public (UCAD Project Committee, 

2012). Alternatively, when and how incident information is recorded by law enforcement is influenced 

by the priorities and data demands of agencies that vary by agency type given that these data are used 

to manage the investigation and processing of recognized crimes.  Past research has indicated that data 

recorded as CFS in computer-aided dispatch systems have significant measurement error often resulting 

in the misclassification of offense based upon initial accounts provided by the public rather than law 

enforcement (Klinger & Bridges, 1997).  More recent scholarship indicates that CFS may vary depending 

upon the relationship between the community and police—especially in minority communities that have 

seen tensions and protests increase in the wake of officer-involved shootings and other negative 

interactions with law enforcement (Desmond, Papachristos, & Kirk, 2016; Gibson, Walker, Jennings, & 

Miller, 2010; Mazerolle, Bennett, Davis, Sargeant, & Manning, 2013).  There are additional untested 

assumptions that the recording of data—both CFS and incident reports—operates in a similar fashion 

across all types of law enforcement agencies and at global and local units of scale.   

This paper investigates whether CFS can serve as a substitute for purposefully-collected crime statistics, 

and how that relationship could be tested.  The paper first seeks to establish the relationship—

specifically, the spatial relationship—if any, between CFS and recorded crime data given the policing of a 

similar geographic area by distinct law enforcement agencies using both global and local statistics.  

Secondly, the paper will explore the spatial relationship between CFS and recorded crime data when 

comparing a municipal (traditional) law enforcement agency with a campus (specialized) law 

enforcement agency in the same area.  This approach will explore the expectation that there is a close 

relationship between CFS and incident reports while also testing whether differing types of law 

enforcement agencies result in different recording patterns. 

3.2 CRIME AND PLACE 
In his 2014 Presidential Address to the American Society of Criminology, David Weisburd argued for 

criminology to turn its focus away from traditional explanatory models centered on the individual.  

Rather, he encouraged researchers consider the implications of “place” on crime and  to turn towards 

spatial models (D. Weisburd, 2015a).  In particular, Weisburd noticed  a consistent finding in the 

literature that a disproportionately large number of crime reports tended to be associated with a limited 
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number of specific microgeographic units, consisting of street segments or addresses (Andresen, 

Curman, & Linning, 2017; LaRue & Andresen, 2015; Schnell, Braga, & Piza, 2017; Steenbeek & Weisburd, 

2016; Wheeler, Worden, & McLean, 2016).  These “hotspots” varied by type of offense but appeared to 

be surprisingly stable over time despite law enforcement activity directed to them.  A key point from 

Weisburd’s address and others’ findings is the need to analyze geographic data at smaller, 

microgeographic units of scale for these persistent patterns to emerge.  These findings raise critical 

questions about why crime might persist in particular spaces and scales.  Why would some spaces 

consistently engender or be more vulnerable to crime compared to others and how would police 

recording behavior potentially affect this conclusion?   

The ideas of space, place, and crime are closely associated with the law enforcement agency that 

collects and records the data used to measure crime.  The sense of place may be perceived differently 

depending upon the type of agency involved.  Data recorded by traditional law enforcement agencies 

are directly tied to a concept of place defined by the area in which a law enforcement agency and its 

officers have authority to operate.  Traditionally, the law enforcement agency determines the extent of 

activity space of officers based upon administrative boundaries, such as city or county limits, that are 

associated with jurisdictional definitions.  This definition may not be appropriate for specialized law 

enforcement agencies, such as campus police.  Using the example of campus police, the Clery Act and 

the data required defines place through the activity space of students, rather than strictly jurisdictional 

boundaries (King, Mahaffie, & McLarnon, 2016).     

With the passage of the Clery Act in 1990, campus law enforcement was mandated to meet certain 

criteria for recording and reporting of crime data, which are not necessarily required for other law 

enforcement agencies (“Clery Center,” n.d.; King et al., 2016; McCarthy, 2016).  At the core, campus law 

enforcement must “collect, classify, and count” the offenses of murder, sexual assault aggravated 

assault, and the property crimes of robbery, burglary, motor vehicle theft, and arson (King, Mahaffie, 

and McLarnon 2016, p. 1-6).  Campus agencies also gather information on hate crimes associated with 

the primary list of offenses mentioned above as well as the additional offenses of simple assault, 

intimidation, larceny-theft, and vandalism.  Additionally, arrests for liquor law violations, drug law 

violations, and weapons law violations are included.  This information is published in an annual security 

report and sent to the Department of Education.  The daily crime log is open to review by the public, and 

agencies are expected to implement ways to issue crime alerts to the campus community and develop 

educational programs on key campus crime problems, such as dating violence or sexual assault. 

In addition to requiring certain content in these reports, guidance documents provided to campus law 

enforcement to implement the Clery Act is careful to define the areas and boundaries for recording such 

data.  There are distinct areas for which campus law enforcement is required to maintain records.  Any 

crime reported on-campus or in any non-campus building owned or controlled by the institution is 

recorded.  While the Department of Education’s concept of university-controlled areas or buildings is 

certainly tied to the definition of campus property, use agreements, and loans, it is equally defined by 

the movement of students through public property such as sidewalks, parking facilities, or bike paths.  In 

the case of non-campus buildings and leased space, any property that staff and students have access to 

is subject to reporting requirements if the buildings are used in support of the university’s educational 

purposes.  In addition, crimes occurring in public spaces or in public property adjacent to the campus 

frequented by students is required to be reported as part of Clery Act requirements (King et al., 2016). 
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3.3 POLICE IN A BOUNDARY ROLE 
Beyond the more concrete geographic representations of boundaries such as lines separating 

jurisdictions, police officers, especially those working directly with the public such as patrol officers, can 

also be forming a boundary between the public and the organizational goals established by command 

staff.  The boundary between these two groups is functional, and within the police force there are 

particular individuals who serve a role at the margins between those two groups—a boundary role 

(Aldrich & Herker, 1977; Klockars, 1985; Manning, 2010; Tyler, 2004).  The two main functions of the 

boundary role are to provide information processing and external representation.  These two functions 

represent the communication of information in two directions. The information processing function is a 

process by which the boundary role incumbents filter the information that is available in the 

environment and selects only what is seen as relevant to be passed along to the rest of the organization.  

The hierarchical nature of law enforcement organization sets an expectation that the command staff will 

establish the agency’s mission (D. Weisburd et al., 2003).  In turn, officers are in turn expected to 

represent organizational goals set by the mission to the public through their information 

communications outward to the public, such as press releases, social media posts, or themes 

surrounding organized community meetings (Aldrich & Herker, 1977; Klockars, 1985; Manning, 2010; 

Tyler, 2004). 

The boundary role has far-reaching implications, starting with how officers observe their environment 

and their activity space. A patrol officers’ response to her or his environment has direct consequences 

on how and which crimes are discovered.  Once a criminal incident has been identified, the officers are 

responsible for recording the event’s information according to organizational priorities.  Additionally, 

which crimes are formally recorded and what information is provided on those crimes may vary from 

event to event, officer to officer and location to location (Aldrich & Herker, 1977).  The function of 

external representation is the boundary role incumbent’s ability to negotiate the differences between 

the environment and the organization’s policies.  An additional point of focus is the adaptability in the 

interaction between community members and patrol officers.  The patrol officer is responsible for 

adapting his or her behavior to both the policies of the agency, as communicated through the command 

staff, and the surrounding environment.  The nature of this interaction affects whether victims are 

willing to report crimes to the police and thus how much crime is discovered.  For example, the NYPD’s 

decision to use a zero-tolerance policing strategy and how that policy is implemented by the patrol 

officers will result in a different reaction from the community than in other cities that apply community 

policing tactics.  The relationship that police maintain with the communities they serve affects what 

crime is handled by police, how it is handled, and whether information about that crime is recorded 

(Aldrich & Herker, 1977; Manning, 2010).  

The increasing specialization of jurisdiction in both crime enforcement and geographic area results in 

differing policing strategies and in different data recorded to meet the current challenges, even in areas 

where two different agencies may occupy the same space.  Modern law enforcement is a complex 

process that often involves the careful coordination between agencies serving overlapping jurisdictions.  

In 1960, the proportion of law enforcement agencies that were identified as having concurrent 

jurisdiction with another agency in the UCR Program was less than 1 percent.  However, the proportion 

of those same agencies had grown to about 20 percent in 2012 (“Monthly Report of Offenses Known by 

Law Enforcement (Return A) Master File,” 1960; “Monthly Report of Offenses Known by Law 

Enforcement (Return A) Master File,” 2012).  Multiple agencies may serve the same geographic area, 
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such as areas in cities that contain a university or college.  In areas where more than one law 

enforcement agency would have overlapping jurisdiction, there may be duplication in CFS, but the 

recording of crime incidents would be negotiated among agencies to determine which agency would 

take primary responsibility for handling the investigation of that incident.   Specialized law enforcement 

agencies (such as campus police) might record data differently from traditional municipal law 

enforcement even though these agencies may be reporting in the same area.  

As campus police agencies professionalized in the decades from the 1960s to the early 1980s, they 

tended to model themselves on municipal law enforcement agencies in terms of organization and 

operations.  Campus police, however, serve a community that is quite different in its background and 

makeup when compared to most municipal agencies.  In addition, the types of crimes reported to 

campus police tend to consist of more property crimes than violent crimes in comparison to municipal 

agencies (Bromley, 2007).  The Clery Act mandates information sharing practices with other local 

jurisdictions (King et al., 2016; Storch, n.d.).  Furthermore, the Clery Act requirements direct the 

dynamic of recording and reporting of crime data for campus police that is not experienced by municipal 

law enforcement agencies and may impact the ability for CFS to accurately model the information 

typically measured by incident reports (Gregory & Janosik, 2003; Janosik & Gregory, 2003). 

3.4 METHODOLOGY AND EXPECTED RESULTS 
The analysis focuses on a case study of the mid-southern city of Knoxville, Tennessee—two law 

enforcement agencies (LEA)—primarily by conducting a quantitative analysis of data collected by these 

agencies.  However, this quantitative analysis is informed by a qualitative assessment of the agencies 

use of the same law enforcement data to provide context to the results.  Knoxville Police Department 

(KPD) is the primary municipal police department serving a population of approximately 186,000 

inhabitants.  The University of Tennessee-Knoxville is the campus police department for a large land 

grant institution serving a student body of approximately 27,800 (28,000).  The primary campus of the 

university is surrounded on three sides by commercial and residential areas of the city and a river on the 

fourth.  Both agencies provided information on CFS and incident reports for 2014, as well as examples of 

their analysis of that information for one month of that year (April).  Having both the quantitative 

information recorded by the agency as well as an agency’s use of that data provides insight into the 

focus of an agency’s police mission for that period (see Figure 3-1). 

3.4.1 Agency Priorities and Use of Data 

To explore the possible impact of the use of data on the recording behavior of law enforcement 

agencies, samples of analyses produced for each agency were provided for the month of April 2014.  It 

was thought important to choose a month that represented a period when both law enforcement 

agencies would be actively engaged with a full complement of the communities each serves.  Because it 

is anticipated that the campus LEA would see a dramatic reduction in its activities in the summer 

months, April was used as a time when most enrolled students would still be on campus. 

The published standard operating procedure for the KPD LEA Crime Analysis Unit identifies their goals to 

be focused on improved operational understanding and decision-making.  The analyses are broadly 

defined in three areas of administrative analyses that support budget and resource allocation; strategic 

analyses that support proactive crime reduction strategies; and finally, tactical analyses that support 

investigations.  Communicating crime data to non-LEA personnel is approved on a case-by-case basis, 
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and in general, the public is typically directed to crime data published in the agency’s annual report 

(Knoxville Police Department, 2005, 2014). 

For the campus LEA, much of the crime analysis focus is directed by the Clery Act’s requirements 

associated with the release of key statistical information regarding crimes on and around campus.  The 

Clery Act mandates LEAs maintain a daily crime log with basic information about the offense, date and 

time, general location, and disposition.  The daily crime log must be accessible by the public.  In addition, 

campus LEAs must also produce an annual security report providing information on offenses, broad 

geographic locations, and other characteristics of the crimes reported.  These are minimum 

requirements enforced by the U.S. Department of Education (King et al., 2016; State University of New 

York, n.d.).  

The types of products examined for the paper included crime logs, reports, presentations for 

COMPSTAT3 meetings, maps, and other such documents used for internal communications with officers 

and external communications with their communities.  The city (KPD) and campus (UTPD) LEAs provided 

11 and 19 products to review, respectively.   Overall, the types of analytical products obtained from the 

campus LEA were much more diverse than those from the city LEA.  The city LEA was more inclined to 

produce reports for internal consumption, while the campus LEA had a mixture of both internal and 

external reports.  The campus external reports most often were crime logs that are mandated by the 

Clery Act.  Additionally, the campus LEA had not implemented any geocoding of their data at the time, 

so their analytical reports were more descriptive of general locations of concern for directing patrols 

and did not provide any maps associated with recorded data. 

