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Abstract 

Gas Composition Effects in a CI Engine Converted to SI Natural Gas Operation 

Hemanth Kumar Bommisetty 

Low-carbon fuels such as natural gas (NG) have the potential to lower the demand of 

petroleum-based fuels, reduce engine-out emissions, and increase IC engine thermal efficiency. 

One of the most rapid and efficient use of NG in the transportation sector would be as a direct 

replacement of the diesel fuel in compression ignition (CI) engines without any major engine 

modifications to the combustion chamber such as new pistons and/or engine head. An issue is the 

large variation in NG composition with the location and age of the gas well across U.S., which 

would affect engine operation, as well as the technology integration with emissions after 

treatment systems. This thesis describes the use a conventional CI engine modified for spark 

ignition (SI) NG operation to investigate the effects of methane and a C1-C4 alkane blend on 

main combustion parameters like in-cylinder pressure, apparent heat release rate, IMEP, etc. 

Steady-state engine experiments were conducted at several operating conditions that changed 

spark timing, engine speed, and equivalence ratio. The study found that C1-C4 alkane blend 

operation increased peak pressure, IMEP, and indicated thermal efficiency compared to methane, 

for all the operating conditions investigated in this work. This suggests caution when translating 

methane-based experimental observations to real world NG operation, even for NG with high 

methane percentage as the one used in this work. As many NG studies in the literature used 

methane as an NG surrogate, a better understanding of real fuel effects in diesel-like combustion 

environments could be important for the successful conversion of conventional diesel engines to 

NG operation. 
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1 Introduction 

1.1 Natural Gas as Alternative Fuel for IC Engines 

Internal combustion engine (ICE) is the main power source for on-road and off-road 

vehicles. While there is an increased interest in vehicle hybridization and electrification, 

forecasts predict that gaseous and liquid fuels will still provide 99% of the energy used in the 

transportation sector in U.S in year 2040 [1], and more than 92% of the ICEs will still run on 

petroleum based fuels [2]. Nevertheless, the adverse effects of ICE emissions on human health 

and environment and the dependence on oil imports will probably result in much stricter future 

emission regulations, hence the increased interest on finding cleaner alternatives for conventional 

petroleum-based fuels. Natural gas (NG) is such an alternative due to its increased availability, 

lower costs, and compatibility with both spark ignition and compression ignition engines [3, 4]. 

In addition, its higher hydrogen-to-carbon (H/C) ratio usually lowers engine-out CO2 emissions, 

which are an important greenhouse gas (GHG) [5]. More advantages of NG are discussed in 

Chapter 2. 

Compressed natural gas (CNG) fuels more than 23.5 million natural gas vehicles (NGV) 

across the world, but only 0.8% are registered North America, as shown in Figure 1. However, 

U.S. EIA mentions a 73% increase in the use of NG as vehicle fuel over the past 10 years, which 

accounts to almost 3% of the total transportation sector [6]. The report also predicts that NG 

consumption will increase rapidly from 64 billion cubic feet (Bcf) to 658 Bcf by 2040. 

 
Figure 1: Distribution of NGV around the 

world [7] 

  
Figure 2: Consumption of NG by sector, 

2016 [8] 
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Despite of several advantages, there are still several issues that need addressed before 

increasing NG’s use in the transportation sector. Firstly, there is no proper NG fueling 

infrastructure, though it is abundantly available across U.S. For example, West Virginia being 

one of the largest NG producers in the U.S. [9], has only 3 CNG filling stations [10]. Secondly, 

the supply of dedicated NG engines is limited, which means that most NG engines on the market 

today are conventional petroleum-fueled IC engines converted for NG operation through the 

installation of an after-market conversion kit, which is expensive. But the main challenge that 

NG engines are facing is probably the large variation in the NG composition with location across 

U.S. The reason is that even a small change in NG composition (i.e., a larger fraction of heavier 

hydrocarbons or inert components) can greatly affect the engine combustion characteristics. As a 

result, the increase in NG utilization in the transportation sector will not be possible without 

better identifying and predicting the effects of varying NG composition on the efficiency and 

emissions of IC engines. 

1.2 Objective 

The literature review section will show that experimental investigations on NG 

composition effects is not a new topic. However, there is not enough information on the 

combustion characteristics of IC engines modified for NG operation without using advanced or 

specialized hardware [11-14]. More, there is a limited amount of information on the combustion 

characteristics of conventional heavy-duty (HD) diesel engines converted to NG SI operation. If 

such information would be readily available, the industry would develop inexpensive conversion 

kits that would really change the landscape of NG utilization. Consequently, the primary focus of 

this study was to investigate the effects of NG composition on performance of an HD diesel 

engine modified for SI NG operation without any major engine modifications to the combustion 

chamber (e.g., new pistons) and/or specialized injection or ignition hardware.  
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2 Literature Review 

2.1 Natural gas characteristics 

NG has a higher self-ignition temperature compared to diesel fuel, which requires high 

energy to initiate combustion when used in a CI engine. This energy is usually provided by a 

spark plug, glow plug, or pilot fuel injection [15, 16]. In addition, NG has a higher octane 

number (ON) (110 - 130) compared to gasoline [17]. The higher ON and self-ignition 

temperature enable NG engines to run at higher compression ratios (CR), which can increase 

their efficiency. However, NG cannot directly replace the diesel fuel in CI engines because NG’s 

cetane number (CN) is lower than diesel fuels. NG can replace diesel fuel if an ignition source is 

added to the engine (e.g., a spark plug) or a pilot diesel fuel injection is used to initiate 

combustion in diesel-NG dual fuel engines. Another advantage is that NG mixes rapidly with air 

to form homogeneous air-fuel mixture, which results in a more efficient combustion process and 

a substantial reduction in harmful emissions [18]. More, NG engines can operate at higher AFRs 

due to the NG’s lower lean limit compared to gasoline. This will increase the thermal efficiency 

of the engine due to increase in the ratio of specific heats for lean mixtures [19]. Table 1 shows 

some of the NG properties. 

Table 1: Typical properties of NG [20] 

Ignition point 876 K 

Flammability limits 4-16 vol% (in air) 

Theoretical flame temperature (stoichiometric air-fuel ratio) 2233 K 

Maximum flame velocity 0.3 m/s 

Specific gravity 0.583 

Water vapor content 16-32 mg/m3 

Sulfur content 5.5 mg/m3 

Higher heating value 36-40.2 MJ/m3 

NG SI engines have the potential to reduce CO, CO2, NOx, and non-methane 

hydrocarbon (NMHC) emissions compared to gasoline [21-24].  Baldassarri et al., [21] stated 

that NG mixes fast and homogeneously mixture with air, which avoids the creation of fuel-rich 

and helps reducing PM emissions. Their work showed that THC, NOx and PM of CNG engines 
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are significantly lower than diesel emissions by 67%, 98% and 96% respectively. King mentions 

that light variations in equivalence ratio can have great impact on NOx emissions [25]. Dondero 

and Goldemberg showed that vehicles converted to NG achieved a 53% reduction in CO 

emissions, 66% reduction in NMHC emissions, and 20% decrease in CO2 emissions [26]. 

However, there was an increase in HC emissions by 162% and NOx emissions by 171%. Mello et 

al. showed that converted NGV had a reduction of about 90% and 55% in CO and HC emissions, 

respectively, but they also showed a loss of 13-17% in horsepower [27]. Several studies 

mentioned that methane’s higher H/C ratio compared to gasoline decreased CO2 emissions [23, 

28]. McCormick et al. [29] investigated several CNG vehicles with two different compositions 

and found that, the fuel consumption of NGVs was equivalent to diesel on undemanding driving 

cycles (cycles containing frequent accelerations and halting), and exceeded the diesel fuel 

consumption by nearly 18% on demanding driving cycles (varying accelerations, which include 

highway speeds, changing acceleration rates, and significant idle time), with reduction in NOx 

and CO emissions by about 10% while idling. 

2.1.1 Effects of NG composition 

NG composition can change drastically with source/location. Specifically, NG chemical 

composition depends on the place of extraction, the method of refining, etc., which strongly 

influences the performance and emissions of an engine. The main constituent of NG is methane 

(CH4), which varies from 75% to 96%, with balance containing heavier hydrocarbons such as 

ethane (C2H6), propane (C3H8), butane (C4H10), and inert diluents like molecular nitrogen (N2) 

and CO2 [15-19, 26, 30]. The chemical and thermodynamic properties of non-methane 

components of NG can strongly influence NG combustion [31]. Table 2 shows the variation of 

NG composition within West Virginia. 