Table 3-1.  Number of offense "tags" by agency 

 

City LEA 
(KPD) 

Campus LEA 
(UTPD) 

Person Crimes 9 61 
Property Crimes 64 126 
Society Crimes 0 0 
Hate Crimes 0 8 
Traffic 0 50 
Non-criminal 0 12 
 Total Codes 73 257 

Total Sources 11 19 

 

The information provided in each product was tagged using qualitative software to reflect either a 

visualization of data (chart, map, or photo) or text by type of crime (see Appendix for description of 

coding scheme).  Using this methodology, it is possible to have more than one tag or type of information 

within a product or a single page of a report.  Based upon an enumeration of tags provided or displayed 

for consumption by an agency’s officers, there was a heightened concern directed at property crimes 

                                                           
3 COMPSTAT (COMPare STATistics) is a strategic management program first introduced by Commissioner William 
Bratton in the New York Police Department in the 1990s to introduce accountability of mid-level police management 
through analysis of precinct-level statistical analysis (B. D. Weisburd, Mastrofski, Greenspan, & Willis, 2004) 
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(such as thefts, vandalism, burglary, arson, motor vehicle theft, or robbery) during the month of April 

(See Table 3-1).   

Upon examination of data for the entire year of 2014, similar patterns showing the preponderance of 

crimes recorded as property offenses can be found in the incident reports for both agencies.  A property 

offense is recorded on 47.8 percent of incident reports for the municipal agency and on 40.9 percent of 

incident reports for the campus agency (See Table 3-2).  Upon analysis of the CFS, property crimes are 

more often recorded on a CFS in comparison to crimes against persons and crimes against society for 

both agencies as well (See Table 3-2).  

 

Table 3-2.  Counts and percentages of CFS and incident reports by agency and offense type, 2014 

 KPD UTPD 

Offense 
Type 

Calls for Service Incident Reports Calls for Service Incident Reports 

Count Percent Count Percent Count Percent Count Percent 

Person 17,575  5.9% 3,450  13.3% 56  2.2% 69  6.4% 

Property 28,553  9.6% 12,367  47.8% 445  17.1% 439  40.9% 

Society 26,445  8.9% 3,353  13.0% 242  9.3% 474  44.1% 

Traffic 37,402  12.6% -    0.0% 334  12.8% -    0.0% 

Welfare 18,793  6.3% 38  0.1% 19  0.7% 109  10.1% 

Other 167,665  56.6% 8,992  34.8% 1,506  57.8% 262  24.4% 

Totala 296,433   25,874   2,604   1,074   
a CFS and Incident Reports can have more than one offense type recorded on an individual record.  Counts and 

percentages by category will not equal the total. 

However, each agency exhibits differing patterns of correlation when these same categories are 

analyzed by month to measure the level of association between the counts for CFS and counts of 

incident reports.  The municipal agency had less measured association for the three primary crime types 

than the same categories for the campus agency.  The CFS and incident reports had strong, statistically-

significant correlations ranging from .820 to .904 for the campus agency, while the municipal agency had 

only one statistically-significant correlation which was for property crime (.667).  (See Table 3-3.)  

Further exploration of CFS and incident report data from KPD revealed that the months of October, 

November, and December had patterns of higher incident reports than would be anticipated from the 

levels of CFS as compared to the other months.  This nonlinear pattern is reflected in the lower 

correlations for KPD Based upon these findings, the quantitative information for property crime 

recorded in April will be analyzed. 
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Table 3-3.  Pearson correlations of monthly counts of CFS and incident reports,  
city and campus agency, 2014 

 City LEA 

(KPD) 

Campus 

LEA (UTPD) 

Person       .393      .885* 

Property       .667*      .904** 

Society       .043      .820* 

** Correlation is significant at the 0.01 level (2-tailed) 
* Correlation is significant at the 0.05 level (2-tailed) 

 

3.4.2 Spatial Correlation and Co-location 

Each agency provided a dataset from their computer-aided dispatch (CAD) system recording CFS for 

2014 and incident reports recorded in a records management system (RMS) for the same year.  Along 

the continuum of data inclusiveness with police data with arrest reports on one end being the most 

restrictive, while CFS have the fewest restrictions, incident reports fall in the middle of the spectrum 

where the decision to record the data is more reflective of the agency’s priorities rather than the 

demand for policing services as is the case for CFS.   

The city data had been geocoded by the agency, however, the university data required geocoding before 

the analysis.  Geocoding was accomplished by associating the listed (or closest) address to the name of 

the building, facility, or parking lot.  After each record was geocoded, the reason for the call or recorded 

crime was recoded into broad categories to match Table 3-2.  These included crimes against persons, 

crimes against property, crimes against society, traffic violations and stops, welfare checks, and a 

miscellaneous “other” category.  Combining the categories also removes any potential issues where the 

individual calling for service does not accurately specify the type of property offense.  For example, it is 

common for individuals to use burglary and robbery interchangeably even though they are distinct 

crimes.  Table 3-5 in the appendix details the offense types that are included in crimes against property, 

which is the subject of this analysis. 

After exploring the underlying categorical and spatial patterns of each data set, this research will discuss 

the application of the co-location quotient to assess the spatial association between CFS and incident 

reports.  This will be accomplished in two stages.  The first will be an assessment of the global co-

location quotient (GCLQ) to determine if any spatial association exists between the two datasets.  In 

addition, the local co-location quotient (LCLQ) will calculated to assess if there are any smaller areas of 

association that can be measured on a point-by-point basis that are not detectable in a global measure 

of association.  Analyses at micro-geographic scales will allow for these hotspots to emerge in ways that 

analyses at larger scales will not. 

Despite the significant correlations between the counts of incident reports and CFS, it is anticipated that 

there will be less spatial association between CFS and incident data for the university data as measured 

by the GCLQ because the need to record certain crimes are driven by the needs of the Clery Act or other 

organizational pressures rather than simply recording the locations of crimes and other requests for 
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assistance.  Conversely, there should be more spatial association between CFS and incident data for the 

city data as measured by the GCLQ.  Finally, the LCLQ could reveal differences in spatial patterns 

between the two agencies—especially in the boundary area where there is concurrent jurisdiction 

around campus. 

 

Figure 3-1.  CFS and incident reports for property crime in study area, April 2014 

3.5 ANALYSIS 

3.5.1 Cross-K Analysis 

While spatial autocorrelation measures the spatial correlation of an observation with other objects like 

itself, spatial correlation (or co-location) measures the spatial relationship with differing objects.  The 

Cross-K or bivariate K function—an extension of the Ripley’s K function testing—is a commonly used 

measure of clustering patterns of a point dataset around another represented as type i and j.  Cross-K 

analysis measures the overall density (λ) of one set of points (for example type j) within a specified 

distance of another set of points (type i) compared to that would be observed by chance.  It is an 

asymmetric measure based upon distance of points j from points i, as such, it considers all possible pairs 

of points, not just the nearest ones.  The distance between the 𝑘th location of type 𝑖 and the 𝑙th 

location of type 𝑗 is represented as 𝑑𝑖𝑘,,𝑗𝑙
 for a given area (𝐴) (Dixon, 2002). 

When edge corrections are not applied, the Cross-K function is formulated similar to the univariate 

Ripley’s K as: 

�̂�𝑖𝑗(𝑡) = (�̂�𝑖�̂�𝑗𝐴)
−1

∑ ∑ 𝐼(𝑑𝑖𝑘,𝑗𝑙
< 𝑡)

𝑙𝑘

 

 

When edge corrections are applied, the Cross-K function is independent of the shape of the area.  The 

results were calculated using the Kcross function in Spatstat package in R (Baddeley, Rubak, & Turner, 

2015).  The null hypothesis assuming complete spatial randomness (CSR) is provided by the Kpois in the 

results in Figure 3-2 and Figure 3-3.  The other three results indicate the Cross-K results based upon 

three different edge corrections:  Kiso: isotropic correction (or Ripley’s); Ktrans: translation correction (or 
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toroidal); Kbord: border correction (or guard area).  The estimates indicate clustering between CFS and 

incident reports for both the city and the campus law enforcement.  In addition, the three differing edge 

correction techniques show very similar profiles, which indicate that there were no difficulties 

estimating the Cross-K function.  While the results from the Cross-K analysis indicate significant 

clustering between the CFS and incident reports, these estimates could be biased if the distribution of 

the underlying population also exhibit a significant spatial clustering pattern or potentially overwhelm 

any detectable pattern between the two datasets solely represent the clustering of the underlying 

population with crime data  (Leslie & Kronenfeld, 2011; Wang, Hu, Wang, & Li, 2017). 

 

 

Figure 3-2.  Cross-K analysis from CFS to incident reports, UTPD 
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Figure 3-3.  Cross-K analysis from CFS to incident reports, KPD  

 

3.5.2 Global Colocation Quotient 

Given the potential for bias in the Cross-K analysis, Wang, et al. (2017) suggest that the GCLQ provides a 

better measure for the degree of spatial dependence between two point data sets.  Originally developed 

by Leslie and Kronenfeld (2011), the GCLQ is seen as advantageous over the join count statistic and the 

Cross-K function because it is less sensitive to the bias of clustering of the underlying population as is 

common with procedures based on distance.  The GCLQ is an asymmetric measure formulated as 

𝐶𝐿𝑄𝐴→𝐵 =
𝑁𝐴→𝐵 𝑁𝐴⁄

𝑁𝐵 (𝑁 − 1)⁄
 

where 𝑁𝐴and 𝑁𝐵 represent the counts for each of two groups, respectively.  𝑁𝐴→𝐵 is the number of type 

A points that have a Type B point as its nearest neighbor. The function calculates the ratio between the 

observed proportion of points and the expected proportion by chance.  To address the presence of 

multiple nearest neighbors within the search radius, each point is treated equally within the calculation 

of the GCLQ in the following manner.  The number of points of type A are noted as 𝑖 and 𝑛𝑛𝑖 is the 

number of nearest neighbors to point 𝑖;  𝑗 are point 𝑖′𝑠 nearest neighbors 𝑛𝑛𝑖.  A binary variable that 

indicates whether a point is of type B, with yes as 1, is represented as 𝑓𝑖𝑗 (Wang et al., 2017). 

𝑁𝐴→𝐵 = ∑ ∑
𝑓𝑖𝑗

𝑛𝑛𝑖

𝑛𝑛𝑖

𝑗=1

𝑁𝐴

𝑖=1
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The null hypothesis for the GCLQ is stated as, “given the clustering of the joint population, there is no 

spatial association between pairs of categorical subsets” that would result in a value of 1.000 (Leslie & 

Kronenfeld, 2011, p. 312).  Any value over 1.000 would indicate points of type A were spatially 

collocated with points of type B, while values less than 1.000 would show a level of spatial dispersion. 

Wang et al. extend the research of Leslie and Kronenfeld by developing a freely-available tool to 

calculate the statistical significance of the GCLQ using simulation techniques.  The analysis of the crime 

datasets in this paper again focus on property crime for April 2014 assessing the spatial dependence of 

incident reports on the CFS for each of the agencies.  An adaptive bandwidth was used with a maximum 

search radius of 300m using a Gaussian distribution for both the 5 nearest neighbors and the single 

nearest neighbor.  The adaptive bandwidth uses a rank rather than a fixed measured distance to ensure 

the same number of points are used in the calculation.  The maximum search radius was chosen to 

capture an approximation of city block size.  Recently published work by Weisburd and his colleagues 

(Groff, Weisburd, & Yang, 2010; Steenbeek & Weisburd, 2016; Telep, Weisburd, Gill, Vitter, & Teichman, 

2014; D. Weisburd & Amram, 2014; D. Weisburd, Groff, & Yang, 2013) suggest that micro-geographies of 

the city block reflect the most salient geographic scale to explore crime and place.  The p-values were 

calculated using a replication of 100 times. 

Table 3-4.  Global colocation quotients, CFS to incident reports with property crime, April 2014 

 Global Colocation Quotient 

 5NN 1NN N 

KPD 

(p-value) 

1.09756  

(0.0) 

1.18539  

(0.0) 

 

3,469 

UTPD 

(p-value) 

1.01295  

(0.74) 

1.00654  

(0.96) 

 

88 

 

The results indicate that there is a statistically-significant clustering of incident reports on property 

crime around areas that experience CFS related to property crime for the city agency.  While the 

increase in likelihood is somewhat modest, the strongest effect appears to occur with the single nearest 

neighbor.  This result is not supported for campus agency.  For the campus law enforcement agency, the 

results do not deviate substantively from 1.000 showing no increased or decreased likelihood for an 

incident report for property crime to be recorded near a CFS for a property crime.  In addition, the 

results are not statistically-significantly higher than 1.000, thus failing to reject the null hypothesis (See 

Table 3-4).  

3.5.3 Local Colocation Quotient 

Global measures, such as the Cross-K and the GCLQ, assume that clustering would be stable across 

space.  Local measures allow for a more detailed analysis to understand either the process behind 

clustering or dispersion.  In addition, local measures can identify occurrences of clustering or dispersion 

that might be overwhelmed by a majority that would not be identified as either clustered or dispersed.  

The LCLQ was calculated to assess the spatial influence of CFS on the RMS data for property crime in 
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April 2014 for each law enforcement agency in this study.  The LCLQ is similar to the GCLQ as it is an 

asymmetric of spatial dependence between point data sets.  The calculation of the LCLQ is similar to 

that of the GCLQ.   However, the values of 𝑁𝐴𝑖→𝐵 is the weighted average number of type B points that 

are the nearest neighbors to point 𝐴𝑖.  The weights (𝑤𝑖𝑗) reflect a measure of importance as a function 

of distance, and 𝑓𝑖𝑗is a binary variable used to indicate whether the point is a marked type B point (1 = 

yes and 0 = no). In essence, the further away a neighbor is from a point, the less important it is.  The 

third formula below represents a Gaussian kernel density function used to assign a greater weight to 

points closer to the 𝑖th A point with 𝑑𝑖𝑗  being the distance between the ith A point and point j and 𝑑𝑖𝑏 

being the bandwidth distance around the ith A point.  Similarly to  the GCLQ, the LCLQ also uses an 

adaptive bandwidth to ensure the same number of points are used in the calculation. (Wang et al., 

2017). 

𝐿𝐶𝐿𝑄𝐴𝑖→𝐵 =
𝑁𝐴𝑖→𝐵

𝑁𝐵 (𝑁 − 1)⁄
 

 

𝑁𝐴𝑖→𝐵 = ∑ (
𝑤𝑖𝑗𝑓𝑖𝑗

∑ 𝑤𝑖𝑗
𝑁
𝑗=1(𝑗≠𝑖)

)

𝑁

𝑗=1(𝑗≠𝑖)

 

 

𝑤𝑖𝑗 = exp (−0.5 ∗
𝑑𝑖𝑗

2

𝑑𝑖𝑏
2 ) 

For each point, the LCLQ will indicate spatial colocation for individual points A around a B type point 

when the coefficient is over 1.000, and spatial dispersion with the LCLQ is less than 1.000. 
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Figure 3-4.  Local colocation quotients, CFS to incident reports with property crime, April 2014 
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Over half of the incident report locations were spatially colocated with its nearest CFS neighbor (54.1 

percent).  Upon examination of the 564 statistically-significant clusters, the minimum value of the 

calculated LCLQ was 0.161 and the maximum value was 1.429.  Only approximately 10 percent of the 

locations indicated spatial dispersion with an LCLQ value less than 1.000.  Local results show that 

statistically-significant clusters do not appear to be associated with one area over another for the city 

agency.  Local results of the campus show almost no property crime incident reports that were spatially 

associated with a similar property crime related CFS.  These campus incident reports lie north of the 

main campus and represent noncampus buildings under the jurisdiction of the campus law enforcement 

agency. Results, again, support more spatial colocation between CFS and incident reports for the 

municipal law enforcement agency than the campus law enforcement agency.  While the CFS for the 

municipal law enforcement agency has a modest amount of success in predicting where incident reports 

are made, the same is not true for the more specialized type of agency represented by this campus law 

enforcement agency (see Figure 3-4).   

3.6 DISCUSSION AND CONCLUSION 
The “digital turn” in data and data collection challenges the research community to consider the 

assumptions made with the use of “open data” (Ash, Kitchin, & Leszczynski, 2018).  An increasing 

amount of data available to the research community as open data has become the norm across all 

sectors of analysis and research.  This is especially true in law enforcement given the number of 

operational databases available.  It is tempting to use the administrative data made available by law 

enforcement to further important research goals without regard to the source and manner in which the 

data was originally collected.  However, data are not neutral.  The impact of data collection choices is 

greater for operational or administrative data such as criminal justice data.  The collection of any 

operational data is mediated by politics and the choices made by individuals serving in a boundary role 

in the collection of information.    In order to know limitations associated with  administrative data it is 

important to take into account whose needs are being met with the data and how that impacts who has 

access to data (Boyd & Crawford, 2012; Elwood & Leszczynski, 2013; Kitchin, 2014; Kwan, 2016; 

Mayernik, 2017; Miller & Goodchild, 2014).   

Given the lack of measurable spatial association between CFS and incident reports, how does this 

challenge our assumptions of law enforcement data and the ability to use various sets of data 

interchangeably?  The primary focus for CFS data is the management and dispatching of law 

enforcement and emergency resources.  The CFS data tends to be location-based based on this goal.  On 

the other hand, incident data tends to be person- or object-based to manage the investigative process 

of law enforcement.  Each have differing measurement issues or errors centered on the primary needs 

met by each.  CFS data often has error in the description of the event given it’s often based on the 

public’s account but can be useful as a measure of demand or confidence in law enforcement.  Incident 

data have better descriptions of the event reflecting an initial assessment of the even by law 

enforcement.  However, law enforcement discretion in data recording may affect data completeness 

and this effect may vary by location as well as type of law enforcement agency.  Findings from this study 

show that that CFS are not strong spatial proxies for incident data.  Traditional city LEAs may have a 

stronger relationship than campus LEAs.  However, the relationship is weak and still show evidence of 

discretionary data recording. 
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Each LEA operates from a different set of assumptions about what generates crime in places that it 

operates and differing needs for the use of data generated by these assumptions and operations.  

Campus law enforcement has a mandate by the Clery Act to produce information to be consumed by 

their student and parent communities.  Data collection supports the process of both compliance with 

the law and providing overt information on the campus agency’s ability to address both criminal and 

safety issues impacting the student population.  However, municipal law enforcement has greater 

latitude to determine what information is provided directly back to the communities they serve and 

what is produced for internal consumption.  The simple difference could lead to vast differences in the 

amount of information available for analysis.  While both agencies showed concern for property crimes, 

campus agencies recorded a wider array of crimes and recorded more crimes against society (such as 

drug and alcohol-related offenses) and welfare-related incidents such as mandated by the Clery Act in 

comparison with the municipal agency.   

Using this one example, data collected on CFS do not always manifest itself in the same way as recorded 

incident data depending upon the type of agency or perhaps even differing priorities.  The findings show 

that CFS has a modest ability to measure reports for property crime for a traditional municipal law 

enforcement agency.  However, this clustering of incident reports around CFS all but disappears for the 

campus agency in the same city.  In addition, the overall lack of strength of spatial association of 

incident reports to CFS could call into question whether CFS would be a reasonable substitute for 

incident reports when location is considered.  Given earlier significant results of the Cross-K function and 

the more modest results of the co-location quotients, there is evidence that clustering was more 

indicative of a spurious relationship, rather than a direct influence of CFS on incident reports. 

Past research studies that were more concerned with levels of crime for aggregate areas may not have 

been impacted by this lack of association as illustrated by the initial correlations between CFS and 

incident reports.  However, current research is highly focused on micro-geographies.  The confluence of 

the desire to use “big” or “open” data with added attention paid to more exact location information 

should call researchers to more closely assess the assumptions being made about their data.  Whether 

or not data generated by forces outside of the LEA, such as a CFS initiated by a member of the public 

would closely model the data generated by actions of the LEA would be highly dependent on whether 

the priorities of the LEA are focused on the response to public requests or not.  Given that CFS often 

have more easily attained location information compared to incident reports, it is critical for researchers 

to examine this relationship and assess whether CFS would be the appropriate measure. 

As more research begins to mine the possibilities of “open” and “big” data to explore and test ideas 

about crime and criminality, data should be used with a critical eye to understand the possibility of 

generalization.  While this research cannot be necessarily generalized or transferred to other areas, 

future work should seek to test these same assumptions with other agencies or locations to see if they 

hold.  This research demonstrates the need to focus on smaller areas and varying levels of scale for 

potential research on the interaction between law enforcement activity and the data they record.  In 

addition, research should expand beyond cities.  How do the diverse types of place differ in, as Weisburd 

and Amram called it, the “regular recurring rhythms of activity” (2014, p.105)?  As law enforcement 

becomes more specialized and overlap in geographic jurisdiction, it will become increasingly important 

to account for the impact of agency priorities on the data it collects. 
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APPENDIX 

 

Table 3-5.  Offense categoriesa from the UCR Program 

Crimes against Persons Crimes against Property Crimes against Society 

• Assault offenses 

• Homicide 

Offenses 

• Human 

Trafficking 

• Kidnapping & 

Abduction 

• Sex Offenses 

• Sex Offenses, 

Nonforcible 

• Arson 

• Bad Checks 

• Bribery 

• Burglary/Breaking & 

Entering 

• Counterfeiting & Forgery 

• Destruction/Damage/ 

Vandalism of Property 

• Embezzlement 

• Extortion/Blackmail 

• Fraud Offenses 

• Larceny-theft Offenses 

• Motor Vehicle Theft 

• Robbery 

• Stolen Property Offenses 

• Curfew/Loitering/ 

Vagrancy Violations 

• Disorderly Conduct 

• Driving under the 

Influence 

• Drug and Narcotic 

Offenses 

• Drunkenness 

• Family Offenses, 

Nonviolent 

• Gambling Offenses 

• Liquor Law Violations 

• Peeping Tom 

• Pornography & 

Obscene Material 

• Prostitution 

• Trespass of Real 

Property 

• Weapon Law Violations 

aTraffic and welfare reports were identified as such within each dataset.  Those reports not falling into 

any of the above five categories were coded as “other.” 
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4 THE RECORDING OF CRIME DATA AND SPATIAL 

SCALE:  THE INFLUENCE OF LAW ENFORCEMENT 

RECORDING BEHAVIOR AND THE UNCERTAIN 

GEOGRAPHIC CONTEXT PROBLEM 

4.1 SPATIAL UNCERTAINTY ASSOCIATED WITH LAW ENFORCEMENT DATA 
While law enforcement agencies are evaluated on the occurrence and their response to local crime 

problems based on areal jurisdictions, the reality is that the occurrence of crime does not “respect” the 

boundaries of law enforcement jurisdictions and their internal divisions.  The phenomenon of crime may 

be viewed as a continuous surface or “blanket” over the underlying populated landscape while the law 

enforcement response is stitched together from a patchwork of varying organizational jurisdictions, 

priorities and styles to address the problem of crime.  The same problems that exist on one side of a 

jurisdictional boundary can also prevail on the other irrespective of the intervening jurisdictional 

boundary. Under certain circumstances or with a prior formalized understanding among their respective 

agencies, law enforcement agents may act outside their official territory or have some mutual 

responsibility for the same area, such as occasions when campus law enforcement patrol in areas 

adjacent to campus.   Agencies on either side of a border may have different enforcement policies and 

goals. Current research has only touched upon the influence that law enforcement response might have 

on the recording of crime data—the same data that is used to measure underlying crime problems in an 

area and evaluate law enforcement’s response to these problems. Measurement and reporting are 

intertwined and the following paper attempts to untangle them and cast some light on the effects on 

spatial data analysis of law enforcement practice. 

Most recorded crime data is built upon the structure of the Uniform Crime Reporting (UCR) Program.  

The Uniform Crime Reporting (UCR) Program came into existence in 1929 through the work of a group 

of police chiefs struggling to answer even basic questions about crime and crime trends.  The crucial 

contribution of the UCR Program is an overall set of standard definitions and methods used to record 

comparable crime data even though local statutes and definitions may vary.  However, this set of 

standards provides at times a false impression that law enforcement itself is uniform in its approach and 

response to crime.  Data based upon law enforcement activity—such as UCR data—are subject to issues 

related to scale such as the Modifiable Areal Unit Problem (MAUP), the Uncertain Geographic Context 

Problem (UGCoP) and boundary edge effects. 

The MAUP is “a problem arising from the imposition of artificial units of spatial reporting on continuous 

geographical phenomena resulting in the generation of artificial spatial patterns” (Heywood, Cornelius, 

& Carver, 2002, p. 8). Because of MAUP, artifacts or errors are created when data are grouped into 

spatial units for analysis.  Take for example the crime rate of a population. A crime incident is 

perpetrated by a unique individual, in a unique location. Yet managers, researchers and others often 
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want to understand crime in a broader context. Because handling data at a 1:1 level is incredibly 

difficult, to gain greater insight and identify underlying patterns, data points are grouped together as a 

necessary condition for analysis and understanding. A dot map indicating crimes of different types is 

helpful for some types of analysis, such as spatial-temporal clustering, or methods of operation if 

available.  However, a map showing different crime rates normalized by population for census tracts, 

municipalities or state may provide a needed perspective depending on the question being asked of the 

data. While aggregation is a necessary step, the analyst must carefully consider how the aggregation is 

introduced into the analysis.  The creation of this grouping may distort or exaggerate the actual data 

pattern as much as it can assist in identifying patterns. 