Table 2: Composition of NG in vol (%) from different wells in West Virginia [32] 

County CH4 (%) C2H6 (%) C3H8 (%) CnH2n+2 (%) 

n ≥ 4 

N2 (%) CO2 (%) H2S (%) 

Mingo 64.31 0.92 0.17 0.17 3.10 31.1 0.23 

Wayne 77.73 4.89 2.16 1.29 13.92 0.01 - 

Boone 84.96 6.00 1.79 1.33 0.35 5.57 - 
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Kanawha 92.06 2.86 0.88 1.42 2.75 0.03 - 

 

2.1.2 Effect of NG composition on engine performance 

NG composition affects engine’s performance such as ignition characteristics, engine and 

after-treatment durability, fuel economy, engine operability and power output, etc. [33]. Chen 

[34] found that higher species of hydrocarbon additives can have significant impact on auto-

ignition delay timings. Khalil and Karim [35] studied the variation in composition of NG and its 

influence on ignition and combustion processes. They found that a small addition of n-heptane to 

methane can cause substantial changes in auto-ignition and combustion characteristics. More, the 

addition of ethane, propane, and n-butane to pure methane would result in shorter ignition delays 

[36]. However, Lamoureux and Paillard [37] showed that butane and other higher alkanes are not 

as effective as ethane or propane on reducing the ignition delay. In addition to the percentage of 

higher hydrocarbons, the amount of inert content in the gas mixture also plays a crucial role on 

engine performance. Higher percentages of inert constituents lead to faster flame extinction, 

which lowers in-cylinder peak pressures and reduce engine performance. 

Various formulas are used to compare NG with different compositions. The most used 

are the Methane Number (MN), the Wobbe Index (WI), and the Maximum Combustion Potential 

(MCP). 

Methane Number 

The high knock resistance is a major benefit for using NG in SI engines [38]. The knock 

resistance is specified by ON, while the auto-ignition propensity is measured by CN. For gaseous 

fuels like NG, MN is used to indicate the knock characteristics for a given NG composition. 

Higher methane concentrations in NG result in a higher MN. The higher the MN, the more NG’s 

resistance to knock, or NG is less likely to self-ignite. California Air Resource Board (CARB) 

proposed an equation to relate MN with the motor octane number (MON) [39]: 

  𝑀𝑁 = 1.624 ∗ (−406.14 + 508.04 ∗ (
𝐻

𝐶
) − 173.55 ∗ (

𝐻

𝐶
)

2

+ 20.17 ∗ (
𝐻

𝐶
)

3

) − 119.1   (2.1) 
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where H/C is the ratio of reactive hydrogen atoms to carbon atoms in a mole of gas. 

Equation 2.1 shows that the MN of a fuel decreases with the percentage increase of 

higher hydrocarbons like ethane or propane, decreasing the fuel’s knock resistance [40]. ON is 

not an appropriate scale for NG, as the ON can go only up to 120, and methane has ON more 

than 120 [41]. Unlike gasoline, NG that is available in the commercial distribution network is not 

typically regulated to a specific MN, so the probability of providing a sub-optimal or even 

hazardous fuel to the engine is high. Besides the methane content, the proportion of inert diluents 

also plays a major role in affecting the knock intensity [42]. 

Wobbe Index 

WI, a main indicator of interchangeability of gaseous fuels, compares the combustion 

energy output of different fuel composition [43]. If two fuels have identical WI at any given 

pressure, then the energy output will also be identical [15] 

                                                          𝑊𝐼 =  
ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒

√𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦
                                                          (2.2) 

Maximum Combustion Potential 

Min et al. [44] proposed another parameter to characterize NG composition, which they 

called MCP. MCP is defined as 

𝑀𝐶𝑃 =  
1.0 ∗ 𝐻2 + 0.6 ∗ (𝐶𝑂 + 𝐶𝑚𝐻𝑛) + 0.3 ∗ 𝐶𝐻4

√𝑑
 

where H2, CO, CmHn, and CH4 are the respective volumetric fractions of each of these species, 

and d represents specific gravity of fuel. 

The amount of energy released by any fuel is determined by its calorific value (CV) per 

unit volume. For different compositions of NG, the overall CV depends on the CVs of individual 

components, and fuels with lower CV contain more non-combustible components, which can 

affect the performance of an engine [45]. The quantity of nitrogen present in the fuel plays a 

crucial role in determining the optimum spark timing, because nitrogen can slow down the flame 
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propagation [46]. The addition of higher hydrocarbons improves the CV of the mixture. Higher 

CV can also achieve higher power output and efficiency, at optimum spark timing. 

Lee and Kim [47] studied the effect of natural gas composition on the performance and 

emissions on three NGVs with six different gases. Their work found that the fuel economy was 

proportional to the lower heating value (LHV) of the stoichiometric mixture. They also observed 

a difference of 25% in their results from highest to lowest fuel economy. 

Kim et al. [46] found that the cylinder pressure increases proportionally with increase in 

WI of the fuel composition, resulting in increased power output. Min et al. [44] studied the effect 

of NG composition on the performance and emissions of a NG engine. This study, which tested 

eight different NG blends on a 1.5 L gasoline engine, found that the in-cylinder pressure o 

increases with increasing MCP of the blend. A new index was also proposed, called Total Lower 

Heating Value (TLHV), to determine the compatibility of NG with NG engines. Feist et al. [33] 

observed that the power output of lean-burn gas engines increased with increasing WI and 

decreasing MN, but no specific trend was established for a stoichiometric engine. Furthermore, 

the lower WI fuels (i.e., fuels with higher concentrations of diluents) slowed down and cooled 

the combustion process, while the fuels with lower MN had higher flame speed, thereby causing 

higher in-cylinder temperatures. 

McTaggart et al. [41] experimented with three different NG compositions. He observed 

that the density of the composition increases as methane was replaced with heavier 

hydrocarbons. As a result, more fuel mass was injected for a constant injection duration, which 

increased the chemical energy injected every cycle. This increases the peak combustion pressure 

and the heat release rate (HRR). 

Operating at an optimum spark timing can improve the engine combustion 

characteristics. The optimum spark timing of an engine is usually the spark timing at which the 

maximum brake torque (MBT) is achieved. As methane is the main NG component, its 

percentage usually dictates the optimal spark timing. With methane burning slower than any 

other hydrocarbon species, the spark advancing increases with increasing MN, which can 

produce less engine power. Bosschaart and de Goey [48] found that the flame speeds increased 

from methane to butane to propane to ethane. Ranzi et al. [49] found a similar relationship with 
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ethane having the highest and methane having the slowest flame speed at constant temperature, 

and propane having higher flame speeds that iso- and n-butane. Dirrenberger et al. [50] work 

supports these findings, showing that ethane burns faster than propane, which burned faster than 

butane and methane. 

The addition of higher hydrocarbons to methane increases the flame speed and reduces 

the overall combustion duration. For example, Kochar et al. [51] showed that the addition of 

ethane or propane to methane improves the laminar flame speed. Shock-tube experiments by El-

Sherif [52] yielded similar results. This study found that higher ethane concentrations increased 

the burning velocity due to formation of enhanced radicals and more hydrogen particles that 

accelerated the combustion process. Amirante et al. showed that even small amounts of propane 

added to methane produced a more stable combustion process compared to methane only [53]. 

Dirrenberger et al. [50] tested three blends that represented NG produced in different places in 

the world: Abu Dhabi (15.86% ethane, 1.89% propane), Pittsburgh (14% ethane), and Indonesia 

(5.44% ethane, 3.16% propane). This work found that the gas representing Abu Dhabi had the 

highest laminar flame velocity due to its highest percentage of ethane. Next highest was the gas 

from Pittsburgh and the lowest was the gas from Indonesia. Kayadelen [54] found that addition 

of lower H/C ratio compounds like ethane, propane or iso-butane will increase the adiabatic 

flame temperature, whereas diluents like CO2 and N2 decreases the flame temperature. 

Karim and Wierzba [55] showed that as the percentage of propane by volume increased 

in the fuel composition, the combustion time decreased, leading to lower ignition delays and 

higher cylinder pressures. Pure methane had the longest combustion duration, and adding a small 

percentage of propane altered the combustion drastically, including speeding up the combustion 

process. Spadaccini and Colket [56] found that addition of heavier hydrocarbons to methane had 

shortened the ignition delay times, with butane being more effective compared to ethane or 

propane. 

Varying the composition of NG can produce significant effects on the fuel stoichiometry 

[57]. The associated change in equivalence ratio of the mixture will affect both the engine 

performance and emissions. Increasing the equivalence ratio, ϕ, produces higher in-cylinder 

pressures, which increases the products temperature. While the highest temperature is obtained 
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with stoichiometric mixtures, this also increases NOx emissions, due to higher cylinder 

temperatures. 

2.1.2.1 Effect of composition on emissions 

MN and WI are the two primary factors that influence emissions. As the concentration of 

heavier hydrocarbons increases, the H/C ratio decreases, subsequently producing higher CO2 

emissions [28]. Crookes [58] found that adding CO2 and N2 to the fuel reduces NOx formation, 

but have a great influence on engine performance. Therefore, fuels with higher concentrations of 

inert diluents will tend to produce lower NOx emissions, but would have negative impact on 

performance of the engine. Jahirul et al. [23] and Karavalakis et al. [59] showed higher NOx 

emissions associated with an increase in WI or decrease in MN. Higher hydrocarbons increased 

the flame speed, thereby increasing the cylinder temperatures and forming more NOx emissions. 

Feist et al. [33] found that higher percentages of ethane or propane reduced the MN and 

increased flame speed, producing more NOx emissions. El-Sherif [52] conducted experiments 

with four different NG blends and found that as the concentration of ethane increased, the NOx 

formation also increased. Hajbabaei et al. [60] tested six different NG blends on lean burn and 

stoichiometric engines and found that lower MN fuels produced more NOx emissions under lean 

burn conditions, but there was no clear trend for NOx emissions with changes in fuel composition 

when the engines operated close to stoichiometric conditions. Extended studies by Karavalakis et 

al. [61] on stoichiometric engines showed that NOx emissions decreased with decreasing MN, 

which was opposite to the lean-burn trend. Their study on a transit buses using five different NG 

blends concluded that NOx emissions increased with increasing WI [62]. However, in another 

study that tested two NGVs and four different NG blends the authors found that NOx emissions 

increased with increasing WI for one vehicle, but there was no significant influence of fuels WI 

on the second vehicle [28]. Min et al. [44] tested eight NG blends on a 1.5 L gasoline engine, and 

found higher NOx emissions with increased WI. 

Karavalakis et al. [59] conducted tests on a waste hauler truck equipped with 2001 

Cummins 8.3 L - C Gas plus engine, with seven different NG blends. They found that the NGs 

with high levels of higher hydrocarbons or low H/C ratios produced higher CO2 emissions during 

high loads, and had exactly the opposite trend on low load conditions. However, Crawford et al. 



10 

 

[39] did not find a linear relationship between MN and CO2 emissions. Jahirul et al. [23] found 

that as the engine speed increases, the fuel conversion efficiency also increases, thereby 

producing more CO2 emissions and less THC emissions. 

HC emissions for NG mostly consists of unburned CH4. As a result, NG with lower MN 

produces lower HC emissions [39, 59]. Methane is a strong GHG, more powerful than CO2. This 

is why methane slip (i.e., the emissions of non-combusted methane) has become a topic of 

concern for NG engines, particularly for the lean-burn SI engines [61]. Feist et al. [33] suggests 

that fuels with lower MN produces higher cylinder temperatures, thereby causing more oxidation 

of fuel, which reduced HC emissions. Similarly, Karavalakis et al. [62] showed that NG with 

lower MN produces higher combustion temperatures, due to higher adiabatic flame temperature. 

Min et al. [63] tested six different gases on a 1.5 L gasoline engine with modified pistons and 

found that the amount of HC decreases with increase in WI of the mixture. Since methane is less 

reactive than higher hydrocarbons [62, 64], higher MN fuels produce high HC emissions [53]. 

However, Caillol et al. [65] observed a different trend, which was that HC emissions increased 

with decrease in MN, as the mixture reached lean limits. The authors explained this phenomenon 

by the flame extinction in the combustion chamber when running lean with low MN fuels. NG 

with higher concentrations of heavier hydrocarbons has a higher heating values, and THC 

emissions are generally inversely proportional to heating values. THC emissions decreased with 

increase in heating values of the mixture [14]. 

CO emissions generally decreased with increasing MN [28, 39]. Amirante et al. [53] 

found that CO formation increased for higher concentrations of heavier hydrocarbons in the 

composition, which suggested that CO emissions increased with increasing percentage of higher 

hydrocarbons or decreasing MN. Karavalakis et al. [62] found that CO emissions increased with 

decreasing MN because the fuels with higher MN had higher octane rating, and hence can 

achieve more efficient combustion, which reduced CO emissions. Graboski et al. [14] tested a 

Cummins B 5.9 G engine with five different NG test fuels at varying altitudes, and found that 

CO emissions were independent of composition. However, HC and NOx emissions increased as 

the heating value of the fuel increased. 
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3 Experimental Setup 

The experiments were conducted at West Virginia University’s – Advanced Combustion 

Laboratory (ACL), which is a part of the Center for Alternative Fuels, Engines and Emissions 

(CAFEE). This section describes the engine and its various accessories, and the systems used to 

control the experiments and collect the data. 

3.1 Test Engine 

The experiments were performed in a single-cylinder, four-stroke, port fuel injection, 

heavy-duty SI engine (Ricardo/Cussons, U.K., Model: Proteus). The original supercharged, 

direct injection engine configuration (Volvo, Model: TD 120) was converted to a SI engine by 

replacing the main injector with a spark plug (Stitt, U.S., Model: S-RSGN40XLBEX8.4-2). The 

engine can be run in two modes – metal configuration and optical configuration. The metal 

configuration was selected for this investigation, because continuous engine operation can 

destroy the quartz window on the piston, leading to catastrophic failure of the engine. The metal 

engine has a classic toroidal bowl-in piston with swirl-producing intake ports. Swirl causes a 

rotational motion of the air-fuel mixture in the cylinder, which increases turbulence and the 

burning rate of the mixture [66]. In-cylinder pressure data was collected using a pressure 

transducer (Kistler, Model: 6011), which was mounted in the glow plug using a special outer 

sleeve. A charge amplifier (Kistler, Model: 5010) amplified the signal produced by the pressure 

transducer to a 0-10 V signal, which can be calibrated to bars/volt. More details about the engine 

geometry is given in Table 3. The engine test cell is shown in Figure 3. 

Table 3: Engine specifications 

Number of cylinders 1 

Displaced volume 1997 cc 

Bore x Stroke 130.2 mm x 150 mm 

Compression ratio 13.3:1 

Fuel injection type / # of injectors Port injection / 1 

Injector make and model Rail IG7 Navajo 

Nozzle diameter 3.5 mm 

Injection Pressure 35 psi 
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Number of spark plugs 1 

Inlet valve opens 12° bTDC 

Inlet valve closes 40° aBDC 

Exhaust valve opens 54° bBDC 

Exhaust valve closes 10° aTDC 

 

 
Figure 3: Engine test cell 
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3.1.1 Intake system 

Filtered intake air passed through a laminar flow element (LFE) (Meriam, U.S., Model: 

Z50MC2-2). This LFE can measure a maximum flow rate of 100 SCFM at a differential pressure 

of 8 inches of water. To calculate the air volumetric flow rate, the LFE uses two ports which are 

connected to differential and absolute pressure sensors. A thermocouple is mounted at 2 pipe-

diameters upstream of the LFE to correct for variations in air density. The volumetric flow rate 

(Q) is given by the equation 3.1: 

                                                              𝑄 = (𝐵 ∗ 𝐷𝑃) + (𝐶 ∗ 𝐷𝑃2)                                                      (3.1) 

where B, C are calibration constants that are specified by the manufacturer, and DP is the 

measured differential pressure 

The corrected volumetric flow rate is calculated by multiplying equation 3.1 with the 

viscosity correction factor 

                             𝑄𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = [(𝐵 ∗ 𝐷𝑃) + (𝐶 ∗ 𝐷𝑃2)] ∗ (
𝜇𝑠𝑡𝑑

𝜇𝑓
)                      [𝑆𝐶𝐹𝑀]             (3.2) 

where µstd and µf are the viscosities of flowing gas at 70°F and at flowing temperature, 

respectively. Equation 3.3 converts SCFM to CFM. 

                                   𝑄 = [(𝐵 ∗ 𝐷𝑃) + (𝐶 ∗ 𝐷𝑃2)] ∗ (
𝜇𝑠𝑡𝑑

𝜇𝑓
) ∗ (

𝑇𝑠𝑡𝑑

𝑇𝑓
) ∗ (

𝑃𝑠𝑡𝑑

𝑃𝑓
)                          (3.3) 

where, Tstd and Pstd are the standard temperature and pressure, respectively, and, Tf and Pf are the 

temperature and pressure of flowing gas, respectively. 