There are two distinct types of MAUP: scale (or aggregation) and zone (or grouping) (Openshaw, 1984; 

Openshaw & Taylor, 1979; Wong, 2009).  The scale of analysis would likely produce different results for 

different areal units, e.g. the United States, by state, by county, or even block-by-block.  The crime rate 

for the United States is different from that for the state of Tennessee, which is again different from that 

of Knox County, TN, which is again different from a neighborhood in Knoxville. As with all analyses, the 

ideal situation is to choose an optimal scale that matches the research question and process under 

investigation. However, research data often comes in specific levels of aggregation, and it is not always 

possible to find data at the optimal scale or even know what scale is optimal.  While finer-scale data can 

always be aggregated to larger units if available, coarser scale data cannot easily be subdivided to finer 

scale to arrive at the appropriate scale for research thus possibly introducing bias to the results if the 

scale does not take into account context or place (Mennis & Hultgren, 2006; Wong, 2009).   

As an extension, the zoning problem is primarily focused on the effects of data aggregation based upon 

somewhat arbitrary spatial units or zones.  The zoning or grouping effect on the data has the effect of 

smoothing effect on existing variation, and thus the choice of a spatial unit either enhances or 

diminishes the spatial pattern that is in the underlying data.  While this data smoothing is sometimes 

desirable  to allow for a pattern of association to emerge more prominently, it can also lead to spurious 

effects or a suppression of the pattern (Wong, 2009).  Zones may be based on some simple logical 

choice, or along preexisting physical or social divisions. However, any set of zoning rules creates 

potential bias.  Thus, in this paper the results of two different areal schemes, census tracts and police 

beats, are compared. Different results may be simply artifacts of different geographical divisions and a 

single best solution may be illusory (Matthews S. A., Goodchild M. F.  and D. G. Janelle   Advanced 

Spatial Analysis program 2008 http://gispopsci.org/maup/ accessed 11/30/18). 

Edge effects in the MAUP also demonstrate the effects of boundaries on data.  When an artificial 

boundary is imposed on an area, such as that of a law enforcement jurisdiction, it can lead to 

unintended analytical conclusions because measurements of adjacent jurisdictions are usually 

unaccounted for in the model.  Best practice would encourage analyzing the raw point data on crime to 

determine appropriate break points rather than rely on the data presented within predetermined 

jurisdictional boundaries. However, at the local level, crime data is usually displayed and analyzed within 

a particular jurisdiction without regard to cases in neighboring jurisdictions, resulting in the introduction 

of uncertainty (O’Sullivan & Unwin, 2010).   Consequently, geographic boundaries associated with the 

management of law enforcement can introduce uncertainty into the characteristics of the data and its 

location, which increases the difficulty associated with any analysis of crime data.  To manage 

uncertainty, more information about agency responsible for collecting and reporting crime data may 

need to be included into statistical models using that data. 

http://gispopsci.org/maup/
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While the effects of aggregation and boundaries have been documented in the literature for decades, 

recently there has been greater focus on how aggregation and the use of areal units and boundaries 

affect the use of correlates in the modelling of geographic data.  The UGCoP is a newer concept that, in 

some ways, more directly addresses the ecological fallacy and the MAUP.  The UGCoP describes the 

uncertainty that can exist between the scale of covariates and the geographic scale at which the 

covariation exists (Kwan 2012a; 2012b).  Rather than focus on the effect of aggregation or zoning on 

individual variables, UGCoP explores how scale comes into play when researchers are exploring the 

relationship among variables.  As Kwan states, “…humans are active agents who construct their own 

geographic contexts and tie together different spatial scales through their daily activities, movements 

and social interactions” (Kwan 2012, 966).  The challenge to researchers is to think through the 

mechanism being measured to arrive at the most appropriate unit of aggregation for measuring the 

phenomenon of interest. 

While studies of crime have become increasingly focused at the scale of microplaces, the question arises 

how best to examine the geographic relationships of crime and collective social processes when our 

measures and correlates may not be available in the same units and scale (Goodchild, 2018; Groff, 

2018). Is it justifiable to model crime data based solely upon the assumption that socioeconomic factors 

affect the levels of crime, or is there evidence that internal factors related to law enforcement practices 

affect the recording behavior of law enforcement?  Environmental criminology has focused on the 

collective social processes of residents at differing scales.  These processes have been referred to with 

different terms, such as informal social control or collective efficacy; however, these themes have been 

persistent in the literature.  Law enforcement has its own collective functioning both within the 

organization and in terms of their interactions with residents (Groff, 2018).  Given the known effects of 

aggregation on spatial data, it is also worth exploring the effects of law enforcement activity in the 

selection of appropriate units of spatial aggregation.  While the availability of additional data at the 

Census tract-level makes Census tracts an attractive choice, there may be more appropriate aggregate 

geographies for the purpose of modelling crime data, such as law enforcement internal administrative 

boundaries, for example police beats or precincts, which reflect the scale of policing practice and hence 

crime data collection given the close connection between the dimensions of beats and precincts and the 

workload of policing.     

The objective of this paper is to evaluate the effect of introducing law enforcement-related information 

into interpolation/allocation models of crime data, in the context of scale and the use of correlates to 

boost their performance.  An example using information from a medium-sized Southern police 

department will apply dasymetric mapping techniques to allocate jurisdiction-wide recorded crime 

counts to smaller-area (or large-scale) geographies.  A binary dasymetric model using street density 

alone will be compared with an “intelligent” dasymetric model using street density weighted by calls for 

service (CFS) as a measure of demand of police services.  In addition, the example will evaluate the 

appropriate small area geographies for aggregation of crime data by comparing Census tracts to the law 

enforcement agency’s own sub-jurisdictional divisions or beats.  
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4.2 BACKGROUND 

4.2.1 Crime Data 

As is the case with many statistical collections—especially those whose goal is a complete 

enumeration—the UCR Program has steadily grown in participation levels from relatively sparse 

beginnings.  By the late 1950’s, the UCR Program had participation levels that allowed for more 

representative statements about crime at national, state, and local levels.  However, the voluntary 

nature of the UCR Program entails that for any given year, there are agencies that choose to either not 

participate at all or to provide incomplete information.  This irregular compliance creates the necessity 

for imputing crime data for agencies that either provide incomplete data or no data at all, in order to 

arrive at complete national and state estimates of crime levels and trends (C. Barnett-Ryan, 2006; 

Cynthia Barnett-Ryan, 2019b). 

UCR data is closely associated with summary-based statistics that have been collected since the early 

part of the 20th century.  The UCR Program introduced a new incident-based collection, the National 

Incident-Based Reporting System (NIBRS) in the early 1990s to address the need for more detailed 

information about crime known to law enforcement, but its acceptance has been sporadic (Federal 

Bureau of Investigation, n.d.).  In January 2016, the FBI announced the impending retirement of the 

summary-based UCR statistics by January 2021 to facilitate the complete transition to incident-level 

data collection.  After this date, NIBRS will be the only mechanism to report data to the FBI UCR 

Program. (Federal Bureau of Investigation, 2016).  However, the shift of national crime data to more 

detailed incident-based statistics will not lift the voluntary nature of the UCR Program.  Modelling crime 

data will become more complex when these models begin to incorporate not only counts but also the 

characteristics of crimes.   

While the current reporting levels of UCR data are well above 85 percent for most years, it is uncertain 

what level of reporting can be anticipated the first year that summary statistics become unavailable 

(Cynthia Barnett-Ryan, 2019b).  At present, 6,998 agencies of the approximate 18,000 law enforcement 

agencies submit crime data in the incident-based format of NIBRS (Federal Bureau of Investigation, 

2018).  It is reasonable to assume that there will be a significant decrease in crime data reporting with 

the retirement of summary-based UCR statistics at least in the near-term.  Missing data can be 

addressed through the interpolation of values between known data points though interpolation would 

inevitably introduce uncertainty.  Managing the uncertainty of interpolation increases the necessity of 

gaining a more complete understanding of the qualities which factor into the identification of peer 

agencies, and the scale at which correlates (or potential auxiliary variables) of crime operate.     

Simultaneously, interpolation can be a method for treating the uncertainty of values at non-sampled 

points including missing measurements.  There are numerous methods available to researchers to deal 

with the estimation of values at non-sampled points.  Some are based on global stochastic methods such 

as ANOVA or trend surface analysis.  Global methods borrow the strength of the average effects of 

correlated data over the whole region or area.  Local methods rely on methods that weight the effects 

of nearby sampled units more heavily than those further away (Burrough & McDonnell, 1998).  

Goodchild and Haining (2004) noted, however, that decisions regarding measurement and analysis were 

often a product of convenience rather than an optimal choice.  These choices should be scrutinized for 

their impact on the final interpretation of analytical results and the certainty of those results.  This 

scrutiny should directly address the concepts and concerns of UGCoP and MAUP. 
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4.2.2 Uncertainty, Crime Data, and Criminality of Place 

Recent criminological literature has pivoted towards a renewed focus on the role of place and 

criminality.  Weisburd and his associates have published consistent findings that certain places have 

persistent problems with crime regardless of law enforcement intervention (D. Weisburd, 2015a; D. 

Weisburd, Groff, & Yang, 2014).  This finding adds to a long lineage of research looking at crime and 

disorder through an environmental lens, dating to the 1920’s in the US and earlier in Britain (Andresen, 

Linning, & Malleson, 2017; Andresen & Malleson, 2011; Braga, Papachristos, & Hureau, 2014; Friendly, 

2007; Groff et al., 2010; Park, Burgess, McKenzie, & Wirth, 1925; R J Sampson & Wilson, 2012; Shaw & 

McKay, 1942, 1969; D. Weisburd et al., 2014).  Earlier work in the 20th century concentrated on the 

relationship between neighborhood phenomena and potential criminogenic effects while more recently, 

research associated with criminality of place has focused heavily on street segments, a much higher 

resolution.   

Weisburd (2015b) identifies the microgeography of street segments as the key geographic unit that 

serves as a measure of social interactions  for these processes.  Residents are likely to have detailed and 

visual familiarity with street segments, reflecting an initial layer to the activity space for the resident 

that is much smaller in scale compared with the typical definitions of a neighborhood.   Anecdotally, the 

situation can be found where one block has persistent problems with crime, while the next block may 

not. The street segment is also a scale at which police operate daily and for which crime data are 

recorded.  The focus on microgeographies has opened discussions about the underlying criminogenic 

processes and at which scale these relationships are observed. 

4.2.2.1 Scale and Geographic Context 

Uncertainty can be introduced in a variety of ways to the study of crime data originating from many 

sources.  For geographic questions, as described in section 4.1 above, there is the question of scale and 

aggregation and how these affect the interpretation of key relationships in the data.  While a few 

researchers have investigated the potential impact of scale and aggregation of crime incidents, little has 

been done to measure how law enforcement practices may affect the collection of data  (Boivin & 

Cordeau, 2011; Klinger, 1997; Phillips & Sobol, 2012; Varano, Schafer, Cancino, & Swatt, 2009).   By 

understanding how law enforcement activity affects data collection, this study can shed light on the 

main avenues for improving crime data modeling and therefore help develop more robust interpolation 

methodologies used for estimating missing data in the UCR Program.  

Individual and community associated correlates are often studied in relation to UCR data (for example, 

income, parents’ education, in-migration).  However, there are two main factors that need to occur for 

data to be collected that are not necessarily related to those individual or community-level processes—

crime discovery and crime reporting.  Crime discovery is the awareness by law enforcement of an event, 

either through victim reports or through law enforcement observation.  Crime reporting reflects the 

formal recording of a crime once it has come to the attention of law enforcement.  Because it is 

necessary for both these two factors to occur for an incident to be included in crime statistics, the 

possibility exists that differences in the philosophy of policing among law enforcement agencies might 

translate to differences in crime discovery and crime reporting.   These differences may ultimately affect 

the UCR data.    The decision over which correlates to use is subject to the UGCoP (Kwan, 2012c, 2018; 

Kwan & Schwanen, 2018).   
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UGCoP is related to challenges in detecting patterns at various scales and determining which scale 

captures the actor’s geographic context for an issue such as crime.  Kwan (2012) mentions 

“neighborhood effects” as related to health, but law enforcement-recorded crime data may be more 

closely associated with the activities of street-level policing rather than the characteristics of the 

community itself.  It would be naïve to assume that residential characteristics of the neighborhood, 

including possible indicators of disadvantage, do not have a strong relationship to the criminality of 

place.  However, there is little insight on the effect of law enforcement activities on the recorded data 

used as the basis for analysis.  There is an implicit assumption that recorded law enforcement data only 

reflect the activity space of residents, neglecting the activity space of the police or criminal.  It is as if the 

activity of the measured is accounted for but not the measurer.  Research has yet to explore fully 

whether the opportunity structures related to crime and place are more closely aligned with the 

activities of the residents, the police, or both entities. 