Figure 4 show the air intake system. An intake air surge tank was installed after LFE to 

dampen the pressure pulsations caused by single-cylinder cyclic intake valve opening and 

closing. Since pressure fluctuations have a negative effect of air flow rate, dampening these 

perturbations was necessary. Previous studies on this engine without and with surge tank, has 

proved that adding it can greatly influence the LFE air flow measurements and the air flow into 



14 

 

the cylinder. Hence, a tank of volume 55 gallons, was installed before the intake port to deliver 

smooth air flow to the engine. 

 
Figure 4: Air intake system 

3.1.2 Cooling and lubrication system 

3.1.2.1 Cooling system 

Engine cooling is achieved by a closed system consisting of a pressurized header tank, 

coolant flow meter, coolant heater and coolant heat exchanger. A 1:1 mixture of demineralized 

water and commercial anti-freeze is used as coolant for this engine. The header tank is a 

structure formed from rectangular steel tube constructed as an ‘H’ frame. A low-level coolant 

sensor and a filler cap with integrated pressure relief valve (7 psig) control the coolant level and 

pressure inside the header tank. The coolant pump (Boss, Model: BK2507/10B) draws coolant 

from the bottom of the header tank at 2,850 RPM and supplies it to the cylinder jackets via a 

coolant heat exchanger. A 6-kW heater is used to rapidly increase the coolant temperature before 

engine tests. Such approach minimizes engine losses and cold start emissions. Several 

thermocouples read the coolant temperature before and after exiting the engine, with the readings 

distributed to main controlling console and to the DAQ system. 
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3.1.2.2 Lubrication system 

The lubrication system consists of an oil sump or oil reservoir, oil heater, oil pump and 

oil heat exchanger. Oil is drawn from the crankcase by an electrically actuated oil pump (Brook 

Crompton Parkinson Motors) that runs at 1120 RPM. The oil is delivered to the oil heat 

exchanger where is cooled down, then passed through an oil filter before feeding it to the engine. 

The oil pressure is controlled to 4 bar by a relief valve at the oil distribution manifold. From the 

manifold, the oil under pressure is supplied to the main bearings, big end bearing, camshaft 

bearings and cylinder head. The engine sump also has two 1 ½ kW electrical heaters to rapidly 

increase oil temperature to optimum conditions. A pressure gage and several thermocouples are 

providing oil pressure and temperature to the control console and DAQ system. 

3.1.3 Dynamometer 

A 75 kW DC electrical dynamometer (McClure, Model: 4999, Trunnion type), rated at 

420 V and 160 A, controls the engine speed regardless of the engine load, as shown in Figure 5. 

A 100-kg load cell (Tedea-Huntleigh, Model: 104H) measures the torque applied on the 

dynamometer using a Wheatstone bridge. Figure 6 and Figure 7 show the strain gage connection 

and the weigh setup used to load cell signal. Most load cells follow a standard revised wiring 

code established by Western Regional Strain Gage Committee in May 1960 [67], which is shown 

in Figure 8. 

The electrical signal from the load cell is changed to a continuous display of torque in 

Nm on the control console, as seen in Figure 9. The arm radius on the dynamometer has a fixed 

length, such that each 20-kg calibration mass is equivalent to 80 Nm of torque, and a maximum 

load of 5 x 20 kg calibrated masses can be achieved. The dynamometer is forced ventilated by an 

electrical fan mounted on the base frame adjacent to dynamometer. The dynamometer is 

operated through a thyristor bank (KTK, Model: 6P4Q75). The dynamometer acts as DC motor 

to drive the engine during starting and motoring conditions and as a DC generator engine 

produces power. 
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Figure 5: Dynamometer 

 
Figure 6: Wiring code for Tedea-Huntleigh 

model 104H 

 
Figure 7: Load cell with hanger 

 

 
Figure 8: Standard wiring color code 

 

3.1.4 Engine and dynamometer control console 

Engine and dynamometer control console is divided into three racks: the signal 

conditioning rack, the dynamometer and speed control unit, and the safety shutdown unit (SSU). 

The signal conditioning rack consists of electronic systems which operate in conjunction 

with engine and dynamometer sensors to provide conditioned and amplified signals to the two 

analog and digital meters that display engine torque and speed. 

The central section consists of speed and dynamometer controls. The dyno control unit 

has a mode selector switch and start and stop buttons. The mode selector switch can be used to 

select one of the three modes: START/AUTO, ABSORB and MOTOR. START/AUTO mode is 

the engine starting position, and the dyno automatically switches from motor to load and vice 
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versa to maintain speed setting. In MOTOR mode, the dyno only motors the engine, and in 

ABSORB mode, the dyno only absorbs the power generated from engine firing. The engine 

doesn’t turn on just by pushing the START button. The dyno fan should be on, SSU should be 

reset and coolant pump should be running, to run the engine. The speed control unit consists of a 

0 to 10 multi-turn dial to set the required speed, and an EMERGENCY STOP push button. 

The bottom rack is the SSU. This unit is designed to trip the control system if there is any 

fault, thereby protecting the engine. There are several fault indicators such as the emergency 

stop, dyno fault, under speed, over speed, oil pressure low, etc. The system will be tripped if any 

fault indicators is on. Apart from the SSU, the rack also has coolant and oil temperature 

indicators, and engine auxiliaries like control switches for pumps and heaters. 

 

 
Figure 9: Engine control console 

 
Figure 10: Engine Control Unit 
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3.1.5 Engine control unit 

The Engine Control Unit (ECU; Megasquirt, Model: V3.0 mainboard with MS3X 

expansion) controls the fuel and spark timings, mass of fuel injected, and several other engine 

parameters, based on inputs like the position of crankshaft and camshaft, amount of intake air, 

intake air temperature, coolant temperature, and throttle position. The main ECU board features 

four injector bank outputs, crank sensor input, coolant temperature sensor input, throttle position 

sensor input, and oxygen sensor input. The expansion board can support up to 8 high-current 

injector driver outputs, 8 logic-level spark outputs, 3 analog inputs (0-5V), 6 medium level 

current outputs, 4 switch outputs and a cam sensor input. The ECU is connected to the computer 

via Ethernet cable or through a serial cable. Specialized software (TunerStudio, Version: 3.0.28) 

uses many built-in algorithms to determine the correct operating parameters such as, spark 

timing, injection duration, dwell time for spark, etc. that are then passed to the ECU. For 

example, there are several control algorithms for calculating the air flow in to the engine [68], 

such as Speed-Density method, Alpha-N method, Independent Throttle Bodies (ITB) and %baro 

mode. 

Speed-Density uses manifold absolute pressure (MAP) sensor to determine load and an 

appropriate value from the fuel table is selected. Another method for determining the amount of 

fuel required is Alpha-N mode. This method uses a throttle position sensor (TPS) to estimate the 

amount of air flow to the engine. This method can be useful when there is no availability of 

MAP sensor. The latter method was employed for this engine, as there is no MAP equipped to 

the engine. ITB mode combines both Speed-Density (at low engine speeds) and Alpha-N (at high 

engine loads) for better controlling at given engine load. 

The inputs for ECU are intake air temperature, coolant temperature, throttle position, and 

crankshaft and camshaft position sensors. All sensors, except TPS, provide real time data to the 

board. TPS is simulated by a three-wire potentiometer. Changing the resistance of the 

potentiometer changes the signal output. Megasquirt converts this potentiometer signal on a 0-

100% scale, where 0% representing fully closed and 100% representing fully open throttle 

positions. Based on these inputs and tables (Fuel VE table and Ignition table), ECU calculates 
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the spark timing and amount of fuel required. TunerStudio includes an output test mode, where 

spark and injectors can be tested for their functionality without running the engine. 

The engine flywheel has 100 equidistant teeth distributed around its periphery, each tooth 

representing a 3.6° crankshaft rotation. A Variable Reluctance (VR) transducer, seen in Figure 

11, is mounted on a bracket off the crankcase to read these teeth and determine the angular 

position of the crankshaft. The VR sensor works on the principle that magnetic flux is generated 

when target element passes by the coil. As the target element moves closer to the sensor, the flux 

intensity increases, and decreases when it is moving away. This flux variation induces a 

proportional voltage change in the coil, which is then sent to the ECU. A Hall Effect sensor, 

shown in Figure 12, is mounted high up on the crankcase and turned by the crankshaft using a 

spur gear train. The Hall Effect transducer which works on the same principle as VR sensors, 

determines the cam position at any instant, but unlike VR sensors, the Hall Effect sensor can also 

measure at slow speeds. Most of the Hall Effect sensors produce digital output signals, whereas 

an extra electronic circuitry is needed to convert the analog signal produced by VR sensor to 

digital output. Continuous data transmission is done from these sensors to the ECU to calculate 

engine speed and position relative to the dead center. 

 
Figure 11: Cam position sensor (Hall Effect 

Sensor) 

 
Figure 12: Crank position sensor (VR 

sensor) 
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3.1.6 Fuel system 

The fuel system consists of a gas cylinder, a pressure regulator and CNG fuel injectors 

(Rail Spa, Italy, Model: IG7 Navajo). The response of these injectors is very linear, and the noise 

levels while operating are below 67 dB, as specified by the manufacturer. Gas is drawn from the 

gas cylinder through a pressure regulator and injected through the injectors mentioned above. 

Though these injectors have 3 seats, with each seat having a 3.5 mm diameter nozzle, only one 

seat was used for this study. More specifications of the fuel injector are given in Table 4. 

Table 4: Fuel injector characteristics 

Characteristic Unit  Value 

Pressure psi 7 – 43 

Rated voltage (at coil) volt 10.8 – 14.4 

Resistance ohm 2 

Suggested peak current time ms 3.0 

Suggested holding current A 1.6 (± 10%) 

Complete opening/closing response time ms 1.9 / 1.4 

Nozzle diameter mm 3.5 

Calculated max flow rate Kg/h 9.8 @ 2 bar inlet P 

13 @ 3 bar inlet P 

Leakage (with air) Cc/h ≤ 15 

Driver stage Peak and Hold (PWM) 

 

The injector manufacturer provided flow rate charts of the injector at various operating 

pressures and speeds for 4 seats, is shown in Figure 13. Since only one seat was being used in 

this investigation, the flow rate has been divided by a factor of 4. 
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Figure 13: Flow rate of injectors 

3.2 Data acquisition  

Several data acquisition systems (DAQ) collected in-cylinder pressure data, air flow arte, 

coolant and oil temperatures, engine torque, speed, etc. An in-house built DAQ software 

(Scimitar) was used to centralize data from different DAQ systems. This program used a 10-Hz 

data recorder, which is compatible with most of the DAQ devices such as LabJack, ICP DAS, 

emission analyzers, etc. 

LabJack (Model: UE9) and ICP DAS (Model: PET7019Z) are analog to digital 

converters that acts as the hardware interface for engine data collection. The outputs from the 

load cell and LFE’s two pressure transducers, shown in Figure 14 (differential pressure 
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transducer (Ashcroft, Model: XLdc) and absolute pressure transducer (GP 50, Model: 211), were 

connected to the LabJack, while all thermocouples were connected to ICP DAS, as seen in 

Figure 15. Scimitar reads the voltages from these two DAQ devices and calibrated them on a 

suitable scale to produce proportional signals. The most commonly used thermocouples in this 

system were k-type thermocouples, due to their wide range of temperature measurement (-200°C 

to 1260°C) and cost effectiveness.

 
Figure 14: Pressure transducers 

 
Figure 15: DAQ system 

A piezoelectric pressure transducer (Kistler, Model: 6011) measured in-cylinder pressure. 

Piezoelectricity is defined as linear electromechanical interaction in a material having no center 

of symmetry [67]. In other words, when an external load or stress is applied on a piezoelectric 

material, electrical charge or signal is produced. The transducer signal is very small that it cannot 

be identified directly by the data acquisition system. Therefore, the signal is conditioned through 

a charge amplifier (Kistler, Model: 5010), where the signal is amplified in to a 0-10 V signal. 

This is then transmitted to a DAQ card (National Instruments, Model: SCB-68A). An 

incremental rotary shaft encoder (BEI sensors, Model: H25D, Resolution: 1800) is used to 

measure engine speed and determine the crankshaft position at any instant. 
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In addition to pressure and speed signals, intake and exhaust temperatures are also 

required by the NI DAQ card to analyze the pressure data. This DAQ card is connected to NI 

PCIe-6351 on the pressure analysis computer. An in-house built software, developed by WVU 

CAFEE, process the pressure data into usable combustion information. Post processing the data 

in Matlab can provide all the additional information required such as rate of pressure rise, heat 

release rate, etc. 

3.3 Test conditions 

A steady-state parametric study investigated the effects of spark timing, fuel load, and 

engine speed. Table 5 shows the test conditions. Specifically, the spark timing changed from -

30° CA aTDC to -10° CA aTDC, fuel load was varied from 75% to 90%, and speed was changed 

from 900 RPM to 1300 RPM. Each test varied one parameter while holding the other two 

constant. The engine was warmed up before testing, and oil and coolant temperatures were 

maintained constant at 79° ± 2°C and 48° ± 2°C respectively, to eliminate the effects of different 

boundary conditions on the combustion process. 

Table 5: Parameters and its set points 

Spark timing (°CA) 

(Fuel load: 80% 

Speed: 900 RPM) 

Fuel load (%) 

(Spark timing: -10° aTDC 

Speed: 900 RPM) 

Speed (rpm) 

(Spark timing: -10° aTDC 

Fuel load: 80%) 

-30° aTDC 75% 900 

-25° aTDC 80% 1000 

-20° aTDC 85% 1100 

-15° aTDC 90% 1200 

-10° aTDC - 1300 

 

The fuels investigated were chemically-pure methane and a C1-C4 alkane blend (hereafter 

referred to as NG), with compositions given in Table 6. Methane was used as a baseline for 

comparing the results using NG. Both the gases were injected at 35 psi with the help of a gas 

regulator. 
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Table 6: Composition of gases used for the test 

 Methane NG 

Methane 99.5% 90.909% 

Ethane 0.1% 5.81% 

Propane - 2.39% 

Butane - 0.45% 

Isobutane - 0.421% 

Nitrogen 0.4% 0.02% 

Total 100% 100% 

Molecular weight (g/mol) 16.10 17.8946 

Higher heating value (kJ/kg) 55550.57 55611.45 

Lower heating value (kJ/kg) 49832.22 49982.26 

Specific gravity 0.5537 0.6178 

H/C 3.99 3.77 

MN 93.9 74.6 

 

Note: A controller malfunction has occurred during the spark-timing sweep test, which was 

realized during data analysis. And as a result, experiments were repeated with methane, but 

could not be repeated for NG. Hence, NG results presented next were based on experiments 

made at one spark timing only (i.e., at -10° CA aTDC). 
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4 Results and Discussions 

This section describes the impact of gas composition on the combustion performance of a 

single-cylinder, four-stroke, port fuel injected, heavy-duty NG SI engine. Several subsections 

present and discuss the experimental results. The first subsection discusses the effect spark 

timing at constant speed and fuel load / equivalence ratio, ϕ. The analysis included the maximum 

in-cylinder pressure and its location, the start of combustion (SOC, defined as the crank angle 

corresponding to 10% heat release), and the combustion duration (DOC; defined as the 

difference between the crank angles corresponding to 10% and 90% heat release). The next 

subsection shows the effect of engine speed on combustion phenomena at constant spark timing 

and fuel load / equivalence ratio. Finally, a parametric study that changed the fuel load / 

equivalence ratio was performed at constant engine speed and spark timing. 

As mentioned before, in-cylinder pressure was measured with a piezoelectric pressure 

transducer, which measures the pressure difference versus time, rather than absolute pressure 

values. Thus, the pressure signal was ‘pegged’ (i.e., referenced) to the manifold intake pressure. 

However, the raw pressure signal was noisy due to a combination of mechanical vibration noise, 

electric noise, thermal drift, etc. [69]. Hence, before ‘pegging’ in-cylinder pressure was filtered 

with a Matlab digital filter (Savitzky-Golay filter of order 3) to smooth the signal. 

The pressure collection and data analysis system used motored pressure to synchronize 

crankshaft encoder data with engine position. Specifically, the pressure DAQ used the peak 

pressure in the motored pressure trace to determine the difference between the encoder z-pulse 

and engine TDC. The determined difference was later used to align the combusting pressure 

traces with engine position. The procedure was repeated at the beginning, during and at the end 

of experiments to ensure that no encoder slippage may affect pressure measurements. Figure 16 

shows an example of motored pressure trace after the TDC alignment procedure. 

The throttle position in the experiments was fixed to limit the effect of variation of air 

flow rate on the combustion process. However, the amount of fuel injected changed with the 

ECU’s fuel load, which was independent of the air flow into the cylinder. The data presented in 

this section is the average of at least 400 cycles. The COV of Pmax was under 7%, hence the 

average pressure was considered representative for the condition investigated. Figure 17 shows 
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an example of individual and average cycles at -10° CA aTDC spark timing, 80% fuel load, and 

900 rpm for methane. 