4.2.2.2 Bounding Geography of Law Enforcement and Crime Data 

Boundaries take on both physical and nonphysical forms and can directly affect the activities of these 

entities.  Physical boundaries such as streets, waterbodies, and terrain are evident, whereas nonphysical 

boundaries may be less so.  These physical changes in the environment produced by encountering 

streets, land use or terrain could result in differential guardianship of an area; increase chance of 

victimization; or change in perception that could alter behavior.  Most authors have viewed this 

phenomenon as either a reflection of individual’s interaction with differing environments in adjacent 

zones or law enforcement’s response to the changes from one neighborhood to the next (Y. A. Kim & 

Hipp, 2018; Song, Andresen, Brantingham, & Spicer, 2017).   

However, it is also possible that nonphysical boundaries can affect law enforcement response and as a 

result introduce an artifact to the process of data collection.  Examples of nonphysical boundaries 

include some jurisdictional boundaries, internal organizational boundaries of jurisdictions, and 

externally-imposed representations of the transition from one neighborhood- or community-type to 

another.  Kim and Hipp (2018), as one example, observed a distance decay pattern for some crime types 

moving from centrally-located police stations to edges of jurisdictional boundaries.  This pattern could 

be result of less patrolling of the edges of jurisdictions due to the geographic distance itself or due to 

ambiguity over law enforcement responsibility with an adjacent law enforcement agency’s jurisdiction.       

Two common representations of internal boundaries of a city’s jurisdiction are Census tracts and agency 

precincts or beats. Census tracts are often used as a unit of aggregation and analysis, not only because 

of the richness of data available from the Census Bureau, but also because of the underlying 

methodology in the construction of those aggregate units.  Census tracts are designed to be 

approximately homogeneous in socioeconomic characteristics at the time of creation.  The tracts range 

in total population from 1,200 and 8,000 and may vary in area depending upon the population density.  

The intention of the Census Bureau was for these units to be stable over time to facilitate longitudinal 

comparisons; however, they may be split or merged over time when population growth or decline 

requires it.  Census tracts are not an operational scale for police activity. 

Just as with any human activity, police administration operates at multiple scales.  At its most 

rudimentary level, the activity space of law enforcement is defined by its jurisdictional boundaries.  

These boundaries constrain most daily movements of law enforcement officers.  To move across 

jurisdictional boundaries in their official capacity, officers must either rely upon existing agreements 
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between neighboring jurisdictions or request ad hoc permission.  In addition to these “harder” 

boundaries between agencies, there are additional internal boundaries of precincts or beats that govern 

the organization of officers’ movements and activities.  Their goal is optimizing the response of foot and 

car patrols and defining the area within which an officer’s movements are primarily constrained.   

 

The operational activity and movement of law enforcement officers varies across the landscape of their 

jurisdiction based upon these sub-jurisdictional divisions.  While an officer may respond to a crime in 

progress or a traffic accident in a neighboring precinct, he or she has primary responsibility for 

responding to reports of crime or disorder within his or her assigned precinct (or beat).  As such, officers 

normally limit the number of activities that they become involved with outside of their assigned 

jurisdiction. A corollary is a scenario wherein police beats vary according to how police interact with the 

community.  When foot patrols were the norm, individuals living in these communities would present 

their complaints directly to local precincts.  However, with the advent of increased vehicle patrols and 

the technology associated with 911 calls, law enforcement administration has become more centralized 

and beats reorganized correspondingly.   

 

The hierarchical culture of law enforcement additionally reinforces the boundaries of the precinct by 

fixing the first-line of command at the precinct level.  Recent developments in law enforcement have 

applied other uses for this organizational entity.  The popularity of COMPSTAT (Computer Comparison 

Statistics) (Bratton & Tumin, 2012; Walsh, 2001) has created an  increased use of the precinct as an unit 

in the analysis of local crime levels and trends.  In the COMPSTAT model, local precinct leaders (usually 

captains) are held accountable for the crime levels and trends within their area of responsibility.  In the 

typical weekly COMPSTAT meeting, a Captain is asked to address the current reports of crime in the 

precinct.  These reports are often displayed in a map to reflect their spatial dimension; however, the 

locations of crimes in neighboring precincts are not usually displayed at the same time because the goal 

of the COMPSTAT process is to highlight the accountability of the local law enforcement leadership 

rather than a neutral analysis of spatial patterns.  This artifact of display can introduce an edge effect 

when crime hot spots span map boundaries.  In addition, further analysis and aggregation from the beat 

level may introduce problems associated with the MAUP or the UGCoP. 

 

The problems potentially introduced by borders can also be attributed to a greater degree of 

specialization of responsibility among different law enforcement agencies within the same geographic 

area.  For example, a metropolitan area will have a primary police department that may handle policing 

services for most of the area.  However, within that same geographic area, there could be law 

enforcement agencies responsible for a college campus, a hospital, or public transit.  The sheriff’s 

department and State police operations may also have overlap.  Not only do these overlapping 

boundaries and areas affect the movement of officers and their response to their environment, it may 

also affect the analysis of crime data.  Much in the same way that the crime reports of a neighboring 

precinct may not be accounted for in crime pattern detection, the crime reports of agencies with 

concurrent jurisdiction may be absent from analysis or lead to conflation. 

 

4.2.2.3 The Boundary Role of the Patrol Officer 

Beyond the more concrete geographic representations of boundary and scale, boundaries can reflect 

social and power relations and the social construction of concepts, such as policing.  The police as a 
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special group are given privileges that are not given to other members of the community.  While the 

definition of policing itself can be a debated concept, there usually are three aspects at any definition’s 

core—a right to detain, a right to use force under prescribed situations, and a right to generally demand 

compliance to their requests.  There is a palpable sense of in-group and out-group, or us and them, 

when contrasting the police with private citizens, a sense more apparent in the present day; one which 

is amplified in the media (Klockars, 1985; Moore, Mark H. and Kelling, 1983; Vila & Morris, 1999).  In this 

instance, the boundary between the groups is based more on each group’s function.  Within the police 

force there are individuals that serve a role at the margins between those two groups—or a boundary 

role.  In law enforcement, it is often the patrol officer that serves in this boundary role. 

 

The two main functions of the boundary role are information processing (ingress) and external 

representation (egress).  The information processing function is a process by which the boundary role 

incumbents filter the information that is available in the environment and selects only what is deemed 

relevant information to be passed along to the rest of the organization.  The boundary role has far-

reaching implications starting with how officers scan their environment and their activity space.  A patrol 

officers’ response to their environment has direct consequences on how and which crimes are 

discovered and is much influenced by organizational goals and targets.  Once a criminal incident has 

been identified, the officers are responsible for the recording of the information on the event according 

to organizational requirements and priorities.  Which crimes are formally recorded and what 

information is provided on those crimes may vary from location to location and time to time. 

 

The function of external representation is the boundary role incumbent’s ability to achieve compromise 

between the environment and the organization’s policies.  A point of focus of this ability is in the 

interaction between community members and patrol officers.  The patrol officer is responsible for 

adapting his or her behavior to both the policies of the agency and of the nature of the environment in 

which he or she is immersed.  The joint effects of these interactions can affect how much crime is 

discovered and the willingness of victims to report crimes to the police.  For example, the NYPD’s 

decision to use a zero-tolerance policing strategy and how that is implemented by the patrol officers will 

result in a different reaction from the New York City community than in other cities that might be 

applying community policing tactics.  The relationship that police maintain with the communities they 

serve can affect what crime is handled by police, how it is handled, and how the information about that 

crime is recorded. 

 

Klinger (1997) uses the concept of the boundary role within the idea of negotiating (or triaging) the 

workload.  Police introduce greater leniency where allowed by their administration to handle high crime 

areas.  This is further moderated by police interpretation of the space they are policing.  Policy may seek 

physical cues that imply a certain normative level of deviance.  In addition, there are subjective factors 

of law enforcement perceptions of the “deserved-ness” of victims.  Phillips and Sobol (2012) have been 

able to observe modest confirmation of Klinger’s proposal for an inverse relationship where higher 

levels of CFS would result in lower levels of recording behavior. 

4.3 METHODOLOGY AND DATA 
Imputation of missing UCR data can be achieved by the production of a geospatial surface through 

interpolation facilitated by a dasymetric allocation method.  Spatial interpolation can be used to infill for 
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locations that do not have measures, based upon the measured values of nearby locations referred to as 

control points (O’Sullivan & Unwin, 2010).  From the measures at the control points generated by an 

appropriate allocation method, spatial interpolation uses a set of algorithms and calculations to arrive at 

an estimate for the unmeasured locations.  The key to allocation methods is to identify appropriate 

ancillary variables to interpolate data from one set of source-date zones to a different, usually more 

granular set of zones.  The goal of the analysis will be to assess what improvement, if any, there is to the 

final interpolation of missing data by using calls for service locations as a law enforcement agency 

correlate compared with the allocation of crime reports by population-related correlates such as streets.  

The analysis will test possible ancillary datasets to identify a candidate dataset to efficiently allocate 

crime data for a municipal law enforcement agency and a campus law enforcement agency.  The results 

of the analysis will be compared to the actual data provided from the agencies to assess the relative 

accuracy of the allocated values from the comparison models. 

4.3.1 Dasymetric Mapping and Other Areal Interpolation Methods 

Spatial interpolation “refers to the process of transferring data from one set of areas (source zones) to 

another (target zones)" (H. Kim & Yao, 2010, p. 5658).  In the simplest of terms, interpolation comes in 

two varieties—simple and intelligent.  Simple interpolation is the process of areal interpolation, which 

proportionally allocates data from the source zones into the target zones.  Areal interpolation assumes a 

uniform distribution across the target zones.  Because it does not consider the spatial distribution of 

underlying phenomena, it is seen as the method more prone to error.  Tobler (1979) introduced an 

improvement on the simple areal interpolation by applying a smoothing density function over the target 

zone estimates.  Smoothed pycnophylactic interpolation is achieved by taking the average of the 

neighbors of the target zone estimate and replacing the original estimate with the newly calculated 

average.  However, to preserve the volume or counts of the original source data, the average values are 

proportionally adjusted up or down so that the zone’s total is the same as the source data.  This iterative 

adjustment in Tobler’s method points to the main benefit of these two methods, which is the 

preservation of the original volume of data.  Tobler’s method is usually described as pycnophylactic (or 

volume-preserving) interpolation (Jang & Yao, 2011; H. Kim & Yao, 2010; Tobler, 1979). 

Rather than assuming a uniform distribution to the data, intelligent interpolation, or dasymetric 

mapping, makes use of ancillary information to estimate the spatial distribution of underlying 

phenomena to modify the areal interpolation.  The most commonly available ancillary data is land 

use/land cover (LULC) data that has been remotely sensed or otherwise mapped, as well as ambient 

lighting.  The LULC data or street-lighting data is used to identify either inhabited or uninhabited areas 

or to assign an ordinal population density scheme to the target zones based on their suitability for 

inhabitation (Andresen & Brantingham, 2008; Jang & Yao, 2011; H. Kim & Yao, 2010; Sleeter & Gould, 

2007; Zandbergen & Ignizio, 2010).  Using this understanding of the relative distribution of the 

population, the source zone data can be proportionally allocated to the target zone.  But rather than 

assume a uniform distribution, the ancillary data is used to assign different expected proportions for the 

source data given the likely residency patterns.  While introducing an understanding of the potential 

spatial distribution of the source data has been shown to improve the predicted values in the target 

zones, there are still some problematic assumptions of dasymetric mapping.  Dasymetric mapping relies 

on a measurement of density even though the source data may be discrete.  Also, the densities can 

change abruptly from one zone to the next, which could be problematic if the underlying process or 

geography is not also subject to abrupt changes.  The use of techniques, such as low pass filters, to 
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eliminate this problem can interfere with preserving the original count of the source data (H. Kim & Yao, 

2010). 

Despite these problems, dasymetric mapping is one of the more promising methods for transferring 

data from one zoning scheme into another, and recent scholarship has sought to improve upon the 

original methods or address some of the existing limitations (Jang & Yao, 2011; Mennis & Hultgren, 

2006).  Mennis and Hultgren (2006) tested the rather subjective determination of the functional 

relationship between the ancillary data and population density.  Through a series of tests of three 

primary ways of defining the spatial relationship (containment, centroid, and percent coverage), the 

authors concluded that there is no one definitive spatial relationship that performs better than another 

across different variables.  The functional relationship should be defined based upon the best 

understanding of the relationship between the ancillary data and the source data, which ties back to the 

issues raised by UGCoP.  Finally, Kim and Yao (2010) proposed a hybrid method of both dasymetric and 

pycnophylactic methods to leverage the best aspects of each method—the volume preserving 

capabilities of pycnophylactic methods and the improved estimates with dasymetric mapping. 

While dasymetric mapping and the future improvements that are currently in development are valuable 

methods towards solving the problem of analyzing data at different geographic levels or scale, it does 

not solve the problems described by MAUP, edge-effects and UGCoP.   Ervin (2012) argues that “the 

MAUP (and by implication UGCoP) is an unsolvable issue”, in that “aggregating or grouping data will 

inevitably cause some loss of information or bias.” In each of these instances, the proper specification of 

the model is a critical step before any algorithm or calculation can be applied to data to predict values in 

a different geographic unit. 