 
Figure 16: Motored pressure trace illustrating TDC alignment 

 

 
Figure 17: Individual and average pressure cycles (methane at -10°CA aTDC spark timing, 80% 

fuel load, and 900 rpm) 
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4.1 Effect of spark timing 

Spark timing (ST) controls in-cylinder flame development and propagation, which affects 

combustion efficiency and stability. Advancing the ST can advance peak cylinder pressure 

before TDC, which would oppose the piston’s upward movement. Therefore, work will be done 

during the compression stroke against the piston movement, which can reduce the amount of 

power delivered to the crankshaft. However, retarding the ST can result in peak cylinder pressure 

to occur later in the expansion stroke. This can reduce the magnitude of peak pressure and 

decrease the work done on the piston. The point at which both the cases compensate each other is 

regarded as optimum and generally called as maximum brake torque (MBT) spark timing. Figure 

18 shows the effect of spark timing on engine torque and MBT from this study compared with a 

similar figure in Figure 19 referenced from Heywood [70]. As mentioned earlier in the test 

conditions section, NG was tested only at one spark timing, hence there is no MBT plot for NG. 

 
Figure 18: Effect of spark timing on MBT 

 
Figure 19: Effect of spark timing on MBT 

(methane at 900 rpm and 80% fuel load)

Figure 20 shows the effect of ST on in-cylinder pressure for methane tests. Retarding the 

ST from -30°CA aTDC to -10°CA aTDC decreased the peak cylinder pressure from 6.5 MPa to 

4.3 MPa, a 34% drop in peak pressure. This was due to delayed SOC, with SOC changing from -

10.4°CA aTDC to 7.6°CA aTDC, as ST was retarded. Though the highest cylinder pressure was 

at -30°CA aTDC, the highest imep was obtained at -20°CA aTDC, i.e., the MBT-ST. 
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Figure 20: Effect of spark timing on cylinder pressure (methane at 900 rpm and 80% fuel load) 

 
Figure 21: Effect of fuel on cylinder pressure (at 900 rpm and 80% fuel load) 
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Figure 21 presents the effect of fuel on in-cylinder pressure of the engine at ST -10° CA 

aTDC. It shows that the addition of higher alkanes to methane increased the peak pressure by 

13%. More results are tabulated in Table 7. 

Table 7: Effect of spark timing and fuel on combustion parameters 

Fuel Spark 

timing (deg 

aTDC) 

Pmax 

(MPa) 

Pmax location 

(deg aTDC) 

SOC 

(deg 

aTDC) 

EOC 

(deg 

aTDC) 

ϕ Imep 

(kPa) 

ηth, i 

CH4 

-30 6.45 5.5 -10.4 54.3 0.74 765.65 31.0 

-25 6.07 6.3 -5.9 53.7 0.73 795.12 32.1 

-20 5.68 9.7 -1.5 52.9 0.74 812.67 32.9 

-15 5.04 13.6 1.0 54.1 0.73 803.13 32.5 

-10 4.27 18.4 7.6 55.7 0.74 787.44 31.8 

NG -10 4.84 16.7 6.2 55.2 0.71 861.03 36.0 

Imep is representative of work done on the piston and generally used to describe engine 

power. The area bound to P-V diagram represents the indicated work done by the engine, and 

imep is calculated from the indicated work using the equation: 

                                                                    𝑖𝑚𝑒𝑝 =
𝑊𝑖

𝑣𝑑
=

∫ 𝑃 ∗ 𝑑𝑉

𝑣𝑑
                                                       (4.1) 

where Wi is the indicated work output of the engine, in kJ, and vd is the engine displacement 

volume, in m3 

The engine volume at each crank angle θ is calculated as: 

                                    𝑉 =
𝑣𝑑

𝑟 − 1
+

𝑣𝑑

2
[1 + 𝑅 − 𝑐𝑜𝑠𝜃 − (𝑅2 − 𝑠𝑖𝑛2𝜃)−1/2 ]                                 (4.2) 

where r is the compression ratio, and R is the ratio of the connecting rod length to the crank 

radius 

Figure 22 shows imep against ST. As explained earlier, the highest imep was achieved at 

MBT-ST, and the imep decreased with further advancing or retarding the spark timing from this 
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position. From Table 7, the decrease in imep due to advancing or retarding the ST from MBT 

timing was 6% and 3%, respectively. It can be observed from Figure 23 that the imep of NG was 

higher than methane. This is because of the presence of higher carbon species along with 

methane in NG enhanced the fuel properties (i.e., flame speed, adiabatic flame temperature) [51, 

52], which generated higher peak pressures and produced higher imep. A significant increase of 

9.4% had been observed in imep, due to change in the gaseous fuel composition. 

 
Figure 22: Effect of spark timing on imep (methane at 900 rpm and 80% fuel load) 

According to first law of thermodynamics 

                                                                        𝛿𝑄 = 𝑑𝑈 + 𝛿𝑊                                                                 (4.3) 

where δQ is the chemical energy provided to the system, dU is the change in internal energy (kJ), 

and δW is the work done by the system (kJ). 

Using equation 4.3 along with ideal gas law [70], equation 4.4 is used to calculate the rate 

of heat transfer in the system: 
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𝛿𝑄

𝛿𝜃
=

1

𝑘 − 1
(

𝑉 ∗ 𝑑𝑃

𝑑𝜃
) +

𝑘

𝑘 − 1
(

𝑃 ∗ 𝑑𝑉

𝑑𝜃
)                                          (4.4) 

where 𝛿𝑄 𝛿𝜃⁄  is the heat release rate (kJ/°CA), k is the ratio of specific heats, V is the volume 

(m3), and 𝛿𝑃 𝛿𝜃⁄  is the rate of change of pressure (kPa/°CA) 

 
Figure 23: Effect of spark timing and fuel on imep (900 rpm and 80% fuel load) 

Heat release analysis can directly describe the conversion efficiency of thermal energy 

into work done by the engine. For a constant supply of chemical energy, a higher heat release 

indicates that more work is done by the system, which means the engine is more efficient. From 

Figure 24, it can be observed that the heat release rate of methane at a ST of -20° CA aTDC is 

greater than any other spark timing, at constant chemical energy intake into the system. This is 

because the work done by the system at this ST is higher than any other ST tested. This directly 

explains the higher thermal efficiency of the engine at -20°CA aTDC. Another observation that 

can be made from the heat release analysis is that there was a second peak on the heat release 

rate plot at ST -30°CA aTDC, which is probably due to the effect that the piston bowl edges had 

on redirecting the flame front. 
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Figure 24: Effect of spark timing on heat release rate (methane at 900 rpm and 80% fuel load) 

 
Figure 25: Effect of fuel on AHRR (at 900 rpm and 80% fuel load) 
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While the apparent heat release rate denotes the rate of heat transfer at every crank angle 

position, the cumulative heat release rate or net heat release rate defines the total amount of heat 

transferred over the cycle. Cumulative heat release rate can be calculated by summing up the 

apparent heat release rate values over the entire cycle as shown in Equation 4.5. 

                                                               𝑁𝐻𝑅𝑅 =  ∑
𝛿𝑄

𝛿𝜃
                                                                (4.5)

180°

𝜃=−180°

 

where NHRR is the net heat release rate (kJ), and θ is the crank angle from -180° to 180°CA 

The upper limit of the plot indicates the maximum heat energy or the theoretical heat 

energy that can be obtained by burning the fuel at ideal conditions (𝑚𝑓 ∗ 𝑄𝐿𝐻𝑉), which accounts 

for all other inefficiencies of the engine. Moreover, the NHRR analysis can also help in 

estimating the SOC. As seen in Figure 26, the SOC is more advanced with more advanced spark 

timings which resulted in less heat release due to less overall work done; and therefore, the 

efficiency is low. 

The rate of heat release was higher in case of NG, which can be observed from Figure 25, 

because the heating values of higher hydrocarbon species were greater than methane’s. Hence, 

the NHRR of NG was also higher in case of NG, which implies more heat is transferred when 

NG is combusted. All these reasons explain the higher thermal efficiency of NG over methane. 
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Figure 26: Effect of spark timing on NHRR (methane at 900 rpm and 80% fuel load) 

 
Figure 27: Effect of fuel on NHRR (at 900 rpm and 80% fuel load) 
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Another important parameter to determine the behavior of combustion is the amount of 

mass fraction burnt of air-fuel mixture. Mass fraction burnt is calculated by using Wiebe 

function, given in equation 4.6 

                                                                     𝑥𝑏 (𝜃) = 1 − 𝑒
[−𝑎∗(

𝜃−𝜃𝑠
𝜃𝑑

)
𝑛

]
                                                (4.6) 

where xb is the mass fraction burnt, θ is the instantaneous crankshaft angle (°CA), θs is the 

crankshaft angle at the start of heat addition (°CA), θd is the duration of heat addition (°CA), n is 

the Wiebe form factor (usually 3), and a is the Wiebe efficiency factor (usually 5). 