4.3.2  Law Enforcement and Census Geography 

The location for this analysis is the mid-Southern City of Knoxville, Tennessee.  In 2014, Knoxville had a 

population of 187,347 and is situated on the Tennessee River in the Eastern portion of Tennessee.  As 

the home of the main campus of the University of Tennessee, its population is diverse in comparison 

with the surrounding counties  and can fluctuate between the summer months and the remaining 

portion of the year given a student population of over 28,000.  While there are smaller colleges and 

campuses within the city of Knoxville (for example, Pellissippi State Community College), they were not 

included in this analysis.  The city of Knoxville is primarily served by the Knoxville Police Department 

(KPD), which in 2014 employed 465 full time officers and civilian staff.  In addition to the KPD, the 

University of Tennessee also maintains a police force of 93 to handle law enforcement activities on and 

near campus. 

KPD divides its organizational space into two districts of approximately equal size.  The East District 

comprises 51 square miles of primarily residential neighborhoods with approximately 85,000 residents. 

The East District is further divided into 12 beats comprised of primarily neighborhoods.  The 52.25 

square miles of the West District, in which an estimated 94,000 individuals reside, includes the Central 

Business District, the campus area of the University of Tennessee, and various shopping districts. The 

West District is additionally divided into 11 beats.   

The city of Knoxville intersects with 89 Census tracts.  Of these 89 tracts, only 36 are completely within 

the city boundaries because of the irregular shape of the city boundary of Knoxville.  For this analysis the 

Census tracts were “clipped” to the city boundary to ensure comparable geography representing the 
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jurisdiction of the KPD between models.  There are 84 complete or partial Census tracts with data used 

in the final model.   Based upon the splitting of Census tracts since 1980, Knoxville has shown a pattern 

of suburban growth around the central business district.  

4.3.3 Data 

This quantitative geospatial analysis will rely upon point data from the same agencies’ computer-aided 

dispatch (CAD) data and records management system (RMS) data for the same 12-month period.  Data 

for this study consists of geocoded calls for service (CFS) and recorded incidents provided by the KPD for 

the entire calendar year of 2014.  In 2014, there were 189,296 CFS recorded and geocoded, smaller set 

of 21,696 officer-initiated CFS, and 29,543 recorded incidents.  There were higher amounts of CFS and 

recorded crime in the West District of KPD compared to the East District.  Of the crimes recorded by 

KPD, the West District had four of the five beats in the top quartile and three of the six beats in the third 

quartile.   

All CFS and recorded incidents were treated with equal weight regardless of the perceived severity of 

the call or crime.  However, certain CFS were removed from the analytical file to include locations that 

were unlikely to reflect the location of a CFS.  These CFS included mobile cellular towers, the police 

department headquarters, Knox County Communications Center, and any other record clearly marked 

“for record only” with generic location information, resulting in 189,296 incidents remaining to be 

analyzed.  In addition to the crime information, the KPD also provided an ESRI shapefile constituting the 

boundaries of the police beats and districts in the year 2014.  In addition to the law enforcement data 

described above, the study uses the street network as a method to identify areas of population traffic 

density.  The road network was downloaded from the Census/TIGER website for the study year of 2014 

(Census Bureau, n.d.).  For this analysis, all data was projected into UTM 17N (1983). 

Table 4-1.  Descriptive statistics for CFS and recorded incidents 

 Police Beats (n=23) Census Tracts (n=84) 

 CFS Officer-

Initiated 

CFS 

Recorded 

Incidents 

CFS Officer-

Initiated 

CFS 

Recorded 

Incidents 

Mean  8,230.0 943.3 1,272 2,227.0 255.2 351.1 

Percentile       

 .05 5,463.0 403.8 905.1 78.8 5.0 4.1 

 .10 6,095.0 411.0 935.2 136.8 10.6 9.0 

 .25 6,843.0 559.8 1,087.5 612.0 39.0 57.0 

 .50 8,096.0 632.0 1,242.0 1,671.0 135.0 286.0 

 .75 9,252.0 968.0 1,461.5 3,205.0 334.0 515.0 

 .90 9,981.0 1,099.5 1,535.4 5,334.0 691.2 904.8 

 .95 11,094.0 1,441.0 1,719.6 6,680.6 892.2 1,086.4 
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The police beats of KPD subdivide the city into larger areas and have a larger average number of 

recorded crimes than Census tracts.  In addition, there is less variation and a more even distribution of 

recorded crimes observed across police beats showing an indication of the organizational goal to 

manage the distribution of staff based upon crime data as well as a possible artifact of the necessity to 

clip certain Census tracts to fit the irregular shape of the city (See Table 4-1).  While the range between 

the 5th and the 95th percentiles of recorded crimes in Census tracts span from 4.1 to 1,086.4 recorded 

crimes, the same range for police beats span from 905.1 to 1,719.6 recorded crimes.  The lack of 

variation in recorded crime may suppress evidence of a relationship between CFS and recorded crime 

within this aggregate geography (See Figure 4-1 and Figure 4-2).  Conversely, relationships between 

CFS—either total or officer-initiated—and recorded crime are strongly linear for Census tracts, but less 

so for the police beats of KPD (See Figure 4-3 and Figure 4-4).  In both geographies of beats and tracts, 

there appear to be a few significant outliers.  The predominant outliers in the bivariate relationship 

between CFS and recorded crime could be the result of major interstates or roads that could skew the 

relationship of CFS to recorded crime.  In addition, the irregular geography of the boundary of the city of 

Knoxville contributes to the observed bivariate outliers.  One Census tract outlier that has high levels of 

reported crime despite having comparatively low CFS does not fit this general case.  However, recent 

racial shifts of this Census tract in the past five years may indicate some gentrification of the area 

lending further evidence to a differential law enforcement response (Times Herald, n.d.). 

 

 
Figure 4-1.  Scatterplot of recorded incidents by CFS aggregated by police beat 
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Figure 4-2.  Scatterplot of Recorded Crime by Officer-Initiated Calls Aggregated by Police Beat 

 

 
Figure 4-3. Scatterplot of Recorded Crime by CFS Aggregated by Census Tract 
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Figure 4-4. Scatterplot of Recorded Crime by Officer-Initiated Calls aggregated by Census Tract 

4.3.4 Study Methodology 

The study compares the accuracy and sensitivity of two different ancillary datasets in their relative 

ability to allocate incident counts across a geographic area using a dasymetric allocation method.  The 

dasymetric allocation was accomplished by using the Environmental Protection Agency’s Intelligent 

Dasymetric Mapping Toolbox for ArcGIS 10.3 (Environmental Protection Agency, 2018).  This toolbox 

was based upon the Mennis and Hultgren (2006) “Intelligent Dasymetric Mapping” method.  This 

method integrates domain knowledge into the model to improve the results available using a binary 

dasymetric methodology.  Rather than assuming a uniform distribution to the data, intelligent 

interpolation, or dasymetric mapping, makes use of ancillary information available to estimate the 

underlying spatial distribution.   

The three ancillary data sets compared in this study are the unweighted street network, the street 

network weighted through a spatial join of CFS to street segments, and the street network weighted by 

officer-initiated calls through a spatial join of calls to street segments. While the initial model with the 

unweighted street network will use a binary dasymetric method, each of the other two ancillary data 

sets will be allocated to either the police beat or the Census tract using an intelligent dasymetric 

approach where the researcher can preset expected densities associated with the ancillary data set (see 

Figure 4-5).  These models are compared for accuracy and sensitivity using the Root Mean Squared Error 

(RMSE) and the Mean Absolute Percent Error (MAPE).  Each measure of fit has strengths and 

weaknesses.  The RMSE is known for its theoretical strength whereby model fit is evaluated by 

minimizing this distance to arrive at the expected value.  However, because there is an “additional” 

penalty assessed for larger deviations, it would not be a robust measure against outliers.  On the other, 

the MAPE has utility in assessing model fit across differing models and is less likely to be influenced by 

outliers since all deviations are weighted the same.  It does not always identify the best fitting model.  

Both measures are presented. 
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4.3.4.1 Dasymetric allocation using street density 

The binary dasymetric method allocates the total crime volume for the city of Knoxville based upon the 

density of the street network as determined by a polyline raster of the street network downloaded from 

the Census/TIGER site.  The dasymetric method starts by creating a raster of the feature class containing 

the population data—in this case, it would be the shape of Knoxville with the aggregate crime counts 

from the recorded data for 2014—that aligns with the ancillary dataset of the street raster file. Next, the 

dasymetric method will allocate crime volumes based upon preset densities.  For the binary method, 

crimes were allocated to streets more associated with residences or businesses.  No recorded crime 

volumes (which excludes traffic offenses) were allocated to other road types, such as interstates, major 

highways, off and on ramps, and off-road locations. 

The dasymetric routine calculates a new crime density estimate if recorded crime only occurs where 

there were streets.  The calculated “new density” is 3.454471 crimes per pixel.  Each pixel is 

approximately 154.75 m2.  To arrive at a new spatial density for Census Tracts and beats, the Zonal 

histogram tool was used to count the number of pixels in each of the other classes for either tract or 

beat, depending upon the case.  The total pixel count was multiplied by 3.45571 (the dasymetrically-

calculated spatial density) to produce an estimate for either the tract or the beat.  The level of precision 

of the density was retained for the subsequent calculations to minimize rounding error in the final 

estimate. 

4.3.4.2 Weighted Intelligent Dasymetric Models 

The difference between the binary unweighted dasymetric model and the “intelligent” weighted 

dasymetric models lies in the creation of classes for use in preset densities to account for anticipated 

differences in the distribution of recorded crime.  

The preset densities were calculated from polyline kernel density estimates (KDE) of either CFS or 

officer-initiated calls joined to the underlying street segment as represented as address ranges by the 

Census/TIGER files.  ArcGIS 10.5 uses the following formula to calculate the optimal bandwidth of the 

KDE.   

𝑆𝑒𝑎𝑟𝑐ℎ 𝑅𝑎𝑑𝑖𝑢𝑠 = 0.9 ∗ min (𝑆𝐷, √
1

ln 2
∗ 𝐷𝑚) ∗ 𝑛−0.2 

where: 

𝑆𝐷 is the standard distance 

𝐷𝑚 is the median distance 

𝑛 is the number of points  

Five classes were assigned to a surface raster based upon the results.  The weights were assigned by 

examining the relative proportion of each of the classes of CFS.  In other words, the predicted percent 

allocation weight for reported crime was set to mirror the measured percent allocation of the CFS for 

the same areas (see Table 4-2 for a list of the weights).  The remaining dasymetric methodology remains 

the same as for the first model.  The zonal histogram tool was used to collect the total number of pixels 

assigned to each of the five classes in the model.  Each set of pixels was multiplied by the dasymetrically-
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assigned density and summed within each tract or beat.  As was the case in the binary approach, the 

level of precision for each of the densities was retained through the calculations to minimize rounding 

error. 

Table 4-2. Preset densities used in dasymetric mapping 

Class Calls for 

Service 

Officer 

initiated calls 

Lowest crime density 0.036346 0.046783 

 
0.145147 0.150166 

0.267180 0.303051 

0.257985 0.282955 

Highest crime density 0.293342 0.217045 
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Figure 4-5.  Density maps used as Ancillary Data for Dasymetric Models 
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4.4 RESULTS 
The results of the analysis illustrate the complex interplay of the ancillary data and the geographic 

aggregation of recorded crime data.  Global measures of fit indicate that within both geographic units 

(Census tracts and police beats) that the use of ancillary data improved the fit over street density alone.  

Between the two weighted models, there is strong evidence that predictions of recorded incidents are 

more accurate using the locations of officer-initiated calls as opposed to CFS that would also include 

public requests for service.  For both the MAPE and the RMSE, each value becomes progressively smaller 

with the introduction of the weighted models showing improved fit.  The best fit was for the model 

using the officer-initiated acts see Table 4-3 for measures).  However, comparisons across geography 

using the more commonly used measure of RMSE are more difficult to interpret due to change in the 

change in scale and geography across models.  The addition of the MAPE provides a unit-less measure of 

accuracy that allows for an easier comparison across models (Hyndman & Athanasopoulos, 2018).    

Table 4-3.  Goodness-of-fit for dasymetric-mapping produced predictions 

 Beats Tracts (Clipped) 

 MAPE RMSE MAPEa RMSE 

Binary 0.75 649.50 1.32 329.53 

CFS-Weighted 0.53 554.52 0.67 279.26 

Officer-Initiated 0.43 471.24 0.59 251.79 

aThe MAPE is sensitive to situations where the actual value is less than the predicted value.  In those situations,  
a MAPE greater than 1.00 is possible. 