Mass fraction burnt for methane at various spark timings is plotted in Figure 28. It can be 

observed that, the SOC (defined as the crank angle corresponding to 10% heat release) of the 

process was retarded with retarded spark timings, but the EOC (defined as crank angle 

corresponding to 90% heat release) of combustion was nearly same, which implies that the DOC 

decreased with spark timing retardation. Decreasing DOC suggests that flame speed increased 

with retarded spark timings. 

 
Figure 28: Effect of spark timing on mass fraction burnt (methane at 900 rpm and 80% fuel load) 
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Mass fraction burnt for methane and NG at spark timing -10°CA aTDC is plotted in 

Figure 29. The time gap between actual spark timing and SOC of combustion is called flame 

development time, and this is found to be less when NG was used. This is due to the presence of 

higher hydrocarbon species in NG. The energy required to break a C-H bond is higher than the 

energy required to break a C-C bond [64]. As methane does not contain any C-C bonds unlike 

other hydrocarbon species, the time required to initiate the combustion process for methane is 

higher than any other alkanes, which increases the flame development time for methane. 

Moreover, methane is less reactive than any other heavier hydrocarbons. For all these reasons, 

methane burns slower than NG. With slower SOC, the combustion process is shifted more 

towards expansion stroke leading to reduced pressure rise rate, thereby producing lesser power 

output and efficiency. 

 
Figure 29: Effect of fuel on mass fraction burnt at -10° aTDC (at 900 rpm and 80% fuel load) 
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Figure 30: Effect of spark timing on indicated thermal efficiency (methane at 900 rpm and 80% 

fuel load) 

 
Figure 31: Effect of fuel on indicated thermal efficiency (at 900 rpm and 80% fuel load) 
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The experimental results show that as the spark timing was shifted away from the MBT 

timing, the efficiency decreased from the maximum efficiency at MBT spark timing, as 

illustrated in Figure 30. Besides, the addition of higher carbon species to methane should help in 

achieving higher heat release rates, which relates to higher thermal efficiency of the engine, as 

shown in Figure 31. It can be noticed that, the efficiency of the engine decreased by 12% due to 

change in chemical composition of fuel. 

4.2 Effect of Speed 

Increasing the engine speed reduces the time required for proper combustion of the 

mixture. Generally, the torque output increases with engine speed to a certain level, and then 

starts to decrease, due to increased frictional losses and inadequate time for complete combustion 

process. The engine speed sweep test with speed varying from 900 rpm to 1300 rpm, was 

performed at constant spark timing of -10°CA aTDC and a constant equivalence ratio (varies 

with composition of gas used), which indicates that the engine was not optimized at higher 

speeds. As a result, the combustion process was incomplete at higher speeds, resulting in 

decreased cylinder pressure, as shown in Figure 32, for both the gases. 

 
Figure 32: Effect of speed on cylinder pressure (at -10°CA aTDC and 80% fuel load) 
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Engine speed generally affects the combustion phenomena through its effect on in-

cylinder gas motion, friction, time available to complete combustion, and heat transfer rates [70]. 

With higher speeds, the heat release rates are predominantly affected by the frictional losses of 

the engine, and hence the pressure drops after certain speed. On the other hand, engine running at 

low speeds produce less peak pressure, and consequently producing lesser power output. Hence, 

engine speeds are to be maintained in mid-range, where higher pressures compensate the 

frictional losses and provide better engine operating conditions. Also, increased engine speeds 

have advanced spark timings to counter the late start of combustion process, and provide more 

time for completing the combustion. 

In this test, as seen in Figure 32, the peak pressure decreased significantly with increase 

in engine speed. This can be explained by the fact that the engine was not optimized at higher 

speeds, which means it had a fixed spark timing, and that may have resulted in improper 

combustion. Since, ethane and propane have higher laminar flame speeds and better ignition 

qualities than methane, NG had earlier SOC producing higher peak pressures and heat release 

rates than methane, which can be seen from Figure 33 and Table 8. 

Table 8: Effect of engine speed and fuel on combustion parameters 

Fuel Speed 

(rpm) 

Pmax 

(MPa) 

Pmax 

location 

(deg aTDC) 

SOC 

(deg 

aTDC) 

EOC 

(deg 

aTDC) 

Imep 

(kPa) 

ηth, i 

(%) 

BTE 

(%) 

CH4 

900 4.24 17.9 7.0 54.4 815.65 33.0 23.9 

1000 4.25 18.3 7.6 55.9 802.49 32.4 23.3 

1100 4.04 19.0 8.0 56.9 789.60 31.9 22.3 

1200 3.90 19.5 8.3 56.5 775.28 31.3 21.5 

1300 3.69 20.4 9.0 57.1 753.64 30.4 20.5 

NG 

900 4.84 16.7 6.2 55.2 861.03 36.0 32.4 

1000 4.52 18.0 7.1 54.6 846.68 35.4 30.8 

1100 4.35 17.9 7.1 55.7 815.69 34.1 29.2 

1200 4.14 18.6 7.5 54.6 794.59 33.2 27.7 

1300 3.89 20.1 8.6 52.4 784.09 32.7 26.5 
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Though the highest cylinder pressure was observed at 900 rpm for both the gases, NG 

was 11% higher than methane. And this difference reduced to 5.5% at 1300 rpm. This suggests 

that the differences would get smaller with increase in engine speeds. 

With increased frictional losses and reduced peak pressures, the heat release rates also 

decreased. It can be inferred from the heat release rate plot that the SOC and EOC of NG was 

slightly earlier than methane, and therefore, better imeps and thermal efficiencies were achieved 

with NG, which are shown in Figure 35 and Figure 36. 

Cumulative heat release plot shows that the total amount of heat released from the fuel 

was inversely proportional to engine speed. The highest heat release was at 900 rpm, where 

maximum efficiency for this sweep test was recorded. Decreasing pressure and heat release rate 

traces implies that lesser work is done with increase in mean piston speeds, which affects imep 

of the engine. Hence, the imep decreased linearly with increase in speed. However, the decrease 

was not the same for both the fuels. The imep of NG was reduced by 10% and methane was 

reduced by 8.5%, from Table 8 and Figure 35. 

 
Figure 33: Effect of engine speed on AHRR (at -10°CA aTDC and 80% fuel load) 
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Figure 34: Effect of engine speed on NHRR (at -10°CA aTDC and 80% fuel load) 

 
Figure 35: Effect of engine speed on imep (at -10°CA aTDC and 80% fuel load) 



42 

 

 
Figure 36: Effect of fuel and speed on indicated thermal efficiency (at -10°CA aTDC and 80% 

fuel load) 

 
Figure 37: Effect of fuel and speed on mechanical efficiency of the engine (at -10°CA aTDC and 

80% fuel load) 
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The efficiency of the engine for both the fuels decreased linearly with increase in speed, 

but the slope of NG is higher than methane. That is, the decrease in efficiency of NG from 900 

rpm to 1300 rpm was higher, 9.1%, when compared to methane’s 7.8%. Also, the mechanical 

efficiency of NG reduced significantly lower than methane. All the above explanations suggest 

that methane is more suitable than NG at higher engine speeds. 

4.3 Effect of Fuel load 

Equivalence ratio is one of the fundamental engine operating variables which commands 

the performance and emissions of an engine. Development of combustion process depends 

highly on the equivalence ratio, since higher amount of fuel in the combustion chamber helps in 

faster flame development and propagation. This leads to increased pressure and heat release 

inside the cylinder, resulting in higher power output from the engine. But, increased cylinder 

temperatures provide more favorable conditions for NOx formation. As ϕ tends more towards 

leaner side, the amount of air to fuel ratio increases, resulting in lower adiabatic flame speeds 

and occasional flame quenching, leading to improper combustion. If ϕ tends toward richer side, 

then fuel to air ratio increases, where the amount of air present is not sufficient to oxidize all the 

fuel, resulting in incomplete combustion process, and the unburnt fuel is pushed out through 

exhaust, resulting in higher HC emissions. Hence, it is essential to maintain a desired ϕ under all 

operating conditions, such that higher performance is achieved with lower emissions. In this 

study, a parameter called ‘percentage of fuel load’ was used to control the ϕ of the mixture. And 

this parameter was varied from 75% to 90%, at constant speed of 900 rpm and spark timing of 

−10°CA aTDC. 

Percentage of fuel load is a parameter in TunerStudio that is used to vary the amount of 

fuel entering in to the cylinder, by varying the injector pulse width. Fuel load was varied from 

75% to 90%, with every 5% increase corresponding to approximately 2 ms increase in injector 

open duration. Hence, more amount of fuel is injected every cycle. A bench test was conducted 

to test the response of injector with varying fuel load %, and the results are illustrated in Figure 

38 and Figure 39. Figure 38 shows the variation in injector signal with change in percentage of 

fuel load, while Figure 39 shows that the pulse width increases almost linear with increase in fuel 

load %. 
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Figure 38: Injector signal variation with change in percentage of fuel load 

 
Figure 39: Linearity check of injector response 
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Since, a fixed throttle position was maintained during the experiments, the amount of air 

flow rate in to the engine was always constant. And due to variation in fuel load %, the amount 

of fuel increased, resulting in increasing equivalence ratios from 75% to 90%. From the above 

discussion, due to higher ϕ, the in-cylinder pressures also increased, which can be seen in Figure 

40. Though both the gases achieved peak pressures at 90% load, the increase in NG was ~ 12%, 

which is slight lower than methane’s increase of 17%. Moreover, the difference in their peak 

pressures increased from 6% to 10%, when the load % changed from 75% to 80%, and then got 

down to 2% from 80% to 90% load. The differences got closer with increase in load %, which 

suggests NG exhibits better performance than methane at low load conditions, while similar 

behavior can be noticed at high load conditions. A possible explanation for this could be the 

increasing gap in ϕ between methane and NG. Although, ϕ of methane was always higher than 

NG in this test, the trends got divergent with increase in load %, which can be seen in Figure 44. 

This could also be supported by the fact that the engine was not optimized for higher load 

conditions, and hence arbitrary correlations for the two fuels were obtained. 

 
Figure 40: Effect of fuel and fuel load on pressure (at -10°CA aTDC and 900 rpm) 
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Change in imep was very similar to pressure change with an exception for NG at 90% 

load, though the trend was not linear, as seen in Figure 41. There was no significant change in 

imep for NG from 85% to 90%, less than 0.1% increase. The effect of load% on imep of NG was 

a 7% increase from 75% to 80%, and 2.5% increase from 80% to 90%, while for methane, an 

increment of ~ 4.5% was observed from 75% to 80% load variation, and 6.5% increment in imep 

from 80% to 90%. Whereas, the effect of fuel on imep was 3.1% at 75% load, and narrowed 

down to 1.6% at 90% load. 

Heat release rate increased with increase in fuel load %, due to addition of more chemical 

energy into the combustion chamber every cycle. It can also be observed that, the crank angle at 

which the peak cylinder pressure occurs, is being advanced with increase in fuel load %. This is 

because, the higher ϕ helps in achieving faster flame propagation. As the higher hydrocarbons 

can burn much faster when compared to methane [53], NG had higher heat release rate than 

methane. And again, the rate of increase from 75% to 80% load was higher for both the fuels, 

and then the magnitude started to decrease. 

 
Figure 41: Effect of fuel and fuel load on imep (at -10°CA aTDC and 900 rpm) 
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Figure 42: Effect of fuel load on heat release rate (at -10°CA aTDC and 900 rpm) 

 
Figure 43: Effect of fuel and fuel load on NHRR (at -10°CA aTDC and 900 rpm) 
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Figure 44: Effect of fuel and fuel load on equivalence ratio (at -10°CA aTDC and 900 rpm) 

 
Figure 45: Effect of fuel and fuel load on indicated thermal efficiency (at -10°CA aTDC and 900 

rpm) 
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Equivalence ratio (ϕ) in this study was not function of air intake and depended only on 

the value of fuel load %. Hence, the ϕ was always constant for any operating conditions, at 

constant fuel load %. It can be noticed from Figure 44 that the ϕ of methane was higher than that 

of NG. This was due to the higher molecular weight of NG and increased viscosity of higher 

alkanes present in NG, which reduced the flow of NG through injectors. One interesting 

observation that can be made from this point is that although the mass of methane was higher 

than NG, the power output and efficiency of NG was comparably higher than methane, which 

suggests that NG is more powerful and fuel efficient than methane at low speed conditions such 

as those in this work. Figure 45 shows the indicated thermal efficiency with change in fuel load 

%. The NG efficiency increased from 75% and reached the maximum at 80% load, then started 

to decrease. For methane, the efficiency reached a maximum at 85% load and then decreased till 

90%. Though, while the flame speed and heat transfer increased with fuel load for both fuels, the 

efficiency decreased. This might be, probably, due to the increasing amount of trapped fuel in the 

crevices as the load % increases, which could be checked using emissions data. But due to some 

equipment malfunction, the emissions are not presented here. 

Table 9: Effect of fuel and fuel load on engine 

Fuel Fuel load 

(%) 

Pmax 

(MPa) 

Pmax 

location 

(deg 

aTDC) 

SOC 

(deg 

aTDC) 

EOC 

(deg 

aTDC) 

Φ Imep 

(kPa) 

ηth, i 

CH4 

75 4.16 18.7 7.7 55.3 0.71 780.31 32.6 

80 4.42 18.0 7.0 54.4 0.74 815.65 33.0 

85 4.76 15.0 6.5 47.6 0.76 864.47 33.7 

90 4.89 17.1 6.0 50.3 0.80 868.88 32.5 

NG 

75 4.41 18.0 7.2 55.6 0.69 804.46 34.7 

80 4.84 16.7 6.2 55.2 0.71 861.03 36.0 

85 4.93 16.9 6.2 52.8 0.74 881.70 35.6 

90 5.01 16.8 6.0 50.3 0.76 882.63 34.4 
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5 Summary and Conclusions 

5.1 Summary 

Increasing demand for petroleum fuels and enforcement of stringent emission regulations 

have initiated the work on alternative fuels containing low carbon like NG; but its varying 

composition over geographical area is posing a threat to IC engines and its operation. Hence, this 

work had focused on studying the effects of change in NG composition on various combustion 

parameters like in-cylinder pressure, apparent heat release rate, IMEP, etc. An experimental 

investigation was conducted on a single cylinder CI engine modified to SI engine for NG 

operation, by replacing the fuel injector with a spark plug and adding port fuel injection to the 

intake manifold just before the intake valve for fuel delivery. An operating variable called fuel 

load % is varied to change the equivalence ratio of the mixture. The injector responded linearly 

with change in load %, and produced a significant change in pressure from lower ϕ to higher ϕ, 

though not much change in ϕ was observed. This study used two gases, methane and a C1-C4 

alkane blend to study the effects of chemical composition of NG at several operating conditions. 

Operating variables like spark timing, load %, an engine speed were varied, and data was 

collected for both gases and compared. The conclusions of this study are presented below. 

5.2 Conclusions 

 NG blend had a higher peak pressure than methane at all operating conditions, which 

suggests that peak pressure is proportional to the fuel’s WI. 

 Higher carbon species like ethane and propane in NG helped in faster flame development 

and propagation, which increased the heat release rate compared to methane. 

Subsequently, NG had higher thermal efficiencies than methane. 

 The faster flame development for NG advanced SOC, which advanced the position of the 

peak pressures. 

 Variation in spark timing for methane caused the imep to increase until it reached the 

MBT timing, and then decreased again. 
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 Increasing engine speed reduced the peak pressures and apparent heat release rates, 

probably due to the higher friction losses in the engine. 

 Imep and thermal efficiency decreased linearly with increasing engine speed, though 

these parameters were higher for NG at any instant. 

 However, imep and thermal efficiency gaps between the two fuels decreased at higher 

engine speeds, which suggests that there is no significant effect of composition on 

performance at higher speeds for the loads investigated here. 

 The two fuels had similar ϕ, but methane had a slightly higher ϕ than NG. 

 Imep for both fuels increased until certain ϕ, and then remained constant. Thermal 

efficiencies also increased up to certain ϕ, and then decreased. However, NG had its peak 

thermal efficiency at lower ϕ than methane, which suggests that NG should be run leaner 

than methane to achieve better performance and efficiency. 

5.3 Future work 

Emissions data was not available for this study. Collecting emissions data could provide 

better explanation of the irregular behavior of gases at certain conditions. Spark timing data was 

not available for NG, due to controller malfunction. Re-running the experiments with controlled 

spark timings would provide further insight on how the behavior of NG changes with spark 

timings. Optical investigation of the present work could help understand how the composition of 

gas effects the flame development and propagation process.  

There are some points in this study that need further information by implementing 

various compositions to substantiate. Hence, the present study could be extended by 

implementing other compositions of NG, which would help in better understanding the influence 

of MN and WI on combustion parameters. 

Also optimized engine testing can be conducted to reveal the actual behavior of the gases 

at various operating conditions. 
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7 Appendix 

 

 

Figure 46: Certificate of Analysis of NG composition 
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