  

Visual inspection of the maps of local calculations of the absolute percent error (APE) also indicates a 

better fit for both weighted models in comparison with the binary dasymetric model (See Figure 4-6 and 

Figure 4-7).  Based upon the results of the weighted models, there are areas in central Knoxville that 

receive disproportionate number of CFS compared to recorded incidents.  Conversely, areas at the edge 

of town appear to have fewer CFS than would be expected given their recorded crime.  These results are 

mostly likely due to the pycnophylactic properties of dasymetric mapping.  There is one area of Knoxville 

that attracts more CFS than would be expected based upon recorded incidents.  To preserve the overall 

volume of the total reported crime for the city of Knoxville, recorded incidents are “borrowed” from 

areas that should have a higher density of reported crime.  However, the RMSE certainly supports the 

use of the officer-initiated calls weighted model within Census tracts.  However, some descriptions of 

RMSE caution against using this measure to compare across models.  MAPE may be a better measure for 

comparison across models and for heteroskedastic models.  Interpretation will be dependent upon the 

resolution of these potentially conflicting results.  Based upon the APE measures, the use of the officer-

initiated calls within police beats has the lowest percentages of error. 
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Figure 4-6. Prediction Error for Census Tracts (Clipped) 
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Figure 4-7.  Prediction Error for Police Beats 
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4.5 DISCUSSION AND CONCLUSION 
Based upon the results of the dasymetric modeling, it appears the inclusion of law enforcement data—

including the subset of officer-initiated activity—improves the fit of the dasymetric allocation of 

recorded crime data to both Census tracts and police beats.  On both accounts there is significant 

evidence to support the inclusion of measures of law enforcement activity into models using recorded 

crime data.  The best fit models for Census tracts and police beats used the subset of CFS that were 

clearly identified as officer-initiated.  The officer-initiated activity may better represent the initial 

triaging of crime recording behavior proposed by Klinger (1997) and observed in subsequent research 

(Boivin & Cordeau, 2011; Phillips & Sobol, 2012).  Given the close link between information gathering 

and processing by law enforcement officers in providing a boundary role, future models should focus 

more heavily on the spatial patterns of this subset of data when modeling data involving officer-

recorded data. 

The additional question of the most appropriate unit of aggregation to capture the relationship between 

law enforcement activity and data recording had more modest results.  Both Census tracts and police 

beats are drawn for different purposes.  Based upon their original intent, Census tracts are clearly a 

means to identify homogeneous communities for the measurement of key social and economic 

indicators (Census Bureau, 1994). On the other hand, police beats are used to organize law enforcement 

response and movement efficiently.  In this case, police beats appear to have less error of fit in 

comparison to Census tracts.  However, it should be noted that Census tracts do not perform badly in 

comparison (43.5 percent average error for beats versus 58.5 percent average error for tracts).  Given 

the direct connection between law enforcement activity and beats/precincts and their close relationship 

to the processes at work, there is a slight advantage to using beats to avoid problems of the MAUP and 

UGCoP when using statistics based on administrative data.  There may be no one “correct” unit of 

aggregation given that law enforcement activity is also deeply connected to their environment and the 

communities within them. 

Finally, the study provides insight into the relative utility of dasymetric mapping as an interpolation 

method.  While it should be noted that the best fitting model still had an average error rate of about 43 

percent, most of the observed errors were likely introduced due to the pycnophylactic quality of 

dasymetric models because observed “borrowing” of recorded crimes from one unit of analysis to 

another. The approach should not be to abandon the volume preserving nature of the model given the 

need to keep the total crime accurate.  Model fit is most likely improved by the introduction of an 

additional dimension to the ancillary variables or the incorporation of a nonlinear relationship between 

CFS and recorded crime (Klinger, 1997; Phillips & Sobol, 2012).  Given the progressive improvement 

observed in the models by using data more closely associated with law enforcement activity, 

consideration should be given to the addition of ancillary variables that more directly connect law 

enforcement to its data uses as opposed to ancillary variables describing the population of these areas.  

A more process-oriented approach might be identified through a closer examination of ways in which 

law enforcement agencies use information to facilitate decision-making, as well as actual measures of 

the interaction between law enforcement and the community to improve model fit. 

This study focused upon two essential geographic concepts as it relates to recorded crime data—the 

UGCoP and the MAUP.  Both concepts seek to interrogate the data in terms of the appropriate 

environmental context and scale to better understand the complex relationship between law 
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enforcement activity and data recording behavior.  The process of data collection is not a neutral 

process, and evidence from this analysis indicates that it has connections to the ways in which law 

enforcement organize themselves to manage workload, such as the subjurisdictional divisions of beats, 

as well as the discretionary behavior they exhibit in the act of recording information are key to 

improving modelling using recorded crime data.  An expected strong relationship between CFS and 

recorded crime does not hold for this location regardless of the zoning pattern used in the analysis.  

However, the introduction of information on officer discretionary behavior improves the modeling and 

provides critical insight to future ways of modeling crime data.  In addition, other methods, such as 

regression, could be used to improve the understanding of the relationship between CFS and recorded 

incidents for inclusion in spatial models. 

Future research on this topic should continue to expand upon the interaction between the officer and 

his or her environment to identify ways to incorporate this context into crime analyses.  The selection of 

the optimal scale to avoid issues related to MAUP or UGCoP should not just solely focus upon the 

perceptions of space or place by the residents, but also the perceptions of space or place by law 

enforcement officers responsible for recording criminal events.  It is not enough to simply know how 

much law enforcement activity occurs in a place as evidenced by the number of CFS, it is important to 

understand how officers respond to a place and ultimately process and shape the information about 

that place and its public safety events.  Understanding the interplay between law enforcement activity 

and place will become more important once the UCR Program shifts to incident-based data.   While one 

study alone does not conclusively resolve the question of the impact of law enforcement activity and 

crime data on crime modeling, the results clearly point to a need to incorporate a fuller and more 

nuanced understanding of the spatial production of crime data. 
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5 CONCLUSION 

 

The initial intent of this research was to explore the extent to which differences among law enforcement 

agencies and their discretionary practices associated with policing could be measured and accounted for 

in crime data and models, such as imputation and interpolation of crime data.  At the start of this 

project, there were three primary research questions: 

• What characteristics can be used to identify peer agencies for crime reporting data given the 

current diversity of policing?  What spatial and other dimensions seem to matter and at what 

scale?   

• Can information on the location of calls for service (CFS) improve the prediction of law 

enforcement recording of crime incident data for crime types identified as priorities through an 

assessment of analytical products? Can differences among law enforcement agency types be 

measured in the spatial properties of recorded incidents? 

• Crime statistics are a result of police activities connected to both calls for service (CFS) and 

officer-initiated acts.  CFS represent “demand” for police services, but what can be said about 

discretionary behavior as measured by officer-initiated activities?  Do officer-initiated activities 

exhibit the same spatial patterns as CFS?    

The results of three papers support the contention that there is a greater need to account for the 

diversity in law enforcement in terms of the communities they serve and how those differences may 

impact the types of data recorded and discretionary recording behavior.  To improve our ability to 

construct robust models using law enforcement data, there needs to be greater attention to uncertainty 

created by the heterogeneous nature of law enforcement practices in the 21st century.  Beyond the 

initial conclusions that can be derived from this research, the results also contribute to a larger 

conversation embracing “Big Geodata”, the increasing role of place in GISc. and criminology, and the 

role of individuals in constructing place through their roles and behaviors.   

5.1 BIG GEODATA 
In 2016, the Federal Bureau of Investigation announced that the traditional way of collecting crime data 

as agency-level counts would be retired in January of 2021.  Beginning in 2021, the only way law 

enforcement agencies will report crime data to a national statistical program will be in an incident-based 

format (National Incident-Based Reporting System or NIBRS) as opposed to the tallies and counts most 

users of UCR data have become accustomed.  (Federal Bureau of Investigation, 2016).  In conjunction 

with a modernization assessment by the National Academies of Sciences, Engineering, and Medicine, 

this program initiative renewed calls for more detailed georeferencing of crime data in the national 

crime dataset (Lauritsen & Cork, 2016). Point-level data rather than agency-level data will become the 

norm. Research in criminology is also increasingly focused on more granular locations or 

“microgeographies” of neighborhoods or street segments and crime data will properly be identified as 

“Big Data.” 
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Big Data has usually been identified by the three “Vees” of volume, velocity, and variety.  These 

characteristics describe data that is large in size (terabytes or petabytes), available in real-time or near-

real time, and often in both structured and unstructured formats (Kitchin, 2014).  In recent years 

however, the additional “Vees” of veracity and value have been added to augment conversations about 

the appropriate use and interpretation of Big Data (Michael F. Goodchild, 2018b; Miller & Goodchild, 

2014).  Big Data is most often opportunistic which has minimal control over its collection and a great 

deal of unmeasured uncertainty (Wender, 2017).  Certainly, local law enforcement data exhibit the 

characteristics as other opportunistic data.  However, NIBRS data, which is a statistical collection 

generated from law enforcement data, also have detectable vestiges of the uncertainty of opportunistic 

data.  While there is a general enthusiasm in the research community to have easy access to large 

datasets, there are new considerations necessary to be taken of the quality and the context in which 

opportunistic data are collected when law enforcement data is used. 

Goodchild (2013) notes that most Big Data are georeferenced, that is Big Geodata.  The heterogeneity of 

geographic data presents unique challenges for understanding the potential spatial bias and 

representativeness of Big Geodata (Michael F. Goodchild, 2013; Miller & Goodchild, 2014; Zhang & Zhu, 

2018).  The less authoritative or volunteered nature of much of Big Geodata would make it difficult to 

apply techniques such as spatial sampling given the underlying spatial bias introduced by the collection 

methods (Zhang & Zhu, 2018).    To some degree UCR provides a framework of definitions and concepts 

to apply to crime data regardless of where it was collected.  It thereby acquires authority, even if this 

serves to obscure a real heterogeneity.  Using data provided directly from law enforcement systems 

removes this layer of standardization and quality control available through statistical or “smaller” data 

collections, such as UCR or NIBRS.  In the midst of this debate of the “digital turn” in data and data 

collections, there are possibilities of leveraging the strengths of both “big”/“fast” data and 

“small”/“slow” data (Goodchild, 2013; Miller, 2017, 2018; Miller & Goodchild, 2014).  However, it is 

important to first recognize the potential limitations associated with crime data that could be 

introduced from macro-level processes, such as structural societal issues in the criminal justice system 

(Fyfe, 1991; Lowman, 1986), or micro-level processes associated with discretionary decision making 

based on law enforcement agency priorities (Boivin & Cordeau, 2011; Klinger & Bridges, 1997; Phillips & 

Sobol, 2012).  The “digital turn” with access to Big Data and Big Geodata redoubles concerns for 

increased critical understanding of whose needs are being met and represented through the collection 

of the data and how access to the data effects how this data should be viewed  (Ash et al., 2018; Boyd & 

Crawford, 2012; Elwood & Leszczynski, 2013; Kitchin, 2014; Kwan, 2016; Mayernik, 2017; Miller & 

Goodchild, 2014).   

The “Linus Law” states that data quality can improve and achieve faster convergence with more “eyes” 

that see it, but that goal may not be able achievable with crime and other geodata (especially very local 

data) because there may not be a sufficiently large group reviewing the data to improve its accuracy 

(Goodchild, 2013; Miller & Goodchild, 2014).  Handling the heterogeneity of the data and finding ways 

to manage uncertainty will become increasingly important. In the first paper I demonstrated that end 

users can leverage techniques such as jackknifing and other types of simulation to address internal 

variation and quantify the uncertainty of results for measurements and data that have unknown 

distributions ( Barnett-Ryan, 2019b).  The analysis showed that removal of zero-population agencies 

from current classification schemes for law enforcement agencies homogenizes the average coefficient 

of variation across all offenses.  This increased similarity means that measures of central tendency 



 

65 
 

calculated within each stratum are more precise and ultimately improve modeling of agency-level crime 

data.  Even at aggregate levels and scales, the impact of law enforcement heterogeneity can be 

measured and is contextualized by the type of agency. 

The open data initiatives of many law enforcement agencies provide means to acquire detailed 

georeferenced data collected as a part of normal administrative and operational functions.  However, 

this opportunistic data should still be examined for a greater understanding of the political and social 

context in which the data is recorded as noted by earlier observers (Harries, 1975; LeBeau & Leitner, 

2011; Lowman, 1986; Peet, 1975) and current researchers (Lynch, 2018).  The underlying relationships 

between such data as calls for service (CFS) and recorded incident data that have been observed at 

aggregate levels may not hold for the newer microgeographies of street segment, neighborhood or 

point data.  I found in the second paper that recorded incident data, which serves as the basis for crime 

statistics, of property crime showed only minimal co-location with similar types of CFS for a municipal 

law enforcement agency and no appreciable co-location between property crime incidents and CFS for a 

campus law enforcement agency (Barnett-Ryan, 2019a).  In addition, in my third paper, CFS show only a 

modest ability to be used as an ancillary variable for dasymetric allocation models of crime data when 

constrained to those that are labelled as “officer-initiated” calls (Cynthia Barnett-Ryan, 2019c).  In 

totality, these results support a finding that the societal and organizational processes that lie behind 

recording CFS are fundamentally different from those underlying recorded incidents.  Therefore, it is 

unlikely that CFS would be a robust proxy for recorded incidents or current statistical measures. 

5.2 THE PLACE OF THE INDIVIDUAL 
As spatial resolution becomes finer, as in micro-geographies, the relationship between space and place 

is brought to the forefront. Recent scholarship on the criminology of place as exemplified by Weisburd 

and his colleagues (Braga, Andresen, & Lawton, 2017; Rengert & Lockwood, 2009; Tita & Greenbaum, 

2009; D. Weisburd, 2015a) focuses on the experience of space from the perspective of the residents.  

This dovetails with consistent themes in criminology related to collective efficacy, informal social 

control, social disorganization, and guardianship (Fyfe, 1991; Hollis-Peel, Reynald, van Bavel, Elffers, & 

Welsh, 2011; Sampson & Wilson, 2012; Sampson, 2013; Schnell, Grossman, & Braga, 2018).  However, 

crime data are not collected by the residents of a location and do not completely reflect their 

characteristics, if at all.  The reports of crime events by residents are mediated by law enforcement 

officers and their discretionary decision-making choices for an event to become a matter of record.  The 

seminal piece by Klinger (1997) describes the experience of space (or place) from a law enforcement 

perspective.  In his ecological perspective, Klinger outlines expectations for how law enforcement 

officers interpret disorder or lack of disorder in the environment.  His description of how law 

enforcement officers navigate and experience space challenge the usual assumptions regarding the 

standardization of recorded incident data.   

At the organizational level, law enforcement agencies and officers work from different sets of 

assumptions about crime and the data needed for operational effectiveness.  Sometimes these 

assumptions are based upon internally-driven priorities, such as the desire by the Chief or Sheriff to 

implement a COMPSTAT-style approach of accountability for mid-level managers.  At other times, they 

can be externally-driven such as the mandates for data collection and reporting for campus law 

enforcement under the Clery Act.  They may originate from concerns of the society at-large. These 

organizational priorities have the potential to create artifacts in the data collection process itself.   
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For example, the concept of a boundary role for an individual introduces the concept whereby an 

individual mediates both the collection of information from the environment and the communication of 

information within and between groups (Aldrich & Herker, 1977).  In the case of law enforcement, patrol 

officers or deputies serve in the boundary role as the first responders to reports or observations of 

crime and disorder.  In this dissertation I found preliminary evidence of differential approaches to data 

recording and analysis in the assessment of data and analytical products of two law enforcement 

agencies serving the same geographic location.  The campus law enforcement agency recorded 

proportionally more information regarding events related to alcohol and drug-related incidents, for 

example, then did the municipal law enforcement agency (Barnett-Ryan, 2019c).  In addition, the 

stronger association of officer-initiated CFS to recorded incidents lends strength to Klinger’s conjectures 

regarding the process by which law enforcement may be deprioritizing the recording of crimes in areas 

where law enforcement officers expects to see high levels of disorder (Barnett-Ryan, 2019c; Boivin & 

Cordeau, 2011; Klinger, 1997; Phillips & Sobol, 2012).  

Boundaries can also represent the “crispness” or “fuzziness” of particular social concepts—or in this 

case the concept of crime.  In many ways, crime can be considered a boundary object.  A boundary 

object has three main qualities—interpretive flexibility, “the material/organizational structure of 

different types of boundary objects and the question of scale/granularity” (Leigh Star, 2010, p. 602).  In 

essence, boundary objects have meanings that may vary depending upon who is using the term, what 

purpose it is being used for, and level of detail or granularity of its use.  What is deemed a “crime” is 

highly dependent on these three aspects and can be interpreted differently depending upon the 

context.  The idea of boundaries comes into play when these concepts mediate between various groups.  

For example, the recording of crime statistics occurs in a particular law enforcement context for the use 

of law enforcement.  Police bring their own understanding of the idea of criminal, which is deeply 

immersed in the law, courts, and a sense of morality.  On the other hand, once crime data is recorded, 

non-law enforcement groups can use it for different purposes.  The definitions applied at the time by 

law enforcement take on diverse meanings for these groups.  While the alternate definitions of crime 

that are used can be points of contention, they are nonetheless points of boundary work between these 

groups. 

Interpretations of crime and criminal behavior can vary in many contexts.  For example, the same 

behavior can take on different interpretations depending upon the group performing the interpretation.  

This is the case when the use of controlled substances can be both seen as a crime and a health problem 

depending upon whether it is the courts or the medical establishment viewing this behavior.  The use of 

drugs can be seen differently depending upon the location.  In the states of Washington and Colorado, 

recreational marijuana use has been legalized by the state, but not for other locations.  Finally, 

interpretations can vary from one time to another.  For example, prostitution as a behavior was once 

classified as criminal in the sense that prostitution was a criminal act and the prostitutes were seen as 

criminals.  However, in recent years, this same behavior—especially in situations involving juveniles—

has now been reframed as human trafficking in which the same individual is now classified as a victim of 

a crime rather than an offender. 

Finally, the results of the three studies lend insight into the construction of place from crime data.  At 

the three scales at which these studies analyzed crime data, there is evidence of different approaches to 

law enforcement by law enforcement.  The analysis of agency-level data was able to detail the amount 

of variation and heterogeneity of crime data based on geographic region and size, but most especially 
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for agencies serving specialized communities such as campus law enforcement, park police, or transit 

police.  At the agency level, the aggregate data shows evidence of the differential experience of law 

enforcement given a specialized community or location that they serve (Barnett-Ryan, 2019b). Moving 

into the next smallest level of geography of subjurisdictional divisions, the findings from Barnett-Ryan 

(2019c) indicates that crime data appears to be more reflective of agency geographic organization.  

There is improvement in those dasymetric allocation models using law enforcement geographic units 

such as precinct or beat, compared to geographic units based upon residential populations like Census 

tracts. Finally, the minimal association of point CFS and recorded incident data challenges not only 

assumptions of the interchangeability of both datasets, but also the idea that construct of a “call for 

service” or “criminal incident” would be the same regardless of law enforcement agency type (Barnett-

Ryan, 2019a). 

5.3 FUTURE RESEARCH ON PLACE, SPACE, AND THE “PLACIAL TURN” 
Future research on the “placial turn,” now being experienced in the disciplines of geography and 

criminology, not only focuses on ever increasingly high spatial resolution to improve analyses, but also 

on reaffirming the role of place in addition to space as a central concept to be considered and 

potentially formalized in analysis.  Rather than captured in crisp areal units or geographic boundaries 

and concepts, more subjective and less distinct human and social properties come into play (Merschdorf 

& Blaschke, 2018).  Place-based geographic information science (GISc.) runs the spectrum from 

questions associated with automatic modeling and the semantic web (Ballatore, 2016; Blaschke et al., 

2018; McFarlane & Anderson, 2011) to critical GISc. (Elwood & Leszczynski, 2013; Leszczynski, 2012; 

Wilson, 2011b, 2011a, 2017).  However, the digital representation of place presents considerable 

challenges to develop unambiguous definitions and formalizations of place. 

The formalization of place in GISc. has recently delved into accounting for uncertainty when handling 

subjective or vague data—also noted as a concern with the use of Big Geodata—as well as the 

transferability of results.  A consistent theme of accounting for uncertainty and the impact of data 

collection and data aggregation methods on the conclusions to be taken from the analysis of law 

enforcement data.  The modifiable areal unit problem is one aspect of uncertainty-associated artifacts 

created in the data by either zoning or aggregation schemes.  Research also continues to explore “fuzzy” 

boundaries or “fuzzy” topology in regards to spatial data analysis to integrate information on the local 

backcloth and avoid problems associated with abrubt transitions with aggregation units (Brantingham, 

Brantingham, Vajihollahi, & Wuschke, 2009).  Future research should seek ways to incorporate these 

methods when modeling law enforcement data even where data are sparse.  

In the case of law enforcement data, relationships that are statistically significant at the larger area of 

the jurisdiction (Barnett-Ryan, 2019b, 2019a) become significantly weaker at more granular levels of 

data collection.  This is especially pronounced when looking for significant co-location of property crimes 

as captured through CFS and recorded incidents (Barnett-Ryan, 2019a).  The findings associated with law 

enforcement data touch on an additional concept of uncertainty—the uncertain geographic context 

problem (UGCoP).   

UGCoP conceptualizes the idea that the measurable relationship among different variables is dependent 

upon the scale and geographic area at which the process is occurring (Kwan, 2012b, 2016, 2018).  Given 

the modest result of the dasymetric modelling using CFS as an ancillary variable and its overall 
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improvement when law enforcement discretionary officer-initiated events are used, the findings point 

to a need to identify contextual information on law enforcement engagement with their environment 

(Barnett-Ryan, 2019c; Klinger, 1997; Klinger & Bridges, 1997; Phillips & Sobol, 2012) or even the 

incorporation of quantified aspects of uncertainty (Nagle, Buttenfield, Leyk, & Spielman, 2014).  Findings 

point to the need for a closer examination of ways in which law enforcement agencies use information 

to facilitate decision-making could provide better insight into their discretionary decisions that have the 

potential to impact recorded incident data (Barnett-Ryan, 2019c). 

Following this train of thought, the formalization of place also raises questions regarding the 

transferability of results (Blaschke, Merschdorf et. al. 2018).  The transferability of results can manifest 

itself in a broad cultural fashion, such as when language does not precisely distinguish between place 

and space (Blaschke et al., 2018) or in the culture of professional or the user of the term.  For example, 

Weisburd and his colleagues (Braga et al., 2017; Tita & Greenbaum, 2009; D. Weisburd, 2015a) use the 

street segment as a proxy for place, but this is based on assumptions of how residents engage with their 

space.  It is not entirely clear that Weisburd is invoking the term, “place” in the same context as a 

professional geographer or patrol officer might. In addition, the analysis of even agency-level data 

makes assumptions regarding the typology of law enforcement agencies as a place in a state, a 

geographic division, or region or by the community it serves (Barnett-Ryan, 2019b).  As interdisciplinary 

research increases between geography, criminology, and law enforcement, the concept of place  

5.4 DISCUSSION 
This study is concentrated on information in a limited geographic area, and, as such, the conclusions 

drawn from this study will be limited.  Over recent years, the law enforcement community has been 

increasing its transparency and accessibility to its data.  However, detailed studies of law enforcement 

agencies will require a level of trust that can be difficult to obtain over wide geographic areas.  In order 

to further research in this subject, there should be an effort to replicate these results using different law 

enforcement data from different areas.  While one research study alone cannot conclusively resolve the 

questions related to the impact of law enforcement activity and crime data on crime modeling, the 

results of these three papers confirm that spatial and statistical bias introduced into crime data is 

measurable and is associated with law enforcement behavior.  In addition, I argue that the modest 

success in capturing and controlling for these systematic effects is possible with better information of 

law enforcement context surrounding CFS, recorded incident information, and the discretionary 

behavior of officers.  However, these results are far from conclusive and raise questions, opening the 

door for more in-depth research on place-based criminology and place-based policing and the questions 

generated by place-based approaches.  Law enforcement’s understanding of place solely influences 

crime recording, but the reaction to crime data through proactive policing measures also continue to 

fulfill expectations of measured crime patterns by concentrating the attention of officers on locations 

and on types of offenses.   

A more nuanced understanding of the impact of agency type and their policing activities should be 

introduced into models using official crime statistics.  Evidence increasingly makes it difficult to maintain 

that law enforcement is a monolithic entity acting uniformly, especially given the increased 

specialization across agencies.  Beyond official crime reports, future research should also incorporate a 

more nuanced approach to understanding the context in which CFS and recorded incident data is 
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captured; especially if these data is gathered directly from operational systems through open or other 

‘Big Data’ initiatives.   

The concept of boundaries in their less obvious forms should be further explored as well.  In addition to 

the influence asserted over crime data by the law enforcement perspective, variation in agency 

priorities should be accounted for, as the variation in agencies becomes increasingly diversified and 

specialized in mission.  Agency engagement with data should be considered as a possible influence on 

the recording of incident data.  Future research should explore means to formalize or quantify the 

uncertainty introduced into crime models by agency analytical priorities and the function of the officer 

in a boundary role. When functioning in the boundary role for recording crime information, patrol 

officers are more likely to record information of interest to their command staff than the complexity of 

the actual situation.   Finally, the concepts associated with crime data should be investigated for 

differences in interpretation and for ways to expand the incorporation of “fuzzy” definitions for space, 

place, and even time as it relates to criminal events.  This study contributes to current discussions in 

geography and criminology regarding ways in which uncertainty can be measured and accounted for.  

This will be critical as use of Big Geodata becomes more common, as well as an increased amount of 

georeferenced data are recorded and analyzed by non-geographers, such as with volunteered 

geographic data and neogeography.  This study also challenges criminologists to consider the interaction 

of scale and context of place in the interpretation of more granular, georeferenced crime data recorded 

by law enforcement.  Defining crime concentrations at a place or scale without engaging in serious 

debate about the underlying production of the data used for the analysis reduces the true complexity of 

the question.   
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